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ARTICLE

Estimating COVID-19 mortality in Italy early in the
COVID-19 pandemic
Chirag Modi1✉, Vanessa Böhm 1,2,4, Simone Ferraro1,2,4, George Stein 1,2 & Uroš Seljak1,2,3

Estimating rates of COVID-19 infection and associated mortality is challenging due to

uncertainties in case ascertainment. We perform a counterfactual time series analysis on

overall mortality data from towns in Italy, comparing the population mortality in 2020 with

previous years, to estimate mortality from COVID-19. We find that the number of COVID-19

deaths in Italy in 2020 until September 9 was 59,000–62,000, compared to the official

number of 36,000. The proportion of the population that died was 0.29% in the most

affected region, Lombardia, and 0.57% in the most affected province, Bergamo. Combining

reported test positive rates from Italy with estimates of infection fatality rates from the

Diamond Princess cruise ship, we estimate the infection rate as 29% (95% confidence

interval 15–52%) in Lombardy, and 72% (95% confidence interval 36–100%) in Bergamo.
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The COVID-19 pandemic is one of the most pressing
challenges the world is facing today. Despite a large
number of infected individuals and confirmed deaths, large

uncertainties about the properties of the virus and the infection
still remain. In this article we present an analysis of the mortality
rate in Italy in 2020, which we find has been significantly higher
than in previous years. Italy was one of the hardest-hit countries
in the early stages of the pandemic with >400,000 confirmed cases
and >36,000 COVID-attributed deaths as of mid-October 20201.

Several numbers in Italy present statistical peculiarities such as
the case fatality rate (CFR, defined as the ratio between the
number of deaths attributed to COVID-19 and the number of
positive tests), which is still at 10% in October 2020 and was
much higher in the earlier stages of the pandemic2, and has led to
early estimates of high mortality3. The CFR is heavily affected by
issues unrelated to the underlying disease, such as the extent of
testing. A better metric is the infection fatality rate (IFR, the ratio
between the number of deaths and the total number of infec-
tions), the knowledge of which is paramount to guide the public
health response. The IFR, along with the population fatality rate
(PFR, defined as the ratio between the number of deaths and the
total population), allows us to estimate the infection rate (IR, the
fraction of the population that is infected), which estimates how
wide-spread the diseases is in the population and which informs
government response.

Estimating IFR and IR is challenging, both owing to limited
testing (hence, poorly known number of infections) and the
uncertainty in the number of fatalities attributed to COVID-19.
Official data account for those that have been tested. However,
there may have been other deaths that were not tested and went

unrecorded, which would imply an underestimate of the death
rate by the official COVID-19 numbers.

Given the uncertainties in the official COVID-19 fatality rate, it
is important to explore other paths for obtaining it. In this article,
we propose a counterfactual analysis: we use historical mortality
rate data from Italy to construct models for the expected death
rate in 2020 in the absence of the COVID-19 pandemic. We
attribute the difference between the observed mortality in 2020
and the predicted counterfactual to the COVID-19 pandemic.
The models we employ account for the historical year-to-year
variability owing to seasonal effects such as the flu. We use two
different models, each based on different assumptions about the
underlying data distribution. One model is based on a conditional
Gaussian Process (hereafter, referred to as CGP model) and the
other on a Synthetic Controls Method (hereafter, SCM). Con-
sistent results from these approaches suggest that the results are
independent of the model assumptions.

Results
Figure 1 shows the counterfactual predictions for all regions in
Italy in 2020. We plot predictions from both, SCM (yellow) and
CGP (green). For comparison, we also show the historical
2015–2019 data and their mean (gray), as well as the mortality in
2020 after accounting for the reported COVID-19 deaths (black),
i.e., the total reported mortality minus the reported COVID death
count. We note that the SCM and CGP methods both trace the
pre-pandemic data closely (the latter method is designed to match
the pre-pandemic data exactly as detailed in the Methods section)
while the historical mean estimates are generally higher.

