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ABSTRACT OF THE THESIS

A Time Series Analysis of Major U.S. Construction Industry Material Commodity Prices

by

Brayden Conroy Nicholl

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Frederic R. Paik Schoenberg, Chair

Employing over 10 million people, with an annual expenditure averaging over $1.2 trillion,

the U.S. construction industry is massive in both scale and reach. Every day, thousands

of construction builds are underway across the country, each with a unique set of costs

contributing to its overall budget. For many, the cost of commodities, or materials used

to build a project, is a huge variable that changes constantly and can negatively impact a

project both financially and temporally. Being able to better understand and predict the

way the prices these commodities change over time could lead to huge savings of time and

money for anyone at the planning stages of a construction project. Statistical time series

modeling is one effective way to increase this understanding and prediction abilities. This

thesis models and forecasts the price indices of three construction commodities integral to

the industry: lumber, iron/steel, and concrete. For each commodity, the month-to-month

percentage changes of nearly 100 years of index values are modeled using Autoregressive

Moving Average (ARMA) models, which are selected based on multiple model selection

criteria. The models are then used to forecast an 8-month period directly following the

end of the data series, which corresponds to the first 8 months of 2022. In doing so, it is
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found that the lumber model using ARMA methods makes forecasts indicative of what has

happened in reality in the first half of 2022, where as the iron/steel and concrete models

have much more difficulty in doing so.
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CHAPTER 1

Introduction

Contractors, project managers, and consultants across the construction industry all rely

heavily on the price of raw materials when making decisions regarding future project builds.

How the prices of materials escalate or de-escalate over time is a huge variable that needs

to be accounted for, regardless of a project’s time duration. Increased accuracy in the

forecasting of these material prices could lead to changes in decision-making that would see

temporal savings, as well as financial savings in the millions, if not billions, of dollars. For

a financier of a project, such savings would come in the form of reduced contingency, the

amount of money that a budget often includes in order to prevent cost overruns related

to unforeseen, unexpected or underestimated events [9]. Contingency considerations are

typically made at the concept and planning stages of the project, and this can lead to cost

overruns if the forecasts needed are either inaccurate or not performed at all. Also, because

most mid-project cost reports make the unrealistic assumption that future unstarted work

will be performed at budget, cost overruns are underestimated until late in the life of a

project when there’s little that can be done to control them [18]. As a potential solution

to this lack of forecasting ability, a time series analysis of the past prices of major material

commodities, could lead to findings that enable project managers and consultants to give

greater assurance to financiers that project cost estimates are both valid, and sustainable

long term.

Time series analysis is a type of statistical research that deals with data observed at

different points in time, and benefits from sampling the observations in a chronologically
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adjacent manner. Such a sampling method restricts the applicability of the many conven-

tional statistical methods traditionally dependent on the assumption that these adjacent

observations are independent and identically distributed [17]. For this research specifically,

a time series modeling method known as Autoregressive Moving Average (ARMA) models

are used to model U.S. government compiled price indices for the material commodities lum-

ber, iron/steel, and concrete. These three commodities were specifically chosen due to their

roles as the main materials used as the infrastructure of nearly every building nationally.

ARMA modeling was introduced by Box and Jenkins in their 1970 paper Time Series

Analysis, Forecasting and Control and has since become of the most popular ways for working

with time series [11]. Using a linear combination of both a set number of preceding series

value and a set number of preceding errors, ARMA models have the ability to forecast a

univariate time series, given the series is stationary, meaning it has constant variance over

time.

While predicting the price of material commodities has long been of interest to those

in the construction industry, any statistical time series analysis of the field is somewhat

unprecedented. For many firms, current forecasting involves either the surveying of industry

experts on general expected trends, or the implementation of a simple moving average.

Individually, such results contain information valuable to those in decision-making positions

for project builds. But because they are very simplistic in the forecasts they produce, they are

often relegated to the role of thought provocation or sense checking for many people that,

ideally, should be making much more educated, mathematically-backed decisions. Thus,

modeling methods like ARMA have the ability to provide this backing, and potentially

change the way construction project contingency and time escalation are handled.

While the three commodities in question are commonly used in tandem during the build-

ing of a structure, and therefore are not truly independent in how a change in pricing of one

affects another, an assumption of independence is made for this analysis, on the basis that

such dependencies are unique to specific areas, and any variation across regions would not

2



translate to the national level, which the series are based on.
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CHAPTER 2

Data

2.1 Background

The data used for analysis was sourced from the U.S. Bureau of Labor Statistics’ Producer

Price Indexes [4]. Although the site contains data series of hundreds of unique construction

commodities, the three chosen for analysis, lumber, iron/steel, and concrete, are considered

some of, if not the, most widespread and vital commodities in use across the industry. These

series describe the price of a given commodity over a month, based on the entire U.S. market

as a whole. Due to this, regional fluctuations in a market can influence an index as a

whole, but very rarely, and often on a relatively minor scale. Thus, this analysis should not

necessarily be assumed as an accurate representation of the price of a given commodity in a

specific location.

All of the commodities share the same format, which is that of monthly releases dating

back to January of 1926 [7]. As some of the oldest economic time series compiled by the U.S.

government, these indices are one of the only ways to analyze and understand the changes

in the state of the national construction industry that have occurred over the course of more

than 100 years. The series are numerical in nature and rounded to the tenths decimal place,

and have a base value of 100 set to 1982 [5].

