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Abstract 

Toward improving the diagnosis of glioma 

Julia Cluceru  

 
Glioma is a heterogeneous and incurable neoplastic mass derived from the glial cells in 

the brain. The clinical course of a glial tumor can range from slow growing to highly aggressive 

and it is driven by the genetic and epigenetic alterations within the neoplastic cells’ DNA. In 

order to diagnose both that a patient has a glioma and what kind of glioma it may be, it is 

necessary to acquire magnetic resonance images (MRI) of the brain. MRI not only provides 

unparalleled soft tissue contrast in the brain compared with other tomographic imaging 

techniques (e.g. CT), it is also incredibly flexible: in addition to structural anatomy of the lesion, 

it can probe the physiology (e.g. diffusion, perfusion) and metabolism of the brain. Together, 

these data guide neuroradiologists and neurooncologists to provide the optimal treatment plan for 

a patient with glioma.  

 Even with the most talented clinicians and the highest-quality MR acquisitions, there still 

exist issues along the trajectory of diagnosing a glioma. In this dissertation, I harnessed the 

incredibly rich biological information within the pixels of MRI with modern advances in data 

science and computer vision to address three of the most urgent problems along the diagnostic 

pipeline: 1) Can we identify a patient’s glioma subtype prior to surgical intervention?; 2) Can we 

create an automatic MR dashboard for clinicians to monitor patient disease over time?; and 3) 

When a patient appears to recur, is it a true glioma or the effect of radiation therapy? For each of 

these questions, I found that rigorous application of statistical learning and deep learning 

together with MR imaging can improve these problems, even with limited patient data.   
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1. Introduction 
 

Gliomas are rare but deadly. They have relatively few treatment options, due in part to 

their clinical heterogeneity, in part to their genetic heterogeneity, and in part due to their location 

in the brain, one of the most functionally important organs in our bodies. In turn, diagnosing 

patients early and accurately is critical to maximizing longevity and quality of life.  

A journey through the trajectory of a patient diagnosed with glioma can add perspective 

to the kinds of questions that still remain unanswered by clinicians and scientists. Typical 

patients present with some combination of seizures, headaches, nausea, or disequilibrium. A 

clinician will administer an MRI, from which a trained neuroradiologist will have to make an 

assessment of whether the patient is experiencing a glioma or a lesion that can look extremely 

similar, like a metastasis or a CNS lymphoma[1].  

Once the diagnosis of glioma is established, the following decision is whether the patient 

needs immediate surgical resection or if alternative treatment options are appropriate. The need 

for surgical resection can depend on many factors, and institutions handle this decision 

differently. In general, the decision of whether to perform surgery or utilize other treatment 

options depends greatly on the prognosis of the patient. The prognosis is determined by what 

kind of glioma that patient has. Throughout history, defining the “kind” of glioma has evolved. 

Most recently, the collection of genetic alterations that the tumor harbors is the most important 

factor for understanding a patient's trajectory and response to different therapies. This is 

discussed in more detail in Chapter 1, but it follows that presurgically identifying a patient’s 

genetic alterations has important implications in treatment management.  



 
 

 2 

Following this determination, many patients will go on to receive neurosurgery, from 

which tissue can be collected and the genetic variations can be directly analyzed. Once 

confirmed, the genetic alterations will inform the decision to administer radiation therapy and/or 

chemotherapy. During and after this treatment period, patients receive routine MRI to monitor 

response to treatment as well as recurrence of their tumor.  

It is the job of a skilled neuroradiologist to monitor changes in patients' brains over time.  

However, this can prove to be a more daunting task than it seems: each MRI scan consists of at 

the very least 4 different kinds of MR image contrasts of soft tissue. The trouble with all of these 

different MRI acquisition strategies is that there is no consistent way of labeling or acquiring 

them across institutions. In other words, it is often up to the institution or even the specific MR 

technician to describe the kind of MR acquired in the series description field. These MR images 

are stored in hospital databases, so the radiologist who wishes to monitor a patient's changes over 

time must go into the database, find the modality of interest at timepoints A, B, and C etc., find 

the same slice of the MR volume at each timepoint, and subsequently assess the tumor size 

changes through time either qualitatively or using crude quantitative tools, like measuring the 

change in diameter. However, because of software limitations and the immense heterogeneity in 

MR volume labeling, this process can be extraordinarily tedious, taking up valuable clinician 

time. In an ideal world, there would exist a dashboard that automatically presents aligned slices 

of the chosen MR modality together with important clinical metrics (e.g. tumor volume) over 

timepoints A, B, and C.  

Once the proper scans are pulled up and aligned, the neuroradiologist is faced with 

determining whether a patient is responding to treatment. If a lesion is not apparent or is 

obviously shrinking, the answer is straightforward. However, if a new enhancing lesion appears, 
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the answer may not be so clear. True, it may be the case that there is a recurrent tumor that needs 

to be treated again; however, it may be the case this is actually not a recurrent tumor at all, but 

rather the effect of radiation therapy causing inflammation and necrosis that mimics the 

appearance of a real recurrence. In turn, a clinician can use alternative MRI modalities or even 

PET scans to attempt to understand the underlying biology driving this new lesion, but this 

remains an active area of research and is not yet integrated into clinical practice. With the advent 

of new immuno- and antiangiogenic therapies, the growth or shrinkage of lesions is even more 

complex, as antiangiogenic therapies may lessen lesion appearance without actually mitigating 

the aggressiveness of the tumor.  

The work presented in this dissertation aims at many pain points described within this 

process. The following structure is used to take the reader through the essential background for 

understanding the research that has gone toward improving the diagnosis of glioma.  

 

Chapter 2: Introduction to Brain Tumors  

This chapter aims to provide context for the reader to understand the prevalence of 

intracranial tumors as well as some of the relevant basic biology and genetic mutations that 

define glioma. Even further, it describes how the biology of tumors can influence the treatment 

decisions that are made in patient management. It dives into the complicated nature of treating 

glioma, including the challenges presented by neurosurgery itself and the delivery of therapeutics 

across the blood brain barrier.  
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Chapter 3: Introduction to MRI for imaging gliomas 

This chapter provides the necessary background for understanding the science of 

magnetic resonance imaging. It describes the phenomenon of nuclear magnetic resonance as well 

as signal generation and acquisition. It dives into the generation of conventional T1 and T2 

weighted MR images, as well as diffusion, perfusion, and spectroscopic MR. For each kind of 

MR, a discussion of its relevance for the diagnosis of brain tumors is presented.  

 

Chapter 4: Introduction to machine learning  

 This chapter is meant to introduce the reader to the fundamentals of machine learning 

while also capturing the power and relevance it has to medical imaging. It begins with an 

introduction to linear and logistic regression, which are used to illustrate concepts used later in 

deep neural networks (e.g. backpropagation). This section covers all statistical and machine 

learning concepts relevant for research presented in chapters 5 through 7; such as random forest, 

spatially repeated measures, and convolutional neural networks.  

 

Chapter 5: Presurgical identification of genetic alterations in glioma 

In this study, concepts from the first three chapters are combined to tackle one of the 

problems outlined in the introduction: presurgical identification of molecular subtype in glioma. 

Though many prior investigations use deep learning to predict IDH mutation status from MR 

imaging, few have incorporated 1p19q chromosomal arm codeletion, a defining feature of 

glioma subtype. In addition, the optimal framework and modalities for prediction of both IDH 

and 1p19q status are investigated.  

 
 



 
 

 5 

Chapter 6: Automatic annotation of MR Image contrasts for Neuro-Imaging 

 To perform analyses of disease progression, it is necessary to evaluate the change in 

disease over time on MR images of similar contrast. The goal of this study is to create an 

algorithm that can reliably classify brain exams by MR image contrast as part of an automatic 

MR annotation and delivery system to both clinicians and researchers. We use two modeling 

strategies (metadata with random forest and imaging data with deep learning) to compare the 

performance of different approaches on a poorly-annotated, heterogenous multiple sclerosis 

dataset. We then demonstrate generalizability of our algorithm to a distinct cohort of brain 

tumors with increased disease burden.  

 

Chapter 7: Differentiating the effects of treatment from recurrent tumor   

 One of the most important questions for clinicians monitoring patients for recurrence is 

whether a newly enhancing lesion on an MRI is a real recurrent tumor, or whether it is the effect 

of treatment; often, they are identical on conventional MRI. In this study, we aim to identify 

physiologic and metabolic MR imaging parameters that are associated with true recurrent tumor 

or treatment effect. We utilize image-guided tissue samples acquired with neuronavigation tools 

to match specific regions of MRI to the pathological outcome, thereby overcoming heterogeneity 

within patients.  

 

Chapter 8: Conclusions and Future Directions 

In Chapter 8, we summarize the findings of this dissertation and discuss future directions 

of the work presented.  
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2.  Brain tumors 

2.1 Epidemiology and the evolving classification of brain tumors 

Intracranial cancers can originate from cells in the brain (“primary”) or from tumors 

elsewhere in the body (“secondary” or “metastasis”). Approximately half of newly diagnosed 

brain tumors are primary, which impact 23.79 people per 100,000 in the United States per 

year[2]. Of these, 70.3% are benign, while 29.7% are malignant. All in all, this translates to an 

estimated and expected 24,970 primary malignant brain tumors diagnosed in the year 2021.  

Within the subset of primary malignant brain tumors, glioma - or tumors arising from the 

glial cells in the brain - comprise 81%[3]. Glioma are extremely clinically heterogeneous: the 

five year survival rate ranges between 7.2% and 83.4%, with different symptomatic burdens and 

responses to therapy. In light of this enormous variation, it is an important clinical objective to 

accurately diagnose glioma patients with favorable and unfavorable prognoses more specifically 

and accurately.  

 Historically, scientists and clinicians have relied on phenotypic pathological assessment 

of the tumor progenitor cell type (Figure 2.1a)[4] as well as other markers of proliferation, 

microvascularization, and necrosis. Oligodendrogliomas, or glioma arising from 

oligodendrocytes, tended to be lower in grade and slower-growing, with favorable survival 

outcome. Astrocytomas, or tumors arising from astrocytes, were categorized into prognostic 

grades using classic phenotypic histochemistry assessment: diffuse astrocytoma with 

“cytological atypia” as grade II; anaplastic astrocytoma with “anaplasia and mitotic activity” as 

grade III; and “microvascular proliferation and/or necrosis” as grade IV, otherwise known as 

glioblastoma.  
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In 2016, this categorization was drastically overhauled to comprise an integrated 

genotypic-phenotypic assessment (Figure 2.1b). The categorization still first considered 

pathological characterization of whether the sample was glioblastoma or not, and was then 

followed by establishment of the presence or absence of an IDH mutation. If the tumor was 

determined to have an IDH mutation, the sample would then be considered for the joint deletion 

of the 1p and 19q chromosomal arms.  

 In the past year, the cIMPACT-NOW consortium that informs the WHO has placed even 

greater emphasis on genetic classification of glioma (Figure 2.1C). In brief, the 

recommendations suggest reorganizing diffuse or anaplastic IDH wildtype tumors with EGFR 

amplification, whole chromosome 7 gain and 10 deletion, and/or TERT promoter mutation into 

the same category as “glioblastoma, grade IV, IDH wildtype,” despite the absence of histological 

markers such as microvascular proliferation or necrosis[5,6]. Similarly, numerous retrospective 

studies have concluded that histologic grading criteria may not stratify risk for patients with 

IDH-mutant astrocytomas[7–9]. cIMPACT-NOW suggests that tumors previously categorized as 

“glioblastoma, grade IV, IDH mutant” should be recognized as distinct from glioblastoma. In 

addition to histological characteristics of aggressiveness, CDKN2A/B homozygous deletion 

should be a WHO grade 4 criterion for IDH-mutant astrocytomas, and instead denoted as “IDH 

mutant, astrocytoma, Grade 4”. 

To summarize, the evolving classification of glioma can be characterized by an increased 

emphasis on genetic alterations for proper diagnosis and prognosis. In the near future, we expect 

to categorize patients as IDH-wildtype (IDHwt),  IDH-mutant 1p19q intact (IDHmut-intact), or 

IDH-mutant 1p19q-codeleted (IDHmut-codel). In addition, there exists more genetic alterations 

(e.g. CDKN2A/B homozygous deletion) that can more precisely denote the aggressiveness and 
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clinical course of a particular tumor, but remain to be implemented in routine clinical practice. 

These different categories are able to inform patient management in more detail than ever before.   

 

Figure 2.1. Evolving WHO categorization of glioma places greater emphasis on genetic 
subtype.  
(A) An example of histopathological evaluation that classified tumors based on the inferred 
tumor cell origin. (B) Half of the flowchart of the 2016 WHO integrated diagnosis, exemplifying 
how the classification first relied on histopathological evaluation of tumor cell of origin followed 
by IDH mutation status and 1p19q codeletion. The other half classifying glioblastoma is not 
shown. (C) The new proposed classification scheme, where all glioma regardless of tumor cell of 
origin are classified first by IDH mutation status followed by 1p19q codeletion status.  

 

2.2 The challenges of glioma treatment 

2.2.1 Treating brain tumors across the blood-brain barrier  

The blood-brain barrier (BBB) is a vascular system unique to the brain, composed of 

endothelial cells strung together with tight junctions, pericytes to regulate them, and astrocytic 

endfeet[10]. In addition to the tight junctions between endothelial cells limiting transportation 

between cells, endothelial cells also exhibit reduced numbers of surface pores compared with 
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endothelial cells in other locations, as well as limited intracellular trafficking 

mechanisms[11,12].  The BBB is surrounded by basal lamina, an extracellular matrix (ECM) 

formed predominantly of glycoproteins that can be proteolytically cleaved to influence BBB 

function in health and disease[13]. These features work together in concert to tightly regulate 

brain homeostasis in healthy brains; however, these same features are what limit the delivery of 

therapeutics.  

The tenets of the healthy BBB change when a neoplastic mass expands in the brain. This 

new mass of cells needs to be supplied with oxygen in order to continue its metabolic processes 

and replication. As the region becomes hypoxic, the cells upregulate vascular endothelial growth 

factor (VEGF), which as the name suggests, promotes blood vessel recruitment and development 

in a process called angiogenesis. This ad-hoc blood vessel formation will often lack the same 

integrity as the intact BBB, forming what is known as the blood-tumor-barrier (BTB). It is 

characterized by aberrant pericyte distribution, loss of astrocytic feet, and is generally considered 

“leakier”[10]. At first glance, this is advantageous for drug delivery; however, like most aspects 

of glioma, clinical data suggests heterogeneity with regard to the integrity of the BBB in all 

glioma, with regions of both intact and compromised BBB[14], adding complexity and 

unpredictability to the drug delivery process.  

2.2.2 Treatment for Newly Diagnosed Patients 

Treatment options for patients diagnosed with glioma are limited. First, by infiltrating 

one of the body’s most crucial organs, they can present in areas that even the most skilled 

neurosurgeons may have trouble resecting without impacting normal brain function. Next, the 

blood brain barrier will impede systemic therapeutic delivery because at best it is 

heterogeneously porous. Finally, the rarity of glioma means that there is little incentive from the 
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pharmaceutical industry to fund research due to low potential for profit. In light of these 

compounded challenges, it seems remarkable that scientists have found treatments that prolong 

the life of glioma patients.  

The first line of treatment is surgical resection. It is recommended that all patients 

regardless of grade receive the greatest degree of surgical resection that can be undertaken 

safely[15]. However, removing the tumor is often complicated by the diffuse boundaries and the 

great importance of maintaining normal brain activity. In most cases, radiation therapy (RT) is 

subsequently employed to target the tumor cells that remain. Historically, doses of 50 to 60 Gy in 

1.8- to 2-Gy fractions over 5 to 6 weeks was the mainstay of treatment after surgical resection; 

however, the utility of administering this dose immediately following resection has been brought 

into question for Grade 2 slow-growing glioma[15,16].   

After surgery, chemotherapy in conjunction with RT can be beneficial in the treatment of 

patients with certain glioma. In 2005, temozolomide (TMZ) administered together with radiation 

therapy was found to increase survival of glioblastoma patients to a median of 14.6 months from 

a median 12.1 months with radiation therapy alone[17]. It was the first chemotherapy shown to 

produce any overall survival benefit in glioblastoma patients, and it induced minimal side 

effects. It was quickly adopted as the standard of care.  

 Temozolomide is lipophilic in nature, which allows it to cross the blood brain barrier. A 

high-level overview of its mechanism of action is demonstrated in Figure 2.2. Once converted to 

MTIC, it adds methyl groups to DNA or RNA at N7 and O6 sites on guanine and the N3 on 

adenine. During subsequent DNA replication, a thymine will be inserted opposite the 

methylguanine in place of a cytosine, inducing apoptosis[18]. However, the mismatch-repair 

(MMR) enzyme O6-methylguanine–DNA methyltransferase (MGMT) can reverse the effect of 
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the mismatched thymine by reinserting cytosine, invalidating the mechanism of the drug. So why 

does this drug work at all?  

 

Figure 2.2. Mechanism of Temozolomide.  
Lipophilic temozolomide can cross the cellular membane where it is converted intracellularly 
into MTIC, which methylates DNA. If MGMT is inactive, cellular repair mechanisms cannot 
adjust, resulting in DNA nicks and ultimately apoptosis. Figure adapted from Wesolowski et al. 
2010[19].  
 

Interestingly, approximately half of patients diagnosed with glioblastoma exhibit 

methylation on the MGMT gene promoter. This methylation silences the MGMT gene, disrupting 

the mismatch repair mechanism and thereby sensitizing the patient to the effects of TMZ. 

Therefore, in these methylated patients, the TMZ chemotherapy is most effective. The results of 

a 2005 clinical trial demonstrate that in the population of patients that are not MGMT 

methylated, the median survival was 12.7 months among those assigned to TMZ and 

radiotherapy (RT) and 11.8 months among those assigned to RT alone. In contrast, MGMT 

methylated patients assigned to the TMZ+RT group had a median overall survival of 21.7 

months compared with 15.3 months using RT alone[20], a significantly prolonged survival.  

In addition to TMZ, procarbazine, lomustine, and vincristine (PCV) chemotherapy has 

been demonstrated to improve overall survival in patients with lower-grade, IDH mutated 
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tumors[21,22]. The overall survival benefit is even more dramatic in the subset of these patients 

that experience 1p and 19q codeletion in their tumors (Figure 2.3), improving median overall 

survival from 6.8 to 14.7 years. Though it is still unclear whether lower-grade IDHmut-1p19q 

codeleted tumors should be treated with PCV or TMZ, many practitioners have opted to use 

TMZ due to its favorable toxicity profile[23,24]. One notable caveat is that TMZ treatment in 

lower-grade patients can cause a “hypermutated” phenotype when the tumor recurs, which is 

associated with high-grade transformation, distant recurrence, and shortened survival[25]. 

Greater understanding of the genetic profiles of patients whose molecular mechanisms potentiate 

hypermutation could allow clinicians to selectively administer TMZ to patients at low risk for 

hypermutation.  

 

 

Figure 2.3. The benefit of PCV treatment for 1p19q codeleted patients.  
Kaplan-Meier estimates of overall survival for patients whose tumors were IDH mutated and 
1p/19q codeleted (co-del; gold), mutated (mut) and noncodeleted (blue), and nonmutated and 
noncodeleted (gray) after (A) procarbazine, lomustine, and vincristine (PCV) plus radiotherapy 
(RT) and (B) RT alone. Median survivals after (A) PCV plus RT were 14.7, 5.5,  and 1.0 years, 
respectively. Median survivals after (B) RT alone were 6.8, 3.3, and 1.3 years, respectively. 
Figure and caption adapted from Cairncross et al. 2014[22].  
 

In 2015, the addition of tumor treating fields (TTF) was approved by the FDA as an 

optional adjuvant therapy to TMZ following RT forthe standard of care in Grade 4 Glioblastoma. 
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In brief, TTFs are alternating electrical fields designed to interfere with normal mitosis that are 

delivered through a wearable helmet. The results of one clinical trial show marked increases in 2-

year survival rate, which was 43% with TTF vs. 29% without TTF, along with increased median 

overall survival to 19.6 months with TTF device treatment vs. 16.6 months without TTF device 

treatment (HR = 0.744, p = 0.0038)[26]. Despite evidence of the safety and efficacy of the TTF 

device, skepticism remains persistent among neuro-oncologists[27]. Its usage remains infrequent 

(3-12% of patients with newly diagnosed GBM) and hinges on the compliance of the patient: 

patients with a compliance rate of >90% showed a prolonged median survival of 24.9 months 

and a five-year survival rate of 29.3%, while patients that complied <30% of the time with TTF 

had median survival of 18.2%[28]. Ultimately, such levels of compliance require lifestyle 

modifications that could dramatically impact the quality of life for patients with limited survival, 

and may be an explanation for low patient use.  

The majority of these treatment options are differentially administered based on the 

tumor subtype, now determined by the genetic alterations of the tumor. But how do clinicians 

know the genetic alterations of a patient before selecting a chemotherapy regimen? The tissue 

acquired during resection can be evaluated for the aforementioned genetic alterations through 

histopathology, FISH and/or genetic sequencing. From this information, clinicians are armed 

with the necessary information to plan treatment.  

However, tumors in the basal ganglia, thalamus, and brain stem cannot be resected 

without vastly damaging quality of life. Compounding these challenges, genetic sequencing and 

immunohistochemistry are costly and time-consuming expert-mediated processes. In cases where 

a patient cannot undergo surgical resection or immediate therapeutic decisions could improve 

patient outcome, clinicians could ideally obtain this essential genetic information through other 
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means to ensure that the appropriate therapeutic strategy is used for the patient. In Chapter 5, we 

explore the potential to presurgically identify genetic subtypes of newly-diagnosed glioma.  

2.2.3 Treatment of Recurrent Glioma   

There is no known curative therapy for glioma, and therefore these tumors will all 

eventually recur. Unfortunately, treating recurrent tumors is even more complex than treating 

newly diagnosed tumors. One consideration is whether a repeat resection is worth the impact on 

a patient's quality of life. Another complicating factor is that residual tumor cells remaining after 

first-line therapy are the cells that propagate recurrence, meaning they can be resistant to the 

original therapies, including radiation. Therefore, it is necessary that clinicians are armed with 

additional strategies when treating recurrent tumors.  

One chemotherapy typically introduced upon recurrence is bevacizumab. Under hypoxic 

conditions such as that in a growing body of tumor cells, Vascular Endothelial Growth Factor 

(VEGF) transcription is upregulated[29]. True to name, this growth factor will stimulate 

recruitment and proliferation of endothelial cells toward the hypoxic mass, enabling the delivery 

of oxygen. The current standard of care for recurrent tumors includes Avastin, or bevacizumab, a 

humanized anti-VEGF monoclonal antibody. It selectively binds circulating VEGF so that it 

cannot conduct downstream signaling, thereby limiting the blood and oxygen supply to tumor 

tissues. Bevacizumab can be especially effective in combination with RT, as it can sensitize 

tumor endothelium to RT[30], and results from a 2013 trial support that this combination can 

meaningfully extend progression free survival (PFS) and overall survival (OS)[31].  

During and after the completion of original treatment for Grade 4 Glioblastoma, patients 

are frequently scanned with magnetic resonance imaging (MRI) to search for evidence of tumor 

recurrence. Unfortunately, RT often complicates this evaluation period by causing damage to the  
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damage to the surrounding healthy brain tissue, inducing a new lesion that is not caused by 

tumor growth. These treatment-induced effects can appear identical to a true recurrence of the 

tumor both on conventional anatomic imaging (Figure 2.4) and during clinical symptom 

evaluation. Even further, an estimated 36% of patients experience these treatment-induced 

effects[32], and its appearance is even more common with the recent advent of immuno- and 

other targeted therapies in clinical trials. If recurrence is incorrectly diagnosed, a patient may be 

removed from an effective therapy, which could invalidate the results of a clinical trial or expose 

a patient to unnecessary surgical intervention. Taken together, this phenomenon presents an 

enormous challenge for planning treatment when a suspected recurrence appears.  

 
 

 
Figure 2.4. The similarity of treatment-induced lesions and recurrent, high-grade glioma 
on convention MR imaging.  
Treatment-induced lesions and true recurrence can both exhibit extensive T2-FLAIR 
hyperintensity, with contrast enhancement toward the central region of the lesion.   
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3.  Magnetic resonance imaging of glioma 

3.1 Conventional anatomic imaging sequences 

3.1.1 Introduction to MRI  

Magnetic resonance imaging, or MRI, is a powerful imaging modality that produces 

images of internal physical and chemical characteristics of an object from externally measured 

nuclear magnetic resonance signals[33]. MRI is incredibly flexible, offering a wide range of 

physical parameters to image and instrumental parameters to set for control of image 

content[34]. This section will focus on gaining intuition about the basics of MRI: how 

magnetization is used to create and record signals emitted from the body, and how this signal 

acquired over time can be converted into a spatial (2D or 3D) image.  

Magnetic resonance can be achieved by any atom with an odd number of protons and/or 

odd number of neutrons. By far the most studied MR imaging technique is hydrogen (1H) 

imaging because it is the most abundant atom in the body and therefore gives rise to the largest 

signals[34]; for the rest of this introduction, we will discuss these phenomena with respect to the 

nuclei of 1H atoms, or a single proton, with the knowledge that the principles hold for any odd 

numbered nuclei in the body.  

Protons are subatomic particles with a positive charge that precess (or “spin”) with 

angular momentum. This lends them an electrical current which is accompanied by a magnetic 

field. When these protons are placed in a strong external magnetic field (B0) like that generated 

by a modern MR scanner (0.5 - 7 Tesla), they will align parallel or antiparallel with B0. Because 

of the energy differential between parallel and antiparallel states, there are slightly more protons 



 
 

 17 

aligned parallel to B0 generating a net longitudinal magnetization (Mz) along the direction of the 

patient! However, since it is so minimal compared to the external magnetic field, it is not 

possible to measure this net magnetization. So how do we measure any signal after all?  