Fig. 1 Validating counterfactuals for the pre-pandemic data. we show the observed weekly mortality due to all causes for the period of 1 January to June
27 (black) in all 20 regions in Italy, and our prediction for the expected mortality in the absence of COVID-19 (conditional Gaussian Process (CGP) with its
1 and 2−σ error from the variance of the Gaussian model, i.e., 68% and 95% confidence interval, respectively, in green and synthetic controls method
(SCM) in orange). The first reported COVID-19 mortality occurred in the week ending on February 22 (thin red vertical line). The historical data from 2015
to 2019 (blue) and corresponding historical mean (gray) is shown for comparison and are not a good fit to the observed pre-pandemic data. In the dashed-
black line, we also show the observed mortality after removing reported COVID-19 deaths.
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The mortality in Italy has been below-average in the first
2 months of 2020, probably owing to a milder than usual flu
season. This discrepancy demonstrates why SCM and CGP pro-
vide better counterfactuals than the simple historical mean esti-
mate: they take into account this year’s pre-pandemic mortality
and exploit the time-correlations in the mortality rates allowing
to make more accurate and precise predictions, forgiven the
different assumptions made by these methods hold true. Where
our predicted excess mortality is lower than the reported COVID-
19 fatalities, we will use the latter for our estimate of COVID-19
deaths. This selection only makes a statistically significant dif-
ference for the region of Lazio and age groups below 30 years of
age in few other regions, but otherwise does not affect our con-
clusions with any significance. Figure 1 shows a clear excess in
mortality over the counterfactual predictions after the week
ending on 22 February, when the first COVID-19-related deaths

were reported in Italy. This excess is primarily seen in the
Northern regions, which are the hardest hit. In the remainder of
this work, we focus on these regions and the province of Bergamo
(see also ref. 4 for an earlier analysis).

In Fig. 2, we show the excess deaths over the expected coun-
terfactual for every week of reported data. We focus on the few
regions that were hardest hit by the pandemic and which lead to
the most statistically significant conclusions. Figure 2a shows that
the excess weekly mortality is significantly higher than the official
COVID-19 deaths in all regions, as the beginning of the pan-
demic. We only have access to reported COVID-19 deaths in
Bergamo up to 1 May 2020 (shown in a dashed pink vertical line)
and beyond that, we extrapolate it in the same proportion as
Lombardia, the region that the province of Bergamo resides in.
Since May 2020, the estimated excess is less than reported
COVID-19 fatalities for some regions, though it is mostly still

Fig. 2 Excess mortality compared with reported COVID-19 deaths in regions of Northern Italy and the province of Bergamo. (a) Excess weekly deaths,
and (b) cumulative excess deaths, over the predicted counterfactual in comparison to the reported COVID-19 deaths (in pink) for the period since February
23rd (available COVID-19 data). Estimates from both the synthetic controls method (SCM, orange) and conditional Gaussian Process (CGP, green)
counterfactuals agree. We show 1 and 2−σ error (68% and 95% confidence interval) from the variance of the Gaussian model. We find that COVID-19
deaths are under-reported by multiple factors for every period and every region. We extrapolate the data excess beyond June 27th, which is the last week
with available total mortality data (dashed-black line), with dashed-lines. To do this, we make the conservative assumption after June 27 that the reported
COVID-19 deaths are accurate and account for the excess mortality over predicted trends.
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consistent with the 1−σ (68%) confidence interval of our pre-
dictions (except in Piemonte and Toscana). This is to be expected,
as we move away from the intervention (the start of the pan-
demic), which happened in February, the counterfactual predic-
tion becomes less accurate and will be more heavily influenced by
the global mean. For these weeks and regions, whenever our
predicted excess is less than the reported COVID-19 deaths, we
will use the latter for estimating fatality rates and infection ratios
(IRs). Figure 2b shows the cumulative excess in mortality com-
pared with the total reported COVID-19 deaths at the end of each
week. All regions see a consistent rise in excess deaths until
early May 2020. If we attribute these deaths to COVID-19
infections, this implies that the worst affected regions such as
Lombardia and Emilia-Romagna have likely underestimated the
mortality by factors of 1.5, whereas other regions like Piemonte
and Toscana have underestimated mortality by a factor of 2. For
most regions, the number of deaths has decreased significantly
since May 2020.

In Figs. 2 and 3, we have extrapolated our estimated excess
from 27 June 5 September. Since the number of estimated excess
deaths is consistent with reported COVID-19 deaths for the last
8 weeks for all regions (except Piemonte and Toscana), we
assume that the weekly excess mortality is the same as the
reported COVID-19 deaths for extrapolation after 27 June. Based
on this, we estimate that the number of COVID-19 deaths in Italy
is between 59,000−62,000 as of 9 September 2020, more than a
factor of 1.5× higher than the official number. In the remainder of
the paper, we will use this extrapolation to estimate the age-
dependent and population fatality rates and IRs.

In Fig. 3, we show the excess mortality for different age groups
in intervals of 10 years above the age of 40. We find some
agreement between the estimated excess and the reported

COVID-19 deaths below the age of 70, but observe a significant
and increasing discrepancy for higher age groups. This seems to
suggest that testing and consequently probably also treatment has
been more complete for lower age groups.