Often released around the middle of the following month, the data indicates the aggregate

price of a commodity over the course of a month. The two to three week lag on reporting

from the U.S. BLS is due to the surveying and compilation required before publication of a
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national-level index can occur.

2.2 Data Reformatting

The aforementioned producer price indices were obtained in the format of a raw numerical

indices, but due to the nature of the time series analysis required, the desired data was not

the index values for the respective months, but actually the percentage change from the

previous month. To make this change, each commodity index was transformed using the

equation

changei =
indexi − indexi−1

indexi−1

∗ 100

where i was a given month’s chronological place in the series. Thus, each point the new series

was the percentage change from the previous month. For example, the new first entry in

the series, denoted February 1926, is the percentage change from January 1926 to February

1926.

This reformatting of the data set allowed for the ability to control for inflation, since the

original data was not adjusted for inflation, and therefore the scale of the changes in the

original indices were not normalized.
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CHAPTER 3

Exploratory Data Analysis

3.1 Visual Time Series Assessment

As can be seen in Figure 3.1, the various indices grow in value over time in a generally

exponential fashion. This exponential growth was one reason behind the switch to monthly

change percentages for the analysis data.

(a) Lumber (b) Iron/Steel (c) Concrete

Figure 3.1: Commodity Indices’ Values Over Time

Initially, the data used was going to be monthly index value change, as opposed to

percentage change. However, the amount of inflation seen over the course of approximately

95 years caused the scale of the indices to change vastly across the duration of the data set.

Visualized in Figure 3.2, the problem with this change in scale can be seen when comparing

the raw changes and percentage changes of the concrete index.

When looking solely at the raw monthly changes, it seems as if the price of concrete

has had its most volatile swings in recent years, with similarly large swings seen in the late

2000s and late 1930s. But when normalizing for the scale of the data, the most recent price

changes seem relatively tame, and the highest volatility by far occurs in the late 1930s, with
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(a) Monthly Raw Change (b) Monthly Percentage Change

Figure 3.2: Concrete Index’s Changes Over Time

the next largest swings coming in the late 1970s. This normalization allows for comparison

across eras, and negates any possible time-dependent bias in the data.

3.2 Seasonality

Because construction, as an industry, is inherently dependent on the weather, is was a

necessity to check for possible cyclicity or seasonality in the data. For seasonality, The

percentage changes for the commodities were plotted on polar coordinates, shown in Figure

3.3.

(a) Lumber (b) Iron/Steel (c) Concrete

Figure 3.3: Commodity Indices’ Values Over Time
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None of the three plots indicated any sort of seasonal trend in the data, since the monthly

percentage changes hover around the same mean values, regardless of month. It is interesting

to note, however, that the plots seem to indicate that concrete has a tighter spread for its

monthly changes, albeit with more common occurrences of abnormal, outlying values when

compared to either lumber or iron/steel.

3.3 AR Spectrum

To check for non-annual cyclicity that may not appear in a seasonal plot, an individual

spectral analysis was performed for each of the three commodities.

The process began with fitting autoregressive models of varying orders to the monthly

percentage change data, and calculating the spectral density of the optimal model, which

was chosen based on AIC (both autoregressive (a.k.a. AR) models and AIC are explained in

the following ARMA Modeling and Model Selection chapters, respectively). The obtained

spectral density was then plotted using a periodogram.

In the periodogram, the x-axis is frequency over a given time period, in this case 1 year

(e.g. a frequency value of 2 means a period occuring twice per year, having a length of 6

months). The y-axis is the spectral amplitude of the model, and the line explains how the

spectral density changes as the frequency of the periods change. A peak, or local max, in

the line indicates a possible cyclicity in the data at that frequency [14].

3.3.1 Lumber

Starting with lumber, an AR model of order 16 was chosen as optimal. Figure 3.4 displays

the periodogram of the AR(16) model for lumber.

The lumber periodogram shows there may be cycles with frequencies near 1 or 4. A

frequency of 1 means a yearly cycle with similar changes in the index occurring around the
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Figure 3.4: Lumber AR Spectrum Periodogram

same time every year. Although possible, this scenario is unlikely, given the lack of yearly

seasonality seen in Figure 3.3. A frequency of 4 means a cycle occurring every 3 months,

which would not necessarily show up in a plot like Figure 3.3. A solution to combat this

potential cyclicity is discussed in the Monthly Data Averaging section later in this chapter.

3.3.2 Iron/Steel

Similarly to the process for lumber, the iron/steel index had its monthly percentage changes

modeled and its optimal model’s periodogram plotted. For iron/steel, an AR(29) model was

chosen by AIC to be the best. The periodogram for Iron/Steel can be seen in Figure 3.5.

Unlike lumber, the curve of the iron/steel periodogram has no peaks that stand out

among the rest. Fortunately, this indicates that there is most likely no true cycle in the

index, and that no further corrective action is needed in this case.
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Figure 3.5: Iron/Steel AR Spectrum Periodogram

3.3.3 Concrete

The same was also done for the concrete data, and this time, an AR(16) model was selected.

Figure 3.6 is the periodogram for the monthly percentage changes for concrete.