Recall that the atomic nuclei are continuously precessing, even once aligned parallel or 

antiparallel within the magnet. The frequency 𝑓 at which the nuclei are precessing can be 

calculated with respect to the external magnetic field with the following equation:  

 𝑓 = $
%&
𝐵(	 (3.1) 

where 𝛾 is the gyromagnetic ratio and is specific to each element ( $
%&
= 42.58MHz/T for 1H 

atoms). Notably, the frequency of the spinning varies directly with an increase in the strength of 

B0. When a radiofrequency (RF) wave oscillating at the Larmour frequency is applied (B1) 

transverse to the direction of B0, the exchange of energy from the RF pulse to the precessing 

protons can occur due to resonance. This excitation will a) knock some protons that were parallel 

to B0 into antiparallel configurations; b) knock the protons’ precession into the transverse plane, 

described in Figure 3.1; and c) synchronize the precesssion of protons such that they are “in 

phase” with one another, establishing transverse magnetization (Mxy). This rotating transverse 

magnetization induces an electromotive force in a receiver coil oriented to detect the changes of 

magnetization in this transverse plane, which is what will ultimately generate the image.  
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Figure 3.1. Excitation and magnetization of a proton depicted in (a) the lab frame and (b) 
the rotating frame.  
Image courtesy of Kleinnijenhuis, 2014.  
 
 Following this excitation, both the longitudinal and transverse components of the 

magnetization decay and return to equilibrium state M0. The longitudinal relaxation is 

characterized by the energy difference between Mz to M0 released into the lattice of the spin 

system, an exponential process mediated by the time constant T1 (“spin-lattice” relaxation), or 

the time it takes for 63% of longitudinal magnetization to recover. Transverse relaxation is 

governed by interactions between protons and their surrounding spins (“spin-spin” relaxation) 

such that they are no longer precessing in sync. It is governed by the time constant T2, which is 

the time it takes for 37% of the original signal M0 to remain in the transverse plane. Both T1 and 

T2 vary based on tissue composition.  This evolving magnetization can be described by the 

Bloch equations[35]:  
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or in combined vector form:  

 01
03

= 𝛾𝑀 × 𝐵 −
12A>1:B

89
− (1<>1?)E

8@
	 (3.5) 

where where 𝑖, 𝑗 and 𝑘 are unit vectors in the 𝑥, 𝑦 and 𝑧 directions. An excitation with 90 degree 

flip angle in the rotating frame as described in Figure 3.1 simplifies the solutions to the Bloch 

equations such that the equation describing longitudinal relaxation becomes:  

 

01<
03

= 1?>1<(3)
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	 (3.6) 

which yields the expression:  

 𝑀=(𝑡) 	= 	𝑀((1 − 𝑒
OP
Q@) + 𝑀=(0) ⋅ 𝑒

OP
Q@ (3.7) 

which can more intuitively describe the evolution of longitudinal magnetization. In the same 

vein, the solution for transverse magnetization can be simplified to:   

 
012:
03

= 	−12:
89
	 (3.8) 

and has the solution:  

 𝑀5;(𝑡) 	= 	𝑀5;(0) ⋅ 𝑒
OP
Q9  (3.9) 

 [36]. The rotating transverse magnetism will release a signal over time that is known as free 

induction decay (FID), inducing an electromotive force in a coil oriented to detect changes in the 

xy plane. 

 Because the T1 and T2 relaxation times are intrinsic to tissue composition, measuring the 

free induction decay signal generated from exciting these tissues can allow for contrast between 
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different tissue types. The strength of the MR signal generated from a particular tissue is given 

by the following equation:  

 𝑆	 = 𝐾 ⋅ [𝐻] ⋅ (1 − 𝑒>
QZ
Q@) ⋅ 𝑒>

Q[
Q9  (3.10) 

where K is a scaling constant, [H] is the density of protons in a particular area, TR is the time to 

repetition of the original RF pulse, and TE is the time to echo - or the time it takes to have a 

repetition of the focused magnetization vector before repeating the original RF pulse. In the 

simplest spin-echo sequence, TE is mediated by a second 180 degree RF pulse that is given at 

TE/2 that effectively acts as a wall that the signal bounces off of and refocuses at TE. From 

Equation 3.10, we notice that TR mediates the weighting of T1 differences between tissues, and 

TE mediates the weighting of T2 differences between tissues.  

 To understand the effects of TR on T1 weighting, consider what happens to two tissues 

A and B when two 90 degree RF pulses are given in succession quick enough (i.e. short enough 

TR) such that all the protons knocked antiparallel in Tissue B do not have time to recover to their 

original thermal equilibrium (Figure 3.2b), while Tissue A does fully recover (Figure 3.2a). 

Upon the second 90 degree RF pulse, there will be a lower magnitude of transverse magnetism, 

because there was not enough time for Mz to return to M0, and the magnitude of the FID will be 

diminished. In this scenario, Tissue B has a longer T1 recovery time, which can be represented 

by the solid line in Figure 3.3a, while Tissue A has a shorter recovery time represented by the 

dotted black line Figure 3.3a. As a concrete example, in a T1-weighted image, tissues with 

shorter recovery times (e.g. fat, myelin in white matter) will have greater magnitude of the 

transverse magnetization at TR compared with tissues with longer T1 recovery times (e.g. water, 

cerebrospinal fluid), creating an image that appears brighter in fat-dense areas compared with 

water-dense areas.  
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Figure 3.2. Example of magnetization differences between tissues A and B when repetition 
time (TR) is short.  
(A) Tissue A has shorter recovery time, and when excited again has greater transverse 
magnetization compared with (B) Tissue B, which takes longer to recover and has lower 
transverse magnetization upon the time to repetition (TR). Image adapted from Schild 1990 [37].  
 

 

Figure 3.3. Example tissue recovery times of (A) longitudinal and (B) transverse 
magnetization after an RF pulse.  
Image adapted from Lipton et al. [38].  
 

For a discussion regarding the accentuation of T2 recovery time differences, it is 

important to note that within biological systems, the decay of transverse magnetism with T2 is 

impacted by the inhomogeneities of the magnetic field in addition to the local impact from spin 

to spin. These static field variations contribute to additional, nontrivial dephasing with time 

constant T2’, for a final time constant T2* described by the following equation:  

 \
8%∗
	= \

^%
	+ \

8%_
	 (3.11) 
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resulting in even faster signal decay. The decay between different tissues and their resulting T2 

constants is depicted in Figure 3.3b. To understand how to accentuate differences in T2 recovery 

times between two tissues, consider what happens when TE is short (e.g. before T2a on Figure 

3.3b). The refocused signal echo would occur before sufficient T2 decay has taken place, and the 

tissues could not be differentiated. Therefore, long TE is necessary to allow sufficient time for 

differentiating between the T2 recovery times intrinsic to two distinct tissue types. The longer 

the T2 recovery time of a substance, the greater magnitude of signal upon refocusing; therefore, 

substances with longer T2 recovery times (e.g. water) will appear bright compared to substances 

with shorter T2 recovery times on T2-weighted images.  

 In practice, T1 and T2 recovery times influence the magnitude of the signal generated by 

a specific tissue. In order to generate a truly T1-weighted image, it is therefore not enough to 

have long TR - it is also necessary to minimize the effects of T2 recovery time by also including 

a long TE. In the same way, T2-weighted images are generated by having short TE accompanied 

by a short TR to minimize the effect of T1 recovery time. Referring to Equation 3.10, choosing a 

long TR and a short TE would result in the signal being largely dependent on [H], and is 

appropriately named proton density weighted imaging, while short TR and long TE generates 

poor contrast and is not used at all. The choices of TR, TE and the impact on final image contrast 

are summarized in Table 3.1 and illustrated in Figure 3.4. 
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Table 3.1. Effects of acquisition parameters on image contrast. 

 

 

Figure 3.4. Effects of acquisition parameters on image contrast.  
Image adapted from Elster, 2021 [39].  
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3.1.2 From signal to image  

 The previous section described how to leverage intrinsic differences in tissue properties 

in order to generate characteristic signals, but the question remains: how does one create an 

image from these signals? Localizing signal received by the coil requires the application of 

magnetic gradients, or spatially varied magnetism in all three directions. The basic principles of 

gradient application as it applies to image acquisition will be introduced in this section.  

 In MRI, the main static magnetic field B0 is complemented by three orthogonal gradients 

Gx, Gy, and Gz, each of which is a linear function of spatial position. Conventionally, the Gz 

gradient determines the slice of the body that will be imaged in the axial plane. The thickness of 

the slice is determined by the range of frequencies that is delivered by the RF pulse (Figure 

3.3a); the wider the range of frequencies, the thicker the slice; however, this is also determined 

by the slope of the linear Gz gradient. Once the slice is chosen, the remaining two directions are 

encoded by 1) a frequency encoding gradient (Figure 3.3b) and 2) a phase encoding gradient, 

demonstrated by Figure 3.5c.  

 

Figure 3.5. Localizing signal in MRI using (A) a slice selection gradient; (B) frequency 
encoding gradient; and (C) a phase encoding gradient.  
Image adapted from Schild, 1990 [37].  
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Consequently, every point in the targeted imaging volume assigned a unique frequency at 

which the protons in that space precess. Phase encoding gradients are repeated at multiple 

amplitudes for each frequency encoded line that is read out until an entire plane of k-space, or 

frequency space, is acquired. Each point in k-space is thus assigned a unique frequency that can 

be mapped to its corresponding position in the image via an inverse Fourier transform (Figure 

3.6). The field of view (FOV) of an image is inversely related to the distance between sampled 

points in k-space.  

 
Figure 3.6. Relationship of signal acquired in k-space (time domain) to an MR image 
(spatial domain) via the inverse Fourier transformation.  
Image courtesy of Dr. Janine Lupo.  
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3.1.3 The role of conventional anatomic imaging in brain tumor diagnosis  

A typical brain MRI consists of T1-weighted and T2-weighted MR imaging sequences. 

Compared with other tomographic imaging techniques such as CT, these MRI techniques offer 

enhanced soft tissue contrast. The primary role of these images is to determine the lesion 

location, extent of tissue involvement, and resultant mass effect upon the brain, ventricular 

system, and vasculature [40].  

T1-weighted imaging is typically acquired before and after the administration of an 

intravenous gadolinium (Gd) based contrast agent. Gadolinium ions possess 7 unpaired electrons 

which can interact with water nuclei via dipole-dipole interactions and distort the local magnetic 

fields, affecting both T1 and T2 recovery times. When a Gd-based contrast agent is delivered 

systemically, it can extravasate in places where the blood-brain barrier is compromised by tumor 

growth, in turn shortening the T1 and making voxels appear bright on T1-weighted imaging. 

Breakdown of the blood-brain barrier as visualized by the contrast enhancement on T1-weighted 

imaging is positively associated with tumor aggressiveness, and its presence and extent are key 

components of glioma diagnosis. However, enhancement does not always represent active tumor 

regions and can often be present due to BBB disruption as a result of radiation treatment.  

Regions of increased peritumoral edema cause visibly hyperintense regions on T2-

weighted imaging. In gliomas, this is typically a mixture of vasogenic and infiltrating tumor cells 

along white matter tracts [40]. In many lower-grade gliomas that do not enhance, this is the 

primary signal by which clinicians can diagnose a tumor. The size and location of the T2 

hyperintense region are useful for properly diagnosing giloma. 

Despite providing the foundation of patient diagnosis, there exists abundant heterogeneity 

in tissue composition, metabolism, and mutational burden that cannot be fully characterized with 
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structural imaging methods alone. Therefore, additional MR techniques that capture specific 

physiologic and metabolic tumor characteristics are complementary for the accurate diagnosis of 

brain tumors from presurgical imaging.  
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3.2 Diffusion MRI  

3.2.1 Introduction to diffusion-weighted and diffusion-tensor imaging 

 Diffusion-weighted imaging (DWI) is an MR technique that probes the random 

(Brownian) intra-voxel motion of water molecules. A basic schematic of the MR pulse sequence 

that can capture Brownian motion is depicted in Figure 3.7: T2-weighted spin-echo sequence of 

a 90 degree/180 degree RF pulse sequence together with diffusion sensitizing gradients can 

rephase protons perfectly in the scenario of zero proton movement (Figure 3.7a). In contrast, 

when there is increased water motion (Figure 3.7b), the protons cannot be perfectly rephased 

after a 180 degree pulse, resulting in diminished signal. These signal differences between voxels 

can differentiate areas where water is restricted and water can move freely.  

The diffusion sensitizing gradients are typically described with a single value 𝑏 value measured 

in s/mm2 that can be characterized by the magnitude of the gradient (G), the time between the 

dephasing and rephasing gradient (𝛥), and the duration of the gradient application itself (𝛿), 

shown in the following equation:  

 𝑏	 = (𝛾𝐺𝛥)%(𝛥 − d
e
)	 (3.12) 

When b=0 s/mm2, the resulting image is simply the T2-weighted image described in 2.1.1. These 

are acquired during DWI sequences to serve as a baseline. Typical b values for diffusion-

weighted images range between 500 s/mm2 and 2000 s/mm2, with larger b-values increasing the 

signal from diffusion in the image. The tradeoff, however, is that there is also greater noise, 

which can compromise the signal-to-noise ratio.  
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Figure 3.7. Schematic of basic pulse sequence sensitive to the diffusion of water molecules 
within tissues.  
(A) When there is little brownian motion, protons can dephase and rephase with this gradient to 
recover greater signal; (B) when there is motion of water molecules, the dephasing and rephasing 
gradients can’t realign protons to recover as much signal. On a purely diffusion-weighted image, 
this means that areas and tissues with greater diffusion experience MR signal loss, appearing 
darker. Image courtesy of Qiuting Wen.  
 
 
  

 

Figure 3.8. The creation of diffusion-weighted images and ADC maps from three 
directions.  
(A) The first image obtained without diffusion gradients applied; (B) x-, y-, and z-direction 
diffusion-weighted images (Sx, Sy, Sz); (C) the combination of three images in (B) via Equation 
3.16; (D) obtaining the ADC map through Equation 3.17. 
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To create a diffusion-weighted image, a minimum of three diffusion-sensitizing gradients 

must be turned on in three orthogonal directions; typically, they are in the x, y, and z directions. 

These images will create diffusion-weighted source images sensitized to diffusion in different 

directions (Figure 3.8). The relationship between the signal acquired from applying b in the x, y, 

and z direction (Sx, Sy, and Sz respectively) to the signal acquired at b=0 (S0) can be described 

by the following equations:  

 𝑆5 = 𝑆(𝑒>fg22  (3.13) 

 𝑆; = 𝑆(𝑒>fg::  (3.14) 

 𝑆= = 𝑆(𝑒>fg<<  (3.15) 

where D is the x-, y-, or z-directionally-specific diffusion coefficient. They often combined using 

the geometric mean to produce a diffusion-weighted image (sometimes called “isotropic”) 

through the following formula:  

 𝑆ghi = j𝑆5𝑆;𝑆=k  (3.16) 

which is exemplified in Figure 3.8c.  

 In these images, regions with increased diffusion appear dark and restricted diffusion 

appear bright regions. However, it can be more intuitive to display these properties inversely. In 

addition, lesions with either very long or very short T2 values might suffer from phenomena 

known as “T2-shine through.” The calculation of the apparent diffusion coefficient (ADC) map 

is often helpful for both of these, and can be calculated using the following equation:  

 𝐴𝐷𝐶 = − \
f
𝑙𝑛(qrst

q?
) (3.17) 
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Through the ADC calculation, a pure parametric image is created which removes the confusion 

generated from T2-shine through and inverts the contrast such that increased diffusion appears 

bright, while restricted diffusion appears dark.  An example of an ADC map is given in Figure 

3.8d.  

 Diffusion tensor imaging (DTI) is an extension of diffusion weighted imaging, where the 

diffusion of water within a voxel is represented with a tensor with three orthogonal directions 

called eigenvalues(𝜆\, 𝜆%, 𝜆e), that are not specifically in the x, y and z direction of the three 

gradients applied in DWI. Briefly, the full diffusion tensor is represented by a 3x3 symmetric 

matrix that must be fully sampled (Dxx, Dxy, Dxz, Dyx, Dyy, Dyz, Dzx, Dzy, Dzz); but because 

Dxy=Dyx, Dxz=Dzx and Dyz=Dzy, gradients are applied at a minimum of six directions. The 

shape of the tensor representing diffusivity within the voxel therefore also describes the extent of 

anisotropy (which can be thought of as “directionality”) within a voxel. This metric, dubbed 

fractional anisotropy (FA), can be calculated using following equation:  

 𝐹𝐴 = x(y@>y9)9z(y9>yk)9z(y@>yk)9

%(y@9 zy99 zyk9 )
 (3.18) 

where the values of FA vary between 0 and 1. In perfectly isotropic voxels, 𝜆\ = 𝜆% = 𝜆eand FA 

= 0. As diffusivity becomes increasingly specific to one direction (i.e. the ellipsoid becomes 

more and more elongated and narrow), FA → 1.  

3.2.2 The role of diffusion-weighted and diffusion tensor imaging in glioma 

From this description, it is intuitive to imagine how different tissue types might vary with 

respect to how free or restricted the movement of water might be. In brain tumors, areas of 

increased tumor cellularity could restrict diffusion, while peritumoral edema could increase 

diffusivity. Given that tumor growth patterns and edema are the physiological manifestation of 
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the underlying genetic and epigenetic biology of the tumor cells, it reasons then that ADC 

measured within the different structural regions of the tumor could be associated with certain 

genetic subtypes, be prognostic for overall survival, and/or an early marker of recurrence. On top 

of these potential diagnostic and prognostic applications, the ability to map white matter tracts 

and eloquent regions has made FA maps an indispensable tool for neurosurgeons[41]. As 

mounting evidence suggests that extent of resection is the most important prognostic factor for 

glioma patients of any grade and subtype [42], it has become imperative to remove as much 

tumor as possible while ensuring the postsurgical retention of motor and communication skills of 

the patient.  

One 2015 study from Wen et al. provides evidence that even when adjusting for clinical 

prognostic factors, metrics derived from the ADC in the T2-hyperintense region of newly 

diagnosed glioblastoma is strongly associated with OS (p < 0.001)[43]. Another simultaneous 

report uses a slightly different ADC metric but comes to similar conclusions supporting ADC’s 

prognostic value[44]. Rather than OS, Pope et al. report a 2.75-fold reduction in median time to 

progression when stratifying patients into two folds by one threshold derived from ADC, 

supporting ADC’s prognostic utility[45]. What’s more, multiple studies provide evidence that 

metrics derived from ADC and FA maps are predictive of both IDH mutation and 1p19q 

codeletion in glioma, the two most important genetic alterations that influence treatment 

response and OS[46–48].  

ADC and FA have also been extensively studied with regard to their ability to 

differentiate true glioblastoma recurrence from treatment-induced damage (Section 2.2.3). Most 

studies calculate a threshold from the mean or histogram-related metric from an anatomically 

delineated region of interest (ROI) and normalize that value against a contralateral normal 
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appearing white matter region. Though at least 10 studies reporting significant differences in 

these metrics between patients experiencing recurrent tumor and those experiencing the effects 

of treatment, they must be qualified: 1) some include as few as 15 patients; 2) each study uses 

different histogram-related metrics to create a threshold; 3) studies define patients with treatment 

effect and true recurrence inconsistently; 4) thresholds are often created from and then applied to 

the same study samples; and 5) thresholds between studies are highly variable due to varying 

acquisition parameters and lack of normalization[49–58]. Ultimately, using values derived from 

ADC and FA maps in this way will be difficult to standardize across institutions, as they are 

sensitive to the diffusion b-value and B0 magnetic field unless normalization is performed. More 

recently, a 2019 study reports that incorporating features derived from the radiomics analysis of 

diffusion-weighted imaging improves diagnostic performance compared with anatomic imaging 

alone when incorporated into a machine-learning model [59]. The results from this study provide 

a promising alternative to harness the rich information in ADC and FA maps to solve this 

challenging problem.  
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3.3 Perfusion MRI  

3.3.1 Introduction to perfusion MRI  

Perfusion is defined as the amount of blood delivered to the capillary beds of a tissue 

volume over a certain period of time. Measuring perfusion can be used to approximate 

microvascular density or as an indication of how efficiently oxygen and other nutrients are being 

delivered in tissue. Perfusion MRI denotes the set of MRI techniques developed to measure 

perfusion, including arterial spin labeling (ASL), dynamic susceptibility contrast (DSC), and 

dynamic contrast enhancement (DCE). In both DCE and DSC methods, an intravascular contrast 

agent is injected into the blood in order to measure blood volume and permeability, while ASL 

requires no exogenous agents to measure blood flow. In both exogenous cases, a paramagnetic 

tracer will travel through a capillary network, inducing transient changes in the local magnetic 

field of surrounding tissue. These changes can be captured over time using fast MRI sequences. 

They are subsequently mapped to create concentration-time curves within voxels, from which 

the following useful metrics can be calculated:  

● Cerebral blood flow (CBF): the rate at which blood flows through the microvasculature 

in a tissue region, calculated in mL(tissue grams-1)(sec-1) 

● Cerebral blood volume (CBV): the fraction of the volume of tissue occupied by blood 

● Mean transit time (MTT): average time that blood spends passing through a region of 

tissue before exiting through the venous system.  

In this section, we will review the basics of each technique while discussing their advantages and 

disadvantages in the context of brain tumor imaging. 
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 ASL uses an noninvasive endogenous tracer which is an enormous advantage for patients 

that need serial perfusion scans, as gadolinium (Gd) is a toxic substance that can cause damage if 

given too often[60]. ASL selectively inverts the longitudinal magnetization vector of a slice or 

slab containing inflowing blood to the slice of interest, thereby harnessing the water within the 

blood itself as a tracer (Figure 3.9a). This labeled water flows into capillaries and exchanges with 

tissue water, which can reduce the total tissue magnetization in a slice of interest by 

approximately 1%. The subtraction of the labeled image from a control image gives an image 

proportional to the cerebral blood flow (CBF) within the slice of interest, which can be used in 

conjunction with several quantitative steps to approximate absolute measures of CBF.  It tends to 

have less variability across subjects and fewer susceptibility artifacts compared with other 

techniques. Though these advantages make ASL an attractive alternative to Gd-based agents, this 

technique suffers from low signal-to-noise ratio (SNR) which can only be amended by multiple 

acquisitions. Unfortunately, patient movement can be detrimental to this perfusion technique, as 

the subtraction of voxel intensities requires spatial alignment. It also relies on several 

assumptions that are not always met, especially in pathological conditions, such as an intact 

blood-brain barrier and the assumption of upward arterial flow.  

DCE imaging uses a T1-weighted inversion-recovery gradient-echo sequence that 

acquires serial images before, during and after administration of an intravenously injected, 

gadolinium-based contrast agent. These signal changes are used in conjunction with a two-

compartment pharmacokinetic model to approximate the permeability between the blood vessels 

(compartment one) and extracellular space (compartment two) (Figure 3.10). In turn, one can 

derive the rate of transfer between the two compartments (Ktrans and Kep), which will describe the 

permeability of the blood vessels. Resulting maps reflect a composite of tissue perfusion, vessel 
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permeability, and extravascular-extracellular space that can be used to estimate the fraction of 

blood within a given volume.  

 

Figure 3.9. Arterial Spin Labeling (ASL).  
(A) A slab of blood entering upward through the arteries (red area) is labeled. Signal derived 
from slices (yellow) are acquired before (B, control) and as the labeled blood flows through (B, 
label), resulting in ~1% decrease in slice magnetization. The change in magentization is found 
using a subtraction of the control and labeled slices and is proportional to the relative cerebral 
blood flow (rCBF).  
 

 

Figure 3.10. Diagram of the two-compartment pharmacokinetic model used to calculate 
Ktrans in DCE imaging.  
 
 DSC is similar to DCE imaging in that it too requires the injection of an exogenous Gd-

based contrast agent. In contrast to DCE, DSC captures its effects on T2* recovery through the 

use of serial T2*-weighted MR images. During the first pass of the contrast agent through the 

region of interest, the strong paramagnetic properties of Gd induce local magnetic field 

distortions around the vessels, further accelerating T2* dephasing and loss of signal. When serial 
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images are captured in quick succession, the loss of signal intensity in each voxel can be plotted 

as a function of time (Figure 3.11). Using the following transformation, a curve denoting the 

change in relaxation rates called 𝛥R2* can be approximated that is proportional to the 

concentration of contrast agent:  

 𝛥𝑅2∗ ∼ >}~(q(3)/q?)
8�

 (3.19) 

This transformation is also demonstrated in Figure 3.11, where 3.11a represents the T2* signal 

change in a single voxel over time, and Figure 3.11b denotes the approximated R2* change of 

that same voxel.   

 

Figure 3.11. Changes in T2* and 𝜟R2* signal for DSC metric calculations.  
(A) Example of the decrease in T2* signal over time in a voxel containing leaky blood vessels. 
(B) The 𝛥R2* curve as calculated by Equation 3.19: (i) peak height; (ii) percent recovery; (iii) 
relative cerebral blood volume; (iv) leakage factor.  
 

Figure 3.11b also visually demonstrates the values of metrics derived from the R2* 

curve, including (i) peak height, (ii) percent recovery, (iii) relative cerebral blood volume 

(rCBV), and (iv) leakage factor. rCBV can be approximated using the integral of the 𝛥R2* 

curve:  
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 𝑟𝐶𝐵𝑉 ∼ ∫ 𝛥𝑅2∗(𝑡)𝑑𝑡 (3.20) 

However, there are necessary corrections when measuring rCBV in the perforated vessels 

present in glioma. To quantify rapid signal changes in tumors following contrast injection, high 

temporal resolution is needed; however, the ΔR2* curve obtained at a high temporal resolution 

can be contaminated by shortening tissue water T1 when there is BBB breakdown and 

extravasation of the contrast agent into the extracellular space [61]. These T1-shortening effects 

oppose the T2* signal decrease, impacting the accuracy of rCBV calculations.  In Figure 3.11b, 

(iii) rCBV is shown corrected for the (iv) leakage factor. Many approaches have been proposed 

to correct for T1-shortening effects of leakage: a) using mathematical post-processing correction 

approaches [62–64]; b) lowering the flip angle during excitation [65]; and c) pre-loading with a 

dose of contrast agent prior to image acquisition [62]. As early as 2006, Boxerman et al. 

discovered that rCBV maps corrected for contrast extravasation (leakage) correlate significantly 

with tumor grade, while uncorrected maps do not [64].  

