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ABSTRACT 

Estimation of generalized extreme value (GEV) models of discrete 

choice is hampered by computational complexity and convergence problems. 

However, the much simpler estimation routine for multinomial logit can be 

applied in a two-step procedure so as to test the null hypothesis of 

multinomial logit against any particular GEV model as an alternative 

hypothesis. The procedure also produces an approximate estimate of the 

GEV model. Monte Carlo data, generated alternatively by logit and by 

three different GEV models~ provide evidence that both the test 

statistics and the approximate estimator have small-sample properties 

superior in important respects to maximum-likelihood estimation of the 

GEV model. 

This work was supported by the National Science Fotmdation and the Institute 
of Transportation Studies, University of California, Irvine. I am grateful to 
Feng Zhang for research assistance. I also thank the following people for 
comments on earlier drafts: David Brownstone, Lester Johnson, Kevin Lang, 
Daniel McFadden, Jon Sonstelie, Clifford Winston, two anonymous referees, and 
seminar participants at California Institute of Technology, University of 
California at Santa Barbara~ and University of Southern California. 



APPROXIMATE GENERALIZED EXTREME VALUE MODELS OF DISCRETE CHOICE 

I. INTRODUCTION 

Recently McFadden (1978, 1981) has specified a broad class of 

discrete-choice models known as Generalized Extreme Value (GEV), which 

relax some restrictive properties of multinomial logit. Like logit, GEV 

models can be derived from random-utility maximization. However, their 

use has been limited by computational complexity. 

This has contributed to a strong interest in specification tests for 

the logit model. But all such tests have disadvantages. Some require 

estimating a more general model, either GEV (Hausman and McFadden, 1984) 

or probit (Horowitz, 1981), and hence are similarly thwarted by 

computational difficulties. Others involve deleting alternatives from 

the choice set (McFadden, Train and Tye, 1977; Hausman and McFadden, 

1984; small and Hsiao, 1985): but their power varies widely depending on 

which alternatives are deleted (Horowitz, 1981, pp. 352-353), a decision 

for which little guidance is available. A recently proposed Lagrange 

Multipler test (McFadden, 1987) has thus far been developed only for one 

particular alternative model--nested logit--and has unknown performance 

in practice. 

This paper considers yet another type of specification test, proposed 

by McFadden, Train, and Tye (1977) and sometimes called "universal 

logit." It is based on the fact that a logit estimation routine will 

accept a "variable" whose value for one alternative depends on traits of 

other alternatives. Since no such variable can arise in the usual 
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random-utility-based logit model, I call it a "pseudovariable"; it should 

attain an insignificant coefficient if the logit model is correct. 

As yet, no one has provided much guidance for constructing 

pseudovariables. Furthermore, the test gives little information about 

the source of error if logit is rejected (Horowitz, 1981, p. 353); 

indeed, in the absense of a well-defined alternative model, one cannot 

even distinguish between rejecting the logit model itself and rejecting 

of the specification of its variables. 

This paper solves these problems by presenting a computationally 

simple pseudovariable test of the logit model against any prespecified 

alternative model of the GEV class. The test is based on an 

approximation to the alternative model, whose exact choice probabilities 

need not even be derived explicitly. The test generalizes a special case 

proposed by small (1987), and can easily handle GEV models of 

considerable complexity. It requires only standard logit software, and 

provides as a byproduct a crude estimate of the alternative model's 

parameters. Its asymptotic distribution permits inference using 

statistics computed by standard logit estimation routines. 

Monte Carlo investigation of the test reveals several desirable 

properties. First, its finite-sample distribution is much closer to its 

asymptotic distribution than is true for tests based on the 

maximum-likelihood estimator (MLE) of the alternative model. Second, its 

power against the prespecified alternative is at least as high as other 

tests in situations where their nominal sizes are accurate. Third, the 

test is quite specific, showing much higher power against the model for 

which it was designed than against other models. Fourth, the approximate 
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estimate of the alternative model that it provides, although 

inconsistent, is often better behaved in finite samples than the MLE. 

Hence the test is recommended as an easy way to check for a suspected 

violation of logit and to explore the properties of the corresponding 

alternative. 

II. THEORY 

A GEV model for choice among J discrete alternatives is generated 

by specifying a function G{y1 , •.. ,yJ) which {a) is non-negative on 

the hyper-quadrant yj > O; {b) is homogeneous of degree one in y 

:{y
1

, ... ,yJ): {c) approaches infinity as any yj does: and {d) 

has n-th partial derivatives which are non-negative for odd n and 

non-positive for even n. The probability of choosing alternative k is 

defined to be: 

J 
l exp{V.+logGj) 

j=l J 

where G and its first partial derivatives Gj are evaluated at 

arguments yl = exp(Vl). The quantity vj is a function of 

unknown parameter vector Band of data vector zj describing 

characteristics of both the sample member and the alternative: 1 for 

simplicity, I assume a linear relation 

I • 1. I could equally well have assumed Vj = Bjz, letting the 
This 

(1) 

parameters rather than the variables vary across alternatives. 
latter parameterization is more familiar to labor economists. 
(1983, p. 42) shows, the two are equivalent. 