The spectral density of the concrete data is extremely variable, as can be seen in the

plot. Although there are a high number of local maxima occurring at various frequency

levels, the most notable with respect to their adjacent local minima are at frequencies of

around 4 and 5. These frequencies correspond to periods of approximately 3 months and

2.5 months, respectively. Similarly to lumber, action will thus need to be taken to deal with

any cycles that may exist in the data.

3.4 Monthly Data Averaging

With Figures 3.4 and 3.6 exposing potential cycles in their respective indices, cyclicity must

be removed from the data before any modeling can take place. To achieve this, the mean

10



Figure 3.6: Concrete AR Spectrum Periodogram

percentage change was found for each of the 12 months of the year, across the entire length

of the series. Each observation then had its corresponding monthly mean subtracted to

normalize the data across months. In doing so, a cycle of any duration would then be

removed, and each data point now was the percentage change above or below the monthly

mean for that specific month of the year. After this subtraction was performed, the time

series were ready for modeling using ARMA methods.

Note that because no cyclicity problems were found within the iron/steel data, this

monthly averaging was only performed on the lumber and concrete series.
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CHAPTER 4

ARMA Modeling

In order to model and, in following chapters, forecast the time series values of the Producer

Price Index commodities, ARMA(p, q), short for Autoregressive Moving Average models

were used. An ARMA(p, q) is a combination of AR(p) and MA(q) models, where p and q

are the orders of their respective models [10].

An AR model, also known as an Autoregressive model, is a model that calculates the

regression of past time series and uses the regression to estimate a present or future value in

a univariate time series [16]. For a given time t in the series, the t− 1, t− 2, . . . , t− p values

are all used to find the estimate for t, in combination with their corresponding coefficients

βi. The equation of an AR(p) model can be written as

yt = β1yt−1 + β2yt−2 + · · ·+ βpyt−p

where yi is the value of the time series at time i, and βi is the coefficient corresponding to

that series value.

An MA, or Moving Average, model calculates the residual errors of past entries in the

time series, and uses these errors to estimate a present or future value in a univariate time

series [16]. The t − 1, t − 2, . . . , t − q points in the time series have their impact on the

estimate of the series at time t decided by their coefficients αi. The equation of an MA(q)

model can be written as

yt = α1ϵt−1 + α2ϵt−2 + · · ·+ αqϵt−q

12



where ϵi is the error of the value of the time series at time i, and αi is the coefficient

corresponding to that series value’s error.

ARMA models make use of both the previous lags from AR modeling and the errors from

MA modeling to forecast the next value of a univariate time series. An ARMA(p, q) model

is written as

yt = β1yt−1 + β2yt−2 + · · ·+ βpyt−p + α1ϵt−1 + α2ϵt−2 + · · ·+ αqϵt−q

where yi, βi, ϵi, αi all have the same the same usage as in the AR and MA models.

A time series, by its very nature, contains observations that cannot be independent of

each other, due to the chronological nature of their ordering. Therefore, to make up for the

lack of independence in the data, any time series must be stationary in order to be ARMA

modeled. Stationarity is the assumption that the mean and variance are constant throughout

the data [17].

The original dataset did not meet these assumptions, however. To assure that the mean

remained constant across the series, the data was transformed from index values to month-

to-month changes. Then, to deal with the variance, the raw monthly changes were changed

to percentage value changes as described in section 2.2. After these transformations were

performed, each of the three series were ready to be modeled.

4.1 Model Selection Methods

4.1.1 ACF and PACF

To determine the order of an ARMA model there are multiple methods that can be used.

One is the combination of the ACF, also known as the Auto Correlation Function, and the

PACF, the Partial Auto Correlation Function.

The ACF is a function that take all of the preceding observations in a series, and calculates

the Pearson Correlation between the time to be estimated t, and each of the intervals, in

13



this case time lags, from 0 to t [16]. ACF, however, does not factor in the effects that the

past observations have on the observation at time t, and therefore there are no weighted

coefficients in the function. ACF can be used to determine the optimal number of terms in

an MA model, or the number of MA terms in an ARMA model.

The PACF finds the partial correlation between the time t and a given time t−p. Unlike

ACF, PACF only looks at the correlation between two times, and not the intervals between

them. This allows for the ability to observe the relationship of a set interval, without worrying

about the effect that intermediate intervals could have on the relationship. PACF is used to

determine the optimal number of terms in an AR model, or the number of AR terms in an

ARMA model.

4.1.2 AIC

AIC, which stands for Akaike’s Information Criterion, is an estimator of prediction error

named for its creator, Hirotugu Akaike [2]. It is a model selection criterion that, when

calculated for multiple models, can be used to compare the models head-to-head to determine

which is best. The formula for AIC is

AIC = 2k − 2ln(L̂)

where k is the number of estimated parameters in the model, and L̂ is the log-likelihood,

a measure of model fit [8]. Model fit improves as log-likelihood increases, so therefore the

model with the lowest AIC value is deemed as being the best.

4.1.3 RMSE

Another model selection method is RMSE, or root mean square error. Put simply, RMSE is

the amount of error that the average prediction made by the model has when compared to

its actual point in the data. It can be found by squaring the absolute value of each residual

error, squaring each absolute value, summing over the squares, dividing by the number of

14



observations to find the mean square, and taking its square root [6]. Arithmetically, this can

be expressed as

RMSE =

√∑N
i=1(xi − x̂i)2

N

where xi is the actual observation, x̂i is the observation estimate, and N is the number

of observations. Because RMSE is an evaluation of model error, it is ideally minimal as

possible, and the model with the lowest RMSE would be considered best.

