
Lawrence Berkeley National Laboratory
LBL Publications

Title

Studies of Conformal Behavior in Strongly Interacting Quantum Field Theories

Permalink

https://escholarship.org/uc/item/16f265x8

Author

Gasbarro, Andrew

Publication Date

2023-12-12
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/16f265x8
https://escholarship.org
http://www.cdlib.org/


Abstract

Studies of Conformal Behavior 
in Strongly Interacting Quantum Field Theories

Andrew David Gasbarro 

2018

In this dissertation, we present work towards characterizing various conformal and nearly 

conformal quantum field theories nonperturbatively using a combination of numerical and 

analytical techniques. A key area of interest is the conformal window of four dimensional 

gauge theories with Dirac fermions and its potential applicability to beyond the standard 

model physics.

In the first chapter, we review some of the history of models of composite Higgs scenarios 

in order to motivate the study of gauge theories near the conformal window. In the second 

chapter we review lattice studies of a specific theory, SU(3) gauge theory with eight flavors of 

Dirac fermions in the fundamental representation of the gauge group. We place a particular 

emphasis on the light flavor-singlet scalar state appearing in the spectrum of this model and 

its possible role as a composite Higgs boson. We advocate an approach to characterizing 

nearly conformal gauge theories in which lattice calculations are used to identify the best low 

energy effective field theory (EFT) description of such nearly conformal gauge theories, and 

the lattice and EFT are then used as complementary tools to classify the generic features of 

the low energy physics in these theories. We present new results for maximal isospin nn —> 

7T7T scattering on the lattice computed using Liischer’s finite volume method. This scattering 

study is intended to provide further data for constraining the possible EFT descriptions of 

nearly conformal gauge theory. In Chapter 3, we review the historical development of 

chiral effective theory from current algebra methods up through the chiral Lagrangian and 

modern effective field theory techniques. We present a new EFT framework based on the 

linear sigma model for describing the low lying states of nearly conformal gauge theories. 

We place a particular emphasis on the chiral breaking potential and the power counting of 

the spurion field.



In Chapter 4, we report on a new formulation of lattice quantum field theory suited 

for studying conformal field theories (CFTs) nonperturbatively in radial quantization. We 

demonstrate that this method is not only applicable to CFTs, but more generally to for­

mulating a lattice regularization for quantum field theory on an arbitrary smooth Riemann 

manifold. The general procedure, which we refer to as quantum finite elements (QFE), is 

reviewed for scalar fields. Chapter 5 details explicit examples of numerical studies of lattice 

quantum field theories on curved Riemann manifolds using the QFE method. We discuss 

the spectral properties of the finite element Laplacian on the 2-sphere. Then we present 

a study of interacting scalar field theory on the 2-sphere and show tha t at criticality it 

is in close agreement with the exact c =  1/2 minimal Ising CFT to high precision. We 

also investigate interacting scalar field theory on R x S2, and we report significant progress 

towards studying the 3D Ising conformal fixed point in radial quantization with the QFE 

method. In the near future, we hope for the QFE method to be used to characterize the 

four dimensional conformal fixed points considered in the first half of this dissertation.
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Chapter 1

Background and M otivation

The standard model has been confirmed in nearly all facets by high energy and precision 

experiments over the last several decades. It consists of two seemingly disparate sectors: 

the strong nuclear sector and the electroweak sector. The discovery of a light Higgs boson 

at the LHC in 2012 [1,2] raises questions about the completeness of the standard model 

electroweak sector, which as it stands appears fine tuned. The characteristic scale of the 

electroweak sector, Ae w  ~  246 GeV, enters by tuning the quadratic term in the Higgs 

potential, which is the only relevant operator in the standard model. On the other hand, 

the strong nuclear sector is asymptotically complete in the UV, and the characteristic scale 

of the strong interactions, Aq c d  ~  300 MeV, arises naturally in the infrared from the strong 

dynamics.

This work is motivated by the possibility tha t the electroweak sector may also reveal 

itself to be an asymptotically free gauge theory whose low energy scales are born out of 

the dynamics of underlying strong dynamics in a natural way. This premise is not new. 

In 1979, Weinberg [3] and Susskind [4] introduced the idea that new Yang-Mills gauge 

dynamics may be responsible for driving electroweak symmetry breaking, now known as 

technicolor. The technicolor gauge dynamics were originally assumed to be QCD-like, but 

precision electroweak experiments seem to disfavor QCD-like gauge dynamics for dynamical 

electroweak symmetry breaking (DEWSB). Furthermore, because QCD does not produce a 

light scalar in its spectrum, these theories do not yield a viable light Higgs candidate. How­

ever, recent lattice studies of Yang Mills gauge theories with different quark contents have
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shown novel infrared behavior around the conformal window. The novel gauge dynamics 

may be capable of ameliorating many of the problems of QCD-like technicolor. DEWSB 

with nearly conformal gauge dynamics stands as a serious candidate to address the Higgs 

hierarchy problem and to guide experimental searches for beyond standard model physics.

1.1 Lessons from QCD

To set the storyline for how the electroweak sector may be UV completed by new strong 

dynamics, let us briefly review the history of the development of the strong nuclear sector. 

Attempts were made to model the strong interaction between protons and neutrons as early 

as 1935. At the time a major goal was to understand how the protons and neutrons were 

bound in the atomic nucleus. Yukawa [5] put forward a theory of an SU(2) doublet of 

nucleons ifj tha t interact via the Yukawa interaction, i with a force mediated by an 

SU(2) triplet of 7r mesons. The Yukawa theory consists of fundamental scalars, and when 

viewed as an effective field theory it faces similar fine tuning problems to the Higgs sector 

in the Standard Model.

Before notions of effective field theory and fine tuning were considered, other mesons 

and baryons were discovered which suggested a more fundamental description of the strong 

nuclear sector than Yukawa’s theory. The hadrons in the “particle zoo” were categorized 

using group theoretic methods by Gell-Mann which led to the notion of quarks and quark 

flavor in the eightfold way [6]. The Pauli exclusion principle for quarks inside the hadrons 

suggested that there should be some additional quantum number besides spin and isospin. 

Han, Nambu, and Greenberg [7,8] posited that quarks possess an additional SU(3) gauge 

degree of freedom -  the last major missing ingredient of what is now known as QCD. Thusly, 

the low energy theory written down by Yukawa was replaced by a more fundamental de­

scription without any fine tuning problems whose low energy scales emerge from strong 

dynamics. Gross, Wilczek, and Politzer [9, 10] demonstrated that QCD was asymptoti­

cally free. This allowed high energy scattering to be studied in perturbation theory, which 

provided many of the initial confirmations of QCD. Furthermore, asymptotic freedom al­

lows one to remove the cutoff from QCD using perturbation theory such tha t the theory is
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ultraviolet complete, or valid up to arbitrarily high energy scales.

In perturbative QCD, one can also show by computing the two loop beta function that 

the theory becomes strongly coupled in the infrared at a scale, A q c d -, the perturbative 

confinement scale. This low energy scale is generated in a natural way and is not due to 

any dynamics beyond QCD itself. Wilson provided evidence of quark confinement using the 

nonperturbative lattice regulator and the strong coupling expansion [11], and lattice Monte 

Carlo computations pioneered by Creutz [12-14] have explored the QCD spectrum in great 

detail.

1.2 Technicolor and Its Shortcomings

The standard model electroweak sector is analogous to Yukawa’s description of the strong 

nuclear sector in 1935. Assuming tha t beyond the standard model physics exists, the 

standard model electroweak sector is a fine tuned low energy effective description of yet 

undiscovered high energy dynamics. Seeking to mimic the success of QCD, Weinberg and 

Susskind [3,4] suggested tha t the standard model electroweak sector may be UV completed 

by a new strongly interacting gauge sector built on an asymptotically free Yang-Mills theory.

In technicolor, a new set of quarks -  the techniquarks -  have an SUjr/(Y j) x SVR(Nf ) 

flavor symmetry which is broken down to SUy(7V/?) by the chiral condensate (qq). One or 

more SXJi:l { 2) x SU/;i?(2) “isospin” subgroups of the techniquark flavor group are gauged 

under electroweak symmetry, SUl(2) x  U (l), which also breaks when the techniquark con­

densate is formed. An isotriplet of massless 0_ states forms when the isospin symmetry is 

spontaneously broken, which are the Nambu-Goldstone bosons of the spontaneously broken 

SU/;l(2 ) x SU/;i?(2) —>• SUj,y(2) flavor subgroup. These are the states which are responsible 

for giving mass to the weak gauge bosons in the Higgs mechanism.

Let us review some of the issues tha t arise when trying to construct a model of dynamical 

electroweak symmetry breaking in the standard technicolor picture. In the section that 

follows, we will explain how some of these issues may be mitigated by nearly conformal gauge 

dynamics which motivates further study of theories near the conformal window. The first is 

the problem of how a light Higgs boson (Mniggs/&e w  ~  1/2) arises from a strong technicolor
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gauge sector. During most of the development of technicolor theories the Higgs mass was 

not known, and so this is a more recent phenomenological consideration for technicolor-like 

models. In one scenario, the Higgs arises as the lightest composite state with 0++ quantum 

numbers. In QCD, the lightest 0++ state, known as the /o(500) or simply the <7, has a mass 

of roughly 500MeV, whereas the pion decay constant -  which can be used as a characteristic 

scale for the chiral symmetry breaking -  is roughly Fw «  90MeV. The characteristic scale of 

the electroweak symmetry breaking is 246 GeV; therefore a simple rescaling of QCD will not 

produce a light enough Higgs candidate. In a different composite Higgs scenario, the Higgs 

is taken to be a PNGB of the spontaneously broken chiral symmetry in order to explain 

its light mass [15]. We will not discuss the composite PNGB Higgs scenario in this work, 

but we remark tha t it is an active area of investigation by members of the lattice BSM 

community (c.f. [16]). In Chapter 2, we will discuss the appearance of light 0++ states in 

lattice studies of nearly conformal gauge theories and their possible realization as a light 

Higgs candidate.

A second issue arises when one attem pts to incorporate fermion mass generation into 

a technicolor scenario. While we will not address fermion mass generation in this work, in 

principle this must be accommodated for in any UV completion of the electroweak sector. 

The most common way to incorporate standard model fermion mass generation into the 

technicolor framework is to imagine tha t standard model fermions and techniquarks are both 

charged under a larger gauge group known as the extended technicolor group, G e t c  D G t c - 

At some large scale, A e t c , extended technicolor breaks down to G t c ■ The standard model 

fermions are singlets of the remaining technicolor subgroup, and four Fermi operators are 

generated in the broken theory,

ip ipW  W W  ipipipip M ^
T 2 ’ ~ \2  ’ T 2  G - 1 )
1y e t c  i v e t c  j v e t c

where 4/ denote techniquarks and ip denote standard model fermions. These operators en­

code the effect of the coupling of standard model fermions to techniquarks by ETC gauge

boson exchange. When the techniquarks condense, the first operator above gives mass to the

standard model fermions, and the second operator can give mass to the technipions. How-
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ever, the third operator leads to flavor changing neutral currents. Experimental measure­

ments of kaon mixing as well as other rare processes require A e t c  ^  lOOOTeV [17] for simple 

extended technicolor models, though this picture can be more complicated in theories with 

multiple ETC scales [18,19]. While increasing A e t c  suppresses FCNC, it also suppresses 

the SM fermion mass terms to such a degree tha t if the techniquark condensate is similar 

in magnitude to the condensate in QCD, «  25, where z/ =  2 =  246GeV,

the strange quark mass would be much too light, m s «  0.4MeV [17,20]. However, if non- 

QCD-like dynamics lead to a significant increase in the size of the chiral condensate, then 

physical quark masses may be achievable even with a large extended technicolor scale. We 

will see that nearly conformal dynamics may produce exactly this effect.

In early models of technicolor, it was assumed by analogy with QCD tha t all techniquarks 

were paired to form electroweak doublets. Peskin and Takeuchi devised a set of parameters, 

S T and U, which quantify the vacuum polarization corrections to four fermion scattering 

processes compared to the standard model prediction [21]. They are referred to as “oblique 

corrections” because they only affect the mixing and propagation of gauge bosons and do 

not depend on the fermions in the initial and final states. The S parameter is proportional 

to the derivative of the left-right current correlator and is related to the number of chirally 

gauged fermion species. Using the identity J ^ R = Jy  ±  J% it can be written in terms of 

the vector - vector and axial vector - axial vector current correlators as [21]

5=44 ^ ( n^ 2)- n̂ (92))Uo wq2= 0

For naive technicolor with QCD-like dynamics and all techniquarks carrying electroweak 

charge, the S parameter in technicolor is estimated to have the lower bound

S  >  —  
~  6?r

N cN f
(1.3)

where N f  is the number of techniquark flavors charged under electroweak and SU(7VC) 

is the technicolor gauge group. This coarse estimate is in significant tension with phe­

nomenological constraints [22] for the value of S, which seems to rule out simple techni-
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color models with many electroweak doublets and QCD like dynamics for N t c ^ t f  ^  4. 

Technicolor models with N t c ->Nt f  ^  4 may still be consistent, albeit somewhat disfa­

vored by electroweak precision experiments [20,23]. These estimates rely on two basic 

assumptions about the technicolor sector. First, it is not necessary for all technicolor fla­

vors to form electroweak doublets. If only one pair of flavors is given electroweak charges 

(minimal technicolor), electroweak gauge interactions will break the TC flavor symmetry 

SUL{Nf ) x SUr {Ns ) -> SU/,l (2) x SU/H(2) +  SUF,U N f  ~  2) x s u F ,d N f  ~  2)> but this 

does not cause any problems. It is usually imagined tha t N f  — 2 of the flavors will be lifted 

by explicit mass terms or by four fermi interactions arising from ETC in order to get rid of 

the extra PNGBs. Therefore, there need not be an excessive number of BSM electroweak 

doublets contributing to S. Even small numbers of doublets may be in tension with preci­

sion measurements, but this tension is based on the assumption of QCD-like dynamics and 

the validity of chiral perturbation theory. For non-QCD-like gauge dynamics, this estimate 

may break down.