As Maddala 
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(2) 

The second version of (1) follows from Euler's theorem, as noted by 

Ben-Akiva and Lerman (1985, p. 127), since G is homogeneous of degree 

one. 

McFadden (1978) shows that these probabilities can be generated by 

assuming a random-utility model in which the (indirect) utility achieved 

with choice of alternative j is 

where [cj} are random components whose joint distribution is 

generalized extreme value. In the special case G(y) = lYj, (1) and 
j 

(2) reduce to logit: 

J 
l exp(V.) 

j=l J 

A pseudovariable test is carried out by replacing (4) by 

exp(Vk+e'xk) 

Pk= I exp(v.+e•x.) 
j J J 

which contains pseudovariables x with unknown coefficients e. For 

example, if zj is the cost of alternative j, the alternatives might 

be divided into two groups B1 and B2 , and xj defined as the 

(3) 

(4) 

(5) 

cost averaged over all the alternatives in whichever group includes j. 

The particular pseudovariable test proposed here is based on the 

resemblance between equations (1) and (5). We need only parameterize G 
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l I I 

by e = (e , ... ,e) , chosen in such a way that G(y;e) ➔ lYj• When 
8➔0 j 

e is small, representing a small departure from logit, logG1 in 

equation (1) can be approximated by e'G81 , where G81 is an I-vector 

whose i-th component is 
V. 

y = e J and 
j 

e = o. 

This yields equation (5) with pseudovariables2 defined by 

1=1, •.. ,J. (6) 

We may regard equations (5) and (6) as defining an approximate GEV 

model. Although (5) emphasizes its similarity to the logit model, it 

cannot be estimated in a single logit step because B appears both 

directly as the coefficients of z and indirectly in the definitions of 

x. However, when e is small, we can estimate B and e in two 

steps. First, estimate B using maximum-likelihood on (4). Denote the 

~ ~ result B. Second, using pseudovariables x constructed by substituting 

B for B in (6), estimate both B and e by maximum-likelihood on 
A A 

(5). Denote these estimates by y = (B' ,e')'. Note that both 

estimation steps use only a logit routine. Note also that, since the 

parameters e enter (5) linearly, equality restrictions among them are 

easily imposed by combining variables. 

~ Under the null hypothesis that e = O, B is consistent for B; 

hence x is consistent for x; hence the second-stage estimate y is 

2. In the terminology adopted here, there is one pseudovariable xi 
i for each component of e; it takes on value x1 for alternative l 

(for a particular member of the sample, whose index is suppressed). 

( 1 I)'. Hence x1 = x1 , ... , 1x 
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consistent for y = (B' ,e')'. The more formal proof given in small 

(1987, Appendix B) for ordered GEV applies here as well. Furthermore, it 

is shown there that, under the null hypothesis, Ci) .JN(y-y) is 

asymptotically normally distributed with mean zero and 
--1 

variance-covariance matrix ~ , where N is sample size and 

J = -plim 1 EL CyA· x> c1> 
N-kO N yy' , 

is the information matrix associated with the second-stage log-likelihood 

~ function L formed from (5) holding x at x: (ii) either of the 

variance-covariance estimates commonly employed at the second state, viz. 

~1 ~ ~ -1 -L or (ELL') where E indicates the sample average, is, when 
yy y y 

multiplied by N, consistent for T 1: and (iii) the usual likelihood-ratio 

statistic 2[L(B,8;x) - L(B,O:x)] is asymptotically chi-square 

distributed with I degrees of freedom. Hence, one can use the 

second-stage estimates or their log-likelihood value in the usual ways to 

format-test, Wald test, or likelihood ratio test of the null 

hypothesis. 

These results seem counter-intuitive because there are several 

examples in econometrics of multi-step tests in which variances are 

underestimated at the last step. This does not happen here because all 

parameters are simultaneously reestimated at the second stage. In fact, 

the test is closely related to the Lagrange Multiplier (LM) test, which 

is asymptotically efficient. The LM test can be written as a quadratic 

form in the score Le evaluated at y = (B', O')'. Using (1), 

this means that each sample member contributes the following quantity to 
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= l 
j 

alogPj 
dj ae = 

0 where Pj is the logit probability (4) and dj is the choice 

(8) 

variable (equal to one if j is chosen, zero otherwise). Hence the LM 

test, like mine, looks for a tendency to choose alternatives with unusual 

values of x. 

My test is even more closely related to a version of the LM test 

recently proposed by McFadden (1987, Section 4). His test is based on 

ordinary least-squares regression of normalized residuals u (from the 

logit estimation) on the variables z and a set of pseudovariables w. 

These w satisfy Le= w'u, an equation of the same form as (8). 

McFadden's test is defined against two-level nested logit, and his w 

are straighforward transformations of my x for that case. 3 Hence it 

appears that equation (6) could serve as a way to generate 

regression-based tests against other GEV models. 

To swnmarize, the procedure proposed here provides a rigorous way to 

derive pseudovariables for testing particular types of suspected 

departures from logit. At the same time, it provides an estimate of the 

statistical model (5), which approximates a random-utility model of the 

GEV class. Although this estimate is not consistent, the Monte Carlo 

evidence reported later suggests that it is in some ways preferable to 

the MLE of the alternative model when e is small. 