4.2 Lumber

For the lumber series, the data used was the monthly averaged percentage changes time

series, for the reasons described in section 3.4.

Firstly, the ACF and PACF values for the data were plotted, as can be seen in Figure 4.1.

The ACF plot has large dropoffs in ACF values after both the first and second lags (Note

that the ”Lag” on the x-axis is listed in years, so each column corresponds to a number of

months). This means that the recommended number of MA terms is either 1 or 2. The PACF

plot has the largest drop off after the first lag, so 1 AR term is recommended. Therefore,

the plots in Figure 4.1 indicate either ARMA(1, 1) or ARMA(1, 2) would be best.

(a) ACF (b) PACF

Figure 4.1: Lumber ACF and PACF Plots

To evaluate models based on AIC and RMSE, ARMA models of every possible combi-
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nation of AR and MA terms from 0 to 4 was fit, and both their AICs and RMSEs were

recorded. These results are shown in Table 4.1, sorted by AIC.

AR term MA term AIC RMSE

23 4.00 2.00 5186.64 2.28

25 4.00 4.00 5187.72 2.28

24 4.00 3.00 5187.86 2.28

20 3.00 4.00 5188.14 2.28

3 0.00 2.00 5199.25 2.30

7 1.00 1.00 5199.42 2.30

8 1.00 2.00 5201.24 2.30

4 0.00 3.00 5201.24 2.30

12 2.00 1.00 5201.27 2.30

16 3.00 0.00 5202.08 2.30

21 4.00 0.00 5202.32 2.30

5 0.00 4.00 5203.23 2.30

17 3.00 1.00 5203.24 2.30

9 1.00 3.00 5203.24 2.30

13 2.00 2.00 5203.28 2.30

22 4.00 1.00 5203.29 2.30

11 2.00 0.00 5205.12 2.31

18 3.00 2.00 5205.18 2.30

10 1.00 4.00 5205.24 2.30

14 2.00 3.00 5205.24 2.30

2 0.00 1.00 5206.31 2.31

19 3.00 3.00 5207.24 2.30

15 2.00 4.00 5207.24 2.30

6 1.00 0.00 5242.90 2.35

1 0.00 0.00 5515.68 2.65

Table 4.1: Lumber ARMA Results

The model chosen by AIC was an ARMA(4, 2) model, and the model chosen by RMSE

was an ARMA(4, 4), albeit marginally over ARMA(4, 2). Interestingly, the ARMA(1, 1)
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and ARMA(1, 2) models chosen by ACF and PACF were only the sixth and seventh best

models, respectively, of the 25 created, based on AIC. Given these results, the ARMA(4, 2)

model was selected as the best, and used to make the lumber forecasts seen in the Model

Forecasting chapter.

Interestingly, the worst model by far was that of ARMA(0, 0). This model with neither

AR nor MA terms is interpreted as modeling strictly white noise in the data with no trend

whatsoever. The fact that this model in particular performed so poorly is a clear indicator

that there is indeed a time-dependent trend in the series.

The ARMA(4, 2) model created from the lumber data was

yt = 1.55yt−1 − 1.56yt−2 + 0.72yt−3 − 0.25yt−4 − 1.00ϵt−1 + 0.80ϵt−2 + 0.01

with the 0.01 being the intercept value. The most interesting term was the first AR term,

which had a coefficient value of 1.55. The fact that this coefficient was both positive and

significantly greater than 0 could be interpreted as meaning that there is true continuity in

the series. This means that based on the model, the next percentage change observation

in the lumber series is more likely to be in the same direction (positive or negative) as the

previous observation than it is to be in the opposite direction. This aligns with what was

seen in Figure 3.4, because a steadily falling AR spectrum also indicates continuity in a

series. Such a finding could, in theory, be used to more accurately predict the change in the

price of lumber in upcoming months.

When examining the model residuals, the errors had a generally normal distribution,

centered around 0, which can be seen in the lower right of Figure 4.2. The top plot of the

same figure showed no obvious trend over time, with the only abnormality being the scale

of the residuals near the end of the series, which was not surprising given the huge swings

caused by the COVID-19 pandemic, seen in Figure 3.1a. The lower right plot, the ACF of

the residuals, was small in scale for all lags up to 36 months. All of these findings were very

encouraging, because they did not raise any concerns about the fit of the model to the data.
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Figure 4.2: Lumber ARMA Model Residuals

Figure 4.3: Lumber Model Residual AR Spectrum

Figure 4.3 is the plotted periodogram of the model residuals’ AR spectrum. At first

glance, it may seem somewhat uninformative. However, the fact that the optimal AR or-
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der chosen for the residuals is 0 can be interpreted as meaning that they have a distribution

resembling pure white noise. This was an indicator that the model fits the data well, as an op-

timal model should have residuals with such a distribution. Thus, the choice of ARMA(4, 2)

model by AIC is backed by the residual data seen above.

The model residuals also have an RMSE of 2.28. This can be interpreted as meaning

that the model is an average of 2.28% off when predicting the month-to-month percentage

change of the lumber index. Given that lumber is historically the most volatile of the three

commodities analyzed, being off only 2.28% on average when making predictions is quite

impressive.