Attributing excess deaths to COVID-19. To back the assump-
tion that excess deaths are a consequence of the pandemic, we
establish a correlation between the daily excess deaths over the
counterfactual and the official COVID-19 deaths by means of
regression analysis: we perform a two-parameter fit to the excess
deaths by allowing the official deaths to be scaled and shifted. We
infer the time-lag and amplitude of this fit by minimizing χ2. We
find that best fits are obtained for time-lags of −6 days for
Lombardia, −7 days for Emilia-Romagna, −8 days for Piemonte,
and −6 days for Marche. The inferred amplitudes range between
1.2 and 1.6. We provide figures and details for this analysis in the
supplemental material. Given that both data sets report the day of
death not the day of report, the inferred time-lags suggest that the
official COVID-19 mortality lags behind the total mortality. One
possible reasons for this could be that hospital treatment post-
pones death on average by several days. A ramping up of testing
with time could also cause this behavior.

However, correlation is not causation and attributing the
excess death rate to COVID-19 is still a strong assumption.
Hence, we discuss possible caveats. COVID-19 has put enormous
pressure on Italy’s medical system and social services. This could
have led to fatalities that could otherwise be averted, causing us to
overestimate the COVID-19 deaths. However, the pressure on the
medical system is regional and likely sustainable for regions with
a low number of official COVID-19 deaths, like Piemonte and
Liguria. Instead, we consistently find a similar and very large

Fig. 3 Age distribution of excess mortalities. Same as Fig. 2b but for different age groups. We find a statistically significant excess over the reported
COVID-19 deaths that is increasing with age.
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excess in mortality over the official counts in many regions in
Italy, which appears to be independent of how hard the region
was hit (see Fig. 2b).

The temporal trend also lends a similar argument: the societal
and medical systems should function normally in the earliest
stages of the pandemic and get increasingly stressed as the
number of infections increases. We see that the fraction of deaths
missed by the reported COVID-19 fatalities is the highest in the
early stage, and decreases as the number of reported infections
increases. The reported COVID-19 fatalities finally catch up with
the estimated excess fatalities by the end of April 2020. We show
this in Fig. 4 where we compare the fraction of deaths missed
every week with the number of COVID-19 reported hospitaliza-
tions (normalized with the maximum number of hospitalizations
up to 18 April 2020).

Our hypothesis is that the excess deaths over official COVID-
19 deaths are primarily due to the lack of testing in the initial
stages of the pandemic. In Fig. 4, we also show the number of
tests conducted every week as the fraction of tests conducted in
the week of 11 April 2020. The trend supports our assertion that
with an increase in testing as the pandemic evolves, the reported
fatalities due to COVID-19 slowly catch up with the true current
mortality and the increased pressure on medical systems did not
have a statistically significant effect on the mortality.

There are also arguments that suggest we may have under-
estimated the COVID-19 death rate. Italy has been under
lockdown since 9 March 2020, which may have reduced fatalities
due to other common causes such as road and workplace
accidents, or criminal activities. This can be studied by observing
the death rate correlations with the lockdown data in regions with
little or no infection, such as South Italy. There are several regions
that do not show an excess death rate, but none of them show a
deficit death rate post 9 March 2020, so we assume that this effect
is negligible, especially for age groups above working age.

Fatality and IRs. Having established that the observed excess
deaths can reasonably be attributed to COVID-19, we can use our
estimates and uncertainties of the excess mortality from the CGP
and SCM counterfactuals to calculate the fatality rates and
infection fractions for Italian regions. The left panel of Fig. 5

shows the PFR in different age groups, the total number of excess
mortality deaths attributable to COVID-19 as a fraction of the
population. We find a steep age dependence of PFR: in Bergamo
province, 1.89%, 4.84%, and 11.06% of the entire population in
the age groups 70–79, 80–89, and 90+, respectively, died. For the
entire population, the PFR is 0.57% (and similarly 0.29% in
Lombardia). Since the PFR corresponds to the IFR if the infection
fraction is 1 (maximum possible), we expect these numbers to be
the most conservative lower limits on the (age dependent) IFR
(Table 2).

