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ABSTRACT OF THE DISSERTATION

Polar Codes for Data Storage and Communication Network Applications

by

Karthik Nagarjuna Tunuguntla

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2022

Professor Paul H. Siegel, Chair

The dissertation provides polar coding techniques for a variety of source and channel

models with applications to storage and communication networks.

We first provide universal polar codes for asymmetric compound channels that avoid

common randomness. A staircase alignment of polar blocks is considered in the code construction.

An MDS code is used in each column achieving the universality and a scrambling technique is

implemented for each column helping avoid common randomness. These compound asymmetric

channels are used for modelling flash-memories, such as MLCs (multi-level cell flash memories),

and TLCs (three-level cell flash memories) memories. Hence the proposed universal polar codes

xi



for asymmetric channels can be used for flash memory error correction.

The costly noiseless channel model was used to model a flash memory device. Each of

the voltage levels to which a flash memory cell can be programmed has an associated wear cost

which reflects the damage caused to the cell by repeated programming to that level. Shaping

codes that minimize the average cost per channel symbol for a specified rate and shaping codes

that minimize the average cost per source symbol (i.e., the total cost) have been shown to reduce

cell wear and increase the lifetime of the memory. Hence, we study polar shaping codes for

costly noiseless channels minimizing total cost. We also study polar shaping codes for costly

noisy channels for the design of efficient codes that combine wear reduction and error correction

for use in a noisy flash memory device.

A novel scheme based on polar codes is proposed to compress a uniform source when

a side information correlated with the source is available at the receiver while the conditional

distribution of the side information given the source is symmetric and unknown to the source.

An adaptation of universal polar codes with an incorporation of the linear code duality between

channel coding and Slepian-Wolf coding is used in the design of those codes. Optimal rate is

achieved through the proposed codes for the source model. These codes can be used in a wireless

sensor network where the measurements tracked at two different nodes are correlated and the

correlation may not always be fixed due to environmental changes such as weather. The nodes

communicate the information sensed or measured by them to a central location.

Finally, we provide a capacity-achieving polar coding strategy on a multi-level 3-receiver

broadcast channel in which the second receiver is degraded (stochastically) from the first receiver

for the transmission of a public message intended for all the receivers and a private message

intended for the first receiver. A chaining strategy, translating the ideas of superposition coding,

rate-splitting and indirect coding into polar coding, is used in the construction. The codes

designed for such a channel model and setting can be used for video and audio file transfer in a

client-server network where the individual clients are a computer and two mobile phones.
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Chapter 1

Introduction

1.1 Polar codes

Polar codes, introduced in 2009 by Arikan [1], are provably capacity-achieving codes for

binary-input symmetric channels. They have an explicit construction and admit low-complexity

encoding and decoding. These properties have made them the subject of extensive investigation

since their introduction in 2009. The polar code construction is based on the phenomenon of

polarization, whereby independent copies of a discrete memoryless channel are recursively

transformed into channels that have nearly full capacity or nearly zero capacity. The channels

with nearly full capacity are used to transmit information reliably, while the channels with nearly

zero capacity are provided with predefined dummy bits.

When the recursive polar transformation is adapted to independent, identical random

variables, the resulting phenomenon is referred to as source polarization [3]. Source polarization

has led to code constructions for lossless compression, Slepian-Wolf source coding, lossy source

coding, and Wyner-Ziv coding [3], [26], [27] that achieve fundamental rate limits. Capacity-

achieving polar coding schemes are developed for asymmetric channels [24], [11], [33].

Polar codes are specifically designed for a given channel to achieve its capacity. Hence

they are not universally applicable to any DMC for achieving its capacity. Some constructions

based on polar codes have been proposed to achieve the universality [22], [23], [48]. Polar

coding schemes for networks, such as Gilfand-Pinsker coding [27], broadcast channels [17], [32],

1



interference channels [54], relay channels [53], multiple-access channels [40], [5], and wiretap

channels [30], [12], [39] have been investigated. Polar code constructions based on monotone

chain rules are used for the Slepian-Wolf problem [2] and the multiple description problem [6]

to attain all points in the rate region without time-sharing. All the polar code constructions for

these multi-terminal settings have low-complexity encoding and decoding methods.

Polar code construction requires determination of good bit-channels of almost full

capacity and bad bit-channels of almost zero capacity obtained after polarization. Efficient low-

complexity algorithms to determine these bit-channel sets used for polar code constructions have

been proposed [35], [50], [41]. The polarization phenomenon extends to arbitrary alphabets, such

as finite fields [47], [36]. Asymptotic polarization behaviour in large block regimes [4], [25], [36]

and its dependency on transmission rate [21] have been studied. Finite length scaling of polar

codes – the required scaling of block length to maintain a fixed probability of decoding error

as the code rate approaches capacity – has been studied for different polarization kernels and

alphabet sizes [20], [19], [18], [42]. A generalization of the polar coding scheme exploiting

several homogeneous kernels over alphabets of different sizes and its polarization behaviour [43]

is studied.

In this dissertation, we construct polar codes for settings that apply to storage devices

and communication networks. Specific contributions include: universal codes for asymmetric

channels, suitable for error correction in flash memories; shaping codes to for costly noiseless

and noisy channels, intended to enhance the reliability and extend the lifetime of flash memory

devices; source coding schemes with correlated side information at the receiver but with unknown

correlation at the transmitter, applicable to communication between nodes in a sensor network;

and a capacity-achieving coding scheme for a three-receiver broadcast channel.

2



1.2 Polarization

Polarization process is used in all the code constructions provided in this dissertation as

they are developed based on polar codes. We now review the source polarization results briefly.

We express any set of random variables Xi,Xi+1, . . . ,X j (i < j) by a row vector (Xi,Xi+1,

. . . ,X j) which is denoted by X i: j. We denote the set {1,2,3, . . . ,N} by [N]. If U1:N is a row vector

and A ⊂ [N], then UA denotes the row vector consisting of elements in U1:N corresponding to

the subset of positions A in the same order.

Let (X1,Y1),(X2,Y2), . . . ,(XN ,YN) be i.i.d. random tuples distributed according to p(x)p(y|

x) over X ×Y and N = 2n. Let X = {0,1}. Let GN be the conventional polar transforma-

tion [1], represented by a binary matrix of dimension N ×N. If U1:N = X1:NGN , then we denote

P(U1:N = u1:N) by PU1:N (u1:N) and similarly we denote P(Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N) by

PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N).

For two random variables (X ,Y ) distributed as p(x)p(y|x), the Bhattacharya parameter

is defined as

Z(X |Y ) = 2∑
y

PY (y)
√

PX |Y (1|y)PX |Y (0|y).

Let β < 0.5 and define the following subsets obtained by polarization, with notation

adapted from [15].

HX = {i ∈ [N] : Z(Ui|U1:(i−1))≥ 1−2−Nβ }.

LX = {i ∈ [N] : Z(Ui|U1:(i−1))≤ 2−Nβ }.

HX |Y = {i ∈ [N] : Z(Ui|U1:(i−1)Y 1:N)≥ 1−2−Nβ }.

LX |Y = {i ∈ [N] : Z(Ui|U1:(i−1)Y 1:N)≤ 2−Nβ }.
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Note that LX ⊆ LX |Y . From Theorem 1 in [24] we have the following results.

lim
N→∞

1
N
|HX |= H(X), lim

N→∞

1
N
|LX |= 1−H(X),

lim
N→∞

1
N
|HX |Y |= H(X |Y ),

lim
N→∞

1
N
|LX |Y |= 1−H(X |Y ).

We define several other subsets of bit-channels as follows:

I = HX ∩LX |Y ,F = HX ∩L c
X |Y ,R = (HX ∪LX)

c.

We refer to these as good, bad, and not completely polarized bit-channels respectively. We refer

to bit-channels in HX and bit-channels in LX as high-entropy bit-channels and low-entropy

bit-channels respectively. The fraction of bit-channels in set R with respect to the block length is

vanishing as N increases due to polarization. From [24, Theorem 1],

lim
N→∞

|I|
N

= I(X ;Y ). (1.1)

A capacity-achieving polar code design for a binary-input DMC involves providing

information bits in set I and frozen bits known to decoder in F .

1.3 Dissertation overview

The dissertation is organised as follows.

In Chapter 2, we provide universal polar code construction for a compound channel

containing finite number of asymmetric DMCs avoiding common randomness. A staircase of

polar blocks are considered in the code construction. The high-entropy bit-channels in each full-

height column of staircase are provided with an MDS codeword encoded from information bits to

achieve universality while randomly generated not-completely polarized bits are stored in good
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bit-channels of all DMCs of the compound channel via scrambling for each full-height column,

which helps avoid common randomness. A thorough probability of decoding error analysis

is studied following the scheme. Multi-level cell flash memories are modelled as Truncated

support beta-binomial channel model, which is a compound channel containing asymmetric

channels [52]. Hence the proposed codes are useful for flash memory error correction in practice.

In Chapter 3, we propose shaping codes for costly noiseless and noisy channels based on

polar codes. Costly channel has a cost associated to each symbol of the alphabet. Shaping codes

encode information on costly channels subject to an average cost constraint. Our proposed polar

codes for costly noiseless channels achieve minimum possible average cost per information bit.

The proposed polar shaping codes for costly noisy channels achieves its minimum average cost

per information bit ensuring reliable transmission of information by using common randomness.

We also alternatively prove that a polar shaping code construction avoiding common randomness

also achieves the optimal total cost. In practice, application of shaping codes include data

transmission with a power constraint [16], and data storage on flash memories [29] and efficient

strand synthesis for DNA-based storage [28].

In Chapter 4, we provide coding scheme for compressing a memoryless uniform source

when a side information correlated to source is available at the receiver and correlation is

unknown to the source. The proposed scheme involves adaption of universal polar coding

schemes for compound channels and use of linear code duality between channel and source

coding. The code construction designed based staircase of polar blocks only applies to a class of

symmetric conditional distributions of the side information given the source. In wireless sensor

networks, individual nodes monitor data related to physical conditions, such as temperature,

sound, humidity, wind and forward to central node. The data monitored at any two nodes in

such a sensor network can be assumed to have some correlation which is not always fixed and

changes. Therefore, data monitored at one node can act as a correlated side information of data

monitored at another node if the later node intends to receive information from the former. Hence

the proposed schemes are useful for communication between nodes in a wireless sensor network.
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In Chapter 5, we propose a scheme based on chaining polar blocks for a 3-receiver

broadcast channel when transmitter is required to send a public message to all receivers and

private message to receiver-1 reliably. The output at receiver-2 is degraded from the output at

receiver-1 for the broadcast channel. The proposed coding scheme essentially translates the

ideas of rate-splitting, superposition coding, and indirect decoding achieving all the rate pairs in

the capacity region. We also provide the motivation for our interest in considering the problem

through a file transfer application in a client-server network.
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Chapter 2

Universal Asymmetric Channel Polar Cod-
ing without Common Randomness

2.1 Introduction

Arikan [1] constructed capacity-achieving codes for binary-input symmetric channels. A

capacity-achieving coding scheme based on source and channel polarization for binary-input

asymmetric channels was proposed by Honda and Yamamoto [24]. Following Mondelli et

al. [33], we refer to the scheme as the integrated scheme. In this scheme, complex boolean

functions are shared between encoder and decoder for non-information carrying bit-channels.

The use of common randomness is proposed to avoid these complex boolean functions [24].

En Gad et al. [15] used randomized rounding for low entropy and not-completely polarized

bit-channels. In addition, a side channel was used to reliably transmit bits corresponding to

not-completely polarized bit-channels, whose fraction is vanishing with respect to the block

length. This reduces the storage requirement to polynomial complexity. It was noted in [33] that

better simulation results were achieved when an argmax rule was used in place of randomized

rounding to encode low-entropy bits. A proof that argmax can be used to encode low-entropy

bits is given by Chou and Bloch [11].

A compound channel is a set of discrete-memoryless channels (DMCs), (X ,{pl(y|x) :

l ∈ S},Y ) where y ∈ Y for every state l in the set S. The compound channel can be looked

at as a DMC with state, where the state is arbitrarily selected and fixed for the transmission
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of an entire block. The assumption is that the decoder knows the channel state. Hassani and

Urbanke [22], [23] presented two “polar-like” universal coding schemes to achieve rates close to

the compound capacity of binary-input symmetric DMCs. Sasoglu and Wang [48] introduced a

method to polarize symmetric channels universally. In this paper, we present a universal polar

coding scheme for the asymmetric setting that achieves the compound capacity of any finite set

of binary-input asymmetric channels. We can get such a scheme by a combination of Honda and

Yamamoto’s polar coding scheme for asymmetric channels [24] and a universal polar coding

scheme for symmetric channels proposed by Hassani and Urbanke [22], [23]. But a direct use of

Honda and Yamamoto scheme in the universal schemes presented in [22], [23] requires either

high-complexity boolean functions or common randomness [24], or a side-channel [15] in its

implementation.

Our main technical contribution in this paper is that we give a new coding strategy

exploiting the structure of staircase, originally proposed in the universal scheme for symmetric

channels [22], that eliminates the need to use storage-intensive shared boolean functions, a

separate side channel to transmit bits corresponding to bit-channels that are not-completely

polarized, and common randomness. We initially assume a condition on the polar block that

the number of the bit-channels which are good for all the DMCs of the compound channel is

greater than the number of not-completely polarized bit-channels in order to implement our

staircase scheme. The key idea behind the scheme is that we use randomized rounding to encode

not-completely polarized bit-channels that lie in a full-height column of the staircase and we

store them in the good-bit channel set for all DMCs in the same column so that they are reliably

decoded at the decoder.

Our solution addresses the technical challenges to construct the desired coding scheme

based on this idea. One of the main challenges of our random code construction method is

that the we should ensure that each block in the staircase has the same average distribution

as required for a single asymmetric channel code [24], [11] to get a reliable code. To do so,

we implement the following novel elements in the code construction. We add a designated

8



information bit of each full-height column to the encoded not-completely polarized bits of that

column and store these resulted bits in the good bit-channels of all DMCs in the same column.

To fill the positions in the non-full-height columns on the left, we use the frozen vector, which is

generated randomly according to the distribution requirements. Finally, the bit-channels of the

non-full-height columns on the right are encoded using randomized rounding with the required

distribution. These do not require decoding and are ignored at the decoder. We rigorously

prove that following these novel steps satisfies the average distribution requirement and provide

the decoding error analysis for the proposed staircase scheme. We also propose a continuous

encoding and decoding method for the staircase scheme that saves delay in communication by a

factor of the width of the staircase.

If the assumed condition is not true, we propose to make use of another universalization

method based on bit-channel combining [22] to produce a hybrid polar block that satisfies the

required condition so that we can apply the proposed staircase scheme using such a hybrid

block. We refer to this scheme as the hybridized staircase scheme. We define the bit-channels

of the hybrid polar block and then we establish the average distribution requirement for each

hybrid polar block used in the staircase to get a reliable code. This will give us the conditional

distribution requirement of each bit-channel of the hybrid polar block while encoding. Then we

provide steps for encoding and decoding by adapting the encoding and decoding methods of the

proposed staircase scheme for the original block. We show that the encoding method ensures

the average distribution requirement for each hybrid block and provide the rigorous decoding

error analysis for the hybridized staircase scheme. We present a new algorithm that efficiently

produces a hybrid polar block, satisfying the desired condition, which is at most 2s−1 times the

original polar block length, where s is the number of DMCs in the compound channel.

In practice, common randomness is implemented by use of pseudo random number

generators with a common seed. They are not truly random in nature, and they can suffer from

shorter than expected period for weak seed states, correlation of successive values, or lack of

uniformity of distribution for large quantities of generated numbers. Our scheme only needs
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random number generation at the encoder to implement the randomized rounding rule. We can

use truly generated random variables at the encoder side which can be practically realized by

hardware random generators like thermal noise and clock drift, for example. Some of these

methods may be limited by the rate of random variable generation. However, we note that we

need to only produce random variables for not-completely polarized bit-channels, which are

diminishing in fraction, and therefore do not require a high rate of random number generation.

Moreover, if the rate of random number generation is not sufficient, pseudo random generators

with periodically refreshed random keys generated by a hardware random generator can be

used. The capacity of some network settings such as an arbitrarily varying channel depends

on the availability of common randomness between the encoder and the decoder [14, p.172].

So, implementing a code for a network without common randomness and still achieving the

rates that can be achieved with the availability of common randomness is also a theoretically

interesting result.

The paper is organized as follows. In Section 2.2, we introduce some notations and

recall some background results. In Section 2.3, we review the integrated scheme that achieves

the capacity of binary-input asymmetric channels along with the enhancements in [24], [15].

In Section 2.4, we describe our new code construction for the universal polar coding scheme

for binary-input asymmetric DMCs. This section highlights the main contribution of the paper.

The result is that there exists a sequence of low-complexity universal codes, achieving the

capacity of a compound channel comprising a finite set of binary-input asymmetric DMCs

without using high-complexity boolean functions or common randomness or a side-channel in its

implementation. We also provide a continuous encoding and decoding method for the staircase

scheme in this section. In Section 2.5, we provide the hybridized staircase scheme with detailed

decoding error analysis and also provide our new algorithm to efficiently produce a hybrid polar

block with the desired condition satisfied. In Section 2.6, we describe the code construction in

detail, including encoding and decoding methods directly using the hybrid block produced after

combining two polar blocks by the universalization technique based on bit-channel combining.
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The description of the scheme in this section helps provide a clear view of the order of the

bit-channels of the hybrid block produced after combining two blocks. In Section 2.7, we

conclude the paper and also pose a few open problems.

2.2 Preliminaries

We denote random variables by upper-case letters, such as X , Y , and their realizations by

lower-case letters, such as x,y. We denote the input alphabet of the compound channel by X =

{0,1} and the output alphabet by Y . We express any set of random variables Xi,Xi+1, . . . ,X j (i <

j) by a row vector (Xi,Xi+1, . . . ,X j) which is denoted by X i: j. We denote the set {1,2,3, . . . ,N}

by [N]. We denote the set {i, i+ 1, · · · , j} by [i : j] (i < j). Let U1:N be a row vector and let

A ⊂ [N]. The row vector consisting of elements in U1:N corresponding to the positions in A is

denoted by UA . We denote the vector {U j1,U j2, . . . ,U jN} by an indexed vector U1:N
j . We use the

abbreviation "w.p." for "with probability". Let P and Q be any two distributions on an arbitrary

discrete alphabet Z . We denote the total variation distance between the two distributions P and

Q as ||P−Q||. Therefore ||P−Q||= ∑z∈Z
1
2 |P(z)−Q(z)|= ∑z:P(z)>Q(z)P(z)−Q(z).

Let the finite state set of the compound channel be S = {1,2, . . . ,s} for some s ∈ N. We

refer to the DMC associated with state l ∈ S as DMC l. Let (X1,Y1),(X2,Y2), . . . ,(XN ,YN)

be independent and identically distributed (i.i.d.) random tuples distributed according to

PX(x)pl(y|x), where l ∈ S and N = 2n. Let GN be the conventional polar transformation [1],

represented by a binary matrix of dimension N × N. If U1:N = X1:NGN , then we denote

P(U1:N = u1:N) by PU1:N (u1:N) and similarly we denote P(Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N) by

PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N). For two random variables (X ,Y l) distributed as PX(x)pl(y|x), the

Bhattacharyya parameter is defined as

Z(X |Y l) = 2∑
y

PY l(y)
√

PX |Y l(1|y)PX |Y l(0|y).

Let 0 < β < 0.5 and define the following bit-channel subsets, with notation adapted from [15]
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augmented by a subscript l to address the selected DMC in S.

HX = {i ∈ [N] : Z(Ui|U1:i−1)≥ 1−2−Nβ }.

LX = {i ∈ [N] : Z(Ui|U1:i−1)≤ 2−Nβ }.

H(X |Y )l
= {i ∈ [N] : Z(Ui|U1:i−1Y 1:N)≥ 1−2−Nβ }.

L(X |Y )l
= {i ∈ [N] : Z(Ui|U1:i−1Y 1:N)≤ 2−Nβ }.

Note that LX ⊆ L(X |Y )l
, l ∈ S. From [24, Theorem 1], we have the following polarization

results:

lim
N→∞

1
N
|HX |= H(X).

lim
N→∞

1
N
|LX |= 1−H(X).

lim
N→∞

1
N
|H(X |Y )l

|= H(X |Y l).

lim
N→∞

1
N
|L(X |Y )l

|= 1−H(X |Y l).

We define several other subsets of bit-channels as follows:

Il = HX ∩L(X |Y )l
,

Fl = HX ∩L c
(X |Y )l

,

R = (HX ∪LX)
c.

We refer to these as good, bad, and not-completely polarized bit-channels respectively. We often

refer to bit-channels in HX as high-entropy bit-channels. We refer to bit-channels in LX as

deterministic bit-channels or low-entropy bit-channels. The size of set R is a vanishing fraction

with respect to the block length as N increases due to polarization. The capacity of a compound
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channel is well known [14, p. 170] and is given by

Cc = max
PX (x)

min
l∈S

I(X ;Y l). (2.1)

where (X ,Y l) is distributed as PX(x)pl(y|x), whether or not channel state is available to the

decoder [14, p. 170]. From [24, Theorem 1], we have

lim
N→∞

|Il|
N

= I(X ;Y l). (2.2)

The compound capacity-achieving distribution could be non-uniform even if some of the DMCs

in S are binary-input symmetric channels. However, there has to be at least one binary-input

asymmetric DMC in S to get a non-uniform capacity-achieving distribution. The scheme that we

give in this paper is applied whenever the input distribution is non-uniform.

Example:

Let S = {1,2}. Let DMC 1 be a Z-channel with cross-over probabilities p(0|1) = 0.5, p(1|1) =

0.5 and p(0|0) = 1. Let DMC 2 be a binary erasure channel with erasure probability 0.5. Let il

be the mutual information I(X ;Y l). If X is distributed as Bernoulli(α), then mutual information

i1 = H(Y 1)−H(Y 1|X) = H(α

2 )−α and mutual information i2 = H(X)−H(X |Y 2) = H(α)
2 . The

derivative of the mutual information i1 w.r.t α , that is di1
dα

, becomes 1
2 log(1−α/2

α/2 )−1. By equating

the derivative to zero, we get α = 2/5. This gives the capacity-achieving distribution for DMC 1

as mutual information is concave in α . At α = 2/5, notice that i2 = 0.4855 is greater than

i1 = 0.3219. Hence, from equation (2.1), this will also give the compound capacity-achieving

distribution for the compound channel. Therefore the capacity of the compound channel is

H(1/5)−2/5 = 0.322.
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2.3 Integrated polar coding for binary-input asymmetric
channels

In this section, we present the capacity-achieving asymmetric channel coding scheme

based upon [24], [15], [11], which is used as a building block in our proposed universal polar

coding scheme. Let the asymmetric DMC be characterized by p(y|x) and let p(x) be the non-

uniform capacity-achieving input distribution. We use the same notations as in Section 2.2 with

the substitution of I and F for Il and Fl , respectively, as we are considering the single channel

case. Now we describe the encoding and decoding procedure.

2.3.1 Code construction

We first generate random function f : F → {0,1}, where each f ( j), j ∈ F , is chosen

independently and uniformly. These frozen bits are shared between encoder and decoder.

We also generate independent random boolean functions λi : {0,1}i−1 →{0,1} for each

i ∈ R by using the following probability rule:

λi(u1:i−1) = u w.p. PUi|U1:i−1(u|u1:i−1), for u ∈ {0,1}

independently for each u1:i−1. Let the set of random functions be denoted by λR. These functions

are shared between encoder and decoder, which can require exponential storage complexity. The

encoding algorithm is described as follows:

Encoding

Input: uniformly distributed message M1:|I|

Output: codeword X1:N

for i = 1 : N, encode Ui as follows:

1. If i ∈ I, the value of Ui is given by setting U I = M1:|I|.

2. If i ∈ F , we set Ui = f (i).
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3. If i ∈ LX , we encode Ui using the argmax rule [11],

Ui = argmax
x∈{0,1}

PUi|U1:i−1(x|U1:i−1). (2.3)

4. If i ∈ R, we set Ui = λi(U1:i−1).

end

Transmit X1:N =U1:NGN .

The decoding algorithm is as follows.

Decoding

Input: received vector Y 1:N

Output: message estimate M̂1:|I|

for i = 1 : N

1. If i ∈ F , set Ûi = f (i).

2. If i ∈ LX ∪ I, set

Ûi = argmax
x∈{0,1}

PUi|U1:i−1,Y 1:N (x|Û1:i−1,Y 1:N).

3. If i ∈ R, set Ûi = λi(Û1:i−1).

end

Decode M̂1:|I| = Û I .

For i∈LX , the induced conditional distribution δi(u|u1:i−1) on Ui given U1:i−1 satisfies δi(u|u1:i−1

) = 1 and δi(u+1|u1:i−1) = 0 where

u = argmax
x∈{0,1}

PUi|U1:i−1(x|u1:i−1).
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The ensemble average distribution of U1:N induced by the code construction is as follows:

E(λR, f )[P(U
1:N = u1:N |(λR, f ))] = 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LX δi(ui|u1:i−1).

This average distribution is O(2−Nβ ′
) close in total variation distance to the distribution induced

when X1:N is an i.i.d. random vector with distribution p(x), for β ′ < β < 0.5. This makes the

decoding method reliable, with average probability of error E(λR, f )[Pe(λR, f )] = O(2−Nβ ′
) [24].

Common randomness, using pseudo random numbers, can be used for encoding and decod-

ing these bit-channels in R [24]. In [15], use of a side-channel is proposed for bit-channels

(HX ∪LX |Y )c as an alternative to sharing boolean functions. We chose to use boolean functions

or common-randomness to decode all bits in R rather than just to decode bits in (HX ∪LX |Y )c,

a subset of R, for the purposes of applying this to universal coding that we propose in this

paper. The quantities PUi|U1:i−1(u|u1:i−1) and PUi|U1:i−1,Y 1:N (u|u1:i−1,y1:N) used during encoding

and decoding can be computed in O(N logN) real operations [24].

2.4 Universal scheme for asymmetric channels without
common randomness

In this section, we provide our new staircase construction for asymmetric compound

channels. Let p(x) be the non-uniform compound capacity-achieving distribution for compound

channel S.

Let L = min{|I1|, |I2|, . . . , |Is|}. Clearly, limN→∞
|Il |
N = il from equation (2.2), where il is

the mutual information I(X ;Y l) when DMC l is selected in the compound channel. For any ε > 0,

there exists a large enough Nl(ε), such that il − ε ≤ |Il |
N ≤ il + ε for all N ≥ Nl(ε). Therefore we

have min{i1−ε, i2−ε, . . . , is−ε}≤min{ |I1|
N , |I2|

N , . . . , |Is|
N }≤min{i1+ε, i2+ε, . . . , is+ε} for all

N ≥max{N1(ε),N2(ε), . . . ,Ns(ε)}. This implies that min{i1, i2, . . . , is}−ε ≤ min{|I1|,|I2|,...,|Is|}
N ≤

min{i1, i2, . . . , is}+ ε for all N ≥ max{N1(ε),N2(ε), . . . ,Ns(ε)}. Therefore, limN→∞
L
N =Cc.

If the inequality |I1 ∩ I2 ∩ . . .∩ Is| ≤ L is strict, by assigning message bits to indices in
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Figure 2.1. Extended staircases with k = 3,N = 6 and p = 2

I1 ∩ I2 ∩ . . .∩ Is, assigning uniform random frozen bits to indices in HX − (I1 ∩ I2 ∩ . . .∩ Is), and

using the same coding scheme as in Section 2.3 to encode the bits in other indices, we can get a

reliable code, but it will not be capacity-achieving.

As Fl ∪ Il = HX for all l ∈ S, for any channels l,m ∈ S, l ̸= m, a bit-channel which is

good for DMC l and not good for DMC m will be a bad bit-channel for DMC m. This fact will

enable us to adapt the universal coding scheme for symmetric channels [22] to the asymmetric

case and to construct codes that achieve rates close to L
N . As in [22], [23], we use a staircase

scheme composed of polar blocks to achieve rates close to L
N . In our scheme, we exploit the

staircase structure to give a new coding strategy that avoids storage-intensive boolean functions,

common randomness, and a side-channel for encoding bits in R. To do so, we initially assume

|I1 ∩ I2 ∩ ....∩ Is| ≥ |R|, an assumption that will be relaxed in Section 2.5.

2.4.1 Code construction

In order to achieve universality, we will require the use of a linear maximum distance

separable (MDS) code M with block length |HX |− |R|. We let p ∈ N be the smallest integer

for which such a code exists over GF(2p). We arrange polar blocks of size N, for N sufficiently

large, in a staircase with height N. We extend the staircase by placing k ∈ N such staircases

side-by-side. Now take p such extended staircases, graphically placed one above the other, as

illustrated in Fig. 2.1 for the case N = 6, k = 3, and p = 2. In our code construction, while
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encoding, we fill U1:Ns of all the polar blocks column-by-column from left to right, and we

follow the same order while decoding. Hence we encode/decode different polar blocks in parallel

while encoding/decoding a column. The total number of columns is (k+1)N −1, and we label

them with indices 1 : (k+1)N −1 from left to right. While encoding, we need to make sure that

each of the polar blocks in the staircase has the same ensemble average distribution as in the

single asymmetric channel case so that decoding will be reliable.

Before we give the details of our code construction that avoids common randomness and

boolean functions, we briefly describe an elementary staircase scheme with non-uniform input

distributions which is adapted from the symmetric case [22] by directly using the integrated

scheme with common randomness. We need an MDS code with block length |HX | in this

elementary staircase construction. Let p′ be the smallest integer for which such an MDS code

exists over GF(2p′). For the sake of exposition, let us assume p′ to be 1, in which case the

number of extended staircases will be 1. In any column, we set any bit-channel not in HX

according to PUi|U1:i−1 . This is done using common randomness shared between encoder and

decoder, so the decoder will know these bits precisely. Then, we set bit-channels in HX by using

the MDS code that encodes L bits into |HX | bits if it is a full-height column. Note that no channel

information is used in the encoding step. Then, we set bit-channels in HX in non-full-height

columns according to independent uniform distribution, which is known to the decoder by the

common randomness. This encoding method satisfies the ensemble average distribution for

each block in the staircase. The decoder has full channel state information, so it knows the

channel used. Thus, precisely L indices from HX in every full-height column can be decoded

with negligible error. Finally, the remaining |HX |−L bits are obtained by erasure decoding of

the MDS code.

When p′ > 1, we use p′ staircases to store the MDS codeword in a full-height column

in its binary format. As we store the MDS codeword in the high-entropy bit-channels of a

full-height column, we need to make sure that each bit of the codeword in its binary format

satisfies a uniform distribution. In the code construction that we propose, we also use the MDS
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code over field GF(2p) and store it in high-entropy bit-channels that are required to satisfy

a uniform distribution. Lemma 1 below guarantees that this distribution requirement will be

satisfied.

Lemma 1. Let G be the generator matrix of the linear MDS code M over GF(2p). If G does

not have a zero column, then we have an equal number of codewords with zero and codewords

with one in any given position in the binary representation of M .

Proof : Let j be any column of G. Since it is non-zero, it has a non-zero entry gi j ∈

GF(2p). The jth position of the codeword corresponding to message [0, . . . ,mi, . . . ,0] will

be migi j. As mi ranges over all elements of GF(2p), migi j also does. Therefore the binary

representation of this codeword entry ranges over all possible binary p-tuples. This ensures that

for any position in the binary representation of M there exists a codeword which has the value 1

in that position. Due to linearity of the equivalent binary representation, we must have an equal

number of codewords with zero and codewords with one in any given position.

We now turn to the discussion of our new code construction that avoids the use of both

common randomness and high-complexity boolean functions. The construction introduces

the following novel elements. We use randomized rounding for not-completely polarized bit-

channels in a full-height column and store them in a bit-channel set that is good for all the

DMCs. In order to satisfy the distribution for the high-entropy bit-channels, we add a designated

information bit in the column to these stored bits. To fill the positions in the non-full-height

columns on the left, we use the frozen vector, which is generated randomly according to the

distribution requirements. Finally, the bit-channels of the non-full-height columns on the right are

encoded using randomized rounding with the required distribution. These do not require decoding

and are ignored at the decoder. These encoding steps ensure that the required distribution is

satisfied for all of the blocks.
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We generate a random frozen vector W 1:N such that

P(W 1:N = u1:N) = 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LX δi(ui|u1:i−1). (2.4)

The vector W 1:N is shared between encoder and decoder, which is used to fill the non-full-height

columns on the left as mentioned. Let I′ be a subset of I1 ∩ I2 ∩ . . .∩ Is such that |I′| = |R|, to

store the bits encoded in the not-completely polarized bit-channels of a full-height column. Let

g : I′ → R be an arbitrary bijection. Let L′ = L−|I′|.

Now we are ready to present our code construction illustrating the encoding and decoding

schemes in detail.

Encoding

Input: pL′ information bits for each full-height column.

Output: U1:N , to which we apply GN to get X1:N , of each polar block in the staircase.

• To encode non-full-height columns on the left from t = 1 : N −1, we assign Ui =Wi for

the block with channel index i in that column. We repeat this for all p staircases. This step

ensures that the prefix part, which lies in the non-full-height region, of the polar blocks

satisfies the required ensemble average distribution.

• To encode full-height columns from t = N ≤ i ≤ kN:

– First, encode the blocks with index i ∈ LX in column t using the argmax rule (2.3).

Repeat this for all p staircases. This maintains the required conditional distribution

for these indices.

– Second, encode the blocks with index i ∈ R in column t using the randomized

rounding rule, i.e., Ui = u w.p. PUi|U1:i−1(u|U1:i−1) for u ∈ {0,1}. Repeat this for

all p staircases. This will maintain the required conditional distribution. Since

these are randomly generated, we use the inverse function g−1 to store these bits in
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I′ ⊆ I1 ∩ I2 ∩ . . .∩ Is where they can be reliably decoded.