4.3 Iron/Steel

For the iron/steel series, the data used was the percentage change series. This series was not

averaged by the monthly means however, since it was deemed unnecessary in section 3.4.

Similarly to the lumber data, the ACF and PACF plots were created, and can be seen in

Figure 4.4. For the ACF plot, there was a steady dropoff from the first lag to around the fifth

or sixth. Because of this, the amount of MA terms needed for modeling was unclear. PACF

showed a massive decrease after the first lag, so 1 AR term was the clear favorite in this case.

While leaving room for interpretation for the MA terms, the plots of Figure 4.4 indicate the

optimal model as being somewhere in the range of ARMA(1, 1) and ARMA(1, 6).

Model selection via AIC and RMSE was performed using the same method as lumber,

with the fitting of all possible term number combinations from 0 to 4. The recorded AICs

and RMSEs are listed in Table 4.2, sorted by AIC.
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(a) ACF (b) PACF

Figure 4.4: Iron/Steel ACF and PACF Plots

AR term MA term AIC RMSE

20 3.00 4.00 4034.08 1.38

19 3.00 3.00 4034.87 1.38

23 4.00 2.00 4035.15 1.38

24 4.00 3.00 4035.77 1.38

18 3.00 2.00 4035.95 1.39

22 4.00 1.00 4036.81 1.39

21 4.00 0.00 4037.51 1.39

9 1.00 3.00 4037.72 1.39

25 4.00 4.00 4038.02 1.38

16 3.00 0.00 4038.55 1.39

10 1.00 4.00 4038.99 1.39

17 3.00 1.00 4039.01 1.39

14 2.00 3.00 4039.27 1.39

15 2.00 4.00 4040.77 1.39

5 0.00 4.00 4041.19 1.39

13 2.00 2.00 4041.50 1.39

8 1.00 2.00 4043.48 1.39

7 1.00 1.00 4048.20 1.40

6 1.00 0.00 4048.64 1.40

11 2.00 0.00 4049.02 1.40

12 2.00 1.00 4052.64 1.40

4 0.00 3.00 4064.00 1.41

3 0.00 2.00 4103.58 1.43

2 0.00 1.00 4150.09 1.46

1 0.00 0.00 4505.30 1.71

Table 4.2: Iron/Steel ARMA Results
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Both AIC and RMSE selected ARMA(3, 4) as best for modeling the iron/steel data.

This turns out to be quite contradictory to the findings of the ACF and PACF plots, since

while ARMA(1, 3) performs reasonably well (ranked eighth out of 25 by AIC), the rest of the

plots’ recommended models did not fare well, consistently ranking in the poorer half of the

models tested when judged by the other selection methods. Due to the fact that two of the

three methods agreed so closely, and that the ACF did not have a definitive answer on visual

inspection, the ARMA(3, 4) model was chosen to be used for the forecasting performed later.

Again, the the ARMA(0, 0) model was far and away the worst model in terms of both

AIC and RMSE. This lends validity to the claim that there is a trend in the data, and that

the movement of the iron/steel index is not purely white noise.

The ARMA(3, 4) model created from the iron/steel data was

yt = −0.02yt−1 − 0.48yt−2 + 0.71yt−3 + 0.58ϵt−1 + 0.80ϵt−2 − 0.20ϵt−3 − 0.08ϵt−4 + 1.92

with 1.92 being the intercept value. In this case, the first AR term does not tell much of

a story. It was slightly negative, but it is so close to zero that conclusions drawn from it

would not be of much value. Based on the coefficient value of -0.02, the index is not more

likely to continue in the same direction it has prior, or move in the opposite direction. What

makes this finding interesting is that such an explanation is reminiscent of a pure white noise

distribution, but the ARMA(0, 0) model that models this scenario performs terribly when

applied to the iron/steel series. Also, the iron/steel AR spectrum depicted in Figure 3.5

shows an overall decline as the frequency increases, suggesting that there is some continuity

to be found in the data. A possible explanation could be that while the iron/steel time series

does not have the point-to-point continuity that would come with a large first AR term, the

overall positive trend seen in Figure 3.1b makes a white noise distribution, such as that of

ARMA(0, 0), a very poor fit.

For iron/steel, the residual plots in Figure 4.5 are positive in what they say about the

chosen model. The top residual plot does not reveal any unknown trends over time in the
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Figure 4.5: Iron/Steel ARMA Model Residuals

Figure 4.6: Iron/Steel Model Residual AR Spectrum

data, although the residuals appear to often be larger than normal in the 2010s, which could

indicate that the model did not perform as well during this period as it had done previously.
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The residuals appear to have a bell-shaped distribution as desired, albeit with a smaller

standard deviation than a true normal distribution would. The ACF plot has generally

small magnitudes, with no obvious trends over adjacent lags, and thus raises no concerns in

particular.

The AR spectrum periodogram for the residuals, shown in Figure 4.6, did not choose 0 as

the optimal order for iron/steel, instead opting for an AR(27) spectrum. While not as ideal

a choice as with lumber, the figure contains no peaks standing out from the rest, meaning

that there are no apparent cycles in the residuals, a positive finding. Also, across the up

and down fluctuations, the spectrum values remain generally centered in the 0.15-0.20 range,

which indicates a lack of continuity from one residual to the next, like what occurs in an

ideal white noise distribution.