Lower limits on IFR. The central panel of Fig. 5 shows the lower
bounds on the IFR. Estimating the IFR from the PFR requires the
IR of the population. Here, we use the test positivity rate (TPR)—
the fraction of positive to total tests, as an estimate of the fraction
of the infected population. Owing to a lack of testing and the
criterion of primarily testing people with symptoms, this should
be an upper bound on the IR in the early stages of the pandemic.
For every region, we use the maximum of the cumulative TPR
estimated up to 5 September as our estimate for the IR. This
should be an upper limit on the IR and hence give a conservative
lower bound on the IFR. We further assume that this ratio is age-
independent in every region5. The age-averaged lower bounds on
the IFR are shown in Table 1, with the most robust estimate of
0.73 ± 0.08% IFR lower bound from Lombardia, consistent with
0.57% lower bound from Bergamo province.

IR and IFR calibrated on the Diamond Princess. The PFR can also
be combined with an independent estimate of the IFR to obtain
the IR with the relation IR=PFR/IFR. At the time of writing, the
only large dataset with complete testing and hence unbiased
estimate of the IFR is the Diamond Princess (DP) cruise ship. For
our analysis, we assume that the age-dependent IFR is location
independent: we account for age differences, but not for other
differences between the DP and Italian populations in the same
age group such as co-morbities, dose differences, or health-care
access.

The last death on the ship was reported on 18 April 2020 and
11 out of 330 DP infections in the age group above 70 had been
fatal (a few of the fatalities do not have age information). This
results in an IFR for this age group of 3.3% and we assume a

Fig. 4 Fraction of missed deaths over time. For the period of the pandemic, we show per week the fraction of missed deaths (green) with corresponding 1
−σ (68% CI) estimated from the variance of the Gaussian model, the number of hospitalizations (normalized with the maximum weekly hospitalization up
to 18 April 2020, in orange) and the number of tests conducted (normalized as a fraction of tests conducted in the week of 11–18 April 2020, in blue). We
find that the missed fraction goes down as the number of tests increases while the hospitalizations have remained consistently high in the last 4 weeks.
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Poisson distribution to estimate the errors. The population
distribution in this age group on the DP was 80% in 70–79 and
20% above 806. For each region of Italy, we re-weigh the
population to match this age distribution and hence match the
age-weighted IFR to the DP in the 70–89 age group. Combining
this with the corresponding PFR, we are able to estimate IRs for
this age group. Then, under the assumption of age-independent
IR, we can combine this estimated IR with observed PFR for other
age groups to derive IFR for all the other age groups (Table 1). IR
range from 4% up to 29% (15–52% 95% CI) in Lombardia and
72% (36–100% 95% CI) in the province of Bergamo. In all cases,
the estimated mean IR is below the upper limit set by the
maximum TPR.

Age dependence of IFR. The right panel of Fig. 5 shows our
estimate of these DP-anchored IFR estimates. As we make the
assumption of constant IR for all age groups, we focus on the
regions with high IR (>10%) where these assumptions are more
likely to hold. The most reliable data come from Lombardia and
Bergamo, as they are nearly complete, past the peak, and have a
high number of statistics with small errors. The age-dependent
IFR range from below 0.04% for ages below 50 years to 2.5%,

7.24%, and 20% for ages 70–79, 80–89, and above 90 years,
respectively, (Table 2). This is broadly consistent with the esti-
mates from the Hubei province in China, but suggests a steeper
age dependence as shown in Fig. 5 for Verity et al3,5–8. analysis.
Although the overall amplitude of our IFR estimates is anchored
to DP, the relative age dependence is not.

Crude mortality rate per year traces IFR. In Table 2, we list the
crude mortality rate per year (YMR), i.e., the fraction of the
population that on average dies within a year for each age group
and region. We make an interesting observation that the YMR
traces the IFR for ages above 60 within 20% for different regions
in Italy. One possible explanation for this trend could be that the
YMR takes into account varying prevalences of co-morbidities
across different population and ages. Many of the co-morbidities
that reduce the general life expectancy might also lead to an
increased risk of dying from COVID-19. We find that this
observation holds in other places as well, for instance New York
City where the population YMR is 0.62% and United Kingdom9.
This number is similar to the NYC IFR estimated from com-
bining the age-dependent IFR from Italy data, and consistent with
a lower bound of 0.49% IFR estimated independently of Italian

Fig. 5 Fatality rates for different age groups and regions. (Left) Population fatality rate (PFR) from the cumulative estimates divided by the regional
population. (Center) Lower bounds on infection fatality rate (IFR) using the maximum test positive rate (TPR) as an upper bound on infection fraction.
(Right) Estimates of the true IFR when normalizing the age 70–89 group to the Diamond Princess IFR (in shaded blue, with the corresponding Poisson error
estimate). We also show estimates from Verity et al.5 with corresponding (68% CI). in magenta, which gives less steep age dependence. In the center and
right panel, the gray lines are weighted mean estimates for IFR with 1 sigma weighted standard deviation bands. The horizontal lines are the age-averaged
IFR for the entire population. Error bars for all the regions and age groups are 1−σ (68% CI) error from the variance of the Gaussian model combined with
Poisson errors based on number of deaths that differs for every region and age group. In all panels, we have staggered the points horizontally for every age
group for better visibility.