3.3.2 The role of perfusion-weighted imaging in brain tumor diagnosis  

In Section 2.2.3, the biological mechanisms mediating new blood vessel growth in 

glioma were introduced. Briefly, as tumor cells multiply in glioma, they stimulate the 

recruitment and proliferation of endothelial cells in a process called angiogenesis. The result is a 

reorganized novel microvasculature system made to deliver the nutrients necessary for cell 

viability inside the growing cell mass. It follows that imaging and quantifying these properties 

could have important implications for noninvasively probing underlying tumor cell biology.  

Finding the best MR imaging metric that indicates progressive disease prior to the 

manifestation of contrast enhancement would allow for early detection of treatment failure and 
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remains an important clinical objective. One 2011 study compared metrics derived from DSC, 

DCE and MR spectroscopy (see Section 3.4.1) to evaluate if any could identify progression 

earlier than conventional imaging, and if so, which had the most accurate diagnosis. The best 

performing metrics were tumor blood flow and blood volume derived from DSC imaging, 

supporting the idea that microvascular changes might manifest in perfusion imaging before 

structural changes in conventional T1 and T2-weighted MRI[66]. In addition, there is increasing 

adoption of antiangiogenic therapy into care for both newly diagnosed and recurrent glioma 

patients, for which DSC-derived parameters have been shown to serve as early markers of 

treatment failure or response[67]. In short, MR perfusion metrics could serve as biomarkers that 

manifest earlier than lesions imaged with structural MR alone.  
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3.4 MR Spectroscopy  

3.4.1 Introduction to MR Spectroscopy 

Magnetic Resonance Spectroscopic Imaging (MRSI) differs from classic MRI in that it 

can differentiate signals from hydrogen protons in metabolites other than water. The theoretical 

applications of this technology are profound: we can use mechanism-driven imaging strategies 

for improved diagnosis and prognosis; we can identify metabolic imaging markers of therapeutic 

response; and we can discover new etiologic and therapeutic biomarkers using MR. So why 

hasn’t it been adopted as a panacea?  

 The fundamental challenge with all MRSI is low concentration: an average metabolite’s 

concentration is approximately 10% that of water, which results in a 10000x reduction in the 

signal-to-noise ratio (SNR). Beyond this biological challenge, it is also technically challenging to 

acquire, requiring additional training for MRI technicians and long scan times. Compounding 

these, the resulting data requires skilled and extensive post processing because, among other 

complications, the data suffers from interfering signals from subcutaneous lipids. Not so much of 

a panacea after all.  

 Despite all of these challenges, MRSI is a promising technique as improvements in 

hardware and software inevitably advance and have the potential to overcome some of these 

challenges. Our lab has developed robust techniques automating the prescription and acquisition 

of MRSI [68]. In addition, increasing availability of high field scanners and multichannel 

radiofrequency coils has improved signal-to-noise ratios. From these advances, acquisition time 

has been shortened and coverage has been increased enough to be clinically useful. Here, we will 
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overview the basic principles necessary to understand how metabolite spectra can be acquired 

using NMR principles.  

 An MR spectroscopic signal is made up of multiple frequency components (either from 

different metabolites or different protons from the same metabolite) that can be observed and 

quantified in the same spectroscopic voxel due to a phenomenon known as chemical shift. 

Briefly, chemical shift is the shift in frequency due to the chemical environment surrounding the 

proton. Recalling basic chemistry, one might remember the influence of asymmetric electron 

clouds on the polarity of molecules. An analogous effect is in play when we consider the 

magnetic field experienced by the proton nucleus: a dense electron cloud surrounding a proton 

can “shield” the nucleus from the magnetic field, causing each proton to experience slightly 

different magnetic field strengths. The variations in different resonant frequencies can be 

expressed as  

 𝛿 = 𝜔−𝜔𝑟𝑒𝑓
𝜔𝑟𝑒𝑓

 (3.21) 

where 𝜔is the absolute frequency of the sample and 𝜔���  is the frequency of a reference 

compound under the same B0. Because the numerator is measured in Hz and the denominator in 

MHz, this measurement is expressed in parts per million (ppm).  

 The other critical component to analyzing spectra requires an understanding of the 

phenomenon known as J-coupling, which is the manifestation of neighboring protons as split 

peaks on an NMR spectrum. In the simplest sense, protons that have n equivalent neighboring 

protons resolve on the NMR spectrum with n+1 peaks. This relationship is always mutual; i.e. if 

nucleus A affects the precession frequency of nucleus B through J-coupling, nucleus B also 

affects the frequency of nucleus A. An example of an NMR spectrum derived from lactate shown 

below in Figure 3.12.  
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Figure 3.12. The NMR spectrum of lactate.  
This spectrum was chosen as an example to demonstrate the chemical shifts of protons 
experiencing disparate electronic environments as well as the J-coupling splits from adjacent 
nuclei.  
 

The first peak at ~4.1 ppm is the signal from the singular hydrogen attached to the central carbon 

atom, which is split into 4 based on its three equivalent neighbors on the methyl group. The 

second peak at ~1.3 ppm is split into two based on its neighboring hydrogen just discussed. We 

observe greater magnitude of the peaks because of the greater number of equivalent hydrogen 

atoms resonating at that same frequency, experiencing that same shift.  

 These fundamentals in combination with the introduction to MRI fundamentals in 3.1.1 

should provide a sufficient foundation for understanding how we can spatially resolve voxels, 

each with their own spectra describing differences in metabolic concentrations. A rigorous 

explanation of MRSI acquisition steps, processing steps, and the challenges at each are beyond 

the scope of this dissertation; however, I will briefly mention some of these steps so that one can 

appreciate how much effort is needed to accurately resolve metabolites of such low 

concentration:  
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● Water suppression: Suppression of the signal derived from protons in water is necessary 

to resolve any metabolites at 10% the concentration. The most common technique to 

suppress the signal from water is to use a chemical shift selective pulse sequence 

(CHESS), which will leave the spin system in a state where no net magnetization of the 

component resonating at the Larmor frequency of water is retained.  

● Lipid suppression: In tissues that have large fractions of adipocytes (e.g. subcutaneous 

fat), large signals from lipids can overwhelm the signal derived from other regions and 

therefore need to be suppressed. On the other hand, lipid within the lesions to be 

visualized can be important biomarkers for tumor malignancy, as increased lipid is 

usually associated with increased necrosis and cellular division. One can appreciate the 

challenge that such a scenario presents. Clever protocols such as outer volume 

suppression (OVS) and very selective saturation pulses (VSS) are used to selectively 

suppress lipid signals from subcutaneous fat. 

● Combining signal from multi-channel RF receivers: In short, the more coils, the better the 

spatial encoding and the faster the acquisition time. However, geometric variations, 

wiring, receive delays and electrical properties make the combination of signal acquired 

from each additional coil that much more of a post-processing puzzle.  

In essence, MRSI still requires skilled technicians and researchers to correctly acquire and 

analyze its findings; however, it is a powerful tool that has the potential to noninvasively 

characterize disease metabolism, an extraordinarily important clinical objective.  

 

* On a personal note, I find MRSI remarkable. Not only can we image different tissues in the 

body with regular MRI, but we have actually figured out how to probe the metabolism of the 
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human body with MRSI. We can take a human, put them in a strong magnet, and we can actually 

visualize where certain metabolic functions are upregulated or downregulated according to the 

concentration of their byproducts. Despite the numerous limitations of MRSI, I will never cease 

to find this accomplishment astonishing.  

3.4.2 The role of MR spectroscopy in brain tumor diagnosis  
  
 The major metabolites that are resolved in brain tumor MRSI and their biological 

relevance are described below:  

● Choline containing compounds (nCho): Choline and choline-containing compounds 

(glycerophosphocholine, phosphocholine) are essential for the synthesis of the cellular 

membranes[69]. Therefore, it reasons that increased choline is related to increased 

mitosis and cellular production, as in a rapidly multiplying glioma. Other pathological 

processes such as active demyelination due to inflammation. Its dominant signal from its 

3 equivalent methyl groups resonate as a composite peak from all choline-containing 

compounds at 3.20 ppm from (Figure 3.13a).  

● Creatine and phosphocreatine (Cre): Creatine is involved in ATP metabolism and 

exhibits low variability across brain regions and across subjects; though there remains 

debate about its fluctuations within glioma[70–72]. Total creatine (creatine plus 

phosphocreatine) is most commonly used as the reference metabolite for ratio 

normalization. Its methyl group resonates as a composite peak from all creatine 

containing compounds at 3.03 ppm (Figure 3.13b).  

● N-acetyl aspartate (NAA): One of the most concentrated molecules in the CNS, NAA can 

reach concentrations up to 10 mM. It is specific to the nervous system because it is 



 
 

 45 

synthesized from aspartate and acetyl-coenzyme A in neurons [73]. Its methyl group 

resonates as a singlet at 2.02 ppm (Figure 3.13c).  

● Lactate (Lac): Lactate is thought to be produced under hypoxic conditions. It resonates as 

a doublet centered at 1.31 ppm, as well as a smaller quadruplet around 4.1 ppm that is not 

observed in typical long TE sequences (Figure 3.12, 2.13d).  

● Mobile lipid (Lip): An increase in lipid signals observed in tumors is thought to be due to 

membrane breakdown and subsequent release of mobile fatty acids. Lipid signal can be 

observed prior to the apparent presence of necrosis, suggesting that membrane 

breakdown may precede histologically evident necrosis[74]. It resonates as a singlet 

around 1.3 ppm, which can confound the signal derived from lactate unless advanced 

protocols are in place to account for separate lactate from lipid using specialized spectral 

editing sequences. An example of one lipid structure is given in Figure 3.13e.  

 

Figure 3.13. Chemical structures of metabolites relevant for quantifying in glioma at long 
TE.  
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The vast majority of studies use long TE because it allows for lactate-editing that can 

resolve lipid concentrations from lactate concentrations. With long TE, these are the main 

compounds observed in glioma (Figure 3.13); MRS spectra acquired using long TE from voxels 

with distinct pathologies are depicted in Figure 3.14. However, it is also possible to use a short 

TE with MRSI and resolve other compounds resonating with larger ppm values, e.g. myo-

inositol and 2HG, which are additionally implicated in glioma.  

 

 

Figure 3.14. Examples of differential metabolite concentrations in regions with disparate 
pathological burden.  
Image reproduced from Osorio et al., 2007 [75].  
 

 One of the first multi-institutional MRS studies (1996) established the feasibility of 

acquiring single-voxel spectroscopy data in brain tumor patients [74]. Glial tumors were found to 

exhibit elevated mean signal intensity of choline, decreased signal of creatine and NAA 

compared with contralateral normal brain, a promising first step toward metabolically 

characterizing glioma. Since 1996, MRS has advanced to include multiple voxels in the 
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prescribed area, allowing for spatial resolution of the concentration of metabolites. Figure 3.14 

depicts the results of a 2007 study where region A exhibits elevated Cho and depressed NAA 

compared with region B, suggesting an increase in cellular proliferation that cannot be neuronal 

(and are therefore likely glial[75].) In the necrotic region D, elevated lipid signal implies 

deterioration of cellular membranes as described above. This study concluded a statistically 

significant increase in the choline-to-NAA ratio in the T2 lesion of glioma. These early findings 

have since been applied to most pressing questions in brain tumors.  

We return to the problem of distinguishing recurrent glioma from treatment-induced 

lesions. Given that each phenomenon is characterized by distinct cellular populations, it reasons 

that their metabolic signatures could help distinguish them. It follows that if MRSI is able to 

resolve these metabolic differences, it could have the unique capability of being able to 

distinguish true recurrent glioma from the inflammatory and necrotic response from radiation 

therapy. Several studies have reported significant differences in Cho/Cre and Cho/NAA ratios 

within the contrast enhancing lesion [53,54,56,76–81]. In two recent meta analyses, these 

metabolite ratio thresholds demonstrate the most sensitive and specific ability to distinguish 

these two entities compared with any metrics derived from anatomical, diffusion or perfusion 

spectroscopy [82,83].  

Beyond the metabolites listed above, of particular interest is imaging the concentration of 

the metabolite 2-hydroxyglutrate (2HG). Because IDH1 mutations occur on only a single copy of 

the gene, some transcribed enzymes retain the ability to catalyze the conversion of isocitrate to 

𝛼-ketoglutarate. However, the mutated IDH1 gene produces an enzyme with a gain of function 

that converts 𝛼-ketoglutarate to 2HG. In 2012, MR spectroscopy correctly identified the 

presence of 2HG in all IDH mutant tumors (n = 15) while no detection of 2HG correctly 
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identified every IDH wildtype patient (n=14) [84]. This study shows remarkable sensitivity and 

specificity (exceeding that of any machine learning algorithm) for identifying IDH mutation, 

highlighting the utility of MRS in the context of IDH.  
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4. Introduction to machine learning and deep learning for 
neuroimaging  

4.1 Introduction to machine learning  
 

With the advent of the information age, vast amounts of data are being generated and 

stored at an ever-increasing pace. For a given problem, it is the job of the researcher to make 

sense of the data, unveiling patterns to understand “what the data says.” In other words, we want 

to learn from the data. Broadly, we can categorize techniques used to learn from data into two 

categories: supervised and unsupervised learning. When we use supervised learning, the goal is 

to learn a function  𝑓:	𝑋 → 𝑌 that maps the input domain 𝑋, which can be thought of as a set of 

features, to the output domain 𝑌, the outcome of interest.  In contrast, there is no outcome 

measure in unsupervised learning, but the goal is to instead describe patterns and associations 

among a set of input features[85].  

Rigorous descriptions of all machine learning and deep learning techniques are the 

subjects of many books, including a favorite of mine titled the “Elements of Statistical Learning” 

by Rob Tibshirani, Trevor Hastie, and Jerome Friedman and “Deep Learning” by Ian 

Goodfellow [85,86]. For the purpose of this dissertation, I will break my discussion of machine 

learning and deep learning into:  

● 4.2, an overview of some “classic” machine learning techniques that I have used 

in my research;  

● 4.3, an overview of methods used when there is spatial correlation between 

observations; and 

● 4.4, an introduction to artificial neural networks, deep learning and convolutional 

neural network classifiers.  
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4.2 Classic machine learning techniques  
 

In this overview, we will briefly discuss the design of supervised machine learning 

algorithms that are relevant for this dissertation, as well as their advantages and disadvantages. 

Inputs are interchangeably denoted as predictors, features or independent variables, and they are 

typically represented as by the symbol X; if it is a vector, its components can be accessed by a 

subscript Xj. They can be categorical (e.g. “red”, “blue”), ordinal (e.g. “small”, “medium”, 

“large”), or numeric (e.g. 0, 1000). In most algorithms, categorical and ordinal variables are 

numerically encoded. The outcome that we aim to predict is often called the response or 

dependent variable, and is represented by a variable Y. If Y is continuous, we refer to the task as 

regression, while if Y is discrete, we refer to the task as classification. The basics of learning 

model parameters from these paired data are explored in Section 4.2.1 and the fundamental 

concepts illustrated here can be applied to deep learning, as seen in Section 4.4.  

4.2.1 Linear models   

 Given a vector of inputs 𝑋8 = 	 (𝑋\, 𝑋%, . . . 𝑋�), we predict the output 𝑌 via the model:  

 𝑌� =	𝛽�( + ∑ 𝑋B𝛽�B
�
B�\  (4.1) 

where 	𝛽�( is the intercept (or “bias”), and	𝛽�Bis the coefficient of feature 𝑋B. Often, the magnitude 

of 	𝛽�B is thought of as the average effect of a one-unit increase of	𝑋Bon the outcome. When 

equation 4.1 is represented in vector form, it takes the form of equation 4.2:  

 𝑌� = 𝑋8 𝛽�  (4.2) 

where 𝑋8denotes the vector or matrix transpose. In order to fit the model to the training set, it is 

necessary to choose the metric by which to minimize the error. There are many different 
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methods, but the most popular is minimizing the residual sum of squared error between 

predictions 𝑌�and ground truth outcomes 𝑌:  

 𝑅𝑆𝑆 = 𝐿 = ∑ (𝑦A − 𝑦��)%�
A�\ = ∑ (𝑦A − 𝑥A8𝛽�)%�

A�\  (4.3) 

which after differentiation has the following optimal solution:  

 𝛽� = (𝑋𝑇𝑋)
−1
𝑋𝑇𝑌 (4.4) 

if 𝑋8𝑋is nonsingular (i.e. its determinant is nonzero).  

 Though this is the quick solution used in all practical scenarios utilizing linear regression, it is 

worth taking an alternative approach that more closely resembles model parameter optimization 

in more complex algorithms. Let’s imagine that we begin with a random initialization of the 

model, in a sense “guessing” 𝛽� . We can use Equation 4.2 to calculate an initial “guess” of 𝑌�, and 

calculate the residual sum of squares through Equation 4.3. When differentiating Equation 4.3, 

we obtain the following equation:  

 𝜕�
���
= ∑ 2(𝑦A − 𝑥A8𝛽�)�

A�\  (4.5) 

The value of the derivative (Eq 4.5) will determine the direction and magnitude with which to 

update our model parameter weights according to the following function:  

 𝛽���0 3�0 = 𝛽� − 𝛼 ��
���

 (4.6) 

where 𝛼 is a hyperparameter that allows the experimenter to control how large or small (fast or 

slow) the updates will converge. This process can be repeated until convergence or until the loss 

is changing at a rate less than a certain threshold.  When a loss function exists on a high-

dimensional hyperplane, choosing the right 𝛼, or learning rate, becomes critical to converging 

upon a solution to optimal 𝛽� . Though this process of iteratively updating model weights is 
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decidedly less efficient than Equation 4.4, it is necessary when there are no closed-form solutions 

in more complex algorithms, and a useful exercise in the simple context of linear regression 

parameter optimization.  

 Logistic regression is an extension of linear regression when we are interested in the 

probability that 𝑋belongs to one of two classes. In the simplest sense, it can be represented with 

the following equation:  

 𝑝	 = 	𝑃(𝑌 = 1|𝑋) = �
¤�?¥∑ ¦§¤�§

¨
§©@

\z�
¤�?¥∑ ¦§¤�§

¨
§©@

 (4.7) 

Through algebraic manipulation, we can recover the log odds, which allows for an intuitive 

comparison to Equation 4.1:  

  𝑙𝑛( �
\>�

) 	= 𝛽�( + ∑ 𝑋B𝛽�B
�
B�\  (4.8) 

Both logistic and linear regression are flexible and can be combined with different 

optimization techniques and parameter weight penalties to achieve simple, interpretable, and 

useful models. Notably, for both logistic and linear regression, correlations among predictors can 

cause problems: variance of coefficient estimates tend to increase dramatically, while classic 

interpretations (a one-unit increase of Xj impacts Y in this way) become hazardous.  

4.2.2 Decision trees and random forests  

Decision trees are a simple, intuitive algorithm that uses a series of decisions to arrive at 

a conclusion. A feature can be represented as a node, while the decision represents the threshold 

of that feature that creates a split between data (Figure 4.1).  
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Figure 4.1. Example of a simple decision tree to classify the contrast of an MRI.  

As pictured, a decision tree can mimic the way some people make decisions and can use 

qualitative (categorical) features without encoding. How splits are decided at each level will 

depend on whether the tree is being used for classification or regression, but the simplest idea is 

to iterate over all possible features and thresholds of those features and find the threshold that 

best splits the data with minimal error (regression: RSS (Eq. 4.3); classification: 1-accuracy). In 

practice, greedy search algorithms are used to reduce the computational cost, but the idea is 

essentially the same: build a tree with the best split at each point to best predict our outcome. 

Though single decision trees rarely predict well on their own, algorithms of decision tree 

ensembles have been quite successful.  

One method of ensembling trees is through the use of bagging. In general, we do not have 

more than one training dataset from which to build a model. Bagging describes the generation of 

𝐵different bootstrapped training sets - meaning training sets sampled with replacement. A 

method is then trained on the 𝑏th bootstrapped training set, from which a prediction can be 
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calculated 𝑓� ∗f(𝑥). An average of these predictions is known as bagging and is represented 

with the following equation:  

  	𝑓�f ª(𝑥) =
\
«
∑ 𝑓�∗f(𝑥)«
f�\  (4.9) 

Random forest (RF) is an algorithm that combines bagging with a random subset of 

feature choices per tree. This effectively decorrelates all of the trees, in turn reducing the 

variance typically observed from a single tree. It is attractive because it can handle categorical or 

continuous features, the data do not need to be rescaled or transformed, and it is robust to 

outliers, class imbalance, and nonlinear data. This comes at a tradeoff with model 

interpretability, and despite reduction of variance through bagging, it still can overfit to training 

data. The general schematic of a random forest algorithm is depicted in Figure 4.2. 

 

Figure 4.2. Diagram of a Random Forest algorithm.  
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In contrast to RF where all trees are averaged (or treated equally), boosting is a technique 

that builds models sequentially, building off of the errors of the prior tree. In brief, each 

successive tree increases the weight of misclassification error for samples that were predicted 

incorrectly in the previous tree. Its many hyperparameters provide immense flexibility and often 

unparalleled predictive accuracy compared with other model paradigms. However, their many 

hyperparameters might necessitate a large grid search during hyperparameter tuning which 

contributes to being a computationally expensive task.   

 

4.3 Spatially repeated measures 
 

All of the models that are discussed in Section 4.2 rely on the assumption that each 

observation is independent from one another, including the simplest cases of linear and logistic 

regression. But what happens when observations are correlated with one another in some way? 

Data can be “clustered”, which is the case when subjects themselves are grouped together (e.g. 

patient cohorts from different institutions), but the dependent variable is measured just once per 

subject. In “repeated measures” data, the dependent variable is measured more than once per 

subject (e.g. a control knee and injured knee). Both clustered and repeated measures data result 

in correlations among data points that must be accounted for during statistical analysis, as the 

observations are no longer independent from one another.  

As we will discuss in Chapter 7, we repeat measurements within a patient when resecting 

multiple tissue samples from brain tumor patients during surgery. Our goal is to predict a binary 

outcome -- whether our tissue sample was diagnosed as treatment-related injury or real tumor 

recurrence -- from preoperative MRI parameters on the location of the tissue sample. Without 

getting into too much detail about that specific problem, using methods designed specifically for 
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repeated measured data can generate more descriptive models and therefore more accurate 

predictions to generalized data.  

The way to account for spatially repeated measures data varies on the target of inference: 

1) subject-specific outcomes; or 2) population-averages. If interested in (1), e.g. uncovering the 

probability of a particular patient experiencing recurrence, the most appropriate modeling 

strategy might be a generalized linear model with mixed effects (both fixed and random):  

 𝑙𝑜𝑔(
®(¯°§�	\)

®(¯°§�	()
	|	𝑥AB , 𝑏A) 	= 	𝛽( + 𝛽\𝑥AB + 𝑏( (4.10) 

where we observe the binary response Yij from ni samples in N individuals, where Yij = 1 if 

sample j from individual i is pathologically tumor and 0 otherwise; xij is a continuous MR feature 

of interest from sample i of patient j. The odds ratio of recurrence risk differs based on the value 

of bi which takes the baseline differences in recurrence risk into account on a per-individual 

basis, and the estimates are therefore subject specific.  

However, we instead care to model whether an MR-derived parameter is associated with 

recurrence in the population (2). In this case, we are interested in fitting a marginal model so that 

we can uncover the population wise association of an MR parameter with tumor recurrence. In 

this case, we fit a generalized estimating equation:  

 𝑙𝑜𝑔(
®(¯°§�	\)

®(¯°§�	()
	|	𝑥AB) 	= 	𝛽( + 𝛽\𝑥AB  (4.11) 

where we no longer have a b0 intercept that is subject-specific. More details can be found in the 

Analysis of Longitudinal Data, which, despite its name, is also appropriate for spatially repeated 

measures [87].  
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4.4 Introduction to deep learning and convolutional neural network 
classifiers 
 

The Universal Approximation Theorem in its most basic sense states that neural networks 

can approximate any continuous function to a reasonable accuracy. Neural networks are not just 

interesting because they can powerfully represent nearly any function, but also because they self-

learn features from unstructured data like text, audio, images, and video. Compared with the 

necessity of predefined features for models discussed in Section 4.2, this feature self-learning 

capability is a paradigm shift that changed the way we use machine learning together with 

imaging. In this section, I will briefly discuss the basics of artificial neural networks, as well as 

the utility of convolutional neural networks for imaging data.  

 

4.4.1 Introduction to artificial neural networks 

The basic computational unit of the human brain is a neuron, which receives a 

combination of input signals from its dendrites to produce a single output signal along an axon 

(Figure 4.3a)[88]. In essence, if the sum of signal derived from all the dendrites is great enough, 

the neuron will “fire”, sending signal to along an axon and its terminal nodes to eventually 

connect with other neuronal dendrites and propagate the signal.  

An analogous model is generated computationally to create an artificial neuron (Figure 

3.3b). The inputs of previous neurons to the current neuron are represented by 𝑥A, whose weight 

𝑤A can be thought of as the contribution of neuron 𝑖 to the probability of the current neuron 

firing. These contributions 𝑤A𝑥A are then sent through an activation function modeled by  𝑓, 

which will determine whether the sum of all  𝑤A𝑥A is great enough to propagate the signal from 

that neuron forward.   
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Figure 4.3. Structural comparison between a biologic neuron and an artificial neuron.  
(A) Biologic neurons receive chemical signals from other neurons via dendrites, which, upon 
hitting a certain threshold, can fire an electric signal down an axon to propagate the signal to 
downstream neurons. (B) The artificial neuron is based off of this structure, receiving input from 
prior neurons which are sent through an activation function, controlling whether the artificial 
neuron will fire. Figure adapted from Stanford CS231n, publicly available neural network course 
[88].  
 