Over the entire series, the ARMA(3, 4) model chosen had a residual RMSE of only 1.38.

Being only 1.38% off on average when making predictions is very promising, especially given

the amount of volatility the iron/steel industry has seen in recent years. Such a low RMSE

is an indicator that the model is indeed a good fit for the time series data.

4.4 Concrete

The monthly averaged percentage changes were used to model the concrete series, due to

reasons similar to that of the lumber series.

The ACF and PACF plots were also made for concrete, seen in Figure 4.7. For ACF,

there are large dropoffs after both the first and second lags, indicating a potential choice of

either 1 or 2 MA terms. The PACF plot, however, is not nearly as helpful. While it does

reduce in some areas, the Partial ACF value also has large increases in multiple areas, and

has no overarching trend as the number of lags increases. Thus, there is no good estimate

for the number of AR terms based on the PACF plot.

AIC and RMSE were once again tested for each possible term combination numbering

23



(a) ACF (b) PACF

Figure 4.7: Concrete ACF and PACF Plots

from 0 to 4, with the results listed in Table 4.3, sorted by AIC.
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AR term MA term AIC RMSE

14 2.00 3.00 3803.80 1.25

22 4.00 1.00 3807.70 1.26

19 3.00 3.00 3808.19 1.25

15 2.00 4.00 3809.05 1.26

20 3.00 4.00 3810.19 1.25

24 4.00 3.00 3810.19 1.25

23 4.00 2.00 3810.56 1.26

21 4.00 0.00 3811.32 1.26

10 1.00 4.00 3811.93 1.26

25 4.00 4.00 3812.19 1.25

18 3.00 2.00 3815.11 1.26

17 3.00 1.00 3815.92 1.26

5 0.00 4.00 3821.31 1.26

2 0.00 1.00 3823.26 1.27

9 1.00 3.00 3823.59 1.27

11 2.00 0.00 3823.62 1.27

12 2.00 1.00 3823.67 1.27

7 1.00 1.00 3823.83 1.27

3 0.00 2.00 3824.02 1.27

4 0.00 3.00 3824.50 1.27

13 2.00 2.00 3824.72 1.27

16 3.00 0.00 3825.08 1.27

8 1.00 2.00 3825.82 1.27

6 1.00 0.00 3826.73 1.27

1 0.00 0.00 3941.39 1.34

Table 4.3: Concrete ARMA Results

ARMA(2, 3) was chosen by both methods for the best modeling of the concrete series.

The runner-up was chosen to be ARMA(4, 1), which could potentially validate the choice

made earlier via ACF, but MA term counts of either 1 or 2 are not common near the top

of the table, so this second place selection could also be an outlier in that regard. Due to
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the agreement of two of the three methods, as well as the inability to draw conclusions from

the PACF plot, it was decided that ARMA(2, 3) would be chosen as the best model for the

concrete data, would be used for eventual forecasting of the time series.

Once again, ARMA(0, 0) did a very poor job of modeling the series, ranking dead last,

with the highest AIC and highest RMSE of any model attempted. At the very least, this

showed that the movement of the concrete index could not be chalked up to pure white noise.

The ARMA(2, 3) model created from the iron/steel data was

yt = 0.12yt−1 − 0.80yt−2 + 0.21ϵt−1 + 0.84ϵt−2 + 0.33ϵt−3 − 0.0005

with a near-negligible intercept value of −0.0005. While not extremely large, the positive

first AR term coefficient of 0.12 means that there is some continuity throughout the monthly

changes of the concrete series. This tells a similar story to that of Figure 3.6, since the AR

spectrum values did fall as the frequency increased, but only slightly, and the massive swings

in the spectrum values made for an unconvincing trend. Nonetheless, a real, continuous trend

in the time series could be used to more accurately interpret the past changes in the index

value for concrete, and allow for a more accurate understanding of how concrete prices will

move in the near future.

Due to its more moderate price index swings relative to the other two commodities,

concrete saw model residuals that were smaller on average. The exception to this being

during the late 1930s, which has outlying large residuals, mostly corresponding to similarly

large index percentage changes in the same time period. This can be seen in the top of

Figure 4.8, and can most likely be attributed to the global unrest and economic turmoil that

lead to World War II in the following years. The small spread of the residuals is represented

in the figure’s bottom right plot, which depicts a bell-shaped distribution. There is very low

variance in the residual values overall, but this is not especially concerning, given that the

distribution is centered around 0, and takes the aforementioned bell shape that indicates

normality. ACF could potentially be a concern, with the magnitude of multiple values
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Figure 4.8: Concrete ARMA Model Residuals

Figure 4.9: Concrete Model Residual AR Spectrum

standing out among the rest. However, there is no apparent pattern across lags, and the

lack of any overall trend makes any concerns regarding a specific lag or two somewhat of a
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reach when viewing the residual data as a whole.

Similar to iron/steel, a large AR spectrum order of 29 was picked for the concrete data

before it was used for plotting. The periodogram, seen in Figure 4.9, does not have any highs

or lows on a different scale than the rest, and does not have an overall trend of increase or

decrease. Thus lacking any indication of either cyclicity or point-to-point continuity, it can

be assumed that the ARMA(2, 3) chosen to model the concrete data is indeed a proper fit.