3. compare McFadden's equation (50) with my equation (A.4). 
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III. EXAMPLES 

Equation (6) is calculated for several GEV models in the Appendix, 

with the results summarized in Table 1. The models include nested logit 

(NL) (McFadden, 1978, 1981) with both two and three levels: ordered GEV 

(OGEV) (Small, 1984): and a new model which I call "nested ordered GEV" 

(NOGEV) that groups alternatives as in NL but allows OGEV-type ordering 

within groups. To satisfy the GEV axioms, all these models require the 

components of e to lie in the unit interval. These components are 

denoted by ar, ~q' and ~~: the corresponding pseudovariables are 

denoted by Nr, Mq, and Mrq. 

The intuition behind the approximate estimator is readily grasped by 

considering the two-level NL model, whose choice probabilities are those 

of a tree decision structure: 

exp(Vk/ps) 

}: exp(Vj/p) 
jcB s 

s 

• 
exp(psis) 

R 
}: exp(p I) 

r=l r r 

In (12), the subsets B r form a partition of the choice set 

{l, .. ,J}: s indexes the subset that contains alternative k: pr 

are parameters in the unit interval; and 

Ir= log}: exp(Vj/p) 
jcB r 

r 

is a measure of the desirability of subset B . r The parameter 

(12) 

(13) 

ar = 1-pr is related to the correlation among the stochastic terms cj 
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within subset Br: hence when or is large, the conditional choice 

within B is likely to yield whichever alternative in B has the 
r r 

largest systematic utility. 

This property of NL is reflected in the pseudovariable test. Consider, 

for example, the constrained model or= a. There is just a single 

pseudovariable N = I Nr which takes values: 
r 

N =-log~ (P0 /P0
) j L l j 

lcBs 

= V - I 0 

j s 

where Pt are the logit choice probabilities (4), and 

Io= 
s 

(14) 

(15) 

Thus Nj measures the relative advantage of alternative j within its 

subset: when Nj is large, indicating that j is grouped in a subset 

with few and/or unattractive alternatives, j is more likely to be chosen 

because it dominates its close competitors. The strength of this effect 

depends on the closeness of these competitors, which is measured by 

o. The stronger is this effect, the more important is N in 

explaining observed choices hence the larger is the estimate o. 

The intuition for other GEV models is similar, and is developed in 

small (1987) for ordered GEV. 

It is striking how little extra complexity is added by going to a 

three-level model, such as three-level NL or NOOEV. The approximate 
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estimator simply involves an extra set of pseudovariables which are no 

more difficult to calculate than those for the two-level models. In 

contrast, the complexity of maximum-likelihood estimation rises 

dramatically with additional levels in the tree structure. 

IV. SOME MONTE CARLO RESULTS 

In order to further investigate properties of the pseudovariable test 

proposed here, it is useful to measure its performance in samples 

generated randomly from known statistical models. This section describes 

experiments with samples generated by three of the models from the 

previous section: logit, nested logit (NL), and ordered GEV (OOEV). 

Pseudovariable tests based on approximations to these models and to 

nested ordered GEV (NOOEV) are constructed, as are t-tests and 

likelihood-ratio tests based on the maximum-likelihood estimates (MLEs) 

of the same models. A Hausman-type test of the kind studied by Hausman 

and McFadden (1984), hereafter referred to as the HM test, is also 

constructed. 

Experimental Design 

Three questions guided the experiments' design. First, how do the 

finite-sample distributions of various test statistics compare with their 

asymptotic distributions? Second, what is the power of these tests when 

the true model is the one against which the test is explicitly designed, 

and when it is not? Third, what are the distributions of the estimators 

themselves? 
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Answering these questions required a specification for which 

different GEV models produce observationally distinguishable results, and 

for which assuming the wrong model leads to bad coefficient estimates. 

Given these requirements, I selected as simple a specification as 

possible. A population of individuals, observationally identical except 

for their observed choices, faces six alternative travel modes. 

Alternative j has an observed "full cost" cj which is listed in 

Table 2, and its utility Vj is equal to log(l/cj) plus an error 

term. When the error terms are independently extreme-value distributed, 

the resulting logit choice probabilities P~ are those shown in the 

last column. 

The NL model is a two-level one with the first three and the last 

three alternatives grouped, and the corresponding parameters constrained 

equal: Bl= {1,2,3}, B2 = {4,5,6}, and a1 = a
2 
= a. (It could 

result, for example, from unobserved traits affecting access to a private 

motorized vehicle.) The OOEV model is that defined in Table 2 with K=l, 

w1=w2=1/2, and ar=a: this could arise if the error terms for 

immediately adjacent alternatives are correlated (perhaps due to 

unobserved preferences regarding physical effort, which decreases with 

j). The NOOEV model has the same kind of ordering, but within each of 

the groups B1 and B2 : i.e., it is defined as in Table 2 with R=2, 

d r -K=l, a 1=a2=a, an ~q = ~-

Table 3 shows just one of the choice probabilities, P3 , under each 

of these models as a varies from O (logit) to 1 (a limiting case). 