Activation functions can take many forms, but the original function used was the 

sigmoid:  

  	𝑠(𝑥) = \
\z�O2

 (4.10) 

that maps any real valued number to a value between 0 and 1, which can be interpreted as the 

probability of a neuron firing. Another commonly used function is the rectified linear unit 

(ReLU):  

  	𝑠(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4.11) 

which allows for more favorable behavior when training deep neural networks. Specifically, it 

was beneficial in two ways: 1) compared with the sigmoid function that involves exponentiating 

terms, it is implemented with a simple threshold which is less computationally expensive; 2) it 

was found to accelerate the convergence of stochastic gradient descent (i.e. the process by which 

a loss minimum is found in a neural network) compared with the sigmoid function (Eq. 

4.10)[89].  
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An example of a simple, two layer feedforward neural network is given in Figure 4.4. In 

this figure, the leftmost blue layer represents the input features themselves; in this problem, there 

are only three input features but in practice, there are typically many more. The inner red layer is 

“hidden” and conducts intermediate processing, where each of four red nodes is simply a linear 

combination of the input features as described in Figure 4.3. The final green layer represents the 

output; in this case, we have a single output which is typically sent through a sigmoid function to 

decide whether the input belongs to one of two classes, numerically represented by 0 and 1. 

Feedforward networks with more than one hidden layer are typically referred to as deep neural 

networks.  

 

Figure 4.4. Diagram of a simple two-layer feed-forward artificial neural network.  
 

During training, this final output will be compared to the ground truth class and the 

difference will be calculated according to a set loss function. Here, we return to the concept of 

iteratively updating model weights introduced in Section 4.2.1. In this example of binary 

classification, one typical loss function is called “log loss” or “binary cross entropy.” The same 

concepts are then applied; we differentiate the loss with respect to the inputs, and use a “learning 

rate” to iteratively change the model weights as we work our way backward through the layers of 

the model. Understanding the basics of iteratively updating model weights is essential for 
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understanding how a model “learns” from paired input and output data during training. 

Optimizing these processes, called stochastic gradient descent and backpropagation, are active 

areas of research for all kinds of deep neural networks.  

4.4.2 Introduction to convolutional neural networks  

 Computer vision tasks related to imaging are faced with specific limitations: 1) input 

images usually contain thousands if not millions of input pixels, each of which could be 

considered its own input into the model; and 2) a feedforward network with an architecture 

similar to that in Figure 4.4 cannot capture spatial relationships between features. Challenge #1 

dramatically increases the number of weights in the network that need to be optimized, which 

increases the risk of overfitting and has much slower training efficiency. Challenge #2 means 

that the rich information of how proximate pixels relate to one another is lost.  

Convolutional neural networks are a class of deep neural networks that aim to combat 

these limitations using spatial convolutions, which are specialized linear operations. Consider a 

two-dimensional image 𝐼as input with a two-dimensional kernel 𝐾that will perform the 

convolution. The output of the convolution of image 𝐼 with kernel 𝐾is given by the following 

equation:  

  	𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) 	= 	∑¶ ∑~ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) (4.12) 

[89]. Complementary to this equation, a more intuitive understanding of convolution can be 

acquired by visualizing the operation. In Figure 4.5, we demonstrate the convolution of a 4x4 

blue input image with a 3x3 shaded kernel to create a 2x2 green output where each of four 

convolutions is the element-wise multiplication of the 3x3 input area with the 3x3 kernel, and 

subsequently summed to create the single output value in the green that is shaded. The kernel can 
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be thought of as “sliding” over the input area, and the 4 distinct spots where this convolution 

operation can be performed become the spatial 2x2 output. The 3x3 kernel values are the learned 

model weights during training of the CNN. The activation function is then applied to these 

values after the convolution function; if ReLU is chosen, we preserve all the positive values and 

set the negative values to zero.  

 

Figure 4.5. Convolution operation of a 4x4 input image with a 3x3 shaded kernel to create a 
2x2 green output.  
Image reproduced from Dumoulin et al., 2016. [90] 
 

 Pooling is another essential operation found in most convolutional neural network 

architectures. In many ways, pooling works just like a convolution; in contrast to convolutions, 

pooling layers use a set function such as the maximum or average, which in turn does not require 

learning the weights of a kernel as it is a set operation. The pooling operation can be described 

by Figure 4.6, where a 2x2 pooling layer is applied to a 4x4 input image (with stride 2) to create 

a 2x2 output. 

The first great achievement using convolutional neural networks was in the context of 

recognizing handwritten digits. In 1998, Lecun et al. proposed the LeNet-5 (Figure 4.7) where 

“subsampling” layers are another way of saying “average pooling”[91]. Therefore, the 

architecture consisted of first convolving the image, then activating the resulting feature maps, 

using an average pooling layer to reduce dimensionality, one more convolutional > activation > 
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average pool set, and finally three fully connected layers that behave like a regular feedforward 

network, each node receiving input from all nodes in the prior layer.  

 

Figure 4.6. Example of a max pooling and average pooling operations in a convolutional 
neural network.  
In max pooling, the maximum value of the region is used; in average pooling, a simple average 
across the values in the region is the output.  
 

 

Figure 4.7. Architecture of LeNet-5.  
Figure reproduced from Lecun et al. 1998 [91].  
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Figure 4.8. Architecture of AlexNet.  
Figure reproduced from Krizhevsky et al. 2012. [89]   
 

In 2012, AlexNet (Figure 4.8) made several important advances. It was the first GPU-

accelerated CNN that achieved near-human performance on the ImageNet image recognition 

challenge, winning the challenge by a large margin. It was a much deeper network with far more 

parameters (~60M) compared with LeNet-5 (~60k). The important advances can be summarized 

as 1) It used ReLU instead of tanh as its activation function; 2) it used dropout instead of weight 

decay to reduce overfitting; and 3) it used overlapping pooling to reduce the size of the 

network[89].  

In 2014, VGGNet’s success in the ImageNet competition showed that an increase in 

depth of the model resulted in better performance, which was an important advancement 

regarding our knowledge of CNN model behavior. At this time, the 16-layer VGG known as 

VGG16 was the deepest model known (~140M parameters). Appealingly, all of the 

convolutional layers are homogenous, in that they consist of 3x3 kernels with 2x2 pooling, so 

that it is easier to understand[92].  

One challenge of networks growing deeper was that they became more difficult to train. 

As an answer to this problem, “residual” or “skip” connections were introduced into deep neural 

network architectures (“ResNets”)[93] (Figure 4.9), which won the ImageNet competition the 
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following year. In short, residual connections take the output of a prior layer and add these 

outputs to a downstream layer. Simple in theory, this idea was powerful: it meant that if the 

layers in between these summation “residual” connections were not useful, they could simply be 

skipped over rather than trained. It meant that adding additional layers to networks should - in 

theory - not decrease performance at all. Skip connections have since been incorporated in many 

more CNN architectures, achieving state-of-the-art performance in numerous domains.  

 

Figure 4.9. Residual “skip” connections that improve training accuracy of very deep 
convolutional neural networks.  
Introduced by He et al., 2016. [93].  
 

Although the development of CNNs for image classification first began in 1998, the 

application of CNNs to medical imaging have only just burgeoned within the past five years. 

With respect to MR and glioma specifically, the first use of CNNs was first demonstrated by Pan 

et al. in 2015 [94] to classify glioma by grade using MR imaging. Another major leap forward in 

2015 was the publication of the BRATS dataset, which sparked the use of convolutional neural 

networks to automate glioma lesion segmentation [95]. Other recent applications of CNNs to the 

analysis of anatomic images have been to predict mutations in the IDH gene, 1p19q co-deletions, 

and MGMT methylation status. The most promising results with respect to IDH mutation 

prediction were acheived recently in a combined segmentation-classification algorithm by 
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Bangalore Yogananda et al. achieving 97% accuracy on the TCIA dataset [96]. These 

remarkable capabilities of convolutional neural networks on small glioma datasets lay the 

groundwork for answering the remaining diagnostic questions in glioma research with a 

combination of convolutional neural networks and MRI.   
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5. Presurgical identification of genetic alterations in 
glioma  

In this chapter, we synthesize ideas introduced in the first four chapters: 1) the 

importance of genetic subtypes and presurgically identifying the genetic alterations; 2) the ability 

of MR to provide insight into the underlying biology of glioma; and 3) the power of deep 

learning for medical image classification.  We use these ideas to examine the MR modalities and 

deep learning frameworks that are best for predicting the IDH mutation and 1p19q codeletion.  

5.1 Introduction  
 

From 2007 to the present, the World Health Organization (WHO) categorization of 

gliomas has been restructured to include variations in underlying genetic and epigenetic 

alterations [97]. During 2019-2020, the cIMPACT-NOW consortium that informs the WHO, has 

placed even greater emphasis on the delineation of glioma categories by a mutation in the 

isocitrate dehydrogenase 1 and/or 2 (IDH1 and/or 2) and co-deletion of 1p and 19q chromosomal 

arms, prioritizing these features over grade[5,6,98,99]. In contrast to the WHO 2016 guidelines 

that use genetic alterations to further stratify patients within a designated grade, cIMPACT-

NOW suggests that the first diagnostic delineation should rely on IDH mutation, followed by 

1p19q codeletion status, as supported by evidence that these distinct genetic subtypes indicate 

drastic differences in overall survival and response to therapy[21,100–102]. Due to this 

increasing emphasis on genetic alterations as a diagnostic tool, it has become a clinical standard 

to perform genetic testing on tissue acquired during surgery to decide subsequent treatment.  

Because genetic testing can be a costly and timely process and there remain cases where 

resection is not recommended, an alternative approach for obtaining this crucial genetic 
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information noninvasively is highly attractive. With a growing body of evidence that imaging 

features from MR are predictive of genetic alterations in IDH and 1p19q codeletion[47,48,96,103–

108], image analysis techniques have the potential to provide a fast, noninvasive complementary 

pathway for identifying genetic alterations. Once these features are identified, the next step is to 

automate their extraction and determine the optimal strategy for combining them to improve 

classification of tumors into their genetic subtype. Several prior studies have implemented 

radiomics, machine learning, and/or deep learning to accomplish this task. In 2017, Li et al. 

reported that the automatic extraction of radiomic features using deep learning successfully 

predicts IDH mutation status in grade 2 glioma; however, this study was limited by requiring a 

priori knowledge of the tumor grade obtained through pathological tissue evaluation, limiting its 

application in the presurgical setting. It was also marked with an uncommon enrichment of IDH 

WT grade II glioma in their patient cohort[109]. Since then, many studies have leveraged The 

Cancer Imaging Archive either alone or together with internal datasets to evaluate the ability of 

deep learning and radiomics to predict a patient’s IDH mutation[96,110–113]. All of these studies 

use only anatomical MR imaging, which is advantageous in that they are universally acquired with 

standard imaging protocols and require minimal preprocessing, but lack the associated benefits of 

physiological imaging that more closely reflect the underlying tumor biology. Even less emphasis 

has been placed on predicting 1p19q codeletion, with only 2 of these studies reporting attempts to 

separately classify this mutation.  We hypothesize that using a 3-class model that predicts genetic 

subgroup rather than individual mutation status plus a strategy that incorporates models that have 

been pretrained on classifying large, publicly available images, will improve the accuracy over 

prior tiered approaches for predicting IDH and 1p19q mutations because of the shared imaging 

features of these mutations. 
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As diffusion-weighted imaging has become a standard in mainstream clinical imaging of 

gliomas at most institutions, there is a growing body of evidence that features derived from MR 

diffusion-weighted imaging are predictive of both IDH mutation and 1p19q codeletion [46–

48,114]. As part of this work, we also sought to evaluate whether the addition of maps of Apparent 

Diffusion Coefficient (ADC) derived from diffusion-weighted imaging that are indicative of tumor 

cellularity would improve both the accuracy and generalization to an unseen test set when included 

as one of the inputs to a deep convolutional neural network (CNN) trained to predict genetic 

subtype. Because the “T2-FLAIR mismatch” signal has been shown to identify IDH mutated 

gliomas with 1p19q intact [103,104], we hypothesize that using T2 imaging together with FLAIR 

and ADC will improve the accuracy of the IDH-mutant, 1p19q intact subgroup, whereas including 

post-contrast T1-weighted images (T1c), ADC, and either the T2-weighted or T2-FLAIR images 

will improve the classification of IDH-wildtype and IDH-mutant, 1p19q codeleted subgroups.  
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5.2 Methods 

5.2.1 Patient Characteristics and Study Design  
 

Imaging, pathological, and clinical data from a total of 502 adult patients that were 

newly-diagnosed with a pathologically confirmed glioma at our institution between 2007 and 

2019 were assessed in this retrospective, IRB approved study. Patients were excluded if either 

their IDH status was indeterminable (n = 69) or their preoperative MRI acquisitions did not 

include T1-weighted post-contrast (T1c), T2-weighted (T2), or T2 Fluid Attenuated Inversion 

Recovery (T2-FLAIR) images (n = 20) (Figure 5.1). The study design comprised two parts: 

hyperparameter search and model comparison phases (Figure 5.2). The hyperparameter search 

phase was first performed to select the best hyperparameters for each of our three deep learning 

models before our model comparison phase then investigated the benefits of 1) using a 2-tiered, 

binary classification approach opposed to a single-tiered, 3-class classifier, and 2) including 

apparent diffusion coefficient (ADC) images as an input channel. The best performing models 

were then tested on 147 BRATS images from the independent TCGA dataset to determine 

generalization to external, multi-institutional cohorts.  
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Figure 5.1. Inclusion and exclusion criteria that led to the final numbers used in the study.  

 

Figure 5.2. Study design detailing the hyperparameter search and model comparison 
phase. 
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5.2.2 Assessment of genetic alterations 

IDH mutation status for UCSF cases was evaluated by Sanger sequencing of IDH1 and 

IDH2 genes or by IHC (IDH1R132H, H09, Dianova GmbH, Hamburg, Germany) using standard 

techniques. Negative IDH mutation results based on immunohistochemistry (IHC) were either 

validated by sequencing or excluded. IDH mutation status for all TCGA cases was assessed via 

Sanger sequencing. Confirmed negative IDH1 and IDH2 mutated samples were classified as 

IDH-wildtype (“IDHwt”). 

Our IDH mutated tumors were further classified into either “oligo-like” or “infiltrating 

astro-like” molecular subgroups based on either 1p19q codeletion status or ATRX alterations for 

UCSF cases, or solely 1p19q co-deletion status for TCGA data. Since tumors with 1p/19q 

codeletion (“IDHmut-codel”) almost invariably have IDH and TERT promoter mutations and are 

almost mutually exclusive with ATRX mutations, IDHwt gliomas and IDH-mutant (“IDHmut”) 

gliomas with ATRX alterations were not tested for 1p/19q codeletion unless it was performed 

clinically. ATRX was assessed by IHC (HPA001906, Sigma Aldrich, St. Louis, MO) performed 

at the UCSF Brain Tumor Research Center using previously published methods, while the 

presence of a 1p/19q codeletion was determined with clinical FISH assays [115]. IDHmut tumors 

that either had an ARTX alteration or were lacking a 1p19q codeletion were classified as 1p/19q-

intact (“IDHmut-intact”). 

5.2.3 Image Acquisition and Processing 

All patients underwent MR examinations performed on a 3T MR750 GE scanner (GE 

Healthcare Technologies) using an eight-channel phased-array head coil within 48 hours prior to 

surgical resection. Standard anatomical imaging included T2-weighted FLAIR and fast spin echo 
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(FSE) images, along with 3D T1-weighted IR-SPGR imaging pre- and post- the injection of a 

gadolinium-based contrast agent. Diffusion-tensor images (DTIs) were obtained in the axial 

plane with b = 1000 s/mm2 and either 6 gradient directions and 4 excitations or 24 gradient 

directions and 1 excitation or b = 2000 s/mm2 and 55 gradient directions (repetition time 

[TR]/echo time [TE] = 1000/108 ms, voxel size = 1.7–2.0 × 1.7–2.0 × 2.0–3.0 mm). To calculate 

the ADC map, a pipeline that utilized components of FMRIB’s Diffusion Toolkit was applied to 

estimate relevant diffusion parameters from the DWI and DTI data as previously described 

[116]. 

All images from the UCSF cohort were registered to the T1c image volume using either 

FMRIB’s FSL Linear Image Registration Tool (FLIRT) or Slicer’s BRAINSFit tool with B-

spline warping, and resampled to an identical 1-mm isovoxel spatial coordinate [116–118]. Brain 

masks were derived using the Brain Extraction Tool (BET) (FSL, FMRIB) and were visually 

verified to have worked properly [116]. All images were subjected to signal intensity 

normalization through a multistep process: (i) the images were multiplied by the brain mask, (ii) 

pixels above the 99.9 percentile were thresholded to the pixel intensity denoting the 99.9th 

percent; (iii) the mean was subtracted from each pixel and the result divided by the standard 

deviation; (iv) the images were scaled to lie between a value of 0 and 1 by subtracting the 

minimum and dividing by the difference between the maximum and the minimum pixels. The 

T2-lesion (T2L), defined as hyperintense signal on FLAIR images, and contrast enhancing lesion 

(CEL), or hyperintense signal on the T1c images that was not enhancing on the original T1-

weighted images, had been previously contoured for the UCSF dataset using either 3Dslicer, or 

in-house software [119]. The 2019 BRATS dataset from the TCGA cohort were already pre-

processed, segmented, and curated as part of this publicly available imaging dataset for annual 
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challenges as described previously [95,120,121]. 

Input images containing tumor were automatically selected and processed to form multi-

contrast RGB colormaps according to Figure 5.3. Masks of the 3D segmented lesion volumes 

were used to first select the slice containing the largest tumor area in each direction. Additional 

slices spaced 5mm apart were added in each direction until the edge of the tumor mask was 

reached. Images were also automatically cropped to a rectangular bounding box surrounding 

each lesion of interest. For each cropping strategy, combinations of three image modalities were 

then merged to create a multi-contrast RGB image for each lesion slice. 

5.2.4 Baseline models from clinical metrics 

Since age and the presence or absence of contrast enhancement are known predictors of 

IDH mutation status and anatomical MRI images of the brain can predict age with high accuracy 

[122,123], we first used basic logistic regression models in the sklearn package to establish an 

interpretable baseline prediction accuracy for which to compare our models [124].  Age and the 

presence of contrast enhancement were included as independent variables and used in: 1) a tiered 

binomial logistic regression structure to predict IDH mutation status followed by 1p19q 

codeletion status and 2) a 3-class multinomial logistic regression model to directly predict 

molecular subgroup. The presence of contrast enhancement was automatically quantified as 

having a CEL volume greater than 150 mm2, the cutoff for the lower 10th percentile, and 

included in the first tier and 3-class models. The 3-class model minimized multinomial loss fit 

across the entire probability distribution and balanced class weights. We also tested whether the 

two datasets (UCSF and TCGA) inherently differed significantly from each other using the 
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Mann-Whitney U test for age and the 𝛘2 test for categorical variables sex, mutation status, and 

presence of contrast enhancement. 

 
Figure 5.3. Schematic of image processing strategy.  
(1) The manual segmentation of the contrast enhancing lesion (CEL) or the T2-lesion (T2L) was 
used to select the slices; the “central slice” was the slice containing the maximum area 
determined by the segmentation and all following slices were selected by emanating every 5mm 
until the boundary of the lesion was reached. (2) If selected for during the hyperparameter 
search, the process was repeated in each direction: axial, coronal and sagittal. Some networks 
used just one direction, others used all three. (3) Another hyperparameter (“crop”) determined 
whether the image was cropped to the brainmask, to the T2L, to a standard size, or was not 
cropped. (4) The modalities of interest (e.g. three of T2-FLAIR, T1C, T2, and ADC) were placed 
in the R, G, and B channels of an image and used as input to the network.  



 
 

 75 

5.2.5 Hyperparameter search 

In order to find a reasonable starting point to train our models, we first searched through 

a set of randomly generated hyperparameters that included various model architectures, learning 

parameters, and image pre-processing strategies to find a reasonable starting point for each of 

our 3 classification models: IDH mutation only, 1p19q co-deletion only, and 3-class molecular 

subgroups. The individual hyperparameters that were tested are listed in Table 5.1, while 

hyperparameters that remained fixed were the learning rate cycling strategy (“One Cycle”),[125], 

the optimization algorithm (“Adam”)[126], and the weight decay coefficient (0.01). During this 

phase, model inputs were restricted to the T2, T2-FLAIR, and T1c images and the 1p19q co-

deletion experiments began with the model pre-trained on the IDH mutation status classification. 

Overall patient accuracy and quality of the validation loss curves were used to evaluate the 

models’ efficacy. The top hyperparameter sets from each outcome were rerun 5 times with 

different seeds to account for stochasticity introduced during gradient descent. The set of 

hyperparameters with the best performance based on the mean overall classification accuracy of 

the 5 seeds on the validation set that also had acceptable training and validation loss curves was 

then chosen (see Figure 5.4 for examples of acceptable vs. unacceptable training/validation loss 

curves). The details describing the hyperparameter search phase and the model comparison 

phase, are found in Figure 5.1 and Table 5.1. 

5.2.6 Model comparison  

Using the set of hyperparameters for the top performing model for each classification 

experiment determined during the hyperparameter search phase, we investigated the impact of 

using a 2-tiered vs single 3-class structure approach and the addition of ADC as one of the input 
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image channels. As in the hyperparameter search phase, training and validation loss plots were 

visually compared in order to ensure that there was appropriate reduction in validation loss as the 

model trained (Figure 5.4). For the 2-tiered approach, IDH mutation status was predicted in the 

first tier, while 1p19q codeletion was then classified from the IDH mutated tumors in the second 

tier. The final performance accuracy for the IDHwt subgroup was determined from the output of 

the first tier while the accuracy of predicting the other 2 subgroups were determined by the 

prediction accuracies of the second tier. For each classification approach (2-tiered and 3-class), 

ADC maps were then included as one of the 3 input channels (either in place of the T1c, T2, or 

T2-FLAIR image volumes) and trained with the same set of hyperparameters run with 5 different 

seeds. On the final models, confidence intervals were calculated using bootstrapping 1000 times 

on the predictions. 

Model explanation and feature attribution was performed using GradCAM, a heatmap-

based feature attribution method. In contrast to methods that use “guided” back-propagation as a 

part of feature attribution, GradCAM has been validated in deep learning literature to assign feature 

importances to areas of the image better than random [127]. This was the most appropriate feature 

attribution technique because it allows for quick visual confirmation that the model is behaving as 

expected by extracting features in the areas that align with human interpretation. We used these 

GradCAM maps to help interpret our best and worst predicted patient examples in order to gain 

insight into the models’ behavior in these cases. 

5.2.7 Model generalization to an independent test set 
 

In order to evaluate whether our developed anatomical models were able to generalize to 

data from multiple institutions acquired using different scanners and acquisition parameters that 

result in variations in image contrast and resolution, the publicly available TCGA dataset together 
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with the post-processing and labeling performed for the BRATS challenge were used to establish 

an independent dataset for testing. The BRATS imaging dataset was preprocessed with the same 

specifications as our data with expert segmentations, but because this dataset did not include 

diffusion data, we were only able to validate our best anatomical 2-tiered and 3-class models with 

this dataset. 

 

Table 5.1. Hyperparameter search space.  
All of the potential choices for hyperparameters during the search phase.  
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Figure 5.4. Acceptable and unacceptable training/validation loss curves.  
Training/validation loss curves were visually inspected in order to ensure that there was 
reduction in both training and validation loss throughout training. (A) Examples of training 
(blue) and validation (orange) loss curves that were acceptable. (B) Examples of training (blue) 
and validation (orange) loss curves that were rejected. 
 

 
Figure 5.5. 3-class model development tradeoff. 
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5.3 Results  

5.3.1 Characteristics of the Study Sample 

 The clinical characteristics of the entire dataset, consisting of 384 patients from UCSF 

and 147 patients from the TCGA dataset, are summarized in Table 5.2. While sex was not 

statistically significantly different between the two cohorts (59% male in UCSF vs 52% male in 

BRATS), patients at UCSF were statistically significantly younger than patients in the TCGA 

data set, with mean age of 47.4 ± 15.3 years compare to 53 ± 14.9 years (p < 0.001). UCSF and 

TCGA datasets also significantly differed in the proportion of IDH mutation status, with 269 

mutated UCSF patients (62%) and 56 mutated TCGA patients (22.8%), p < 0.00001) and 

similarly the frequency of enhancement (p < 0.00001), with 206 UCSF patients enhancing (47%) 

and 120 TCGA patients enhancing (82%). 

 

Table 5.2. Patient demographics and differences between UCSF and TCGA data. 
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5.3.2 Clinical baseline modeling results 

The detailed results of baseline clinical logistic regression models built on UCSF training 

patients and validated on the UCSF validation, UCSF test, and TCGA test patients are presented 

in Table 5.3. The tiered and 3-class results were very similar, achieving 67% and 71% average 

accuracy on the UCSF test set, respectively, which served as the basis for comparison for our deep 

learning models. However, for both the tiered and 3-class baseline models, the bootstrapped 

confidence intervals were very wide for every metric, with the best prediction accuracy achieved 

for IDH-wt tumors (95%/91% for the UCSF/TCGA test sets) and worst for the IDHmut-codel 

group (40%/23% for the UCSF/TCGA test sets).   