– Third, encode the blocks with index i ∈ I′ by assigning Ui = H ⊕Ũg(i), where Ũg(i) is

the bit copied from the block with index g(i)∈R and H is a designated information bit

corresponding to that column. Repeat the same for all p staircases. This maintains the

distribution of the indices in HX and also ensures the independence from previously

encoded bits of the polar block. This is the key step of the construction, since the

direct use of Ũg(i) to encode Ui would not satisfy the required distribution. Let P

represents the bits encoded in the previous columns. Let P = {z1,z2,z3, . . .z|P|} be

the set of possible bit strings that can be encoded in previous columns. The intuition

of the scrambling that we did in this step is shown through a picture of the joint

distribution on (P,Ũg(i),H,Ui) given in Fig. 2.2. As the designated information bit

H is independent of both P and Ũg(i), for a given pair of P and Ũg(i), the conditional

distribution of H will be uniform, which can be noticed in Fig. 2.2. For a given P

and when Ũg(i) = 0, Ui = H. So, the conditional distribution of Ui is uniform, given

P when Ũg(i) = 0. For a given P and when Ũg(i) = 1, Ui = H + 1. So, again the

conditional distribution of Ui is uniform, given P when Ũg(i) = 1. Hence Ui is also

uniform and independent of both P and Ũg(i), which can be noticed in Fig. 2.2.

– Fourth, encode the blocks with indices i ∈ HX − I′.

* Encode pL′ information bits (equivalent to L′ symbols over GF(2p)) into code-

word m in the binary representation of M .

* Fill blocks with indices in i ∈ HX − I′ in all p staircases with codeword m

as shown in Fig. 2.3. By Lemma 1, a uniform distribution is guaranteed for

these positions, as required for indices in HX . Since m depends only on the

information bits of the current column, independence from previously encoded

bits of the polar block is also guaranteed.

– The layout of coding a full-height column is shown in Fig. 2.3.
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b b b b

z1 z2 z3

0 01 1 0 1

0 1 0 1 1 1 1 10 0 0 0

0 1 01 0 1 01 0 1 01

Distribution of P , that is bit string encoded in previous columns

Distribution of Ũg(i), the bit encoded in a not completely polarized bit-channel in the current column, given P

Distribution of H , the designated information bit in the current column, given Ũg(i), P

Distribution of Ui = H + Ũg(i), the bit encoded in the bit-channel i ∈ I ′, given Ũg(i), P

Figure 2.2. Joint distribution of (P , Ũg(i), H and Ui) where the width of each symbol scales
according to the probability of the occurrence of the symbol.

– Hence all Uis corresponding to all polar blocks in the column are encoded in all

p staircases. This enables the continuation of SC encoding of the polar blocks to

encoding Uis corresponding to the next column.

• To encode non-full-height columns t = kN +1 : (k+1)N −1 on the right, we generate all

bits randomly to satisfy the distribution of the polar block. This is done for all p staircases

as follows:

– For blocks with index i ∈ HX , generate Ui independently and uniformly.

– For blocks with index i ∈ R, generate Ui = u w.p. PUi|U1:i−1(u|U1:i−1), for u ∈ {0,1}.

– For blocks with index i ∈ LX use argmax rule.

• Transmit X1:N =U1:NGN for each polar block.

Decoding
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LX

(HX ∪ LX)c

HX

I ′

g(i)

i

U

U +H

MDS
CODEWORD

Figure 2.3. Coding a full-height column: H is the designated information bit in the the column
and U is the encoded bit in the block with index g(i) in the column.

Input: Received vector Y 1:N for each block.

Output: Estimates of encoded information bits.

• To decode non-full-height columns on the left from t = 1 : N −1, we recover Ûi =Wi for

the block with channel index i in that column. Repeat this for all p staircases.

• To decode full-height columns from t = N ≤ i ≤ kN:

– First, decode the blocks with index i ∈ LX ∪ I′ in column t using the following

decision rule:

Ûi = argmax
x∈{0,1}

PUi|U1:i−1,Y 1:N (x|Û1:i−1,Y 1:N).

This is possible since these indices are either good for all channels or deterministic.

We repeat this for all p staircases.

– Second, decode the blocks with index in HX − I′:

* Decode the L′ symbols from the good indices based on the channel that is
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selected using the argmax rule above. Let C be the partially recovered codeword.

* The codeword m̂ can be recovered from C by erasure decoding since it is an

MDS codeword, providing an estimate of pL′ information bits corresponding to

the column.

– Last, decode blocks with index i ∈ R by estimating Ûi = Ĥ ⊕Û ′
g−1(i) where Û ′

g−1(i) is

the already decoded bit corresponding to the block with index g−1(i) ∈ I′ in the same

column and Ĥ is the recovered information bit which was designated in the column

during the encoding procedure. We repeat this for all p staircases.

– Hence all Ûis corresponding to all polar blocks in the column are decoded in all

p staircases. This enables the continuation of SC decoding of the polar blocks to

recover Ûis corresponding to the next column.

• Ignore and do not decode non-full-height columns t = kN +1 : (k+1)N −1 on the right.

Note that this will not be a problem as information bits have already been fully recovered

from full-height columns.

Note that we encoded L′q information bits only in full-height columns. Hence we get the rate L′
N

for each full-height column. Since |I′|
N is diminishing, the rate for each such column will be close

to L
N . Also, as k increases, the full-height columns will constitute a significant fraction of the

total block length and the overall rate approaches L
N . The exact relation between the achievable

rate and k can be found in [22], [23].

We used a linear MDS code in our asymmetric staircase construction. Notice that in the

symmetric channel construction, linearity is not required. Now we derive an upper bound on p,

which upper bounds the total number of polar blocks in the staircase structure. If we consider a

Reed-Solomon (RS) code as the linear MDS code over GF(2p), the block length of the code

should divide 2p −1 [7, p. 174]. We bound p as follows:

24



• If |HX |− |R| is odd:

By Euler’s Theorem, p can take value φ(|HX |− |R|) where φ is Euler’s totient function.

Therefore p ≤ φ(|HX |− |R|)≤ |HX |− |R| ≤ N.

• If |HX |− |R| is even:

Use a RS code of block length (|HX |− |R|)− 1. Then p ≤ N since the block length is

odd. Fill the remaining position with the parity of the information bits to maintain the

required distribution of the high-entropy bit-channel in all p staircases and modify the

scheme accordingly.

The following theorem computes the ensemble average distribution of each polar block, the

overall decoding probability of error and the encoding/decoding complexity of the scheme, in

detail.

Theorem 1.

1. For every polar block encoded in the staircase

EW 1:N [P(U1:N = u1:N |W 1:N)] = 2−|HX |Πi∈RPUi|U1:i−1(ui|u1:i−1)Πi∈LX δi(ui|u1:i−1).

2. Let Pe,l(W 1:N) be the probability of error when DMC l is selected in S for a given code in

the above random code construction. The average probability of error is EW 1:N [Pe,l(W 1:N)] =

O(N pk2−Nβ ′
) for β ′ < β < 0.5 for each l ∈ S.

3. Encoding and decoding take O((log2 N)plog2 3−1) and O((log2 N)2(log2(log2 N))plog2 3−1) bi-

nary operations per bit, respectively. Encoding and decoding also take O(log2 N) real operations

per bit.

Proof: Refer to the Appendix.
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2.4.2 Existence of universal code with high probability

Theorem 1 states that the average probability of error over the random ensemble is

O(N pk2−Nβ ′
) for any DMC that gets selected in S. We now show the existence of universal

codes with high probability in the random ensemble of codes. Let K be a positive constant. By

the Markov inequality, we get the following:

PW 1:N (Pe,l > KsEW 1:N [Pe,l(W 1:N)])< 1/Ks.

By using the union bound, we get the following:

PW 1:N (∪l∈S(Pe,l > KsEW 1:N [Pe,l(W 1:N)]))< 1/K.

Therefore by taking the probability of the complementary event, we get

PW 1:N (∩l∈S(Pe,l ≤ KsEW 1:N [Pe,l(W 1:N)]))≥ 1−1/K.

By substituting K = N in the above equation, we get that universal codes that have the

probability of error O(sN2qk2−Nβ

) exist with high probability 1−1/N in the random ensemble

of codes. This kind of analysis is not needed in the symmetric channel case as we have an explicit

universal code construction without randomization.

2.4.3 Application to single asymmetric channel

Note that the staircase alignment of blocks played an essential role in satisfying the dis-

tribution requirement of each block without common randomness or complex boolean functions.

Hence we can use the staircase scheme for capacity-achieving single asymmetric channel code

construction without common randomness or complex boolean functions. Note that we do not

require to use an MDS code for each full-height column for the single channel case. Hence we
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will only need one extended staircase in this case. In fact, our staircase scheme proposed is an

appropriate solution to achieving asymmetric channel capacity without common randomness,

complex boolean functions, or a side channel, independent of the compound channel setting.

For the single asymmetric channel case, we can alternatively use a chaining construction

to avoid complex boolean functions or common randomness. While encoding, we copy the

not-completely polarized bit-channels of a polar block into good bit-channels of its successive

block in the chaining construction. We add randomly chosen uniform i.i.d. bits that are known

to the decoder in advance to these not-completely polarized bits before copying them to the

successive block to satisfy the distribution requirement. The last polar block of the chaining

construction uses polarization with uniform distribution so that the block does not have not-

completely polarized bit-channels. This will enable the decoder to recover blocks in reverse

order while decoding. This is similar to the multi-coding implementation without the degraded

assumption [15, construction 16]. Polar code construction with uniform input distribution is

needed in case of chaining, whereas it is not needed in the staircase construction.

Gallager’s scheme [24] uses alphabet extension, which leads to the asymptotic complexity

O((∆I)−0.5N logN) where ∆I is the gap of the achievable rate from the capacity of the asymmetric

channel. In our staircase scheme and in the chaining construction, the asymptotic complexity

does not depend on the gap of the achievable rate from the capacity as the two schemes are based

on the integrated scheme [24] that already avoids alphabet extension.

2.4.4 Continuous encoding and decoding for staircase scheme

We have k sub-staircases adjoined to form the extended staircase, the block length of

which becomes the overall block length. We need to increase the width of the staircase k to

infinity to achieve rates arbitrary close to L
N . Such a large k contributes to a very large block

length, leading to a large delay on the order of the block length. We optimize the delay in

communication by overcoming the width factor k by continuous encoding and decoding of

sub-staircases sequentially. For the sake of exposition, we consider p to be 1. This idea is general

27



and applied to both symmetric and asymmetric staircase schemes. We index such sub-staircases

as m = 1,2, · · · ,k from left to right. Now we provide steps for the continuous encoding and

decoding of sub-staircases.

• Set j = 1. We encode Uis of columns t = 1 : 2N −1. We will now have U1:N ready for

all blocks in sub-staircase m = 1. So we can apply the polar transform to U1:N to get

X1:N for all the blocks in sub-staircase m = 1. We transmit X1:N corresponding to the

polar blocks in sub-staircase m = 1. The decoder receives vectors Y 1:N corresponding to

the polar blocks in sub-staircase m = 1. Now we can decode Ûis for columns t = 1 : N.

Increment j by 1.

• Now we encode Uis of the next N columns t = jN : ( j + 1)N − 1. We will then have

U1:N ready for all blocks in sub-staircase m = j as in the above step. We then transmit

X1:N = U1:NGN and decoder receives Y 1:N corresponding to the polar blocks in sub-

staircase m = j. Now we will be able to decode Ûis for columns t = ( j− 1)N + 1 : jN.

Once we do that, we will have Û1:N ready for all the blocks in the sub-staircase m = j−1.

Then we apply polar transform to Û1:N to get X̂1:N corresponding to the polar blocks in

sub-staircase j−1. Increment j by 1.

• We repeat the above step until j = k−1 sequentially.

• Finally we finish encoding Uis until the last column. We will then have U1:N ready for all

blocks in the last sub-staircase m = k. We then transmit X1:N =U1:NGN and the decoder

receives Y 1:N corresponding to the polar blocks in sub-staircase m= k. Now we can decode

Ûis until the last column. We will then have Û1:N ready for all the blocks in remaining

sub-staircases m = k− 1 and m = k. Then recover the X̂1:N corresponding to the polar

blocks in sub-staircases k−1 and k.

Fig. 2.4 illustrates these sequential steps of continuous encoding and decoding of sub-staircases

for N = 3,k = 5 and p = 1.
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Remember that we do not decode Ûis of non-full-height columns on the right when

applying the proposed continuous encoding and decoding method to our asymmetric staircase

scheme. Hence we do not have complete Û1:N decoded for the last sub-staircase k. So we can

recover X̂1:N only for the blocks until sub-staircase k−1.

2.5 Hybridized staircase scheme

If the required condition |I1 ∩ I2 ∩ . . .∩ Is| ≥ |R| does not hold, we can use the univer-

salizing procedure based on bit-channel combining [22] to produce a partially universalized

block that satisfies the desired condition. We propose to apply the staircase scheme using such a

hybrid polar block. Now we discuss the idea of the universalizing procedure based on bit-channel

combining [22] while applying it to the asymmetric case.

2.5.1 Idea of universal method based on bit-channel combining

The idea of the universalizing method can be explained by considering two independent

polar blocks. Let S1 and S2 be two non-intersecting subsets of S. If we combine (standard polar

combining operation [1]) a bit-channel of the first polar block which is good for all DMCs in

S1 and bad for at least one DMC in S2 with a bit-channel of the second polar block that is good

for all DMCs in S2 and bad for at least one DMC in S1, then we get two new bit-channels. This

combining of bit-channels governs a new order of decoding for the combined polar block. At

this point, we get one new bit-channel that is good for all DMCs in S1∪S2 of the combined polar

block. We validate this fact shortly when we provide the probability of error analysis for the

hybridized staircase scheme described in this section. Note that a good/bad bit-channel in an

updated block means that its Bhattacharyya parameter defined with the received vector given is

low/high under the distribution that is induced when the codeword components of the original

blocks involved are i.i.d. according to the non-uniform input distribution we are working with.

We can combine many such bit-channels at a time with these two independent polar

blocks to achieve universalization. We consider bit-channel sets A , which has bit-channels that
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are good for all DMCs in S1 and bad for at least one DMC in S2, and B, which has bit-channels

that are good for all DMCs in S2 and bad for at least one DMC in S1. As already explained, if

we combine a bit channel in A of the first polar block, say x, with a bit channel in B of the

second polar block, say y, then we get two new bit channels, one of which is good for all DMCs

in S1 ∪S2. In a polar block, a later bit-channel output has the previous bit-channel input as one

of its components. So a next valid bit-channel combining could be any bit-channel later than x in

A of the first polar block with any bit-channel later than y in B. Hence a best way to combine

bit-channels A of the first block with bit-channels B of the second block is to combine them in

order without missing any bit-channels in between. Let A = {x1,x2, . . . ,x|A |} where x j1 < x j2

for j1 < j2, B = {y1,y2, . . . ,y|B|} where y j1 < y j2 for j1 < j2 and G =min{|A |, |B|}. We do

bit-channel combinings x j with y j for each 1 ≤ j ≤ G as shown in Fig. 2.5. Now we get G new

bit-channels that are good for all DMCs in S1 ∪S2 in the combined block. These combinings

of bit-channels will create a specific order of decoding of bit-channels in the resultant block

produced. The description of the scheme in Section 2.6 will help provide a clear view of the

order of bit-channels in the block that is generated after combining two polar blocks.

We can consider two such universalized blocks produced in this manner and apply

this procedure again with any two non-intersecting subsets of S. This procedure can be done

recursively multiple times. So a block obtained after t steps will be of size N ·2t .

We are combining bit-channels in HX in the first step of the recursive procedure to

produce new bit-channels, which can be either good or bad for a DMC in S. We keep combining

these bit-channels in the recursive procedure while we are leaving the low entropy bit-channels

LX and not-completely polarized bit-channels R of the original polar blocks in the recursive

procedure as is. So we have good bit-channels and bad bit-channels defined for each DMC in

S for the hybrid polar block. We also have low entropy bit-channels as well as not-completely

polarized bit-channels for the hybrid block, which are from the original blocks involved in the

hybrid polar block. Now we propose to apply our staircase scheme in Section 2.4 by using the

hybrid polar block with the desired condition instead of original polar block. The encoding and
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decoding procedure of the staircase scheme with the hybrid block will be identical to our staircase

scheme with the original polar block presented in Section 2.4. We refer to such a staircase scheme

as a hybridized staircase scheme, which is described in the following subsection.

2.5.2 Code construction for hybridized staircase scheme

We now define the vectors associated with a hybrid polar block generated after t steps.

Let {X1:N
j }2t

j=1 be the codeword component vectors of length N corresponding to each of the

original polar blocks indexed j = 1,2, . . . ,2t in the hybrid polar block and {Y 1:N
j }2t

j=1 be the

corresponding received word components when passed through DMC l selected in S. Let

U1:N
j = X1:N

j GN , for j = 1,2, . . . ,2t . So {U1:N
j }2t

j=1 are bit-channel vectors of length N of each

original polar block in the hybrid polar block. Let {U ′1:N
j }2t

j=1 be the bit-channel vectors of

the hybrid polar block generated after the recursive combining of the original blocks whose

bit-channel vectors are {U1:N
j }2t

j=1. Let U ′1:N·2t
be the permutation of {U ′1:N

j }2t

j=1, according to

the order of bit-channels in the hybrid block, governed by the recursive combining procedure.

Let the bijective transform that transforms U ′1:N·2t
to {U1:N

j }2t

j=1 be H .

We refer to the union of good bit-channel set and bad bit-channel set of the hybrid

polar block (of any DMC in S) as the high entropy set of the hybrid polar block. We denote

these high-entropy bit-channels of the hybrid polar block generated after t steps in the recursive

procedure by HXt . We use the notation It
i for DMC i’s good bit-channel set of the hybrid polar

block. So the DMC i’s bad bit-channel set of the hybrid block will be HXt − It
i . We denote the

low entropy bit-channel set of the hybrid polar block by LXt . We denote the not-completely

polarized bit-channel set of the hybrid polar block by Rt .

While encoding, we need to ensure that, for each hybrid polar block in the staircase, the

original polar blocks involved in the hybrid block have the same ensemble average distribution

as in the single asymmetric channel case and also these original blocks involved are independent.

This defines an average distribution requirement for each hybrid polar block in the staircase.

Let Q be the measure on the hybrid polar block, which is according to the average distribution
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requirement of each hybrid block in the staircase. Therefore,

Q{U1:N
j }2t

j=1
({u1:N

j }2t

j=1) = Π
2t

j=1(2
−|HX |Πi∈LX δi(u ji|u1:i−1

j )Πi∈RPUi|U1:i−1(u ji|u1:i−1
j )).

This implies that

QU ′1:N·2t (u′1:N·2t
) = Π

2t

j=1(2
−|HX |Πi∈LX δi(u ji|u1:i−1

j )Πi∈RPUi|U1:i−1(u ji|u1:i−1
j )). (2.5)

where u′1:N·2t
is obtained by applying the bijective transform H −1 to {u1:N

j }2t

j=1.

So, to fill the non-full-height columns in the left, we generate W ′1:N·2t
randomly according

to measure QU ′1:N·2t in the code construction as follows:

P(W ′1:N·2t
= u′1:N·2t

) = QU ′1:N·2t (u′1:N·2t
). (2.6)

We now compute QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1) for each i′ ∈ [N ·2t ].

For i′ ∈ LXt , there exist i ∈ LX , j ∈ [2t ] such that U ′
i =U ji. Then,

QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1) =

QU ′1:i′−1(u′1:i′−1)

QU ′1:i′ (u′1:i′)

=
∑u′i′:N·2t QU ′1:N·2t (u′1:N·2t

)

∑u′i′+1:N·2t QU ′1:N·2t (u′1:N·2t
)

(a)
= δi(u ji|u1:i−1

j ).

Identity (a) follows by substituting (2.5) in both numerator and denominator. Note that u1:i−1
j

is a function of u′1:i′−1. So, to satisfy this conditional distribution, we use argmax rule for a

bit-channel i′ ∈ LXt that lies either in the full-height column regime or a non-full-height column

on the right side of a hybrid polar block in the staircase.
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For i′ ∈ Rt , there exist i ∈ R, j ∈ [2t ] such that U ′
i =U ji. Then,

QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1) =

QU ′1:i′−1(u′1:i′−1)

QU ′1:i′ (u′1:i′)

=
∑u′i′:N·2t QU ′1:N·2t (u′1:N·2t

)

∑u′i′+1:N·2t QU ′1:N·2t (u′1:N·2t
)

(a)
= PUi|U1:i−1(u ji|u1:i−1

j ).

Identity (a) follows by substituting (2.5) in both numerator and denominator. Note that u1:i−1
j is

a function of u′1:i′−1. So, to satisfy this conditional distribution, we use the randomized rounding

rule for a bit-channel i′ ∈ Rt that lies either in the full-height column regime or a non-full-height

column on the right side of a hybrid polar block in the staircase.

For i′ ∈ HXt ,

QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1) =

QU ′1:i′−1(u′1:i′−1)

QU ′1:i′ (u′1:i′)

=
∑u′i′:N·2t QU ′1:N·2t (u′1:N·2t

)

∑u′i′+1:N·2t QU ′1:N·2t (u′1:N·2t
)

(a)
= 0.5.

Identity (a) follows by substituting (2.5) in both numerator and denominator. The conditional

distribution of U ′
i′ given U ′1:i′−1 is always uniform, which also means U ′

i′ is independent of

U ′1:i′−1. Hence, for a bit-channel i′ ∈ HXt that lies either in the full-height column regime or a

non-full-height column on the right side, we use the same encoding method as we use for high

entropy bit-channels in the staircase scheme with the original block, presented in Section 2.4.

This maintains the distribution requirement for high-entropy bit-channels in HXt that lie in the

full-height column regime or the non-full-height column regime on the right side, of a hybrid

polar block in the staircase.

We then use an appropriate decoding method, corresponding to encoding method. The

decoding rule for the bit-channels i′ ∈ It
l ∪LXt that lie in the full-height columns will be as

follows:

Û ′
i′ = argmax

x∈{0,1}
PU ′

i′ |U ′1:i′−1,{Y 1:N
j }2t

j=1
(x|Û ′1:i′−1,{Y 1:N

j }2t

j=1).
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We now provide the probability of decoding error analysis and show that average probability of

error diminishes as block length grows for the proposed hybridized staircase scheme.

2.5.3 Probability of decoding error analysis for hybridized staircase
scheme

We provide the probability of decoding error analysis for the hybridized staircase scheme

with the hybrid block produced after t steps in the recursive procedure. We now compute the

ensemble average distribution for each of the hybrid polar blocks used in the staircase.

For a hybrid block that lies completely in the full-height column regime:

For a bit-channel i′ ∈ HXt , P(U ′
i′ = u′i′|W ′1:N·2t

U ′1:i′−1 = u′1:i′−1) = 0.5, because we use

the same encoding rule as we use for high-entropy bit-channels in the staircase scheme with

the original block. It is shown in Theorem 1 that the encoded bit in a high-entropy bit-channel

will be uniform and is independent of bits encoded in the previous columns. So we get the same

conditional distribution here as well. Therefore, P(U ′
i′ = u′i′ |W ′1:N·2t

U ′1:i′−1 = u′1:i′−1) = 0.5 =

QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1).

For a bit-channel i′ ∈ LXt ∪Rt ,

P(U ′
i′ = u′i′|W ′1:N·2t

U ′1:i′−1 = u′1:i′−1) = QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1),

as described in the hybridized staircase scheme.

By the chain rule of conditional probability, we get

P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

) = Πi′∈[N·2t ]P(U ′
i′ = u′i′ |W ′1:N·2t

U ′1:i′−1)

= Πi′∈[N·2t ]QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1)

= QU ′1:N·2t (u′1:N·2t
).
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By taking expectations on both the sides, we get

EW ′1:N·2t [P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

)] = QU ′1:N·2t (u′1:N·2t
).

For a hybrid block that lies partly in the full-height column regime and partly in the non-full-

height column regime on the right:

For a high entropy bit-channel i′ ∈ HXt that lies in the non-full-height column regime on

the right, we generate an independent uniform random variable. For the low entropy bit-channels

and not-completely polarized bit-channels that lie in the non-full-height regime on the right, we

use the same rule as in the case where they lie in the full-height column regime. So, for the

bit-channels that lie in the non-full-height column regime on the right, we get same conditional

distribution as in the previous case where they lie in the full-height column regime.

By the chain rule of conditional probability, we get

P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

) = Πi′∈[N·2t ]P(U ′
i′ = u′i′|W ′1:N·2t

U ′1:i′−1)

= Πi′∈[N·2t ]QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1)

= QU ′1:N·2t (u′1:N·2t
).

By taking expectations on both the sides, we get

EW ′1:N·2t [P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

)] = QU ′1:N·2t (u′1:N·2t
).

For a hybrid block that lies partly in the full-height column regime and partly in the non-full-

height column regime on the left:

Suppose that bit-channels {1 : m} of the block lie in the non-full-height column regime

on the left side and the remaining bit-channels {m+ 1 : N · 2t} lie in the full-height column
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regime. Then, by the code construction and by the chain rule of conditional probability,

P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

)

= 1(∩m
i′=1(u

′
i′ =W ′

i′))Πi′=m+1:N·2tP(U ′
i′ = u′i′|W ′1:N·2t

U ′1:m−1 = u′1:m−1).

By taking expectation on both sides and by the linearity of expectation, we get

EW ′1:N·2t [P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

)]

= E[1(∩m
i′=1(u

′
i′ =W ′

i′))]Π
N·2t

i′=m+1P(U
′
i′ = u′i′|W ′1:N·2t

U ′1:m−1 = u′1:m−1)

(a)
= E[1(∩m

i′=1(u
′
i′ =W ′

i′))]Π
N·2t

i′=m+1QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1).

(2.7)

Identity (a) follows as the conditional probabilities of U ′
i′ given U ′1:i′−1 for the bit-channels

{m+1 : N ·2t} in the full-height column are according to the measure QU ′1:N·2t .

We evaluate EW ′1:N·2t [1(∩m
i′=1(u

′
i′ =W ′

i′))] as below:

EW ′1:N·2t [1(∩m
i′=1(u

′
i′ =W ′

i′))] = EW ′1:N·2t [ ∑
u′

i′∈{0,1}:i∈{m+1:N·2t}
1(∩i∈[N·2t ](u

′
i′ =W ′

i′))]

(a)
= ∑

u′
i′∈{0,1}:i∈{m+1:N·2t}

EW 1:N [1(∩i∈[N·2t ](u
′
i′ =W ′

i′))]

= ∑
u′

i′∈{0,1}:i∈{m+1:N·2t}
P(W ′1:N·2t

= u′1:N·2t
)

(b)
= ∑

u′
i′∈{0,1}:i∈{m+1:N·2t}

QU ′1:N·2t (u′1:N·2t
)

= QU ′1:m(u′1:m).

Identity (a) follows by linearity of expectation and identity (b) follows from equation (2.6).

Substituting this back into equation (2.7), we get

EW ′1:N·2t [P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

)] = QU ′1:m(u′1:m)ΠN·2t

i′=m+1QU ′
i′ |U ′1:i′−1(u′i′|u′1:i′−1)
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= QU ′1:N·2t (u′1:N·2t
).

We have shown that the ensemble average distribution of each of the hybrid polar blocks in the

staircase is according to measure QU ′1:N·2t . Now we provide lemmas and propositions which will

be used in the probability of decoding error analysis.

Lemma 2. Let P j
X ,Y (x,y) be a joint distribution on (X ,Y ) supported on X ×Y for each

j ∈ J . Let Q( j) be the distribution on J . Define PX ,Y (x,y) = ∑ j∈J Q( j)P j
X ,Y (x,y). Then

Z(X |Y )≥ ∑ j∈J Q( j)Z j(X |Y ) where Z j(X |Y ) = 2∑y∈Y

√
P j

X ,Y (0,y)P
j

X ,Y (1,y).

Proof: Refer to the Appendix.

Lemma 2 is used in the proof of the following proposition.

Proposition 1. Let (X1,Y1) and (X2,Y2) be independent random variable pairs which may not be

identically distributed. X1 and X2 are defined over X = {0,1}, where Y1 and Y2 are distributed

over alphabets Y1 and Y2. Let U1 = X1 +X2 and U2 = X2. Then

1. Z(U1|Y1Y2)≤ Z(X1|Y1)+Z(X2|Y2) and Z(U1|Y1Y2)≥ max{Z(X1|Y1),Z(X2|Y2)}.

2. Z(U2|U1Y1Y2) = Z(X1|Y1)Z(X2|Y2) and hence Z(U2|U1Y1Y2)≤ min{Z(X1|Y1), Z(X2|Y2)}.

Proof: Refer to the Appendix.

Lemma 3. Let P(x1,x2) = P1(x1)P2(x2) and Q(x1,x2) = Q1(x1)Q2(x2) be two joint distributions

on random variables X1 and X2 so that the random variables are mutually independent over both

the joint distributions P and Q. The marginals of random variable Xi will be Pi(xi) and Qi(xi)

over the distributions P and Q, respectively, for i = 1,2. Assume that the total variation distance

between Pi and Qi is εi, for i = 1,2. Then the total variation distance between the distributions P

and Q is at most ε1 + ε2.

Proof: Refer to the Appendix.

Lemma 4. Let the (X ,Y ) random variable pair have two measures defined as QX ,Y (x,y) =

QX(x)p(y|x) and PX ,Y (x,y)=PX(x)p(y|x), respectively. So the conditional distributions QY |X(y|x)
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and PY |X(y|x) are both equal to p(y|x). The total variation between the joint distributions

||QX ,Y −PX ,Y || becomes ||QX −PX ||.

Proof: Refer to the Appendix.

The analysis of probability of decoding error is given in the following steps:

• We index each hybrid polar block in the staircase as b = 1,2, . . . ,(2tN pk). Let P be the

measure on a hybrid polar block induced when X1:N
j is i.i.d. distributed according to p(x)

for each j and the vectors {X1:N
j }, {X1:N

k } are independent for j ̸= k.

• Let Ei′b be the error event of bit-channel i′ for hybrid polar block b in the staircase, which

is defined as follows:

Ei′b = {(u′1:N·2t
,{y1:N

j }2t

j=1) tuples of blocks b̃ ∈ [2tN pk] :

PU ′
i′ |U ′1:i′−1,{Y 1:N

j }2t
j=1

(u′i′ +1|u′1:i′−1,{y1:N
j }2t

j=1)≥

PU ′
i′ |U ′1:i′−1,{Y 1:N

j }2t
j=1

(u′i′|u′1:i′−1,{y1:N
j }2t

j=1)

holds for (u′1:N·2t
,{y1:N

j }2t

j=1) of block b}.

As mentioned in the Theorem 1, the overall error event satisfies

E ⊂ ∪b∈[2tN pk]∪i′∈LXt∪It
l
Ei′b. (2.8)

Let Eb = ∪i′∈It
l∪LXt

Ei′b be an error event corresponding to hybrid polar block b in the

staircase. We also define the error event Ei′ of bit-channel i′ below for the hybrid polar

block when the hybrid block is directly used for code construction:

Ei′ = {(u′1:N·2t
,{y1:N

j }2t

j=1) :

PU ′
i′ |U ′1:i′−1,{Y 1:N

j }2t
j=1

(u′i′ +1|u′1:i′−1,{y1:N
j }2t

j=1)≥

PU ′
i′ |U ′1:i′−1,{Y 1:N

j }2t
j=1

(u′i′|u′1:i′−1,{y1:N
j }2t

j=1)}.
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• We apply the union bound to equation (2.8) and take the expectation under the measure

induced by the random ensemble of codes. That gives the following upper-bound for the

ensemble average probability of error as shown in Theorem 1:

EW ′1:N·2t [P(E |W ′1:N·2t
)]≤ ∑

b∈[2tN pk]
EW ′1:N·2t [P(∪i′∈LXt∪It

l
Ei′b|W ′1:N·2t

)]. (2.9)

• Now

P(Eb|W ′1:N·2t
)

= ∑
((u′1:N·2t

,{y1:N
j }2t

j=1) tuples of all the blocks)∈Eb

P(∩b̃∈[2tN pk](U
′1:N·2t

= u′1:N·2t
,{Y 1:N

j }2t

j=1 = {y1:N
j }2t

j=1 of block b̃)|W ′1:N·2t
).

From the definitions of Ei′ and Eb, we get

P(Eb|W ′1:N·2t
)

= ∑
((u′1:N·2t

,{y1:N
j }2t

j=1) of block b)∈∪i′∈LXt ∪Itl
Ei′

∑
((u′1:N·2t

,{y1:N
j }2t

j=1) tuples of all the blocks b̃ ̸= b)

P(∩b̃∈[2tN pk](U
′1:N·2t

= u′1:N·2t
,{Y 1:N

j }2t

j=1 = {y1:N
j }2t

j=1 of block b̃)|W ′1:N·2t
),

By marginalizing over (U ′1:N·2t
,{Y 1:N

j }2t

j=1) tuples of blocks [2tN pk]−{b}, we get

P(Eb|W ′1:N·2t
)

= ∑
((u′1:N·2t

,{y1:N
j }2t

j=1) of block b)∈∪i′∈LXt ∪Itl
Ei′

P( (U ′1:N·2t
= u′1:N·2t

,{Y 1:N
j }2t

j=1 = {y1:N
j }2t

j=1 of block b)|W ′1:N·2t
).
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By the chain rule of conditional probability and also by the fact that

P({Y 1:N
j }2t

j=1 = {y1:N
j }2t

j=1 of block b|U ′1:N·2t
= u′1:N·2t

of block b,W ′1:N·2t
)

= Π
2t

j=1Π
N
i=1 pl(y ji|x ji),

where {x1:N
j }2t

j=1 are the codeword component vectors of original blocks corresponding to

bit-channel vector u′1:N·2t
of hybrid block b and {y1:N

j }2t

j=1 is also of hybrid block b, we get

P(Eb|W ′1:N·2t
)

= ∑
((u′1:N·2t

,{y1:N
j }2t

j=1) of block b)∈∪i′∈LXt ∪Itl
Ei′

P(U ′1:N·2t
= u′1:N·2t

of block b)|W ′1:N·2t
)Π2t

j=1Π
N
i=1 pl(y ji|x ji).