Table 1 Estimated fatalities, infection rates (IR), and infection fatality rates (IFR).

Region Population (in
millions)

COVID-19
(reported
deaths)

Completeness
(available data)

Total deaths
(predicted)

TPR (max) IFR in %
(lower limit)

IR from DP mean
(95 % cl)

Emilia-
Romagna

4.41 4463 0.97 6642 ± 393 0.29 0.51 0.15 (0.07–0.27)

Liguria 1.60 1575 0.97 2740 ± 242 0.35 0.49 0.13 (0.06–0.23)
Lombardia 9.86 16880 0.99 28989 ± 706 0.40 0.73 0.29 (0.15–0.52)
Marche 1.57 987 0.93 1535 ± 207 0.43 0.23 0.09 (0.05–0.16)
Piemonte 4.43 4150 0.96 6830 ± 444 0.36 0.43 0.13 (0.06–0.23)
Toscana 3.73 1143 0.97 1777 ± 377 0.18 0.27 0.04 (0.02–0.07)
Veneto 4.93 2128 0.93 3261 ± 376 0.09 0.73 0.06 (0.03–0.11)
Bergamo 1.09 3251 0.99 6254 ± 48 1.00 0.57 0.72 (0.36–1.29)

We estimate total deaths (as of 11 April 2020), lower limit IFR (by assuming IR = TPR (test positive rate) for all regions except Bergamo, for which we take IFR lower bound = PFR) and IR by normalizing
to Diamond Princess (DP) IFR for age group above 70 years. Completeness is the fraction of regional population for which we have mortality data in our main dataset. The total death errors are 1 sigma
errors (68% confidence interval), and 95% confidence interval for IR from DP.
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data—by combining the NYC COVID-19 PFR of 0.286% as of
October 2020, with the maximum TPR of 0.58% which was
reached in April 2020. Similarly, as of April 22 2020, with 9900
confirmed deaths, this IFR of 0.62% predicted 19.3% IR. This is in
good agreement with the then estimated IR of 23.2% for the NYC
population and 16% IR for 65+ years age group from ser-
opositivity tests10. Another interesting observation is that the age-
dependent YMR also matches the proportion of deaths in dif-
ferent age groups. The proportion of YMR predicts COVID-19
mortality rate in age groups 45–64, 65–74, and above 75 to be
19%, 18%, and 55%, respectively11. This is in agreement with the
current official NYC COVID-19 death fractions of 22%, 24%, and
50%11. These numbers match the higher death fraction among
the younger population that is observed in the US compared with
some Italian regions like Lombardia where only 8% of fatalities
are in the age group <65 years of age.

Discussion
To our knowledge, our analysis makes use of the most recent
available mortality data set with the highest completeness and the
least statistical uncertainties to estimate fatality rates for COVID-
19. Our results suggest that a significant population of older
people has died of COVID-19 without entering the official sta-
tistics. This leads to an underestimation of total deaths in Italy by
more than a factor of 1.5. We note that similar excess deaths have
been reported for the United States12,13 and other countries in the
Europe14.

For policy decisions, one of the key parameters is the IFR and
in this article we derived a strong lower bound from combining
the PFR with the TPR. This bound is 0.73% from Lombardia and
0.50% from NYC. Our bound of 0.57% from Bergamo is inde-
pendent of the IR and TPR, as we make the most conservative
assumption of IR~1 to derive it.

Our work has implications on the age distribution of the
mortality, which is skewed even further to the older population

than the official COVID-19 statistics suggest (see Table 2). Owing
to the high number statistics, we can estimate the IFR in lower
age groups very precisely: for example, we obtain 0.04% IFR
(0.02–0.09% 95 % CI) in age group 40–49, a lot lower than
previous estimates5. We also make an observation that the yearly
mortality rate traces IFR in different regions of Italy and New
York City, even matching the higher fraction of total fatalities
attributed to the younger population (<65 years) in New York
City as compared with Lombardia. This suggests that COVID-19
mortality tracks the YMR.