Also shown is the approximate value of P3 given by eqns. (5) and 

(6). The limiting cases as ¢1 are versions of "maximal" models, in 
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which certain conditional probabilities become discontinuous in the 

utilities -- see McFadden (1978, p. 85) for NL, and small (1987, pp. 

414-415) for OGEV. 

The following explanation of how the error distribution affects 

P3 may aid intuition. Under NL, P3>P~ because alternative 3 (bus) is 

grouped with unattractive alternatives, hence it receives a 

disproportionate vote from those with a tendency to avoid private 

motorized vehicles. Under OGEV, P3<P~ because alternative 3 is 

adjacent to a very attractive alternative (motorcycle) and hence tends to 

lose its natural constituency of people with preference for middling 

levels of physical effort. Under NOGEV, P3 is higher even than under 

NL because not only is it grouped with the same unattractive alternatives 

as in NL, but within that class it is adjacent to an alternative with 

lower systematic utility than itself (bicycle). 

our hypothetical researcher's specification is: 

(16) 

where o3j is an alternative-specific dummy (1 when j=3, 0 

otherwise). The true parameter vector is B = (B1,B2)' = (0,l)'. 

Because P3 is sensitive to the statistical model, this specification 

leads to error if the wrong statistical model is assumed. 

For each statistical model, 400 samples of size 200 and 400 samples 

of size 1000 were generated randomly. The smaller samples are "small" in 

that they produce estimates of B, a, and~ with sizeable standard 

deviations (typically over 0.3 in the case of a and~); they also 

produce occasional convergence problems, indicating that one can have 
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trouble estimating even a correctly specified model on a sample of this 

size. The samples of 1000 are "large," producing standard deviations 

that are usually below 0.15. With 400 replications, further replications 

caused little change in the empirical sampling distributions of the 

estimators and test statistics. Estimates were computed using the 

quadratic hill-climbing algorithm of Goldfeld and Quandt (1972, pp. 5-8) 

as implemented in their computer program GQOPT. 

Distributions of Test Statistics Under Null Hypothesis 

Table 4 characterizes the empirical sampling distributions of various 

test statistics when the null hypothesis is true (i.e., using samples 

generated by the logit model). The t-statistic is o/SD(o) or 
~ 

~/SD(~); the test depicted is one-sided. The chi-square statistic is 

the usual likelihood-ratio statistic except in the last column. That 

column shows the HM statistic for testing against NL by comparing two 

logit estimates: one with full choice set, the other with restricted 

choice set B
2

. 

The entries in the table are the proportions of replications for 

which the given test rejects the null at asymptotic significance levels 

of 0.5, 0.1, and 0.05. Each of these entries has a sampling variance due 

to the finite number of replications: when the true probability of 

rejection is ~. the proportion of R replications for which rejection 

occurs has mean R~ and standard deviation [~(1-~)/R] 112 • With 400 

replications, this standard deviation never exceeds .025; it equals .025, 

.015, and .011 for ~ = .5, .1, and .05, respectively. 
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Keeping these in mind, the two-step tests and the HM test appear to 

have true sizes close to their asymptotic sizes. The tests based on the 

MLE, however, reject much too often when set for asymptotic significance 

levels of 0.1 or 0.05. For example, estimating the NL model on data 

generated by logit produces MLE t-statistics that exceed the 10% critical 

value about 16% of the time, and that exceed the 5% critical value about 

10% of the time (not counting several cases where the MLE did not 

converge). The NL likelihood-ratio test seems not to be affected by this 

problem, suggesting that flat spots on the likelihood function are 

contributing to it. The large samples perform no better than small ones 

in this respect, though further investigation showed that samples of 

10,000 brought the frequencies within the expected range. The OGEV MLE 

produces even worse results, at least for the small samples: the t-test 

rejects even more frequently, and the likelihood-ratio test is also 

unreliable. The NOGEV MLE estimates, not shown in the table, behaved 

similarly to NL though not quite as badly. 

A closer look at these t-statistics, in Table 5, shows just how far 

their distributions are from normal. The t-statistic obtained from the 

MLE in the smaller samples has large skewness and kurtosis, combining to 

cause the heavy right tail just noted. The skewness persists in samples 

of 1000, but finally dwindles in samples of 10,000, verifying the 

asymptotic distribution. 

One reason for this behavior is lack of precision in estimating 
~ 

SD(o). In the case of the NL MLE with samples of 200, the actual 
~ 

standard deviation of o over the 400 replications was 0.46; yet 

SD(o) ranged from 0.31 to 3.78, with mean 0.43 and standard deviation 
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0.45. By contrast, the approximate estimator produced not only a o 

with smaller actual standard deviation (0.32), but a much tighter 

SD(o), with mean 0.32 and standard deviation only 0.04. 

These results cast serious doubt on the practical usefulness of logit 

specification tests based on MLE estimation of GEV models. The 

researcher would too often be led to reject the true specification, and 

to estimate a GEV model that deviates radically from the true model. 

Power 

Table 6 shows the power of several tests designed to test against 

NL. The first two panels show the power when the true model is NL, at 

various values of o: the last two panels show the power of the same 

tests when the true model, contrary to the researcher's suspicions, is 

OGEV. Four tests are shown: two based on the two-step estimator, one on 

the MLE, and one on the HM statistic. Because the MLE one-sided t-test 

did not have the correct size, as noted earlier, its power would be 

misleading and hence is not shown. 

