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Abstract

Neural networks have been used to investigate some
of the assumptions made in Biederman’s recognition
by components (RBC) theory of visual perception.
Biederman’s RBC theory states, in part, that object
vertices are critical features for the 2D region
segmentation phase of human object recognition.
This paper presents computational evidence for
Biederman’s claim that viewpoint-invariant vertices
are critical to object recognition. In particular, we
present a neural network model for 2D object
recognition using object vertices as image primitives.
The neural net is able to recognize objects with as
much as 65% mid-segment centered contour deletion,
while it is unable to recognize objects with as little as
25% vertex centered deletion. In addition the neural
net exhibits shift, scale and partial rotational
invariance.

Introduction

Within the computer vision, cognitive science,
psychology, and neurophysiology communities there
is much debate over what visual primitives, if any,
form the basis for visual reasoning. One important
theory of visual object recognition, called recognition
by components (RBC), has been proposed by
Biederman [1985]. Some important principles
underlying this theory include: (1) a 2D line drawing
is sufficient for most unanticipated visual processing
independent of depth, color or texture; (2) line
drawings can be segmented into distinct regions at
points of deep concavity; (3) objects can be
represented in 3D as a set of primitive 3D subparts
(geons); (4) non-accidental instances of viewpoint-
invariant features in the 2D line drawing are
sufficient to permit fast access to the qualitative
geon-based model of a 3D object.

Biederman's RBC theory is compelling for many
reasons, such as the fact that it proposes a small
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number of 3D primitives, geons, to account for all
possible objects!. This implies that the required
object memory grows sub-linearly with new objects,
ensuring a manageable total memory for object
recognition, even given the huge variety of objects in
the world.

Many researchers are currently investigating the
psychological/neurophsiological plausibility of RBC,
as well as whether RBC can lead to powerful and
efficient computer vision systems. The plausibility of
RBC rests on many factors, such as fast qualitative
segmentation of 2D images into regions, well-defined
mappings of 2D regions to geons, the representational
power of the set of 36 geons for 3D object
recognition, etc. Biederman has performed extensive
psychological studies of the adequacy, robustness to
noise and occlusion, etc. of 2D line drawings for
visual recognition. For example, he tested the
adequacy of 2D vertices to carry the information
necessary for region segmentation by contour
deletion experiments [Biederman, 1985].

From a computational point of view, although
Biederman’s RBC theory has been very influential,
implementations of this theory within the computer
science/computer vision community (e.g.
[Biederman, 1992; Bergevin, 1993; Dickinson,
1992]) have not yet tested all important aspects of
RBC. In this paper, neural networks are used to
replicate some of the experimental results reported by
Biederman concerning the adequacy and viewpoint-
invariance of vertex information for recognizing
objects in 2D line drawings [Biederman, 1985].

Edge vertices play a crucial role in RBC: they
contain the information necessary to segment line
drawings into distinct regions, to each of which a
geon can be matched. There exists substantial
evidence that vertices constitute a 2D primitive
crucial to identifying the 3D primitives (geons) for a

1 This geon representation is qualitative only, since it
ignores surface texture and other fine metric
variations.
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particular image. Figure 1 demonstrates the
importance of edge vertices for object recognition.
This figure shows a line drawing of a flashlight which
cannot be recognized given partial evidence from
edge mid-segments (top), but can be recognized
given partial evidence from edge vertices (bottom).

Figure 1. Non recoverable version of an object (top).
Recoverable version of an object (bottom).
[Biederman, 1985]

From a computational perspective, this paper
presents a neural net model which exhibits results
similar to Biederman’s [1985] experimental
demonstration of the importance of object vertices in
human 2D object recognition. The neural network
architecture presented in this paper is a time-delay,
recurrent network, which recognizes simple objects,
many of which were originally studied by Biederman
[1985; 1987]. The network is able to recognize
objects with as much as 65% mid-segment centered
contour deletion, while it is unable to recognize
objects with more than 25% vertex centered contour
deletion. In addition, recognition exhibits invariance
to position, scale, and partially to rotation.

Experimental Design

2D object recognition systems utilizing neural
networks generally operate on static images (images
presented as a spatial signal). It has been proposed
that object recognition may benefit from considering
images as spatiotemporal signals [Shastri, 1989]. In
this scheme, row i of an NxN image is assimilated by
the network at time i (1 <i <N). Recurrent links, as
well as multiple links with varying delays between
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units, are employed to process the temporalized
signal. In the networks presented here, three links
between units in subsequent layers, with delays of
either 1-2-3 or 1-3-5 are utilized. These delays are
referred to as the time-delay window. Previous work
has shown that the spatiotemporal approach offers
advantages such as shift-invariance and inherent
retention of local spatial relationships along the
temporalized axis [Fontaine, 1992].