1.3 Nearly Conformal Gauge Dynamics

Next we discuss how nearly conformal dynamics may decrease the S parameter, increase 

the size of the chiral condensate, and reduce the Higgs mass, thus addressing many of the 

issues of QCD-like technicolor. First, we will briefly review how IR fixed points may form 

in the running of the Yang-Mills coupling. Such theories are said to be inside the conformal 

window. We will then explain how the dynamics of theories inside and near the conformal 

window may mitigate many of the issues in standard technicolor.

1.3.1 Infrared F ixed  P oin ts in Y ang-M ills and th e  C onform al W indow

The perturbative two loop beta function for the gauge coupling in SU(iVc) gauge theory 

with N f  flavors of Dirac fermions in the fundamental representation of the gauge group 

takes the form

V T T d M  = P(g) = -bo93 +  big5 +  0 ( g 7) (1.4)
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where the first two coefficients in the expansion are known to be independent of renormal­

ization scheme.

1 / I I  „  2 „  \  , 1 /3 4  , r2 / 1 3 _  1
M  ~ 3N') ’ b l =( W  ~ { J N‘ - N c) Nf) M

For asymptotic freedom, one must require bo > 0 —!► N f  < 11/2N c. For N f  just below 

this bound, fixed point solutions exist for which the fixed point coupling is perturbative 

and therefore the perturbative analysis is self consistent. These fixed points are known as 

Caswell-Banks-Zaks fixed points [24,25]. The asymptotic freedom boundary N f  =  1 1 / 2 N C 

constitutes the top of the conformal window.

As N f  is decreased further, the fixed point coupling value increases monotonically until 

eventually perturbative control is lost. It is assumed that the fixed point continues to exist 

for N f  below the perturbative region. The fixed point would then be strongly coupled. At 

sufficiently small N f  = N f ,  the coupling runs to a strong enough value to confine before 

reaching any fixed point; the fixed point disappears and the theory is chirally broken in the 

IR. This constitutes the bottom  of the conformal window. For N f  just below Nf ,  the theory 

confines in the infrared, but there is a large range of scales over which the running coupling 

evolves slowly (or walks). A confining gauge theory in this region of parameter space is 

referred to by various equivalent terms: slowly running, walking, or nearly conformal. This 

slowly running coupling can significantly alter the low energy physics as we will discuss 

in Section 1.3.2. An approximate phase diagram for asymptotically free gauge theories 

with N c colors and N f  flavors in various representations of the gauge group was presented 

by Dietrich and Sannino [26] in which the lower boundary of the conformal window is 

computed by estimating the onset of spontaneous chiral symmetry breaking using the ladder 

approximation [27,28]. We will discuss recent studies of conformal window gauge theories 

on the lattice in Section 1.4 and in Chapter 2.

A more physical picture of the conformal window comes from considering the competing 

screening and antiscreening effects of quarks and gluons in the vacuum of Yang-Mills theory. 

In pure Yang-Mills, antiscreening by gluons alone pushes the coupling very rapidly into the 

confined phase. In QCD (only considering the light flavors), N f  = 2 and the story is not
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changed much by the small amount of screening by the quarks; the theory still rapidly 

confines. As N f  increases, the screening effect of the many quark flavors becomes more and 

more prominent until the effect of the quarks and gluons balance. This results in infrared 

conformality.

1.3 .2  D E W S B  w ith  N early  C onform al G auge D ynam ics

W ith an understanding of the conformal window established, let us now consider how con­

formal or near conformal behavior in the gauge theory may provide for a better mechanism 

on which to build a model of DEWSB. As we have discussed, one shortcoming of QCD-like 

dynamics is tha t the generation of fermion masses by extended technicolor will also lead to 

FCNC which exceed experimental bounds from measurements of rare mixing processes. In 

1986, Appelquist et. al. [29] studied the fermion masses arising from extended technicolor 

with a slowly running gauge coupling. They estimated the fermion self energy function E(p) 

by approximately solving the perturbative gap equation. The SM fermion masses are given 

by the equation

m / = | ! m <0|« |o > £TC *  fAETCpdPz(p) (i.6)
l \ ET C  47r IVE T C  J

E(p =  0) will typically take some nonzero value on the order of the confinement scale. For 

large p, E(p) eventually damps very rapidly, but there could be a substantial range over 

which E(p) falls slowly before rapidly damping. It was found tha t a slowly running coupling 

increases the range over which the fermion self energy is slowly falling, and thus enhances 

the techniquark condensate and the resultant SM fermion masses. Numerical estimates 

found that for a cutoff large enough to suppress FCNCs, first and second generation quark 

masses were obtainable from ETC.

We have discussed that even a minimal number of techniquarks charged under elec­

troweak (a single pair of techniquarks forming one doublet), may still be in tension with 

experimental bounds on the S parameter. The standard model contribution is always sub­

tracted off in the definition of the S parameter so that nonzero values of S only come from 

BSM particles in the current-current correlator loops. Say we have an N f  flavor technicolor



theory with 2 flavors gauged in a doublet under electroweak. Clearly the three “pions” 

(NGBs of S U l (2) x S U r (2) —» S U y { 2) subgroup) and the one “<r” tha t form after confine­

ment and chiral symmetry breaking will contribute to current-current correlators at loop 

level, but these are exactly the particles tha t will play the role of the electroweak gauge 

boson longitudinal components and the Higgs boson. They do not contribute BSM signals 

to the S parameter. On the other hand, it is also possible for the techniquarks charged 

under electroweak to form mesons with the electroweak neutral techniquarks. These would 

be kaon-like mesons in the sense tha t they mix techniquark generations. In addition, higher 

spin mesons such as the techni-rho will also form. These mesons will also contribute to the 

current-current correlator loops giving nonzero contributions to S.

In nearly conformal theories, large contributions to the S parameter may be avoidable. 

As we have shown in Eq. 1.2, the S parameter is proportional to the difference of the 

vector and axial vector current correlators. The S parameter will remain small if there 

is a cancellation between the vector-vector and axial-axial current correlators arising from 

a degeneracy or near degeneracy of even and odd parity mesons. In QCD, the splitting 

between the vector meson (p) and the axial vector meson (ai) is a result of chiral symmetry 

breaking. In a chirally symmetric theory, the p and the a\ should be degenerate. It is 

plausible tha t the splitting between even and odd parity partner states will be smaller in 

a nearly conformal theory and as such the S parameter may be reduced. An argument for 

a reduced vector - axial vector mass splitting in a theory with a slowly running coupling 

based on dispersion relations was given in [30]. An estimation of the S parameter on the 

lattice with N p  =  2 and N p  =  6 quarks in the fundamental representation of SU(3) was 

performed by the LSD collaboration using domain wall fermions [31]. It was found that 

as N p  was increased, the spectrum becomes more parity doubled and the S parameter per 

electroweak doublet decreases.

Finally we consider the obstacle of producing a light composite Higgs boson. At the 

time of the development of early technicolor, this was not an issue because the Higgs had 

not been discovered. In fact, many theories conjectured that the Higgs was very heavy and 

could be integrated out of the low energy effective theory. We now know tha t a light Higgs 

boson exists whose mass is about half the characteristic scale of the electroweak symmetry
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breaking (-Mmggs/ ^ e w  — 125/246 ~  1/2). One idea is tha t the lightness of the 0++ 

resonance in the technicolor sector could be born out of the approximate scale invariance 

of a nearly conformal theory [32,33]. Such a particle is referred to as a techni-dilaton. The 

word dilaton signifies tha t the particle is the Nambu-Goldstone boson of spontaneously 

broken dilatation symmetry. In the case of nearly conformal theories, there is a small 

explicit breaking of the scale symmetry by the slow running of the gauge coupling.

In a typical scenario of spontaneous symmetry breaking, the classical potential of the 

field has a degenerate ground state; a particular vacuum is chosen which breaks the sym­

metry of the classical action and the fields are expanded about this vacuum and quantized. 

In Yang-Mills theories with massless fermions, the theory is classically scale invariant, but 

it is not the classical dilatation symmetry which is spontaneously (or explicitly) broken. 

When the theory is quantized, the scale symmetry is broken by the running of the gauge 

coupling. This is the conformal or trace anomaly. The theory develops an effective poten­

tial at the quantum level which explicitly breaks the scale symmetry. But scale invariance 

may reappear in the effective potential at a particular value of the gauge coupling if the 

coupling runs to an infrared fixed point. This picture is similar to the Coleman-Weinberg 

mechanism in which spontaneous symmetry breaking arises from the effective potential in 

scalar QED [34]. In a nearly conformal gauge theory, the effective potential only has an 

approximate scale invariance in a range of gauge couplings.

In Section 1.4 and Chapter 2 we will discuss the appearance of light 0++ scalar states in 

recent lattice studies of conformal and nearly conformal gauge theories. The dilaton idea is 

one possible explanation of the appearance of a new light state in these spectra, but some 

other mechanism may be responsible (e.g. [35]). The origin of these light scalars is an area 

of active investigation.

1.4 Lattice Studies of Conformal W indow Gauge Theories

The challenge of classifying gauge theories near and inside the conformal window and of 

characterizing the low energy physics of these theories has been taken up by lattice theorists 

over the past decade. Some studies have been aimed specifically at assessing the walking
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technicolor scenario. In one study, the Lattice Strong Dynamics (LSD) collaboration ex­

amined the phenomenon of condensate enhancement near the conformal window. They 

reported an enhancement in the chiral condensate in SU(3) gauge theory with six flavors 

of fermions in the fundamental representation compared to two flavors in the fundamental 

representation [36]. For the same two theories, the LSD collaboration also studied the S- 

parameter and the phenomenon of parity doubling, reporting that the six flavor theory has 

a smaller S-parameter per electroweak doublet and is more parity doubled compared to the 

two flavor theory [31].

More recently, the behavior of the flavor-singlet scalar (composite Higgs boson candi­

date) near the conformal window has been studied by several collaborations in a variety of 

theories. The latKMI collaboration first reported a low mass scalar in SU(3) gauge the­

ory with eight flavors of fermions in the fundamental representation [37]. The eight flavor 

theory has been subsequently studied by the LSD and latKMI collaborations in greater 

detail [38-40] confirming the existence of this light state. Light scalar states have also been 

reported in SU(3) gauge theory with two flavors in the symmetric (sextet) representation of 

the gauge group [41,42], SU(3) gauge theory with four light flavors and eight heavy flavors 

in the fundamental representation of the gauge group [16], SU(3) gauge theory with twelve 

degenerate flavors in the fundamental representation of the gauge group [43], and SU(2) 

gauge theory with two flavors in the adjoint representation of the gauge group [44]. We will 

discuss the phenomenon of light scalar states in more detail in Chapter 2.

The characterization of the conformal window is a worthwhile theoretical exercise in 

its own right even outside the context of a particular phenomenological application. One 

challenge is to identify the lower boundary of the conformal window at the critical number 

of flavors N f  = N j .  In supersymmetric QCD, the lower boundary of the conformal window 

is known from Seiberg duality [45], but in nonsupersymmetric theories the extent of the 

conformal window remains a difficult nonperturbative question. On the lattice, this question 

can be investigated by simulating particular gauge theories and attem pting to map out the 

phase diagram point-by-point in theory space by assessing whether each individual gauge 

theory exhibits infrared conformality or not. Early studies were carried out on SU(2) gauge 

theory with two flavors in the symmetric representation of the gauge group [46] which has
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been reported to be inside the conformal window [47,48]. The LSD collaboration performed 

early work on SU(3) gauge theory with fundamental fermions and reported that N f  = 12 

is IR conformal -  and so 16 > N f  > 1 2  are within the conformal window -  while N p  = 8 

was determined to be chirally broken [49]. The existence of an infrared fixed point in 

twelve flavor SU(3) gauge theory has been investigated by many groups and continues to be 

debated [50-52]. Another widely studied theory is SU(3) gauge theory with two flavors of 

fermions in the symmetric (sextet) representation [41,42] which is another model in which 

the existence of an infrared conformal fixed point has been debated [53,54]. A comprehensive 

review from 2012 by Neil details the wide range of gauge theories tha t had been investigated 

up to tha t time and gives one a sense of the extent of the lattice BSM effort and the broad 

range of theories considered [55]. More recent reviews which cover the issue of conformality 

in the twelve flavor theory and the light scalar in the eight flavor theory amongst other 

things are found in Refs. [56,57].

The characterization of conformal and nearly conformal gauge theories also has impli­

cations for model building scenarios besides the standard walking technicolor picture. One 

example is the composite pseudo-Nambu-Goldstone-Higgs (two Higgs doublet) scenario [58] 

which corresponds to a gauge theory with four light flavors such as the theory studied in 

Ref. [16]. Another example is the mechanism of partial compositeness [59] in which standard 

model fermion masses arise by the linear mixing of standard model fermions with (possibly 

composite) heavy fermions. A UV completion of a phenomenologically viable model of par­

tial compositeness requires a large anomalous dimension for the baryon operator, which may 

arise near the lower boundary of the conformal window. Other nonperturbative mechanisms 

that are not necessarily tied to the conformal window have also been studied on the lattice. 

The partial compositeness scenario has been investigated recently for UV completions with 

fermions in two distinct representations of the gauge group [60,61]. Phenomenologically 

viable models of composite dark m atter have been proposed in recent years and studied on 

the lattice [62,63]. In summary, the characterization of the conformal window and other 

novel gauge dynamics which arise at strong coupling is a rich field for future phenomenology, 

and the lattice is a powerful tool for making progress in this area.
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1.5 Organization of this Work

In Chapter 2, we will review aspects of lattice studies of nearly conformal gauge theories. We 

will focus on the appearance of light scalar states in the spectra and the assessment of these 

states as possible light Higgs boson candidates. As a particular example, we will review 

the study of N f  = 8 QCD by the Lattice Strong Dynamics collaboration. We will discuss 

the challenges of studying nearly conformal theories using lattice methods tha t are not 

present in traditional lattice QCD calculations, such as the approach to the chiral limit and 

the interpretation of different scale setting schemes. From the collected evidence of lattice 

studies of many different gauge theories near and inside the conformal window, we will argue 

tha t the appearance of light scalar states in such theories may be a generic phenomenon. 