This table answers several questions. First, which test has the 

highest power? comparing tests against NL when NL in fact is true, we 

find that, as expected, the one-sided t-test has somewhat higher power 

than any of the two-sided tests. The three chi-square tests are 

virtually identical. Hence when the researcher suspects an alternative 

model for which a one-sided test is appropriate, the good small-sample 

distribution of the two-step t-statistic gives it a distinct advantage. 

Second, how high is the power? It is reasonably high when o is 

between 0.1 and 0.3 for large samples, or between 0.3 and 0.5 for small 
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samples. At a=0.5, the large samples rejected the null 100% of the 

time no matter what test was used. 

Third, are the tests specific against a particular GEV model? The 

answer is yes: all four tests have much lower power against a true model 

that differs from the one against which they are designed. Their power 

against OGEV with a=0.3 is only about as great as that against NL 

with a=O.l. (If this property is not desired, one might design 

omnibus tests by simultaneously including pseudovariables derived from a 

variety of possible alternative models; but this possibility is not 

explored here.) 

Although not shown in the table, results with tests designed against 

OGEV confirmed the first and third conclusions: higher power is attained 

by one-sided tests and by tests designed for the correct alternative 

model. However, power was substantially lower for a given value of a 

than was the case for NL. Also, the OGEV MLE had numerical and 

convergence problems on about one-fourth of the small samples generated 

by NL with a=0.5; no such problems occured with the two-step estimator. 

Distributions of Estimators 

Table 7 shows some properties of the empirical distributions of a2 

and a estimated by the 2-step approximation procedure and by maximum 

likelihood, when the researcher correctly guesses the form of the true 

model. These results are for N=lOOO. 

In all cases, the MLE provides estimates with negligible bias and 

reasonably low standard deviations. The two-step estimates are very 

close to the MLE at low values of a but, as expected from the nature 
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of the approximation, deviate more and more as o rises to 0.3 and 

beyond. 

The MLE has a decided edge over the two-step estimator in precision, 

as measured by the actual standard deviations of B2 and o. This is 

especially true at higher values of o. (Still greater precision is 
~ 

attained by the logit estimator, whose B2 when the true model is 

logit was unbiased to three decimal places and had a standard deviation 

0.051, skewness 0.30, and kurtosis 3.45.) 

The standard-error estimates, which are computed from the Hessian of 

the log-likelihood function, are all centered very close to the actual 

standard deviations. However, as noted earlier, the MLE standard-error 

estimates have a much greater variance (not shown in the table) than 

those from the two-step procedure. 

The non-normality of the t-statistics discussed earlier has its 

counterpart for the parameter estimates. In all but one instance the MLE 

estimators depart substantially from normality, with o typically 

having skewness around -0.8 and kurtosis between 3.7 and 4.4; the 

negatively skewed & confirms a finding of Brownstone and Small 

(forthcoming, Table 2} using Monte Carlo on a much more complex model. 

The two-step estimators, in contrast, are close to normal. 

Root-Mean-Squared Error 

Since the real world is rarely precisely logit, we may ask: What 

degree of departure is needed for better results to be obtained from a 

more complex econometric model? Table 8 addresses this question in one 

way, by comparing the root-mean-squared error (RMSE) in various 
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estimators of e
1 Of course, this is not the only 

consideration for choosing a model: others include parsimony, prediction 

error in various situations, and transferability to other data sets. 

With either sample size, the logit estimator is superior on the RMSE 

criterion at o = 0 and o = 0.1. The MLE becomes better somewhere 

between o = 0.1 and o = 0.3, and it strongly dominates at a= 

0.5. The two-step estimator is somewhat better than the MLE at very low 

a, but this advantage erodes quickly as a rises and in no case 

shown does the two-step estimator dominate both of the others. 

This suggests that the two-step estimate of B may not be very 

useful. If the main interest is in estimating B, for example to measure 

marginal rates of substitution, an attractive procedure would be the 

following. Use the rather easily constructed pseudovariable test and its 

approximate estimator of e to determine if logit is suitable either 

(a) because it is accepted at conventional significance levels, or (b) 

because the departure is too small to make a practical difference. If 

so, use logit. If not, use maximum likelihood to estimate the more 

general GEV model identified by the pseudovariable test, perhaps on an 

independent sample; but don't trust the MLE's estimated standard 

deviations without further verification by bootstrapping or Monte Carlo. 

V. CONCLUSION 

Approximating arbitrary GEV models by logit models with 

pseudovariables provides a flexible and powerful way to design logit 

specification tests. The test statistics are easier to compute and 
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better behaved in finite samples than those based on the corresponding 

maximum-likelihood estimators. They provide an estimate of the 

approximate model that, though not consistent, gives strong clues as to 

the true behavior generating the data. 

The Monte Carlo experiments reported here are limited to one basic 

design and hence cannot describe the full range of interesting 

conditions. Nevertheless, the evidence suggests that the 

maximum-likelihood estimators of nested logit and ordered GEV models have 

noticeably non-normal distributions in practical samples. As a 

consequence, specification tests based on them may falsely reject the 

null hypothesis far more often than indicated by the tests' nominal size. 