Three network models are constructed using
spatiotemporal presentation of images in an attempt
to develop a network that emphasizes object vertices.
The first is a 3-layer fully connected, recurrent net,
the second, a 3-layer, partially connected, recurrent
net, and the third a 4-layer recurrent net (Figure 2a-c,
respectively). Each net contains recurrent links on all
hidden and output units, as well as a threshold unit
connected to each hidden and output units. The
traditional 3-layer nets are trained and tested with
both 1-3-5 and 1-2-3 time-delay windows. The 4-
layer net uses a 1-2-3 time delay window.

All networks are trained on 100 positive and 100
negative training instances of 30x30 binary images
(Figure 3a). For convenience, images are shown
here as simple line drawings. The positive training
instances consisted of shifted (up to 5 bits or 18% of
image size, from the center position) images with
either 0, 5, 10, or 15% random contour deletion
(Figure 3b-3e). The nets are trained on these
perturbed images in order to reduce the chance that
the network simply memorize the original image.
The negative training instances consists of random bit
patterns having the same number of on-bits as the
original image (Figure 3f). Training is performed
using the Broyden-Fletcher-Goldfrab-Shanno second
order learning algorithm [Fletcher, 1980].

Figure 2. (a) 3-layer fully connected net; (b) 3-layer
partially connected net; (c) 4-layer net. All hidden
and output units have a recurrent link and a link to a
threshold unit (not shown).
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Figure 3. (a) Binary representation of a chair; (b) 0%
contour deletion; (c) 5% contour deletion; (d) 10%
contour deletion; (e) 15% contour deletion; (f)
random bit pattern. Nets are trained on 100 instances
of (b-¢) and 100 instances (f).

Results

Preliminary experiments indicate that vertical lines
are the primary discriminating object feature in the
training sets for the traditional 3-layer partially and
fully connected nets (Figure 2a and 2b) with either a
1-3-5 or 1-2-3 time-delay window. That is, the
network is able to correctly identify objects with
complete non-vertical line deletion, while the
network is unable to correctly identify objects having
high degrees of vertical line deletion (Figure 4).
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Figure 4. (a) Original image: truck; (b) truck with
complete non-vertical line deletion; (c) truck with
high degree of vertical line deletion. The fully and
partially connected networks are able to correctly
identify (a) and (b) but not (c).

Further experiments reveal that vertices are the
primary discriminating object feature in the training
sets for the 4-layer net (Figure 2c). The experiments
consist of training five networks to recognize 1 of 5
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objects: chair, cup, lamp, house, and teddy bear
(Figure 5). The first three objects (chair, cup, and
lamp) are selected for their similarity to images used
in Biederman’s human experiments. The house is
selected because of its increased detail and the teddy
bear is selected for its lack of straight edges.
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Figure 5. Five networks were trained to recognize

one of five objects: (a) chair; (b) cup; (c) lamp; (d)

house; (e) teddy bear.

The nets are then presented with corresponding
images having either 25, 45, or 65% contour deletion
centered either at the mid-segment or vertices (Figure
6). Similar to those results obtained by Biederman
with human subjects, the networks are better able to
recognize objects having mid-segment as opposed to
vertex centered contour deletions (Table I). It is clear
from these results that object vertices are critical to
object recognition in the 4-layer recurrent network.
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Figure 6. Chair with vertex and mid-segment contour
deletion. (a-¢) 25%, 45%, 65% vertex; (d-f) 25%,
45%, 65% mid-segment.



Table I. Recognition patterns of objects having mid-
segment and vertex centered contour deletions.

Contour Locus of Contour Deletion

Object!  Deletion Mid-segment?  Vertex?
Chair 25% 2.645 2670
(3.006) 45% 2.585 25.112
65% 2.679 64.363
Cup 25% 7.818 93.224
(3.348) 45% 11.347 92.864
65% 10.476 94.560
Lamp 25% 1.725 1.889
(1.992) 45% 2.484 98.090
65% 5.878 75.675
House 25% 4.003 4979
(2.501) 45% 5.854 10.253
65% 5.636 32.325
Teddy Bear® 25% 3.164 3.508
(2.909) 45% 3.937 10.531
65% 7.316 11.866

(1) Object name and score (see footmote 2) of prototypical
image.