By taking expectation on both sides followed by applying the linearity of expectation, we

get,

EW ′1:N·2t [P(Eb|W ′1:N·2t
)]

= ∑
((u′1:N·2t

,{y1:N
j }2t

j=1) of block b)∈∪i′∈LXt ∪Itl
Ei′

EW ′1:N·2t [P(U ′1:N·2t
= u′1:N·2t |W ′1:N·2t

)]Π2t

j=1Π
N
i=1 pl(y ji|x ji)

= ∑
((u′1:N·2t

,{y1:N
j }2t

j=1) of block b)∈∪i′∈LXt ∪Itl
Ei′

QU ′1:N·2t (u′1:N·2t
of block b)Π2t

j=1Π
N
i=1 pl(y ji|x ji)

= ∑
(((u′1:N·2t

,{y1:N
j }2t

j=1) of block b)∈∪i′∈LXt ∪Itl
Ei′

QU ′1:N·2t
,{Y 1:N

j }2t
j=1

((u′1:N·2t
,{y1:N

j }2t

j=1) of block b)
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= QU ′1:N·2t
,{Y 1:N

j }2t
j=1

(∪i′∈LXt∪It
l
Ei′)

= Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
(∪i′∈LXt∪It

l
Ei′),

where QU ′1:N·2t
,{Y 1:N

j }2t
j=1

is measure induced when {X1:N
j }2t

j=1 vectors distributed under mea-

sure QU ′1:N·2t is transmitted over the DMC l selected and {Y 1:N
j }2t

j=1 vectors are received.

Therefore,

EW ′1:N·2t [P(∪i′∈LXt∪It
l
Ei′b|W ′1:N·2t

)] = Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
(∪i′∈LXt∪It

l
Ei′). (2.10)

• Now Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
(∪i′∈LXt∪It

l
Ei′) can be bounded as the sum of two entities as fol-

lows:

Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
(∪i′∈LXt∪It

l
Ei′)

≤ P(∪i′∈LXt∪It
l
Ei′)+ ||P{X1:N

j }2t
j=1,{Y 1:N

j }2t
j=1

−Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
||.

• Note that there is a possibility that we combine two good bit-channels of DMC l in many

of the t recursive steps while generating the hybrid block. In that case the Bhattacharyya

parameter of a bit-channel i′ ∈ It
l , Z(U ′

i′|U ′1:i′−1{Y 1:N
j }2t

j=1), should be upper bounded as

2t2−Nβ

since the upper bound of the Bhattacharyya parameter of one of the produced

bit-channels after each combining is the sum of the Bhattacharyya parameters of the input

bit-channels of the combining by Proposition 1.

• The P(∪i′∈LXt∪It
l
Ei′) is upper bounded by ∑i′∈It

l∪LXt
P(Ei′) by using the union bound. Note

that P(Ei′) is upper bounded by Z(U ′
i′|U ′1:i′−1{Y 1:N

j }2t

j=1) as the decision rule for these bit-

channels is MAP (Maximum A Posteriori) decision rule under measure P [46, Proposition

2.7]. Therefore P(∪i′∈LXt∪It
l
Ei′) is upper bounded by the sum of Bhattacharyya parameters,

i.e. ∑i′∈It
l∪LXt

Z(U ′
i′|U ′1:i′−1{Y 1:N

j }2t

j=1), which will be O(22tN2−Nβ

) from the above step.
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• Now, the total variation distance satisfies

||P{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
−Q{X1:N

j }2t
j=1,{Y 1:N

j }2t
j=1

||
(a)
≤

2t

∑
j=1

||PX1:N
j ,Y 1:N

j
−QX1:N

j ,Y 1:N
j

||

(b)
=

2t

∑
j=1

||PX1:N
j

−QX1:N
j
||.

The identity (a) follows by application of Lemma 3 using the fact that {X1:N
j ,Y 1:N

j }2t

j=1

vector tuples are i.i.d. distributed in both the measures P and Q . The identity (b) is

true by the application of Lemma 4 using the fact that the conditional measure of Y 1:N
j

given X1:N
j in both the P and Q measures is induced by the selected DMC in S. Now the

total variation distance ||PX1:N
j

−QX1:N
j
|| is O(2−Nβ ′

), as we mentioned in Section 2.3 for

the single asymmetric channel case. Overall ||P{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
−Q{X1:N

j }2t
j=1,{Y 1:N

j }2t
j=1

|| is

upper bounded by O(2t2−Nβ ′
) for β ′ < β < 0.5.

• Hence Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
(∪i′∈LXt∪It

l
Ei′) is upper bounded by O(22tN2−Nβ ′

).

• From equations (2.9) and (2.10), the overall average error probability is upper bounded by

∑b∈[2tN pk]Q{X1:N
j }2t

j=1,{Y 1:N
j }2t

j=1
(∪i′∈LXt∪It

l
Ei′). Hence the overall average error probability

of the hybridized staircase scheme will become O(N2 pk23t2−Nβ ′
) for any DMC l in S.

2.5.4 Algorithm to produce hybrid polar block, to be used in the
staircase scheme

In this sub-section, we provide an efficient recursive method in Algorithm 1 to produce a

hybrid polar block that satisfies the desired condition with a block length at most 2s−1 times the

original polar block length.

We refer to the properties associated to a hybrid polar block, such as good bit-channel

set, bad bit-channel set, low-entropy bit-channel set, not-completely polar bit-channel set, order

of bit-channels, as the type of the hybrid block. The variables hPolarBlock1 and hPolarBlock2
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identify with the type of a hybrid polar block that gets updated in the course of the recursive

procedure.

Algorithm 1: getHybridizedPolarBlock( S1, γ , hPolarBlock1 )
Input: S1 ⊂ S, scale index γ and hPolarBlock1 with |∩i∈S1 I1

i |N < 2γ |R| satisfied

Output: hPolarBlock2 with |∩i∈S1 I2
i |N ≥ 2γ |R| satisfied

1 set S2 = argmax
S2⊂S1:|S2|=|S1|−1

|∩i∈S2 I1
i |N

2 if |∩i∈S2 I1
i |N < 2γ+1|R| then

/* Recursive call */

3 hPolarBlock1= getHybridizedPolarBlock(S2, γ +1,hPolarBlock1 )

/* Now |∩i∈S2 I1
i |N ≥ 2γ+1|R| is satisfied */

/* Combing step */

4 consider two independent hybrid polar blocks of hPolarBlock1 type

5 combine bit channels that are “good for all DMCs in S2 and bad for DMC S1 −S2”

of one block with bit channels that are “good for DMC S1 −S2 and bad for at least

one DMC in S2” of the other block to produce an updated hybrid polar block

6 set hPolarBlock2 to the type of updated polar block

/* Now |∩i∈S1 I2
i |N ≥ 2γ |R| is satisfied */

7 return hPolarBlock2

We refer to I1
i and I2

i for DMC i’s good bit-channel set of hybrid polar blocks of hPolar-

Block1 type and hPolarBlock2 type, respectively. We refer to |∩i∈S1I1
i |N and |∩i∈S1I2

i |N for the

size of bit-channel set ∩i∈S1I1
i and ∩i∈S1I2

i per block length N. If the variable hPolarBlock1 is

a type of a hybrid polar block produced after k recursive combinings, then |∩i∈S1I1
i |N will be

equal to
|∩i∈S1 I1

i |
2k as the overall block length then will be 2kN. |R| is the size of the not-completely

polarized bit-channel set of an original polar block.

Algorithm 1 is implemented through recursive procedure getHybridizedPolarBlock(),

43



which has three inputs, the first one of which is a subset S1 of the compound channel set S.

The second input is scale index γ and the third input is hPolarBlock1 with |∩i∈S1 I1
i |N < 2γ |R|

satisfied. getHybridizedPolarBlock() procedure performs recursive combining to produce a

hybrid block and returns the variable hPolarBlock2 updated to the type of the hybrid polar block

produced with |∩i∈S1 I2
i |N ≥ 2γ |R| satisfied.

To generate hybrid polar block, to be used in staircase scheme, from an original polar

block, which does not satisfy the desired condition, we call getHybridizedPolarBlock() with input

S1 initialized to compound channel set S, the input γ initialized to 0 and the input hPolarBlock1

initialized to the original polar block type. Now we describe the execution of recursive procedure

getHybridizedPolarBlock() in detail with these three particular inputs.

First, we set S2 as a subset of S1 with size one less than the size of S1 such that |∩i∈S2 I1
i |N

is maximum. Note that the input S1 is S. Then, we check the condition |∩i∈S2 I1
i |N < 2|R|, since

γ is 0. The condition not being true means that we already have |∩i∈S2 I1
i |N ≥ 2|R| satisfied. If

that checked condition is true, we call getHybridizedPolarBlock() a second time with inputs

S2, 1, hPolarBlock1, which is the original polar block type. So the call returns and updates the

variable hPolarBlock1 so that the condition |∩i∈S2 I1
i |N ≥ 2|R| is satisfied. Now we consider two

independent hybrid polar blocks of hPolarBlock1 type. We combine “bit channels that are good

for all DMCs in S2 and bad for DMC S−S2” of one block with “bit channels that are good for

DMC S−S2 and bad for at least one DMC in S2” of the other block to generate a new hybrid

block. We then update the variable hPolarBlock2 to the type of the new hybrid block generated.

Notice that, | ∩i∈S I2
i |N gets updated as | ∩i∈S I1

i |N +
min{|∩i∈S2 I1

i |N−|∩i∈SI1
i |N ,|∩i∈S−S2 I1

i |N−|∩i∈SI1
i |N}

2 ,

which is at least | ∩i∈S I1
i |N +

2|R|−|∩i∈SI1
i |N

2 as | ∩i∈S2 I1
i |N ≥ 2|R|. So | ∩i∈S I2

i |N will be at least

|R|+ |∩i∈S I1
i |N/2, which is greater than or equal to |R|. Now we return hPolarBlock2, which is

the type of a desired hybrid polar block to be used in the staircase.

We now analyse the recursive flow of calls to getHybridizedPolarBlock() and the depth

of recursion. As the number of recursive calls in our algorithm is not always fixed, we look

at the worst case recursion depth. In the first call of getHybridizedPolarBlock(), we need
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hPolarblock1 (initialized to original block type) such that the condition | ∩i∈S2 I1
i |N ≥ 2|R| is

satisfied for the combining step. If the condition does not hold, we invoke the second call

to getHybridizedPolarBlock(), which updates the hPolarblock1 to a hybrid polar block type

such that the condition |∩i∈S2 I1
i |N ≥ 2|R| is satisfied. If the condition holds, we do not invoke

call to getHybridizedPolarBlock() a second time, in which case the recursion depth is 1. In

second call, we need hPolarblock1 (initialized to original block type) such that the condition

|∩i∈S2 I1
i |N ≥ 22|R| is satisfied. Note that size of S2 is two less than size of S in this call. If the

condition does not hold, we invoke the third call to getHybridizedPolarBlock(), which updates

the hPolarblock1 to a hybrid polar block type such that | ∩i∈S2 I1
i |N ≥ 22|R| is satisfied. If the

condition holds, we do not invoke call to getHybridizedPolarBlock() third time, in which case

the recursion depth is 2. Similarly, in the kth call, we need hPolarblock1 (initialized to original

block type) such that the condition | ∩i∈S2 I1
i |N ≥ 2k|R| is satisfied. If the condition does not

hold, we invoke a (k+1)th call to getHybridizedPolarBlock(), which updates the hPolarblock1

to a hybrid polar block type such that | ∩i∈S2 I1
i |N ≥ 2k|R| is satisfied. If it holds, we do not

invoke a (k+ 1)th call, in which case recursion depth is k. Note that the size of S1 will be

k− 1 less than the size of S and the size of S2 will be k less than the size of S in this call to

getHybridizedPolarBlock(), since the size of S1 keeps decreasing by one whenever we make an

additional call to getHybridizedPolarBlock() in the recursive flow. So, if the algorithm happens

to execute the (s−1)th call to getHybridizedPolarBlock(), then |S2| will be one and hPolarblock1

(original block type) will be such that the condition |∩i∈S2 I1
i |N ≥ 2s−1|R| is satisfied for any S2

as min{|I1
1 |, |I1

2 |, . . . , |I1
s |}> 2s−1|R| holds for sufficiently large N as the fraction of bit-channels

in R of original polar block vanishes as block length grows due to polarization. So we never

make sth call to getHybridizedPolarBlock(). Hence the maximum recursion depth that is possible

is s−1.

Now we will look at what happens in the execution of the kth call to getHybridized-

PolarBlock(), which is called from the (k− 1)th call of getHybridizedPolarBlock() with the

input hybridBlock1 with the condition |∩i∈S2 I1
i |N < 2k−1|R| satisfied (where S2 here is of the
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(k− 1)th call). S2 of the (k− 1)th call is passed as input S1 to the kth call. Scale index input

will be k− 1 in that call. As we set S2 as a subset of S1 with size one less than the size of

S1 such that | ∩i∈S2 I1
i |N is maximum, |S2| will be |S|− k and |S1| will be |S|− (k− 1) in this

call to getHybridizedPolarBlock(). Now we check the condition if | ∩i∈S2 I1
i |N < 2k|R|, since

scale index input is k−1 in this call to getHybridizedPolarBlock(). If that is true, we then call

getHybridizedPolarBlock() a (k+1)th time with inputs S2, k and hPolarBlock1, which will be of

the original polar block type. So the recursive call returns and updates the variable hPolarBlock1

that satisfies | ∩i∈S2 I1
i |N ≥ 2k|R|. Now we consider two independent hybrid polar blocks of

hPolarBlock1 type. We combine “bit channels that are good for all DMCs in S2 and bad for

DMC S1−S2” of one block with “bit channels that are good for DMC S1−S2 and bad for at least

one DMC in S2” of the other block to generate a new hybrid block. We then update the variable

hPolarBlock2 as the type of the generated hybrid block. As we update hPolarBlock2 after the

combining step with the generated hybrid polar block type, |∩i∈S I2
i |N gets updated as |∩i∈S1 I1

i |N
+

min{|∩i∈S2 I1
i |N−|∩i∈S1 I1

i |N ,|∩i∈S1−S2 I1
i |N−|∩i∈S1 I1

i |N}
2 which is at least | ∩i∈S1 I1

i |N +
2k|R|−|∩i∈S1 I1

i |N
2 as

|∩i∈S2 I1
i |N ≥ 2k|R|. So |∩i∈S1 I2

i |N will be at least 2k−1|R|+ |∩i∈S1 Ii|N/2, which is greater than

or equal to 2k−1|R|. Now we return hPolarBlock2 to the point of execution in the (k−1)th call,

where the kth call is invoked from.

If the recursion depth is k, in the execution of the kth call to getHybridizedPolarBlock(),

we combine original polar blocks and return hPolarBlock2 updated as the type of hybrid

polar block generated to the point of execution in the (k − 1)th call, where the kth call to

getHybridizedPolarBlock() is invoked from. Again we combine two independent hybrid blocks

of the returned type in the execution of the (k− 1)th recursive call and return hPolarBlock2

updated as the type of hybrid polar block generated to the point of execution in the (k−2)th call,

where the (k−1)th call is invoked from. We keep doing this until we return to the first call and

finish the combining step in the first call to produce the hybrid block, to be used in the staircase.

Hence the block length of hybrid block returned by the algorithm in this case will be 2kN. Since

the maximum recursion depth is s−1, the desired hybrid block returned by the algorithm is at
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most 2s−1N.

We may improve the Algorithm 1 to have fewer recursive calls. Nevertheless, the

mentioned recursive procedure guarantees a block length which is at most 2s−1N. Hence the

overall block length of the hybridized staircase scheme becomes O(22(s−1)pkN2).

2.6 Universal scheme via combining bit-channels

In Section 2.5.1, we discussed an idea of universal procedure based on bit-channel

combining to produce a hybrid block. But we do not describe the detail order of bit-channels of

the hybrid block produced when combining two blocks. In this section, we describe the code

construction, including encoding and decoding methods directly using the hybrid block produced

after combining the two original blocks. We consider here S to be {1,2}. So we combine

"bit-channels that are good for DMC 1 and bad for DMC 2" of one block with "bit-channels that

are good for DMC 2 and bad for DMC 1" of the other block. The description of the scheme in

this section helps provide a clear view of the bit-channel order of the hybrid block generated

after combining the original blocks.

2.6.1 Combining two independent polar blocks to align good bit-
channels of the two DMCs in S

Let G = min{|I1 ∩F2|, |I2 ∩F1|}. Consider the sets A and B to be the first G indices

in I1 ∩F2 and I2 ∩F1, respectively. Let A = {x1,x2, . . . ,xG} where x1 < x2 < .. . < xG and

B = {y1,y2, . . . ,yG} where y1 < y2 < .. . < yG. Consider two independent polar blocks and

refer to them as block 1 and block 2. Let X1:2N be i.i.d. distributed according to non-uniform

compound capacity-achieving distribution p(x) and

U1:N = X1:NGN , V 1:N = XN+1:2NGN . (2.11)
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The vectors X1:N and XN+1:2N are codeword components of block 1 and block 2, respectively.

U1:N and V 1:N are bit-channel vectors of block 1 and block 2, respectively. For each j ∈ [G],

we combine bit-channel x j of block 1 with bit-channel y j of block 2, which produces two new

bit-channels with inputs U ′
x j
=Ux j +Vy j and V ′

y j
=Vy j . We do not involve bit-channels, which are

not in A of block 1 and not in B of block 2, in combining. The combining of bit-channels of two

independent blocks is shown in Figure 2.5 of Section 2.5. Let {(Xi,Yi)}2N
i=1 be i.i.d. distributed

according to p(x)pl(y|x) where l ∈ S.

Lemma 5. For each j ∈ [G], for any β < 0.5, for sufficiently large N

1. Z(U ′
x j
|U1:x j−1V 1:y j−1Y 1:2N)≥ 1−2−Nβ

.

(U ′
x j

is almost uniform given U1:x j−1V 1:y j−1Y 1:2N for both DMCs l = 1,2)

2. Z(V ′
y j
|U1:x j−1V 1:y j−1U ′

x j
Y 1:2N)≤ 2−Nβ

.

(V ′
y j

is almost deterministic given U1:x j−1U ′
x j

V 1:y j−1Y 1:2N for both DMCs l = 1,2)

Proof: Refer to the Appendix.

It follows from Lemma 5 that the bit-channel combinings mentioned above give us

a block of length 2N with 2|I1 ∩ I2|+G good bit-channels for both the DMCs in S. In the

random code construction that we propose, encoding method ensures that the ensemble average

distribution of (U ′1:N ,V ′1:N) is O(2−Nβ ′
) close to the distribution induced when the word X1:2N

is i.i.d. distributed according to p(x). Now we describe the code construction.

2.6.2 Code construction

We first generate random functions f1 : HX − (I1 ∩ I2) → {0,1} and f2 : HX − ((I1 ∩

I2)∪B)→{0,1} where each fi( j), j ∈ F and i ∈ {1,2}, is chosen independently and uniformly.

These frozen bits are shared between encoder and decoder.

For both the blocks, we generate independent random boolean functions λ b
i : {0,1}i−1 →

{0,1} for blocks b = 1,2, and for each i ∈ R, by using the following probability rule:

λ
b
i (u

1:i−1) = u w.p. PUi|U1:i−1(u|u1:i−1), for u ∈ {0,1}
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independently for each u1:i−1. Let the set of random functions be denoted by λ b
R . These functions

are used to encode not-completely polarized bit-channels and are shared between the encoder

and the decoder. We can alternatively use common randomness for encoding these bit-channels.

As mentioned earlier in this section, the goal here is to help provide a clear view of the order

of bit-channels as opposed to simplifying the encoding of bit-channels in R avoiding common

randomness. Now we describe the encoding and decoding algorithms.

Encoding

Input: uniform message M of 2|I1 ∩ I2|+G bits

Output: codeword X1:2N

1. Partition M into M1 and M2 such that M1 takes the first |I1 ∩ I2| bits of M and M2 takes the last

|I1 ∩ I2|+G bits of M. Set U ′I1∩I2 = M1 and V ′(I1∩I2)∪B = M2.

2. Set U ′
i = f1(i) for all i∈HX −(I1∩I2) in block 1 and V ′

i = f2(i) for all i∈HX −((I1∩I2)∪B)

in block 2.

3. Set Ux j =U ′
x j
+V ′

y j
and Vy j =V ′

y j
for all j ∈ [G].

4. Set Ui =U ′
i for all i ∈ HX −A and Vi =V ′

i for all i ∈ HX −B.

5. For all i ∈ LX , set Ui and Vi using the following argmax rules:

Ui = argmax
x∈{0,1}

PUi|U1:i−1(x|U1:i−1),

Vi = argmax
x∈{0,1}

PUi|U1:i−1(x|V 1:i−1).

6. For all i ∈ R, we assign Ui = λ 1
i (U

1:i−1) and Vi = λ 2
i (V

1:i−1).

7. Set U ′
i =Ui and V ′

i =Vi for all i /∈ HX .

8. Transmit X1:N =U1:NGN and XN+1:2N =V 1:NGN .

Decoding
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Input: received vector Y 1:2N

Output: message estimate M̂ of 2|I1 ∩ I2|+G bits

1. Set j = 1, x0 = 0 and y0 = 0.

2. for i = x j−1 +1 : x j −1 of block 1

If i ∈ HX − (I1 ∩ I2), set

Û ′
i = Ûi = f1(i).

If i ∈ (I1 ∩ I2)∪LX , set

Û ′
i = Ûi = argmax

x∈{0,1}
PUi|U1:i−1,Y 1:N (x|Û1:i−1,Y 1:N).

If i ∈ R, set

Û ′
i = Ûi = λ 1

i (Û
1:i−1).

end

for i = y j−1 +1 : y j −1 of block 2

If i ∈ HX − (I1 ∩ I2), set

V̂ ′
i = V̂i = f2(i).

If i ∈ (I1 ∩ I2)∪LX , set

V̂ ′
i = V̂i = argmax

x∈{0,1}
PUi|U1:i−1,Y 1:N (x|V̂ 1:i−1,Y N+1:2N).

If i ∈ R, set

V̂ ′
i = V̂i = λ 2

i (V̂
1:i−1).

end

3. Set

Û ′
x j
= f1(x j).

V̂ ′
y j
= argmax

x∈{0,1}
PV ′

y j
|U1:x j−1Û ′

x j
V 1:y j−1Y 1:2N (x|Û1:x j−1U ′

x j
V̂ 1:y j−1Y 1:2N).

Ûx j = Û ′
x j
+V̂ ′

y j
and V̂y j = V̂ ′

y j
.

4. Repeat steps 2 and 3 for j = {2,3, . . . ,G}.

5. for i = xG +1 : N of block 1

If i ∈ HX − (I1 ∩ I2), set
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Û ′
i = Ûi = f1(i).

If i ∈ (I1 ∩ I2)∪LX , set

Û ′
i = Ûi = argmax

x∈{0,1}
PUi|U1:i−1,Y 1:N (x|Û1:i−1,Y 1:N).

If i ∈ R, set

Û ′
i = Ûi = λ 1

i (Û
1:i−1).

end

for i = yG +1 : N of block 2

If i ∈ HX − (I1 ∩ I2), set

V̂ ′
i = V̂i = f2(i).

If i ∈ (I1 ∩ I2)∪LX , set

V̂ ′
i = V̂i = argmax

x∈{0,1}
PUi|U1:i−1,Y 1:N (x|V̂ 1:i−1,Y N+1:2N).

If i ∈ R, set

V̂ ′
i = V̂i = λ 2

i (V̂
1:i−1).

end

6. Set M̂1 = Û ′I1∩I2 and M̂2 = V̂ ′(I1∩I2)∪B. Combine M̂1, M̂2 to get M̂.

Step 2 and step 5 in the above decoding algorithm are for decoding bit-channels which

are not involved in the combining procedure, whereas step 3 is for decoding the new bit-channels

which are produced after combining. The decoding method clearly shows the order in which we

decode the bit-channels of the hybrid block (U ′1:N ,V ′1:N), which is governed by the bit-channel

combinings between the two original blocks.

Theorem 2. Let Pe,l(λ
1
R,λ

2
R, f1, f2) denote the decoding probability of error when DMC l is

selected in S for a given code in the above random code construction. For sufficiently large block

length N, the average decoding probability of error E[Pe,l(λ
1
R,λ

2
R, f1, f2)] = O(2−Nβ ′

) for each

l ∈ S, where β ′ < β < 0.5.

Proof: Refer to the Appendix.
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2.7 Conclusion

We presented a universal polar coding scheme for a compound channel defined by a

finite set of binary-input asymmetric DMCs with non-uniform compound capacity-achieving

input distribution. The proposed scheme exploits the underlying staircase structure in the code

construction to avoid the need for side-channel transmission, storage-intensive boolean functions,

or common randomness for bits corresponding to not-completely polarized bit-channels. We

assume a condition that the number of bit-channels that are good for all the DMCs in the

compound channel is greater than the number of not-completely polarized bit-channels to

propose the code construction. When the condition does not hold, we proposed a hybridized

staircase scheme, in which we use a hybrid polar block, with a block length at most 2s−1 times

the original polar block length, that satisfies the desired condition.

The staircase scheme we proposed also requires a large block length and suffers from

delay properties as in the symmetric channel case [22], even after the implementation of the

proposed continuous encoding and decoding. This leaves open the problem of designing codes

with short block length. Another open problem is the construction of a stronger universal polar

code with reduced storage complexity that achieves rate r less than compound capacity with

non-uniform compound capacity-achieving distribution p(x), while also achieving rate r for

any DMC whose mutual information evaluated at p(x) is larger than r and avoiding common

randomness. Another interesting open problem is reducing the height of the staircase to shorten

the overall block length for a single asymmetric channel capacity-achieving scheme. In each full-

height column, if the information bit-channels are at least as many as not-completely polarized

bit-channels, we can implement the code construction that achieves capacity. So the problem

is determining the shortest height h such that any h consecutive bit-channels have as many

information bit-channels as not-completely polarized bit-channels. If h is sub-linear in the block

length, the delay at which the staircase scheme operates will just be o(N), which can make the

scheme a good asymmetric channel capacity-achieving scheme.
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2.8 Appendix

Proof of Theorem 1:

We first prove part 1 of Theorem 1.

Step 1:

Consider any polar block in the extended staircase which lies completely in the full-height

column regime. To get the distribution on U1:N for such a polar block, we first compute the

conditional distribution P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) for each bit-channel i in the block.

If i ∈ LX , by the encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = δi(ui|u1:i−1).

If i ∈ R, by the encoding rule

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = PUi|U1:i−1(ui|u1:i−1).

If i ∈ HX − I′, by Lemma 1

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = 0.5.

If i ∈ I′, we will have

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = 0.5.

Now we discuss the case i ∈ I′ in detail. H is the designated information bit corresponding to

that column. Ũg(i) is the already encoded bit in the block corresponding to the bit-channel g(i)

in that column. We have Ui = H ⊕Ũg(i). The distribution of H is Bernoulli(0.5). Note that the

random variables H and Ũg(i) are independent. Now,

P(Ui = x|Ũg(i) = y,W 1:N) = P(H +Ũg(i) = x|Ũg(i) = y,W 1:N)
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= P(H = x+ y|Ũg(i) = y,W 1:N).

Since H is independent of Ũg(i) and W 1:N , we get

P(Ui = x|Ũg(i) = y,W 1:N) = P(H = x+ y) = 0.5.

Therefore Ui and Ũg(i) are independent. Now we establish that Ui is independent of all the encoded

bits of previous columns and the frozen vector W 1:N . This will imply that Ui is independent of

U1:i−1 of that block. P is the random vector denoting the encoded bits of the previous columns.

Now the conditional probability

P(Ui = ui|P,W 1:N) = ∑
y∈{0,1}

P(Ui = ui,Ũg(i) = y|P,W 1:N)

= ∑
y∈{0,1}

P(Ũg(i) = y|P,W 1:N)P(Ui = ui|Ũg(i) = y,P,W 1:N).

Since Ui is independent of bits encoded in previous columns and W 1:N given the random variable

Ũg(i), we get

P(Ui = ui|P,W 1:N) = ∑
y∈{0,1}

P(Ũg(i) = y|P,W 1:N)P(Ui = ui|Ũg(i) = y).

As Ui and Ũg(i) are independent, we get

P(Ui = ui|P,W 1:N) = ∑
y∈{0,1}

P(Ũg(i) = y|P,W 1:N)P(Ui = ui)

= P(Ui = ui)

= 0.5.

Hence the distribution of U1:N for a block which lies completely in the full-height column regime
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becomes

P(U1:N = u1:N |W 1:N) = Πi∈[N]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N)

= 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

This implies that

EW 1:N [P(U1:N = u1:N |W 1:N)] = 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

Step 2:

Consider a polar block which lies partly in the non-full-height column regime on the

right side. For Ui in a full-height column, the conditional probability rule is already derived in

step 1. We now derive the conditional probablility for Ui in a non-full-height column.

By the encoding rule we have:

If i ∈ HX ,

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = 0.5.

If i ∈ LX ,

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = δi(ui|u1:i−1).

If i ∈ R,

P(Ui = ui|U1:i−1 = u1:i−1,W 1:N) = PUi|U1:i−1W 1:N (ui|u1:i−1).

This implies that

P(U1:N = u1:N |W 1:N) = Πi∈[N]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N)

= 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

(2.12)
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Hence the ensemble average distribution of U1:N becomes

EW 1:N [P(U1:N = u1:N |W 1:N)] = 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

Step 3:

Consider a polar block which lies partly in the non-full-height column regime on the left

side. Let H̃ be the set of bit-channels of the block that lie in the non-full-height column regime.

Those bits are encoded as Wi corresponding to every index i ∈ H̃. Now,

EW 1:N [Πi∈H̃1(ui =Wi)] = EW 1:N [1(∩i∈H̃(ui =Wi))]

= EW 1:N [ ∑
ui∈{0,1}:i∈H̃c

1(∩i∈[N](ui =Wi))].

By using the linearity of expectation, we get

EW 1:N [Πi∈H̃1(ui =Wi)]

= ∑
ui∈{0,1}:i∈H̃c

EW 1:N [1(∩i∈[N](ui =Wi))]

(a)
= ∑

ui∈{0,1}:i∈H̃c

2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

= 2−|H̃∩HX |Πi∈LX∩H̃δi(ui|u1:i−1)Πi∈R∩H̃PUi|U1:i−1(ui|u1:i−1).

(2.13)

Identity (a) is true because of the fact that

EW 1:N [1(∩i∈[N](ui =Wi))] = 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1),

obtained from random construction of W 1:N in equation (2.4). Now the distribution of U1:N will

become

P(U1:N = u1:N |W 1:N) = Πi∈[N]P(Ui = ui|U1:i−1 = u1:i−1,W 1:N)
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(a)
= Πi∈H̃1(ui =Wi)2−|HX−H̃|

Πi∈LX−H̃δi(ui|u1:i−1)

·Πi∈R−H̃PUi|U1:i−1(ui|u1:i−1).

Identity (a) follows by substituting the conditional distribution of Ui given U1:i−1 of a full-height

column derived in Step 1.

This implies

EW 1:N [P(U1:N = u1:N |W 1:N)]

= EW 1:N [Πi∈H̃1(ui =Wi)2−|HX−H̃|
Πi∈LX−H̃δi(ui|u1:i−1)

·Πi∈R−H̃PUi|U1:i−1(ui|u1:i−1)].

By linearity of expectation, we get

EW 1:N [P(U1:N = u1:N |W 1:N)]

= EW 1:N [Πi∈H̃1(ui =Wi)]2−|HX−H̃|
Πi∈LX−H̃δi(ui|u1:i−1)

·Πi∈R−H̃PUi|U1:i−1(ui|u1:i−1)]

(a)
= 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1).

Identity (a) follows from equation (2.13). This concludes the proof of part 1.

We now prove part 2 of Theorem 1.

Let E be the error event and l be the DMC selected in S. The error occurs if and only if

there is a decoding error while decoding some bit-channel in LX ∪ Il of any polar block in the

full-height column regime. We index each polar block in the staircase as b = 1,2, . . . ,N pk. Let

Eg be the error event with a genie-aided decoder, which has the accurate values of the past U1:i−1

when decoding any bit-channel i ∈ LX ∪ Il for all polar blocks. Let Eib be the bit-channel error

57



event for the bit-channel i corresponding to the block b, which is defined as below:

Eib = {(u1:N ,y1:N) tuples of all the blocks b̃ ∈ [N pk] :

PUi|U1:i−1,Y 1:N (ui +1|u1:i−1,y1:N)≥ PUi|U1:i−1,Y 1:N (ui|u1:i−1,y1:N)

holds for (u1:N ,y1:N) of block b}.

If the bit-channel i ∈ LX ∪ Il lies in the full-height column of polar block b, then error event

for bit-channel i for genie decoder will be the Eib. If the bit-channel i ∈ LX ∪ Il lies in the non-

full-height column of polar block b, then error event for bit-channel i for genie decoder will be

null event. This means that Eg = ∪b∈[N pk]∪{i:i∈LX∪Il and index i of block b lies in a full-height column} Eib.

Note that error event E will imply at least one of the error events in {Eib : b ∈ [N pk], i ∈

LX ∪ Il such that index i of block b lies in a full-height column}.

So we will have

E ⊂ Eg.

One the other hand, it is obvious that

Eg ⊂ E .

Hence we can deduce that

E = Eg ⊂ ∪b∈[N pk]∪i∈LX∪Il Eib. (2.14)

Let us also define the error event Ei of bit-channel i for a single polar block (U1:N ,Y 1:N), which

is used in the single asymmetric channel polar code:

Ei = {(u1:N ,y1:N) : PUi|U1:i−1,Y 1:N (ui +1|u1:i−1,y1:N)

≥ PUi|U1:i−1,Y 1:N (ui|u1:i−1,y1:N)}.
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We apply union-bound to equation (2.14) followed by taking the expectation. That gives the

following upper-bound for the ensemble average probability of error:

EW 1:N [Pe,l(W 1:N)] = EW 1:N [P(E |W 1:N)]≤ ∑
b∈[N pk]

EW 1:N [P(∪i∈LX∪IlEib|W 1:N)]. (2.15)

For each block, let us define a measure on (U1:N ,Y 1:N) as follows:

QU1:N ,Y 1:N (u1:N ,y1:N) = 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1)

·ΠN
i=1 pl(yi|xi),

(2.16)

where x1:N is obtained by applying the polar transform to u1:N . Note that PU1:N ,Y 1:N is the measure

induced when X1:N is i.i.d. according to p(x) and gets transmitted over the selected DMC l, and

Y 1:N is received. By using the results from [11] and [24], we have

||QU1:N ,Y 1:N −PU1:N ,Y 1:N ||= O(2−Nβ ′
) (2.17)

for β ′ < β < 0.5.