As for the approximate estimator itself, the Monte Carlo evidence is 

mixed. When the departure from logit is small, the approximate estimator 

is quite accurate and hence might be suitable for prediction or 

simulation: but the logit estimator produces utility-parameter estimates 

with smaller root-mean-squared errors. When the departure from logit is 

large, the approximate estimator is a reliable indicator of this fact, 

and could therefore help the researcher decide on an alternative model 

for more thorough investigation. 
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Table 1. some Alternative Models and corresponding Pseudovariables 

Model 

NL-2 

NL-3 

OOEV 

NOOEV 

Generating G-function 
and Component(s) of e 

R llpr Pr 
L <Ly. > 

r=l jEB J 
r 

C, = 1-p r r 

R 

L 
r=l 

lly y Ip 
L ® L Y 4> 4 r 

qEC jED j 
r q 

cJ = 1-p r r 

cf> = 1-(y Ip) q q r 

R 

L 
r=l 

cJ 1-p r - r 

20 

Pseudovariables 

l (POIP~) 
!I.EB t J 

r 

Nrj: same as NL-2, with B = U D 
r qEC q 

r 

M4 = &.ED • log 2 (P 0 IP~ ) 
j J q !I.ED t J 

q 

N~ = -&j • W jlog l W n<P:/p~) 
J EBr r- !I.EB r-.x. .x. J 

r 

r · 2 i Nj. same as NL- , w th Br 

-
Q 

_ Ur D 
q=Q q 

r 

M~q = -& • W .log 2 W n<P:IP~) 
J jEDr q-J !!.EDr q-.x. .x. J 

q q 



Notes to Table 1: 

NL-2: nested logit, 2 levels: {B} is a partition of {l, ... ,J}. r 

NL-3: nested logit, 3 levels: {c} is a partition of {l, ..• ,J} and r 

{D ,qec} is a partition of c. q r r 

OGEV: ordered GEV; B = {r-K, ••. ,r} n {l, •.• ,J}. r 

NOGEV: nested OGEV; {Br} is a partition of {l, .•• ,J} with Br= 

{J l+l, ... ,J }: Q = J l+l; Q = J +K: Dr= {q-K, ••• ,q} n B. r- r r r- r r q r 

6jEA = 1 if jEA, O otherwise 

0 J 
Pi= exp{Vi)/ l exp{Vj) 

j=l 

Restrictions: 

0 < p < 1 r -

0 <yr!£ 1 

K 
I w

1 
= 1 

!l.=O 
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Table 2. Model for Monte Carlo Experiments 

Alternative (j) 
No. Name 

l Walk 
2 Bicycle 
3 Bus 

4 Motorcycle 
5 carpool 
6 Drive Alone 

22 

Full Cost 
{c.) 

2.00 
2.00 
1.00 

0.25 
0.40 
0.66 ••. 

Logit 
Probability 

(PO) 

.05 

.05 

.10 

.40 

.25 

.15 



Table 3. Values of P3 in Monte Carlo Experiment 

0 0.1 0.3 0.5 0.8 ➔l 

NL: 
exact .100 .104 .114 .132 .187 .200 
approx. .100. .103 .110 .116 .125 .131 

OGEV: 
exact .100 .095 .084 .073 .069 .071 
approx. .100 .096 .087 .079 .069 .062 

NOGEV with cf>=o: 
exact .100 .106 .124 .150 .193 .200 
approx. .100 .105 .115 .122 .129 .131 
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Table 4. Distribution of Test Statistics under Null Hypothesisa 

Two-Step Estimator 
NL OOEV NOOEV 

0 ct> 

N=200 
Pr[t > O] .512 .522 .500 .528 
Pr[t > 1.282] .110 .122 .105 .118 
Pr[t > 1.645] .060 .060 .042 .048 

Pr[x2 > c.50] .475 .475 .502 
Pr[x2 > c.10] .112 .098 .100 
Pr[x2 > c.05] .048 .052 .045 

N = 1000 
Pr[t > O] .550 .538 .530 .525 
Pr[t > 1.282] .120 .112 .090 .102 
Pr[t > 1.645] .055 .062 .042 .050 

Pr[x2 > c.50] .510 .488 .528 
Pr[x2 > c.10] .108 .108 .092 
Pr[x2 > c.05] .048 .062 .045 

MLE 
NLb OOEV 

.509 .540 

.155** .195** 

.102** .125** 

.471 .485 

.109 .262** 

.048 .215** 

.550 .538 

.162** .142** 

.100** .095** 

.510 .488 

.108 .110 

.048 .065 

Hausmann
McFadden 

TestC 

.470 

.105 

.045 

.508 

.108 

.048 

aFor each test statistic, the three relative frequencies shown are computed 
from 400 replications (393 in case of NL-MLE), and correspond to 50%, 10%, 
and 5% significant levels. If the statistic had its asymptotic distribution, 
these frequencies would have mean (SD) of .500 (.025), .100 (.015), and .050 
(.011), respectively. 

bwith sample size N = 200, 7 samples (out of 400) produced a nonconvergent 
NL MLE estimator, hence are excluded. 

caased on comparison of logit estimates: one with full choice set 
{1, ••• ,6}, the other with restricted choice set {4,5,6}. 

dcritical values for 50%, 10%, and 5% significance levels are 1.386, 4.605, 
and 5.991 for the x2-statistic based on the NOOEV estimator (2 degrees of 
freedom): they are .455, 2.706, and 3.841 for all the other 
x2-statistics (1 degree of freedom). 