 

Table 5.3. Results of all six models compared.   
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5.3.3 Model development results 

The first comparison made was whether pooling slice predictions was advantageous 

compared with slice-by-slice predictions. Briefly, slice-by-slice predictions on average achieved 

higher patient-level validation accuracies compared with pooling, and the rest of the 

experimentation used slice-by-slice predictions only (Figure 5.6a). Once the slice-by-slice 

paradigm was chosen, it was possible to create patient-wise predictions from slices using many 

strategies. Figure 5.7b depicts that using a simple mean average achieved better or similar 

patient validation accuracy compared with other strategies. All subsequent metrics were then 

evaluated with slices combined by averaging the probability predictions per slice.  

We observe the impact of top features on the patient validation accuracy in Figure 5.7c-

g. Our main finding from this analysis is that in both three-class and IDH experiments, cropping 

to the T2-hyperintense lesion decreases performance. Additionally, using pretrained models on 

ImageNet improves the performance on models.  
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Figure 5.6. Main results from the hyperparameter search and the model comparison phase.  
(A-C) Hyperparameter search: (A) A slice-by-slice approach improved the ability to achieve 
high accuracy on the validation data compared with the average pooling approach. (B) Cropping 
to the T2-lesion hindered the ability of a 3-class model to achieve good validation accuracy. (C) 
Pretraining increased the ability of a model to achieve high accuracy on the validation set. (D-F) 
Model comparison: (D) For the 3-class models, lower generalization accuracy was observed 
when T1C was removed; the best performance was obtained with T1C, T2-FLAIR, and ADC 
imaging. (E) For the IDH-only tier, using T1C, T2-FLAIR, and ADC was slightly favored 
compared with all other modality combinations. (F) For the 1p19q-codeletion prediction, T2-
FLAIR, T2, and ADC performed best.  

 
Figure 5.7. Additional insights from the hyperparameter search phase.  
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5.3.4 Model comparison  

5.3.4.1 Two-tiered vs. Single three-class classifier  

When using anatomical images only, the best 3-class model resulted in an overall patient 

accuracy of 84.6%, 82.0% and 81.6% for the training, validation and testing sets of UCSF data, 

with individual test class accuracies of 90%, 78%, and 70% for the IDHwt, IDHmut-intact, and 

IDHmut-codel subgroups, respectively. The final model parameters are shown in Table 5.4. 

Although the best performing 2-tiered structure resulted in a higher overall patient accuracy in 

training (94%) and relatively similar accuracy as the 3-class model in validation (84.0%), this 

model did not generalize as well to the UCSF test set (69.4% accuracy). Detailed class accuracies 

for each training, validation, and testing cohort along with confusion matrices are shown in Table 

5.3, while the final predictions of the 2-tiered vs. 3-class models are shown in Figure 5.8. 

However, when evaluating the ability of each approach to generalize to the multi-institutional 

TCGA data, the 2-tiered structure outperformed the 3-class model (82% compared to 69% overall 

accuracy). Although both of these approaches were able to predict the IDHwt group with high 

accuracy (96% for 2-tiered and 91% for 3-class), the 2-tiered model was also able to predict the 

IDHmut-intact subgroup with 86% accuracy while the 3-class model accuracy was only 33% for 

this subtype. Both approaches failed at correctly predicting any of the tumors in the IDHmut-codel 

subgroup. 
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Table 5.4. Final hyperparameters of each of the deep learning models in the model 
comparison phase.  

 
 
 
 
 
 
 
 
 
 
 
 



 
 

 85 

 

 
Figure 5.8. Detailed patient classification of each of the final models.  
(A) Using a tiered structure, we assess the impact on patient classification using ADC in place of 
T2 imaging. IDHmut-codel accuracy increases in the test set, and the overall UCSF test set 
accuracy increases. (B) Using a 3-class structure, we compare the performance of anatomic-only 
and T1C, T2-FLAIR, and ADC modalities. We notice an increase in the IDHmut-codel accuracy 
as well as overall increase in UCSF Test set accuracy. The best model is the 3-class model that 
includes ADC.  

5.3.4.2 Benefit of adding ADC 

We next investigated whether the addition of ADC was advantageous compared with 

using anatomical images only as inputs to the model for both the 3-class and 2-tiered approaches. 

In both the 3-class and IDH models (first tier), the best performance was achieved when ADC 

maps were used along with T1c and T2-FLAIR images as inputs, while replacing the T1c image 

with ADC decreased performance from using anatomical imaging alone (Figure 5.7D-E). For 
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the 1p19q codeletion classification (2nd tier) of the 2-tiered approach, however, the best 

performance was achieved when ADC replaced the T1c image (Figure 5.7F), resulting in an 

increase in test accuracy from 60.7% to 70.6% for this tier with the largest improvement 

observed for the IDHmut-codel subgroup from 30% to 50% (Table 5.3). Although, in general, 

including ADC in both models outperformed their anatomical imaging-only counterparts, the 

best generalization power to the test set was achieved with a 3-class model that replaced T2-

weighted images with ADC maps. The final overall patient accuracies achieved were 86%, 80%, 

and 86% on training, validation, and test UCSF sets, with final test set class accuracies of 95% 

for IDHwt, 89% for IDHmut-intact, and 60% for IDHmut-codel subgroups (Figure 5.8B and 

Table 5.3). Figure 5.9 illustrates the GradCAM results for the best (>90% confidence that the 

genetic alteration was ground truth) and worst (>50% confidence that the genetic alteration was 

other than its ground truth) predictions for the best 3-class model with ADC, T1c, and T2-FLAIR 

images as inputs. Incorrectly predicted IDHwt tumors were non-enhancing, while IDHmut-codel 

tumors were frequently predicted as IDHmut-intact because the network was not looking at the 

right part of the image.  
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Figure 5.9. GradCAM analysis.  
GradCAM was performed using the final 3-class model on the worst (A-E) and best (F-J) 
predicted patients from the UCSF test set. The worst predicted patients tend to have GradCAM 
maps that are not looking precisely at the tumor region compared with the well-predicted 
patients. 
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5.4 Discussion 
 

In this study, we systematically investigated different sets of hyperparameters to achieve 

the optimal deep learning framework and MRI modalities for jointly identifying the IDH mutation 

and 1p19q codeletion status of a glioma patient prior to surgery. To our knowledge, this is the first 

study to: a) classify molecular subgroup using imaging and deep learning; b) investigate the impact 

of including ADC; c) incorporate a pre-training strategy that includes the generation of an RGB 

color image from 3 grayscale MR images; and d) thoroughly evaluate differences between various 

deep learning strategies through extensive hyperparameter searching complemented by 

training/validation loss curves and a feature attribution technique. Our best performing model was 

a 3-class, VGG-16 model pre-trained on ImageNet that included T1c, T2-FLAIR, and ADC images 

as inputs and predicted patients in our UCSF test set with promising overall (85.7%) and individual 

class accuracy (IDHwt: 95.2% 95%CI (0.857, 0.952)]; IDHmut-intact: 88.9% [95% CI (0.778, 

0.944)]; IDHmut-codel: 60.0% [95% CI (0.4, 0.6)]). A 3-class model approach was advantageous 

compared to a tiered strategy that first predicted IDH, and then 1p19q codeletion mutations. 

Adding ADC as one of the input images increased generalization to test sets for both the 3-class 

models and 2nd- tier 1p19q models. All deep learning models outperformed the corresponding 

logistic regression baseline models developed and tested on the same patient datasets, implying 

that imaging features can provide additional insight to genetic alterations compared to age and the 

presence of contrast enhancement alone. Our GradCAM analyses confirmed that the final 

algorithm was in fact learning features derived from tumor regions and not surrounding areas. 

As age and the presence of contrast-enhancing tumor are known predictors of IDH 

mutation status, we constructed logistic regression models using these variables to serve as a 

benchmark for our models to outperform. This approach also ensured that the deep learner was 
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more than a complex detector of age or the presence of contrast  enhancement [128]. Using contrast 

enhancement as an input to our baseline logistic regression models improved their generalization 

to the UCSF validation, UCSF test, and TCGA test sets for the 3-class and IDH model to 70-72% 

overall accuracy. These final patient and class accuracies served as a benchmark for which to 

compare our deep learning models. 

 Before implementing our hypothesis driven comparisons on the influence of ADC and 

modeling approach, we next performed an extensive hyperparameter search to determine the 

optimal set of network training parameters for each set of experiments. First, two different slice-

combining paradigms were compared: 1) pooling slices for a single prediction per patient as 

performed in MRNet from Bien et al. [129]; and 2) treating each slice individually while training 

and combining slice predictions afterward as described by Chang et al. [112]. In (1), all slices from 

a single patient are used in the same batch such that the number of slices becomes the effective 

batch size. Average or max pooling is then employed in the final layer to condense all slices into 

a single feature vector which generates a single prediction per patient. As a result, a single value 

is back propagated through the network for each patient after the loss is calculated.  In contrast, 

(2) treats each slice independently such that a batch often contains slices from many patients; in 

turn, backpropagating gradients on a slice-by-slice basis and calculating a final patient-level 

prediction only after training is complete. Updating network weights based on individual slices 

resulted in better training/validation loss curves as well as an increase in the overall patient-level 

accuracy as shown in Figure 5.2A. Also of note was that a marked decrease in prediction capability 

for both the 3-class and 2-tiered settings was observed when cropping to the T2 lesion compared 

with no cropping or cropping to a standard sized rectangle. This is in line with the notion that the 

location of the lesion within the brain is associated with IDH mutation status [130]. Although the 
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ResNet-18 architecture most frequently resulted in models with higher average accuracy, the 

VGG-16 architecture had the achieved the highest accuracy when other hyperparameters were 

optimized.  This is not all that surprising given VGG16’s 3 terminal fully-connected layers that 

could be helpful in capturing the heterogenous characteristics present in these lesions by allowing 

for different interactions among features, and the fact that the benefits of the residual connections 

in ResNet architectures typically are not realized until an order of magnitude of more data is used 

in training. 

 We hypothesized that a single 3-class model that was trained to predict molecular subgroup 

by classifying both IDH mutation status and 1p19q codeletion simultaneously would outperform 

a 2-tiered cascaded approach because:  1) the second tier predicting 1p19q codeletion had a limited 

number of patients from which to learn imaging features; and 2) learned imaging features could 

be shared between tasks. Our results supported this hypothesis, regardless of whether or not ADC 

was included in our models. The reduced overall training accuracy of the 3-class model also 

suggests that the model was less likely to overfit when capturing features of 3-classes, boosting its 

performance on the test set compared to the 2-tiered approach. Figure 5.5 shows class accuracies 

plotted from the 3-class experiments that were performed during the hyperparameter search phase, 

depicting the tradeoff between a model’s ability to predict IDHmut-codel patients and IDHmut-

intact patients correctly. As the ability to predict IDHmut-codel patients increased, the prediction 

accuracy for IDHmut-intact patients diminished, while the ability to predict IDHwt patients 

remained stable. This result implies that even in the multiclass setting, the power of deep learning 

models to discriminate the 1p19q codeletion was still limited. Although the 2-tiered approach more 

accurately classified the TCGA cohort compared to the 3-class model, the second tier incorrectly 

predicted all of the TCGA IDH mutated patients as 1p19q intact, further supporting improved 
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generalizability with the 3-class model.  This is likely because the enriched number of IDHwt and 

IDHmut-intact patients in the TCGA cohort compared to the UCSF data.    

 Using ADC in place of an anatomical imaging sequence conferred an advantage in test 

accuracy for both the tiered and 3-class setting (Table 5.3). This advantage was particularly evident 

when comparing experiments predicting 1p19q codeletion (Figure 5.8), where we observe the 

greatest generalization power in models using ADC together with T2 and T2-FLAIR. This finding 

was expected given that the mismatch in the T2 and T2-FLAIR signal contains imaging features 

specific to IDHmut-intact patients. When comparing the 3-class models with and without ADC, a 

more balanced result between IDH mutated classes was achieved with ADC: 70% IDHmut-codel 

and 74% IDHmut-intact accuracy compared with the 60% IDHmut-codel and 84% IDHmut-intact 

accuracy. In contrast, including ADC as a modality in place of either T1c, T2, or T2-FLAIR images 

did not confer an advantage in predicting IDH mutation status alone, despite prior evidence that 

features derived from diffusion-weighted imaging can help differentiated IDH mutation status 

[46,47,114]. This result, however, does not mean that ADC is not valuable, but rather that the loss 

of another more informative sequence outweighs the benefit of ADC.  For both the 3-class and 

IDH model tier, replacing the T1c images with ADC substantially decreases generalization power 

to the UCSF test set as expected given the known association between presence of contrast 

enhancement and IDH wildtype tumors. Although a limitation of our study is that we were not 

able to validate these findings on the multi-institutional external cohort, the promise of 

incorporating ADC into deep learning models that predict molecular subgroup, especially for the 

1p19q-mutation, is still clear from the results presented and a valuable contribution to the scientific 

community.   
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Despite the therapeutic relevance of 1p19q codeletion status, the vast majority of prior 

studies have focused exclusively on IDH mutation prediction. In 2018, a radiomics-based 

machine-learning algorithm utilized the BRATs portion of TCGA data to predict 1p19q codeletion 

vs. intact patients and achieved 80% accuracy [111]. The validation set used to assess this 

accuracy, however, consisted of only 5 subjects. Another study since reported a deep learning 

based 5-fold cross validation with remarkable 94% accuracy for the prediction of 1p19q codeletion 

in 2019 [110]. However, this study also lacked a separate test set for generating this metric and 

overall accuracy measures included IDH-wildtype tumors in the 1p19q-intact class, artificially 

boosting baseline accuracy to 88% even if all of the 1p19q-codeleted tumors were predicted 

incorrectly. There was also no specification about whether early stopping was employed, which in 

our experience, when used in conjunction with cross-validation approaches, results in a >30% drop 

in accuracy between the validation and test sets. Without reporting an independent test set or at 

least the loss curves observed during training and validation, it is not possible to assess whether a 

model would work on unseen data. Although van der Voort et al. in 2019  [131] used the BRATS 

images of the TCGA dataset as an external test cohort to validate their radiomics-based machine 

learning model of 1p19q-codeletion classification in low-grade glioma and demonstrated clinical 

relevance by comparing model results to the predictions of expert clinicians,  they also did not first 

stratify by IDH before predicting 1p19q mutation status, elevating their accuracy in 1p19q-intact 

patients by 25% which translated to a 0.73 AUC ROC on the external test set. In contrast, our 

study is the first analysis that aims to predict 1p19q codeletion for patients already determined to 

be IDH mutant, without first segregating based on tumor grade obtained through pathology. 

Although the sample size of our IDH-mutated subgroups is still limited and our external test set 

does not reflect the same distribution of 1p19q-codeleted to intact patients as our internal dataset, 
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it is still the first deep learning study that attempts to validate models incorporating 1p19q 

codeletion status within IDH-mutant gliomas on  \an external, multi-institutional cohort.  

Our results from the UCSF test cohort and downstream GradCAM analysis indicated that 

a deep learning model is in fact learning from signals in tumor regions and it is possible to learn 

generalizable imaging features when the patient samples are of similar enough outcome 

distribution. GradCAMs provide some amount of interpretability of an otherwise “black-box” 

CNN by displaying a combination of semantically meaningful features in the form of a heatmap, 

which can be thought of as a map of where the network is looking in the image to draw its 

predictions. Our analysis included the generation of GradCAM heatmaps for both well- and 

poorly-predicted patients for the best 3-class model, including ADC maps in place of T2-weighted 

images. The GradCAM heatmaps in Figure 5.9 provide confidence in our results because the 

network focuses on the lesion in all correctly predicted tumors, while in the patients who were 

misclassified, the GradCAM heatmaps show that the network often gets confused by other parts 

of the image outside the lesion boundaries that confound the overall prediction. Although 

GradCAMs provide insight into where the model is looking, they do not attribute importance of 

different features and have limited spatial resolution based on the size of the final output layer of 

the chosen model.  

In conclusion, we created a model that was able to generalize to unseen data with a 

promising overall accuracy of 86%, and individual class accuracies of 95% for IDHwt, 90% for 

IDHmut-intact, and 60% for IDHmut-codel subgroups. From our extensive hyperparameter search 

during model development, we derived insights that support the use of a network that has been 

pre-trained on ImageNet for classification tasks combined with a slice-by-slice approach for 

updating weights in training and a cropping strategy that extends beyond the boundaries of the T2-
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lesion.  Using this framework, we concluded that classifying both IDH and 1p19q mutations 

together in a single step was advantageous compared to implementing a tiered structure that first 

predicted IDH mutation status before 1p19q codeletion using two separate binary models. The 

addition of ADC increased the generalization capacity of our models regardless of the modeling 

structure chosen, highlighting the utility of incorporating diffusion-weighted imaging in future 

multi-site analyses of molecular subtype. Although larger studies that focus on accumulating 

enough IDH-mutant patients are still desperately needed to improve the accuracy of 1p19q-

codeleted gliomas for implementation in clinical practice, the insights gleaned from this study will 

be highly valuable once such datasets become publicly available. 
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6. Automatic classification of MR image contrast  

6.1 Introduction 

Automated quantification of data acquired as part of an MR exam requires identification 

of the specific series of relevance to a particular analysis. This motivates the development of 

methods capable of reliably classifying MR series according to their nominal acquisition 

contrast, e.g. T1-weighted (T1), T1 post-contrast (T1C), T2-weighted (T2), T2-weighted FLAIR 

(T2-FLAIR), proton-density weighted (PD). For example, a machine learning model may be 

trained to segment lesions from T2-weighted FLAIR images. To perform this analysis 

automatically requires robust programmatic identification of a T2-weighted FLAIR series within 

an MR exam comprising potentially tens of different acquisitions.  Similarly, analysis of disease 

progression and response to therapy with MRI involves quantification of serial changes that 

occur on images acquired with similar tissue contrast, such as change in T1-weighted or T2-

weighted lesion load [REF of examples].  In addition, development of new AI and machine 

learning models depends on the ability to train on large quantities of specific classes of data and 

therefore MR contrast classification models are an important element of content-based retrieval 

systems (CBRS, [132]) to enable large medical centers to leverage vast amounts of 

retrospectively acquired data for population-level computational health research.   

Features that identify the acquisition contrast of an MR series may comprise both 

DICOM (https://www.dicomstandard.org/) header data and intrinsic properties of the imaging 

pixel data. However, identification of relevant series is not always straightforward for single MR 

exams let alone for longitudinal data in PACS at large medical centers which include data 

acquired on different scanners (manufacturer, field strength, software), at different sites and with 
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different scanning protocols. There is a vast range of physical scanning parameters associated 

with each acquisition type and moreover, descriptive attributes such as the DICOM “series 

description” are free-text attributes subject to local conventions, technologist choice and even 

human error. As a result, the header features associated with MR scans are extremely 

heterogeneous with DICOM attributes that often do not explicitly identify the type of acquisition, 

limiting the ability to automatically retrieve images acquired with the same contrast weighting.   

This presents challenges for developing high-throughput methods for automated analysis 

of MR data. A driving use case for this work is the automated longitudinal analysis of MR exams 

from multiple sclerosis (MS) patients at UCSF [133].  MS is a chronic disease and patients are 

regularly monitored with MRI to assess progression and response to therapy, often for decades. 

The goal of this use case is to automatically provide a longitudinal, aligned view of the patient’s 

imaging data for each contrast type together with the patient’s medication, clinical and 

medication history in a unified view to aid patient-clinician consultations, relieving the clinician 

of the burden of synthesizing the vast amounts of data and providing it in a patient accessible 

view (Figure 6.1). This work thus requires retrieving the entire MR imaging record for each 

patient from PACS and identifying images with key types of tissue contrast (T1, T2, T1C, T2-

FLAIR, PD) for analysis and comparison. As mentioned, a given patient often has numerous 

exams acquired over a long period of time, on different scanners, with different protocols (Figure 

6.1A). In addition, exams often consist of images from different anatomical regions. 

Neurological exams may contain both supratentorial brain as well as spinal cord images. Patients 

may also have images acquired for reasons unrelated to MS (e.g. breast cancer, etc.). DICOM 

defines a “body part examined” tag, though this may contain the term brain for both brain and 

spine images that are part of the same exam, and in other cases is not filled in. This is therefore 
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not a reliable indicator of imaged anatomy and further confounds the preliminary analysis step of 

identifying the relevant subset of data for analysis (Figure 6.1A).  

There exist only a few prior studies that focus on automatically classifying MR series 

acquisition contrast. Two past studies have used convolutional neural network architectures to 

classify MR images based on the imaging pixel data alone. In Ranjbar et al.[134], brain tumor 

MR images are classified into four contrasts (T1, T1C, T2, T2-FLAIR) with high accuracy 

(99.2%). However, this study was limited to a specific cohort of brain tumor MR scans acquired 

using research protocols. Another study [135] achieves similar results (~99%) on even more 

contrast types (adding proton density (PD), and magnetic transfer ON and OFF) and deploys the 

algorithm in a real clinical environment. Though the description of the dataset includes over 100 

institutions with over 45,000 MR series, they mention only that they were acquired through 

clinical trials and do not describe the pathology or heterogeneity in scanner acquisitions. Clinical 

trials are often more uniform in their scanning acquisition parameters across institutions, and 

they do not necessarily reflect performance in heterogeneous data. In addition, this study uses 30 

axial images and a second neural network in order to classify a single MR series into its contrast, 

limiting the applicability of this algorithm to volumes containing over 30 slices and adding a 

computationally expensive preprocessing step of resampling the volume to the axial direction. 

Finally, though both studies achieve great results, neither address how to classify brain MR 

series that are acquired with other contrast mechanisms, which is necessary for real-world 

algorithm deployment.  

Another recent study achieves impressive results from MRI-associated DICOM metadata 

alone[136], e.g. echo time, repetition time, whether gadolinium was used. This approach is 

appealing because inference time is less computationally expensive compared with methods based 
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on pixel-level imaging data. Despite training and validating on large datasets from different 

institutions with impressive results, the authors of this study define the ground truth contrast label 

from the DICOM “series description” attribute. However, the authors acknowledge the limitation 

of this approach, noting that for up to 10% of series the contrast mechanism can not be accurately 

identified by the series description alone. 

Our efforts to classify the data from our institutional PACS using series descriptions 

alone were even less successful, and in fact are what originally inspired us to use a pixel-based 

algorithm to classify contrast. For context, the frequency of unique series descriptions within a 

clinical trial dataset to a clinical PACS dataset was compared: despite comprising 60% fewer 

scans, there was an 18-fold increase in the number of unique series descriptions in the PACS 

data. Therefore, the difference in successful labeling might be due to an increased percentage of 

well annotated clinical trial data within the dataset used in Gauriau et al.[136].  

The present study describes work aimed at developing and validating methods to 

automatically classify brain MR images acquired with specific contrast types. Specifically, the 

main objective is to obtain high accuracy for arbitrary real-world MR exams of MS patients 

sampled from the UCSF clinical PACS. These data are not subject to strict protocols of clinical 

trials and therefore much more challenging to automatically classify. This distinction is crucial, 

as this scenario describes the real clinical setting in which models and analysis pipelines are 

deployed. A secondary objective of this study is to demonstrate the feasibility of deploying the 

algorithm to other datasets with vastly different pathological profiles by testing the classification 

algorithm on brain tumor patients. Optimal contrast classification models were identified based 

on a comparison of the prediction accuracy of 1) a metadata-only, rule-based approach; 2) a 
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metadata-only machine learning model; 3) an imaging-only convolutional neural network; and 4) 

a combined ensemble model that uses both metadata and imaging data.  

This work overcomes some of the limitations in prior work through 1) using just a single 

slice from each patient that can be in any direction: coronal, sagittal, or axial; and 2) ground truth 

classification was determined by a process of automatic rule-based derivation of weak labels, 

followed by visual review and correction by multiple reviewers; 3) inclusion of an additional 

“OTHER” category that does not force the algorithm to return the fixed set of contrast types. 

This study hypothesized that the combined model that uses metadata and imaging data together 

will obtain the highest classification accuracy. The results and tradeoffs of each model are 

discussed.  
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Figure 6.1 The application of contrast classification of MRI in clinical practice.  
(A-top): Representative longitudinal exams from a single patient retrieved from the clinical 
PACS.  Exams 1-3 consist of different numbers and types of acquisition sequences and even 
different anatomical regions. Acquisitions indicated in red are spine images despite being 
labelled as brain in the DICOM headers. Typical downstream applications require identification 
of input images acquired with specific tissue contrast.  Images circled in yellow represent T1 
weighted images from each exam used as input to a downstream application. (B-bottom): 
Representative downstream application to align longitudinal T2-weighted images for visual 
review.  
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6.2 Materials and methods  

6.2.1 MR Sequences  

Magnetic resonance imaging is incredibly flexible, offering a wide range of physical 

parameters to image and instrumental parameters to set for control of image content [34]. The 

specifications of the instrument define an MR sequence, which controls the soft tissue contrast 

and is especially useful in the brain. The most common and clinically relevant neuroimaging MR 

contrast mechanisms are T1-weighted (T1), T1-weighted after administration of a gadolinium-

based contrast agent (T1C), T2-weighted (T2), T2 Fluid Attenuated Inversion Recovery (T2-

FLAIR), and proton density (PD) (Figure 6.2A). In our data, there are many additional kinds of 

MR image contrasts acquired, including diffusion-weighted and T2* weighted images. In order 

to correctly classify these images, we use a catch-all category of other contrasts called 

“OTHER”. Some of the images classified as OTHER are demonstrated in Figure 6.2B.  

 
Figure 6.2. Examples of images in each category.  
(A) T1, T1C, T2, T2-FLAIR, and PD are the most common image contrasts acquired during 
neuroimaging exams. (B) Category “OTHER” is comprised of many kinds of MR sequences, 
including T2* weighted images that can look similar to T2 or PD.  
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6.2.2 MR exams and cohorts   

Four MRI datasets were used for this analysis: 1) a multiple sclerosis research (MSR) 

dataset consisting of 1731 MS exams (https://epicstudy.ucsf.edu/); 2) a glioma research (GR) 

dataset consisting of 179 newly diagnosed and recurrent glioma exams; 3) a post-traumatic stress 

disorder research dataset (ADNIR) consisting of 116 exams from the publicly available 

ADNIDOD dataset; and 4) a MS clinical (MSC) dataset consisting of 311 exams representative 

of typical, poorly labeled institutional PACS data acquired at multiple external sites. Datasets 

MSR, GR, and ADNIR, were obtained with well-defined research acquisition protocol compared 

with MSC. GR has much more extensive pathology per exam compared with MSR, MSC, or 

ADNI. For all four datasets, each exam consists of multiple MR series that must be individually 

labeled based on the contrast mechanism.  