(2) The values given are the score = [0.5%; (O; - T; ¥*103),

where O; is the output value, and T, is the target value. The
score is representative of the deviation of the test image
from the prototypical image. Therefore a low value
represents a high degree of match between the prototypical
and test image.

(3) Vertices are considered to be where curved lines
intersect one another.

In order to determine if the trained networks
exhibit position, scale and rotationally invariant
characteristics, the network trained to recognize a
chair is further tested. Scaled, shifted, and rotated
chairs are presented to the net. The net is able to
successfully identify all such objects as well as
distinguish the chair from other objects (e.g. cup,
lamp, truck, house, and random patterns) (Table II).

Related Work

This work complements three other systems designed
to evaluate the computational feasibility of RBC
[Biederman, 1992; Bergevin, 1993; Dickinson, 1992].
The PARVO system [Bergevin, 1993] takes noise-
free line drawings and extracts geons from segmented
regions to do object recognition. OPTICA
[Dickinson, 1992] focuses on the segmentation of
regions from noise-free line drawings, but does not
perform full recognition. The system by Biederman,
et. al. [1992] extracts geons from line drawings, but,
similar to [Dickinson, 1992]) does not recognize
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Table II. Results of shifting, scaling, and rotation on
recognition of a chair.

Object Scorel
chair 3.006
shift left 3,132
shift up 1.764
shift down/right 6.869
shift up/left 3.233
scale 50%2 6313
scale 80% 6.383
scale 120% 2.073
rotate 15°3 2813
cup 96.818
lamp 87.590
truck 102.660
house 102.374
random lines? 78.573
random vertices’ 89.003

(1) Score as computed in Table I. Low value represents
high degree of maich between prototypical and test image.
(2) The net is not able to correctly classify images scaled
less than 20%.

(3) The net is not able to correctly classify images with
more than 45° rotation.

(4) Randomly drawn horizontal and vertical lines with no
vertices.

(5) Randomly drawn vertices. Each vertex was a 3 bit
vertical segment connected to a 3 bit horizontal segment.

objects. Biederman’s system is most similar to ours,
in that it uses a neural network architecture; it differs
by not explicitly identifying viewpoint-invariant
features: analysis of the neural network’s hidden
layers is required to make such features explicit. In
contrast to these systems, our system is able to
explicitly identify a viewpoint-invariant image
feature (vertices), and correctly identify objects in
noisy (contour deleted) images.

This work bears some similarities to recent
research in object recognition using neural networks.
Spirkovska and Reid [1992] use networks for object
recognition which display position, scale and rotation
invariance, The major difference is that they hand-
code the invariants into the network, whereas the
work presented here attempts to “leam” the invariants
necessary for recognition, and does not assume them
a priori. Soucek [1992] presents some other
examples of neural-net-based object recognition
systems which are also scale and translation
invariant. In addition, the use of neural networks for
scale and translation invariant pattern recognition,



such as handwriting recognition, is widespread (e.g.
[Fontaine, 1992; Fukushima, 1983)).

Discussion

We have described a neural net analysis of one aspect
of Biederman’s RBC theory, the strong dependence
of the object recognition process on the use of
vertices and weaker dependence on edge mid-
sections as region segmentation cues. These
experiments provide experimental confirmation of
Biederman’s claims of the viewpoint-invariance of
vertices in 2D line drawings being critical to object
recognition. Further work is needed to prove that
RBC is a computationally feasible explanation for the
human visual system. Here, it is simply shown that
line junctions are an important invariant property of
2D line drawings, since recognition fails for more
than 25% vertex deletion.

From the perspective of 2D object recognition,
vertices act as an image primitive in the network
presented here. Thus, object recognition exhibits
scale, shift, and partial rotational invariance.
Achieving rotational invariance has proven to be a
hard problem in the area of 2D and 3D object
recognition, so it is not surprising that the neural net
presented here does not exhibit complete invariance
to rotation.

Future Work

We intend to extend this work in order to achieve
higher degrees of rotational invariance for 2D and
3D object recognition. One approach currently being
considered is the determination to what extent
vertices may yield invariant cues for achieving
invariance under perspective transformation. Our
future work includes studying how neural networks
can be used to “learn” invariant properties other than
object vertices and geometric properties known
analytically (e.g. conics, sets of line and points, etc.)
[Forsyth, 1991]. This extension is concerned with the
fact that few examples of geometric invariant are
currently known [Forsyth, 1991]. Since such image
properties are clearly crucial to any efficient wide-
ranging recognition system, the library of invariant
features needs to be extended.
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