**Differs from asymptotic expectation by more than two standard deviations 
(see note a). 
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Table 5. Distribution oft-statistic under Null Hypotheses 

Two-Step Estimator MLE 
NL OGEV NL OGEV 

N=200 
Mean 0.032 0.075 0.273 0.350 
Std. Deviation 0.968 0.973 1.032 1.291 
Skewness -0.070 0.185 1.286 1.768 
Kurtosis 2.842 2.917 4.539 7.795 

N=l000 
Mean 0.099 0.074 0.222 0.178 
Std. Deviation 1.009 1.005 1.034 1.040 
skewness -0.095 -0.099 0.516 0.493 
Kurtosis 2.706 3.096 3.081 3.196 

N = 10,000 
Mean 0.055 0.090 
Std. Deviation 0.965 0.967 
Skewness -0.092 0.106 
Kurtosis 2.842 2.792 

Note: The asymptotic distribution of the t-statistic has mean 0, 
standard deviation 1, skewness 0, and kurtosis 3. 
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Table 6. Power of Tests against NL 
with Asymptotic Significance Level .1oa 

Hausman-
NL Two-Ste~ Estimator NL MLE: McFadden 
t-test6 LR test LR Test TestC 

True Model NL: 

N = 200 .o .110 .112 .109 .105 
.1 .168 .120 .118 .105 
.3 .488 .328 .328 .318 
.5 .910 .830 .830 .812 

N = 1,000 .0 .120 .108 .108 .108 
.1 .322 .228 .228 .225 
.3 .932 .865 .865 .865 
.5 1.000 1.000 1.000 1.000 

True Model OOEV: 

N = 200 .o .110 .112 .109 .105 
.3 .170 .115 .115 .112 

N = 1,000 .o .120 .108 .108 .108 
.3 .308 .220 .221 .215 

aEach entry is the proportion (of 400 replications) for which the test 
rejects the null hypothesis. Equivalently, each entry is the empirical 
value of Pr[t > 1.282] or Pr[x2 > c.10]. 

bone-sided test. 

caased on comparison of logit estimates: one with full choice set 
{1, ••• ,6}, the other with restricted choice set {4,5,6}. 
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Table 7. Distribution of Estimators When Correct Model is Assumed 
(N = 1000) 

NL (true a= 0.0) 
Mean 
(Est. s.D.)a 
Std. Dev. 
Skewness 
Kurtosis 

NL (true a= 0.1) 
Mean 
Std. Dev. 

NL (true a= 0.3) 
Mean 
(Est. S.D. )a 
Std. Dev. 
Skewness 
Kurtosis 

NL (true a= 0.5) 
Mean 
Std. Dev. 

OGEV (true a= .3) 
Mean 
(Est • s . D • ) a 
Std. Dev. 
Skewness 
Kurtosis 

Estimator of .B2 
(true value 1.00) 
2-step MLE 

(approx.) 

0.994 1.001 
(0.080) (0.078) 
0.081 0.083 
0.331 0.600 
3.115 3.553 

0.992 1.001 
0.086 0.081 

0.939 1.002 
(0.103) (0.072) 
0.105 0.077 
0.198 0.519 
3.041 3.595 

0.637 0.999 
0.161 0.071 

1.010 0.995 
(0.057) (0.062) 
0.053 0.060 
0.358 0.206 
3.388 3.206 

Estimator of a 
(true value as given) 

2-step MLE 
(approx.) 

-0.015 -0.003 
(0.142) (0.137) 
0.145 0.151 

-0.073 -0.776 
2.826 3.697 

0.121 0.097 
0.147 0.132 

0.414 0.297 
(0.146) (0.079) 
0.153 0.088 

-0.152 -0.819 
2.942 4.354 

0.912 0.500 
0.169 0.052 

0.366 0.299 
(0.203) (0.147) 
0.204 0.153 

-0.073 -0.684 
3.066 3.935 

~edian of the estimated standard deviations of £2 or of;. (In all 
cases shown the mean is within 5% of the median.) 
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Table 8. Root-Mean-Squared-Error of Utility-Parameter 
Estimates when True Model is NL 

Estimator of .Bl Estimator of .82 
NL NL 

True Logit 2-step NL Logit 2-step NL 

" (approx.) MLE (approx.) MLE 

N = 200 
.o .259 .385 .540 .111 .190 .245 
.1 .272 .386 .457 .129 .200 .224 
.3 .419 .438 .341 .248 .247 .200 
.5 .841 .949 .243 .540 .511 .178 

N = 1000 
.o .116 .164 .172 .051 .081 .083 
.1 .141 .167 .157 .072 .086 .081 
.3 .347 .236 .127 .209 .122 .077 
.5 .804 .785 .091 .510 .397 .071 

Note: Each entry is the square root of the average over 400 replications 

of 
~ 2 

(.Bi-J3i) , where .Bi is the estimator named in the colwnn label. 
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APPENDIX A: COMPUTATIONS FOR SELECTED GEV MODELS 

Nested Lo9it (2 levels). See Figure Al. 