Let Eb = ∪i∈LX∪IlEib. Note that

P(Eb|W 1:N) = ∑
((u1:N ,y1:N) tuples of all blocks [N pk])∈Eb

P(∩b̃∈[N pk](U
1:N = u1:N ,Y 1:N = y1:N of block b̃)|W 1:N).

From the definitions of Ei and Eb, we get

P(Eb|W 1:N) = ∑
((u1:N ,y1:N) of block b)∈∪i∈LX∪Il

Ei

∑
((u1:N ,y1:N) tuples of blocks [N pk]−{b})

P(∩b̃∈[N pk](U
1:N = u1:N ,Y 1:N = y1:N of block b̃)|W 1:N).
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By marginalizing over the (U1:N ,Y 1:N) tuples of blocks [N pk]−{b}, we get

P(Eb|W 1:N)

= ∑
((u1:N ,y1:N) of block b)∈∪i∈LX∪Il

Ei

P(U1:N = u1:N ,Y 1:N = y1:N of block b|W 1:N).

By the chain rule of condition probability and also by the fact that

P(Y 1:N = y1:N of block b|U1:N = u1:N of block b, W 1:N) = Π
N
i=1 pl(yi|xi),

we will have the following:

P(Eb|W 1:N)

= ∑
((u1:N ,y1:N) of block b)∈∪i∈LX∪Il

Ei

P(U1:N = u1:N of block b|W 1:N)ΠN
i=1 pl(yi|xi).

(2.18)

In the term ΠN
i=1 pl(yi|xi) in equation (2.18), notice that x1:N vector corresponds to block b, which

means it is obtained by applying the polar transform to u1:N vector corresponding to block b and,

y1:N vector corresponds to block b. By taking expectation on both sides of equation (2.18) and

applying the linearity of expectation, we get

EW 1:N [P(Eb|W 1:N)]

= ∑
((u1:N ,y1:N) of block b)∈∪i∈LX∪Il

Ei

EW 1:N [P(U1:N = u1:N of block b|W 1:N)]ΠN
i=1 pl(yi|xi).

From equation (2.16) and part 1 of Theorem 1, we get

EW 1:N [P(Eb|W 1:N)]

= ∑
((u1:N ,y1:N) of block b)∈∪i∈LX∪Il

Ei

QU1:N ,Y 1:N ((u1:N ,y1:N) of block b).
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Therefore,

EW 1:N [P(Eb|W 1:N)] = QU1:N ,Y 1:N (∪i∈LX∪IlEi)

≤ ||QU1:N ,Y 1:N −PU1:N ,Y 1:N ||+PU1:N ,Y 1:N (∪i∈LX∪IlEi)

(a)
≤ ||QU1:N ,Y 1:N −PU1:N ,Y 1:N ||+ ∑

i∈LX∪Il

PU1:N ,Y 1:N (Ei)

(b)
≤ O(2−Nβ ′

)+ ∑
i∈LX∪Il

Z(Ui|U1:i−1Y 1:N)

(c)
≤ O(2−Nβ ′

)+O(N2−Nβ

) = O(2−Nβ ′
).

Identity (a) follows from the union bound. Identity (b) follows from equation (2.17) and also

from the fact that P(Ei) is upper bounded by Z(Ui|U1:i−1Y 1:N), as the decision rule for these

bit-channels is the MAP decision rule under measure P [46, Proposition 2.7]. Identity (c) follows

from polarization results mentioned in Section 2.2. Therefore EW 1:N [P(∪i∈LX∪IlEib|W 1:N)]

becomes O(2−Nβ ′
) where β ′ < β < 0.5. The overall average probability of error will be

O(N pk2−Nβ ′
) from equation (2.15). This concludes the proof of part 2.

We now prove part 3 of Theorem 1.

Encoding Complexity: Encoding complexity consists of two factors: encoding the

polar block and encoding the RS codeword. Encoding the polar block takes O(N log2(N))

real operations. Hence the number of operations per bit is O(log2(N)) real operations. En-

coding RS codeword can be done by computing a Fourier transform of length |HX | − |R|

which takes O(|HX | log |HX |) operations over the field GF(2p) [22]. Addition and mul-

tiplication over this field take p and plog2(3) binary operations, respectively. Hence there

are plog2(3)O(|HX | log2(|HX |)) binary operations. Therefore, overall RS encoding takes

O((log2 N)plog2(3)−1) binary operations per bit.

Decoding Complexity: Decoding complexity consists of two factors: decoding the

polar block and decoding the RS codeword. Decoding the polar blocks takes O(N log2 N) real
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operations. Hence the number of operations per bit is O(log2(N)) real operations. Erasure

decoding can be done using error correction decoding algorithms [7, p. 256]. Error correction

decoding of a RS codeword here can be done in O(|HX |(log2(|HX |))2 log2 log2 |HX |) operations

over GF(2p) [45, p. 216] since the block length of the RS code is |HX | − |R|. Addition and

multiplication over this field take p and plog2(3) binary operations, respectively. So there will be

plog2(3)O(|HX |(log2(|HX |))2 log2 log2 |HX |) binary operations. Therefore overall RS erasure

decoding takes O((log2(N))2 log2 log2 N)plog2(3)−1 binary operations per bit. This concludes the

proof of part 3.

Proof of Lemma 2:

The proof of Lemma 2 that we provide here follows the proof of Lemma 4 in [1]. First,

we have

Z(X |Y ) = 2 ∑
y∈Y

√
PX ,Y (0,y)PX ,Y (1,y)

=−1+ ∑
y∈Y

[
∑

x∈X

√
PX ,Y (x,y)

]2
.

We now use the following form of Minkowsky’s inequality that is true when r < 1 and a jk is

non-negative:

∑
k∈K

( ∑
j∈J

Q( j)a jk
1
r )

r
≥
[

∑
j∈J

Q( j)( ∑
k∈K

a jk)
1
r
]r
.

Then with r = 0.5 and a jk =
√

P j
X ,Y (x,y), we get

Z(X |Y )≥−1+ ∑
y∈Y

∑
j∈J

Q( j)
[

∑
x∈X

√
P j

X ,Y (x,y)
]2

= ∑
j∈J

Q( j)(−1+ ∑
y∈Y

[
∑

x∈X

√
P j

X ,Y (x,y)
]2
)

= ∑
j∈J

Q( j)Z j(X |Y ).
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Proof of Proposition 1:

The proof of the proposition follows from the proof of [46, Lemma 2.9]. We have

PU1,U2,Y1,Y2(u1,u2,y1,y2) = PX1,X2,Y1,Y2(u1 +u2,u2,y1,y2)

= PX1,Y1(u1 +u2,y1)PX2,Y2(u2,y2).

(2.19)

We also have

PU1,Y1,Y2(u1,y1,y2) = ∑
u2

PU1,U2,Y1,Y2(u1,u2,y1,y2)

= ∑
u2

PX1,Y1(u1 +u2,y1)PX2,Y2(u2,y2).

(2.20)

Now we evaluate the upper bound for Bhattacharyya parameter Z(U1|Y1,Y2) as follows:

Z(U1|Y1,Y2)

= 2 ∑
y1y2

√
PU1,Y1,Y2(0,y1,y2)PU1,Y1,Y2(1,y1,y2)

(a)
= 2 ∑

y1y2

(
(∑

u2

PX1,Y1(u2,y1)PX2,Y2(u2,y2))(∑
v2

PX1,Y1(1+ v2,y1)PX2,Y2(v2,y2))
)0.5

≤ 2 ∑
y1y2

∑
u2v2

(
PX1,Y1(u2,y1)PX1,Y1(1+ v2,y1)PX2,Y2(u2,y2)PX2,Y2(v2,y2)

)0.5

= ∑
u2v2

(
2 ∑

y1y2

(
PX1,Y1(u2,y1)PX1,Y1(1+ v2,y1)PX2,Y2(u2,y2)PX2,Y2(v2,y2)

)0.5)
(b)
≤ Z(X1|Y1)+Z(X2|Y2).

Identity (a) follows from equation (2.20). Identity (b) follows because when u2 = v2, the term

inside the outermost summation becomes Z(X1|Y1)PX2(u2) and when u2 = v2+1, the term inside

the outermost summation becomes Z(X2|Y2)PX1(u2).
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The joint distribution PU1Y1Y2(u1,y1,y2) can be expressed as

PU1Y1Y2(u1,y1,y2) = ∑
u2∈X

PU1U2Y1Y2(u1,u2,y1,y2)

= PU1U2Y1Y2(u1,0,y1,y2)+PU1U2Y1Y2(u1,1,y1,y2)

= PU2(0)PU1Y1Y2|U2(u1,y1,y2|0)+PU2(1)PU1Y1Y2|U2(u1,y1,y2|1).

Let

P1
U1Y1Y2

(u1,y1,y2) = PU1Y1Y2|U2(u1,y1,y2|0),

P2
U1Y1Y2

(u1,y1,y2) = PU1Y1Y2|U2(u1,y1,y2|1)

be the two joint distributions on random variable triplet (U1,Y1,Y2). We now evaluate the

Bhattacharyya parameter corresponding to the distribution P1
U1Y1Y2

(u1,y1,y2).

Z1(U1|Y1Y2) = 2 ∑
y1y2

P1
Y1Y2

(y1y2)
√

P1
U1|Y1Y2

(0|y1y2)P1
U1|Y1Y2

(1|y1y2)

= 2 ∑
y1y2

PY1Y2|U2(y1y2|0)
√

PU1|Y1Y2U2(0|y1y20)PU1|Y1Y2U2(1|y1y20)

(a)
= 2 ∑

y1y2

PY1(y1)PY2|U2(y2|0)
√

PX1|Y1Y2U2(0|y1y20)PX1|Y1Y2U2(1|y1y20)

(b)
= 2 ∑

y1y2

PY1(y1)PY2|U2(y2|0)
√

PX1|Y1(0|y1)PX1|Y1(1|y1)

= 2∑
y1

PY1(y1)
√

PX1|Y1(0|y1)PX1|Y1(1|y1)

= Z(X1|Y1).

Identity (a) is true because Y1 is independent of U2 and also because Y2 is independent of Y1

given U2. Identity (b) is true because X1 is independent of Y2U2 given Y1. Similarly we can easily

prove that Z2(U1|Y1Y2) = Z(X1|Y1). Now Lemma 2 implies that Z(U1|Y1Y2) ≥ Z(X1|Y1). By

exchanging the roles of (X1,Y1) and (X2,Y2), we can also get Z(U1|Y1Y2)≥ Z(X2|Y2). Therefore
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Z(U1|Y1Y2)≥ max{Z(X2|Y2),Z(X1|Y1)}. This concludes the proof of part 1.

Now we evaluate the Bhattacharyya parameter Z(U2|Y1Y2U1) as follows:

Z(U2|Y1Y2U1) =

= 2 ∑
y1y2u1

√
PU1,U2,Y1,Y2(u1,0,y1,y2)PU1,U2,Y1,Y2(u1,1,y1,y2)

(a)
= 2 ∑

y1y2u1

[
PX1,Y1(u1,y1)PX2,Y2(0,y2)PX1,Y1(u1 +1,y1)PX2,Y2(1,y2)

]0.5

= 2 ∑
y1y2u1

[
PX1,Y1(u1,y1)PX1,Y1(u1 +1,y1)PX2,Y2(0,y2)PX2,Y2(1,y2)

]0.5

= ∑
u1∈X

∑
y1∈Y1

(
2 ∑

y2∈Y2

[
PX1,Y1(u1,y1)PX1,Y1(u1 +1,y1)PX2,Y2(0,y2)PX2,Y2(1,y2)

]0.5)
= Z(X1|Y1)Z(X2|Y2).

Identity (a) follows from (2.19). Since the Bhattacharyya parameter is always less than or equal

to 1, it also follows that Z(U2|Y1Y2U1)≤ min{Z(X1|Y1),Z(X2|Y2)}. This concludes the proof of

part 2.

Proof of Lemma 3:

||P−Q||= ∑
(x1,x2)

1
2
|P(x1,x2)−Q(x1,x2)|

= ∑
(x1,x2)

1
2
|P1(x1)P2(x2)−Q1(x1)Q2(x2)|

= ∑
(x1,x2)

1
2
|P1(x1)P2(x2)−Q1(x1)P2(x2)+Q1(x1)P2(x2)−Q1(x1)Q2(x2)|.

By the triangular inequality, we now get

||P−Q|| ≤ ∑
(x1,x2)

(
1
2
|P1(x1)P2(x2)−Q1(x1)P2(x2)|+

1
2
|Q1(x1)P2(x2)−Q1(x1)Q2(x2)|)

=
1
2 ∑
(x1,x2)

P2(x2)|P1(x1)−Q1(x1)|+
1
2 ∑
(x1,x2)

Q1(x1)|P2(x2)−Q1(x2)|
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=
1
2 ∑

x1

|P1(x1)−Q1(x1)|+
1
2 ∑

x2

|P2(x2)−Q1(x2)|

= ||P1 −Q1||+ ||P2 −Q2||

= ε1 + ε2.

Proof of Lemma 4:

||QX ,Y −PX ,Y ||= ∑
(x,y):PX ,Y (x,y)>QX ,Y (x,y)

PX ,Y (x,y)−QX ,Y (x,y)

= ∑
(x,y):PX (x)p(y|x)>QX (x)p(y|x)

PX(x)p(y|x)−QX(x)p(y|x)

= ∑
(x,y):PX (x)>QX (x)

(PX(x)−QX(x))p(y|x)

= ∑
x:PX (x)>QX (x)

∑
y
(PX(x)−QX(x))p(y|x)

= ∑
x:PX (x)>QX (x)

(PX(x)−QX(x))

= ||QX −PX ||.

Proof of Lemma 5: The Bhattacharyya parameter of the new bit-channel produced with U ′
x j

as

input and U1:x j−1V 1:y j−1Y 1:2N as output will be lower bounded as follows:

Z(U ′
x j
|U1:x j−1V 1:y j−1Y 1:2N)

(a)
≥ max{Z(Ux j |U1:x j−1Y 1:N),Z(Vy j |V 1:y j−1Y N+1:2N)}
(b)
≥ 1−2−Nβ

.

Identity (a) is true by Proposition 1. Identity (b) follows, as either Z(Ux j |U1:x j−1Y 1:N) (if DMC

2 is selected in S) will be greater than 1−2−Nβ

or Z(Vy j |V 1:y j−1Y N+1:2N) (if DMC 1 is selected

in S) will be greater than 1−2−Nβ

. This completes the proof of part 1.

The Bhattacharyya parameter of the new bit-channel produced with V ′
y j

as input and
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U1:x j−1V 1:y j−1U ′
x j

Y 1:2N as output will be upper bounded as follows:

Z(V ′
y j
|U1:x j−1V 1:y j−1U ′

x j
Y 1:2N)

(a)
= Z(Ux j |U1:x j−1Y 1:N)Z(Vy j |V 1:y j−1Y N+1:2N)

(b)
≤ 2−Nβ

.

Identity (a) is true by Proposition 1. Identity (b) follows, as either Z(Ux j |U1:x j−1Y 1:N) (if DMC

1 is selected in S) will be less than 2−Nβ

or Z(Vy j |U1:y j−1Y N+1:2N) (if DMC 2 is selected in S)

will be less than 2−Nβ

. This completes the proof of part 2.

Proof of Theorem 2:

Let the linear bijective transform which maps (U ′1:N V ′1:N) to (U1:N V 1:N) be H2N . Let

the word (u1:N v1:N) be obtained by applying H2N to the word (u′1:N v′1:N). The probability

that the word (U ′1:N V ′1:N)= (u′1:N v′1:N) and received vector Y 1:2N = y1:2N when DMC l in S

is selected will be

2−(2|I1∩I2|+|B|)
1[∩i∈(HX−(I1∩I2)){ f1(i) = u′i}]1[∩i∈(HX−((I1∩I2)∪B)){ f2(i) = v′i}]

·1[∩i∈R{λ
1(u1:i−1) = ui}]1[∩i∈R{λ

2(v1:i−1) = vi}]Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))

·PY 1:N |U1:N (y1:N |u1:N)PY 1:N |U1:N (yN+1:2N |v1:N).

(2.21)

Note that we used the fact that PU1:NY 1:N = PV 1:NY N+1:2N . Let E b
i be the error event for the ith

bit-channel of block b.

For i ∈ I1 ∩ I2, we define the error events as follows:

E 1
i = {(u′1:N ,v′1:N ,y1:2N) : PUi|U1:i−1Y 1:N (ui +1|u1:i−1y1:N)

≥ PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N)},

E 2
i = {(u′1:N ,v′1:N ,y1:2N) : PUi|U1:i−1Y 1:N (vi +1|v1:i−1y1:N)
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≥ PUi|U1:i−1Y 1:N (vi|v1:i−1y1:N)}.

For j ∈ [G], we define the error event as follows:

E 2
y j
= {(u′1:N ,v′1:N ,y1:2N) : PV ′

y j
|U1:x j−1U ′

x j
V 1:y j−1Y 1:2N (vi +1|u1:x j−1u′x j

v1:y j−1y1:2N)

≥ PV ′
y j
|U1:x j−1U ′

x j
V 1:y j−1Y 1:2N (vi|u1:x j−1u′x j

v1:y j−1y1:2N)}.
(2.22)

Therefore the error event E becomes

E = {∪i∈I1∩I2E
1
i }∪{∪i∈(I1∩I2)∪BE 2

i }. (2.23)

The probability of error for the given f1, f2,λ
1
R,λ

2
R will be

Pe,l(λ
1
R,λ

2
R, f1, f2) = ∑

(u′1:N ,v′1:N ,y1:2N)

2−(2|I1∩I2|+|B|)
1[∩i∈(HX−(I1∩I2)){ f1(i) = u′i}]

·1[∩i∈(HX−((I1∩I2)∪B)){ f2(i) = v′i}]

·1[∩i∈R{λ
1(u1:i−1) = ui}]1[∩i∈R{λ

2(v1:i−1) = vi}]

·Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))·

·PY 1:N |U1:N (y1:N |u1:N)PY 1:N |U1:N (yN+1:2N |v1:N)

·1[(u′1:N ,v′1:N ,y1:2N) ∈ E ].

(2.24)

By linearity of expectation and independence of random functions (λ 1,λ 2, f1, f2), the ensemble
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expectation of Pe,l will become

E[Pe,l(λ
1
R,λ

2
R, f1, f2)] = ∑

(u′1:N ,v′1:N ,y1:2N)

2−2|HX |Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))

·Πi∈R(PUi|U1:i−1(ui|u1:i−1)PUi|U1:i−1(vi|v1:i−1))

·PY 1:N |U1:N (y1:N |u1:N)PY 1:N |U1:N (yN+1:2N |v1:N)

·1[(u′1:N ,v′1:N ,y1:2N) ∈ E ].

(2.25)

Now we define the measure Q on random variables U ′1:NV ′1:NY 1:2N as

QU ′1:NV ′1:NY 1:2N (u′1:N ,v′1:N ,y1:2N) : = 2−2|HX |Πi∈LX (δi(ui|u1:i−1)δi(vi|v1:i−1))

·Πi∈R(PUi|U1:i−1(ui|u1:i−1)PUi|U1:i−1(vi|v1:i−1))

·PY 1:N |U1:N (y1:N |u1:N)PY 1:N |U1:N (yN+1:2N |v1:N).

(2.26)

Note that

QU ′1:NV ′1:NY 1:2N (u′1:N ,v′1:N ,y1:2N) = QU1:NV 1:NY 1:2N (u1:N ,v1:N ,y1:2N).

From equations (2.25) and (2.26), we have

QU ′1:NV ′1:NY 1:2N (E ) = E[Pe,l(λ
1
R,λ

2
R, f1, f2)]. (2.27)

By marginalizing the distribution in equation (2.26) over the random variables (V 1:N ,Y N+1:2N)

and (U1:N ,Y 1:N), respectively, we will have

QU1:NY 1:N (u1:N ,y1:N) = 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈RPUi|U1:i−1(ui|u1:i−1)

·PY 1:N |U1:N (y1:N |u1:N).

(2.28)
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QV 1:NY N+1:2N (v1:N ,yN+1:2N) = 2−|HX |Πi∈LX δi(vi|v1:i−1)Πi∈RPUi|U1:i−1(vi|v1:i−1)

·PY 1:N |U1:N (yN+1:2N |v1:N).

(2.29)

Clearly,

QU1:NV 1:NY 1:2N (u1:N ,v1:N ,y1:N) = QU1:NY 1:N (u1:N ,y1:N)QV 1:NY N+1:2N (v1:N ,yN+1:2N).

Therefore (U1:N ,Y 1:N) and (V 1:N ,Y N+1:2N) are i.i.d. with respect to measure Q. Therefore, by

using the fact that QU1:NY 1:N = QV 1:NY N+1:2N , and equation (2.11), we get

||QU1:NY 1:N −PU1:NY 1:N ||= ||QV 1:NY N+1:2N −PV 1:NY N+1:2N ||. (2.30)

We bound the probability of error as follows:

QU ′1:NV ′1:NY 1:2N (E )≤ ||QU ′1:NV ′1:NY 1:2N −PU ′1:NV ′1:NY 1:2N ||+PU ′1:NV ′1:NY 1:2N (E )

≤ ||QU1:NV 1:NY 1:2N −PU1:NV 1:NY 1:2N ||+PU1:NV 1:NY 1:2N (E ).

From equation (2.23) and by using union bound, we get

QU ′1:NV ′1:NY 1:2N (E )≤ ||QU1:NV 1:NY 1:2N −PU1:NV 1:NY 1:2N ||+ ∑
i∈I1∩I2

PU ′1:NV ′1:NY 1:2N (E 1
i )

+ ∑
i∈(I1∩I2)∪B

PU ′1:NV ′1:NY 1:2N (E 2
i ).

(2.31)

Now we bound each of the three terms of the summation in the right hand side of the inequality.

We bound the first term of the summation as follows:

||QU1:NV 1:NY 1:2N −PU1:NV 1:NY 1:2N ||

(a)
≤ ||QV 1:NY N+1:2N −PV 1:NY N+1:2N ||+ ||QU1:NY 1:N −PU1:NY 1:N ||
(b)
= 2||QU1:NY 1:N −PU1:NY 1:N || (c)= O(2−Nβ ′

).

(2.32)
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Identity (a) follows from the fact that (U1:N ,Y 1:N) and (V 1:N ,Y N+1:2N) are independent with

respect to measures Q and P, coupled with application of Lemma 3. Identity (b) follows from

equation (2.30). Identity (c) follows from the fact that ||QU1:N ,Y 1:N −PU1:N ,Y 1:N ||= O(2−Nβ ′
) for

β ′ < β < 0.5.

For i ∈ I1 ∩ I2, P(E b
i ) is bounded below as in equation (60) in [24] for b ∈ {1,2}:

P(E b
i )≤ 2−Nβ

. (2.33)

For i ∈ B, there exists a j ∈ [G] such that i = y j. For such a bit-channel i, note that P(E 2
i ) is

upper bounded by Z(V ′
y j
|U ′1:x j−1V ′1:y j−1Y 1:2N) as the decision rule for these bit-channels is the

MAP decision rule under measure P [46, Proposition 2.7]. Therefore, from Lemma 5, we get

PU ′1:N ,V ′1:NY 1:2N (E 2
i )≤ Z(V ′

y j
|U ′1:x j−1V ′1:y j−1Y 1:2N)≤ 2−Nβ

. (2.34)

From equations (2.31), (2.32), (2.33) and (2.34), we conclude that

E[Pe,l(λ
1
R,λ

2
R, f1, f2)] = O(2−Nβ ′

)

for each l ∈ {1,2}.
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Figure 2.4. Continuous encoding and decoding of sub-staircases when N = 3,k = 5 and p = 1
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Chapter 3

Polar Shaping Codes for Costly Noiseless
and Noisy Channels

3.1 Introduction

Shaping codes encode information for use on costly channels, i.e., channels with symbol

costs subject to an average cost constraint. Their conceptual origins can be traced to Shannon’s

classic 1948 paper [49]. Prominent applications include data transmission with a power con-

straint [16] and, more recently, data storage on flash memories [29] and efficient strand synthesis

for DNA-based storage [28]. Codes that minimize average cost per symbol for a given rate and

codes that minimize average symbol cost per source symbol (or total cost) have been investigated,

as has their application to noiseless and noisy costly channels. See [29] for further references.

Arıkan [1] constructed capacity-achieving polar codes for binary input symmetric chan-

nels. Arıkan also introduced source polarization, which served as the basis for source coding

for non-uniform source alphabets [3]. A capacity-achieving coding scheme based on source

and channel polarization for binary input asymmetric channels was proposed by Honda and

Yamamoto [24]. In this scheme, complex boolean functions are shared between encoder and

decoder for non-information carrying bit-channels. The use of common randomness is proposed

to avoid these complex boolean functions [24]. En Gad et al. [15] used randomized rounding

for low-entropy and not-completely polarized bit-channels. In addition, a side channel was

used to reliably transmit bits corresponding to not completely polarized bit-channels, whose
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fraction is vanishing with respect to the block length. A proof that argmax can be used to encode

low-entropy bit-channels is given by Chou and Bloch [11]. We proposed a staircase scheme [37]

that avoids both common randomness and complex boolean functions to encode not-completely

polarized bit-channels.

In this paper, we consider polar code design for costly memoryless channels, both

noiseless and noisy. Shaping can also be viewed as a dual problem to source coding by converting

information into symbols satisfying specified probabilistic properties, and we also adopt this

perspective.

We first propose a polar shaping code design for a (costly) noiseless channel and a

specified symbol probability distribution. The construction is an adaptation of the Honda and

Yamamoto polar coding scheme for asymmetric channels [24]. The total cost of the proposed

shaping code approaches the minimum possible value when the code is designed with the optimal

rate and symbol distribution [29].

We then study shaping codes for costly noisy discrete memoryless channels (DMCs).

This model is relevant to the design of efficient codes that combine shaping and error correction

for use in a noisy transmission or storage system. We first give an upper bound on the rate that

can be achieved on the DMC with a specified symbol occurrence probability distribution on

codewords. Then we formulate an optimization problem whose solution gives a lower bound on

the optimal total cost for the channel. (Note that the maximum rate achieved with a constraint

on the average cost per code symbol has been investigated by Böcherer [8].) Finally, we show

that polar codes for asymmetric channels [24] can be used to design shaping codes for costly

noisy DMCs so that the total cost of the proposed code approaches the lower bound as the block

length grows. The construction uses common randomness for encoding frozen bit-channels and

not-completely polarized bit-channels in the code construction. Common randomness is crucial

to get the desired shaping distribution on the codeword symbols.

We also show that the optimal total cost can be achieved by using random code con-

struction methods, randomly choosing frozen bits and randomly choosing boolean functions
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for not-completely polarized channels [37], [24], and thereby avoiding the need for common

randomness. For such a random code construction, we show that, with high probability, there

exist codes in the random ensemble whose costs approach the optimal total cost with diminishing

probability of error.

We note that a scheme that combines polar-coded modulation and probabilistic amplitude

shaping [9] was introduced by Prinz et al. [44], and a novel constellation shaping based on

polar-coded modulation was proposed by Matsumine [31].

3.2 Preliminaries

We denote the alphabet of the costly channel by X . We denote the output alphabet of

the costly noisy DMC by Y . We express any set of random variables Xi,Xi+1, . . . ,X j (i < j)

by a row vector (Xi,Xi+1, . . . ,X j) which is denoted by X i: j. We denote the set {1,2,3, . . . ,N}

by [N]. Let U1:N be a row vector and let A ⊂ [N]. UA denotes the row vector consisting of

elements in U1:N corresponding to the subset of positions A in the same order. Let P and Q be

any two distributions on a discrete arbitrary alphabet Z . We denote the total variation distance

between the two distributions P and Q as ||P−Q||. Therefore ||P−Q||= ∑z∈Z
1
2 |P(z)−Q(z)|=

∑z:P(z)>Q(z)P(z)−Q(z). We denote the KL-divergence between two distributions P and Q as

D(P||Q).

Let X be the random variable distributed as p(x) over alphabet X . In this paper, we

provide polar shaping codes for binary alphabets. So we let X = {0,1} to introduce polariza-

tion results. Let (X1,Y1),(X2,Y2), . . . ,(XN ,YN) be i.i.d. random tuples distributed according to

p(x)p(y|x) and N = 2n. Let GN be the conventional polar transformation [1], represented by a bi-

nary matrix of dimension N×N. Let U1:N = X1:NGN . We denote P(U1:N = u1:N) by PU1:N (u1:N)

and similarly we denote P(Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N) by PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N).

For two random variables (X ,Y ) distributed as p(x)p(y|x), the Bhattacharya parameter
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is defined as

Z(X |Y ) = 2∑
y

PY (y)
√

PX |Y (1|y)PX |Y (0|y).

Let β < 0.5 and define the following subsets, with notation adapted from [15].

HX = {i ∈ [N] : Z(Ui|U1:(i−1))≥ 1−2−Nβ }.

LX = {i ∈ [N] : Z(Ui|U1:(i−1))≤ 2−Nβ }.

HX |Y = {i ∈ [N] : Z(Ui|U1:(i−1)Y 1:N)≥ 1−2−Nβ }.

LX |Y = {i ∈ [N] : Z(Ui|U1:(i−1)Y 1:N)≤ 2−Nβ }.

Note that LX ⊆ LX |Y . From Theorem 1 in [24], we have the following polarization results.

lim
N→∞

1
N
|HX |= H(X), lim

N→∞

1
N
|LX |= 1−H(X),

lim
N→∞

1
N
|HX |Y |= H(X |Y ),

lim
N→∞

1
N
|LX |Y |= 1−H(X |Y ).

We define several other subsets of bit-channels as follows:

I = HX ∩LX |Y ,F = HX ∩L c
X |Y ,S = (HX ∪LX)

c.

We refer to these as good, bad, and not completely polarized bit-channels respectively. We refer

to bit-channels in HX and bit-channels in LX as high-entropy bit-channels and low-entropy

bit-channels respectively. The size of set S is a vanishing fraction with respect to the block length

as N increases due to polarization. From [24, Theorem 1],

lim
N→∞

|I|
N

= I(X ;Y ). (3.1)

For a codeword of length N, we define the symbol frequency function f j : X N → [0,1]
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for j ∈ X as follows:

f j(x1:N) =
1
N

N

∑
i=1
1(xi = j).

A costly channel consists of a finite discrete alphabet X and a cost function C : X → R+

that associates cost C(x) to each symbol x ∈ X . A costly noisy DMC additionally contains an

alphabet Y for the noisy output and transition probabilities p(y|x) for each x ∈ X and y ∈ Y .

3.3 Polar shaping code

3.3.1 Code construction

In this section, we provide shaping code that transforms uniformly distributed message

M1:|HX | (|HX | bits) into X1:N , whose distribution is close to the distribution induced when X1:N

is i.i.d. according to p(x) in total variation distance. We assume that the alphabet X is binary in

our polar code construction below.

Encoding

Input: uniformly distributed message M1:|HX | (|HX | bits)

Output: codeword X1:N

for i = 1 : N, set Ui as follows.

1. For i ∈ HX , the value of Ui is given by setting

UHX = M1:|HX |.

2. For i ∈ LX , we set Ui using the argmax rule

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1).

3. For i ∈ R, we set Ui by randomized rounding with the

conditional distribution, PUi|U1:i−1(x|U1:i−1).

end
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4. X1:N =U1:NGN becomes the codeword.

The decoding algorithm is as follows.

Decoding

Input: codeword X1:N

Output: message estimate M1:|HX |

1. We reconstruct U1:N by applying GN to X1:N .

2. Therefore M1:|HX | =UHX .

Let Q be the measure on X1:N induced by the polar shaping code. Note that P is the measure on

X1:N induced when X1:N is i.i.d. distributed according to p(x). From the results in [24], [15], [11],

it is obvious that ||PX1:N −QX1:N ||= O(2−Nβ

).

Note that expected symbol frequency is as follows:

E[ f j(X1:N)] =
1
N

N

∑
i=1

P(Xi = j).

We refer to the distribution given by expected symbol frequency function as symbol occurrence

probability distribution for that block code. Let us call it qN(x). By using the fact that total

variation distance ||PX1:N −QX1:N || = O(2−Nβ

), it can be easily shown that qN(x) approaches

p(x) as follows:

qN(x) =
1
N

N

∑
i=1

P(Xi = x)

≤ 1
N

N

∑
i=1

(p(x)+ ||PX1:N −QX1:N ||)

= p(x)+O(2−Nβ

).
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Similarly,

qN(x) =
1
N

N

∑
i=1

P(Xi = x)

≥ 1
N

N

∑
i=1

(p(x)−||PX1:N −QX1:N ||)

= p(x)−O(2−Nβ

).

Hence qN(x) approaches p(x) as N grows. Note that the polar shaping code is invertible, in

contrast to polar source codes that are not strictly invertible [3]. As fraction of high-entropy

bit-channels, where we provide message bits, approaches H(X), we say that sequence of polar

codes achieve any rate R < H(X) with symbol occurrence distribution p(x). The extension to

the non-binary case can be done using ideas from [47].

3.3.2 Application to costly channel

Note the cost of a codeword x1:N ∈ X N per information bit

C̄N(x1:N) =
1
R ∑

j∈X

f j(x1:N)C( j).

Therefore, the average cost per information bit of the shaping code will be as follows:

E[C̄N(X1:N)] =
1
R ∑

j∈X

E[ f j(X1:N)]C( j)

=
1
R ∑

x∈X

C(x)qN(x).