The common features of the low energy physics suggest tha t it may be possible to develop 

a low energy EFT description for nearly conformal gauge theories which will help to unify 

the various lattice calculations and to guide future studies. Because the scalar is similar in 

mass to the pions and well separated from the heavier states in the theory, the low energy 

EFT should contain the light scalar state as a dynamical degree of freedom along with the 

PNGBs. As a step toward constraining the possible forms of this EFT, we will present a 

new lattice study of maximal isospin tttt scattering in N f  = 8 QCD.

In Chapter 3, we discuss chiral effective theory starting from the current algebra efforts 

in the 1960s up through the modern picture of the chiral Lagrangian and more general 

effective field theory methods. After this review, we present a new effective field theory 

framework for describing nearly conformal gauge theory that is based on the linear sigma 

model. The linear sigma EFT framework incorporates scalar states along with the PNGBs, 

one of which is the 0++ or a. We will focus on the role of chiral breaking terms in the EFT 

and the possibly large quark mass effects. This will lead us to consider a more general power 

counting for the spurion field than is typically used in chiral perturbation theory. Chapters 2 

and 3 together detail an effort to combine traditional lattice methods and effective field 

theory methods to develop a generic unified picture of the low energy dynamics of nearly 

conformal Yang Mills gauge theories.

In the second half of this manuscript, we discuss a separate but closely related effort
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to reformulate lattice gauge theory on curved manifolds. The original motivation for this 

effort was to develop a lattice formulation of radial quantization for studying conformal field 

theories, and a key future goal of this effort is a characterization of the conformal window 

of four dimensional gauge theories. Because radial quantization is naturally formulated on 

R x Sd_1 which is a curved geometry, the development of the methodology naturally led 

us to  a more general development for lattice field theory on arbitrary smooth Riemann 

manifolds.

In Chapter 4, we explain the general method for formulating lattice quantum field 

theory on an arbitrary curved Riemann manifold. In Chapter 5, we present explicit lattice 

calculations for scalar field theory on the manifolds §2 and R x § 2. The former is equivalent 

to the minimal 2D Ising CFT at criticality. We confirm this by explicitly comparing the 

lattice calculation on the curved manifold to the exact solution, which is a first confirmation 

of the viability of the method. The latter should be equivalent to the 3D Ising CFT at 

criticality studied in radial quantization. We present early results tha t the method seems 

to be converging to the critical point.
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Chapter 2

Lattice R esults for a Nearly  

Conformal Gauge Theory

We have discussed in Chapter 1 that a realistic scenario of dynamical electroweak symmetry 

breaking by a new strong force requires confining gauge dynamics which differ significantly 

from QCD in certain respects. In particular, a reduced electroweak S-parameter, an en­

hanced chiral condensate, and a light flavor-singlet scalar meson are favorable features of the 

gauge dynamics. We have discussed how these features may arise near the lower boundary 

of the conformal window. While general approximate results may be computed analytically 

using the ladder approximation and other such techniques, the lattice is the best tool for 

studying details of nonperturbative QFTs. In the past decade, lattice theorists have begun 

to explore gauge theories near and inside the conformal window and to assess their viability 

as foundations for models of dynamical electroweak symmetry breaking.

A disadvantage of the lattice approach is tha t one must choose a specific Lagrangian 

with fixed number of flavors N f  and number of colors N c to study. A particular quantity 

in a specific field theory may take months or years to calculate to high accuracy. In this 

work, we attem pt to mitigate this problem by advocating an approach tha t combines lattice 

calculations carried out for a particular Lagrangian with effective field theory analyses which 

should be generally applicable to any nearly conformal gauge theory. In this Chapter, we 

present numerical lattice calculations and discuss their implication for determining and
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constraining the correct EFT description of nearly conformal gauge theories.

2.1 N f  =  8 QCD on the Lattice

For our lattice studies, we have chosen to investigate SU(3) gauge theory with N f  = 8 

flavors of Dirac fermions in the fundamental representation. The continuum Lagrangian in 

Minkowski metric reads

C = - - F ; vF ^  + j ^ i > } ( i U > - m f ) i , i  (2.1)
/ =  1

In the lattice studies of the N f  = 8 theory discussed here, we will always take the flavors 

to be mass degenerate, m f  — m q V/. We are often chiefly interested in the chiral limit 

m q —> 0 in which the theory will have exact Nambu-Goldstone bosons. In the context of a 

dynamical electroweak symmetry breaking scenario, we imagine tha t the N f  =  8 theory or 

a similar nearly conformal gauge theory will serve as the new strong interaction to complete 

the electroweak sector of the standard model. But, in the present work we consider the 

N f  = 8 theory in isolation. We are interested in studying the low energy behavior of the 

nearly conformal gauge sector without complications from standard model couplings. As 

in the case of QCD and chiral perturbation theory, we imagine that once the low energy 

effective theory of the gauge theory sector in isolation is understood, standard model effects 

can be added into the EFT as perturbations.

One complication tha t would arise from including electroweak charges that couple to 

standard model fermions is top quark loops. If the top mass were to arise from an ETC 

scenario, one would have to include a four-fermi operator in the theory whose coefficient 

is large. It is an open question how the coupling to the top quark will affect the vacuum 

structure of the gauge sector. Other model building frameworks for generating fermion 

masses such as partial compositeness [59] may be more innocuous. We do not attem pt to 

address such issues in this work. In general, these questions are difficult to address on the 

lattice because four-fermi operators usually introduce a sign problem into the action, which 

greatly impedes the ability to perform numerical calculations.
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We are interested in the nonperturbative regime of this theory, and observables will be 

computed using Monte Carlo techniques. The theory must first be regulated by moving 

from the continuum to the lattice. The pure gauge action may be formulated with exact 

gauge invariance on the lattice using Wilson’s plaquette action [11]. For the quark fields, 

there are several choices for lattice fermion formulations, each of which has its own costs and 

rewards. Kogut-Susskind staggered fermions retain an exact U (l )v  x U(1)a lattice chiral 

symmetry, which is enough to derive Noether currents. One staggered flavor produces four 

flavors of continuum fermions -  a remnant of fermion doubling -  but because the number of 

flavors in this theory is a multiple of four, this is advantageous (no rooting is required). For 

the lattice action there will be two staggered flavors, which also gives us an exact lattice 

SUl {2) x SUr (2) flavor symmetry. For the lattice fermion fields, we adopt here the standard 

notation for staggered fermions, x i x )- The lattice action is given by

s  =  «4 E E  Xf{x ) }   ̂ n (j-^u{x )Xf ix  T AO A4)) T  ^Gauge [U^{x)]
x f =  1 n

(2 .2 )

where a is the lattice spacing and S'cauge is Wilson’s lattice action for the gauge fields, U^{x). 

rhx{x) =  (̂—I"jxi+x2+x3+x4-x^  -j-^ staggered phase which plays the role of the Dirac gamma

matrix for staggered fermions. In the staggered formulation, the fermionic fields have only 

one component; there is no Dirac index. The four spin and four flavor components are 

spread out across the sixteen corners of each hypercube. One combines the appropriate 

spin and flavor components into mesonic operators by including staggered phases and by 

applying gauge invariant shifts. Further details on the formulation and uses of staggered 

fermions can be found in standard lattice field theory texts (c.f. [64]). In practice, the theory 

is not simulated directly with the Grassmann-valued fermion fields. Because the action is 

quadratic in the fermion fields, one can integrate them out and arrive at an effective action 

for the gauge fields. Many improved gauge actions have been developed which are designed 

to reduce lattice discretization errors. The work tha t we will discuss has been carried out 

on ensembles generated using an nHYP smeared staggered action [65,66].

Much work has been carried out on the N f  = 8 theory already. A key point of investiga­

tion by the lattice community has been whether this theory is conformal or confining in the
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F ig u r e  2 .1: T h e  s p e c tr u m  o f  e ig h t  fla v o r  Q C D  c o m p u te d  b y  th e  L S D  c o l la b o r a t io n  a n d  
p r e se n te d  in  R e fs . [3 8 ,7 5 ] .  T h e  s p e c tr u m  is  c o m p u te d  u s in g  n H Y P  s m e a r e d  s ta g g e r e d  
fe r m io n s . Q u a n t it ie s  a re  p lo t t e d  in  b a re  la t t ic e  u n its .

in fra red . R e c e n t  s tu d ie s  o f  th e  r u n n in g  c o u p lin g  fo u n d  th a t  th e  r u n n in g  w a s  s lo w  a n d  th a t  

th e r e  w a s  n o  e v id e n c e  o f  a n  IR  f ix e d  p o in t  [6 7 ,6 8 ] . O th e r s  m a in ta in  t h a t  e v id e n c e  p o in ts  

to  c o n fo r m a l b e h a v io r  in  t h e  IR  [6 9 -7 1 ] . N o n e th e le s s ,  th e  m o s t  c o m m o n  s ta n c e  is  th a t  th e  

th e o r y  is  c h ir a lly  b ro k en  [ 3 8 ,6 7 ,6 8 ,7 2 - 7 4 ] .  In  th is  w ork , w e  w ill  n o t  fo c u s  o n  a n sw e r in g  th e  

q u e s t io n  o f  w h e th e r  th e  th e o r y  is  c o n fo r m a l or c o n fin in g . W h e r e  n e c e ssa r y , su c h  a s  in  th e  

E F T  a n a ly s is  o f  S e c t io n  3 .4 , w e  w ill  a s s u m e  th a t  th e  th e o r y  is  c o n f in in g . W e rem a rk  th a t  

a  s t u d y  b y  th e  L S D  c o lla b o r a t io n  a lso  fo u n d  e v id e n c e  for a  r e d u c e d  S p a r a m e te r  [3 1 ,7 3 ] ,  

w h ic h  is  o n e  o f  th e  e x p e c te d  fa v o r a b le  fe a tu r e s  o f  a  n e a r ly  c o n fo r m a l g a u g e  th eo ry .

N e x t  le t  u s  r e v ie w  th e  r e c e n t la t t ic e  s t u d y  b y  th e  L S D  c o lla b o r a t io n  o f  N f  =  8 Q C D  a t  

sm a ll  b a re  q u a rk  m a s s e s  w ith  s ta g g e r e d  fe r m io n s . W e e m p h a s iz e  t h a t  th e  p r e se n t a u th o r ,  

th o u g h  a  m e m b e r  o f  th e  L S D  c o lla b o r a t io n , w a s  n o t  a  k e y  c o n tr ib u to r  to  th e s e  s p e c tr a l  

a n a ly s e s .  T h e  s p e c tr a l  r e s u lts  h a v e  b e e n  p r e s e n te d  in  th e  re fe r en ce s  [3 8 ,7 5 ] , a n d  are  rep ro ­

d u c e d  h ere  t o  s e t  th e  s ta g e  for th e  tttt s c a t te r in g  s t u d y  o f  th e  N f  =  8 Q C D  th e o r y  p r e se n te d  

in  S e c t io n  2 .2  a n d  th e  E F T  a n a ly s is  o f  th e  N f  =  8 Q C D  th e o r y  p r e se n te d  in  S e c t io n  3 .4 .  

W e w ill  a lso  r e p lo t  th e  s p e c tr a l d a ta  in  v a r io u s  w a y s  in  o rd er  to  e m p h a s iz e  th e  a s p e c t s  o f  

th e  d a ta  s e t  th a t  are  m o s t  im p o r ta n t  for th e s e  d is c u ss io n s .
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F ig u r e  2 .2 : T h e  p io n , sc a la r , a n d  rh o  m a s s e s  ( le f t )  a n d  th e  p io n  d e c a y  c o n s ta n t  (r ig h t)  
p lo t t in g  in  b a re  la t t ic e  u n its .  T h is  d a ta  o r ig in a te s  fro m  R e fs . [3 8 ,7 5 ] .  T h e  s p e c tr u m  is  
c o m p u te d  u s in g  n H Y P  s m e a r e d  s ta g g e r e d  fe r m io n s .

T h e  s p e c tr u m  o f  N f  =  8 Q C D  c o m p u te d  b y  th e  L S D  c o lla b o r a t io n  a n d  p r e se n te d  in  

r e fe r en ce s  [3 8 ,7 5 ]  is  sh o w n  in  F ig . 2 .1  p lo t t e d  in  b a re  la t t ic e  u n it s .  F or o u r  p u r p o se s , th e  

m o s t  in te r e s t in g  s t a t e  in  th e  s p e c tr u m  is  th e  l ig h te s t  f la v o r -s in g le t  s c a la r , a lso  referred  to  

a s  th e  0 + +  or o s t a t e .  In  Q C D , th e  o is  s ig n if ic a n t ly  h e a v ie r  th a n  th e  p io n s  a n d  u n s ta b le  

a t  a  c o m p a r a b le  d is ta n c e  fro m  th e  ch ira l l im it  [7 6 ,7 7 ] . In  F ig . 2 .1 , w e  s e e  th a t  th e  a s t a t e  

is  s im ila r  in  m a ss  t o  th e  p io n s  a n d  w e ll s e p a r a te d  fro m  th e  p a n d  o th e r  h e a v y  r e so n a n c e s  

o v er  a  w id e  r a n g e  o f  b a re  q u a rk  m a sse s . T h e  l ig h t  o s t a t e  in  N f  = 8 Q C D  w a s  first 

d isc o v e r e d  b y  th e  la tK M I c o lla b o r a t io n  [37]. S in c e  th e n , th e  s p e c tr u m  h a s  b e e n  s tu d ie d  

in  m o r e  d e ta i l  b o th  b y  la tK M I [39] a n d  b y  th e  L S D  c o lla b o r a t io n  [38, 40] in c lu d in g  th e  

p r e se n t  d a ta  s e t .  L ig h t  sc a la r  s t a t e s  h a v e  a ls o  b e e n  o b se r v e d  in  S U (3 )  g a u g e  th e o r y  w ith  

tw o  fla v o rs in  th e  s y m m e tr ic  ( s e x te t )  r e p r e s e n ta t io n  o f  th e  g a u g e  g r o u p  [4 1 ,4 2 ], S U (3 )  g a u g e  

th e o r y  w ith  fou r  lig h t  fla v o rs a n d  e ig h t  h e a v y  fla v o rs  in  th e  fu n d a m e n ta l r e p r e s e n ta t io n  o f  

th e  g a u g e  g r o u p  [16], S U (3 )  g a u g e  th e o r y  w ith  tw e lv e  d e g e n e r a te  fla v o rs in  th e  fu n d a m e n ta l  

r e p r e s e n ta t io n  o f  th e  g a u g e  g r o u p  [43], a n d  S U (2 )  g a u g e  th e o r y  w ith  o n e  [78] a n d  tw o  [44] 

fla v o rs  in  th e  a d jo in t  r e p r e s e n ta t io n  o f  th e  g a u g e  g r o u p . T h e  c o l le c te d  e v id e n c e  s u g g e s ts  

th a t  lig h t  sc a la r  r e so n a n c e s  m a y  b e  a  g e n e r ic  fe a tu r e  o f  g a u g e  th e o r ie s  w h ic h  are  n e a r ly  

c o n fo r m a l in  th e  in fra red . In  C h a p te r  3, w e  w ill  c o n s id e r  h o w  o n e  m ig h t  b u ild  a n  E F T  

d e sc r ip t io n  o f  n e a r ly  c o n fo r m a l g a u g e  th e o r ie s  w h ic h  in c lu d e s  th is  l ig h t  fla v o r  s in g le t  sca la r .
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Figure 2.3: Squared pion mass divied by squared rho mass vs bare quark mass in lattice 
units for N f  = 8 QCD. Quantities computed by the LSD collaboration and presented in 
Refs. [38,75]. The spectrum is computed using nHYP smeared staggered fermions.