 

Table 6.1. Distribution of MR exams and series used for this study.  

Dataset Dataset 
type 

No. of 
exams 

Total 
series T1 T1C T2 T2 

FLAIR PD OTHER 

MS Research 
(MSR) 

Well 
annotated 1731 11106 3562 1679 1332 887 1392 2254 

MS Clinical 
(MSC) 

Poorly 
annotated 311 3244 655 722 384 593 75 815 

Glioma (GR) Well 
Annotated 179 607 147 170 124 163 0 3 

PTSD 
(ADNI) 

Well 
annotated 116 477 101 0 117 125 0 134 

6.2.3. Labels  

Each MR series in the MSR and MSC datasets were assigned preliminary weak labels 

using a rule-based model into the following categories: T1 weighted (T1), T1 post-contrast 

weighted (T1C), T2 weighted (T2), proton density (PD), T2 FLAIR (T2_FLAIR) and OTHER. 

The image volumes from both MSC and MSR were subsequently visually reviewed for accuracy 
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by two brain imaging scientists (J.C.C. and J.G.C.). Though the GR and ADNIR datasets were 

obtained from prior studies and already accurately labelled, many MR series from these datasets 

were visually reviewed to ensure correctness (J.G.C.).  

The number of slices in the volume together with the DICOM header SeriesDescription 

attribute were used to eliminate MR localizer and asset calibration volumes from the OTHER 

category. This step was applied because a) these volumes were 100% identifiable using these 

two features alone; and b) localizers are often acquired with an MR contrast of interest (T1, T1C, 

T2, T2-FLAIR, or PD), but due to their low resolution are almost never the volume of interest to 

a radiologist or researcher. If included as OTHER, localizers confound the learning process of 

the imaging-based models; if included as the MR contrast mechanism that they were obtained 

with, then a post-processing technique of choosing the correct (full-resolution) series from the 

exam must be applied. For these reasons, we chose a pre-processing step. In turn, the final 

number of MR series of each contrast from each dataset are detailed in Table 6.1. 

6.2.4 Train, validation, and test splits 

To answer whether a model could be built to label the heterogeneous dataset (MSC), the 

data was split such that 100% of MSR and ADNIR data were in the training. MSC was randomly 

split by exam into 33.3% training, 33.3% validation, and 33.3% test. GR was split 50% 

validation and 50% test to evaluate whether the developed models were robust enough to predict 

image contrast even when presented with MR images containing more extensive pathology that 

it had not previously been exposed to.  
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6.2.4 Rule-based approach 

MR image contrast is determined by multiple scanning parameters, for example the echo 

time (TE) and repetition time (TR), that are stored as attributes in the DICOM header. In 

addition, administered contrast agents are often indicated in the DICOM header. Other metadata 

fields such as the “series description” may explicitly define the acquisition contrast in some data 

sets. A rule-based model using metadata derived from DICOM attributes was developed to 

derive weak contrast classification labels from the MSR and MSC cohorts. The model was based 

on a priori knowledge of attribute values used to scan with specific image contrast weighting 

together with detection of specific keywords (e.g. “T1”) found in series descriptions[137–139]. 

The rule-based approach was developed in-house in Python using Pydicom[140] to extract 

DICOM header attributes. Overall and per-class accuracy were calculated; notably, there is no 

“training”, but training, validation, and test sets are separated to serve as a comparison point for 

the following models that require training.  

6.2.5 Metadata models  

DICOM metadata attributes were extracted using the Pydicom python package (Mason et 

al. 2020) and are listed in Table 6.2. Missing string type attributes were replaced with “None” 

and empty numeric attributes were replaced with the mean of the feature in the training data. The 

majority of these attributes were numeric; those that were string-type features were hashed to 

numeric values using the sha256 algorithm in the native Python library hashlib. Support Vector 

Machine (SVM) and Random Forest (RF) models using these features were developed in the 

python package scikit-learn (LinearSVC, SVC, RandomForestClassifier)[124]. Five-fold cross-
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validation on the training data was used to evaluate which algorithm was best suited for 

predicting MR contrast from DICOM metadata.  

Once random forest (RF) was chosen, a randomized cross validation 

(RandomizedSearchCV in sklearn) was used to search for the optimal set of hyperparameters 

(n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, bootstrap) 

using the training set only. An RF using all training data (instead of ⅘) was retrained using the 

optimal hyperparameters returned from the search. Impurity-based feature importance scores 

derived from the trained RF are biased toward high-cardinality features and because of this the 

permutation importance function in sklearn was used to calculate the relative feature importance 

for the training, validation and test sets. Briefly, permutation importance is defined as the 

decrease in a model score function when a single feature is removed [141]; this calculation was 

permuted five times. Finally, the algorithm was tested on the validation and test MSC and GR 

datasets. This algorithm is referred to as the “metadata only” algorithm.  

6.2.6 Image processing and imaging model development 

The LPS coordinate system three-directional ranges were each divided by two in order to 

calculate the center location of the DICOM volume. The original unprocessed DICOM slice passing 

through the center location was recorded as the center slice of the volume. During training, volumes were 

transformed with random horizontal and vertical flips (p = 0.5), random affine rotations and translations, 

and slight alterations to brightness, contrast, saturation and hue and resized to 224x224. A pre-trained 

ResNet-50 convolutional neural network (CNN) architecture was chosen to initialize the model weights. 

Data were normalized using the ImageNet noramlization means and standard deviations. The final layer 

of the ResNet-50 was replaced with a fully connected layer with 6 outputs representing the 6 contrast 

categories. A cosine differential learning rate with a maximum value of 0.0003 was used together with a 
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weight decay coefficient of 0.0001. The model was trained for 40 epochs total, but early stopping was 

employed such that the highest accuracy model on the validation model was saved. This model is referred 

to as the “imaging only” model.  

From this trained CNN, each center MR image was sent through the network the final 6 logit 

outputs were saved before application of the softmax function. First, t-distributed stochastic neighbor 

embedding (t-SNE)[142] was performed on these final 6 features. Regions of the t-SNE clusters were 

visually investigated in order to assess 1) whether there were obvious visual differences among regions 

within the same cluster; and 2) whether the misclassified images had visual similarities to their neighbors. 

Next, these logit values were combined together with metadata and the best machine learning metadata 

model was refitted on the training data, resulting in a combined imaging-based and metadata-based 

machine learning model. This model is referred to as the “combined” model.  
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6.2 Results 

6.2.1 Rule-based approach  
 

The rule-based approach utilized combination of the acquisition parameters obtained 

from the following DICOM attributes to predict the acquisition contrast type: 1) EchoTime; 2) 

RepetitionTime; 3) InversionTime; 4) FlipAngle; 5) ScanningSequene; and 6) the presence of 

select key words in the series description (e.g. “FRFSE”, “T2”, etc.). On the MSC dataset, the 

rule-based approach achieved 59.8% on the validation data, and 60.8% on the test data. On the 

GR dataset, it achieved 53.2% and 51.8% on validation and test data, respectively. Notably, this 

approach was not programmed to distinguish pre- and post-contrast images. If programmed to 

perfectly distinguish pre- and post-contrast images from one another, it would have achieved 

70.7%, 71.6%, 80.6%, 79.8% accuracy on MSC validation, MSC test, GR validation, and GR 

test sets, respectively. 

6.2.2 Modeling results 

The main objective was to obtain high accuracy on the MS clinical dataset (MSC). Table 

6.3 presents the comparison among the metadata-only, imaging-only, and combined models 

using validation and test set accuracies as well as per-class accuracies for the test set. In 

summary, the models that included imaging features outperformed the metadata-only models in 

validation and test set accuracies (>97% compared with ~95%). The details of the performance 

of each model are provided below.  

 The final metadata-only RF was trained with the following parameters: n_estimators = 

450, min_samples_split = 2, min_samples_leaf = 4, max_features = sqrt, max_depth = 66, 
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bootstrap = True. Permutation importance calculations are listed in Table 6.2 and depicted in 

Figure 6.3; the feature importance calculations suggest that removal of EchoTime decreases the 

accuracy approximately 10.6%, 4.1%, and 3.3%, for training, validation and test sets, 

respectively. Removing the ContrastBolusAgentBinarized decreased accuracy by 1.2%, 17.6%, 

and 16.2% for training, validation and test sets in comparison. InversionTime and 

RepetitionTime were increasingly important in the validation and test sets compared with the 

training set (Table 6.2, Figure 6.3). The final result on the MSC dataset achieved 99.7%, 94.0% 

and 95.4% on the training, validation and test set, respectively. The most common mistake made 

by the metadata-only RF on the MSC dataset was classifying images that were labeled as 

OTHER due to artifact as their original acquisition contrast (e.g. Gibbs ringing on T1C labeled 

as OTHER). The next most common mistake was classifying T1 as T1C and vice versa. Upon 

inspection of all misclassified MR series and their series descriptions, a few series were found to 

have the incorrect ground truth label (Table 6.5) but classified into their correct contrast by the 

classifier. Adjusting for the incorrect ground truth labels, the MSC validation and test set 

accuracies increase to 94.5% and 95.6%, respectively. Finally, the model was tested on the GR 

dataset. The metadata-only model performed better than those that included imaging on the GR 

dataset, classifying just 2 images incorrectly; one from each of the GR validation and test set 

(Table 6.5, Table 6.7).  

The imaging-only CNN achieved higher accuracy for the MSC validation and test set 

compared to the metadata-only model. In total, it classified just 27 and 34 images incorrectly for 

a final MSC validation and test set accuracy of 97.4% and 96.9%. The most common mistake 

was misclassifying T1 for T1C and vice versa; this misclassification is explored further in the t-

SNE analysis (Figure 6.4E). Misclassification analysis revealed that the CNN properly identified 
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7, 6, and 1 train, validation and test images that were associated with the incorrect ground truth 

label, a much higher number than either of the other two modeling types. When adjusting for the 

proper identification of these images, the imaging-only CNN achieved 98.0% and 97.1% on the 

validation and test MSC set. In comparison to the performance of the metadata-only GR dataset, 

the imaging-only CNN performed worse, classifying 10 MR series incorrectly, 5 each from the 

GR validation and test set. All of these mistakes were on sagittal T2-weighted images obtained 

with extremely high contrast, of which there were few similar training examples (Figure 6.4I).   

The combined model was a trained random forest using the same features as the 

metadata-only model together with 6 additional features obtained from sending the MR series 

center slice through the trained CNN and saving the final 6 logit values in the model output. 

Each logit value is associated with one of the 6 final categories and is labeled accordingly. 

Compared with metadata-only and imaging-only models, it performed the best on the MSC 

dataset achieving 97.7% and 97.5% on validation and test data, respectively. When adjusting for 

the misclassified MSC data, the accuracy increased to 97.9% and 97.7% for the validation and 

test set, which was extremely comparable to the imaging-only model. Compared with the 

metadata-only RF, the validation and test feature importances weighted the T1 logit, T1C logit, 

T2 logit, and the OTHER logit much higher, and the feature importance was diminished for 

EchoTime and ContrastBolusAgentBinarized (Figure 6.3). Interestingly, the accuracy dropped 

significantly for the GR validation and test sets, 32 out of 34 misclassifications due to the same 

specific high-resolution, high-contrast 3D T2-weighted image classified as OTHER instead of 

T2-weighted. 
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Figure 6.3. RF feature importance graphs on validation and test sets (MSC + GR together). 
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Table 6.2 Metadata-only random forest feature importances.  
Each feature importance represents the decrease in accuracy when the feature is permuted.  

Metadata Only 

Rank DICOM Tag Name 
Feature 
Importance - Train 

Feature 
Importance - Valid 

Feature 
Importance - Test 

0 (0018,0010) ContrastBolusAgentBinarized 0.01199 0.17513 0.16201 
1 (0018,0081) EchoTime 0.10565 0.04165 0.03331 
2 (0018,0082) InversionTime 0.00128 0.02531 0.02608 
3 (0018,0080) RepetitionTime 0.00074 0.01325 0.01304 
4 (0018,0095) PixelBandwidth 0.00060 0.00618 0.01049 
5 (0020,0011) SeriesNumber 0.00022 0.00088 0.00567 
6 (0018,1314) FlipAngle 0.00047 0.00530 0.00567 
7 (0018,0020) ScanningSequence 0.00043 0.00780 0.00454 
8 (0018,0091) EchoTrainLength 0.00014 0.00338 0.00241 
9 (0018,0093) PercentSampling 0.00005 -0.00044 0.00184 

10 (0018,0022) ScanOptions 0.00046 0.00162 0.00113 
11 (0018,0088) SpacingBetweenSlices -0.00019 0.00074 0.00099 
12 (0018,0089) NumberOfPhaseEncodingSteps 0.00000 0.00000 0.00085 
13 (None) NumberOfFiles -0.00005 0.00000 0.00071 
14 (0018,0094) PercentPhaseFieldOfView 0.00011 0.00044 0.00057 
15 (0018,0025) AngioFlag 0.00000 0.00000 0.00057 
16 (0018,0083) NumberOfAverages 0.00019 0.00000 0.00028 
17 (0018,0050) SliceThickness -0.00002 -0.00029 0.00028 
18 (0020,1002) ImagesInAcquisition 0.00006 0.00088 0.00028 
19 (0018,0086) EchoNumbers 0.00002 0.00015 0.00014 
20 (0018,0024) SequenceName 0.00000 0.00074 0.00000 
21 (0018,0087) MagneticFieldStrength 0.00000 0.00044 0.00000 
22 (0018,1310) AcquisitionMatrix 0.00002 0.00000 0.00000 
23 (0008,0016) SOPClassUID 0.00002 0.00000 0.00000 
24 (0018,1251) TransmitCoilName 0.00000 0.00000 0.00000 
25 (0018,0085) ImagedNucleusQuantized 0.00000 0.00000 0.00000 
26 (None) NumberOfVolumes -0.00002 0.00000 0.00000 
27 (0018,0021) SequenceVariant 0.00006 0.00059 0.00000 
28 (0018,0023) MRAcquisitionType 0.00003 -0.00029 0.00000 
29 (0018,0015) BodyPartExamined 0.00000 0.00000 -0.00014 
30 (0028,0030) PixelSpacing 0.00014 0.00000 -0.00043 
31 (0018,1312) InPlanePhaseEncodingDirection -0.00003 0.00029 -0.00043 
32 (None) NumberOfImagePositions 0.00014 -0.00059 -0.00043 
33 (0018,0084) ImagingFrequency 0.00017 0.00074 -0.00128 
34 (0028,0011) Columns 0.00002 0.00074 -0.00213 
35 (0028,0010) Rows 0.00014 0.00088 -0.00227 
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Table 6.3 Combined random forest feature importances.   
Metadata+Imaging Combined Model 

Rank DICOM Tag Name 
Feature Importance - 
Train 

Feature Importance - 
Valid 

Feature Importance - 
Test 

0 None T1_logit 0.0020 0.0311 0.0214 

1 None T1C_logit 0.0003 0.0141 0.0137 

2 (0018,0082) InversionTime 0.0000 0.0088 0.0119 

3 (0018,0081) EchoTime 0.0003 0.0066 0.0089 

4 None OTHER_logit 0.0013 0.0091 0.0044 

5 (0018,0080) RepetitionTime 0.0002 0.0065 0.0044 

6 (0018,0010) ContrastBolusAgentBinarized 0.0002 0.0012 0.0044 

7 None T2_logit 0.0003 0.0121 0.0037 

8 (0018,0095) PixelBandwidth 0.0002 0.0012 0.0026 

9 (0018,0091) EchoTrainLength 0.0000 0.0031 0.0021 

10 None T2FLAIR_logit 0.0000 0.0022 0.0020 

11 (0028,0010) Rows 0.0000 0.0003 0.0020 

12 None PD_logit 0.0005 0.0010 0.0018 

13 (0018,0020) ScanningSequence 0.0000 0.0022 0.0018 

14 (0018,1314) FlipAngle 0.0000 0.0028 0.0016 

15 (0018,1312) InPlanePhaseEncodingDirection 0.0000 0.0007 0.0011 

16 (0028,0011) Columns 0.0001 0.0003 0.0006 

17 (None) NumberOfImagePositions 0.0000 0.0004 0.0004 

18 (0018,0023) MRAcquisitionType 0.0000 0.0001 0.0004 

19 (0018,0021) SequenceVariant 0.0001 0.0006 0.0003 

20 (None) NumberOfVolumes 0.0000 0.0000 0.0003 

21 (0018,0094) PercentPhaseFieldOfView 0.0000 0.0003 0.0001 

22 (0018,0086) EchoNumbers 0.0000 0.0000 0.0001 

23 (0018,0050) SliceThickness 0.0001 0.0003 0.0000 

24 (0018,0015) BodyPartExamined 0.0001 0.0000 0.0000 

25 (0018,0089) NumberOfPhaseEncodingSteps 0.0001 0.0000 0.0000 

26 (0018,0024) SequenceName 0.0001 0.0000 0.0000 

27 (0020,0011) SeriesNumber 0.0001 0.0000 0.0000 

28 (0018,0084) ImagingFrequency 0.0001 0.0000 0.0000 

29 (0018,0087) MagneticFieldStrength 0.0001 0.0000 0.0000 

30 (0018,1310) AcquisitionMatrix 0.0000 0.0000 0.0000 

31 (0018,0025) AngioFlag 0.0000 0.0000 0.0000 

32 (0018,0085) ImagedNucleusQuantized 0.0000 0.0000 0.0000 

33 (0020,1002) ImagesInAcquisition 0.0000 0.0000 0.0000 

34 (0008,0016) SOPClassUID 0.0000 0.0000 0.0000 

35 (0018,1251) TransmitCoilName 0.0000 0.0000 0.0000 

36 (0018,0083) NumberOfAverages 0.0001 -0.0006 0.0000 

37 (None) NumberOfFiles 0.0001 0.0001 0.0000 

38 (0018,0022) ScanOptions 0.0000 0.0003 -0.0001 

39 (0018,0093) PercentSampling 0.0001 -0.0006 -0.0001 

40 (0018,0088) SpacingBetweenSlices 0.0001 0.0003 -0.0004 

41 (0028,0030) PixelSpacing 0.0000 0.0001 -0.0006 



 
 

 113 

Table 6.4 Final model comparison for the MSC cohort.   
 Cohort: MSC Data Only 
 Overall Accuracy Testing Class Accuracy 

Classifier Validation Test T1 T1C T2 T2 FLAIR PD OTHER 
Heuristic 59.81% 60.83% 57.80% 0.00% 34.71% 100.00% 72.00% 96.58% 

Metadata RF 94.03% 95.40% 97.25% 95.53% 98.35% 100.00% 72.00% 91.44% 
Imaging CNN 97.44% 96.93% 99.08% 95.53% 100.00% 95.63% 88.00% 96.92% 
Combined RF 97.73% 97.47% 99.08% 96.75% 99.17% 99.51% 88.00% 95.55% 
 
Table 6.5 Final model comparison for the GR cohort.   

Cohort: Glioma (GR) 
 Overall Accuracy Testing Class Accuracy 

Classifier Validation Test T1 T1C T2 T2 FLAIR PD OTHER 
Heuristic 53.29% 51.82% 93.15% 0.00% 11.29% 100.00% 0.00% 100.00% 

Metadata RF 99.67% 99.67% 100.00% 100.00% 100.00% 100.00% 0.00% 50.00% 
Imaging CNN 98.36% 98.36% 100.00% 100.00% 92.19% 100.00% 0.00% 100.00% 
Combined RF 94.74% 94.06% 100.00% 100.00% 70.97% 100.00% 0.00% 100.00% 
 
Table 6.6 Misclassification analysis of MSC cohort.  

 Misclassification analysis: MSC 
  Correct Artifact OTHER as 

original contrast Bad Slice Unknown  
reason Total 

Metadata RF 
Train 2 0 16 0 18 36 
Valid 5 0 12 0 46 63 
Test 2 0 17 0 32 51 

Imaging CNN 
Train 7 3 0 3 14 27 
Valid 6 1 0 10 10 27 
Test 1 5 0 5 23 34 

Combined Model 
Train 6 0 0 0 4 10 
Valid 2 3 0 7 12 24 
Test 2 7 0 4 15 28 

 
Table 6.7 Misclassification analysis of GR cohort.  
 Misclassification analysis: GR 

  Correct Artifact OTHER as original 
contrast 

High-res, High-contrast, 3D T2 
as OTHER 

Unknown 
reason Total 

Metadata RF 
Valid 0 0 0 0 1 1 
Test 0 0 0 0 1 1 

Imaging CNN 
Valid 0 0 0 5 0 5 
Test 0 0 0 5 0 5 

Combined 
Model 

Valid 0 0 0 16 0 16 
Test 0 0 0 18 0 18 
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6.2.3 t-SNE results 

Figure 6.4A depicts the results of the t-SNE analysis. In order to evaluate whether there 

were visual differences among regions within the same cluster, the coordinates of the t-SNE 

were used to delineate regions of interest and the images corresponding to those regions were 

visualized. Given that a catch-all category of OTHER was used to represent less-frequently 

acquired MR, it was of great interest to explore whether the different regions in the OTHER 

group comprised different MR series acquisition types. Figure 6.4B-D depicts samples of images 

corresponding to those regions. Region B is largely composed of axial gradient-echo echo-planar 

images that share severe distortion. HARDI diffusion tensor images make up Region C, while 

susceptibility-weighted images (SWI) make up Region D. An additional region proximate to 

Region D represented a cluster of T2*-weighted images (not pictured).  

 In addition, maximally separated regions in each cluster were visualized. Regions G and 

H correspond to the cluster of T1-weighted images. Both regions contained a mixture of sagittal 

and axial images that had no obvious difference in gray-white matter contrast. Regions I, J, and 

K corresponded to the T2-weighted cluster. Region I was chosen due to its protrusion from the 

main cluster shape, and the high-contrast, 3D T2-weighted images that were classified 

incorrectly in the prior analyses were found in this region. Regions J and K were similar, but 

region K was more uniformly axial compared with region J that contained sagittal images as 

well. Due to the presence of non-yellow points in Region M of the T2-FLAIR cluster, Region M 

was visually compared with Region L, a set of points maximally separated from Region M 

within the same cluster. Region L was composed of highly-uniform axial T2-FLAIR images 

compared with Region M, which contained sagittal, axial, and coronal images - many with 

extensive pathology.  
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 To complement the analysis of within-cluster differences, the overlapping region of the 

T1 and T1C clusters was examined to answer whether the misclassified images had visual 

similarities to their neighbors. Examples from Region E demonstrate that many of the T1 images 

predicted as T1C had low gray-white matter contrast, typical of T1C images. In addition, T1C 

images misclassified as T1 had very little contrast enhancement, and retained their gray-white 

matter contrast even in the post-contrast setting. Compared with Region E, Region F was much 

more uniform in appearance with similar contrast and axial orientation.  
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Figure 6.4. t-SNE of the 6 logits derived from the final layer of the convolutional neural 
network.  
(A) t-Stochastic Neighbor Embedding of the logits output from the CNN. (B) Example of images 
and series descriptions that correspond with the Region B on the t-SNE plot, represented largely 
by gradient-echo echo-planar images. (C) HARDI diffusion volumes largely representing Region 
C on the t-SNE plot. (D) Susceptibility-weighted images corresponding to Region D on the t-
SNE plot. (E) Misclassified T1 and T1C images in Region E that appear similar to the contrast of 
the other. (F) In contrast to Region E, Region F contains highly uniform axial T1C images. (G-
H) images corresponding to Regions G and H respectively. Though maximally separated, these 
regions both contain axial and sagittal images that appear similar in contrast. (I) Region I 
contains high-contrast, high-resolution 3D T2-weighted images that have their own distinct area 
within the T2-weighted cluster. (J-K) Region J contains both axial and sagittal images with 
varied contrast compared with Region K which appears more uniform. (L) Examples of images 
located in Region L depicting uniform, axial T2-FLAIR images with little evidence of pathology. 
(M) Examples of images located in Region M of the yellow cluster, representing coronal, sagittal 
and axial T2-FLAIR images with extensive pathology. (N-O) This cluster of PD images does not 
appear different when comparing maximally separated Regions N and O.   
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6.3 Discussion  

In this study, we develop multiple algorithms capable of predicting the contrast 

mechanism of diverse MR series with >97% accuracy. Importantly, we developed these tools to 

satisfy a real clinical objective within our institution. Our internal tool -- the UCSF Multiple 

Sclerosis Bioscreen -- is a web-based application that displays aligned longitudinal MR images 

acquired with similar contrast to clinicians alongside other pertinent biometrics (Figure 6.1B). 

The MR series contrast classifiers presented in this study represent an important step in the 

pipeline, after classifying the MR series by the anatomical region and before longitudinal image 

registration. By streamlining the agglomeration and presentation of relevant data, our tool 

increases the amount of time clinicians have to assess disease status. If the contrast of a 

particular MR series within an exam is misclassified or if a low-quality image is chosen for all 

other timepoints to be aligned to, valuable clinician and patient time might be wasted. Therefore, 

retrieving high-quality series of the correct contrast within an exam is the main priority of this 

step within our tool. It is with this lens that we can compare the performance of each kind of 

model developed in this study. 