Also supporting this claim is the model’s residual RMSE of 1.25, the lowest among the

three optimal commodity models produced. This low value is somewhat unsurprising, given

the relatively small residual values seen in the last 70 or so years of the series, but nonetheless

is a great indicator of proper model fit, since an average percentage change prediction error

of 1.25% is a result that many experts in the construction industry would likely wish they

could attain on a monthly basis.
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CHAPTER 5

Model Forecasting

In order to make proper use of the attained best models from the prior ARMA modeling,

future forecasting of each producer price index time series was performed. Each model was

used to forecast 8 months of index results, beginning with January 2022, as it directly fol-

lows the final point of the dataset in December 2021. The 8 month cutoff was determined

based on common forecasting practices in the construction industry. Many well respected

leading indicators of the state of the construction industry, including the American Institute

of Architects’ Architecture Billings Index or the Associated Builders and Contractors’ Con-

struction Backlog Indicator, tend to forecast around 8 months past present day on average

[3][1]. Predictions any further out are considered to be too unreliable to place trust in, due

to the natural volatility and general rate of change inherent in construction.

5.1 Lumber

After obtaining the optimal ARMA(4, 2) model seen in Section 4.2, the necessary monthly

averaged percentage change values were plugged into the model equation to obtain the

forecast values. Along with the forecast numbers for the index itself, 80% and 95% confidence

intervals were calculated for each month of the forecast. To make plotting possible, the

monthly averages were removed from the percentage changes, which were then converted

back into raw index numbers whose scale corresponded to that of the original time series

data. For visualization and scaling reasons, only the most recent 12 years of the index are

plotted alongside the forecasts in Figure 5.1.
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Figure 5.1: 8-Month Lumber Forecasts

Of the three commodity indices analyzed, lumber has by far the most variability in

recent times, both in terms of direction and scale. Thus, it should not be surprising that

the direction of the model forecast change frequently. After predicting an increase in the

lumber index in early 2022, the model forecasts decrease in mid-2022 before beginning to

rise again near the end of the year. Similarly, the large ranges of the confidence intervals

seem unrealistic when compared to the data before 2020, but when viewing the scale of the

data during the COVID-19 pandemic, tighter intervals would seem not only optimistic, but

overly confident.

Only time will tell the full accuracy of the model’s predictions, as much of the 8-

month forecast period has yet to occur in reality. However, early signs are positive for

the ARMA(4, 2) model. Lumber prices soared in the early months of the year, largely due

to Russia’s invasion of Ukraine and the change in transportation costs associated with it

globally [13]. But since those early-year highs, prices have fallen alongside the recent rise in

mortgage rates, and experts predict this trend to continue through the middle of the year,
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much like the trend seen in the ARMA forecasts.

5.2 Iron/Steel

Using the ARMA(3, 4) model created in Section 4.3, forecast values were determined in a

similar process to that of lumber. 80% and 95% confidence intervals were calculated for the

iron/steel series forecasts as well. Unlike lumber, there was no monthly averaging performed

for the iron/steel data, and therefore no correction was needed for the forecast numbers.

The percentage changes were, nonetheless, converted back into a raw numerical index form

to enable plotting of the forecasts alongside the original index data. For visualization and

scaling reasons, only the most recent 12 years of the index are plotted alongside the forecasts

in Figure 5.2.

Figure 5.2: 8-Month Iron/Steel Forecasts

Overall, iron/steel has less volatility than seen previously with lumber. But the recent

changes in the index have been on a similarly unprecedented scale, with values more than

doubling over the course of 2021. Such uncertainty can be seen in the wide spread of the
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confidence intervals. While a 95% confidence interval having a range of over 100 index points

at the 8th forecast month may seem huge, given that the final 8 months of the time series

has a rise of around 100 points, the confidence interval is actually quite reasonable. While

the scale of the iron/steel index value changes is somewhat variable, the direction of the

index’s changes is quite consistent. The forecast predictions reflect this consistency, as the

8-month period sees a steady, moderate increase in the prices of iron/steel.

Unlike the model projections, the price of steel in 2022 has been anything but steady.

After moderate declines in January and February, massive increases have occurred in the

months of March and April [19]. As Russia and Ukraine are two of the world’s top ten

iron-producing countries by volume, the escalation of their conflict and the worldwide trade

sanctions that have come along with it are expected to cause a continuation of the increases

seen only recently. While the iron/steel model forecasts have thus performed poorly up

to present day (and are expected to for the rest of the 8 months in question), a situation

with such an enormous global impact as that of the Russian invasion of Ukraine could not

have been accurately predicted by even the most knowledgeable construction experts at the

end of 2021, let alone by an ARMA model having to make 8 months of index predictions.

Therefore, any inaccuracy in the model’s forecasts should realistically be taken with a grain

of salt, and a bit of perspective.

5.3 Concrete

Forecast values were also created for the concrete series, using the ARMA(2, 3) model created

in Section 4.4, along with the corresponding 80% and 95% confidence intervals. There was

monthly averaging done previously for concrete, so the first step in reformatting the forecasts

was removing the respective monthly averages from each percentage change. Then, they were

converted to the raw index form and then plotted with the original index data in the same

figure. For visualization and scaling reasons, only the most recent 12 years of the index are
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plotted alongside the forecasts in Figure 5.3.