The interpretation of the spectrum requires some special considerations for a theory 

tha t is nearly conformal compared to the more familiar case of lattice QCD. The spectrum 

plotted in bare lattice units in Figs. 2.1 can be misleading in certain ways. In QCD, the 

heavy states that are tied to the confinement scale such as the nucleon mass and the p mass 

do not vary much as one changes the quark mass. This allows one to easily set the scale 

of the lattice calculation by comparing the dimensionless mass computed on the lattice to 

the measured mass of the true physical particle and setting the lattice spacing so tha t they 

match: a =  Miat/M phyS. One criterion for a good scale is that it has a weak dependence 

on the quark masses. Common scales include the proton mass, the omega mass, the pion 

decay constant, the Sommer scale, the string tension, and scales tha t can be defined via 

Wilson flow [79]. However, in Fig. 2.1 we see a strong quark mass dependence in the masses 

of all states. How can we set the lattice scale consistently from mass point to mass point if 

none of the dimensionful quantities are independent of the quark mass?

While the masses and decay constants are varying substantially with the quark mass, 

they are not doing so independently of one another. In Fig. 2.2, we plot the squared 

masses (aMn)2, and (aMp)2 and the squared decay constant (aF'n)2 in lattice units

against the quark mass in lattice units amq. One sees that all of the squared dimensionful
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F ig u r e  2 .4 : T h e  p io n , sc a la r , a n d  rh o  m a s s e s  ( le f t )  a n d  th e  p io n  d e c a y  c o n s ta n t  (r ig h t)  
p lo t t e d  in  u n it s  o f  th e  n u c le o n  m a ss . T h is  d a ta  o r ig in a te s  fro m  R e fs . [3 8 ,7 5 ]. T h e  s p e c tr u m  
is  c o m p u te d  u s in g  n H Y P  s m e a r e d  s ta g g e r e d  fe r m io n s .

q u a n t it ie s  h a v e  a n  a p p r o x im a te ly  lin e a r  d e p e n d e n c e  o n  th e  q u a rk  m a ss . In  r a t io s , th e  la rg e  

a p p r o x im a te ly  lin e a r  d e p e n d e n c e  o f  th e  d im e n s io n fu l q u a n t it ie s  o n  th e  q u a rk  m a ss  c a n c e ls  

a n d  a  sm a ll  n o n lin e a r  b e h a v io r  is  le ft  b e h in d . In  F ig . 2 .3 , w e  sh o w  t h a t  th e  r a t io  o f  th e  p io n  

to  th e  rh o  m a s s  (sq u a r e d ) is  s lo w ly  v a r y in g  b u t  th a t  it  d o e s  c h a n g e  b y  a b o u t  th ir ty  p e r c e n t  

ov er  th e  r a n g e  o f  q u a rk  m a s s e s  s tu d ie d . In  F ig . 2 .4 , w e  p lo t  M ^M p,  a n d  M a a s  w e ll a s  Fn 

in  u n it s  o f  th e  m a ss  o f  th e  n u c le o n . A g a in , th e s e  r a t io s  v a r y  s lo w ly  w ith  th e  q u a rk  m a ss  

a fte r  th e  d o m in a n t  lin e a r  b e h a v io r  h a s  b e e n  c a n c e le d  b y  ta k in g  d im e n s io n le s s  r a t io s .

T h e  sh a r e d , d o m in a n t ,  lin e a r  b e h a v io r  o f  th e  d im e n s io n fu l q u a n t it ie s  in  th e  N f  = 8 

th e o r y  m a y  b e  in te r p r e te d  in  tw o  w a y s . O n e  p o s s ib i l i t y  is  th a t  th e  c o n f in e m e n t  s c a le  h a s  

a  s tr o n g  d e p e n d e n c e  o n  th e  q u a rk  m a ss , a n d  a ll q u a n t it ie s  t ie d  to  th e  c o n f in e m e n t  s c a le  -  

th e  n u c le o n  m a ss , th e  rh o  m a ss , e t c  -  a re  v a r y in g  a lo n g  w ith  it .  T h e  o th e r  in te r p r e ta t io n  

is  t h a t  th e  c o n f in e m e n t  s c a le  is  r e la t iv e ly  in s e n s it iv e  t o  th e  q u a rk  m a ss , b u t  th e  la t t ic e  

s p a c in g  is  v a r y in g  w ith  th e  q u a rk  m a ss . In  a  la t t ic e  c o m p u ta t io n ,  th e s e  tw o  sc e n a r io s  are  

s o m e w h a t  a  m a t te r  o f  p e r s p e c t iv e  s in c e  th e  la t t ic e  o n ly  t e l ls  u s  a b o u t  r a t io s  o f  s c a le s , n o t  

a b s o lu te  s c a le s . A ll th a t  w e  c a n  sa y  for c e r ta in  is  th a t  (a A conf)2 d e p e n d s  s ig n if ic a n t ly  a n d  

a p p r o x im a te ly  l in e a r ly  o n  th e  b a re  q u a rk  m a ss  amq.

T h e  c h o ic e  o f  u n it s  u se d  to  e x p r e s s  th e  d a ta  is  r e f le c t iv e  o f  w h e th e r  o n e  in te r p r e ts  th e  

c o n fin e m e n t  s c a le  to  b e  f ix e d  a n d  th e  la t t ic e  sp a c in g  t o  b e  v a r y in g  or v ic e  v ersa . In  th e
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F ig u r e  2 .5 : T h e  p io n , sc a la r , a n d  rh o  m a s s e s  in  b a re  la t t ic e  u n it s  ( le f t )  a n d  in  n u c le o n  u n it s  
(r ig h t)  p lo t t e d  a g a in s t  (M^/Mp)2. T h is  d a ta  o r ig in a te s  from  R e fs . [3 8 ,7 5 ] . T h e  s p e c tr u m  
is  c o m p u te d  u s in g  n H Y P  s m e a r e d  s ta g g e r e d  fe r m io n s .

c o n te x t  o f  a n  e f fe c t iv e  f ie ld  th e o r y  a n a ly s is ,  w e  c o n s id e r  it  m o s t  s e n s ib le  to  c o n s id e r  th e  

c o n f in e m e n t  s c a le  to  b e  r e la t iv e ly  in s e n s it iv e  to  th e  q u a rk  m a s s  so  th a t  th e  E F T  h a s  a  w e ll 

d e f in e d  c u to f f  th a t  d o e s n ’t  c h a n g e  m u c h  a s  o n e  v a r ie s  th e  q u a rk  m a ss . W e c a n  u s e  th e  

n u c le o n  m a ss  (a s  a  p r o x y  for th e  c o n f in e m e n t  sc a le )  a s  a  u n it  a g a in s t  w h ic h  to  m e a su r e  

o th e r  d im e n s io n fu l q u a n t it ie s  a s  in  F ig . 2 .4 . T h e  c u to f f  o f  a n  E F T  for th e  p io n s  a n d  th e  

s ig m a , w h ic h  w e  ta k e  to  b e  r o u g h ly  th e  m a s s  o f  th e  l ig h te s t  e x c lu d e d  s t a t e ,  i.e . th e  rh o  

m a ss , is  a p p r o x im a te ly  in d e p e n d e n t  o f  th e  q u a rk  m a ss . O n  th e  o th e r  h a n d , in  la t t ic e  u n its  

for w h ic h  w e  c o n s id e r  th e  c o n f in e m e n t  s c a le  to  b e  v a r y in g  a n d  th e  la t t ic e  s p a c in g  t o  b e  

f ix e d , w e  se e  in  F ig . 2 .1  a n d  F ig . 2 .2  t h a t  th e  rh o  m a ss  is  v a r y in g  a n d  th a t  it  is  le s s  c lea r  

h o w  to  id e n t ify  th e  c u to f f  for th e  E F T .

A n o th e r  d e ta i l  w o r th  c o n s id e r in g  is  th e  d is ta n c e  fro m  th e  ch ira l l im it . I t is  t e m p t in g  

to  s u p p o s e  th a t  a s  th e  b a re  q u a rk  m a ss  is  tu n e d  to w a r d s  zero , o n e  a p p r o a c h e s  th e  ch ira l 

l im it  in  a  lin e a r  fa sh io n . H o w ev er , for th e  r e a so n  m e n t io n e d  a b o v e , m u ch  o f  th e  e ffe c t  o f  

c h a n g in g  th e  b a re  q u a rk  m a ss  g o e s  in to  th e  v a r ia t io n  o f  th e  q u a n t ity  a A conf, a n d  r a t io s  o f  

h a d r o n  m a sse s  a n d  d e c a y  c o n s ta n t s  are  r e la t iv e ly  in s e n s it iv e  t o  th e  q u a rk  m a ss . T h is  le a d s  

to  a  g r e a t  d if f ic u lt ly  in  a p p r o a c h in g  th e  ch ira l l im it .  O n e  c a n  m e a su r e  th e  d is ta n c e  fro m  

t h e  ch ira l l im it  in  a  m o re  p h y s ic a l w a y  b y  c o n s id e r in g  th e  r a t io  M 2/ M 2 In  Q C D , th e  p io n  

m a ss  sq u a r e d  is  lin e a r  in  th e  q u a rk  m a ss  a n d  th e  rh o  m a ss  is  r e la t iv e ly  in s e n s it iv e  t o  th e
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quark mass, so this quantity linearly approaches zero with the quark mass. In Fig. 2.3 we 

see tha t the ratio is not linearly approaching zero but decreasing much more slowly with 

the quark mass. We see tha t while the bare quark mass is changing by nearly an order of 

magnitude, M ^/M p only changes by about th irty  percent.

We visualize the approach of MT, Mp, and M a to the chiral limit in a more physical 

way by plotting M ^/M p on the x-axis in Fig. 2.5. Again we see tha t despite the wide range 

of bare quark masses considered, there is only a modest movement towards the chiral limit. 

Thus, in an effective field theory analysis, it should be kept in mind tha t the data only 

represents a limited range of distances from the chiral limit.

2.2 7T7T Scattering in N f  =  8 QCD

In this section, we present new lattice calculations in N f  = 8 QCD intended to further 

constrain the possible landscape of effective field theory descriptions of nearly conformal 

gauge theories. We will study s-wave 7T7T scattering in the maximal isospin channel. This 

scattering channel is the simplest to study numerically because it does not contain any 

disconnected diagrams. It is an interesting channel for distinguishing between chiral per­

turbation theory and a low energy EFT which includes a light flavor singlet scalar. In 

the chiral Lagrangian, the only diagram contributing to mr scattering at tree level is the 

four pion vertex. In a theory including a light scalar, this scattering amplitude includes 

contributions from t-channel and u-channel exchange of the scalar along with the four-pion 

contact interaction.

In the gauge theory, we compute the scatting phase shift nonperturbatively on the lattice 

using Liischer’s finite volume formalism. We will first review the key ideas of this formalism 

in Section 2.2.1. Then we will discuss the specific case of maximal isospin scatting in the 

N f  = 8 theory and present the new lattice results in Section 2.2.2.

2.2.1 L iischer’s M ethod

Liischer’s finite volume approach relates the energy levels of multi-particle states on the 

lattice to the phase shift of a corresponding scattering process. The physical picture for
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the case of 2 —>• 2 scattering is tha t when two particles are placed in a finite box, their 

wavefunctions will overlap by an amount depending on the relative size of the Compton 

wavelengths of the individual particles and the size of the box, and they will interact in some 

way tha t depends on the range of the interaction. As the particles are squeezed together, 

the energy of the two particle state will increase due to the overlap of the wavefunctions 

and the nontrivial scattering between the particles. The resulting energy level can then be 

related to the scatting phase shift at a particular momentum.

The formalism was originally developed for the simplified case of two dimensional quan­

tum  field theories [80]. When the Compton wavelengths and the range of the interaction are 

both small compared to the finite spatial extension of the system L, then the wave function 

outside of the interaction region is a plane wave and the effect of the interaction manifests 

itself in a momentum dependent phase shift 5(k). The scattering state must satisfy the 

periodicity condition on a finite, periodic, spatial volume (a circle).

Through this quantization condition, one can relate a given scattering momentum to the 

phase shift evaluated at tha t momentum. The scattering momenta are acquired from the 

two particle energy levels by the relativistic dispersion relation,

phase shift. Procedurally, one computes the two particle energy on the lattice, uses the 

relativistic dispersion relation Eq. 2.5 to compute the scattering momentum for each two 

particle energy level, and finally one computes the phase shift at each scattering momentum

e 2 i S ( k ) + i k L  _  ikO _  ^ (2.3)

Then the quantization condition for the scattering momentum kn is given by

knL  +  28(kn) = 2irn , nG  Z (2.4)

(2.5)

for the scatting of identical particles of mass m.  In two dimensions, for 2 —>• 2 scattering 

of scalar particles of equal mass, these are all the relations that are needed to extract the
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through the plane wave quantization condition on a periodic ring Eq. 2.4.