We compare the performance of 1) a rule-based classifier; 2) a metadata-only random 

forest classifier; 3) an imaging-only convolutional neural network; and 4) a combined model that 

uses both imaging data outputs from (3) and metadata in a random forest. The primary goal was 

to obtain high accuracy on the MSC dataset, a heterogeneous clinical cohort, while the secondary 

goal was to obtain good classification accuracy on the GR dataset, containing images with more 

extensive pathological burden. All three trained algorithms vastly improved the performance of 

the rule-based approach, with models including imaging (imaging-only and combined models) 

performing the best on the MSC validation and test sets.  
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The imaging-only and combined model were extremely comparable in their performance 

on the MSC dataset, with the imaging-only model achieving 98.0% validation and 97.0% test set 

accuracy, and the combined model achieving 97.9% validation and 97.7% test set accuracy, 

respectively (Table 6.3). The combined model improved the classification of T2-FLAIR images 

in the test set and decreased the number of T1 pre- and post-contrast mistakes made by the 

algorithm. The imaging-only CNN improved upon the classification of the OTHER category 

compared with the combined model for the MSC dataset. With the lens of delivering the image 

contrast of interest of this MSC dataset, the combined model outperforms the imaging-only 

model.  

We dive deeper into the details of the imaging-only CNN by conducting a tSNE analysis 

(Figure 6.4). Our between-cluster t-SNE analysis of the T1 and T1C images in Region E in 

Figure 6.3 confirmed that the CNN misclassified T1 and T1C images that were visually similar 

to one another. The canonical features that visually differentiate T1C from T1 images are regions 

of bright contrast enhancement and lower gray-white matter contrast. We observe that the T1C 

images that are classified as T1 by the CNN are those that retain their gray-white matter contrast 

and show little to no enhancement.  

Our within-cluster t-SNE analysis of the OTHER images (Figure 6.4B-D) provided a 

valuable qualitative addendum to our main findings. From this analysis, we infer that the logit 

values output from the imaging-only CNN model contained a rich diversity of imaging features 

that were able to separate different kinds of images without being explicitly trained to. When we 

formulated the experimental design for this project, we did not originally label images explicitly 

as HARDI, SWI, or GRE EPI due to lower sample size and lower priority in the context of the 

MS Bioscreen application. However, the ability of the imaging-only CNN to separate these 
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image types suggests that future efforts to refine our MR series acquisition labeling to more 

specific contrast mechanisms will be successful.  

In addition, we demonstrate the feasibility of generalizing our algorithms to a research 

glioma dataset. This goal was specifically relevant to the future direction of the Bioscreen tool, 

as the extension of the tool to the Neurosurgery department has been initiated. The best 

performing algorithm was the metadata model achieving 99.7% on both validation and test GR 

datasets, classifying just one image wrong in the GR validation and test sets each. We surmise 

that this is likely due to the homogeneity of the metadata in the strict research protocol that 

guided the acquisition of GR data within our institution. Contrary to expectations, the combined 

model had lower accuracy on the GR dataset due to the classifying a set of high-resolution 3D 

T2-weighted images acquired with BrainLab protocol as OTHER (Figure 6.4I). The training data 

included no T2-weighted images that resembled these and the RepetitionTime was much longer 

on average for higher T2-weighting compared with those in the training dataset (2912.5 ms vs. 

2370.9 ms). In addition, the imaging-only CNN segregates these images into their own small, 

separated section within the T2-weighted cluster. Taken together, the information stored in the 

imaging-based logits and TR difference contained in the metadata and the lack of similar 

acquisitions in the training data were the likely causes that created the conditions in the 

combined RF to segregate these specific images from the rest of the T2-weighted images. In 

order to advance the algorithm to deployment in the context of real-world glioma MR series, all 

three algorithms should be tested on clinical glioma data stored in institutional PACS systems, 

where we expect imaging-based algorithms outperform metadata-only models, similar to the 

results on the MSC validation and test sets. In addition, to achieve even greater results, we will 



 
 

 120 

gather additional glioma datasets and include some of these high-resolution, T2-weighted 3D 

images in MR series during training.  

Though the combined model slightly outperformed the imaging-only CNN on the MSC 

dataset which was the primary purpose of this investigation, there remain advantages of using the 

imaging-only model. First, compared with the combined model, it performs nearly just well on 

the MSC data while increasing the accuracy on the GR dataset, due to generalizing better to the 

high-contrast, high-resolution 3D T2-weighted images that it hadn’t seen before. Second, the 

number of misclassified images in the training data that were in fact labeled incorrectly was 

increased for the imaging-only model compared with the others, indicating it was more robust to 

overfitting to the training set. Thirdly, compared with the metadata-only model, the imaging-only 

CNN can identify series impacted by severe artifacts as OTHER instead of the contrast that it 

was acquired with, which is beneficial in our pipeline. Finally, the only preprocessing step is 

calculating the center of the image volume to identify the slice most representative of the image 

contrast, which is beneficial during model deployment. Though using imaging data is more 

computationally expensive compared with metadata alone, the inference time difference is 

nominal in the context of the UCSF Bioscreen application. Though metadata-only models 

shorten inference time at scale, they have lower overall accuracy and will never have the ability 

to filter out MR sequences with artifacts, ensuring increased downstream issues with alignment 

and display. Therefore, in the context of delivering high-quality images to the UCSF Bioscreen 

application, the imaging-only CNN model would be the most appropriate as the contrast 

classification step.  

 In this study, we investigate different modeling paradigms for classifying MR series 

based on their acquisition contrast. We achieve classification accuracy acceptable to deploy 
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within the pipeline detailed in Figure 6.1B for the MS clinical data stored in PACS, as well as on 

unseen glioma images with more extensive pathology. In addition, our t-SNE analysis indicates 

that the imaging-based CNN has more refined discriminatory power for ADC maps, HARDI, 

and T2* weighted images, imaging series commonly acquired during MS and glioma exams. 

Taken together, our immediate future directions include extending our model to more refined 

categories and including more kinds of MR acquisitions (e.g. high-resolution, high-contrast 3D 

T2-weighted images) in our training data to improve our accuracy on clinical data even further. 

Overall, we recommend an imaging-based model within a pipeline such as ours.  
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7. Distinguishing recurrent tumor from treatment-induced 
effects  
 

As introduced in Section 2.2.3, recurrent glioma and the effects of treatment can appear 

identical on MRI, resulting in unnecessary surgical intervention and confounding the results of 

clinical trials. When I heard about this problem, it became the central question I was interested in 

trying to solve throughout my PhD. This problem is top of mind for many practicing neuro-

radiologists and neuro-oncologists. During my time in Dr. Lupo’s lab, I have taken two 

approaches. The first approach was useful to overcome the heterogeneity within individual 

patients experiencing a mixture of treatment-induced damage and real tumor growth (residual or 

recurrent). I was lucky to have access to a unique dataset of image-guided tissue samples that 

allowed pairing of structural, physiologic, and metabolic MR imaging to the pathological 

outcome of individual tissue samples. Using this approach, we discovered that spectroscopic MR 

in the non-enhancing region of the lesion was the most sensitive and specific marker for 

distinguishing the two phenomena.  

 When my interest in deep learning in imaging was burgeoning, my colleague Dr. Paula 

Alcaide-Leon discovered that centrally restricted diffusion (inside of the necrotic region of a 

ring-enhancing lesion) was predictive of treatment-related changes. I hypothesized that a 

convolutional neural network might be able to harness this signal, together with other texture-

level features to predict treatment-related changes. The work using this approach is adapted from 

a submission to the International Society for Magnetic Resonance in Medicine conference that 

goal is presented in Section 7.2.  
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7.1 Recurrent tumor and treatment-induced effects have different MR 
signatures in contrast-enhancing and non-enhancing lesions of high-
grade gliomas 
 

7.1.1 Introduction  
 

Tumor recurrence in patients with high-grade glioma (HGG) is difficult to diagnose 

because treatment-induced injury often appears identical on conventional anatomic magnetic 

resonance (MR) imaging. It is estimated that 25 to 35 percent of patients who undergo standard-

of-care radiation and chemotherapy in the form temozolomide for HGG experience treatment-

related injury, and its appearance is even more common with the recent advent of immuno- and 

other targeted therapies in clinical trials [32,143–145]. If recurrence is incorrectly diagnosed, a 

patient may be removed from an effective therapy, which could invalidate the results of a clinical 

trial or expose a patient to unnecessary surgical intervention. To mitigate these risks, identifying 

the exact location and extent of treatment-related changes within newly enlarging lesions is 

critical.  

Despite the known pitfalls of using anatomical imaging, the current Response 

Assessment in Neuro-Oncology (RANO) criteria for HGG relies solely on standard T1- and T2-

weighted MR imaging [146]. These techniques allow for visualization of anatomical 

abnormalities, but are limited in their ability to capture the underlying biology that differentiates 

true recurrent glioma from treatment effects. Emerging data suggest that incorporating more 

advanced MRI techniques may be useful for probing underlying biological differences: 

diffusion-weighted imaging for capturing the restricted water movement from the density of 

proliferating tumor cells [51,56,57,147–149]; perfusion-weighted imaging for evaluating the 

increased vasculature recruited to support a growing mass [55,63,76,150–152]; and 
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spectroscopic imaging for elucidating the metabolic differences between inflammation and 

proliferating tumor cells [56,76,77]. Although several groups have investigated the potential for 

distinguishing between treatment effects and recurrent tumor using these techniques, the majority 

of prior studies typically involve calculating the mean diffusion-, perfusion-, or spectroscopic- 

derived parameter value from an anatomical region of interest (ROI) and normalizing that value 

against that obtained from contralateral normal-appearing white matter in order to obtain a 

threshold that can distinguish treatment effects from true tumor recurrence. These ROI-based 

methods suffer from widely varying cutoff values for parameters due to inter-observer 

dependence, intratumoral heterogeneity, and the coexistence of treatment effect and tumor within 

the same lesion. Such studies also typically use radiographic observations or a single tissue 

sample for outcome determination, ascribing a single diagnosis to a mixture of tissue types that 

could mask the heterogeneity of the lesion and limit the accuracy of the cutoff value concluded 

from the study and overall clinical diagnosis.  

To overcome the complications introduced by tissue heterogeneity in ROI-based studies, 

one strategy is to use image-guided tissue samples of known coordinates to directly map MRI 

characteristics to histopathology. In 2002, Rock et al. pioneered this technique in distinguishing 

radiation necrosis from recurrent disease using metabolite ratios derived from 1H MR 

Spectroscopic Imaging (MRSI) at the location of sampled tissue [153]. Their findings suggested 

that the ratios of choline and lactate/lipid to creatine could differentiate samples with pure 

necrosis and tumor, but not those with mixed pathology. In 2009, Hu et al. utilized this technique 

in conjunction with Dynamic Susceptibility Contrast (DSC) perfusion-weighted imaging to 

distinguish post-treatment radiation effect from recurrent tumor with high sensitivity and 

specificity using relative cerebral blood volume (rCBV) values from 13 patients.  
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The goal of this study was to determine whether different MR characteristics were 

relevant for distinguishing pathological features of recurrent tumor from the effects of treatment 

in the contrast enhancing and non-enhancing lesions of recurrent high-grade gliomas by 

leveraging a unique dataset of image-guided tissue samples of known coordinates to avoid 

complications of tissue heterogeneity that confounds most lesion-level analyses. Based on prior 

literature, we expect that samples composed of recurrent tumor will have increased blood volume 

and abnormal metabolism, with decreased diffusion compared to samples containing treatment-

effect. We also hypothesize that: 1) this difference would be more pronounced in diffusion and 

perfusion metrics for samples within the contrast enhancing lesion (CEL), while metabolic 

measures would be equally effective at differentiating recurrent tumor from treatment effect in 

both the contrast enhancing and non-enhancing lesions (NEL); and 2) the addition of 

multiparametric physiologic and metabolic MRI in conjunction with tissue sample level analyses 

will provide increased sensitivity and specificity in distinguishing recurrent tumor from the 

effects of treatment in both types of lesions compared to anatomical imaging. 
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7.1.2 Methods 

7.1.2.1 Patient recruitment 

Institutional Review Board approval was obtained at our institution to prospectively 

enroll consecutive patients with an initial pathological diagnosis of a WHO grade III or IV 

glioma that were suspected of recurrence between 2007 and 2017. A total of 173 patients 

(median age, 52; range, 21-84) that provided written informed consent to participate underwent 

MR imaging between 1 and 3 days prior to surgical resection and tissue sample collection were 

enrolled. Demographics were typical for this population as shown in Table 7.1.  The majority of 

patients received an initial surgical resection followed by the standard of care RT (119 patients) 

plus temozolomide (114 patients). 41 patients also received 1 or more of 19 different additional 

therapies (18 bevacizumab; 8 immunotherapy). Prior treatment history was unknown for 12 

patients. 

From each patient, 1-4 tissue samples were obtained (mean samples/patient was 2.3, with 

1.18 samples/patient within the CEL and 0.91 samples/patient within the NEL). Of the initial 479 

samples from 173 patients, a sample was only included in the analysis if it: 1) had a conclusive 

histopathological outcome; 2) came from a patient whose initial diagnosis was as high-grade 

glioma; 3) did not come from a region of hematoma or extensive necrosis; 4) had quantifiable 

anatomic imaging data; and 5) was located within either the contrast-enhancing or non-

enhancing lesion (Figure 7.1A). This resulted in a total of 291 samples from 139 patients, 26 of 

which had a diagnosis at surgery of grade III, 90 as grade IV, and 23 were exclusively treatment 

effect. 
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Figure 7.1 Overview of tissue samples.  
(A) Inclusion and exclusion criteria for tissue samples. (B) Examples of MR modalities and 
parameters used per tissue sample.  
 
Table 7.1. Clinical demographics of the patient population.  
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7.1.2.2 MR acquisition 

MR examinations were performed on a 3T scanner (GE Healthcare Technologies) using 

an eight-channel phased-array head coil. Standard anatomical imaging included T2-weighted 

FLAIR and fast spin echo images, along with 3D T1-weighted IR-SPGR imaging pre- and post- 

the injection of a gadolinium-based contrast agent. Diffusion-tensor images (DTI) were obtained 

in the axial plane with b=1000 s/mm2 and either 6 gradient directions and 4 excitations or 24 

gradient directions and 1 excitation or b=2000 s/mm2 and 55 gradient directions [repetition time 

(TR)/echo time (TE) = 1000/108 milliseconds, voxel size = 1.7-2.0 × 1.7-2.0 × 2.0-3.0 mm]. 

DSC perfusion-weighted images were obtained following a 3-ml/s bolus injection of 0.1 

mmol/kg body weight gadolinium diethyltriamine pentaacetic acid using a series of T2*-

weighted echo-planar images [TR/TE/flip angle = 1250-1500/35-54 milliseconds/30°-35°, 128 × 

128 matrix, slice thickness = 3-5 mm, 7-24 slices with 60-80 time points] before, during, and 

after the arrival of the contrast agent bolus. The temporal resolution was between 1 and 1.5 

seconds, with total acquisition time ranging from 1-2 min.  

The 3D 1H MRSI were acquired using point-resolved spectroscopic selection for volume 

localization and very selective saturation pulses for lipid signal suppression [excited volume = 80 

× 80 × 40 mm, TR = 1100-1250 ms, TE = 144 milliseconds, overpress factor = 1.5 if lactate 

edited, otherwise 1.2, field of view = 16×16×16 or 18×18×16 cm, nominal voxel 

size=1×1×1cm], flyback echo-planar readout gradient in the SI direction, 988 Hz sweep width 

and 712 dwell points. A dual-cycle lactate-edited sequence18 was used for 42 patients (83 

samples; 11 min), while a standard single-cycle sequence [154] was used for the remaining 38 

patients (68 samples; 6 min).  
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7.1.2.3 MR data processing 

Anatomic, diffusion, and perfusion data were aligned to the T1 post-contrast image using 

either FMRIB's FSL Linear Image Registration Tool (FLIRT) [116,117] or Slicer’s BRAINSFit 

tool with B-spline warping [118]. Spherical 5-mm-diameter ROIs were generated at the location 

of the spatial coordinates recorded during surgery in order to balance the potential error 

introduced by tissue shift and the need to restrict the ROI to immediate vicinity of the sampled 

tissue [155]. All locations were then visually verified for accuracy on anatomical imaging using 

screenshots taken during the surgery, and excluded if there was a mismatch between the 

coordinate locations and visualized location on imaging. 

A pipeline that utilized components of FMRIB’s Diffusion Toolkit was applied to 

estimate relevant diffusion parameters from the DWI and DTI data as previously described 

[116]. In order to account for differences in acquisition parameters over the 10 year study 

duration, voxel values for the Apparent Diffusion Coefficient (ADC) and fractional anisotropy 

(FA) maps were normalized to the mode of intensities in normal-appearing brain tissue (resulting 

in nADC and nFA maps). nADC increases as average diffusivity of water within a voxel 

increases and therefore its decrease should act as a marker for glial proliferation while nFA is an 

index for the amount of directional movement of water resulting from the parallel orientation of 

axonal fibers in white matter.  

From the DSC perfusion data, rCBV maps were first calculated on a voxel-by-voxel basis 

utilizing a modified gamma-variate function that takes into account leakage of the contrast agent 

[156]. To generate a single concentration-time curve per sample, unquantifiable voxels of noise 

were automatically excluded and the percentage of the tissue sample ROI within each perfusion 

voxel was determined before taking a weighted average of the remaining dynamic curves based 
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on their percentage overlap with the ROI (Figure 7.1B) [157]. This method helped mitigate 

inaccuracies in quantification of perfusion parameters from tissue sample ROIs due to the 

relatively small size of the ROI compared to the low resolution of the perfusion scan and the 

presence of susceptibility artifacts and necrosis. rCBV for each tissue sample was calculated as 

the area under the final gamma-variate-fitted single concentration-time curve after leakage 

correction. An increase in rCBV reflects an increased volume of blood vessels in a given amount 

of brain tissue, and is therefore expected to be elevated in regions of recurrent tumor as it recruits 

blood vessels to supply oxygen to an enlarging mass. 

Spectroscopic data were reconstructed and postprocessed using in-house software, as 

previously described [158–160]. To generate a single spectrum centered at the location of each 

tissue sample, 3D spectral arrays were first shifted in k-space to reconstruct a spectral voxel on 

the center coordinates of each tissue sample location (Figure 7.1B). Peak heights and areas were 

determined from baseline-subtracted, frequency- and phase-corrected spectra on a voxel-by-

voxel basis[160]. The choline-to-NAA index (CNI) and the choline-to-creatine index (CCRI) 

were obtained as previously described, using the entire 3D array of spectra in the iterative 

regression [161]. Normalized total choline (nCho), creatine (nCre), and N-acetylaspartate 

(nNAA) intensities were calculated using their median value in voxels that had been identified 

during the CNI calculation as being from the normal brain. nCho increases with increased 

cellular turnover, nNAA is a neuronal marker, and nCre is thought to be relatively constant 

regardless of tissue makeup. Using indices such as CNI and CCRI are appealing because they 

can capture more complex information, e.g. areas of high cellular turnover with low neuron 

density (CNI), which can be indicative of tumor tissue.  
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Together, these post-processing steps resulted in 8 different MR imaging parameters: 

nADC and nFA from DTI; rCBV from DSC perfusion; and CNI, CCRI, nCho, nCre, and nNAA 

from MRSI.  

7.1.2.4 Tissue sampling and histopathological assessment  

A minimum of 4 tissue samples at least 1 cm apart were preoperatively planned to 

maximize heterogeneity within the hyperintense region on the T2 FLAIR image. Edges of 

cavities or necrotic regions were avoided, and the accessibility of the tissue target to the surgeon 

was considered during planning. During surgery, an intraoperative navigation system (BrainLab 

or Surgical Stealth) guided the neurosurgeon to the targeted locations and was used to record 

target coordinates for excised tissue samples. Samples were immediately formalin fixed and 

paraffin embedded [162]. 

Hematoxylin and eosin stained slides from tissue samples were evaluated by a board-

certified pathologist (J.J.P.). Slides were assessed for the presence of tumor cells, necrosis, and 

treatment-related abnormal vasculature. Samples that had both signs of treatment-related changes 

and zero tumor cells were considered treatment effect. The presence of tumor cells was scored 

based upon review of H&E-stained sections by a neuropathologist as 0 = no tumor present, 1 = 

infiltrating tumor with rare cells, 2 = infiltrating cellular tumor, and 3 = highly cellular 

infiltrating tumor involving >75% of the tissue. Only samples with more than rare infiltrating 

tumor cells (tumor scores of 2 or greater) were considered recurrent tumor.  
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7.1.2.5 Statistical analysis 

Diffusion, perfusion and spectroscopy parameters summarized from a 5-mm ROI 

centered on the tissue sample coordinates were tested for association with pathological outcome 

denoting treatment effect or recurrent HGG. Samples were analyzed both together and separately 

based on their location in the contrast enhancing or non-enhancing lesion. To account for the 

potential correlation among multiple samples derived from the same patient, univariate 

generalized estimating equations (GEE) were fit to the data for each MR parameter to estimate 

population-average coefficients, conditioning only on the fixed design matrix. The cutoff for 

determining significance was a p-value < 0.05 after a Benjamini-Hochberg (B-H) correction for 

multiple testing was applied. Samples that did not have a value for a particular parameter were 

excluded from the analysis of that parameter. To complement these analyses, univariate GEE 

was also performed to evaluate the association of parameters from all samples combined 

irrespective of the presence of contrast enhancement. Finally, beginning with all MR parameters 

in a model, a backward stepwise GEE with elimination by least statistical significance was 

performed on all samples, while taking into account the presence or absence of contrast 

enhancement with an interaction term to evaluate whether individual parameter significance was 

upheld in a multiparametric setting. 

To evaluate whether significant parameters from the previous analysis were able to 

separate samples into treatment effect and recurrent tumor categories, we used a cross-validation 

thresholding approach, where the samples were first divided into enhancing and non-enhancing 

groups based on their location. To create 5-folds for cross validation within each group, samples 

were assigned to a fold randomly while stratifying by outcome in each fold. All samples from a 

single patient were included in the same fold in order to ensure the independence of each fold. 
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To evaluate cutoff values for these imaging metrics, 4 folds were used to calculate the area under 

the receiver operator characteristic curve (AUC ROC) for all cutoff values and the threshold that 

yielded the highest AUC was chosen. This value was then applied to separate the fifth fold by 

outcome, and the sensitivity, specificity and accuracy of this classification were calculated to 

gain insight into the performance of the cutoff value. This process was repeated 5 times, 

providing 5 different cutoff value estimates and performance metrics. The mean and standard 

deviation of all thresholds and metrics derived from all 5 cross-validation experiments was 

calculated and reported.  

In order to evaluate whether a combination of parameters could better predict outcome 

than thresholds alone, a logistic regression (LR) model was fit using independent significant 

parameters and all available samples (CEL+NEL) with that parametric information. To ensure 

that the validation (or 5th) fold remained independent for each cross-validation experiment, 

standardization was performed on the 4 folds used for training and these normalization 

parameters were saved for application to the validation fold. This normalization was necessary to 

be able to compare coefficients among regression models. The accuracy, sensitivity, and 

specificity of the LR models from training on the 4 folds and subsequent application of the 

trained model on the 5th fold was recorded. All modeling analyses were performed in R using 

the caret and pROC packages [163,164]. To verify this procedure we also performed a 

complementary bootstrapping analysis that randomly selected only one sample per patient 1000 

times (200/fold), with priority given to treatment effect samples if present.  
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7.1.3 Results  

 
Figure 7.2. Within-patient imaging differences between treatment-induced injury and 
recurrent HGG.  
(A) Non-enhancing CNI parameter maps overlaid on the T2 FLAIR image are elevated in HGG 
samples. (B) Reduced CNI in a sample with treatment-induced injury within the same patient 
(overlaid on the post-contrast T1-weighted image). (C) Enhancing rCBV parameter maps are 
elevated in HGG (solid white location) versus treatment-induced injury (dashed location). (D) 
The corresponding ΔR2* curves. 
 

7.1.3.1 Contrast-enhancing samples  

Of the 8 MRI/MRSI parameters evaluated for samples within the CEL, the perfusion 

parameter rCBV was significantly associated with the binary outcome of treatment effect or 

recurrent tumor (p < 0.03). Figure 7.2C&D and Figure 7.3A demonstrate the elevated levels of 

rCBV values among tumor samples when compared with treatment effect samples. Table 7.2 
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reports the number of samples included for each test. The model estimations, standard errors, 

Wald test statistics and p-values for all tested parameters are reported in Table 7.3.  

 

 

Figure 7.3. Boxplots representing distributions of values in recurrent HGG samples and 
treatment-induced injury samples.  
Visualization of (A) rCBV values from samples in the CEL, (B) CNI, and (C) nCho values from 
samples in the NEL. In (D) the average ROC curve of rCBV in the CEL and (E) the average ROC 
curve of CNI and nCho in the NEL samples. Relative CBV was significantly associated with 
treatment effect versus recurrent tumor (P < 0.03) in the CEL, while spectroscopic parameters nCho 
and CNI were significant in the non-enhancing lesion (P = 0.008). 

7.1.3.2 Non-enhancing samples 

In the NEL samples, however, spectroscopic parameters nCho (p = 0.008) and CNI (p = 

0.008) were significantly associated with the presence of recurrent tumor versus treatment effect.  

Figure 7.2A&B and Figure 7.3B&C demonstrate the elevated levels of total choline and CNI 
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values among tumor samples when compared with samples containing purely treatment effect. 

Table 7.2 reports the number of samples included for each test. The model estimations, standard 

errors, Wald test statistics and p-values for all tested parameters are reported in Table 7.3.  

 

Table 7.2. Number of samples included for each test.  

 

 

7.1.3.3 All samples combined  

When combining the CEL and NEL regions, elevated nCho (p = 0.024), CNI (p = 

0.0008), and CCRI (p = 0.012) values were significantly associated with the presence of 

recurrent tumor. When parameters were combined in a backward stepwise generalized estimating 

equation (GEE) that included the anatomical lesion as an interaction term, rCBV (p = 0.036), and 

CNI (p = 0.003) remained significant in the final model.   
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Table 7.3. Generalized estimating equation (GEE) results from imaging values associated 
with pathology.  