(A. l) 

where a =l-p, r=l, ••• ,R. The choice probabilities are given by eqn. 
r r 

(12) in the text. Here the parameter vector e is denoted by a= 

From eqn. (6) in the text, 

e'x j 

V - 1° j r 

0 

r 
by N, r = l, .•. ,R, so that 

j E B r 

(A.2) 

(A.3) 

where 1; = log I exp(V1 ) is called the inclusive value of Subset Br. 
lcBr 

Eqn. (A.3) can also be written 

N~ = 
J 0 

(pO/pO) 
l j 

j E B r 

where Pj is just the logit choice probability (4). 

Nested Logit (3 levels). See Figure A2. 
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G(y;a,4>) (A. 5) 

where CJ =l-p for r=l, ... ,R, and 4> =1-y Ip for q=l, ..• ,Q. Here r r q q r 

R < Q < J, {D
4

, r = l, ••• ,Q} is a partition of {l, .•• ,J}, and {er, 

r=l, ... ,R} is a partition of {l, ... ,Q}. (This has, as a special case 

when 4> = O, the 2-level NL model defined above, provided we adopt the 

notation that B = U D .) 
r qEC q 

r 

For this mode 1, 

R Q 
8'xj = la N: + ! 4> M4 

r=l r J q=l q j 

where Nr is given by (A.3) or (A.4), 
j 

-

j E D 
q 

and I 0 = log l exp (V
1

) is an inclusive value for subset o
4

. 
lED r 

Equivalently, 

M~ = 
J 

- log l (Po/po) 
lED e j 

q 

0 

j E D 
q 

Note that restricting all 4> to be equal is accomplished by 
q 

replacing the pseudovariables Mq with the single pseudovariable M 

defined by: 
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(A.6) 

(A.7) 

(A.8) 



Q 

Mj = I Mq = V - Iq0 (j) 
q=l j j 

where q(j) is the node to which j is attached, i.e., j E Dq(j). 

Ordered GEV 

J+K lip p 
G(y:a) = I@ I w -jyj r) r 

r=l jcB r 
r 

where Br= {r-K, •.. ,r} n {l, .•. ,J}, ar = 1-pr' K>0 is a 
K 

positive integer, and I w = 1. Then 
m=O m 

e·x 
j 

w j(Vj-1°) r- r 

0 

where 1° = log I w -lexp(V1). Equivalently, 
r lcB r 

r 

-w jlog I W n(P~/P~) r- r-x. x. J 
lcBr 

0 
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j E B 
r 

j (I. B r 

j E B r 

j (I. B • r 

(A. 9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 



Nested Ordered GEV. See Figure A3. 

This model is identical to the 3-level nested logit except the lowest 

level (represented by the term inside square brackets in Equation A.5) is 

ordered instead of nested. As in nested logit, the nesting is described 

by groups {Br, r=l, ..• ,R}: but unlike nested logit, the alternatives 

in B must be labeled consecutively. I denote them by B = {J 1+1, ..• ,J }. r -- r r- r 
r The ordering within Br is described by groups Dq = {q-K, ••. ,q} n Br 

for q = Qr•··••2r where 2r = Jq_1+1 

define J 0=0.) That is: 

and Q = J +K. r q (We 

R ~Q ( ll·l) Yr, /pr] Pr 
G(y: o ,ct,) = }: }:r }: r W.q..:;J• YJ·· q q 

r=l =n jcD 2'r , q , 

where N~ is again given by (A.3) or (A.4), and 

1

-w .log }: w n (P~/P~) , 
q-J r q-x. x. J 

!!.&D 
= q 

0 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

Here is an inclusive value for the subset Dr. 
q 
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r 
For the special case of identical ~q' the last term of (A.16) becomes a 

single parameter $ multiplied by the pseudovariable M defined by 

R 

MJ. = I 
r=l 

= v. -
J 

j+K 

j+K 
I 

q=j 

= I w . 
q=j q-J 

~r(j)O 
w . I q-J q 

log t~r(j) wq-t (Pi/ Pj) 
q 

where r(j) is defined uniquely by j E Br(j). 
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(A.19) 

(A.20) 
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r-: 
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\ 

J : I 
' 

... 

.i.. 3 !.-f S 

Figure Al. Two-Level Nested Legit 

2. 3 'I s ' 7 
•-",.~ ~ ~ 

D, 02. D3 

• • • 

c.,, :! [ Q-~ ~ J 

• • • I 

• • • 

,,-
I' 

,, 
..... _ -~,!\ 

I \ 
J-2. J-1 j 
.._,_/~ 

q_, DQ 

"----v--.___/ '-------.._-/ \__, ____ ---•·v---J 

f3, [34.. [31{ 

Figure A2. Three-Level Nested Legit 
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Q,= I 
- l 

:11/:/l,' 1
/ 

V ~I 1/ I/ V 
2. J 'f 5 

. , , 

9ie=J-2 I J+'K~ Qflt. 
( 

J-2. J-1 J 

Figure A3. Nested Ordered GEV (K=l) 
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