In practice, one will typically desire to compute the phase shift at many different scat­

tering momenta. For example, in the case of scattering in a resonance channel, one must 

compute the phase shift at many scattering momenta in order to  map out the change in

threshold, it is still desirable to have a range of scattering momenta in order to extract the 

scattering length and effective range in the small momentum effective range expansion.

We will not consider resonance scatting in our study, instead only focusing on the latter 

case of extracting the scattering length and effective range. One way to extract many 

energy levels and therefore many scatting momenta is by simply computing a large number 

of excited state energies. This can be facilitated greatly by computing the energy using a 

large basis of interpolating operators as was demonstrated in a recent study of 1=0 scatting 

to extract the a pole in QCD [76]. Another simple way to get different scatting momenta 

is by changing the spatial box size. Finally, one can “fake” a different spatial box size by 

computing the two particle energy in a moving (boosted) frame. In a moving frame, the box 

size is relativistically length contracted in the direction of movement leading to a smaller 

effective box size and a larger scattering momentum.

So far we have discussed the Liischer formalism for the simplified case of two dimen­

sional quantum field theories. In four spacetime dimensions, the quantization condition 

that relates the scattering phase shift to the scattering momentum is substantially more 

complicated. The generalization of the scattering formalism to four dimensions was derived 

by Liischer in [81]. In the continuum, one could simply move to an angular momentum ba­

sis in the spatial directions and define the scatting phase shift for each angular momentum 

quantum number £/. However, the lattice explicitly breaks the rotational symmetry down 

to the cubic subgroup, preventing a straightforward generalization. For s-wave scattering 

(/ =  0) the energy level E n is allowed by the cubic symmetry on the finite 3-torus if and

the phase shift through the resonance. In a purely elastic channel for scattering below

(2 .6)
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only if the associated scattering momentum kn satisfies

p2is0(k) =  z oo(l;g2) + nr3/2g , 7)
Z 0o(l;q2) -  iir3/ 2q

where q = kL/(2ir) and the Riemann zeta function is given by

Z 00(s;q2) = - - L  Y  {n2 -  q2))~s (2.8)
v  4?r neza

initially defined for Re(s) > 3 /2  and then through analytic continuation. The quantization 

condition can equivalently be expressed for the quantity kcotSo(k)  as

27r
k cot S0(k) = — 7T~3/2Z 00( l;q2) (2.9)

We refer the reader to [81] for further details of the derivation of the four dimensional 

quantization condition.

2.2.2 N ew  R esu lts  for M axim al Isosp in  7T7t S catterin g

Now we turn  to our study of interest, maximal isospin 7r7r scattering in the N f  =  8 model. 

First let us explain the group theoretic setup of the scattering problem and our use of the 

term “isospin” in a theory with eight flavors. We have explained tha t the lattice theory 

is formulated in terms of the staggered fermion discretization. For this lattice action, 

each species of lattice fermions becomes four species of continuum Dirac fermions in the 

continuum limit. At finite lattice spacing, these four tastes (which is the term used for 

flavor in this context) do not have a continuous SU(4) x SU(4) flavor symmetry. The flavor

symmetry is broken at finite lattice spacing to a discrete subgroup known as the taste

group [82]. For the N f  =  8 theory, we work with two flavors of lattice staggered fermions 

which become eight flavors of continuum Dirac fermions. At finite lattice spacing, we do 

have an exact U(2) x U(2) global flavor symmetry for the two staggered flavors at the 

classical level; the Uyi(l) is broken at the quantum level by the anomaly in the usual way. 

Thus we can organize our calculation around this exactly realized SU(2) x SU(2) “isospin” 

subgroup of the full SU(8) x SU(8) flavor group when we work at fixed taste.
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Let us denote the two staggered flavors by (xi>X2)- The interpolating operator for the 

distance zero Goldstone pion is given by

7T+ (x , t )  =  X 2 &  t ) e ( x ,  t ) x i ( x ,  t ) (2 .1 0 )

where e ( x ,  t ) =  (—1 y +y+z+t is the staggered phase corresponding to the spin-taste structure 

75 x £5 [82,83]. When we discuss maximal isospin scattering in the context of N f  = 8, we 

are really considering the scattering of the highest weight state in the 63 representation 

of SUy(8). The “orientation” of the highest weight state within the adjoint multiplet is a 

m atter of convention, so we may take the distance zero 7r+ -  which is already the highest 

weight state within the isospin subgroup -  to also be the highest weight state within the 

larger adjoint multiplet.

In order to compute the s-wave phase shift, 6i=o(k), it is sufficient to consider zero 

momentum scattering. The pion operator projected onto zero spatial momentum is given 

by

=  S 7r+(f ’ t ) (2*n )
X

We construct the simplest two body operator which sources the maximal isospin two pion 

state.

0 I = 2 ( t )  =  7T+ (t)7T+ {t  +  1) (2.12)

We have chosen the pions to be separated by one time slice in order to avoid projection onto 

unwanted states through Fierz rearrangement identities [84]. The energy of the 7r+7r+ 

7r+7r+ scattering state is computed from the two point function of O i = 2 ( t )  at well separated 

time slices.

{ 0 \ = 2 { t i ) 0 I = 2 { t3) )  = {7r+ { t i ^ 7 T + ( t 2y7T+ ( t 3 ) n + { U ) )  (2.13)

=  e(x l ) e(x 2)e(x3)e(xA){Xl(xi)X2(xi)Xl(x2)X2(x2)X2(x3)Xl{^3)X2(x4)Xl(xA))
X1X20C3X4

where t 2 =  t \  + 1 and £4 =  £3 + 1  or in general t 3 , 14 t i , t 2 . The possible Wick contractions
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F ig u r e  2 .6: V a le n c e  q u a rk  d ia g r a m s  a p p e a r in g  in  2 —* 2 s c a t te r in g  p r o c e s se s . T h e  to p  le ft  
c e ll is  th e  “d ir e c t” (D )  c h a n n e l, th e  to p  r ig h t is  th e  “c r o s s e d ” (C ) c h a n n e l, th e  b o t t o m  le ft  
is  th e  “r e c ta n g le ” (R ) c h a n n e l, a n d  th e  b o t t o m  r ig h t is  th e  “v a c u u m ” (V )  c h a n n e l. In  a ll 
d ia g r a m s , t im e  flo w s fro m  le ft  to  r ig h t.

a re

(Xl(^l)X2(^l)Xl(^2)X2(^2)X2(^3)Xl(^3)X2(^4)Xl(^4)>

I | -   .........  = j  I
=  (X l(^l)X 2(^l)Y (a:2)X2(^2)X2(^3)Xl(^3)X2|(a:4)Xl(^4))

I | I
+  (Xl(^l)X2(3:i)Y(X2)X2(^2)X|2(^3)X[l(^3)X2(^4)Xl(^4))

I , = ^  I
+  (Xl(^l)X)2(a:i)Y(X2)X2(^2)X2(^3)Xl(^3)X|2(^4)X|l(^4))

i = ; i
+  (X l(^l)^2(^l)X|l(^2)X2(^2)X2(^3)X|l(^3)X2(^4)Xl(^4))

T h e  first tw o  te r m s  a re  re ferred  t o  a s  th e  “d ir e c t” c h a n n e l, a n d  th e  s e c o n d  tw o  te r m s  are  th e  

“c r o s s e d ” c h a n n e l. E m p lo y in g  75 h e r m it ic ity  a n d  ta k in g  in to  a c c o u n t  th e  a n t ic o m m u ta t iv e  

p r o p e r t ie s  o f  th e  G r a ssm a n  v a lu e d  fie ld s , o n e  a rr iv e s  a t

(7r+ ( t i ) , 7r+ ( t2) t 7r+ ( t 3) 7r+ ( t 4 ))  =  CD{ 13; 2 4 ) +  C D (14; 23 ) -  C c (1 3 2 4 )  -  C c (1 4 2 3 )  (2 .1 4 )
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F ig u r e  2 .7: T h e  m a x im a l is o s p in  tttt s c a t t e r in g  le n g th . L eft: M ^ /{ m qk cot(<5)) M^A/rriq 
is  p lo t t e d  a g a in s t  th e  b a re  q u a rk  m a ss . T h e  d a t a  for e ig h t  f lavor  Q C D  w ith  K o g u t-S u s s k in d  
s ta g g e r e d  fe r m io n s  is  sh o w n  in  b la ck . T h is  d a ta  w a s  o r ig in a lly  p r e s e n te d  in  R ef. [75]. F or  
c o m p a r iso n , w e  a lso  in c lu d e  d a ta  for N f  = 2 a n d  N f  =  6 Q C D  w ith  d o m a in  w a ll fe r m io n s  
fro m  R ef. [85] in  red  a n d  b lu e  r e sp e c t iv e ly . R ig h t:  T h e  d im e n s io n le s s  r a t io  M n/(k  co t((5 )) ~  
M nA  is  p lo t t e d  a g a in s t  th e  d im e n s io n le s s  r a t io  (M^/F^)2. A g a in  t h e  d a ta  for  N f  — 2 a n d  
N f  =  6 fro m  R ef. [85] is  in c lu d e d . W e a lso  in c lu d e  d a ta  for N f  =  2 a t  l ig h t  q u a rk  m a sse s  
fro m  R ef. [86].

w ith

CD(ih , j l ) =  T r ( G t i I t G IiXJ T r c ( G t jXiG XjI1) (2 .1 5 )

Cc{ijkl)  = T r ( G:, ilk G  )  G x ̂  x, G ) iT/) (2 .1 6 )

w h e r e  T r ( .. .)  d e n o te s  a  co lo r  tr a c e  a s  w e ll  a s  a  s p a t ia l  s u m  o v er  t im e  s h e e t s  a n d  Gxy is  a  

q u a rk  p r o p a g a to r  fro m  x  to  y.

V a le n c e  q u a rk  d ia g r a m s  in  F ig . 2 .6  h e lp  to  v is u a l iz e  th e  d ifferen t s c a t te r in g  c h a n n e ls .  

T h e  “r e c ta n g le ” a n d  “v a c u u m ” d ia g r a m s  o n ly  c o n tr ib u te  to  p io n  s c a t te r in g  w ith  n o n m a x -  

im a l iso s p in , a n d  th e y  te n d  t o  b e  n o is ie r  a n d  c o m p u ta t io n a l ly  m o r e  e x p e n s iv e  [84]. T h e  

a b s e n c e  o f  th e s e  d ia g r a m s  m a k e s  m a x im a l is o s p in  s c a t te r in g  a  g o o d  first c h a n n e l t o  in v e s ­

t ig a te .

F or th is  first s t u d y  o f  p io n  s c a t te r in g  in  th e  N f  — 8 th eo ry , w e  h a v e  o n ly  c o n s id e r e d  a  

s in g le  in te r p o la t in g  o p e r a to r  a n d  w e  h a v e  o n ly  e x tr a c te d  a  s in g le  tw o  p a r t ic le  e n e r g y  a n d  

a  s in g le  s c a t te r in g  p h a se  sh if t .  W e  h a v e  fo u n d  th a t  th e  e x tr a c te d  s c a t te r in g  m o m e n tu m  

is  v e r y  sm a ll  su c h  th a t  th e  e f fe c t iv e  ra n g e  te r m  is  n e g lig ib le  a n d  kcot(So(k)) ~  1/A.  In  

a  fu tu r e  s tu d y , o n e  m a y  c o n s id e r  m u lt ip le  in te r p o la t in g  o p e r a to r s , m u lt ip le  v o lu m e s , a n d
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boosted frames in order to extract energy levels corresponding to larger scattering momenta 

and to extract the effective range also from the phase shift.

The results of the Liischer analysis of the maximal isospin correlator are presented in 

Fig. 2.7. We also include data from N f  = 2 QCD from Refs. [85,86] and for N f  = 6 QCD 

from Ref. [85] for comparison. In the left plot, we show /  (mqk cot (6)) «  M nA / m q vs 

the bare quark mass m q. The quantity on the y-axis has dimensions of inverse mass and is 

plotted in units of the lattice spacing, and the x-axis has dimensions of mass and is plotted 

in units of the inverse lattice spacing. The data for N f  =  2 is nearly flat as a function of the 

bare quark mass and is statistically consistent with a constant. The data for N f  =  6 shows 

some small amount of curvature at the lightest mass point, but is still relatively flat. The 

new results for N f  = 8 show a marked difference from the other two data sets, with the data 

demonstrating a high degree of curvature. Some of this effect may be due to the variation 

in the lattice spacing from mass point to mass point as we discussed in Section 2.1. We also 

remark that on the left plot of Fig. 2.7, the comparison between the various calculations 

for N f  =  2, 6, and 8 is only qualitative because the dimensionful quantities are plotted in 

lattice units, and the lattice scale varies between the different studies.

To get some bearing for the expected behavior of the phase shift, let us examine the 

expression for the phase shift in chiral perturbation theory. The scattering length in xPT  

at next-to-leading order is given by [87,88]

decay constant in the leading order chiral Lagrangian, and L[ are the renormalized Gasser 

Leutweyler NLO low energy constants. The leading order prediction is tha t M^A/rriq is a 

constant. We see on the left panel of Fig. 2.7 tha t the N f  — 2 calculation agrees well with 

this leading order prediction, being relatively constant as a function of the quark mass. The

167tF 2
256?r2 f  (1 -  2/ N f ) (L\ -  LI) + T  (LJ +  2L\  +  2V2 + L\)

(2.17)

where M 2 =  2B m q. B  and F  are the usual low energy constants for the condensate and

N f  = 6 data starts to show a small amount of curvature but is roughly consistent with a
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constant. The new data points that we have computed for N f  = 8 show a large amount of 

curvature over a comparatively small range of bare quark masses and are inconsistent with 

the leading order %PT prediction.

The expression for the scattering length in xP T  may be re-expanded in the physical 

quantities M 2 and F 2 replacing the bare quantities M 2 and F 2 [85].

To examine this data in light of this alternate expansion, we plot in the right panel of 

Fig. 2.7 the dimensionless quantity M ^ A  verses (M ^/F^)2. In terms of the new expansion 

parameter, the leading order xPT  prediction is that M ^ A  is linear in M 2/ F 2 with the

order xPT  prediction and the data for N f  = 2, 6, and 8. It is puzzling tha t the agreement 

should be quite poor when plotting the data against the bare quark mass and in good

which the chiral expansion in terms of bare quantities is converging, but after resumming 

the expansion in terms of the physical quantities MT and F'n the expansion is convergent. 