For this work to be globally relevant, we can test the hypothesis
that the age-dependent IFR is location-independent by compar-
ing our lower bounds and mean estimates to IFR estimates from
other regions. We find that our IFR estimates are lower than the
CFR estimates of most countries15, which is as it should be since
CFR is commonly taken to be an upper bound on the IFR. We
note that if only symptomatic cases are being tested and assuming
a 50% asymptomatic ratio as suggested by the DP data, IFR<0.5
CFR, however, for countries with high test rates (e.g., Iceland)
IFR<CFR may be more applicable. For countries like Iceland with
significantly different age distribution as compared with Italy, it is
important to take these age-distributions into account to explain
the observed differences. For instance, if we assume the IFR to
track YMR, which inherently takes regional age distribution into
account, we estimate the IFR lower bound (give by ~0.8× YMR)
for Iceland ~0.52% (given its YMR of 0.65%16), as compared with
the current Iceland CFR of 0.46% (0.22–0.85%, 95% CI)15.

Another estimate of IFR to validate our lower bounds comes
from serology tests, which estimate the IR and can be combined
with the PFR. At the moment these tests suffer from the speci-
ficity error (false positive rate), which if not corrected can over-
estimate the overall IR. The largest serology survey to date has
been performed in the Czech Republic, where the IR measured on
a sample of 26,000 people was found to be only 0.4%. This could
be an upper limit due to the poorly known false positive rate of

Table 2 Age distribution of fatalities and infection fatality ratios (IFR).

Region Age group Population
fraction

Yearly
mortality
rate in %

Fraction of
COVID-19
(reported deaths)

Fraction of
estimated
total deaths

IFR in %
(lower limit)

IFR in % from DP
mean (95% CI)

Lombardia population
IFR (in % from DP mean
(95% CI)) 0.99
(0.50–1.78)

30–39 0.120 0.00 0.00 0.001 0.01 0.01 (0.00–0.03)
40–49 0.161 0.11 0.01 0.007 0.04 0.05 (0.02–0.09)
50–59 0.159 0.28 0.04 0.027 0.13 0.18 (0.09–0.33)
60–69 0.120 0.75 0.11 0.081 0.52 0.71 (0.35–1.28)
70–79 0.101 2.10 0.28 0.238 1.82 2.50 (1.25–4.48)
80–89 0.060 6.60 0.41 0.408 5.27 7.24 (3.60–12.96)
≥90 0.012 18.80 0.15 0.236 14.55 20.00 (9.90–35.82)

Bergamo population IFR
(in % from DP mean
(95% CI)) 0.85
(0.42–1.49)

30–39 0.120 0.00 0.00 0.001 0.01 0.01 (0.00–0.02)
40–49 0.161 0.11 0.01 0.009 0.04 0.05 (0.02–0.09)
50–59 0.161 0.26 0.04 0.031 0.12 0.17 (0.08–0.30)
60–69 0.121 0.76 0.15 0.099 0.52 0.72 (0.35–1.29)
70–79 0.094 2.10 0.38 0.281 1.89 2.62 (1.30–4.69)
80–89 0.052 6.60 0.36 0.397 4.84 6.70 (3.33–11.99)
≥90 0.010 19.30 0.06 0.180 11.06 15.29 (7.56–27.39)

Emilia-Romagna
population IFR (in %
from DP mean (95%
CI)) 0.96 (0.49–1.77)

30–39 0.116 0.00 0.00 0.004 0.02 0.04 (0.01–0.08)
40–49 0.161 0.11 0.01 0.007 0.03 0.05 (0.01–0.10)
50–59 0.157 0.29 0.04 0.031 0.11 0.22 (0.10–0.39)
60–69 0.121 0.75 0.11 0.077 0.36 0.70 (0.34–1.26)
70–79 0.103 1.99 0.28 0.249 1.37 2.67 (1.32–4.79)
80–89 0.066 6.60 0.41 0.383 3.30 6.44 (3.17–11.54)
≥90 0.016 19.10 0.15 0.247 8.80 17.17 (8.40–30.82)