Note that average cost per information bit, which we refer to as total cost, E[C̄N(X1:N)],

for the sequence of polar codes, approaches the optimal value [29, Theorem 3], by choosing

R close to H(X), by choosing p(x) as the symbol occurrence distribution characterized in
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[29, Theorem 3], which depends on the cost function. Hence, we say that the sequence of polar

codes achieve optimal total cost.

3.4 Shaping for DMCs

In this section, we consider shaping codes for DMCs characterized by transition proba-

bilities p(y|x).

A (2NR,N) code for a DMC consists of:

• message set: {1,2, . . . ,2NR},

• source of common randomness ZN known to encoder and decoder independent of message,

• an encoder X1:N : {1,2, . . . ,2NR}×ZN → X N and

• a decoder at receiver h : Y N ×ZN →{1,2, . . . ,2NR}.

R is the rate of the message. Let M be chosen uniformly from the set {1,2, . . . ,2NR}. Let Y 1:N

be the received sequence. Note that we also employ common randomness in the definition of

the code. Now we upper bound the rate that can be achieved on DMC with certain symbol

occurrence probability distribution in following subsection.

3.4.1 Upper bound on rate under a constraint on symbol occurrence
distribution

The upper bound we provide in this sub-section also applies to the case when X is

non-binary alphabet. We refer to qN(x) and E[C̄N(X1:N)] for symbol occurrence distribution and

total cost as defined in Section-3.3.

Definition: We say that R rate is achieved with symbol occurrence probability p(x) iff there exists

a sequence of (2NR,N) codes for discrete memoryless channels such that PN
e = P(h(Y 1:N ,ZN) ̸=

M) vanishes and qN(x) approaches p(x) as N goes to ∞.
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Lemma 6. If rate R is achieved with symbol occurrence probability p(x), then I(X ;Y ), mutual

information evaluated at p(x) for the DMC, will be an upper bound on R.

Proof: Let us consider a sequence of (2NR,N) codes for which qN(x) approaches p(x)

and probability of error diminishes. By Fano’s inequality, we get

H(M|Y 1:N ,ZN) = NεN ,

where εN vanishes as N grows. Let X̃N be the random variable distributed as qN(x).

NR = H(M)

= H(M)−H(M|Y 1:NZN)+H(M|Y NZN)

≤ H(M)−H(M|Y 1:NZN)+NεN

(a)
= H(M|ZN)−H(M|Y NZN)+NεN

= I(M;Y 1:N |ZN)+NεN

=
N

∑
i=1

I(M;Yi|ZNY 1:i−1)+NεN

=
N

∑
i=1

(H(Yi|Y 1:i−1ZN)−H(Yi|M,Y 1:i−1,ZN))+NεN

(b)
≤

N

∑
i=1

(H(Yi)−H(Yi|M,Y 1:i−1,Xi,ZN))+NεN

(c)
=

N

∑
i=1

(H(Yi)−H(Yi|Xi))+NεN

=
N

∑
i=1

I(Xi;Yi)+NεN

(d)
≤ NI(X̃N ;Y )+NεN

where I(X̃N ;Y ) mutual information evaluated at distribution qN(x) for the DMC p(y|x). Identity

(a) follows as source of common randomness is independent of the message. Identity (b) follows
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as conditioning reduces entropy. Identity (c) follows as Yi independent of Y 1:i−1,ZN given Xi.

Identity (d) follows as qN(x) = 1
N ∑

N
i=1 P(Xi = j) and mutual information is concave in input

distribution for fixed p(y|x).

As N approaches infinity, I(X̃N ,Y ) approaches I(X ;Y ) since qN(x) approaches p(x)

and mutual information is continuous function with input distribution for fixed p(y|x). Hence

R ≤ I(X ,Y ).

We use this result in the following subsection to define an optimization problem for the costly

noisy DMC that provides a lower bound on the optimal total cost.

3.4.2 Lower bound on optimal total cost for costly noisy channel

Definition: We say that rate R is achieved with total cost C̃ iff there exists a sequence of

(2NR,N) codes for discrete memoryless channels such that PN
e = P(h(Y 1:N ,ZN) ̸= M) vanishes

and E[C̄N(X1:N)] approaches C̃ as N goes to ∞.

Definition: Optimal total cost Copt is defined as follows:

Copt = in f(R,C̃)C̃,

where infimum is taken over (R,C̃) pairs such that R is achieved with total cost C̃.

Lemma 7. The optimal total cost Copt = in f(R,p(x))C̃, where C̃ = 1
R ∑x∈X C(x)p(x) and infimum

is taken over (R, p(x)) pairs such that R is achieved with symbol occurrence distribution p(x).

Proof: We first provide the proof when X is binary alphabet. Without loss of generality

assume that C(0) ̸= C(1) otherwise total cost is always equal to C(0)
R . Notice that there will

be one to one correspondence between qN(x) and E[C̄N(X1:N)], which are affinely related for

a given rate R. Hence qN(x) converges if and only if E[C̄N(X1:N)] converges as N goes to ∞.

The limits are also affinely related by the same function as both the sequences are. Hence, R

is achieved with total cost C̃ iff R is achieved with symbol occurrence distribution p(x), where

C̃ = 1
R ∑x∈X C(x)p(x).
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Therefore, Copt = in f(R,p(x))C̃, where C̃ = 1
R ∑x∈X C(x)p(x) and infimum is taken over

(R, p(x)) pairs such that R is achieved with symbol occurrence distribution p(x).

When X is non-binary alphabet, total cost at rate can be same for two different distribu-

tions. So, this argument does not apply to non-binary case. We need to use the fact that every

bounded sequence has convergent sub-sequence to prove that if rate R is achieved with total cost

C̃ then there exist p(x) such that rate R is achieved with symbol occurrence distribution p(x)

where C̃ = 1
R ∑x∈X C(x)p(x).

If rate R is achieved with C̃ then there exists a sequence of (2NR,N) codes such that

PN
e = P(h(Y 1:N ,ZN) ̸= M) vanishes and E[C̄N ] approaches C̃ as N goes to ∞. The symbol

occurrence distribution qN(x) may not converge. But there exists a sub-sequence of the sequence

qN(x) that converges, as qN(x) is a bounded sequence. Let us index such a sub-sequence with

k where block length corresponding to the kth element in the sub-sequence is Nk. Let qNk(x)

converges to the distribution p(x). Clearly for sequence of codes (2NkR,Nk), E[C̄Nk ] approaches C̃

as k goes to ∞. As E[C̄Nk ] =
1
R ∑x∈X C(x)qNk(x), we will have C̃ = 1

R ∑x∈X C(x)p(x). Therefore

we have sequence of codes for which probability of error diminishes and symbol occurrence

probability distribution converges to p(x) such that C̃ = 1
R ∑x∈X C(x)p(x), which means that

if rate R is achieved with total cost C̃ then there exists a distribution p(x) such that R rate is

achieved with symbol occurrence distribution p(x) where C̃ = 1
R ∑x∈X C(x)p(x). On the other

hand, if rate R is achieved with symbol occurrence probability distribution p(x), then obviously

rate R is achieved with total cost C̃ = 1
R ∑x∈X C(x)p(x).

Therefore, Copt = in f(R,p(x))C̃, where C̃ = 1
R ∑x∈X C(x)p(x) and infimum is taken over

(R, p(x)) pairs such that R is achieved with symbol occurrence distribution p(x). This concludes

the proof of the lemma.

As stated in the previous subsection, if rate R is achieved with symbol occurrence

distribution p(x), then R < I(X ;Y ). Note that the solution for the following optimization
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problem is lower bound to Copt .

Minimize(R,p(x))
1
R ∑

x∈X

C(x)p(x),

subject to R ≤ I(X ;Y ).

(3.2)

In the next subsection, we show that polar coding technique designed for asymmetric channels

can be used to achieve any rate R < I(X ;Y ) with symbol occurrence probability p(x). Therefore,

the sequence of polar codes, which are designed with minimizers of the optimization problem

achieve the lower bound provided by the solution of the optimization problem. This means

that the solution of the optimization problem characterizes the optimal total cost of costly noisy

DMCs.

We now compute the optimal total cost for a costly M-ary erasure channel. This channel

has alphabet size |X |= M, and each symbol is erased with certain erasure probability.

Theorem 3. The optimal symbol occurrence input distribution of the shaping code that achieves

optimal total cost for an M-ary erasure costly channel with erasure probability ρ is given by

p∗(x)= 2−µC(x) such that ∑x∈X 2−µC(x)= 1. We assume that the cost function C(x) is non-trivial

for each x ∈ X . The optimal total cost is given by Copt =
∑x∈X p∗(x)C(x)

(1−ρ)∑x∈X p∗(x) log2(1/p∗(x)) .

Proof: Mutual information I(X ;Y ) evaluated at the input distribution p(x) for the erasure

channel is given by (1−ρ)∑x∈X p(x) log2(1/p(x)). By substituting the mutual information in

(3.2), the optimization problem for the costly erasure channel takes the form:

Minimize(R,p(x))
1
R ∑

x∈X

C(x)p(x),

subject to R ≤ (1−ρ) ∑
x∈X

p(x) log2(1/p(x)).

For fixed rate R, finding out the symbol occurrence probability for minimum total cost will be a

convex optimization problem. Using Lagrange duality, we get the optimal symbol occurrence
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distribution at a fixed rate R as p̃(x) = 2−µC(x)

Nµ
, where µ is a positive constant such that

R = (1−ρ) ∑
x∈X

p̃(x) log2(1/ p̃(x))

and Nµ = ∑x∈X 2−µC(x) is normalization factor. We now minimize the function below, for

minimizing total cost:

G(µ) =
∑x∈X C(x)2−µC(x)

(1−ρ)(∑x∈X µC(x)2−µC(x)+Nµ log2 Nµ)

when µ > 0. Notice that this function is the same as function T defined in the proof of [29,

Theorem 3] except for a factor 1−ρ . The derivative G′(µ) will have negative of the sign of

log2 Nµ as shown in the proof of [29, Theorem 3]. As we assume that C(x)> 0 for each x ∈ X

and µ increases from 0 to ∞, Nµ is decreasing from |X | to 0. So G will be initially decreasing

as µ increases until Nµ becomes 1 and then will be increasing. So the minimum value of G

occurs when Nµ = 1. Hence the symbol occurrence distribution that achieves minimum total

cost is p∗(x) = 2−µC(x) for each x ∈ X where ∑x∈X 2−µC(x) = 1. Therefore the optimal total

cost Copt =
∑x∈X p∗(x)C(x)

(1−ρ)∑x∈X p∗(x) log2(1/p∗(x)) .

Now we provide the shaping polar code to achieve any rate R < I(X ;Y ) with symbol

occurrence probability distribution p(x) over DMCs.

3.4.3 Polar shaping codes for DMCs

We assume alphabet X is binary in the proposed polar code construction. The polar code

that we provide here transforms uniformly distributed message M1:|I| (|I| bits) into code-word

X1:N , whose distribution is close to the distribution induced when X1:N is i.i.d. according to p(x)

in total variation distance. The code construction we propose here is actually derived from the

capacity-achieving polar codes for asymmetric channels [24] by Honda and Yamamoto. We

use common randomness in the code construction to get the desired shaping property. Now we
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provide the encoding algorithm.

Encoding

Input: randomly chosen message M1:|I|

Output: codeword X1:N

for i = 1 : N, encode Ui as follows.

1. For i ∈ I, the value of Ui is given by setting U I = M1:|I|.

2. For i ∈ F , we set Ui as uniform independent

random variable through common randomness.

3. For i ∈ LX , we encode Ui using the argmax rule

Ui = argmaxx∈{0,1}PUi|U1:i−1(x|U1:i−1).

4. For i ∈ S, we set Ui with conditional distribution

PUi|U1:i−1(x|U1:i−1) using common randomness.

end

Transmit X1:N =U1:NGN .

The decoding algorithm is as follows.

Decoding

Input: received vector Y 1:N

Output: message estimate M̂1:|I|

for i = 1 : N

1. If i ∈ F , we reconstruct Ûi using common randomness,

which is uniform independent random variable.
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2. If i ∈ LX ∪ I, set

Ûi = argmaxx∈{0,1}PUi|U1:i−1,Y 1:N (x|Û1:i−1,Y 1:N).

3. If i ∈ S, we reconstruct Ûi using common randomness

with conditional distribution PUi|U1:i−1(x|Û1:i−1).

end

Decode M̂ = Û I .

Let Q be the measure on X1:N induced by the polar shaping code. Note that P is the measure on

X1:N induced when it is i.i.d. distributed according to p(x). From the results in [24], [15], [11],

it is obvious that ||PX1:N −QX1:N ||= O(2−Nβ ′
) for β ′ < β < 0.5. As mentioned in Section 3.3,

qN(x) approaches p(x) as N grows large. The probability of decoding error is O(2−Nβ ′
) [24].

As fraction of information bit-channels, where we provide message bits, approaches

I(X ;Y ), the sequence of polar codes achieve rate R< I(X ;Y ) with symbol occurrence distribution

p(x). Common randomness we employed in the code construction is crucial to get the desired

distribution on the symbols of the codeword. If R and p(x) in the polar code design are minimizers

of the optimization problem proposed in the previous subsection, then sequence of polar codes

clearly achieve the optimal total cost.

As proposed in [24], [37], if instead of using common randomness, we randomly generate

frozen bits for bit-channels in F and use boolean functions for encoding bit-channels in S, which

are shared between encoder and decoder, we will not be able to guarantee the desired shaping

distribution. The ensemble average symbol occurrence distribution will have the desired shaping

distribution, but we cannot guarantee the existence of a code in the random ensemble with the

desired shaping distribution. Nevertheless, we now prove that the random construction generates

codes whose total costs approach the optimal total cost with diminishing probability of error

if we design the polar code with minimizers of the optimization problem. Code constructions
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avoiding common randomness are advantageous as the practical implementation of common

randomness uses pseudo-random generators which often have many limitations. They can suffer

from shorter than the expected period for weak seed states.

Let p∗(x) be optimal symbol occurrence distribution and R∗ be the optimal rate for costly

noisy DMC. Clearly, R∗ is the mutual information evaluated at p∗(x) for the DMC.

Now we design sequence of polar codes with optimal symbol occurrence distribution

p∗(x) and optimal rate R∗ by random code construction method [24], as mentioned above avoid-

ing common randomness. Let WN denotes the random vector of frozen bits and boolean functions

for bit-channels in F and R respectively. Note that the rate sequence RN = |I|
N approaches R∗.

Clearly, the total cost for a given code will become as follows:

E[CN(X1:N)|WN ] = ∑x1:N∈X 1:N 2−|I|Πi∈F1{ f (i) = ui}

Πi∈LX δi(ui|u1:i−1)Πi∈S1{λi(u1:i−1) = ui}CN(x1:N),

where x1:N = u1:NGN , 1{.} is indicator function, δi(u|u1:i−1) denotes the conditional distribution

induced by argmax rule for bit-channels in LX as defined in [37], f (.) is frozen bit function

that is randomly chosen for bit-channels in F as defined in [37] and λi(.) denotes the boolean

functions to encode bit-channels in R as defined in [37].

Applying expectation on both sides and by the independence of frozen bits and boolean

functions [24], [37], the ensemble average total cost becomes as follows:

EWN [E[CN(X1:N)|WN ]]

= ∑x1:N∈X 1:N 2−|HX |Πi∈LX δi(ui|u1:i−1)Πi∈SPUi|U1:i−1(ui|u1:i−1)CN(x1:N)

= ∑x1:N∈X 1:N Q(x1:N)CN(x1:N).

This implies that EWN [E[CN(X1:N)|WN ]] =
N
|I| ∑x∈X C(x)qN(x).

Therefore, as qN(x) approaches p∗(x) and |I|
N approaches R∗, ensemble average total

cost EWN [E[CN(X1:N)|WN ]] approaches 1
R∗ ∑x∈X C(x)p∗(x) which is optimal total cost Copt . On

the other hand, the ensemble average probability of error EWN [Pe(WN)] = O(2−Nβ ′
) [24] where

β ′ < β < 0.5 and Pe(WN) is the probability of error of the given code. A good shaping code has

total cost close to the optimal value and negligible probability of error. So we should show there
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exists a sequence of codes whose total cost approaches optimal total cost and probability of error

diminishes. We show the existence of such codes with high probability. We precisely state our

result in Theorem 4 followed by a rigorous proof. For the sake of brevity, we denote, the total

cost for a given code, E[CN(X1:N)|WN ], by TN .

Theorem 4. In the above random code construction, P
(
Pe(WN)< N2−Nβ ′

, b̃NEWN [TN ]≤ TN ≤

ãNEWN [TN ]
)

approaches 1 for some ãN > 1 and b̃N < 1 that converge to 1. This means that,

with high probability, there exist codes in the random ensemble with total cost approaching the

optimal total cost and diminishing probability of error.

Proof: We first prove that P(bNEWN [TN ]≤ TN ≤ aNEWN [TN ]) goes to 1 for any bN that

converges to b < 1 from below and aN that converges to a > 1 from above. This is equivalent to

proving P(TN > aNEWN [TN ]) converges to zero and P(TN < bNEWN [TN ]) converges to zero. For

the sake of brevity, we denote EWN [TN ] as Ẽ[TN ] in the proof.

Now we prove P(TN > aNẼ[TN ]) converges to zero by contradiction. So we assume

there is subsequence indexed by r, P(TNr > aNrẼ[TNr ]), whose liminf is non-zero. Let us denote

the sequence P(TNr > aNrẼ[TNr ]) as pNr . Note that limsup of sequence pNr is less than 1, as

pNr is upper-bounded by 1
aNr

, by the Markov inequality. As aNr > 1, we will be able to choose

0 ≤ lNr < 1 such that Ẽ[TNr ] = pNraNrẼ[TNr ]+(1− pNr)lNrẼ[TNr ].

Note that lNr =
1−pNr aNr

1−pNr
. Therefore,

limsup
r→∞

lNr = limsup
r→∞

1− pNraNr

1− pNr

(a)
= limsup

r→∞

1− pNr(limr→∞ aNr)

1− pNr

(b)
= limsup

r→∞

1− pNra
1− pNr

(c)
=

1− (liminfr→∞ pNr)a
1− liminfr→∞ pNr

(d)
≤ 1
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Identity (a) is true as limit of aNr exist. Idenity (b) follows as limit of aNr is a. Identity (c) is true

as the function 1−ax
1−x decreases as x increases when a > 1. Idenity (d) follows from the fact that

1−ax
1−x < 1 for a > 1 and 0 < x < 1.

Hence limsup of lNr less than 1. Set l′Nr
=

1+lNr
2 . Therefore, Ẽ[TNr ]< pNraNrẼ[TNr ]+(1−

pNr)l
′
Nr
Ẽ[TNr ] and limsup of l′Nr

is less than 1. Note that

Ẽ[TNr ]=pNraNrẼ[TNr ]+(1−pNr−qNr)l
′
Nr
Ẽ[TNr ] (3.3)

where qNr = (1− pNr)
1−lNr
1+lNr

, and liminf of qNr does not vanish as the limsups of lNr and pNr are

strictly less than 1.

Note also that

Ẽ[TNr ]≥ pNraNrẼ[TNr ]+P(l′Nr
Ẽ[TNr ]≤TNr≤aNrẼ[TNr ])l

′
Nr
Ẽ[TNr ].

By plugging in for Ẽ[TNr ] using equation (3.3), we get

P(l′Nr
Ẽ[TNr ]≤TNr≤aNrẼ[TNr ])≤ (1−pNr−qNr).

This yields

P(TNr < l′Nr
Ẽ[TNr ]) = 1−P(l′Nr

Ẽ[TNr ]≤TNr≤aNrẼ[TNr ])−P(TNr>aNrẼ[TNr ])

≥ 1−(1− pNr−qNr)−pNr = qNr .

Hence qNr is a lower-bound to P(TNr<l′Nr
Ẽ[TNr ]). Hence P(TNr<l′Nr

Ẽ[TNr ]) does not converge to

zero. As P(Pe < Nr2−Nβ ′
r ) converges to 1, it follows that the sequence P(Pe < Nr2−Nβ ′

r ,TNr <

l′Nr
Ẽ[TNr ]) does not converge to zero. As limsup of l′Nr

is less than 1, we can get a sequence of

codes whose total costs converge to less than optimal total cost Copt with diminishing probability

of error. This is a contradiction. Hence P(TN > aNẼ[TN ]) converges to zero.
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Now we prove that P(TN < bNẼ[TN ]) converges to zero. We again prove this by contradic-

tion. So assume P(TN < bNẼ[TN ]) does not converge to zero. As P(Pe < N2−Nβ ′
) converges to 1,

the sequence P(Pe < N2−Nβ ′
,TN < bNẼ[TN ]) does not converge to zero. This is a contradiction

as we can get a sequence of codes whose total costs converge to less than optimal total cost Copt

with diminishing probability of error. Hence P(TN < bNẼ[TN ]) converges to zero.

We conclude P(bNẼ[TN ]≤ TN ≤ aNẼ[TN ]) goes to 1. As P(Pe < N2−Nβ ′
) converges to

1, we will have P(Pe < N2−Nβ ′
,bNẼ[TN ]≤ TN ≤ aNẼ[TN ]) goes to 1.

Let âm > 1 be a sequence indexed by m that converges to 1 from above. Let b̂m < 1 be a

sequence indexed by m that converges to 1 from below. For each m, let us define a sequence âmN

that converges to âm from above and also define another sequence b̂mN that converges to b̂m from

below. So for each m, we have P(Pe < N2−Nβ ′
, b̂mNẼ[TN ]≤ TN ≤ âmNẼ[TN ]) goes to 1. Consider

a sequence 0 < εm < 1 converging to 0 as m → ∞. Notice that we can find a sequence Nm indexed

by m such that |âmNm − âm|< εm, |b̂mNm − b̂m|< εm, and |P(Pe <Nm2−Nm
β ′
, b̂mNmẼ[TNm]≤ TNm ≤

âmNmẼ[TNm])−1|< εm.

This implies that P(Pe < Nm2−Nm
β ′
, b̂mNmẼ[TNm]≤ TNm ≤ âmNmẼ[TNm]) goes to 1, b̂mNm <

1 and âmNm > 1 converge to 1 as m → ∞. Note that this essentially completes the proof of the

theorem.

The extension to non-binary case can be done using ideas in [47].

3.5 Conclusion

We presented a polar shaping code. For a costly channel, we have shown that total cost of

the proposed polar shaping code approaches optimal total cost as block length grows. We looked

at costly noisy discrete memoryless channels. We first gave an upper bound on the rate that can

be achieved with certain symbol occurrence probability distribution over a discrete memoryless

channel. We formulated an optimization problem whose solution gives optimal total cost for the

costly noisy discrete memoryless channel. We showed that polar codes for asymmetric channels
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by Honda and Yamamoto with the aid of common randomness can be used to get the desired

shaping distribution on symbols of the codeword. To achieve the optimal total cost, we show that

we can also use random construction method by randomly choosing frozen bits and randomly

choosing boolean functions for not completely polarized channels [37], [24] avoiding common

randomness.
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Chapter 4

Slepian-Wolf Polar Coding with Unknown
Correlation

4.1 Introduction

4.1.1 Background

Arikan [1] constructed capacity-achieving codes for binary-input symmetric channels.

Korada and Urbanke [27] constructed a Slepian-Wolf polar coding scheme for two correlated

sources under some assumptions. Arikan [3] proposed a polar coding method for an arbitrary

discrete memoryless source with correlated side-information available at the receiver. Based on

that, he also derived a Slepian-Wolf polar coding strategy for any two binary correlated random

variables using a successive cancellation style decoding of the source sequences. Arikan [2]

proposed a monotone chain rule to achieve all the rates of the Slepian-Wolf region without the

use of a time-sharing policy.

A capacity-achieving coding scheme based on source and channel polarization for

binary-input asymmetric channels was proposed by Honda and Yamamoto [24]. Hassani and

Urbanke [22], [23] presented universal coding schemes to achieve rates close to the compound

capacity of binary-input symmetric discrete-memoryless channels (DMCs) that are based on

polar codes. The authors [37] proposed a universal polar coding scheme for the asymmetric

setting that eliminates the need to store high-complexity boolean functions. The scheme uses the
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elements of coding strategies in [22], [24]. Wang and Kim [55] discussed the linear code duality

between channel coding and source coding when the correlated side information is available at

the receiver. In this paper, we consider the variant of the Slepian-Wolf coding problem which

involves a binary memoryless source and correlated side information available at the receiver, as

usual, but where the conditional distribution of the side information given the source is unknown

to the encoder.

4.1.2 Problem definition

Let X be the binary alphabet and Y be some arbitrary finite alphabet. A binary discrete

memoryless source Xi is distributed as PX(x) with side information Yi available at the receiver.

The (Xi,Yi)
∞
i=1 sequence is an iid (identical and independently distributed) random process whose

joint distribution is PX(x)p(y|x). The conditional distribution p(y|x) is unknown to the encoder,

but available to the decoder only. We also assume that p(y|x) is known to come from a class C

of conditional distributions of a random variable over the alphabet Y given a correlated random

variable over X . The class C is available to the encoder.

A (2k,N) code for the defined problem consists of

• an encoder g : X N →{1 : 2k}, and

• a decoder h : {1 : 2k}×Y N → X N

where N is the block length and k
N is called the rate of the code. Let P(N)

e =P(XN ̸= h(g(XN),Y N))

be the probability of error. If there is a sequence of (2NR,N) codes for which the corresponding

sequence of P(N)
e goes to zero, then the rate R is achieved. Note that classical Slepian-Wolf

coding is the case when p(y|x) is known to both the encoder and decoder. In that case, we

know that the rate R is achieved if and only if R > H(X |Y ). Therefore the achievable rates of

the proposed problem should be greater than maxp(y|x)∈C H(X |Y ) where (X ,Y ) is distributed as

PX(x)p(y|x).
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4.1.3 Contribution

We derive two coding strategies for the proposed setting based on the universal polar

coding schemes for a compound channel [23], [22], [37]. This will establish the duality between

the coding strategies for these source and channel coding settings. Our first method can achieve

all rates greater than maxp(y|x)∈C H(X |Y ) for a uniformly distributed source when the class C

contains only conditional distributions with properties of a symmetric channel. The second

method can achieve all rates greater than maxp(y|x)∈C H(X |Y ) when C is a finite set for any

arbitrary source.

In Section 4.2, we introduce some definitions and notations which will be used throughout

the paper. In Section 4.3, we describe the Slepian-Wolf polar coding with correlated side

information available at the receiver. In Section 4.4, we describe our first method that uses

the idea of the staircase scheme for a uniform source. We also provide its applicability to a

non-uniformly distributed source. In Section 4.5, we explain the second method which is based

on the technique of universalization using bit-channel combining.

4.2 Preliminaries

We express any set of random variables Xi,Xi+1, . . . ,X j (i < j) by a row vector (Xi,Xi+1,

. . . ,X j) which is denoted by X i: j. We denote the set {1,2,3, . . . ,N} by [N]. We denote the set

{i, i+ 1, · · · , j} by [i : j] (i < j). Let U1:N be a row vector and let A ⊂ [N]. The row vector

consisting of elements in U1:N corresponding to the positions in A is denoted by UA .

Definition 1. A binary-input discrete memoryless channel with output alphabet Y with transition

probabilities p(y|x) for each (x,y) ∈ {0,1}×Y is said to be symmetric if there exists a permuta-

tion π1 : Y →Y such that π1 = π
−1
1 and p(y|x) = p(πa(y)|x+a) for each (x,a,y)∈ {0,1}2×Y ,

where πo : Y → Y is the identity permutation.

We denote the row vector (πs1(y1),πs2(y2), ...,πsN (yN)) as s1:N .y1:N for any y1:N ∈ Y N

and s1:N ∈ {0,1}N , where π0 : Y → Y is the identity permutation and π1 : Y → Y is the
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permutation corresponding to a symmetric channel.

Let GN be the conventional polar transform [1], represented by a binary matrix of

dimension N×N. If U1:N =X1:NGN , then we denote P(U1:N = u1:N) by PU1:N (u1:N) and similarly

we denote P(Ui = ui|U1:i−1Y 1:N = u1:i−1y1:N) by PUi|U1:i−1Y 1:N (ui|u1:i−1y1:N). We denote the

subvector of U1:N corresponding to the bit-channel set A ⊂ [N] as UA .

Let C = {p1(y|x), p2(y|x), . . . , ps(y|x)}, s ∈ N. Let (Xi,Yi)
N
i=1 be iid random tuples

distributed according to PX(x)pl(y|x), where l ∈ [1 : s] and N = 2n. For the random variable pair

(X ,Y ) distributed as PX(x)pl(y|x), the Bhattacharyya parameter is defined as

Z(X |Y ) = 2∑
y

PY (y)
√

PX |Y (1|y)PX |Y (0|y).

We define the following bit-channel subsets as follows, where β < 0.5.

HX = {i ∈ [N] : Z(Ui|U1:(i−1))≥ 1−2−Nβ }.

LX = {i ∈ [N] : Z(Ui|U1:(i−1))≤ 2−Nβ }.

HX |Yl
= {i ∈ [N] : Z(Ui|U1:(i−1)Y 1:N)≥ 1−2−Nβ }.

LX |Yl
= {i ∈ [N] : Z(Ui|U1:(i−1)Y 1:N)≤ 2−Nβ }.

Note that LX ⊆ LX |Yl
, for each l ∈ [1 : s]. We have the following results from Theorem 1 in

[24].

lim
N→∞

1
N
|HX |= H(X).

lim
N→∞

1
N
|LX |= 1−H(X).

lim
N→∞

1
N
|H(X |Y )l

|= H(X |Y ).

lim
N→∞

1
N
|L(X |Y )l

|= 1−H(X |Y ).
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We remove the subscript l for denoting the bit-channel sets L(X |Y )l
and H(X |Y )l

when using

(X ,Y ) random variable pair distributed as PX(x)p(y|x) and denote them as LX |Y and HX |Y ,

respectively.

Let the p(y|x)s for each (x,y) ∈ X ×Y be the transition probabilities of a symmetric

channel. Let (Xi,Yi)
N
i=1 be iid random variable pairs distributed according to PX(x)p(y|x) where

PX(x) is distributed as Bern(1
2). Let U1:N = X1:NGN . Then the MAP (ML) decision rule for the

bit-channel i ∈ [N] in this setting will be the function Φi : {0,1}i−1 ×Y N →{0,1} defined as

follows.

Φi(u1:i−1,y1:N) = 1{PU1:i−1,Y 1:N |Ui
(û1:i−1,y1:N |1)

≥ PU1:i−1,Y 1:N |Ui
(û1:i−1,y1:N |0)}.

Φi is precisely the decision rule used in the successive cancellation (SC) decoding for the

bit-channel i ∈ LX |Y in the polar code construction for symmetric channels. Let us denote

the Bhattacharyya parameter corresponding to the bit-channel i ∈ [N] as Zi. Therefore Zi =

Z(Ui|U1:i−1Y 1:N) in this setting.

4.3 Source coding with side-information (Slepian-Wolf
polar coding)

We revisit the polar coding scheme proposed by Arikan [3] for the Slepian-Wolf setting

that has the binary discrete memoryless source Xi distributed as PX(x) with correlated side

information Yi available at the receiver, i∈ [N]. (Xi,Yi)
N
i=1 is an iid process whose joint distribution

is PX(x)p(y|x). Here we assume that p(y|x) is known to both the encoder and decoder. The

encoding algorithm is presented below.

Encoding

Input: X1:N source sequence.
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Output: Compressed bit stream corresponding to the source sequence.

• Compute U1:N = X1:NGN .

• Transmit UL c
X |Y .

The decoding method is as follows.

Decoding

Input: Correlated side information Y 1:N and UL c
X |Y .

Output: Source estimate X̂1:N .

for i = 1 : N

1. If i ∈ L c
X |Y , set Ûi =Ui.

2. If i ∈ LX |Y , set

Ûi = 1{PUi|U1:i−1,Y 1:N (1|Û1:i−1,Y 1:N)≥ PUi|U1:i−1,Y 1:N (0|Û1:i−1,Y 1:N)}.

end

Decode X̂1:N as Û1:NGN .

Note that the conditional distribution PUi|U1:i−1,Y 1:N (.|.) used above in the decoding al-

gorithm is derived under the setting where X1:N =U1:NGN and (Xi,Yi)
N
i=1 is iid distributed as

PX(x)p(y|x). Arikan [3] proved that the probability of error for this scheme is O(2N−β

) where

β < 0.5. In our setup, however, the actual conditional distribution p(y|x) is unknown to the

encoder. The encoder only knows that the conditional distribution is selected from the class C .

If the encoder transmits U (∩p(y|x)∈C LX |Y )c
, then the decoder can reliably recover the bits corre-

sponding to bit-channels (∩p(y|x)∈C LX |Y ) and hence the source. The fraction of bit-channels
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(∩p(y|x)∈C LX |Y )c with respect to the block length may not be going to maxp(y|x)∈C H(X |Y ) as

block length grows and the fraction may always be larger than maxp(y|x)∈C H(X |Y ) by at least

some positive constant. In the following sections, we provide the source coding methods that

can guarantee any rate greater than maxp(y|x)∈C H(X |Y ).

4.4 Staircase scheme

In this section, we assume that the source is a binary symmetric source (uniform) and all

the condition distributions in C are of symmetric channel type.

4.4.1 Code construction

We use polar blocks of size N, where N is sufficiently large for polarization so that we get

the H(X |Y ) fraction of bad bit-channels (HX |Y ) and 1−H(X |Y ) fraction of good bit-channels

(LX |Y ) for each p(y|x) ∈ C . We need an MDS code in the code construction. We use a Reed-

Solomon (RS) code of block length 2q − 1 over a field GF(2q) as an MDS code where q is

log2(N). We consider the RS code with L = minp(y|x)∈C |LX |Y |−1 information bits. Let M be

the set of codewords of the RS code.

We arrange N polar blocks of size N one above the other like a staircase which will be of

height N. We extend the staircase by placing k ∈ N such staircases side-by-side. Now place q

such extended staircases, one above the other. So the total number of polar blocks would be Nqk.