However, it is also possible that this is a peculiarity of this particular observable in this 

expansion, just as M 2 is coincidentally well described by leading order xP T  when expanded 

in the bare quark mass.

In an upcoming work, we will consider a simultaneous analysis of the maximal isospin 

pion scattering length along with the spectral data including M^, F n , M a , and ('iJjiJj) of the 

N f  = 8 model. We plan to analyze the data with a variety of possible EFT frameworks 

including the general N f  chiral Lagrangian [87, 88] and the linear sigma EFT framework 

[89,90]. In Chapter 3 we review effective field theory approaches to describing strongly 

coupled gauge theories with chiral symmetry breaking at low energies. We will discuss a 

new EFT framework based on the linear sigma model and argue that it may provide an 

improved description of the low energy properties of nearly conformal gauge theories away

167rF j

( 2 . 18)

slope predicted to be — l / ( 167r). We see that there is good agreement between the leading

agreement when plotted against M 2/ F 2. It is possible that we are not yet in a regime in
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from the chiral limit [89,90].
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Chapter 3

Chiral Effective Theory

We have shown in Chapter 2 tha t there are limitations to applying traditional lattice meth­

ods to the problem of nearly conformal gauge theories. Nearly conformal dynamics lead 

to an enhancement in the separation between the confinement scale Aconf and the lattice 

cutoff 1/a ; the theory must run over a larger range of scales before reaching confinement. 

This ratio of scales aAconf becomes increasingly sensitive to the bare quark mass as one 

approaches the bottom edge of the conformal window because the quark masses explicitly 

break the scale symmetry leading to a faster onset of confinement. In a mass independent 

scale setting scheme in which Aconf is fixed by some physical observable like the nucleon 

mass M y, the lattice spacing varies significantly with the quark mass. In the regime that 

is currently accessible, most of the effect of changing the bare quark mass is to change the 

lattice spacing. One may see this by studying dimensionless ratios of hadron masses and 

decay constants as we have discussed in Chapter 2. These ratios evolve very slowly with 

the bare quark mass compared to QCD. As a result, it becomes increasingly difficult to 

reach the chiral limit in a lattice calculation as one approaches the bottom  of the conformal 

window.

Effective field theory (EFT) provides a systematic approach to study the low energy 

properties of quantum fields theories, whether the UV physics be unknown as in the standard 

model or incalculable as in the case of strongly interacting gauge theories. In QCD, chiral 

perturbation theory (x?T ) is an extremely useful tool for describing the dynamics of pseudo- 

Nambu-Goldstone bosons away from the chiral limit. One use of the yPT  framework in the
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context of lattice theory is the extrapolation of data to the chiral limit. xPT  is also used to 

model lattice artifacts and for otherwise gaining intuition about the low energy dynamics 

of hadrons which can motivate and guide lattice calculations.

In this chapter, we review progress made towards developing an EFT framework that 

is applicable to nearly conformal gauge theories. We will begin by reviewing the historical 

development of EFT methods in the context of hadron physics starting with current algebra. 

While current algebra is a separate topic from effective field theory, it does lead to many 

general results for gauge theories with global chiral symmetries that EFT descriptions will 

reproduce. Furthermore, effective field theory methods were born out of current algebra 

methods and S-matrix methods through the work of Weinberg who sought a systematic 

field theoretical framework for deriving the results of current algebra [91-93] such as the 

soft pion theorems [94]. Indeed, Weinberg later stated that effective field theory is S-matrix 

theory made practical [95]. We will cover the principles of effective field theory and chiral 

dynamics focusing first on the chiral Lagrangian and its possible applicability to nearly 

conformal gauge theories. Finally we will review new work on an EFT framework based on 

the linear sigma model, which seeks to provide a better description of current lattice data 

for nearly conformal gauge theories.

3.1 Historical Considerations: Current Algebra and the Lin­

ear Sigma M odel

The modern perspective on chiral effective theory finds its historical origins in a body of 

work by Gell-Mann, Weinberg, and many others developed throughout the 1960s and 1970s 

attem pting to understand the low energy properties of QCD. In Weinberg’s own words, 

“It [EFT] all started with current algebra” [96]. Gell-Mann introduced the framework of 

current algebra [97] wherein properties of hadronic matrix elements are derived by consid­

ering the algebraic properties of the U(3)xU(3) Noether currents. Many results from the 

current algebra approach can be reproduced with chiral perturbation theory (yPT), but it 

is interesting to review the current algebra approach here both for the historical purpose 

of understanding how and why chiral effective theory was developed and also to highlight
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the extent to which it was possible to  make progress without the tools of effective La- 

grangians. Indeed, current algebra and related topics were part of a large effort to develop 

a non-Lagrangian approach to particle physics based on the analyticity properties of the 

S-matrix [98,99].

Aspects of the current algebra approach are reviewed by Scherer and Schindler [100]. 

Chiral currents couple to hadronic states with the appropriate quantum numbers. For 

example, the axial vector current couples to the pion state with an amplitude defined 

through the m atrix element

(0 \A?(x)\TTj(p)) = i5i jV2Firp^e~ipx (3.1)

Fn is the pion decay constant also appearing in the coupling of the pions to the weak 

gauge bosons. Matrix elements of chiral currents with other local operators are related by 

generalized Ward Identities [101].

dx (0\Tjp(x)Oi(xi). . .On(xn)\0) =
n

Y  $ ( x °  -  x m ) { Q \ T O l { x i ) . . . O m - l ( X m - l ) [ f { x ) , O m ( X m ) } O m + l { x m + l ) - O n ( x n ) \ 0 )  =  
m —1 

n

- i  Y  S^4\ x  -  x m)(0\TO1(x1)...Om- i ( x rn-i ) (8Om{xm))Om+i(xm+i)...On{xn)\0) (3.2)
m =  1

which are themselves related to S-matrix elements through the LSZ reduction formula. 

Eq. 3.2 is the Schwinger-Dyson equation corresponding to the classical current conservation 

equation = 0. In the case d^ jp ^  0, an additional term (0\T(d^jp)Oi...On \0) appears 

on the right hand side. The contact terms on the right hand side of Eq. 3.2 contain the 

operators 5 0 m which are the infinitesimal changes in the operators Om under the symmetry 

transformation corresponding to the current j p.

[Q,Om(x)] = iSOm(x) , Q = J d 3xj°(x)  (3.3)

The algebraic properties of the chiral symmetry currents enter through these commutators 

into the chiral Ward identities.
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Let us review one result from current algebra that will be im portant in the discussion 

tha t follows, the Gell-Mann-Oakes-Renner (GMOR) relation [102]. In this example as with 

many of the current algebra results, some assumption has to be made on top of the algebraic 

properties of the currents. For GMOR, one takes as an ansatz the partially conserved axial 

current (PCAC) relationship, originally introduced by Goldberger and Treiman [103].

d^Af(x)  = (m u +  rrid)Pi(x) (3.4)

where Pi is the pseudoscalar density. It is interesting to note tha t in some cases the jus­

tification for the assumptions made in current algebra calculations -  such as the PCAC 

assumption tha t feeds into the GMOR relation -  were justified at the time by their exem­

plification in popular models such as the linear and nonlinear sigma models [104]. We will 

come back to discuss some of these specific models later in the chapter.

W ith knowledge of the underlying gauge theory (or, more simply, the corresponding free 

quark theory), the PCAC relation may be derived at the quark level through a Noether 

analysis. For a general mass matrix in an N f  flavor gauge theory, the generalized PCAC 

relation becomes

=  2^75 {Tj, M } i p  = 2 m 0Pi +  rrij +  d%jkp k^ (3-5)

where in the second equality we have decomposed the mass matrix as A4 =  m ol +  mjTj; 

Ti are the generators of SU (Nf)  normalized such tha t Tr(Tj Tj) — Sij whose symmetric 

structure constants are normalized such that {Tj, Tj} = 2 /N f6 i j t  + dijkTji . For convenience, 

a collection of Lie algebra identities for su(N)  are given in Appendix A. The expressions 

for the axial current and pseudoscalar density at the quark level are

A f (x )  = ' ip {x )^ j5Ti^ (x )  , Pi(x) = i ^ { x ) ^ T i ^ ( x )  (3.6)

In what follows, we will specialize to the case of degenerate quarks A4 = m q 1.

We have already defined the amplitude through the matrix element in Eq. 3.1. 

Analogously, we define Gn through the matrix element of the pseudoscalar density between
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the vacuum and the one pion state.

(0 \Pi(x)\7Tj{p)) = SijV^Gne ipx (3.7)

It follows from Eqs. 3.1, 3.5, and 3.7 that

3^{0|A(*(0)|5rj(p)) =  8i}s/2MlF„ = 5ij2s/2mqG* (3.8)

and therefore

Ml =  (3 -9)-̂ 7T

This expression is exact for all m q, following only from the PCAC assumption.

The amplitude G^ is related to the quark condensate through the chiral algebra. Con­

sider the m atrix element

(0|[Af=O(f, t), Pj(y, t)]|0) (3.10)

which appears on the RHS of the axial current Ward identity. We may insert a complete

set of single particle states (assuming pion pole dominance in the pseudoscalar channel)

/
rJ3k ->

(27r)32|fc°| Q̂^ f ’ t)\7Ti(k))(iri(k)\Pj(y, t)\0) - h . c .  (3.11)

Inserting the expressions Eq. 3.1 and Eq. 3.7 and performing the integration over momenta 

one finds

(0|[/l°(:r, t), Pj(y, t)]|0> =  Sij2iFnG n S ^ ( x  -  y) (3.12)

On the other hand, one may compute the commutator directly using the chiral algebra.

\A°(x, t) ,Pj(y, t ) \  =  -  y)i>(x){Ti,Tj}tl>(x) = - i t i (3)d(x -  y) +  dl]kSk \

(3.13)

We have defined the scalar densities So = 'i/jtijj and Si = iiTiifj. The v.e.v. of each quark 

flavor is equal at m q =  0: ('•ipf'i/’f ) = —v + 0(M.)  V/. So, ( S° )  = —NfV  and (Si )  = 0 up
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to O(Ai)  corrections.

[ A i ( x , t ) , P j ( y , t ) ]  =  2iuSi j5i3)(x -  y)  +  0 ( M )  (3.14)

Comparing Eq. 3.12 and Eq. 3.14 we find

GVFV = v +  O ( M )  (3.15)

which gives the GMOR relation for the case of N f  degenerate quarks.

M 2F 2 = 2m qv + £ > ( M 2) (3.16)

Having shown one explicit example, let us quickly review some of the other im portant re­

sults from current algebra without proof in order to demonstrate the scope of the technique. 

Carrying out the above derivation for nondegenerate quarks, other interesting relationships 

between the Goldstone masses may be calculated. For example, in the case of SU(3) in the 

isospin limit, m u = ^  ras, one may derive the Gell-Mann Okubo relationship [105-107]

between the masses of the mesons in the pseudoscalar octet.

4Mjc = 3M% + M% (3.17)

Weinberg showed tha t one may derive matrix elements for the scattering of soft pions 

off of other particles and the matrix elements for pion-pion scattering using only PCAC 

and current algebra relations [108]. Using a combination of dispersion relations, PCAC, 

and current algebra, Alder [109] and Weisberger [110] based on the work of Fubini [111] 

computed the ratio of the axial vector current coupling to the nucleon to the vector current 

coupling to the nucleon which is a crucial quantity in beta decay [99]. Another example is 

the Kawarabayashi Suzuki Riazuddin Fayyazuddin (KSRF) relations [112,113]

Ff, = V2F„ , gfm! = - ^ r  (3.18)
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which may be derived using current algebra, PCAC, and vector meson dominance in the 

p-wave 7T-7T scattering channel [114].

In our recapitulation of the derivation of the GMOR formula, we have demonstrated 

that calculations in the current algebra framework are somewhat labor intensive and typ­

ically require a sequence of assumptions and approximations tha t are not always obvious 

or straightforward. Effective field theory techniques provide a streamlined approach to de­

riving certain current algebra relationships. However, the relationships tha t are derivable 

in the context of an EFT are typically limited to relationships between states appearing 

as dynamical degrees of freedom in the EFT. The EFT makes no predictions about heavy 

resonances omitted from the construction. As such, the current algebra techniques are still 

useful, as exemplified by the Adler-Weisberger sum rule and the KSRF relationships that 

we have briefly discussed above.

The ansatz of PCAC was motivated by its exemplification in popular models at the 

time [104] including the linear and nonlinear sigma models. The linear sigma model was 

introduced originally by Schwinger [115]. As an introduction to models of chiral symmetry 

breaking, let us briefly review the simple case of the SU(2)xSU(2)/SU(2) (or equivalently 

0 (4 )/0 (3 ); we will demonstrate this equivalence later) linear sigma model which is the 

prototypical example of a theory with spontaneous symmetry breaking [100,101,116]. The 

linear sigma model fields transform in a (bi)linear (2, 2) representation of the full group 

SUl (2) x SUr(2).

m \  -> (3.19)

where L  G SUz,(2) and R  G SUr(2). We will sometimes use the notation (L, R )oM  = L M R 4 

for the action of the group. Rather than independent left and right transformations, we may 

equivalently consider vector transformations (T, T) G SUy(2) and axial transformations 

(T, J4) G SU^(2), where T  G SU(2). Indices will be suppressed in the remainder of the 

discussion wherever possible; when explicit indices on M (a?) are warranted, we will use the 

letters a, 6, c , ... for fundamental indices to distinguish from adjoint indices. The

renormalizable linear sigma Lagrangian containing all operators invariant under the global
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group up to dimension four is

C =  (3.20)

where (...) denotes the trace.