Figure 5.3: 8-Month Concrete Forecasts

Unlike either of the other two commodities, concrete has relatively stable changes in

index values over the past decade, in terms of both scale and direction. The index increased

slightly more than average during the COVID-19 pandemic, but not at the unprecedented

levels of lumber or iron/steel. Because of this, the model forecasts similarly tame increases

over the 8 months following the time series. The confidence intervals are wide for such a

steady index, but the different rates of change seen near the end of the series in 2021 could

be leading to this kind of spread.

Similar to iron/steel, the concrete model has thus far struggled to predict the way that

the U.S. construction industry would change due to the war in Ukraine. Although the impact

has been indirect, concrete prices have increased faster than anticipated by the model in the

first few months of 2022. Quickly rising fuel prices have caused the transportation costs of

ready-mix concrete, a commodity heavily dependent on local transportation within regions,

to increase dramatically [15]. It should be mentioned, however, that although concrete prices
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have outpaced the model forecasts in reality, the error is not overly large, and the overall

trend of increase throughout 2022 has so far been correct.
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CHAPTER 6

Conclusion

In Chapter 1, The general structure of construction commodity time-series statistics was

described, along with the motivations behind performing such an analysis. In Chapter 2, the

data sourcing was explained and the data was then reformatted into stationary series in order

to comply with the assumptions needed for later modeling. Chapter 3 saw the time series data

assessed both visually and numerically, with seasonality plots showing that there was nothing

to worry about in that regard. The AR spectrum for each of the three commodities was

displayed on periodograms, which indicated potential cyclicity in the lumber and concrete

series. Subtraction of the 12 monthly averages was performed on the two series in question,

which controlled for any cycles present, and thus had the data meet the assumption needed to

model a time series. Next in Chapter 4 the ARMAmodeling method was explained, including

how it is actually a combination of two separate model types, AR and MA, used to make

time series forecasts. Various model selection methods were then explained, before all being

applied to 25 separate ARMA models for each of the three commodities. Individually, the

best ARMA models was selected for lumber, iron/steel, and concrete, based on a consensus

optimal choice using the aforementioned model selection methods. In Chapter 5, the best

model for each commodity was taken and used to make 8-month forecasts, beginning with

the month directly following the end of the data series.
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6.1 Final Conclusions

The lumber model has the highest point-to-point directional change continuity of the three

commodities, based of the model coefficients. Its significantly positive first AR term indicates

that the next observation in the series is more likely to move in the same direction that the

previous observation did. It is possibly due to this that the model has so far been accurately

predict the trend of lumber prices in 2022, including the early year rise that has been followed

by a dip in the Spring.

The iron/steel model had much more trouble identifying small trends in the data, with

next to no directional continuity being found between successive points. However, the steady,

moderate rise seen over the course of long intervals of the index was modeled quite well, solid-

ified by the fact that the ARMA(0, 0) white noise model performed terribly when modeling

the time series. This trend showed up in the forecasts for iron/steel, whose slow, consistent

increase has not aligned particularly well with the surging steel prices in reality caused by

the Russian invasion of Ukraine, but does align with the general shape of the series.

Concrete was perhaps the easiest commodity to model, and the hardest to forecast, due

to the prices of concrete in 2022 changing rapidly, in a market with a precedent of low

volatility over the past few decades. The model forecasted the first 8 months of 2022 in a

matter similar to that of the index before the COVID-19 pandemic: a consistent, mild rise

with minimal variability in the magnitude of the monthly changes. While this may have

turned out to be an accurate prediction in a peaceful economy, the spike in transportation

costs due to the conflict in Ukraine have seen concrete prices rise much faster than their

historical precedent for most of the Winter and Spring. While in practice, the concrete

ARMA model has not done a very good job in forecasting the commodity index, it must be

said that a variable the size of a multinational conflict affecting world trade could never had

been accounted for without some level of precedent in the data.
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6.2 Further Research

In performing the analysis of lumber, iron/steel, and concrete, three of the most vital con-

struction commodities on the industry were modeled and forecasted. But there is much more

to a project than specific materials, with aspects like the amount of contractors bidding for

the right to a job, the expected inflation over the course of a build and the price escalation

that comes along with it, and the local markets for manual and skilled labor where the

construction is occurring. Any of these could in of themselves be a subject for a full time

series analysis, either individually, or in tandem with commodity prices.

The various Producer Price Indices published by the U.S. Bureau of Labor Statistics, of

which three are used in this analysis, are updated on a monthly basis. But many potential

construction clients and advisors look for guidance on a more aggregate level such as quar-

terly or even yearly, especially on long-term megaproject builds that can take decades. To

accomodate this, a separate analysis could be undertaken with data on a similarly aggregated

scale, to identify possible trends that occur at a more macro level in terms of time.

While ARMA was the method of choice for modeling the indices in this analysis, there

are a myriad of was to model a time series, including, but not limited to, exponential

smoothing, generalized autoregressive conditional heteroskedasticity (GARCH), and neural

network autoregression (NNETAR) [12]. In the future, some of these other methods could

be applied to the same commodity index time series to compare forecasting accuracies and

potentially find an optimal modeling method, or methods, for a specific set of data.
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