This is illustrated in Fig. 5.5 with N = 6, k = 3, and q = 2.

A staircase scheme designed for a compound channel with the class C of symmetric

channels [22] is a binary linear code after all. Based on the linear channel code, a naive Slepian-

Wolf code derived directly using the method [55] requires the computation of high dimensional

systematic parity-check matrix (q[(N −L)(1+N(k−1))+N(N −1)]×N2qk) of the staircase

universal channel code. We avoid the computation of such a high dimensional parity-check matrix

and its use in our staircase code construction. We can also get a delay saving by continuous,

sequential encoding and decoding of substaircases in our staircase implementation, similar to
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Figure 4.1. Staircase with k = 3, N = 6 and q = 2

universal channel coding in Chapter 2.

While encoding, we do the compression for all the polar blocks column-by-column

from left to right in the staircase structure, and we follow the same order for decoding. So, we

encode/decode the bit-channels of different polar blocks in parallel while encoding/decoding

a column. The total number of columns is (k + 1)N − 1, and we label them with indices

1 : (k+1)N −1 from left to right. Now we describe the encoding algorithm for the compression.

Encoding

Input: X1:N source sequence corresponding to each polar block in all q staircases.

Output: Compressed bit stream for all the columns.

• Compute U1:N = X1:NGN for each polar block in all the q staircases.

• Now we start encoding the non-full-height columns on the left.

– The Uis of the non-full-height columns on the left side are transmitted as is without

any further compression for all q staircases. Note that this will not affect the rate as

the fraction of these columns is diminishing as k approaches infinity.

• Next we start encoding the full-height columns t = N ≤ i ≤ kN.
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– In the full-height column t, there is a polar block corresponding to each index i ∈ [N]

in all q staircases.

– In the column t, for each i ∈ [N], the Uis of corresponding polar blocks for all q

staircases will be read. Those q bits corresponding to the index i ∈ [N] will be

interpreted as a field element in GF(2q) in its binary representation. Hence we can

read N finite field elements in the column. Let us call this vector V 1:N in GF(2q).

– V 1:N−1 will be decomposed as an RS codeword and the error vector in a unique way

using a systematic encoding method for the RS code.

– We designate the positions 1 : L for information symbols. So, we generate the

codeword in M corresponding to data V 1:L by systematic encoding. The parity

symbols in the systematic encoding method for the RS code can be computed by

determining a remainder of a polynomial. This can be implemented using a shift

register circuit with multipliers and adders [45].

– Let the encoded codeword be V ′1:N−1. Now the error vector will be E1:N−1 =V 1:N−1

- V ′1:N−1. Note that E1:L will be zero always. We set the Nth position of the error

vector E1:N , EN =VN .

– We transmit EL+1:N in the binary representation.

– The error vector E1:N can also be generated by computing the syndrome of V 1:N

using the systematic parity-check matrix. This is shown in Lemma 8. However

we propose to use the shift register circuit implementation to get the systematic RS

codeword [45] without explicitly computing the systematic generator or parity-check

matrix.

– This decomposition is also equivalent to standard array decoding with coset leaders

of the form [01:L,xL+1:N−1] where xL+1:N−1 is a vector with elements of GF(2q).

• Now we encode the non-full-height columns on the right.
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– The Uis of the non-full-height columns on the right side are transmitted as is without

any further compression for all q staircases. Note that this will not affect the rate as

these columns are diminishing in fraction as k approaches ∞.

Lemma 8. Let V 1:N−1 be any N − 1 dimensional vector over GF(2q). Let V ′1:N−1 be the

Reed-Solomon codeword in M corresponding to the data symbol stream V 1:L in the systematic

representation. Let E1:N−1 be the error V 1:N−1 −V ′1:N−1. The syndrome of the word V 1:N−1

when computed with the systematic parity-check matrix becomes EL+1:N−1.

Proof: Let the systematic parity-check matrix be

Hsys =

[
A I

]

where A is a N − 1−L×L dimensional matrix in GF(2q) and I is the N − 1−L×N − 1−L

dimensional identity matrix. Then,

Hsys(V 1:N−1)T = Hsys((V ′1:N−1)T +(E1:N−1)T )

(a)
= Hsys(E1:N−1)T

=

[
A I

]
(E1:N−1)T

(b)
= (EL+1:N)T .

We get the identity (a) because V ′1:N−1 is a codeword in M . So its multiplication with

systematic parity check matrix should be zero. Identity (b) follows because E1:L is a zero

vector.

Before turning to the decoding algorithm, let us define

U ′1:N :=U1:N −E ′1:N
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for each polar block in all q staircases, where E ′1:N is the horizontal error vector computed for

each polar block in all q staircases from the vertical error vectors E1:N corresponding to each

full-height column. So we have,

U1:NGN =U ′1:NGN +E ′1:NGN .

That implies,

X1:N =U ′1:NGN +S1:N .

where S1:N = E ′1:NGN for each polar block in all q staircases. Note that we are transmitting

N −L bits for each full-height column. The rate for each full-height column is N−L
N , which can

be made arbitrarily close to maxp(y|x)∈C H(X |Y ) for sufficiently large N. We did not compress

the bit-stream corresponding to the non-full-height columns, but their effect on the overall rate

can be made arbitrarily small for a sufficiently large k because as k goes to ∞, the fraction of the

number of bits in the non-full-height columns with respect to total block length goes to zero.

Lemma 9. Let u′1:N and s1:N be any two binary vectors. The conditional distribution of permuted

side information s1:N .Y 1:N given X1:N = u′1:NGN + s1:N will be the same as the conditional

distribution of the received vector given the word u′1:NGN is transmitted over the symmetric

channel p(y|x).

Proof:

P(s1:N .Y 1:N = y1:N |X1:N = u′1:NGN + s1:N)

= P(Y 1:N = s1:N .y1:N |X1:N = u′1:NGN + s1:N)

= Πi∈1:N p(si.yi|(u′1:NGN)i + si)

= Πi∈1:N p(si.yi|(u′1:NGN)i + si)

(a)
= Πi∈1:N p(si.si.yi|(u′1:NGN)i)

= Πi∈1:N p(yi|(u′1:NGN)i).
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The identity (a) follows from the symmetric channel property. Πi∈1:N p(yi|(u′1:NGN)i) is pre-

cisely the conditional probability of getting the received vector y1:N given the word u′1:NGN is

transmitted over the symmetric channel p(y|x). This concludes the proof.

Fact 1: Let u′1:N be any binary vector. The conditional probability of error of all the

bit-channels in LX |Y when conventional decision rules [1] are used is upper bounded by 2−Nβ

given that u′1:NGN is transmitted over the symmetric channel p(y|x) for any β < 0.5.

The above fact follows from Arikan’s capacity-achieving polar coding construction for

symmetric channels [1] where it was proved that the conditional probability of error of a bit-

channel given that any particular word is transmitted over the channel remains same irrespective

of the word that is transmitted. Now we start describing the decoding algorithm.

Decoding

Input: Side information Y 1:N for each block and EL+1:N for each full-height column.

Output: Estimates of X1:N corresponding to all polar blocks.

• Using error vectors EL+1:N corresponding to all full-height columns, the decoder computes

the horizontal error vectors E ′1:N corresponding to all polar blocks in all q staircases.

• Now the decoder estimates U ′
i s of each column that corresponds to different polar blocks

from left to right. Then the estimation of U ′1:N leads to estimate U1:N by adding E ′1:N for

all polar blocks in all q staircases . Let the estimates be denoted as Û ′1:N , Û1:N and X̂1:N .

• Decoding the non-full-height columns on the left side.

– The Uis corresponding to these columns are transmitted as is by the encoder.

– Hence Û ′
i =Ui −E ′

i =Ui for all these columns in all q staircases.

• To decode full-height columns from t = N ≤ i ≤ kN:

– The decoder has knowledge of the exact p(y|x) ∈ C . For the blocks corresponding to

bit-channels i ∈ LX |Y , we use the following decision rule to decode U ′
i s. It recovers
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those U ′
i s reliable due to Lemma 9 and Fact 1.

Û ′
i = Φi(Û ′1:i−1,S1:N .Y 1:N).

– Decode Û ′
i as 0 for the block corresponding to the component VN of vector V 1:N in q

staircases.

– Now we have at least L positions of the MDS codeword that are recovered. Now the

erasure decoding of the MDS code recovers all N −1 positions of the codeword.

– Hence all Û ′
i s corresponding to all polar blocks in the column are estimated in all

q staircases. This enables the continuation of SC decoding of the polar blocks to

estimate Û ′
i s corresponding to the next column.

• Decoding non-full-height columns on the right side.

– The Uis corresponding to these columns are transmitted as is by the encoder.

– Hence Û ′
i =Ui −E ′

i =Ui for all these columns in all q staircases.

• Now Û1:N = Û ′1:N +E ′1:N for each polar block.

• X̂1:N = Û1:NGN for each block.

Theorem 5.

The probability of error for the above staircase scheme is O(Nqk2−Nβ

) for β < 0.5.

Proof:

We decode U ′1:N corresponding to all the polar blocks. The error occurs if and only

if there is an error in decoding some good-bit-channel (LX |Y ) of any polar block. If Uis for

good bit-channels are recovered properly, then other Uis are recovered either by MDS erasure
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decoding in a full-height column or by the knowledge of Uis at the receiver corresponding to the

non-full-height columns. Let the error event be E .

Let Eg be the error event with a genie aided decoder which has the accurate values of the

past U ′1:i−1 when decoding any bit-channel i ∈LX |Y for all polar blocks. Let all the polar blocks

in all of the q staircases be indexed as b = 1,2...,Nqk. Let Eib be the error event corresponding

to an error in the ith bit-channel of block b. If bit-channel i ∈ LX |Y of the polar block b lies in a

full-height column, then the error event Eib becomes as follows.

Eib = {(u′1:N ,y1:N ,s1:N)s of all blocks [Nqk] :

Φi(u′1:i−1,s1:N .y1:N) ̸= u′i holds for block b}.

Note that Eib will be the null event, if the block b has bit-channel i that lies in a non-full-height

column. Clearly, Eg = ∪b∈{1:Nqk}∪i∈LX |Y Eib. Note that error event E will imply at least one of

the Eibs. So we should have the following.

E ⊂ Eg.

Now the probability of error P(E ) is upper bounded as follows.

P(E )≤ P(Eg) = P(∪b∈{1:Nqk}∪i∈LX |Y Eib)

(a)
≤ ∑

b∈{1:Nqk}
∑

i∈LX |Y

P(Eib).

The identity (a) follows from the union bound. So, we need to bound P(Eib) for i ∈ LX |Y for all

polar blocks.

Now we evaluate the conditional probability of error of bit-channel i ∈LX |Y for the block
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b given the random vectors (U ′1:N ,Y 1:N ,S1:N) corresponding to the block b.

P(Eib|U ′1:N = u′1:N ,S1:N = s1:N) = P(Φi(U ′1:i−1,S1:N .Y 1:N) ̸=U ′
i |

U ′1:N = u′1:N ,S1:N = s1:N)

= P(Φi(u′1:i−1,s1:N .Y 1:N) ̸= u′i|

U ′1:N = u′1:N ,S1:N = s1:N)

(a)
= ∑

y1:N

Πi∈[1:N]p(yi|(u′1:NGN)i)

1(Φi(u′1:i−1,y1:N) ̸= u′i)

(b)
≤ Zi

= 2−Nβ

.

(4.1)

The identity (a) follows from Lemma 9. Identity (b) follows from Arikan’s [1] symmetric

channel polar coding construction where it was proved that the conditional probability of error

of a bit-channel given that any particular word is transmitted over the channel is always the same

irrespective of the word that is transmitted. Also, all of those conditional probabilities of errors

are upper bounded by the Bhattacharyya parameter of the bit-channel. This is essentially stated

as Fact 1. Now the actual probability of error of bit-channel i for the block b satisfies

P(Eib) = ∑
(u′1:N ,s1:N) of block b

P((U ′1:N = u′1:N ,S1:N = s1:N) of block b)

P(Eib|U ′1:N = u′1:N ,S1:N = s1:N of block b)

≤ ∑
(u′1:N ,s1:N) of block b

P((U ′1:N = u′1:N ,S1:N = s1:N) of block b)2−Nβ

= 2−Nβ

.
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Therefore,

P(E )≤ ∑
b∈{1:Nqk}

∑
i∈LX |Y

P(Eib)

≤ O(Nqk2−Nβ

).

Hence the proof of Theorem 5.

4.4.2 Coding with non-uniform source

If the conditional distributions in C are of symmetric type, then any rate greater than

maxp(y|x)∈C H(X̃ |Y ) can still be achieved using the staircase method irrespective of the source

distribution PX(x). Here the random variable pair (X̃ ,Y ) is distributed as PX̃(x)p(y|x) and

PX̃(x) = 0.5. The subtle idea is to implement the same code construction as if the source is

uniformly distributed. We use the bit-channels LX̃ |Y in the code construction irrespective of the

source distribution. The conditional probability of error of the bit-channel i ∈ LX̃ |Y is the same

given any source sequence due to the symmetric channel property of the conditional distribution

p(y|x). Hence the average probability of error for the bit-channel i ∈ LX̃ |Y does not depend

on the source distribution. This can be noticed from equation (4.1) in the proof of Theorem 5.

Therefore the probability of error will still be O(Nkq2−Nβ

) for β < 0.5.

4.4.3 Encoding and decoding complexity

The encoding complexity consists of decomposing the vector of length N −1 in GF(2q)

into a RS codeword and the corresponding error vector. We proposed to use the shift register

circuit with adders and multipliers to get a systematic RS codeword for executing the decom-

position. This takes O(L(N −L)) = O(N2) multiplications and additions in GF(2q). Addition

and multiplication over this field take q and qlog2 3 binary operations, respectively. Hence the

bit operations sum upto O(N2qlog2 3) for each full-height column. Applying polar transform for

each polar block also takes O(N log2 N) bit-operations.
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Decoding complexity consists of computing the polar transform S1:N = E ′1:NGN for all

polar blocks, SC decoding of all the polar blocks and also the erasure decoding of the RS codes

of length N−1 over GF(2q) for each full-height column. Applying polar transform for each polar

block takes O(N log2 N) bit-operations. The SC decoding of a polar block takes O(N log2 N)

real operations. The erasure decoding of the RS codes can be done in O(N(log2(N))2) symbol

operations [22]. Addition and multiplication over this field take q and qlog2 3 binary operations

respectively. Hence the bit operations sum to O(N(log2(N))2qlog2 3) for each full-height column.

4.4.4 Pros and cons

Pros:

The upside of the scheme is that it can be designed for a class C with infinite cardinality as well.

The block length does not increase with cardinality of the class C . On the other hand, a code

designed with rate r supports any arbitrary source with any side information whose conditional

distribution given source p(y|x) is of symmetric channel type whenever r > H(X̃ |Y ). Here the

random variable pair (X̃ ,Y ) is distributed as PX̃(x)p(y|x) and PX̃(x) = 0.5.

Cons:

The downside is that it can be applied only when class C contains only the conditional distribu-

tions of symmetric channel type. Also, for the non-uniform source with distribution PX(x), the

staircase construction does not support all the rates greater than maxp(y|x)∈C H(X |Y ) where the

random variable pair (X ,Y ) is distributed as PX(x)p(y|x).

4.5 Scheme based on combining bit-channels

In this scheme, we assume the class C contains a finite number of conditional distribu-

tions. Let |C | be s. The bit-channel sets LX |Y and HX |Y may not be the same for all p(y|x) ∈ C .

The obvious approach is to share U (∩i∈C LX |Y )c
, so that decoder can reliably decode the other bits

corresponding to bit-channels in (∩i∈C LX |Y ) by SC decoding. The scheme based on bit-channel

combining is a recursive procedure of combining polar blocks that increases the fraction of
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bit-channels ∩p(y|x)∈C LX |Y with respect to the updated polar block length. The fraction of bit-

channels ∩p(y|x)∈C LX |Y with respect to the updated polar block length in the recursive procedure

can get arbitrarily close to 1−maxp(y|x)∈C H(X |Y ) when N is sufficiently large. Hence, this gives

the compression algorithm that can achieve any rate greater than maxp(y|x)∈C H(X |Y ). Hassani

and Uranke [22] essentially did this for a symmetric source in the context of universal channel

coding. We validate that such a recursive method can be used for a non-uniform memoryless

source setting as well. So, this method is straightforward to use in this source coding setting in

view of the original scheme [22] proposed in the context of universal channel coding.

We need Proposition 1 to validate this method for an arbitrary discrete memoryless source

(which may be non-uniform) with the arbitrary class C (which may contain non-symmetric

p(y|x)) of finite cardinality.

We now validate the method with an arbitrary memoryless source while recalling the

idea of this method proposed in [22]. Let C = {p1(y|x), p2(y|x), ...., ps(y|x)}. The first step is to

increase the fraction of bit-channels LX |Y1 ∩LX |Y2 with respect to the updated block length. To

do this, first consider the two independent polar blocks U1:N = X1:NGN and U ′1:N = X ′1:NGN ,

where Y 1:N and Y ′1:N are the correlated side information vectors corresponding to the two blocks,

respectively. Then combine the bit-channels LX |Y1 ∩HX |Y2 of the first block with bit-channels

LX |Y2 ∩HX |Y1 in the order. Suppose the bit-channel i ∈ LX |Y1 ∩HX |Y2 with input Ui and output

U1:i−1Y 1:N from the first polar block is combined with bit-channel j ∈ LX |Y2 ∩HX |Y1 with input

U ′
j and output U ′1: j−1Y ′1:N from the second polar block. One of the two new bit-channels

produced by this combining has the input Ui +U ′
j and the output U1:i−1U ′1: j−1Y 1:NY ′1:N ; the

other bit-channel produced has the input U ′
j and the output Ui +U ′

j,U
1:i−1U ′1: j−1Y 1:NY ′1:N .

By Proposition 1, the second bit-channel produced by the combining has the Bhattacharyya

parameter

Z(U ′
i |Ui +U ′

j,U
1:i−1U ′1: j−1Y 1:NY ′1:N)
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= Z(Ui|U1:i−1Y 1:N)Z(U ′
j|U1: j−1Y 1:N))

(a)
≤ O(2−Nβ

).

where β < 0.5. The identity (a) is true because either the Bhattacharyya parameter Z(Ui|U1:i−1Y 1:N

) is 2−Nβ

if the conditional distribution is p1(y|x) or the Bhattacharyya parameter Z(U ′
j|U ′1: j−1Y 1:N

) is 2−Nβ

if the conditional distribution is p2(y|x). So we have G=min{|LX |Y2 ∩HX |Y1|, |LX |Y1 ∩

HX |Y2}| new bit-channels that come into the category of LX |Y1 ∩LX |Y2 in the updated polar block

of length 2N. We use a bold font from now on to denote the bit-channels in the updated polar

block to disitnguish them from the bit-channels of the original polar block. Now the fraction of

the updated bit-channels LX|Y1 ∩LX|Y2 with respect to the updated block length becomes as
2(LX |Y1

∩LX |Y2
)+G

2N .

The procedure can be done recursively. In stage t of the recursive procedure, we take

two polar blocks obtained in stage t −1 and perform the same bit-channel combinings that were

mentioned in the first step. After t recursions, the fraction of the updated LX|Y1 ∩LX|Y2 with

respect to the updated block length becomes

2t(LX |Y1 ∩LX |Y2)+(2t −1)G
2tN

.

This will increase and become closer to |LX |Y1 ∩LX |Y2|+G = min{|LX |Y1|, |LX |Y2|} per block

length N as t grows. Now let the bit-channels LX|Y1 ∩LX|Y2 in the updated polar block be L12

and repeat the same recursive procedure to increase the bit-channels L12 ∩LX |Y3 . We continue

the recursive procedure until we finish all p(y|x) ∈ C . Hence by this method, one can increase

the cardinality of bit-channels ∩p(y|x)∈C LX|Y per block length N that can get arbitrarily close

to minp(y|x)∈C |LX |Y |. Order of bit-channels are governed by the recursive combinings done to

produce the hybrid block. Other details for this method are given in [22]. The scheme supports

any non-uniform source with an arbitrary class C of finite cardinality. But the block length can

become unbounded as the cardinality of the class C grows, in contrast to the staircase scheme.
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4.6 Conclusion

We defined the problem of source coding with side information at the receiver whose

correlation is unknown to the encoder. We studied two coding strategies based on polar codes

for this problem. The code designed by the staircase scheme with rate r supports any source

with any side information whose conditional distribution given source p(y|x) is of symmetric

channel type whenever r > H(X̃ |Y ). Here the random variable pair (X̃ ,Y ) is distributed as

PX̃(x)p(y|x) and PX̃(x) = 0.5. A naive Slepian-Wolf code derived using the method [55] requires

the computation of a high dimensional systematic parity-check matrix (q[(N−L)(1+N(k−1))+

N(N −1)]×N2qk) for the staircase universal channel code. We avoid the computation of such a

high dimensional parity-check matrix and its use in the proposed staircase code construction.

The second scheme is based on the technique of universalization using bit-channel combining.

Using this method, we can design a code for a non-uniform source with arbitrary C of finite

cardinality. An open problem is to find a stronger coding strategy where a code designed for an

arbitrary source X at rate r can support any correlated side information Y whenever r > H(X |Y ).
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Chapter 5

Polar Coding for Multi-level 3-Receiver
Broadcast Channels

5.1 Introduction

5.1.1 Background

Arikan [1] constructed capacity-achieving polar codes for binary input symmetric chan-

nels. Since then, many coding strategies have been introduced for multi-user settings using the

polarization method [3], [27], [2]. Goela, Abbe and Gastpar [17] introduced polar codes for

m-user deterministic broadcast channels. They also introduced polar coding for 2-user noisy

broadcast channels. They implemented superposition and Marton schemes which involve some

assumptions of degradation on the channel parameters to align the polar indices. Mondelli, Has-

sani, Sason, and Urbanke [32] proposed schemes to remove such constraints using a polar-based

chaining construction [22], [23]. Chou and Bloch [11] proposed a polar coding scheme for a

broadcast channel with confidential messages. Alos and Fonollosa [39] proposed a polar coding

scheme for a broadcast channel with two legitimate receivers, that receive a confidential and

private message, and one eavesdropper.

In this paper, we consider the problem of achieving the rates in the capacity region for a

discrete memoryless (DM) 3-receiver broadcast channel with degraded message sets [38], [14].

The second receiver is degraded with respect to the first receiver. The problem is to transmit
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a public message intended for all three receivers and a private message intended for the first

receiver. Our motivation to consider this problem for the broadcast channel came from a very

useful practical file transfer application in a client-server network. We now describe the file

transfer application in a client-server network, where our problem setting is applied, in the

following sub-section.

5.1.2 Motivation with a client-server model

We consider a client server model, in which server sends data to its three clients that are

computer, phone-1 and phone-2. Computer and phone-1 receive data from the server directly

via internet. Phone-2 receives data from server indirectly through bluetooth connection between

computer and phone-2. Computer supports both video and audio applications whereas the two

phones only support audio application. Suppose that server has one audio and one video file to

send its clients. Note that all three clients here are interested in receiving the audio file. Also

notice that computer is the only client interested in receiving both the audio and video files. This

is shown in the Fig.5.1. In some scenarios, computer may just want to receive the video file.

The internet link and bluetooth link add noise to the signal received at the clients. So this

can be modelled as noisy broadcast channel with 3-receivers which we are interested to look at in

this paper. The goal is to find a method where the server can send both the audio and video files

to its clients reliably at all possible data rates that can be supported by the network. It amounts to

finding a coding scheme that can achieve rates in the capacity region of this broadcast channel

problem. This particular client-server setting with the file transfer scenario is highly applicable

to household internet links, which is why we are motivated to consider this problem.

We define the coding problem for the DM multi-level 3-receiver broadcast channel with

degraded message sets in the following subsection. In general, the setting of a broadcast channel

with degraded message sets arises in video or music broadcasting over a wireless network at

varying levels of quality [14].
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Internet

Server

Phone-1

Phone-2 Computer

Bluetooth

Audio file

Video file

Figure 5.1. A client-server network with 3 clients

p(y1, y3|x)

p(y2|y1)

X

Y1 Y2

Y3

Figure 5.2. A 3-receiver broadcast channel model

5.1.3 Coding problem of DM (discrete memoryless) multi-level broad-
cast channel with degraded message sets

The 3-receiver multi-level broadcast channel that we consider consists of a finite in-

put alphabet X and arbitrary output alphabets Y j for each output at the receiver- j for j ∈

{1,2,3}. The conditional distribution of outputs at receiver-1 and receiver-3 given the input, i.e.

pY1,Y3|X(y1,y3|x), along with the conditional distribution of output at receiver-2 given the output

at receiver-1, i.e. pY2|Y1(y2|y1), are given for this broadcast channel setting, where X is the input,

Yj is output at receiver- j for j = 1,2,3, x ∈ X and y j ∈ Y j for each j ∈ {1,2,3}. These two

conditional distributions define this broadcast channel with three receivers since the output at

the receiver-2 is degraded with respect to output at receiver-1. The broadcast channel model is

shown in the Fig. 5.2.

Now we define the coding problem to transmit a public message for all the receivers and

a private message intended only for receiver-1.
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A (2NR0,2NR1,N) code consists of

• a message set for public message: {1,2, . . . ,2NR0}

• a message set for private message of receiver-1: {1,2, . . . ,2NR1}

• an encoder XN : {1,2, . . . ,2NR0}×{1,2, . . . ,2NR1}→ X n,

• a decoder at receiver-1 h1 : Y N
1 →{1,2, . . . ,2NR0}×{1,2, . . . ,2NR1},

• a decoder at receiver-2 h2 : Y N
2 →{1,2, . . . ,2NR0},

• a decoder at receiver-3 h3 : Y N
3 →{1,2, . . . ,2NR0}.

where N is the block length, R0 is the rate of the public message and R1 is the rate of the

private message. Let M0 be the public message which is chosen uniformly from the set

{1,2, . . . ,2NR0} and M1 be the private message of receiver-1 which is chosen uniformly from

the set {1,2, . . . ,2NR1}. Let Y 1:N
j be the output vector at receiver- j where j ∈ {1,2,3}. Let

P(N)
e = P

(
(h1(Y 1:N

1 ) ̸= (M0,M1))∪ (h2(Y 1:N
2 ) ̸= M0)∪ (h3(Y 1:N

3 ) ̸= M0)
)

be the probability of

error. If there is a sequence of (2NR0,2NR1,N) codes, for which the P(N)
e goes to zero, then the

rate (R0,R1) is achieved. The closure of all such achievable rate pairs is the capacity region.

5.1.4 Contribution

In this paper, we use a polar coding strategy to achieve the rates in the capacity region

for the multi-level 3-receiver broadcast with degraded message sets without time-sharing. This

represents the first time in the literature that polar coding for 3-receiver broadcast channels

without eavesdropper is considered.

Three layered polarization results are established using auxiliary random variables that

characterize the capacity region. We do a suitable rate splitting of the private message of receiver-

1 for the implementation of our polar coding strategy. We use a chaining construction at two

levels, one of which is within first and second layers whereas the second level of chaining is
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done within the second layer. The two-level chaining construction that we provide essentially

translates into polar coding strategy the ideas of three layered superposition coding and more

importantly, indirect-coding [38] with the rate splitting of the private message.

The two-level chaining construction is new in the context of reliable decoding at three

receivers. In particular, first level of chaining is done to recover public message by all the

receivers. Second level of chaining helps to recover the split of private message reliably at

receiver-1 while translating indirect coding of public message for receiver-3. In contrast, note

that Marton’s coding [32] uses a two-level chaining construction, where first level of chaining is

to align good bit-channels of the two receivers and the second level of chaining is to maintain

the joint distribution of auxiliary random variables involved.

We also consider a slight variation to the problem of degraded message sets. Suppose

that receiver-1 requires to decode only M1. Then M1 becomes private message to receiver-1 and

M0 is common private message to receiver-2 and receiver-3. We show that the capacity region

does not enlarge by relaxing the decoding constraint at receiver-1. So the same polar coding

strategy achieves the capacity region of the modified problem. This is an interesting observation,

as we know that for any 2-receiver broadcast channel, superposition coding is not optimal in

general, unless it is a problem with degraded message sets.

5.1.5 Organization

The paper is organized as follows. In Section 5.2, we introduce some notations and recall

some background results. In Section 5.3, we give our chaining construction to achieve the rate

pairs in the capacity region of the 3-receiver broadcast channel with degraded message sets and

provide the detailed decoding error analysis. In Section 5.3, we also show that the capacity of

the broadcast channel remains same, even when receiver-1 is relaxed to recover only its private

message. In Section 5.4, we conclude the paper.
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5.2 Preliminaries

We denote the set {1,2, . . . ,n} as [n] where n ∈ Z +. Let GN be the conventional polar

transform [1], represented by a binary matrix of dimension N ×N where N = 2n, n ∈ Z +.

Let X be a binary random variable. Let the random variable pair (X ,Y ) be distributed as

PX ,Y (x,y), then the Bhattacharya parameter is defined as

Z(X |Y ) = 2∑
y

PY (y)
√

PX |Y (1|y)PX |Y (0|y).

The following are the identities from [24, Proposition 1] which provides the relationship

between entropy and Bhattacharya parameter.

(Z(X |Y ))2 ≤ H(X |Y ) (5.1)

H(X |Y )≤ log(1+Z(X |Y ))≤ Z(X |Y ) (5.2)

The capacity region for this multi-level 3-receiver broadcast problem [14], [38] is as

follows:

R0 < min{I(W ;Y2), I(V ;Y3)} (5.3)

R1 < I(X ;Y1|W ) (5.4)

R0 +R1 < I(V ;Y3)+ I(X ;Y1|V ) (5.5)

for some joint distribution p(w,v)p(x|v) with |W | ≤ |X |+4 and |V | ≤ (|X |+1)(|X |+4).

Here W and V are random variables over the alphabets W and V , respectively, Yj is the output

at receiver- j when X is input for j = 1,2,3.

Let (Wi,Vi,Xi)
N
i=1 be the binary triplet random variable sequence that is i.i.d. (identical
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and independently distributed) according to distribution p(w,v)p(x|v). So |X |= |Y |= |V |= 2.

Let (W,V,X) also be binary random triplet distributed according to p(w,v)p(x|v). Let Y 1:N
j be

the received vector at receiver- j when the random variable sequence X1:N is transmitted over the

3-receiver discrete memoryless broadcast channel and let Yj be the output at receiver- j when X

is input for j = 1,2,3.

Now we establish three-layered polarization results that are going to be used in the code

construction.

Let β < 0.5. Let (Uw)
1:N = W 1:NGN , we define the following bit-channel subsets as

follows for j = 1,2,3.

HW = {i ∈ [N] : Z((Uw)i|(Uw)
1:(i−1))≥ 1−δn}.

LW = {i ∈ [N] : Z((Uw)i|(Uw)
1:(i−1))≤ δn}.

HW |Y j = {i ∈ [N] : Z((Uw)i|(Uw)
1:(i−1)Y 1:N

j )≥ 1−δn}.

LW |Y j = {i ∈ [N] : Z((Uw)i|(Uw)
1:(i−1)Y 1:N

j )≤ δn}.

where δn = 2−Nβ

. Note that LW |Y2 ⊆ LW |Y1 from Lemma 7 in [17] due to the degradation

assumption on receiver-2. Then,

lim
N→∞

|HW |
N

= H(W ), lim
N→∞

|LW |
N

= 1−H(W ),

lim
N→∞

|HW |Y j |
N

= H(W |Yj), lim
N→∞

|LW |Y j |
N

= 1−H(W |Yj).

Let (Uv)
1:N = V 1:NGN . We now define bit-channel subsets HV |W and LV |W based on the

Bhattacharyya parameter Z((Uv)i|(Uv)
1:(i−1)W 1:N) as we did above. Similarly we define the

HV |WY j and LV |WY j based on the value of Bhattacharyya parameter Z((Uv)i|(Uv)
1:(i−1)W 1:NY 1:N

j )

for j = 1,3. Then,

lim
N→∞

|HV |W |
N

= H(V |W ), lim
N→∞

|LV |W |
N

= 1−H(V |W ),
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lim
N→∞

|HV |WY j |
N

= H(V |WYj),

lim
N→∞

|LV |WY j |
N

= 1−H(V |WYj).

Let (Ux)
1:N = X1:NGN . We define the bit-channel subsets HX |V , LX |V and also HX |VY1 , LX |VY1

based on the values of Bhattacharyya parameters Z((Ux)i|(Ux)
1:(i−1)V 1:N) and Z((Ux)i|(Ux)

1:(i−1)

V 1:NY 1:N
1 ), respectively, as we did above. Then,

lim
N→∞

|HX |V |
N

= H(X |V ), lim
N→∞

|LX |V |
N

= 1−H(X |V ).

lim
N→∞

1
N
|HX |VY1|= H(X |VY1),

lim
N→∞

1
N
|LX |VY1|= 1−H(X |VY1).

Under this probability distribution of (W 1:N ,V 1:N ,X1:N), we denote P((Uw)
1:N =(uw)

1:N)

by P(Uw)1:N ((uw)
1:N) and similarly we denote P((Uv)i =(uv)i |W 1:N(Uv)

1:i−1Y 1:N
1 =w1:Nu1:i−1

v y1:N
1

) by P(Uv)i|W 1:N(Uv)1:i−1Y 1:N
1

((uv)i|w1:N(uv)
1:i−1y1:N

1 ).

Define Iw
j = LW |Y j ∩HW for j = 1,2,3, Iv

j = LV |WY j ∩HV |W for j = 1,3, and Ix
j =

LX |VY j ∩HX |V for j = 1. Note that limN→∞

|Iw
j |

N = I(W ;Yj) for j = 1,2,3, limN→∞

|Iv
j |

N =

I(V ;Y j|W ) for j = 1,3, and limN→∞

|Ix
j |

N = I(X ;Yj|V ) for j = 1. We refer to Iw
j ( j = 1,2,3),

Iv
j ( j = 1,3) and Ix

j ( j = 1) as information bit-channels of receiver- j in (Uw)
1:N , (Uv)

1:N and

(Ux)
1:N respectively.