We may express the field degrees of freedom in a conventional form by expanding in a 

basis of Hermitian matrices

where Tj =  (l/\/2)crj are the generators of SU(2) normalized such tha t (T(Tj) =  8{j. For 

the case of SU(2) x SU(2), we may take a, 7Tj 6 I  and the representation is closed under 

the full group. This follows from the special property of Pauli matrices that they have a 

simple anticommutator, or equivalently that the symmetric structure constants are all zero 

for SU(2). For N f  > 2 we must take cr, 7Tj E C for the representation to close. To see this, 

consider the infinitesimal vector and axial transformations of the fields parametrized as in 

Eq. 3.21. Under a vector transformation, (T, T) E  SUy(iV/) with T  =  exp(z0jTj),

The variation in the pions is real because the structure constants are real. So, the real 

valued pion and sigma fields form a closed representation of SXJv(Nf) for any N f.  The 

sigma transforms as a singlet and the pions transform as an adjoint. Now consider the axial 

transformations

5v M ( x )  =  i 6 i [ T i , M ( x ) ]  =  - 0 17t3 [T1, T j ] =  - i e i7iJf ijkTk (3.22)

In terms of the component fields,

(3.23)

(3.24)
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In terms of the component fields

(3.25)

The variation of sigma is real, however for nonzero symmetric structure constants dijk, the 

pions necessarily pick up a complex contribution from the SUa(-/V/) rotation. Therefore, 

for N f  = 2 we may take the sigma and pion components to be real, but for N f  > 2 we must 

take the sigma and pion fields to be complex for the representation to close. In Section 3.3,

Later we will discuss a nonlinear basis for the fields, which is analogous to describing field 

space in polar coordinates.

SU(2). Following from the special property of SU(2) that the generators satisfy {Ti,Tj} = 

8i j t ,  one may show tha t the single and double trace quartic operators are not independent:

This is much more reminiscent of the 0(4) linear sigma model, and for good reason: this 

action is equivalent to the 0(4) linear sigma model. Defining the components of an 0(4)

0(3) and SU(2) x SU(2) —> SU(2). Indeed, it is exactly this isometry tha t leads to the 

existence of a real linear representation of SU(2) x SU(2). The global chiral symmetry for a 

larger number of flavors N f  > 2 will not in general be isomorphic to an orthogonal group and 

will only admit complex linear representations. We will study the general SU ( N f )  x SU ( N f )  

theory in detail in Section 3.3.

Let us continue to study Eq. 3.26 in more detail. The extrema of the potential are given

we will discuss the case for general N f  in detail. We refer to the field basis in Eq. 3.21 

as the linear field basis. It is analogous to choosing Cartesian coordinates for field space.

Let us continue the discussion for the case of the real linear representation of SU(2) x

= ( l / 2 ) ( M t M ) 2 Redefining the quartic coupling A =  Ai +  A2 the Lagrangian

may be written purely in terms of bilinear traces.

(3.26)

multiplet as <j) = (7Ti, 772, 7r3, cr), it follows immediately that (M^M) = 0 • 4> = a 2 +  7?2. The 

equivalence of the two actions follows from the local isometry between the groups 0(4) —>•
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by

^  (m2 +  A(M^M>) Mt„ =  0 (3.27)

For a negative mass term fi2 < 0 the stable minima are displaced from the origin of field

space, and the vacuum becomes nontrivial. The minimum of the potential is given by

(M fM) =  =  f 2 (3.28)
A

In this phase, the vacuum breaks the chiral symmetry down to the SUy (2) subgroup. Vector 

transformations preserve the vacuum while the axial transformations rotate the vacuum. Let 

us take the vacuum to be oriented in the direction of the trace (the a direction): (0|M|0) =  

( f / V 2)1 =  M q.  This vacuum is invariant under a vector transformation, but transforms 

nontrivially under the axial transformations, (T, T^) € SU^(2) where T  =  exp(*0*7*) € 

SU(2)

(T ,T f) oM 0 =  T M 0T  =  e 2iQiTi- t = \ «  (1 +  2*0*79 =  M o +  SAM 0 (3.29)
v  2  y  2

The variation in the v.e.v. under axial transformations has components in the pion direc­

tions.

Sa M 0 = is f i fd iT i  (3.30)

Consider the variation in the potential at the minimum M q  due to an infinitesimal axial 

rotation of the v.e.v.

3 V
V (M 0 +  SaM0) = V ( M 0) +  £

1 ^  d2V

21 5 5

(8AMo)ab
Mo

{5AMo)ab(8AMo)cd +  0(6  a M q )
M q

= V ( M 0) + \  £  M l bfid(6AMo)ab(SAMoU + 0 ( 5 AM%) (3.31)
^ abed

The linear term vanishes because M q  is an extremum of the potential, and we have defined 

the mass m atrix M.2b cd as the second derivative of the potential evaluated at the minimum. 

The symmetry of the potential under the full group implies tha t V ( M q  +  8a M q )  = V (M q ) ,
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and therefore

^lb,cd(^AMo)ab(SAM 0)cd =  0
abed

Or equivalently, the mass matrix must satisfy

M 25a Mq = 0

(3.32)

(3.33)

where the indices have been suppressed. This is Goldstone’s theorem [100,101,116-118]. 

Each nonzero component of 5AMo arises from a generator of a symmetry under which the 

vacuum is not invariant. Eq. 3.33 states tha t each independent broken symmetry generator 

is in 1:1 correspondence with a zero eigenvalue of the mass matrix in the broken phase. 

In our example, the three nonzero components of 5a M q correspond to the generators of 

SU^(2), and necessitate three massless eigenvalues of the mass matrix. We confirm this by 

writing out the Lagrangian in the broken phase, M  —> M q +  M.

2
^(J2 -

m ;
8 f

m.
(3.34)

We have defined the scalar mass in the broken phase rr?a =  —2fi2. Indeed, we have an 

adjoint multiplet of three Goldstone pions corresponding to the three spontaneously broken 

axial generators. Expressing Eq. 3.33 explicitly in the basis (cr, 7?), the Eigenvalue equation 

which determines the mass of NGBs is

ml 0 0 0 ^
0 0 0 0

0 0 0 0

0 0 0 0 J

0

\ / 2/ 0i

V 2 f 9 2 

V 2 f h  j

0

0

\ ° J

(3.35)

and holds for all 0i, 62, and 63 as it must. This discussion has been carried out for the 

classical potential, but it may be straightforwardly generalized to the quantum case by 

replacing the classical potential with the quantum effective potential [116], so long as the 

effective potential is invariant under the same symmetry.

To make the connection to our earlier discussion of PCAC and the GMOR formula,
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we may introduce a term into the linear sigma model potential which explicitly breaks 

the SU>i(2) symmetry which will give a small mass to the pions. For the purposes of this 

discussion, we introduce the simple breaking potential

V  -> V  + VSB = V  -  b(M +  Aft) (3.36)

which is symmetric under SUy(2) but breaks SU^(2) explicitly. We will discuss breaking

potentials in more detail in Sections 3.2 and 3.3. In the presence of the breaking potential, 

the equation for the extrema of the potential is

O T  T -I

 =  -  (m2 +  A(MfM )) M ba -  bSat = 0 (3.37)

We may again choose the v.e.v. to be oriented along the a direction, Mo(b) =  F(b)/y /21,

where F(b) satisfies

£ = ( p ?  + \ F 2) - b  = 0 (3.38)

While this equation is exactly solvable, it is sufficient for our discussion to work to first 

order in b. Then the solution for the v.e.v. in the presence of the breaking potential is 

F(b) «  /  +  2 V 2 b / m l

To examine the PCAC relation Eq. 3.4, we first write down the axial vector current

derived through the Gell-Mann-Levy method [104] (or the usual Noether procedure [101]).

A? =  %-  U d » M ]){Ti, M }  -  {Ti , M ^ M )  «  V2Fd»7Ti (3.39)

In the second approximate equality, we have expanded the expression for the current to first 

order in the fields. For the action defined in Eq. 3.26 without a breaking term, the axial 

current is exactly conserved = 0. In the presence of the breaking potential Eq. 3.36, 

the axial vector current is no longer conserved.

d^A? = 4 inti = 4 bPi (3.40)

where Pi = irz is the pseudoscalar density in the linear sigma model. The divergence of the

9 K „
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axial vector current is proportional to the pseudoscalar density. This is the realization of 

the PCAC relation in the linear sigma model in Eq. 3.4. Computing the m atrix elements 

Fyr and Gtt defined in Eq. 3.1 and Eq. 3.7, we find Fn = F  and G^ = l / \ / 2  respectively. 

From Eq. 3.15, we can deduce the expression for the chiral condensate in the linear sigma 

model, G-nFn =  F/y/2  =  v. Finally, the GMOR relation dictates tha t the pion mass should 

be given by M 2 =  2y/2b/f  +  0(b2).

Now let us check the GMOR prediction by explicitly studying how the Goldstone bosons 

acquire a mass in the presence of the breaking potential. Once the symmetry has been 

explicitly broken, it is no longer the case tha t V ( M  +  5AM ) =  V(M).  Eq. 3.32 becomes

I  £  M abtCd(6AM 0)ab(6AM 0)ci = V s b ( M 0 +  SAM 0) -  VSB(M0)
^  a b ed

dVsB

ab d M *
(SAM 0)ab (3.41)

M0

Differentiating both sides with respect to the fluctuation, we find the matrix equation for 

pseudo-Nambu-Goldstone bosons (PNGBs) corresponding to Eq. 3.33.

M 25a M 0 9VsBd M
(3.42)

Mo

I t ’s im portant to notice tha t Mo has itself been affected by the presence of the breaking 

potential, M q —» Mo(6), and Eq. 3.42 is evaluated at the shifted v.e.v. Mo(b).

Explicitly expanding the linear sigma potential with the breaking term about the v.e.v. 

M0(6) = F{b) /V2 t ,  we find tha t the masses of the sigma and pions are given by

M l  =  ^  ( s j r  -  1 j  «  m l  + 6V 2 6 // , =  1 j  *  2^2  b / f  (3.43)

The pion mass agrees with the GMOR expression at 0(b).  The variation in the breaking 

potential from an axial transformation is

^ V sb  =  4Mi*i (3-44)
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Then Eq. 3.42 in the (cr, 7?) basis reads.

^ 777̂  +  6\ /2 6 / /  0

0 2y/2b / f

\

0

0

2y/2b / f

0 2y/2b / f  )

( \

V 2FQI

V2F02 

V V2F03

0

4601

4602 

V 4603 )

(3.45)

We find that the explicit computation of the PNGB masses in the linear sigma model is in 

agreement with the general PNGB formula Eq. 3.42 up to the order that we have worked

o(b).

In conclusion, we have discussed some general properties of theories with spontaneously 

broken global chiral symmetries. Using only the PCAC relation Eq. 3.4 and the algebraic 

relationships amongst the chiral Noether currents, one may derive the GMOR relation for 

the PNGB masses Eq. 3.16 as we have shown explicitly. We have summarized some of 

the other key results from current algebra studies including the Gell-Mann Okubo mass 

formula and Weinberg’s derivation of the pion scattering amplitudes. We introduced the 

SU(2) x SU(2) linear sigma model, and showed that it provides an explicit realization of 

these general features, including PCAC, the GMOR relation, and Goldstone’s theorem. 

This discussion has also served as an introduction to the renormalizable linear sigma model 

for the simpler case of N f  = 2 flavors. In Section 3.3, we will discuss a generalized linear 

sigma model for N f  flavors as an effective field theory.

3.2 Nonlinear Realizations of Chiral Sym m etry and Chiral 

Effective Field Theory

In the second half of Section 3.1, we studied the SU(2) x SU(2) linear sigma model whose 

Lagrangian contained only three (four) operators in the spontaneously broken (explicitly 

and spontaneously broken) case. Implicit in our discussion was an assumption of weak 

coupling, A <C 1 or rr?a <C (47r / ) 2, which allowed us to study the theory at tree level 

and omit loop effects. In addition, we did not introduce any higher dimensional operators 

into our linear sigma Lagrangian. The linear sigma model is renormalizable, so there is no
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mathematical obstruction to taking the cutoff arbitrarily large (or even to infinity, removing 

the cutoff). Yet if we apply the linear sigma Lagrangian as a model of the low lying states 

of a confining gauge theory, there must be an infinite tower of higher dimensional operators 

included to encapsulate the effects of the heavy states that have been integrated out of the 

theory. Including these higher dimensional operators promotes the linear sigma model from 

a renormalizable quantum field theory to an effective field theory.

In this section, we discuss some general considerations for chiral effective field theories. 

We begin by studying a particular strong coupling limit of the linear sigma model in which 

the a particle is decoupled from the theory. The resulting theory contains only pions 

and contains an infinite tower of higher dimensional operators. It is a particular case of a 

chiral effective field theory which involves only the (pseudo)-Nambu-Goldstone bosons of the 

spontaneously broken global chiral symmetry. We will then discuss the general framework 

for describing Goldstone bosons at low energy known as chiral perturbation theory. Crucial 

to this development will be the geometrical nature of Goldstone bosons, which transform 

nonlinearly under the chiral symmetry. We will conclude with some discussion of more 

general effective field theories.

3.2.1 In tegratin g  O ut th e  Sigm a

Consider the SU(2) x SU(2) linear sigma Lagrangian introduced in Eq. 

explicit chiral breaking term. Parametrized in terms of the sigma mass 

the Lagrangian is

C = i  ( d ^ M ]d ^ M )  +  ^  ( m ' m ) -  (3.46)

We would like to answer the question whether it is possible to remove the sigma from 

the theory as its mass becomes very heavy. Typically for a particle with mass m 2 and 

coupling y, we can remove the particle from the theory by taking m 2 —> oo while holding y 

fixed. Feynman graphs containing the heavy particle on internal lines will be suppressed by 

factors of the heavy particle propagator. However, in the case of the linear sigma model, 

the coupling also grows as m 2/ / 2, and one might worry tha t the limit m 2 —> oo does not

3.21 without any 

m 2 and v.e.v. / ,

47



exist. Nonetheless, a careful study of the perturbation theory shows tha t the contributions 

tha t grow with ra2 all cancel one another, leaving a finite and weakly coupled perturbation 

theory.