We show the age distribution of reported COVID-19 and our estimation of excess mortality for Lombardia, Bergamo, and Emilia-Romagna, and the corresponding IFR estimates—the lower limit and
estimated IFR from normalizing 70–89 IFR to Diamond Princess (DP) data, as explained in the text. The errors are small for fraction of total deaths and IFR lower limit, and we report 95% confidence
interval (CI) for IFR from DP. We also show age fraction and yearly mortality for 2017: the latter traces IFR above age of 60 within 20%. The age-averaged yearly mortality rate is 0.98% for Lombardia,
0.91% for Bergamo, and 1.13% for Emilia-Romagna. We also show crude mortality rate per year, which traces IFR above age of 60 to within 20%.
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the test. With the current PFR of 2.5 × 10−5 (which could be an
underestimate to the true PFR if some deaths have been missed)
this translates into an IFR lower bound of 0.64%, very similar to
the other lower bound IFR estimates in this paper (Bergamo,
Lombardia, NYC). An example of a serology study where speci-
ficity is a small correction is the study17 in Gangelt, which finds
an IR of 14%, and converts it to a 0.36–0.41% mean IFR based on
7–8 deaths17. However in this study, the error due to the small
number of deaths has not been taken into account and assuming
a Poisson distribution with 8 deaths (thus Poisson rate λ= 8)
results in a 95% CI of 0.18–0.81%18 for the IFR, which is
consistent with our lower bound. The study could further
be biased low by a possible underestimation of the total
death count.

It is important to note that IRs can vary a lot within a single
country and assumptions of an age-independent IR might not be
valid in a population. An example of the latter comes from Sin-
gapore where the CFR is 0.05%15. This seemingly violates our
lower bounds on the IFR. However, this contradiction likely arises
from an in-homogeneous IR. In fact, anecdotal reports suggest
that most of the infections are among the younger immigrant
worker population, and the IR among the older population could
be lower than the TPR. Thus, age-dependent IR could also be a
limitation to our analysis. We note, however, that such age
dependence is more likely for low IRs and our analysis has
focused on regions with presumably high IRs of northern Italy.
Furthermore, our age-dependent PFR from the province of Ber-
gamo provides a lower limit to the IFR (Fig. 5), which is inde-
pendent of the IR.

Our analysis also sheds light on the puzzle of high CFR in
regions of Italy, for example, 10% in Lombardia. This high CFR
can be explained by the high IR. In Lombardia, the total number
of administered tests as of 8 September was 1,736,911, which is
≈17% of the population. With these tests, 5.8% of the total
population was tested positive. A comparison to our estimated
23% IR suggests that the IR is five times higher than the number
of positive tests. This disparity was much higher in the past at the
peak of the pandemic−at the end of April 2020, IR was ~35 times
higher than the reported number of positive cases. If tested cases
are the most severe cases that likely required hospitalization, their
fatality rate will be significantly higher than that of the overall
infected population. Finally, we re-iterate the few assumptions
that our analysis relies on and that we have highlighted
throughout the text. To use more information in the available
data over simple historical mean estimates, we employ two dif-
ferent statistical methods that make very different assumptions
about the data—CGP makes the assumption of the data dis-
tribution being correlated Gaussian while SCM makes an
assumption about the causal structure. We validate these
assumptions with a cross-validation/placebo analysis, as shown in
Supplementary Fig. 1. Our primary assumption in interpreting
the results is that we attribute all the excess deaths to COVID-19
fatalities. To estimate the lower limits on IFR we have assumed
the maximum TPR from the early period of the pandemic as a
proxy of IFR and to estimate DP-anchored IFR, we have assumed
age-independence of the IR in heavily infected regions like
Lombardia and have also only accounted for the difference in age
distribution of DP and Italy populations. The most direct way to
verify our assumption regarding excess deaths is to perform
COVID-19 tests on every fatality, which is currently not done in
any location. Alternative explanations for excess fatalities could
partly be ruled out by repeating our analysis in other regions of
the world. This approach is becoming increasingly feasible as data
aaare made available for some locations (NYC13, France, Spain14)
and preliminary analyses suggest a similar underestimation of
COVID-19 deaths in other parts of the world9,13. Some statistics

such as those published by NYC are now including probable
deaths in the official counts.

Methods
We use the total Italian mortality data from the Italian Institute of Statistics (Istat).
We note that this is a data set of the total number of deaths from any cause, and
that the cause of death is not available. The dates correspond to the actual day of
death and not the day that it was reported. The data set is publicly available and
contains the total number of daily deaths for 7357 towns in Italy for the period of 1
January to 30 June for years 2015–2020. The data set comprises the daily mortality
for 21 age groups: 20 groups between the aged of 1–100 and one group for ages
above 100. To reduce the statistical noise we combine the daily data into week-long
periods and 10 age groups.

We then combine the data from the different towns in the same region for our
analysis. The available data covers over 95% of the Italian population. The high
completeness ensures that the sample has good representativeness and selection
bias is limited. We assume the missing population is random and scale up the
estimated mortality from this data set in proportion to the ratio of the sum-total
population of the towns in our dataset with the total regional population, as per the
2010 census. To estimate the fatality rates, we will primarily rely on the most
complete region of Lombardia (99% complete) and the province of Bergamo
(99.5% complete).