Define Fw
j = HW − Iw

j ( j = 1,2,3), Fv
j = HV |W − Iv

j ( j = 13) and Fx
j = HX |V − Ix

j

( j = 1). We refer to Fw
j ( j = 1,2,3), Fv

j ( j = 1,3) and Fx
j ( j = 1) as frozen bit-channels of

receiver- j in (Uw)
1:N , (Uv)

1:N and (Ux)
1:N respectively.

Define Rw = (HW ∪LW )c, Rv = (HV |W ∪LV |W )c and Rx = (HX |V ∪LX |V )c. We refer

to Rw, Rv and Rx as not-completely polarized bit-channels in (Uw)
1:N , (Uv)

1:N and (Ux)
1:N

respectively.
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We denote the subvector of U1:N corresponding to the bit-channel set A ⊂ [N] by UA .

Let P and Q be any two distributions on a discrete arbitrary alphabet Z . We denote the total

variation distance between the two distributions P and Q as ||P−Q||. Therefore ||P−Q|| =

∑z∈Z
1
2 |P(z)−Q(z)| = ∑z:P(z)>Q(z)P(z)−Q(z). We denote the KL-divergence between two

distributions P and Q as D(P||Q).

5.3 Polar coding for the DM multi-level 3-receiver broad-
cast channel

In this section, we are going to discuss the polar coding scheme for achieving the

capacity region of the DM multi-level 3-receiver broadcast channel with degraded message

sets. To achieve the capacity region, we need to achieve the rate pairs that satisfy equations

(5.3), (5.4) and (5.5) for all joint distributions on random variables over the alphabets of the

required size mentioned in the definition of the capacity region. We consider the case when

|X |= |V |= |W |= 2 to describe the polar coding scheme. The fundamental idea of the polar

coding strategy which we present is applicable even when the alphabets X ,W or V are of

higher size. In [47], [46], polarization for the alphabets of higher size is discussed.

5.3.1 Typical set coding

Before we go into our polar coding construction, we briefly discuss the achievability of

the rate pairs in the capacity region using random coding approach by typical sets [14, p. 200].

Three layered superposition coding with a rate splitting of the private message and indirect

coding of public message at receiver-3 are used in the scheme. Let N be the block length. Let

R1 = R11 +R12 be the rate split of the private message. We first generate 2NR0-wN sequences,

whose components are i.i.d. according to the distribution p(w), independently for the public

message. Then we use superposition coding to generate 2NR11-vN sequences, whose compo-

nents are independent according to conditional distribution p(v|w) given each wN sequence,

independently for the part of private message. We again use superposition coding to generate
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2NR12-xN sequences, whose components are independent according to conditional distribution

p(x|v) given each vN sequence, independently for the other part of private message. For each

public message and private message pair, their corresponding xN sequence gets transmitted as

a codeword. Receiver-1 recovers the unique public message and private message pair whose

(wN ,vN ,xN) is jointly typical with received sequence at the receiver. Receiver-2 recovers the

unique public message whose wN is jointly typical with received sequence at the receiver. Instead

of recovering public message like how receiver-2 does, receiver-3 recovers the unique public

message whose wN sequence and at-least one of its vN sequence in second layer is jointly typical

with received sequence at the receiver, which is referred to as indirect decoding method. If R0,

R1, R11, R12 satisfy the following:

R0 < I(W ;Y2) (5.6)

R12 < I(X ;Y1|V ) (5.7)

R11 +R12 < I(X ;Y1|W ) (5.8)

R0 +R11 +R12 < I(X ;Y1) (5.9)

R0 +R11 < I(V ;Y3), (5.10)

then reliable recovery of the intended messages at each of the receivers is ensured. After

eliminating variables R11 and R12 by Fourier-Motzkin procedure [14] by substituting R1 =

R11 +R12, we get the region described by equations (5.3), (5.4) and (5.5) that defines the

capacity region.

The intuition behind the rate splitting is that if we want to achieve a private message rate

satisfying R1 > I(X ;Y1|V ) and R1 < I(X ;Y1|W ), then we rate split R1 into R11 and R12 such that

R12 < I(X ;Y1|V ). As we recover public message indirectly using vN sequences at receiver-3, the

sum of public message rate R0 and R11 should be less than I(V ;Y3). So, if we make R11 small

while rate splitting, then it can be noticed that the public message rate can be improved, provided
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the reliability constraint at receiver-2, R0 < I(W ;Y2), is loose.

5.3.2 Rate splitting of the private message for polar coding

Notice that a point in the region satisfied by equations (5.6), (5.7), (5.8), (5.9) and (5.10)

does not always satisfy the constraint R11 < I(V ;Y1|W ). We impose the new additional constraint

R11 < I(V ;Y1|W ) for the rate split in the implementation of our polar coding strategy through

following lemma.

Lemma 10. For any rate pair (R0,R1) that satisfies equations (5.3) (5.4) and (5.5) and for a

particular joint distribution p(w,v)p(x|v) on (W,V,X), there exist rates R11 and R12 such that

R1 = R11 +R12 (rate split of R1) and following three identities hold.

R11 < I(V ;Y1|W )

R12 < I(X ;Y1|V )

R0 +R11 < I(V ;Y3)

Proof:

It is easy to find the split for R1 such that the first two identities hold since I(V ;Y1|W ) +

I(X ;Y1|V ) = I(X ;Y1|W ) (W →V → X → Y1 is chain). Let R′
11 and R′

12 be such a rate split for

R1. Suppose that the third identity does not hold for the split R1 = R′
11 +R′

12. That means

R0 +R′
11 ≥ I(V ;Y3). Say that R0 +R′

11 = I(V ;Y3)+ δ for some δ ≥ 0. On the other hand we

have R0 +R′
11 +R′

12 < I(V ;Y3)+ I(X ;Y1|V ). So we should have R′
12 < I(X ;Y1|V )−δ . Say that

R′
12 = I(X ;Y1|V )−δ1. Clearly δ1 > δ .

Note that R′
11 > δ , since R0 < I(V ;Y3). Choose R11 = R′

11 − δ+ and R12 = R′
12 + δ+

where min{R′
11,δ1} > δ+ > δ . Clearly, R11 and R12 is a split of R1 that satisfies the required

three identities. Hence the claim of the lemma is shown.

In our polar coding strategy, the private message bits for receiver-1 are given in bits Iv
1

and Ix
1 that are corresponding to V N vectors and XN vectors, which are involved in the chaining

construction we provide, respectively. The rate split in Lemma 10 allows us to associate the
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private message bits encoded in Iv
1 and Ix

1 to split rates of the private message R11 and R12,

respectively. We also involve the bits corresponding to R11, which are private message bits

encoded in Iv
1 , in the chaining procedure to translate the indirect coding method at receiver-3 into

polar coding. We also use the degradation condition of receiver-2 in our code construction. Now

we provide our code construction in the following subsection.

5.3.3 Code construction

We give a polar coding strategy for each of the following possible cases for the rate pair

(R0,R1).

• R0 ≥ I(W ;Y3)

• R0 < I(W ;Y3)

We consider k polar blocks of size N large enough so that the polarization happens. We

propose a chaining construction with these k polar blocks for the rate pair (R0,R1) by using the

rate split given by the Lemma 10.

While encoding each polar block, we first construct (Uw)
1:N and compute W 1:N =

(Uw)
1:NGN . We next construct V 1:N = (Uv)

1:NGN given W 1:N and apply polar transform to

obtain V 1:N . Lastly, we construct (Ux)
1:N given V 1:N and apply polar transform to obtain X1:N

(codeword). This encoding method ensures that the average distribution of (Wi,Vi,Xi)
N
i=1 is

close in total variation distance to the distribution which is induced when (Wi,Vi,Xi)
N
i=1 is

i.i.d. according to p(w)p(v|w)p(x|v). The total variation distance becomes O(2−Nβ ′
) where

β ′ < β < 0.5.

We first give the construction for the case where R0 ≥ I(W ;Y3). This is the case where

we translate the indirect coding into polar coding strategy. We assume NR11 > |Iv
1 ∩ Iv

3| to

demonstrate the code construction. The construction we give under this assumption gives the

general idea of the chaining construction which can easily be extended to the case where this

assumption does not hold.
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Note that public message bits have to be recovered at all the receivers. If we give NR0

public message bits in Iw
2 , receiver-2 and receiver-1 (due to degradation condition) can recover

these bits. But receiver-3 may not be able to decode in that case. On the other hand we can

recover these bits at receiver-3, if we place these bits into Iw
3 and remaining NR0 −|Iw

3 | bits in Iv
3 ,

as NR0 > |Iw
3 |. In this case, In this case, receiver-1 and receiver-2 may not be able to decode. We

do a chaining, to resolve the alignment of the bit-channel set in Iw
2 with bit-channels sets in Iw

3

and Iv
3 to allocate the public message bits for reliable recovery at all the receivers.

Since we are assigning a portion of public message bits in (Uv)
1:N vectors for receiver-3,

we need to recover (Uv)
1:N vectors at receiver-3. But we also use (Uv)

1:N vectors for encoding

private message bits corresponding to the rate R11. If we give these private message bits in Iv
1,

receiver-3 cannot recover these bits, which blocks receiver-3 from recovering (Uv)
1:N vectors for

decoding the portion of intended public message bits. Here is where we need to do a second level

of chaining for aligning bit-channel set in Iv
3 with bit-channel set in Iv

1 where we provide private

message bits corresponding to R11. This summarizes the main idea behind the construction that

translates indirect coding at receiver-3.

Fig. 5.3 shows how we fill (Uw)
1:N , (Uv)

1:N and (Ux)
1:N vectors when k = 3 allocating

public and private message bits. The links between vectors in Fig. 5.3 indicate the copying of

bits between bit-channel sets of successive blocks. Now we provide detailed steps in encoding

and decoding methods in the two-level chaining construction for this case, R0 ≥ I(W ;Y3).

Encoding:

• Encoding (k−1)NR0 + |Iw
3 ∩ Iw

2 | bits of the public message, first level of chaining:

– We first place |Iw
3 ∩ Iw

2 | bits in (Uw)
Iw
3 ∩Iw

2 for all the blocks t = 1 : k. Note that NR0 is

the sum of |Iw
3 ∩ Iw

2 |+ |Iw
3 ∩Fw

2 |+(NR0 −|Iw
3 |).

– We place |Iw
3 ∩Fw

2 | bits in (Uw)
Iw
3 ∩Fw

2 and NR0 −|Iw
3 | in (Uv)

Iv
31 for the blocks t = 1 :

k−1 where Iv
3 is partitioned as disjoint union Iv

31 ∪ Iv
32, |Iv

31|= NR0 −|Iw
3 |. Note that

NR0 +NR11 < |Iw
3 |+ |Fv

1 ∩ Iv
3|+ |Iv

1 ∩ Iv
3| due to Lemma 10. As we assumed the case
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where NR11 > |Iv
1 ∩ Iv

3|, we can select I31 such that I31 ⊂ Iv
3 ∩Fv

1 .

– We copy bits in (Uw)
Iw
3 ∩Fw

2 and (Uv)
Iv
31 of block t to (Uw)

Bw1 of block t + 1 for

t = 1 : k− 1 where Iw
2 ∩Fw

3 is partitioned as disjoint union Bw1 ∪Bw2 and |Bw1| =

NR0 −|Iw
3 ∩ Iw

2 |.

• Encoding (k−1)NR11 + |Iv
1 ∩ Iv

3| bits of the private message for receiver 1, second level of

chaining:

– We first place |Iv
3 ∩ Iv

2| private message bits in (Uv)
Iv
3∩Iv

2 for all the blocks t = 1 : k.

– We place NR11 − |Iv
3 ∩ Iv

2| bits in (Uv)
Iv
321 for the blocks t = 1 : k− 1 where Iv

32 is

partitioned as disjoint union Iv
321 ∪ Iv

322 ∪ (Iv
1 ∩ Iv

3), and |Iv
321|= NR11 −|Iv

1 ∩ Iv
3|. Note

that NR11 < min{|Iv
32|, |Iv

1|} due to Lemma 10.

– We copy the bits in (Uw)
Iv
321 of block t to (Uv)

Iv
11 of block t+1 for t = 1 : k−1, where

(Iv
1 ∩Fv

3 ) is partitioned as the disjoint union Iv
11 ∪ Iv

12 and |Iv
11|= |Iv

321|.

• Encoding kNR12 bits of the private message for receiver-1: We place NR12 bits in (Ux)
Ix
1

for all these blocks t = 1 : k. Note that NR12 < |Ix
1| due to Lemma 10. We do not involve

this portion of the private message bits in the chaining.

• We place randomly chosen frozen bits with i.i.d. uniform distribution in (Uw)
Bw1 , (Uv)

Iv
11

for the block t = 1. We place randomly chosen frozen bits with i.i.d. uniform distribution

in (Uw)
(Iw

3 ∩Fw
2 ), (Uv)

Iv
31 , (Uv)

Iv
321 for the block t = k. We place randomly chosen bits with

i.i.d. uniform distribution in the remaining positions of (Uw)
HW , (Uv)

HV |W and (Ux)
HX |V ,

which are not filled by private or public message bits, in all the k blocks. We share these

remaining bits that are in (Uw)
Fj , (Uv)

Fj and (Ux)
Fj of each block with the receiver- j for

j = 1,2,3, in all the k blocks.

• We have constructed (Uw)
HW , (Uv)

HV |W ,(Ux)
HX |V for all the k blocks. Now we en-

code other positions in (Uw)
1:N , (Uv)

1:N ,(Ux)
1:N as we do for single asymmetric channel
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case [24], [37] for all the blocks t = 1 : k.

• We use the following decision rule for encoding (Uw)
LW .

(Uw)i = argmaxx∈{0,1}P(Uw)i|(Uw)1:i−1)(x|(Uw)
1:i−1).

For i ∈ LW , the induced conditional distribution δ w
i ((uw)i|(uw)

1:i−1) on (Uw)i given

(Uw)
1:i−1 satisfies δ w

i ((uw)i|(uw)
1:i−1) = 1 and δi((uw)i +1|(uw)

1:i−1) = 0 where

(uw)i = argmaxx∈{0,1}P(Uw)i|(Uw)1:i−1(x|(uw)
1:i−1).

• We use either randomly chosen boolean functions, which are shared with all the receivers,

or common randomness [24], [37] for encoding bit-channels in (Uw)
Rw to maintain the

conditional distribution P(Uw)i|(Uw)1:i−1 on an average over the random ensemble. We now

compute W 1:N = (Uw)
1:NGN .

• We use the decision rule below for encoding (Uv)
LV |W .

(Uv)i = argmaxx∈{0,1}P(Uv)i|W 1:N(Uv)1:i−1(x|W 1:N(Uv)
1:i−1).

For i ∈ LV |W , the induced conditional distribution δ v
i ((uv)i|w1:N(uv)

1:i−1) on (Uv)i given

W 1:N(Uv)
1:i−1 satisfies δ v

i ((uv)i|w1:N(uv)
1:i−1) = 1 and δ v

i ((uv)i + 1|w1:N(uv)
1:i−1) = 0

where

(uv)i = argmaxx∈{0,1}P(Uv)i|W 1:N(Uv)1:i−1(x|w1:N(uv)
1:i−1).

• We use either randomly choosen boolean functions, which are shared with all the receivers,

or common randomness for encoding bit-channels in (Uv)
Rv to maintain the conditional

distribution P(Uv)i|W 1:N(Uv)1:i−1 . Now we compute V 1:N = (Uv)
1:NGN .
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• We use the decision rule below for encoding (Ux)
LX |V .

(Ux)i = argmaxx∈{0,1}P(Ux)i|V 1:N(Ux)1:i−1(x|V 1:N(Ux)
1:i−1).

For i ∈ LX |V , the induced conditional distribution δ x
i ((ux)i|v1:N(ux)

1:i−1) on (Ux)i given

V 1:N(Ux)
1:i−1 satisfies δ x

i ((ux)i|v1:N(ux)
1:i−1) = 1 and δ x

i ((ux)i+1|v1:N(ux)
1:i−1)= 0 where

(ux)i = argmaxx∈{0,1}P(Ux)i|V 1:N(Ux)1:i−1(x|v1:N(ux)
1:i−1).

• We use either randomly chosen boolean functions, which are shared with all the receivers,

or common randomness for encoding bit-channels in (Ux)
Rx to maintain the conditional

distribution P(Ux)i|V 1:N(Ux)1:i−1 . Now we compute X1:N = (Ux)
1:NGN .

• We transmit X1:N for all k blocks.

Rate of scheme: We encoded (k−1) ·NR0 + |Iw
2 ∩ Iw

3 | public message bits for k blocks. We en-

coded (k−1) ·NR11+k ·NR12+ |Iv
1 ∩ Iv

3| private message bits for k blocks. Hence the we achieve

the rate pair ( (k−1)·NR0+|Iw
2 ∩Iw

3 |
k·N ,

(k−1)·NR11+k·NR12+|Iv
1∩Iv

3 |
k·N ), which approaches the pair (R0,R1) as

k goes infinity. Now we provide the decoding method for the case R0 ≥ I(W ;Y3).

Decoding, using Y 1:N
j at receiver- j for all k blocks:

• The following steps 1)−4) give the decoding procedure at receiver-3. We decode both

(Uw)
1:Ns and (Uv)

1:Ns of all the blocks to recover the public message bits at receiver-3.

1. Set t = 1. We decode (Uw)
1:N and (Uv)

1:N by successive cancellation for the block

t. NR0 bits (Uw)
Iw
3 and (Uv)

Iv
31 of the public message will be recovered in this step.

NR11 bits in (Uv)
Iv
32 of the private message of receiver-1 will also be recovered.

2. We decode (Uw)
1:N followed by (Uv)

1:N by successive cancellation for the block t+1.

The bits (Uw)
Iw
3 ∩Fv

2 , (Uv)
Iv
31 and (Uv)

Iv
321 recovered for block t give bits in (Uw)

Bw1 and

(Uv)
Iv
11 during the successive cancellation decoding of block t +1. NR0 bits (Uw)

Iw
3
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Figure 5.3. Private and public message bits allocation in (Uw)
1:N , (Uv)

1:N and (Ux)
1:N vectors

when k = 3

and (Uv)
Iv
31 of the public message will be recovered in this step. NR11 bits in (Uv)

Iv
32

of the private message of receiver-1 will also be recovered. Increase t by 1.

3. Repeat step (2) until t = k−1.

4. We decode (Uw)
1:N and (Uv)

1:N in successive cancellation style for block k. The bits

(Uw)
Iw
3 ∩Fv

2 , (Uv)
Iv
31 and (Uv)

Iv
321 and recovered for block k−1 give bits in (Uw)

Bw1 and

(Uv)
Iv
11 during the successive cancellation decoding of block k. The bits (Uw)

Iw
3 ∩Iw

2 of

the public message will be recovered in this step. The bits (Uv)
Iv
3∩Iv

2 of the private

message of receiver-1 will also be recovered in this step.

• The following steps (1)-(4) give the decoding procedure at receiver-1. The content in
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parentheses-
()

is ignored when decoding at receiver-2. We decode all (Uw)
1:Ns, (Uv)

1:Ns

and (Ux)
1:Ns of all the blocks to recover the public message bits and private message bits

at receiver-1. We only decode (Uw)
1:Ns of all the blocks to recover public message bits at

receiver-2.

1. Set t = k. We decode (Uw)
1:N (

,(Uv)
1:N and (Ux)

1:N) by successive cancellation for

block t. NR0 bits (Uw)
Iw
3 ∩Iw

2 and (Uw)
Bw1 of the public message will be recovered for

block t.
(
NR11 bits in (Uv)

Iv
11∪(Iv

1∩Iv
3) of the private message of receiver-1 will also

be recovered. NR12 bits in (Ux)
Ix
1 of the private message of receiver-1 will also be

recovered.
)

2. We decode (Uw)
1:N(,(Uv)

1:N and (Ux)
1:N) by successive cancellation for block

t − 1. The bits (Uw)
Bw1 ,

(
(Uv)

Iv
11
)

recovered for block t give bits in (Uw)
Iw
3 ∩Fw

2
(
,

(Uv)
Iv
31 and (Uv)

Iv
321
)

during the successive cancellation decoding of block t −1. NR0

bits (Uw)
Iw
3 ∩Iw

2 and (Uw)
Bw1 of the public message will be recovered.

(
NR11 bits in

(Uv)
Iv
11∪(Iv

1∩Iv
3) of the private message of receiver-1 will also be recovered. NR12 bits

in (Ux)
Ix
1 of the private message of receiver-1 will also be recovered.

)
Decrease t by

1.

3. Repeat step (2) until t = 2.

4. We decode (Uw)
1:N (

,(Uv)
1:N and (Ux)

1:N) by successive cancellation for block 1.

The bits (Uw)
Bw1

(
, (Uv)

Iv
11
)

recovered for block 2 give bits in (Uw)
Iw
3 ∩Fw

2
(
, (Uv)

Iv
31 and

(Uv)
Iv
321
)

during the successive cancellation decoding of block 1. The bits (Uw)
Iw
3 ∩Iw

2

of the public message will be recovered.
(
The bits (Uv)

Iv
1∩Iv

3 of the private message

of receiver-1 will also be recovered. NR12 bits in (Ux)
Ix
1 of the private message of

receiver-1 will also be recovered.
)

• During the successive cancellation decoding, we recover the needed bits in (Uw)
LW ,

(Ux)
LV |W and (Uv)

LX |V at each receiver by an appropriate decision/arg-max rule.
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• We use the following decision rule for decoding (Uw)
LW and (Uw)

Iw
j at receiver- j = 1,2,3.

(Uw)i = argmaxx∈{0,1}P(Uw)i|(Uw)1:i−1Y 1:N
j

(x|(Uw)
1:i−1Y 1:N

j ).

We use the following decision rule for decoding (Uv)
LV |W and (Uw)

Iv
j at reciever- j = 1,3.

(Uv)i = argmaxx∈{0,1}P(Uv)i|W 1:N(Uv)1:i−1Y 1:N
j

(x|W 1:N(Uv)
1:i−1Y 1:N

j ).

We use the following decision rule below for decoding (Ux)
LX |V and (Uw)

Ix
1 at reciever-1.

(Ux)i = argmaxx∈{0,1}P(Ux)i|V 1:N(Ux)1:i−1Y 1:N
1

(x|V 1:N(Ux)
1:i−1Y 1:N

1 ).

• The remaining bits could be either the bits in frozen positions which are available at the

corresponding receiver or the bits in (Uw)
Rw , (Uv)

Rv and (Ux)
Rx for which we use shared

boolean functions/common randomness to decode.

We assumed that NR11 > |Iv
1 ∩ Iv

3|. Suppose if that does not hold, then we do not have to

perform chaining at the second level. The private message bits corresponding to the rate R11 will

fit into Iv
1 ∩ Iv

3 and hence can be recovered by receiver-3 and receiver-1. Allocation of the private

message bits in (Ux)
1:N corresponding to the rate R12 will still be the same as in construction for

the previously assumed condition. Fig. 5.4 shows the allocation of private and public message

bits in (Uw)
1:N and (Uv)

1:N in the chaining procedure for k = 3 when NR11 ≤ |Iv
1 ∩ Iv

3|. The other

details of the construction can easily be extended from the construction under the assumption

NR11 > |Iv
1 ∩ Iv

3|. Fig. 5.4 shows a case where the public message bits in Iv
3 fit into Iv

3 ∩Fv
1 . Notice

that the same chaining procedure still applies, as shown in Fig. 5.4 even when these public

message bits overflow into Iv
3 ∩ Iv

1 .

Now we look at the other case where R0 < I(W ;Y3). Assume NR0 > |Iw
2 ∩ Iw

3 | where

there will be non-trivial chaining construction. In this case, note that NR0 public message bits
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Figure 5.4. Private and public message bits allocation in (Uw)
1:N and (Uv)

1:N vectors when
k = 3

totally fit into |Iw
3 |. We perform chaining within the layer (Uw)

1:N itself and resolve the alignment

of bit-channel sets Iw
2 and Iw

3 so that these public message bits can be reliably decoded at all the

receivers. Since we do not require to fill the public message bits in Iv
3, receiver-3 can ignore

decoding the (Uv)
1:N vectors. Hence there will be no need of chaining at the second level that

aligns bit-channel sets in Iv
1 and Iv

3 for private message bits corresponding to the rate R11. It is just

enough to provide private message bits in Iv
1 . The other details of the code construction can easily

be extended from earlier case. Fig. 5.5 shows the case under the assumption NR0 > |Iw
2 ∩ Iw

3 |

when k = 3.

Suppose if NR0 ≤ |Iw
2 ∩ Iw

3 |, we can fill NR0 public message bits in Iw
2 ∩ Iw

3 so that they

can be recovered at all the receivers. We can the fill NR11 and NR12 private message bits in Iv
1 of

(Uv)
1:N and Ix

1 of (Ux)
1:N so that they can be reliably decoded at receiver-1. Hence chaining is

not needed when NR0 ≤ |Iw
2 ∩ Iw

3 |.

5.3.4 Probability of error analysis

Let C denotes the random vector which contains randomly chosen frozen bits in the

code construction. The random variable C also contains randomly chosen boolean functions for

not-completely polarized bit-channels in case we do not employ common randomness in the code
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Figure 5.5. Private and public message bits allocation in (Uw)
1:N and (Uv)

1:N vectors when
k = 3

construction, of all the blocks as its components. We give the analysis for the code construction

that uses common randomness for not-completely polarized bit-channels. The spirit of the

analysis will remain the same for the case where we use randomly chosen boolean functions

for encoding not completely polarized bit-channels as in [24]. The analysis of probability of

error that we provide is done in three steps. First step is deriving the average distribution of each

block which is close to the distribution induced when (W 1:N ,V 1:N ,X1:N) is i.i.d. according to

p(w)p(v|w)p(x|v) in total variation distance through Lemma 11. Secondly, we write error event

at each receiver as a union of error events we define for each of these blocks. Notice that blocks

involved in the chaining are statistically dependent due to the chaining construction we did. We

use linearity of expectation and union bound to get an upper bound on average probability of

error at a receiver, which is sum of average probability of errors of each of these blocks at that

receiver. Finally, we use the fact that the total variation distance between average distribution of

the block in the code construction and distribution when (W 1:N ,V 1:N ,X1:N) is i.i.d. according to

p(w)p(v|w)p(x|v) are close and polarization results to get bound on the average probability of

each block at that receiver. Theorem 6 provides a detailed analysis of the probability of decoding

error for the chaining construction. We now give Lemma 11 used in proof of Theorem 6.
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Lemma 11. Let Q(Uw)1:N(Uv)1:N(Ux)1:N be the measure on (Uw)
1:N(Uv)

1:N(Ux)
1:N as follows:

Q(Uw)1:N(Uv)1:N(Ux)1:N (u1:N
w u1:N

v u1:N
x )

=
(
2−|HW |Πi∈LW δ w

i ((uw)i|(uw)
1:i−1)Πi∈RwP(Uw)i|(Uw)1:i−1((uw)i|(uw)

1:i−1)
)
·(

2−|HV |W |
Πi∈LV |W δ v

i ((uv)i|w1:N(uv)
1:i−1)

Πi∈RvP(Uv)i|W 1:N(Uv)1:i−1((uv)i|w1:N(uv)
1:i−1)

)
·(

2−|HX |V |Πi∈LX |V δ x
i ((ux)i|v1:N(ux)

1:i−1)

Πi∈RxP(Ux)i|V 1:N(Ux)1:i−1((ux)i|v1:N(ux)
1:i−1)

)
.

Let P(Uw)1:N(Uv)1:N(Ux)1:N be the measure induced when (W 1:N ,V 1:N ,X1:N) are i.i.d. according to

p(w)p(v|w)p(x|v). The total variation distance, ||P(Uw)1:N(Uv)1:N(Ux)1:N −Q(Uw)1:N(Uv)1:N(Ux)1:N ||=

O(2−Nβ ′
), where β ′ < β < 0.5, wN = (uw)

1:NGN , vN = (uv)
1:NGN and xN = (ux)

1:NGN .

Proof:

We use short hand notation Q((uw)
1:N(uv)

1:N(ux)
1:N) and P((uw)

1:N(uv)
1:N(ux)

1:N) for

Q(Uw)1:N(Uv)1:N(Ux)1:N ((uw)
1:N(uv)

1:N(ux)
1:N) and P(Uw)1:N(Uv)1:N(Ux)1:N ((uw)

1:N(uv)
1:N(ux)

1:N), re-

spectively. The proof is inspired from Lemma 1 in [24]. From equation (56) in [24], we have

the following identity:

Bn
1 −An

1 =
n

∑
i=1

(Bi −Ai)Ai−1
1 Bn

i+1 (5.11)

where Ak
j and Bk

j denotes the product ∏
k
i= j Ai and ∏

k
i= j Bi respectively. We are going to apply

this for n = 3N length vector, which is (Uw)
1:N(Uv)

1:N(Ux)
1:N .

2||Q(Uw)1:N(Uv)1:N(Ux)1:N −P(Uw)1:N(Uv)1:N(Ux)1:N ||

= ∑
(uw)1:N(uv)1:N(ux)1:N

|
( N

∑
i=1

Q((uw)i|(uw)
1:i−1)−P((uw)i|(uw)

1:i−1))

Π
i−1
m=1P((uw)m|(uw)

1:m−1)

Π
N
m=i+1Q((uw)m|(uw)

1:m−1)
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Π
N
p=1Q((uv)p|w1:N(uv)

1:p−1)

Π
N
q=1Q((ux)q|w1:Nv1:N(ux)

1:q−1)

+
N

∑
k=1

(Q((uv)k|w1:N(uv)
1:k−1)−P((uv)k|w1:N(uv)

1:k−1))

Π
N
m=1P((uw)m|(uw)

1:m−1)

Π
k−1
p=1P((uv)p|w1:N(uv)

1:p−1)

Π
N
p=k+1Q((uv)p|w1:N(uv)

1:p−1)

Π
N
q=1Q((ux)q|w1:Nv1:N(ux)

1:q−1)

+
N

∑
l=1

(Q((ux)l|w1:Nv1:N(ux)
1:l−1)−

P((ux)k|w1:Nv1:N(ux)
1:k−1))

Π
N
m=1P((uw)m|(uw)

1:m−1)

Π
N
p=1P((uv)p|w1:N(uv)

1:p−1)

Π
l−1
q=1P((ux)q|w1:Nv1:N(ux)

1:q−1))

Π
N
q=l+1Q((ux)q|w1:Nv1:N(ux)

1:q−1)
)
|

This implies that

2||Q(Uw)1:N(Uv)1:N(Ux)1:N −P(Uw)1:N(Uv)1:N(Ux)1:N ||

≤ ∑
(uw)1:N(uv)1:N(ux)1:N( N

∑
i=1

|Q((uw)i|(uw)
1:i−1)−P((uw)i|(uw)

1:i−1))|

P((uw)
1:i−1)Q((uw)

i+1:N(uv)
1:N(ux)

1:N |(uw)
1:i)

+
N

∑
k=1

|(Q((uv)k|w1:N(uv)
1:k−1)−

P((uv)k|w1:N(uv)
1:k−1))|
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P((uw)
1:N(uv)

1:k−1)

Q((uv)
k+1:N(ux)

1:N |(w)1:N(uv)
1:k)

+
N

∑
l=1

|(Q((ux)l|v1:N(ux)
1:l−1)−

P((ux)k|v1:N(ux)
1:l−1))|

P((uw)
1:N(uv)

1:N(ux)
1:l−1)

Q((ux)
l+1:N |(w)1:N(v)1:N(ux)

1:l)
)

This implies that

2||Q(Uw)1:N(Uv)1:N(Ux)1:N −P(Uw)1:N(Uv)1:N(Ux)1:N ||

≤
(

∑
(uw)1:N(uv)1:N(ux)1:N

N

∑
i=1

|P((uw)i|(uw)
1:i−1)−Q((uw)i|(uw)

1:i−1))|

P((uw)
1:i−1)Q((uw)

i+1:N(uv)
1:N(ux)

1:N |(uw)
1:i)

)
+
(

∑
(uw)1:N(uv)1:N(ux)1:N

N

∑
k=1

|(P((uv)k|w1:N(uv)
1:k−1)−Q((uv)k|w1:N(uv)

1:k−1))|

P((uw)
1:N(uv)

1:k−1)Q((uv)
k+1:N(ux)

1:N |(w)1:N(uv)
1:k)

)
+
(

∑
(uw)1:N(uv)1:N(ux)1:N

N

∑
l=1

|(P((ux)l|v1:N(ux)
1:l−1)−Q((ux)k|v1:N(ux)

1:k−1))|

P((uw)
1:N(uv)

1:N(ux)
1:l−1)Q((ux)

l+1:N |(w)1:N(v)1:N(ux)
l)
)
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This implies that

2||Q(Uw)1:N(Uv)1:N(Ux)1:N −P(Uw)1:N(Uv)1:N(Ux)1:N ||

≤
( N

∑
i=1

∑
(uw)1:N(uv)1:N(ux)1:N

|P((uw)i|(uw)
1:i−1)−Q((uw)i|(uw)

1:i−1))|

P((uw)
1:i−1)Q((uw)

i+1:N(uv)
1:N(ux)

1:N |(uw)
1:i)

)
+
( N

∑
k=1

∑
(uw)1:N(uv)1:N(ux)1:N

|(P((uv)k|w1:N(uv)
1:k−1)−Q((uv)k|w1:N(uv)

1:k−1))|

P((uw)
1:N(uv)

1:k−1)Q((uv)
k+1:N(ux)

1:N |(w)1:N(uv)
1:k)

)
+
( N

∑
l=1

∑
(uw)1:N(uv)1:N(ux)1:N

|(P((ux)l|v1:N(ux)
1:l−1)−Q((ux)k|v1:N(ux)

1:k−1))|

P((uw)
1:N(uv)

1:N(ux)
1:l−1)Q((ux)

l+1:N |(w)1:N(v)1:N(ux)
l)

≤
( N

∑
i=1

∑
(uw)1:i

P((uw)
1:i−1)

|P((uw)i|(uw)
1:i−1)−Q((uw)i|(uw)

1:i−1))|
)

+
( N

∑
k=1

∑
(uw)1:N(uv)1:k

P((uw)
1:N(uv)

1:k−1)

|(P((uv)k|w1:N(uv)
1:k−1)−Q((uv)k|w1:N(uv)

1:k−1))|
)

+
( N

∑
l=1

∑
(uw)1:N(uv)1:N(ux)1:l

P((uw)
1:N(uv)

1:N(ux)
1:l−1)

|(P((ux)l|v1:N(ux)
1:l−1)−Q((ux)k|v1:N(ux)

1:k−1))|
)

(5.12)

Now we consider the individual sum terms in the above bound. Let us first bound the term,

∑
N
i=1 ∑(uw)1:i P((uw)

1:i−1)|P((uw)i|(uw)
1:i−1)−Q((uw)i|(uw)

1:i−1))|.
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If i ∈ HW , then

∑
(uw)1:i

P((uw)
1:i−1)|P((uw)i|(uw)

1:i−1)−Q((uw)i|(uw)
1:i−1))|

= ∑
(uw)1:i−1

2P((uw)
1:i−1)||P(Uw)i|(Uw)1:i−1=(uw)1:i−1 −Q(Uw)i|(Uw)1:i−1=(uw)1:i−1 ||

(a)
≤ ∑

(uw)1:i−1

P((uw)
1:i−1)

√
(2ln2)

(
D(P(Uw)i|(Uw)1:i−1=(uw)1:i−1||Q(Uw)i|(Uw)1:i−1=(uw)1:i−1)

)0.5

(b)
≤

√
(2ln2)

(
∑

(uw)1:i−1

P((uw)
1:i−1)

D(P(Uw)i|(Uw)1:i−1=(uw)1:i−1||Q(Uw)i|(Uw)1:i−1=(uw)1:i−1)
)0.5

(c)
≤

√
(2ln2)(1−H((Uw)i|(Uw)1:i−1))

(d)
≤

√
(2ln2)(1− (Z((Uw)i|(Uw)1:i−1))2)

(e)
≤

√
(4ln2)(2−nβ

)

= O(2−nβ ′
)

where β ′ < β .