 

*P < 0.05, **P < 0.001. 
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7.1.3.4 Cutoff analyses 

After dividing the data into 5-folds for cutoff determination, the proportion of treatment 

effect samples in each fold ranged from 18% to 29%. The mean rCBV cutoff value for 

distinguishing treatment effect from recurrent tumor within the CEL was 1.62 (0.21 sd). 

However, when this cutoff value was applied to the fifth validation fold, the mean accuracy was 

only 50%, with a sensitivity of 0.50 and specificity of 0.59. For samples in the NEL, the best 

cutoff values to separate tumor and treatment effect were 2.71 for CNI and 1.10 for nCho. This 

resulted in a mean AUC ROC value of 0.73 (0.10 sd) and 0.63 (0.12 sd), for CNI and nCho 

respectively. When applied to the validation fold, the mean accuracy for CNI was 68%, while 

sensitivity and specificity were 0.61 and 0.85, respectively. The cutoff threshold for nCho 

resulted in an accuracy of 66%, while the mean sensitivity was 0.62 and specificity was 0.65. 

Table 7.4 reports these values and the standard deviations across all five-fold tests and the 

corresponding ROC curves are shown in Figure 7.3D&E.  

 

7.1.3.5 Multivariate model  

Parameter combination into a LR using all significant MR parameters resulted in a mean 

AUC of 0.69 (0.09 sd). When tested on the fifth fold, the LR predicted with an average accuracy 

of 64% and sensitivity and specificity of 0.65 and 0.62, respectively (Table 7.4). The single-

sample bootstrapping analysis confirmed these results with a mean AUC of 0.70 (95% CI [0.69, 

0.72]) and an average accuracy, sensitivity, and specificity of 68%, 0.64, and 0.79, respectively, 

providing confidence in our predictions despite the use of multiple samples per patient.  
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Table 7.4. Threshold and logistic regression analysis results.  
Values represent the means and parenthetical values are standard deviations.

 
 

7.1.4 Discussion 

While distinguishing recurrent high-grade glioma from treatment induced effects is an 

important clinical objective, it has remained an immense challenge in part due to the coexistence 

of the two phenomena in the same lesion. This study attempts to overcome the problem of lesion 

heterogeneity by using surgical tissue samples with known coordinates on imaging acquired with 

neuronavigation tools. To our knowledge, this study includes the greatest number of patients 

with spatially mapped tissue samples to distinguish recurrent high-grade glioma from treatment-

induced effects to date and takes advantage of incorporating metabolic and physiologic derived 

metrics from DSC perfusion weighted imaging, DTI, and MRSI. Through our statistical and 

predictive approaches, we demonstrated the importance of MRSI in distinguishing recurrent 

tumor from the effects of treatment in the non-enhancing lesion and examined whether the 

combination of vascular and metabolic metrics could lead to the generation of more accurate 

predictions.  
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Our results support the use of 1H-MRSI for identifying regions of abnormal metabolism 

in the non-enhancing region that are indicative of infiltrative recurrent tumor cells rather than the 

effects of treatment. Tumor samples demonstrated higher levels of choline-containing 

metabolites (nCho) and elevated CNI compared with treatment effect samples, consistent with 

our current understanding of the biological underpinnings of choline and NAA metabolite flux 

[77]. After employing cross validation to gain insight into how a given cutoff threshold would 

perform when applied to external data that was not used in determining its value, our cutoffs for 

nCho (1.1) and CNI (2.7) separated NEL samples into treatment effect or recurrent tumor 

categories with mean sensitivity of 0.62, 0.61 and specificity of 0.85, 0.65, for nCho and CNI 

respectively. While many prior studies have used single-voxel spectroscopy in the enhancing 

lesion [165–167], our results indicate that spectroscopic coverage of the non-enhancing lesion 

area would benefit in the accurate diagnosis of recurrence. In turn, a multi-voxel spectroscopic 

approach would provide greater utility in assessing the metabolic lesion than single-voxel 

sequences, as they are often centered on the contrast enhancing region. These spectroscopic 

findings are similar to metabolic differences observed between vasogenic edema and enhancing 

metastatic disease in patients with brain metastases [166–169].  Although recent studies apply 

machine learning techniques to dynamic contrast enhanced (DCE) perfusion, diffusion tensor 

imaging (DTI) and anatomic imaging, [83] [170] the innate biological differences between 

metastatic brain tumors and gliomas prohibit their generalizability. Though more rigorous 

validation is necessary before incorporation into a clinical workflow, this study lays the 

groundwork for future investigation into the utility of these parameters in a prospective, 

independent cohort with image-guided tissue samples using more sophisticated machine learning 
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algorithms. This has potential to direct surgeons to which part of the non-enhancing lesion 

contains infiltrating tumor. 

Although the recent meta-analysis of ROI-based studies by Van Dijken et al. found that 

the greatest sensitivity and specificity for distinguishing recurrent tumor from treatment effects 

lies in the spectroscopic parameters derived from the CEL, we were not able to replicate these 

results with our analyses [83]. This could be because ROI-based studies do not account for the 

spatial heterogeneity that exists in metabolism within the lesion. Despite our voxel shifting 

methods to reconstruct spectra at the center of the tissue sample location to avoid errors from 

interpolation, it was still possible that pathological heterogeneity existed within the 1cc spectral 

voxel. Additionally, spectral voxels at the location of CEL tissue samples often overlapped with 

necrotic regions and non-enhancing regions because of their larger size, potentially affecting the 

quantification of CNI.  

Our findings in tissue samples obtained from within the contrast enhancing lesion suggest 

that elevated rCBV is significantly associated with recurrent tumor compared to treatment 

effects. The generalized estimating equations and the cutoff analysis suggest that rCBV is useful 

for differentiating recurrent tumor from treatment effects in the CEL. These findings are 

consistent with ROI-based studies that report as high as 87% sensitivity and 86% specificity 

when differentiating recurrent tumor from treatment-induced effects from the contrast-enhancing 

ROI. Although these individual smaller studies report higher sensitivity and specificity, their 

cutoff values were highly variable ranging from 0.71 to 3.7 for rCBV, reflecting the difficulty in 

recommending a universal cutoff. It was our hope that our analysis would provide clarity to this 

body of work by mapping local MRI characteristics directly to pathology. Although the cutoff 

for rCBV in our study was 1.59 (0.21 sd), our sensitivity and specificity were not significantly 
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better than random chance. These results may be in part attributed to the very large range of 

rCBV values observed in high-grade tumor tissue samples (min: 0.10, max: 5.72, med: 1.61). 

This large range, taken in combination with previous rCBV reports, supports the notion that a 

“signature” rCBV value that can distinguish high-grade tumor from treatment-related injury 

remains difficult to define and that multiparametric analyses with more advanced machine 

learning methodologies in larger datasets may be necessary to adequately address this problem. 

After analyzing the association of singular MR parameters to outcome, we assessed 

whether the combination of parameters improves classification of samples into treatment effects 

or recurrent HGG. Although it does not model the potential correlation among samples derived 

from the same patients, logistic regression was chosen for its interpretability and reluctance to 

overfitting, and was further validated by comparing to the result obtained from randomly 

selecting 1 sample per patient and bootstrapping the data. For this analysis, 5-fold cross 

validation was used where each fold was separated by patient and stratified by outcome to 

control for information leakage and optimistic prediction. Only parameters from modalities that 

were determined to be useful for differentiating treatment effects from recurrent HGG in the 

univariate analyses were retained in the multivariate models. Combining the results into a 

logistic regression resulted in a model that, when compared with cut off analyses, had similar 

sensitivity (0.65) and specificity (0.63) when tested on the 5th fold, suggesting that modeling 

parameters together may not improve the classification of tissue samples by pathology. Though 

these results seem counterintuitive at first, it is likely that combining the anatomic regions of 

CEL and NEL averages out the signal that was present in each separate anatomic region, further 

substantiating our hypothesis that recurrent tumor in these regions have distinct metabolic and 

physiologic characteristics. For example, because the appearance of the CEL is driven by the 
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extravasation of contrast by leaky blood vessels, rCBV values in the CEL have a significantly 

different value distribution from those in the NEL; therefore, the signal driving the difference in 

rCBV in the CEL is lost when combined with samples in the NEL. 

The low sensitivity in predicting pathology from MR parameters and reliably classify 

sub-regions of a lesion in our dataset can be attributed to three main causes. First, the parameters 

that were determined as being the most important for prediction of treatment effects and tumor 

were only obtained in 52% (perfusion) or 67% (MRSI) of patients (Table 7.2) because they were 

not part of routine clinical evaluation. This, along with imbalanced classes, limited our ability to 

build a predictive model that could be tested on an unseen dataset with these parameters. Still, 

using a 5-fold cross-validation approach allowed us to instead estimate the predictive value of 

our MR metrics, whereby we could iterate over all available treatment effect samples and 

observe the stability of the prediction. Although we removed samples that were largely 

composed of necrosis, our modest results could also be explained by the possibility of some 

necrosis co-existing within tissue samples that were mostly tumor or treatment effect. Although a 

recent review article summarizing 25 studies of brain shift reported maximum shifts between 4-

31mm during the course of resection [170] the vast majority of our tissue samples were acquired 

with a biopsy needle before opening the dura and resecting the tumor tissue, where most reported 

shifts have been between 2-5mm, with maximum shifts of <10 mm. These results informed our 

rationale for using a 5mm ROI around the center of the biopsied sample, even though the 

diameter of the excised tissue was 2 mm. This is less of an issue for MRSI than other imaging 

metrics, because the voxel size is 1 mm3 and we shift the reconstruction of the spectra voxel in 

k-space so that it is centered on the location of the tissue sample coordinates. Despite our efforts 

to further correct for errors due to tissue shift by performing extensive quality control through 
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manual visualization of each tissue sample location and exclusion of samples that were 

structurally inaccurate, it is highly likely that this shift is the main contributor to reducing the 

accuracy of our results, especially when lesion heterogeneity is pronounced.    

In conclusion, this study attempts to overcome the heterogeneity inherent in treated high-

grade glioma lesions by mapping pathological findings directly to MR parameters. Our results 

suggest the need for separate MR markers of recurrent tumor for enhancing and non-enhancing 

lesions, highlight the potential utility of using 3D MRSI to obtain CNI maps that include the 

non-enhancing region in the recurrent high-grade setting, and support previous studies that 

suggest rCBV should be used to differentiate treatment effects from recurrent tumor within the 

contrast enhancing region. These findings lay the foundation for a larger, multi-institutional 

investigation that includes MRSI of the non-enhancing region and multiparametric MRI, along 

with machine learning for differentiation of treatment induced injury from true recurrent tumor.  
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7.2 Using anatomic and diffusion MRI with deep convolutional neural 
networks to distinguish treatment-induced injury from recurrent 
glioblastoma 

7.2.1 Introduction 
It is estimated that 25% to 35% of patients with high-grade glioma experience treatment-

associated injury that can mimic recurrence[32,145], posing a significant diagnostic challenge 

for radiologists. It is critical to distinguish these phenomena in order to accurately assess patient 

response to therapy and ensure that the most effective therapies are used. However, previous 

attempts to solve this problem have been limited by sample size, using single tissue samples to 

determine the ground truth outcome of a lesion, and focusing on MR parameters summarized 

only from the contrast-enhancing area of the lesion. In fact, centrally restricted diffusion has 

recently shown promise in assessing the presence of treatment-associated injury (Figure 

7.4)[171,172], providing evidence of additional relevant MR signal from the necrotic region. In 

this study, we hypothesize that we can overcome some of the limitations of prior work by a) have 

the largest patient sample size to date; b) using the entire lesion image; and c) using multiple 

tissue samples per patient to establish a rigorous ground truth. Our work aims to demonstrate the 

feasibility of exploiting this pattern using convolutional neural networks to provide faster 

classification and enhanced sensitivity and specificity compared with visual assessment of the 

presence of this phenomenon.  
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Figure 7.4. Summarizing the centrally restricted diffusion sign.  
T1 post-contrast (A, D), trace DWI image (B, E) and ADC map (C, F) of a patient with a treatment-
induced lesion (A, B, C) and a patient with GBM recurrence (D, E, F). In the lesion associated with 
treatment, DWI and corresponding ADC maps show restricted diffusion in the central enhancing portion 
of the lesion. In the recurrence, DWI and ADC show restricted diffusion along the peripheral enhancing 
rim and facilitated diffusion in the central necrotic region.  

7.2.2 Methods 

7.2.2.1 Subjects and Image Acquisition 

 
A total of 174 patients with suspected recurrent glioblastoma were scanned on a 3T 

scanner with an 8-channel head coil. T2-weighted FLAIR (T2 FLAIR) and 3D T1-weighted IR-

SPGR imaging before (T1) and after (T1C) the injection of a gadolinium-based contrast agent 

were acquired. Diffusion-tensor images (DTI) were obtained in the axial plane with either 6 

directions and 4 excitations or ≥24 directions and 1 excitation [TR/TE = 1000/108 ms, voxel size 

= 1.7 × 1.7 × 3 mm, b=1000 or 2000 s/mm] and apparent diffusion coefficient (ADC) maps were 

generated using FMRIB’s Diffusion Toolkit [116].  
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7.2.2.2 Immunohistochemistry 

A board-certified pathologist evaluated multiple tissue samples per patient and scored 

them on the presence of tumor cells. In order to have a designation of treatment effect, the 

lesions must have had at least two samples containing no viable tumor and with signs of 

treatment effect (e.g. gliosis, hyalinized blood vessels); additionally, they could not have a tissue 

sample containing tumor in the newly enhancing lesion, as visualized by neuronavigation 

software during surgery. Patients with the designation of true recurrence must have had a clinical 

diagnosis at the time of surgery as glioblastoma, while also at least one research tissue sample 

with evidence of recurrent tumor. With this approach, 32 patients were classified as having 

treatment-induced effects, and 142 patients were classified as having recurrent glioblastoma.  

7.2.2.3 Image processing  

Figure 7.5 details the image processing pipeline. Each image was multiplied by a brain 

mask and z-score normalization was performed. The maximum area of the contrast enhancing 

lesion (CEL) or nonenhancing lesion (NEL) as determined by the ROI area was used to select the 

slice of interest in each plane. A square box padding the bounds of the NEL was used to extract a 

patch from the T1C, T2 FLAIR, and ADC images. These patches from each MR modality were 

concatenated to generate a single RGB-color image for each plane (coronal, sagittal and axial), 

for each patient.  
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Figure 7.5. Image processing pipeline.  
A) Slice with maximal contrast enhancing lesion (CEL) region of interest is chosen in each 
direction (axial, green; coronal, orange; sagittal, purple). If no CEL, the nonenhancing lesion 
(NEL) is used. B) The corresponding slice on T2 FLAIR and ADC images are chosen. C) A 
square bounding box of the NEL on the T2 FLAIR image is created and used on ADC, T1C; 
repeated for all planes. D) Concatenating the T1C, T2 FLAIR and ADC images together forms 
an RGB image. These choices were repeated every 5 mm away from the maximal slice if using 
more than three slices per patient.  
 

7.2.2.4 Model and computational framework  

Patients were first split into training and testing in an 80/20 split, such that 144 patients 

(27 treatment effect, 117 glioblastoma) were in the training set and 30 patients (5 treatment 

effect, 25 glioblastoma). From the training data, patients were split into 5 folds and stratified 

based on outcome. A variety of model architectures, slice selection strategies, training strategies, 

and hyperparameters were searched through in order to find the most appropriate strategy 

(Figure 7.6). During training, the minority (TxE) class was oversampled 4x through data 
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augmentation to account for the fewer number of patients in the TxE group. Data was augmented 

using cropping, rotating, and flipping both horizontally and vertically. Cosine differential 

learning rates (LR) and cross-entropy loss functions were used during training. The logit output 

of the final network layer was averaged across the slices directions for each patient and a 

sigmoid function was applied. All model building, training, and testing were implemented using 

PyTorch 1.0.0 on a Tesla V100-PCIE-32GB GPU (Nvidia).  

 
Figure 7.6. Modeling approaches.  

 
Figure 7.7. ResNet-34 CNN architecture and 3-direction averaging technique utilized.  
Before performing a sigmoid function, the raw logit is saved for the coronal (orange), sagittal 
(purple) and axial (green) planes. An average logit is taken and a sigmoid function is applied to 
create a single probability of treatment effect per patient.  
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7.2.3 Results and Discussion 
The best result was achieved using a ResNet-34 with just three slices derived from the 

maximal area of contrast enhancement in the coronal, sagittal and axial plane. Our pre-trained 

ResNet-34 model resulted in a 5-fold cross validation average AUC ROC of 0.83 +/- 0.2 for the 

classification of patients into their respective categories (Figure 7.8). In addition, we report the 

confusion matrices achieved when choosing a threshold corresponding to the top left point on the 

AUC ROC curve. Our average sensitivity and specificity, 81.3% and 82.7%, are similar to that 

reported by Zakhari et al. (Figure 7.4); however, our cohort includes over 8 times as many 

patients, and 3 times the number of TxE lesions.  

 
Figure 7.8. ROC curve for each fold using the probabilities derived from the sigmoid value 
of the average logit.  
 

We examined the misclassification of both treatment-effect and recurrent tumor patients 

and found that treatment effect patients that were misclassified had patterns that had enhanced 

diffusion within the necrotic region, i.e. that is usually typical of recurrence (Figure 7.9A). We 
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found this to be true in most misclassified treatment effect cases. When examining misclassified 

glioblastoma cases, we also found that this was sometimes due to a correctly predicted treatment-

effect-like appearance with ADC uniformly reduced with restricted central diffusion (Figure 

7.9B). These results could suggest that within these cross validation folds, the network was 

correclty learning the centrally restricted diffusion pattern.  

 

 

Figure 7.9. Examples of misclassified patients.  
(A) Example of a treatment-effect lesion that was misclassified as a recurrent glioblastoma. It 
exhibits a glioblastoma-like appearance with elevated diffusion within the central necrotic 
region. (B) Example of a recurrent glioblastoma misclassified as a treatment-effect lesion. We 
observe centrally restricted diffusion as shown by the ADC.  
 

Finally, we tested our models on the holdout testing set. No model was able to generalize 

to the test set with results comparable to that during five-fold cross validation. We surmise that 

despite having the largest dataset tackling this problem to date, we still did not have enough data 

to densely cover the variability in recurrent glioblastoma and treatment-induced effect lesions 

that exist in the population. We investigated the training and validation set loss curves over the 

training epochs (Figure 7.10) and discovered an expanding validation loss of the validation fold 
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during training. Compounding these problems, each “best” model from each of the five folds was 

trained for a differing number of epochs, and widely varying cutoff points from the AUC ROC 

implied that it would be difficult to know how long to train and what cutoff to use to predict 

treatment effect or tumor.  

 

Figure 7.10. Increasing validation loss while overfitting to the training fold. 
  

We surmise that the overfitting was partially due to the small sample size for deep 

learning compounded with the need to oversample the minority class. We tried many strategies 

to reduce overfitting and regularize the models, but it is likely that our dataset is simply not 

representative of the full spectrum of heterogeneity in these lesions.  

The vast majority of prior efforts in this field use radiomics or calculate the median 

diffusion-, perfusion-, or spectroscopic- derived parameter value from an anatomical ROI to 

obtain a threshold that can distinguish treatment effects from true tumor recurrence [83,173]; 

however, these methods suffer from either requiring manual intervention for selecting regions of 

interest, lack of pathological confirmation, low sample size, or assessing associations rather than 
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prediction ability. Our approach is unique in that it leverages: 1) multiple tissue samples for 

generating a single pathological outcome in the analysis, 2) transfer learning with the merging 

multi-contrast images into one input, 3) a substantially larger dataset than prior studies, and 4) a 

fully automated pipeline.  

 

7.2.4 Conclusion 
In this study, we lay the groundwork and report results from an initial attempt at 

leveraging a promising new centrally restricted diffusion pattern together with modern advances 

in deep learning to create a novel strategy for detecting treatment-associated injury in the context 

of suspected recurrent glioblastoma. Through combining clinical diffusion-weighted imaging 

with standard anatomical imaging and transfer learning, it was possible for the network to learn 

the restricted diffusion patterns that are characteristic of recurrent glioblastoma and treatment 

related injury. Although similarly high accuracy was found for all 5-folds in validation (0.79-

0.86), the network was not able to generalize to a separate dataset of similar proportions, despite 

hyperparameter optimization. This could be due to the small size of the TxE cohort in training, 

even though 27 pure treatment effect larger that what has been reported in prior studies or the 

potential presence of treatment effect within the heterogeneous recurrent tumor lesions 

influencing the characteristics of the restricted diffusion pattern. 
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8. Conclusions and future directions  

8.1 Conclusions 
 

This dissertation investigated three clinically-relevant questions whose answers lead 

toward improving the diagnosis of glioma:  

● Upon a new diagnosis of glioma, can we presurgically identify the genetic 

alterations using deep learning and MR imaging? (Chapter 5) 

● While monitoring a patient over time, can we reliably deliver longitudinal brain 

images of the same MR contrast to a clinician? (Chapter 6)  

● Once a suspected recurrence is observed on MR imaging, can we reliably identify 

whether it is a true recurrence or a treatment-induced lesion? (Chapter 7) 

Chapters 2, 3, and 4 dive into the fundamentals of brain tumor biology, of MR for brain tumor 

imaging, and machine learning in order to provide a foundation for understanding the methods 

used in Chapters 5, 6, and 7.  

 To our knowledge, the study presented in Chapter 5 is the first of its kind to answer the 

first question by a) classifying both IDH and 1p19q together using imaging and deep learning; b) 

investigating the impact of including apparent diffusion coefficient maps; and c) reporting 

differences between different deep learning strategies complemented by training/validation loss 

curves and a feature attribution technique. We evaluate many different modeling strategies and 

hyperparameters in order to create an algorithm capable of predicting IDH mutation status and 

1p19q codeletion status. We found that a multiclass one-step classification system performed 

better than trying to first predict IDH, then 1p19q. We also found evidence that ADC is useful 

for generalizing to unseen data. Finally, we gain insights into different modeling paradigms that 
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can potentially inform other researchers’ study designs in the future: full slices contain 

information about the location of the tumor, which is essential for reliable prediction of IDH 

mutation status. 

 In Chapter 6, we compare the performance of 1) a rule-based classifier; 2) a machine 

learning model using metadata alone; 3) a deep learning imaging model; and 4) a machine 

learning model that combines the outputs of the deep learning model with the metadata 

(“combined”). All three algorithms vastly improved the performance of the rule-based approach, 

with the deep learning and combination models performing the best in different scenarios. We 

found that algorithms containing imaging data (3 and 4) performed the best on poorly annotated, 

heterogenous PACS data, but the deep learning algorithm alone (3) was able to correctly identify 

MR series that were impacted by artifacts.  

 In Chapter 7, we report two strategies that aim to improve the ability of clinicians to 

differentiate treatment-induced lesions from true recurrent high-grade glioma. In the first study, 

we attempt to overcome the heterogeneity inherent in treated high-grade glioma lesions by 

mapping pathological findings directly to MR parameters. Our results suggest the need for 

separate MR markers of recurrent tumor for enhancing and non-enhancing lesions, highlight the 

potential utility of using 3D MRSI to obtain CNI maps that include the non-enhancing region in 

the recurrent high-grade setting, and support previous studies that suggest rCBV should be used 

to differentiate treatment effects from recurrent tumor within the contrast enhancing region. In 

the second, we combine pretrained deep learning algorithms together with a promising new 

centrally restricted diffusion pattern in order to predict whether a patient is experiencing a 

treatment-induced lesion or a true recurrence. Though our algorithm doesn’t generalize to our 

test set, we lay the groundwork for investigating this problem with deep learning by reporting 
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strategies that worked best during five-fold cross validation. We hope that our results can help 

guide future studies that have larger datasets.  

8.2 Future directions  
 
 In Chapter 5, we observe better prediction of 1p19q codeletion status when we include 

ADC, and it is possible it would be even better with the inclusion of perfusion maps or other 

advanced MR modalities. Another valuable future direction would be to include the whole 

TCGA-TCIA cohort instead of just the BRATS data so that we can include diffusion imaging 

acuqired during patients exams and expand our test set cohort. In addition, larger datasets of IDH 

mutated patients are becoming more readily available which could greatly improve the accuracy 

of similar studies. We hope that these results will incite future collaborations allowing for even 

better model generalization.  

 In Chapter 6, we compare multiple algorithms to classify MR volumes by their contrast, 

which serves a crucial step in the UCSF Multiple Sclerosis Bioscreen tool deployed in the 

neurology clinic. Though we discuss the feasibility of generalizing the algorithm to another 

disease, we only present results on research cohorts of glioma rather than poorly-annotated 

PACS glioma data. In order to safely deploy our algorithm in the context of the UCSF Neuro-

Oncology clinic, we would likely need to label a poorly-annotated PACS dataset manually as 

well to ensure that our algorithm would generalize well. We also intend to include segmentation 

in this pipeline to automatically display volumetric changes over time.  

 In Chapter 7, we discuss two completely separate attempts to solve the same problem of 

distinguishing true recurrent glioblastoma from lesions induced by treatment. In Chapter 7.1, our 

main findings include that MRSI parameters in the non-enhancing region differentiate treatment-
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induced effects from recurrent glioma best, which was the first of its kind. Therefore, a very 

valuable future direction would be a larger, multi-institutional investigation that includes MRSI 

of the non-enhancing region and multiparametric MRI. In Chapter 7.2, we lay the groundwork 

for a deep learning study that investigates the same question. However, despite having the most 

patients and samples of all published studies investigating this question, our sample sizes for 

both investigations were still not large enough to properly conduct a machine learning study 

combining the MR parameters. Therefore, multi-institutional data-sharing and collaboration 

efforts to solve this problem are the most promising future direction for this incredibly important 

problem.  
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