We compare our numbers with the officially reported deaths from COVID-1919.
This database is different from the total mortality described above and is main-
tained by the Italian "Protezione Civile” department. It contains the number of
deaths associated with positive COVID-19 tests, and hence may be a lower bound
to the true number of COVID-attributable deaths given the initial shortage of
testing, especially outside of hospital setting. We assume that the age distribution of
COVID-19 mortality in every region is the same as the national distribution, except
for the province of Bergamo, which provides age-distribution data.

We perform a counterfactual analysis in which we compare the observed 2020
data to a prediction for mortality in 2020 in the absence of any pandemic
(counterfactual), derived from models constructed from historical mortality data.
In this approach, the past years are referred to as the control units and 2020 is the
treated unit. A commonly used counterfactual model is the mean of the historical
data. This approach falls short in two aspects. (1) It does not take into account the
information that is available about the mortality in 2020 before the pandemic. If we
make the conservative ansatz that Italy had no significant number of infections
before February 16 (patient one was diagnosed with COVID-19 on Feb 20), this
provides us with 6 weeks of mortality data in 2020 that contains valuable infor-
mation about seasonal effects such as the severity of the flu season in 2020. (2) The
second shortcoming of the historical mean model is that it does not capture cor-
relations in the mortality data between weeks. We base our analysis on two dif-
ferent models, which account for these additional sources of information.
Performing the analysis with two models that each make different assumptions
about the data distribution offers a way to test how much the results are dependent
on these assumptions.

Model 1 is a conditional mean with a Gaussian process (we will refer to it as
CGP model). This model assumes that the data follow a Gaussian distribution and
estimates its mean and covariance from historical data. The Gaussian distribution
is the maximum entropy model for a probability distribution with finite mean and
covariance. Owing to the limited amount of historical data available (only 5 years
as control units), we cannot estimate any higher order correlations of the data
distribution. A Gaussian is therefore the distribution, which best represents our
knowledge of the data (according to the maximum entropy principle). Given that
we are modeling a 25-week period, the data are not sufficient to estimate the full
covariance, a matrix of size 25 × 25. We therefore impose a regularization with a
principle component analysis. We find that two components explain 90% of the
variance in the data, suggesting that the regularized covariance constitutes a good
model for the true covariance. This full covariance captures correlation between
different weeks. To make the model dependent on the early 2020 mortality rate, we
condition the Gaussian on the data from the first 6 weeks. The conditional dis-
tribution is again Gaussian. We take its mean to be the counterfactual prediction
and its variance as an error estimate.

Model 2 is a SCM. This model makes minimal assumptions about the underlying
data distribution, instead, it makes assumptions about the causal structure of the
data: that there is a weighted average of the control units (i.e., previous years)
which predicts the potential outcome of the treated unit (current year) in the
absence of the pandemic. The weights for the different control units in this linear
combination are estimated by minimizing the difference between this prediction
and the observed data for 2020 in the pre-pandemic period. Another implicit
assumption made in SCM is that the similarities between the years, which lead to a
good fit in weeks before the pandemic continue to exist in the later weeks, meaning
that the same weights can be used for predicting the counterfactual in the pan-
demic period. It is a conservative assumption since there is no a-priori reason for
why the mortality rate in the later months of 2020 should have been different from
previous years (and the variations between previous years) without the pandemic.
The SCM method for counterfactual analysis is well established in the social sci-
ences and policy making20,21.
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We fit both methods on the data for each province, region, and age group. The
technical details of both methods can be found in the supplementary materials and
results for different age groups are presented in Supplementary Fig. 2–5. To vali-
date our methodology, we also do a cross-validation/placebo analysis20 in which we
treat each of the control units as a treated unit in turn and use the remaining
control units to predict the outcome. As in this case, the assumed treated year has
not undergone any pandemic, our prediction should match the observed data and
we do indeed find that overall, as shown in Supplementary Fig. 1, predictions from
our proposed methods are closer to the observed data in comparison with a simple
historical mean.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed data used in this analysis is available on GitHub22 at https://github.com/
bccp/covid-19-data and the original data can be obtained from the Italian Statistical
institute https://www.istat.it/it/files//2020/03/Dataset-decessi-comunali-giornalieri-e-
tracciato-record_al30giugno.zip.

Code availability
The code is available at Github22 and at Zenodo23.
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