(a) follows by pinsker inequality, (b) follows by jensen’s inequality, (c) follows due to the fact that

Q((uw)i|(uw)
1:i−1) = 0.5 and by the formula of conditional entropy, (d) follows from equation

(5.1), and (e) follows from polarization results mentioned in Section 5.2.

If i ∈ LW , let

p(uw)1:i−1 = max{P(0|(uw)
1:i−1),P(1|(uw)

1:i−1)}

Then,

∑
(uw)1:i

P((uw)
1:i−1)|P((uw)i|(uw)

1:i−1)−Q((uw)i|(uw)
1:i−1))|
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= ∑
(uw)1:i−1

2P((uw)
1:i−1)||P(Uw)i|(Uw)1:i−1=(uw)1:i−1 −Q(Uw)i|(Uw)1:i−1=(uw)1:i−1 ||

(a)
≤ ∑

(uw)1:i−1

P((uw)
1:i−1)

√
(2ln2)

(
D(Q(Uw)i|(Uw)1:i−1=(uw)1:i−1||P(Uw)i|(Uw)1:i−1=(uw)1:i−1)

)0.5

(b)
≤

√
(2ln2)

(
∑

(uw)1:i−1

P((uw)
1:i−1)

D(Q(Uw)i|(Uw)1:i−1=(uw)1:i−1||P(Uw)i|(Uw)1:i−1=(uw)1:i−1)
)0.5

(c)
=

√
(2ln2) ∑

(uw)1:i−1

P((uw)1:i−1)(− log(p(uw)1:i−1))

(d)
≤

(
(2ln2) ∑

(uw)1:i−1

P((uw)
1:i−1)

(H((Uw)i|(Uw)
1:i−1 = (uw)

1:i−1))
)0.5

=
√
(2ln2)(H((Uw)i|(Uw)1:i−1))

(e)
≤

√
(2ln2)(Z((Uw)i|(Uw)1:i−1))

( f )
≤

√
(2ln2)2−nβ

= O(2−nβ ′
)

(a) follows by pinsker inequality, (b) follows by jensen’s inequality for concave functions. (c)

follows from Q((uw)i|(uw)
1:i−1) = 1 when (uw)i = argmaxx∈{0,1} {P(x|(uw)

1:i−1)}. (d) is true

since log(
p
(uw)1:i−1

1−p
(uw)1:i−1

)> 0. (e) follows from equation (5.2), (f) follows from polarization results

mentioned in Section 5.2.

Hence

N

∑
i=1

∑
(uw)1:i

P((uw)
1:i−1)|P((uw)i|(uw)

1:i−1)−Q((uw)i|(uw)
1:i−1))|= O(2−Nβ ′

). (5.13)

Let us first bound the term,

∑
N
k=1 ∑(uw)1:N(uv)1:k P((uv)

1:k−1)|P((uv)k|w1:N(uv)
1:k−1)−Q((uv)k|w1:N(uw)

1:k−1))|.
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If i ∈ HV |W , then

∑
(uw)1:N(uv)1:k

P((uw)
1:N(uv)

1:k−1)|P((uv)k|w1:N(uv)
1:k−1)−Q((uv)k|w1:N(uv)

1:k−1))|

= ∑
w1:N(uv)1:k−1

2P(w1:N(uv)
1:i−1)||P(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1−

Q(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1||
(a)
≤ ∑

w1:N(uv)1:k−1

P(w1:N(uv)
1:i−1)

√
(2ln2)

(
D(P(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1||Q(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1

)0.5

(b)
≤

√
(2ln2)

(
∑

w1:N(uv)1:k−1

P(w1:N(uv)
1:i−1)

(
D(P(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1||Q(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1

)0.5

(c)
≤

√
(2ln2)(1−H((Uv)k|W 1:N(Uv)1:k−1))

(d)
≤

√
(2ln2)(1− (Z((Uv)k|W 1:N(Uv)1:k−1))2)

(e)
≤

√
(4ln2)(2−nβ

)

= O(2−nβ ′
)

where β ′ < β .

(a) follows by pinsker inequality, (b) follows by jensen’s inequality, (c) follows due to the fact

that Q((uv)k|w1:N(uv)
1:k−1) = 0.5 and by the formula of conditional entropy, (d) follows from

equation (5.1) and (e) follows from polarization results mentioned in Section 5.2.

Let pw1:N(uv)1:k−1 = max{P(0|w1:N(uv)
1:k−1),P(1|w1:N(uv)

1:k−1)}.

If i ∈ LV |W , then,

∑
(uw)1:N(uv)1:k

P((uw)
1:N(uv)

1:k−1)|P((uv)k|w1:N(uv)
1:k−1)−Q((uv)k|w1:N(uv)

1:k−1))|
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= ∑
w1:N(uv)1:k−1

2P(w1:N(uv)
1:i−1)||P(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1−

Q(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1||
(a)
≤ ∑

w1:N(uv)1:k−1

P(w1:N(uv)
1:i−1)

√
(2ln2)

(
D(Q(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1 ||P(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1

)0.5

(b)
≤

√
(2ln2)

(
∑

w1:N(uv)1:k−1

P(w1:N(uv)
1:i−1)

(
D(Q(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1 ||P(Uv)k|W 1:N(Uv)1:k−1=w1:N(uv)1:k−1

)0.5

(c)
=

√
(2ln2)

(
∑

(uw)1:N(uv)1:k

P((uw)
1:N(uv)

1:k−1)(− log(pw1:N(uv)1:k−1))
)0.5

(d)
≤

√
(2ln2)

(
∑

(uw)1:N(uv)1:k

P((uw)
1:N(uv)

1:k−1)

(H((Uv)i|W 1:N(Uv)
1:i−1 = w1:N(uv)

1:i−1))
)0.5

=
√
(2ln2)(H((Uv)i|W 1:N(Uv)1:i−1))

(e)
≤

√
(2ln2)(Z((Uv)i|W 1:N(Uv)1:i−1))

( f )
≤

√
(2ln2)2−nβ

= O(2−nβ ′
)

(a) follows by pinsker inequality, (b) follows by jensen’s inequality for concave functions. (c)

follows from Q((uw)i|(uw)
1:i−1) = 1 when (uv)k = argmaxx∈{0,1} P(x|w1:N(uv)

1:k−1). (d) is true

since log(
pw1:N (uv)1:k−1

1−pw1:N (uv)1:k−1
)> 0. (e) follows from equation (5.2), (f) follows from equation (5.2),

(f) follows from polarization results mentioned in Section 5.2. Hence

N

∑
k=1

∑
(uw)1:N(uv)1:k

P((uv)
1:k−1)|P((uv)k|w1:N(uv)

1:k−1)−Q((uv)k|w1:N(uw)
1:k−1))|

= O(2−Nβ ′
)

(5.14)
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By using the same approach as we just used to derive equation (5.14), we will also get

N

∑
l=1

∑
(uw)1:N(uv)1:N(ux)1:l

P((ux)
1:l−1)|P((ux)l|v1:N(ux)

1:l−1)−Q((ux)l|v1:N(ux)
1:l−1))|

= O(2−Nβ ′
)

(5.15)

From equations (5.12), (5.13), (5.14) and (5.15), we get

||P(Uw)1:N(Uv)1:N(Ux)1:N −Q(Uw)1:N(Uv)1:N(Ux)1:N ||= O(2−Nβ ′
).

Hence proof of the lemma.

Now we provide Theorem 6 that gives a detailed analysis of the probability of decoding

error in the chaining construction.

Theorem 6.

1. For every polar block encoded in the chaining construction, we have

EC[P(U1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x |C)]

=
(
2−|HW |Πi∈LW δ w

i ((uw)i|(uw)
1:i−1)Πi∈RwP(Uw)i|(Uw)1:i−1((uw)i|(uw)

1:i−1)
)
·(

2−|HV |W |
Πi∈LV |W δ v

i ((uv)i|w1:N(uv)
1:i−1)

Πi∈RvP(Uv)i|W 1:N(Uv)1:i−1((uv)i|w1:N(uv)
1:i−1)

)
·(

2−|HX |V |Πi∈LX |V δ x
i ((ux)i|v1:N(ux)

1:i−1)

Πi∈RxP(Ux)i|V 1:N(Ux)1:i−1((ux)i|v1:N(ux)
1:i−1)

)
.

where w1:N = (uw)
1:NGN , v1:N = (uv)

1:NGN and x1:N = (ux)
1:NGN .

2. Let Pe(C) be the probability of error for a given code in the proposed random chaining con-

struction above with k blocks. The average probability of error for the random code construction,

EC[Pe(C)] = O(k2−Nβ ′
) for β ′ < β < 0.5.

Proof:

1.

Let us consider a polar block in the random chaining construction. We now compute the ensemble

143



average distribution of such a block. We first evaluate P(U1:N
w = u1:N

w |C) for that block.

Remember that in the code construction, we give the private and public message bits in a portion

of UHW and we put randomly chosen frozen bits with i.i.d. uniform distribution in the remaining

portion of it. Let Iw be index set where we put private/public message bits in UHW in that block.

Let the randomly chosen frozen bit function be fw : HW − Iw → {0,1}. By encoding method,

we get,

P(U1:N
w = u1:N

w |C) = Πi∈[N]P((Uw)i = (uw)i|C,(Uw)
1:i−1 = (uw)

1:i−1)

= 2−|Iw|Πi∈HW−Iw1{ fw(i) = wi}Πi∈LW δ
w
i ((uw)i|(uw)

1:i−1)

Πi∈RwP(Uw)i|(Uw)1:i−1((uw)i|(uw)
1:i−1)

)
.

By taking expectation on both sides, by independence of frozen bits and by the linearity of

expectation, we get the following:

EC[P(U1:N
w = u1:N

w |C)] = 2−|Iw|Πi∈HW−IwEC[1{ fw(i) = wi}]Πi∈LW δ w
i ((uw)i|(uw)

1:i−1)

Πi∈RwP(Uw)i|(Uw)1:i−1((uw)i|(uw)
1:i−1)

)
.

This implies that

EC[P(U1:N
w = u1:N

w |C)] = 2−|HW |Πi∈LW δ w
i ((uw)i|(uw)

1:i−1)

Πi∈RwP(Uw)i|(Uw)1:i−1((uw)i|(uw)
1:i−1)

)
.

Similarly, we give the private and public message bits in a portion of UHV |W and we give

randomly chosen frozen bits with i.i.d. uniform distribution in the remaining portion of it. Let Iv

be index set where we put private/public message bits in HV |W of the block we considered. Let

the randomly chosen frozen bit function be fv : HV |W − Iv →{0,1}. By encoding rule, we get

P(U1:N
v = u1:N

v |C,W 1:N = w1:N) = 2−|Iv|Πi∈HV |W−Iv1{ fv(i) = vi}

Πi∈LV |W δ
v
i ((uv)i|w1:N(uv)

1:i−1)

Πi∈RvP(Uv)i|W 1:N(Uv)1:i−1((uv)i|w1:N(uv)
1:i−1)

)
.
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By taking expectation on both sides, by the independence of frozen bits and by the linearity of

expectation, we get the following:

EC[P(U1:N
v = u1:N

v |C,W 1:N = w1:N)] = 2−|Iv|Πi∈HV |W−IvEC[1{ fv(i) = vi}]

Πi∈LV |W δ
v
i ((uv)i|w1:N(uv)

1:i−1)

Πi∈RvP(Uv)i|W 1:N(Uv)1:i−1((uv)i|w1:N(uv)
1:i−1)

)
.

This implies that

EC[P(U1:N
v = u1:N

v |C,W 1:N = w1:N)] = 2−|HV |W |
Πi∈LV |W δ

v
i ((uv)i|(uv)

1:i−1w1:N)

Πi∈RvP(Uv)i|W 1:N(Uv)1:i−1((uv)i|w1:N(uv)
1:i−1).

Similarly, we give the private and public message bits in a portion of UHX |V and we give

randomly chosen frozen bits with i.i.d. uniform distribution in the remaining portion. Let Ix be

index set where we put private/public message bits in HX |V of the block we considered. Let the

randomly chosen frozen bit function be fx : HX |V − Ix →{0,1}. By encoding rule, we get

P(U1:N
x = u1:N

x |C,V 1:N = v1:N) = 2−|Ix|Πi∈HX |V−Ix1{ fx(i) = xi}

Πi∈LX |V δ
v
i ((ux)i|v1:N(ux)

1:i−1)

Πi∈RxP(Ux)i|V 1:N(Ux)1:i−1((ux)i|v1:N(ux)
1:i−1)

)
.

By taking expectation on both sides, by the independence of frozen bits and by the linearity of

expectation, we get the following:

EC[P(U1:N
x = u1:N

x |C,V 1:N = v1:N)] = 2−|Ix|Πi∈HX |V−IxEC[1{ fx(i) = xi}]

Πi∈LX |V δ
x
i ((ux)i|v1:N(ux)

1:i−1)

Πi∈RxP(Ux)i|V 1:N(Ux)1:i−1((ux)i|v1:N(ux)
1:i−1)

)
.
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This implies that

EC[P(U1:N
x = u1:N

x |C,V 1:N = v1:N)]

= 2−|HX |V |Πi∈LX |V δ x
i ((ux)i|v1:N(ux)

1:i−1)Πi∈RxP(Ux)i|V 1:N(Ux)1:i−1((ux)i|v1:N(ux)
1:i−1).

By the chain-rule of conditional probability, we get

P(U1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x |C)

= P(U1:N
w = u1:N

w |C) ·P(U1:N
v = u1:N

v |C,W 1:N = w1:N) ·

P(U1:N
x = u1:N

x |C,V 1:N = v1:N).

By taking expectations on the both the sides and by using the fact that the frozen bit functions

fw, fv and fx are independent, we get the following:

EC[P(U1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x |C)]

= EC[P(U1:N
w = u1:N

w |C)] ·EC[P(U1:N
v = u1:N

v |C,W 1:N = w1:N)] ·

EC[P(U1:N
x = u1:N

x |C,V 1:N = v1:N)].

After substituting each of the three product terms on the right hand side, we finish the proof of

part 1.

2.

Let E be the error event. Notice that the error occurs if and only if there is an error while

decoding bit-channels LW ∪ Iw
j in (Uw)

1:N for j = 1,2,3 or LV |W ∪ Iv
j in (Uv)

1:N for j = 1,3 or

LX |V ∪ Ix
1 in (Ux)

1:N in any of the blocks involved in the chaining construction. Let us index the

blocks in chaining construction as b = 1,2, . . . ,k.

The error event of bit-channel i of block b for receivers j = 1,2 or 3 in the first layer will be as

follows:

E wb
i j = {(w1:N ,v1:N ,x1:N ,y1:N

j )s of all the blocks b̃ ∈ [k] :

P(Uw)i|(Uw)1:i−1Y 1:N
j

((uw)i +1|(uw)
1:i−1y1:N

j )

≥ P(Uw)i|(Uw)1:i−1Y 1:N
j

((uw)i|(uw)
1:i−1y1:N

j )

holds for (u1:N
w ,y1:N

j ) of block b}.
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When there is only a single block, the error event of bit-channel i for receivers j = 1,2 or 3 in

the first layer will be as follows:

E w
i j = {(w1:N ,v1:N ,x1:N ,y1:N

j ) :

P(Uw)i|(Uw)1:i−1Y 1:N
j

((uw)i +1|(uw)
1:i−1y1:N

j )

≥ P(Uw)i|(Uw)1:i−1Y 1:N
j

((uw)i|(uw)
1:i−1y1:N

j )}.

The error event of bit-channel i of block b for receivers j = 1 or 3 in the second layer will be as

follows:

E vb
i j = {(w1:N ,v1:N ,x1:N ,y1:N

j )s of all the blocks b̃ ∈ [k] :

P(Uv)i|W 1:N(Uv)1:i−1Y 1:N
j

((uv)i +1|w1:N(uw)
1:i−1y1:N

j )

≥ P(Uv)i|W 1:N(Uv)1:i−1Y 1:N
j

((uv)i|w1:N(uw)
1:i−1

y1:N
j )

holds for (w1:N ,u1:N
v ,y1:N

j ) of block b}.

When there is only a single block, the error event of bit-channel i for receivers j = 1 or 3 in the

second layer will be as follows:

E v
i j = {(w1:N ,v1:N ,x1:N ,y1:N

j ) :

P(Uv)i|W 1:N(Uv)1:i−1Y 1:N
j

((uv)i +1|w1:N(uw)
1:i−1y1:N

j )

≥ P(Uv)i|W 1:N(Uv)1:i−1Y 1:N
j

((uv)i|w1:N(uw)
1:i−1

y1:N
j )}.

The error event of bit-channel i of block b for receiver j = 1 in the third layer will be as follows:

E xb
i j = {(w1:N ,v1:N ,x1:N ,y1:N

j )s of all the blocks b̃ ∈ [k] :

P(Ux)i|V 1:N(Ux)1:i−1Y 1:N
j

((ux)i +1|v1:N(ux)
1:i−1y1:N

j )
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≥ P(Ux)i|V 1:N(Ux)1:i−1Y 1:N
j

((ux)i|v1:N(ux)
1:i−1

y1:N
j )

holds for (v1:N ,u1:N
x ,y1:N

j ) of block b}.

When there is only a single block, the error event of bit-channel i for receiver j = 1 in the third

layer will be as follows:

E x
i j = {(w1:N ,v1:N ,x1:N ,y1:N

j ) :

P(Ux)i|V 1:N(Ux)1:i−1Y 1:N
j

((ux)i +1|v1:N(ux)
1:i−1y1:N

j )

≥ P(Ux)i|V 1:N(Ux)1:i−1Y 1:N
j

((ux)i|v1:N(ux)
1:i−1

y1:N
j )}.

We define E wb
j = ∪i∈Iw

j ∪LW E wb
i j for j = 1,2,3, E vb

j = ∪i∈Iv
j∪LV |W E vb

i j for j = 1,3 and E xb
j =

∪i∈Ix
j∪LX |V E xb

i j for j = 1.

We define E w
j = ∪i∈Iw

j ∪LW E w
i j for j = 1,2,3, E v

j = ∪i∈Iv
j∪LV |W E v

i j for j = 1,3 and E x
j =

∪i∈Ix
j∪LX |V E x

i j for j = 1.

We define E b
1 = E wb

1 ∪E vb
1 ∪E xb

1 , E b
2 = E wb

2 and E b
3 = E wb

3 ∪E vb
3 for each block b.

We define E1s = E w
1 ∪E v

1 ∪E x
1 , E2s = E w

2 and E3s = E w
3 ∪E v

3 for each block b.

We define E j = ∪k
b=1E

b
j , which will be error event for receiver- j, where j = 1,2,3.

Therefore the overall error event E = ∪3
j=1E j. By union bound, we the following identity:

P(E |C)≤ ∑
3
j=1 ∑

k
b=1P(E b

j |C) .

By taking expectation on both the sides and also by applying linearity of expectation, we get

EC[P(E |C)]≤
3

∑
j=1

k

∑
b=1

EC[P(E b
j |C)]. (5.16)

Let Q((Uw)1:N(Uv)1:N(Ux)1:N) be the measure on ((Uw)
1:N(Uv)

1:N(Ux)
1:N) as follows:

Q((Uw)1:N(Uv)1:N(Ux)1:N (u1:N
w ,u1:N

v ,u1:N
x )

= Q(Uw)1:N (u1:N
w )Q(Uv)1:N |W 1:N=w1:N (u1:N

w )Q(Ux)1:N |V 1:N=v1:N (u1:N
v )

=
(
2−|HW |Πi∈LW δ w

i ((uw)i|(uw)
1:i−1)Πi∈RwP(Uw)i|(Uw)1:i−1((uw)i|(uw)

1:i−1)
)
·
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(
2−|HV |W |

Πi∈LV |W δ v
i ((uv)i|w1:N(uv)

1:i−1)

Πi∈RvP(Uv)i|W 1:N(Uv)1:i−1((uv)i|w1:N(uv)
1:i−1)

)
·(

2−|HX |V |Πi∈LX |V δ x
i ((ux)i|v1:N(ux)

1:i−1)

Πi∈RxP(Ux)i|V 1:N(Ux)1:i−1((ux)i|v1:N(ux)
1:i−1)

)
.

Note that P(Uw)1:N(Uv)1:N(Ux)1:N is the measure induced when (W 1:N ,V 1:N ,X1:N) is i.i.d. according

to the distribution p(w)p(v|w)p(x|v).

From Lemma 11, we have

||P(Uw)1:N(Uv)1:N(Ux)1:N −Q(Uw)1:N(Uv)1:N(Ux)1:N ||= O(2−Nβ ′
), where β ′ < β .

P(E b
j |C)

= ∑((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N
j )s of all blocks [k])∈E b

j

P(∩b̃∈[k](U
1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x ,Y 1:N
j = y1:N

j of block b̃)|C).

From the definitions of E b
j and E js, we get

P(E b
j |C)

= ∑(((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N
j ) of block b)∈E js

∑(((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N
j )s of blocks [k]−{b})

P(∩b̃∈[k](U
1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x ,Y 1:N
j = y1:N

j of block b̃)|C).

By marginalizing over

(U1:N
w ,U1:N

v ,U1:N
x ,Y 1:N

j )s of blocks [k]−{b}, we now get

P(E b
j |C) = ∑(((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N

j ) of block b)∈E js

P((U1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x ,Y 1:N
j = y1:N

j of block b)|C).

By chain rule of condition probability and also by the fact that

P(Y 1:N
j = y1:N

j of block b|X1:N = x1:N of block b, C) = ΠN
i=1 p(y ji|xi),

we will have the following:

P(E b
j |C) = ∑(((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N

j ) of block b)∈E js

P((U1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x of block b|C)ΠN
i=1 p(y ji|xi).

In the term ΠN
i=1 pl(y ji|xi) here, notice that x1:N vector is corresponding to block b, which means

it is obtained by applying polar transform to (ux)
1:N vector corresponding to block b and also
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y1:N
j vector is corresponding to block b.

By taking expectation on both the sides and by the linearity of expectation, we get the following:

EC[P(E b
j |C)]

= ∑((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N
j ) of block b) ∈E js

EC[P(U1:N
w = u1:N

w ,U1:N
v = u1:N

v ,U1:N
x = u1:N

x of block b|C)]ΠN
i=1 p(y ji|xi)

(a)
= ∑((uw)1:N ,(uv)1:N ,(ux)1:N ,y1:N

j ) of block b) ∈E js

Q(Uw)1:N(Uv)1:N(Ux)1:N (u1:N
w u1:N

v u1:N
x )ΠN

i=1 p(y ji|xi)

= Q(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
j

(E js)

≤ ||P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
j

−Q(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
j

||

+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
j

(E js)

(b)
= ||P(Uw)1:N(Uv)1:N(Ux)1:N −Q(Uw)1:N(Uv)1:N(Ux)1:N ||+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N

j
(E js)

= O(2−Nβ ′
)+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N

j
(E js).

Identity (a) follows from part 1. Identity (b) follows from Lemma 4.

For receiver-1, that is j = 1, we get

EC[P(E b
1 )|C] = O(2−Nβ ′

)+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
1

(E1s)

(a)
≤ O(2−Nβ ′

)+P(Uw)1:N(Uv)1:N(Ux)1:N (E w
1 )+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N

1
(E v

1 )

+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
1

(E x
1 )

(b)
≤ O(2−Nβ ′

)+∑i∈LW∪Iw
1

P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
1

(E w
i1 )

+∑i∈LV |W∪Iv
1

P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
1

(E v
i1)

+∑i∈LX |V∪Ix
1

P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
1

(E x
i1)

≤ O(2−Nβ ′
)+∑i∈LW∪Iw

1
Z((Uw)i|(Uw)

1:i−1Y 1:N
1 )

+∑i∈LV |W∪Iv
1

Z((Uv)i|W 1:N(Uv)
1:i−1Y 1:N

1 )

+∑i∈LX |V∪Ix
1

Z((Ux)i|V 1:N(Ux)
1:i−1Y 1:N

1 )

≤ O(2−Nβ ′
)+N2−Nβ

+N2−Nβ

+N2−Nβ

≤ O(2−Nβ ′
).

Identity (a) follows from the definition of E1s and union bound. Identity (b) follows from the
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definition of E w
1 , E v

1 , E x
1 and union bound.

For receiver-2, that is j = 2, we get

EC[P(E b
2 )|C] = O(2−Nβ ′

)+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
2

(E2s)

(a)
≤ O(2−Nβ ′

)+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
2

(E w
2 )

(b)
≤ O(2−Nβ ′

)+∑i∈LW∪Iw
2

P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
2

(E w
i2 )

≤ O(2−Nβ ′
)+∑i∈LW∪Iw

2
Z((Uw)i|(Uw)

1:i−1Y 1:N
2 )

≤ O(2−Nβ ′
)+N2−Nβ

= O(2−Nβ ′
).

Identity (a) follows from the definition of E2s. Identity (b) follows from the definition of E w
2 and

union bound.

For receiver-3, that is j = 3, we get

EC[P(E b
3 )|C] = O(2−Nβ ′

)+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
3

(E3s)

(a)
≤ O(2−Nβ ′

)+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
3

(E w
3 )

+P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
3

(E v
3 )

(b)
≤ O(2−Nβ ′

)+∑i∈LW∪Iw
3

P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
3

(E w
i3 )

+∑i∈LV |W∪Iv
3

P(Uw)1:N(Uv)1:N(Ux)1:NY 1:N
3

(E v
i3)

≤ O(2−Nβ ′
)+∑i∈LW∪Iw

3
Z((Uw)i|(Uw)

1:i−1Y 1:N
3 )

+∑i∈LV |W∪Iv
3

Z((Uv)i|W 1:N(Uv)
1:i−1Y 1:N

3 )

≤ O(2−Nβ ′
)+N2−Nβ

+N2−Nβ

≤ O(2−Nβ ′
).

Identity (a) follows from the definition of E3s and union bound. Identity (b) follows from the

definition of E w
3 , E v

3 and union bound.

From equation (5.16), the overall average probability of error will become O(k2−Nβ ′
). This

concludes the proof of part 2. Hence the proof of Theorem 6.

Both encoding and decoding complexities will become O(N logN) per block [24].

We have given the code-construction for the case where |X |= |V |= |W |= 2. If any of
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these alphabets have arbitrary sizes, we can adapt multi-level polar code construction technique.

Let |X |= Πm
j=1 p j |V |= Πl

j=1q j |W |= Πk
j=1r j where {r j}, {q j} and {p j} are prime factors of

W , V and X , respectively. Then random variables W,V and X can be represented by random

vectors (W1, . . . ,Wk), (V1, . . . ,Vl) and (X1, . . . ,Xm) where Wj, Vj and X j are supported over the set

{0,1, . . . ,r j −1}, {0,1, . . .q j −1} and {0,1, . . . p j −1}, respectively. By chain-rule of entropy,

we get H(W,V,X) = Σk
j=1H(Wj|W 1: j−1)+Σl

j=1H(Vj|WV 1: j−1)+Σm
j=1H(X j|WV X1: j−1). We

can use the polarization for prime alphabets for each term in the above identity and derive a polar

code construction technique with an appropriate successive cancellation decoder [47], [46] for

larger alphabets. The key ideas in the analysis of the probability of error we provided for the

binary case still apply to the coding method for larger alphabets and can be extended.

5.3.5 Extension: receiver-1 requires only M1

For a (2NR0,2NR1,N) code of a setting with degraded message sets, the converse proof

of the capacity region just uses the fact that H(M1|Y 1:N
1 ), H(M0|Y 1:N

2 ) and H(M0|Y 1:N
3 ) are

o(N) [38]. We do not have to use the stronger fact that H(M1,M0|Y 1:N
1 ) is o(N) to complete

the converse proof. This means that the same proof becomes the converse proof of the capacity

region for the problem when receiver-1 is relaxed to recover only M1. Hence, the capacity region

does not enlarge and remains the same. So the same polar coding method can be used to achieve

all rate pairs inside the capacity region.

5.4 Conclusion

We considered the problem of achieving the rates in the capacity region of a discrete

memoryless multi-level 3-receiver broadcast channel with degraded message sets through polar

coding. The problem is to transmit a public message to all the receivers and a private message

intended for receiver-1. Our motivation for this problem is due to a file transfer application

in a client-server network that has three clients, where this setting can be applied. We give a

new two-level chaining construction to achieve all the points in the capacity region without
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time-sharing. We also gave a detailed analysis of the probability of decoding error for constructed

coding scheme. We showed that the capacity of the broadcast channel does not enlarge, even

when receiver-1 is required to recover only its private message. Hence, we can use the same

polar coding strategy to achieve the capacity under this setting.
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[48] E. Şaşoğlu and L. Wang, “Universal polarization,” IEEE Trans. Inf. Theory, vol. 62, no. 6,
pp. 2937-2946, June 2016.

[49] C. E. Shannon, “A mathematical theory of communication, Part I, Part II," Bell Syst. Tech.
J., vol. 27, pp. 379–423, 1948.

[50] I. Tal and A. Vardy, “How to Construct Polar Codes,” IEEE Trans. Inf. Theory, vol. 62, no.
10, pp. 6562-6582, Oct 2013.

[51] T. Tanaka and R. Mori, “Refined rate of channel polarization,”Proc. IEEE Int. Symp. Inf.
Theory, 2010, pp. 889-893.

[52] V. Taranalli, H. Uchikawa and P. H. Siegel, “On the capacity of the beta-binomial channel
model for multi-level cell flash memories,” Proc. IEEE J. Select. Areas Commun. vol. 34,
no. 9, pp. 2312–2324, Sep. 2016.

[53] L. Wang, “Polar coding for relay channels,”Proc. IEEE Int. Symp. Inf. Theory, 2015, pp.
1532-1536.

[54] L. Wang, “Polar coding for interference networks,”Proc. IEEE Int. Symp. Inf. Theory,
2014, pp. 311-315.

157



[55] L. Wang and Y. Kim, “Linear code duality between channel coding and Slepian-Wolf cod-
ing,” Proc. 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), Monticello, IL, 2015, pp. 147-152.

158


	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Polar codes
	Polarization
	Dissertation overview

	Universal Asymmetric Channel Polar Coding without Common Randomness
	Introduction
	Preliminaries
	Integrated polar coding for binary-input asymmetric channels
	Code construction

	Universal scheme for asymmetric channels without common randomness
	Code construction
	Existence of universal code with high probability
	Application to single asymmetric channel
	Continuous encoding and decoding for staircase scheme

	Hybridized staircase scheme 
	Idea of universal method based on bit-channel combining
	Code construction for hybridized staircase scheme
	Probability of decoding error analysis for hybridized staircase scheme
	Algorithm to produce hybrid polar block, to be used in the staircase scheme

	 Universal scheme via combining bit-channels
	Combining two independent polar blocks to align good bit-channels of the two DMCs in S
	Code construction

	Conclusion
	Appendix

	Polar Shaping Codes for Costly Noiseless and Noisy Channels
	Introduction
	Preliminaries
	Polar shaping code
	Code construction
	Application to costly channel

	Shaping for DMCs
	Upper bound on rate under a constraint on symbol occurrence distribution
	Lower bound on optimal total cost for costly noisy channel
	Polar shaping codes for DMCs 

	Conclusion

	Slepian-Wolf Polar Coding with Unknown Correlation
	Introduction
	Background
	Problem definition
	Contribution

	Preliminaries
	Source coding with side-information (Slepian-Wolf polar coding)
	Staircase scheme
	Code construction
	Coding with non-uniform source
	Encoding and decoding complexity
	Pros and cons

	Scheme based on combining bit-channels
	Conclusion

	Polar Coding for Multi-level 3-Receiver Broadcast Channels
	Introduction
	Background
	Motivation with a client-server model
	Coding problem of DM (discrete memoryless) multi-level broadcast channel with degraded message sets
	Contribution
	Organization

	Preliminaries
	Polar coding for the DM multi-level 3-receiver broadcast channel
	Typical set coding
	Rate splitting of the private message for polar coding
	Code construction
	Probability of error analysis
	Extension: receiver-1 requires only M1

	Conclusion

	Bibliography