Taking this as a given, we will analyze the ra2 —> oo limit at the level of the path 

integral. In the path integral, the terms in the action proportional to m2 will lead to a 

rapidly oscillating phase as the a  mass is taken large. Stationary phase analysis dictates 

tha t the integral is restricted to the region in which the gradient of the integrand phase 

(the action) with respect to the integration variables (the fields) is zero. Thus, the limit 

ra2 —»• oo with f 2 held fixed leads to the constraint on the fields,

( = * { « ' * ) -  $ < « '" > ’) - •

-> M ab ( ( M ]M )  -  / 2)  =  0 (3.47)

The solution M(x)  = 0 is unstable for m 2 > 0. Therefore, the constraint becomes

( m ^ M ^  =  cr2 +  tt2 =  f 2 (3.48)

This is the same condition for the minimum of the potential, which followed from the fact 

tha t in this particular case the entire potential was proportional to  the parameter being 

taken to infinity. The field becomes frozen at the minimum of the potential, but the theory 

is not trivial because the minimum of the potential has flat directions -  the directions of the 

Goldstone modes -  and the field remains free to fluctuate in this moduli space. We apply 

the constraint by setting a = f  yT — nf2/ f 2. The entire potential is fixed to a constant and 

can be pulled outside the path integral, and the only nontrivial term in the action is the 

kinetic term with the constraint applied.

£  =  \  ( ^ p m )  =  I  m 2 +  <3-49>

This is the nonlinear sigma model. Expanding the denominator of the second operator 

leads to an infinite tower of pion interaction terms which encapsulate the effects of the
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sigma particle tha t has been removed from the theory. Notice tha t the nonlinear constraint 

Eq. 3.48 did not lead to any higher derivative operators; in the tower of pion operators, there 

are always only two derivatives. This is due to the fact tha t we took the strict m 2 —> oo 

limit. If we had expanded the linear sigma model for large but finite sigma mass, we would 

find tha t there are an infinite tower of higher derivative operators, an expansion in d2 j m 2.

3.2 .2  N onlinear R ealization s o f  C hiral S ym m etry

The nonlinear sigma model may be derived in a more standard form by choosing a basis 

for our linear sigma field M (x)  tha t makes the geometrical nature of the Goldstone bosons 

more explicit. In such a basis, the Goldstone bosons fields will transform nonlinearly under 

the chiral symmetry [91]. These more complicated transformation laws will reflect the true 

nature of the Nambu-Goldstone bosons as global coordinates on a manifold as we will show. 

Weinberg originally introduced the nonlinear representation of chiral symmetry for the pions 

of the SU(2) x SU(2) invariant theory [91], but the construction was soon generalized to the 

case of a general Lie group G breaking spontaneously to a subgroup H  C G [119,120]. We 

will first briefly review some key results for the general case following the discussion in [116] 

and then return to our example of the SU(2) x SU(2) linear sigma model.

Consider a theory with fields ip whose Lagrangian is invariant under transformations

ip —> g o ip (3.50)

for g £ G, where G is a compact Lie group. For this general discussion, we omit indices 

and denote the group action by “o”. The theory is spontaneously broken such that the 

vacuum is invariant under only a subgroup H  C G of the original symmetries. We denote 

the vacuum here as (ip) (not to be confused with our notation for the trace in the preceding 

discussion). Under an infinitesimal G-transformation, the vacuum transforms as

g o (ip) «  (ip) +  6 (ip) +  G(e2) (3.51)

where 8 (ip) =  0 (el ) and e is the small parameter in the infinitesimal group transformation.
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Recall from Eq. 3.33 tha t the Nambu-Goldstone modes are exactly the nonzero components 

of 8 (ip) expressed in an appropriate basis. We define a parametrization of our field ip as a 

G-transformation acting on the field when all Goldstone modes have been set to zero, which 

we denote by tp.

ip = 'y oip (3.52)

where 7 £ G.  Since 8 (ip) is a general linear combination of the Goldstone modes, the 

condition tha t ip has the Goldstone modes set to zero may be formulated by defining an 

appropriate G-invariant inner product ( ip\ , ip2 ) € K. and insisting tha t ip is orthogonal to 

8 (ip) with respect to this inner product.

( i P , 8 ( i P ) ) = 0  (3.53)

For the case of O ( N ) ,  the inner product is a simple dot product, and for the case of fields 

transforming linearly in a ( N f ,  N f )  representation of S U  ( N f )  x S \ J ( N f ) ,  the invariant inner 

product is (M i,M2) =  T t ( M \ M 2). For an infinitesimal G-transformation Eq. 3.51, the 

constraint on ip becomes

( i p , g o  (ip)) =  ( i p , ( i p ) )+ Q( e 2) Mg E G  (3.54)

The constraint is of course trivial for any G-transformation under which the vacuum is 

invariant. Only the G-transformation under which the vacuum is not invariant, the spon­

taneously broken transformations, give constraints on ip, and as such the number of inde­

pendent constraints is equal to the number of Goldstone modes.

There is a redundancy in the parametrization of the fields by Eq. 3.52. We may 

reparametrize the fields as

'ip = ' y o t o i p = ( ' y o h ) o  (h-1 o ip) = 7 ' o ip' (3.55)
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where h 6 H.  Plugging ?// into Eq. 3.54, we see that the condition is still satisfied.

(,h ~ l o $ , g o  ( ^ ) )  =  (h -1  o ( ^ »

$ , h o g o  (^)) =  (> ,h o  (^))

(3.56)

In the second line, we have used the G-invariance of the inner product. In the third line, 

we have used tha t tha t vacuum is invariant under H-transformations, and we have used 

the closure property of the group to write h o g = g' £ G. Since Eq. 3.54 holds for all

g € G, it also holds for ■0/. Therefore, 7 is only defined up to right multiplication by an

element of H.  Elements of G which differ only by right multiplication by an element of H 

may be considered equivalent in the mathematical sense. G may be partitioned into disjoint 

equivalence classes which are the right cosets and span the quotient space G/H .

The see in more detail how one parametrizes the coset space G / H , let us introduce 

generators t{ for the subgroup H satisfying the subalgebra [U,tj] = iCijktk• The remaining 

generators of G, which are the generators of the coset space G / H  are denoted x a■ The 

generators together satisfy the commutation relations,

=  iCijktk (3.57)

— iCidfjXf) (3.58)

[xa, — iGaf)iti “H iCabcx c (3.59)

which is the Cartan decomposition of the group G. Any finite group element g € G may be 

expressed as

g _  etZaXaelOiti (3.60)

where el6iti 6 H.  Since 7 6 G is only defined up to right multiplication by a group element 

of H, we may always standardize the definition of 7 by acting on the right with an H- 

transformation tha t sets all the 9{ =  0 and uniquely characterizes each element of the coset
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space.

7 (aO =  eiUx)xa (3.61)

This is the CCWZ parametrization [119,120] of the fields, which together with Eq. 3.52 

constitutes a nonlinear realization of the global symmetry and a parametrization of the 

coset space of Goldstone bosons. While this parametrization is always possible, there are 

many other choices for how one may parametrize the coset space in a given theory.

Now let us return to our example of the SU(2) x SU(2) linear sigma model. Rather 

than the linear parametrization Eq. 3.21, we now parametrize the degree of freedom of 

the matrix field by a nonlinear representation of the chiral symmetry. We write the heavy 

(non-Goldstone) degrees of freedom (ip) by setting ir = 0 in Eq. 3.21: ip = (a(x) /y /2) l .  

One can check tha t the heavy fields defined this way and the v.e.v. (ip) —> Mo = ( f / V 2)1 

satisfy the condition Eq. 3.54 under an infinitesimal axial transformation Eq. 3.30 (as well as 

trivially under a SUy(2) transformation which preserves the vacuum). Next we reintroduce 

the Goldstone fields as a SUl(2) x  SUr(2) transformation acting on the heavy a degree of 

freedom.

Notice tha t for this example, because the heavy fields ip are invariant under H-transformations, 

there is no ambiguity in how one parametrizes the coset space.

are parametrized by a unitary field which we denote by E(x). Under G-transformations, 

the fields H(x),a(x)  transform as

M(x)  = (L(x) ,R(x))  o =  L ( x ) R \ x )
a(x)
%/2

(3.62)

1 =  (LT)(RTy~^=l = LE)-^=  1

Any reparametrization of the Goldstone fields by right multiplication of an H-transformation 

(SUy (2) transformation) cancels when the heavy fields are H-invariant. Notice also tha t the 

quantity L(x)R)(x)  is unitary, and so in general for this simple case, the Goldstone fields

g o M ( x )  = (gL,gR) o (L,R)  o -^=1 =  (gLL ,gRR) o -^=1 = gLT1(x)g]R - ^ l  (3.64)
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Thus the transformations in terms of the component fields E and o  are

E(x) —>■ LY>(x)Ftf , a(x)  —>■ &{x) (3.65)

The transformation of the E(:r) field appears linear, but remember tha t E(x) is unitary; 

the individual components of the m atrix are constrained to obey E^E =  EE^ =  1 . As a 

result, the SUl(2) x  SUr(2) transformations act nonlinearly on E. We can parametrize the 

unitary matrix field as

£(x) =  e^ M * ) Ti / F* (3.66)

Then the complete nonlinear basis for the M{x)  matrix fields takes the form

M (x)  = e ^ . W T . / F . ^  (3 6 7 )

In this form, the benefit on the nonlinear field basis is clear. The cr{x) field parametrizes the 

radial distance from the origin in field space and the tt̂ x ) fields are the angular rotations 

of this radial vector. We emphasize tha t the field M(x)  still transforms linearly under 

SUl(2) x SUr(2), but we have chosen a complicated field basis to parametrize the degrees 

of freedom of the m atrix field in which the individual components cr, jr transform in a 

complicated nonlinear fashion.

In the nonlinear basis, the action Eq. 3.26 takes the form

c  =  \ {da)2 + T  i 9^ 9^ )  + ^  " § I ct4 (3-68)

The Goldstones no longer appear explicitly in the potential; however they are not non­

interacting. Indeed, an infinite tower of 0 ( d 2) interaction terms arise from the “kinetic 

operator” for the E field when one expands the exponent. In this basis, it is manifest that 

the pions couple proportional to their momenta. The constraint Eq. 3.48 when m 2 is taken 

to infinity in this basis simply becomes

— (j2 — f 2 (3.69)
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So tha t M  —> T,(x)f /y/2  as —> oo. The Lagrangian tha t is left after the sigma mass is

taken to infinity is

Goldstone bosons living in the coset space S U l(2) x  SU r(2)/SU v(2). It is equivalent via 

a field redefinition to the nonlinear sigma model Lagrangian tha t we derived in Eq. 3.49. 

To normalize the pion kinetic term in the conventional way, one should set = f  in 

this case. We have derived the Lagrangian by imposing a nonlinear constraint to remove 

the a  state from an otherwise renormalizable field theory. The resulting Lagrangian is 

nonrenormalizable. The leading order chiral Lagrangian contains an infinite tower of higher 

dimensional pion operators once one expands the exponent. At loop level, new divergences 

will be generated at each loop order requiring an infinite number of counterterms.

3.2 .3  E ffective F ield  T heory  and th e  C hiral Lagrangian

The chiral Lagrangian may be alternatively derived by a “bottom up” approach, making 

no assumptions about the UV physics and only considering the symmetry properties of 

the Goldstone boson fields. This is the approach of effective field theory (EFT), originally 

referred to as “phenomenological Lagrangians” [93]. Effective field theory starts with a “folk 

theorem” by Weinberg which states [93,95]:

If one writes down the most general possible Lagrangian, including all terms 

consistent with assumed symmetry principles, and then calculates matrix ele­

ments with this Lagrangian to any given order of perturbation theory, the result 

will simply be the most general possible S-matrix consistent with perturbative 

unitarity, analyticity, cluster decomposition, and the assumed symmetry prop­

erties.

So, to write down an EFT, or a phenomenological Lagrangian, one only needs to determine 

the fields present in the theory and the symmetry properties of these fields. One then writes 

down the Lagrangian containing all possible operators invariant under the symmetries.

(3.70)

This is the conventional form of the leading order chiral Lagrangian for the three Nambu-
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There are some details tha t are not captured in Weinberg’s folk theorem. Typically, 

an EFT will be used to describe the lowest lying states of a deeper, perhaps unknown 

theory existing at higher energy scales. As such, the EFT is naturally cut off because 

the low energy effective field theory is blind to poles arising in scattering amplitudes due 

to heavier states tha t have been omitted from the theory. Nonetheless, at energies well 

below the masses of omitted states, the EFT will provide a good approximate description 

of the matrix elements corresponding to low energies processes of light states. An EFT 

construction requires a separation of scales so tha t there is a sufficient range of energies 

between the masses of the dynamical degrees of freedom in the EFT and the cutoff imposed 

by the heavier states tha t have been omitted. A prototypical example is the Fermi Theory 

of weak interactions [121] which provides a good description of weak processes up to around 

the scale of the W boson mass.

A second consideration is tha t there will typically be an infinite number of operators 

that one can write down consistent with the symmetries, so one must formulate a measure of 

the relative importance of the operators known as a power counting rule. In a theory with 

relevant, marginal, and irrelevant operators, one can argue that the irrelevant operators 

will be suppressed in the infrared relative to the relevant and marginal operators operators, 

and therefore an ordering can be assigned based on the natural size of operator coefficients 

arising from RG running at loop level based on the engineering dimension of the operator 

(assuming no large anomalous dimensions arise).

Chiral Perturbation Theory may be constructed as an EFT of Goldstone bosons living 

in the coset space G / H  of a spontaneously broken global symmetry G —>• H.  Let us 

again focus on the case of SU(2) x SU(2) —> SU(2). We have shown in Eq. 3.65 that 

the Goldstone bosons are a parametrized by a unitary matrix field £ (2?) transforming as 

£  —>• under the global symmetry. The symmetry is nonlinearly realized on the 7q(x)

components defined in Eq. 3.66 due to the constraint of unitarity, E^E =  1. Because the 

Goldstone fields are unitary and there are no other fields on the theory, it is only possible to 

construct nontrivial scalar operators by taking derivatives of the E(x) field. We also insist 

that the Lagrangian respects parity E (t ,x)  —> E^(t, —x). Taking only these transformation 

properties into account and insisting that operators in the Lagrangian be invariant under
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chiral symmetry and under parity, we may write down an infinite number of operators such 

as

( a ^ s ^ s ) , ( a ^ s ^ s ) 2 , ( a ^ a ^ s )  ( a ^ a ^ E ) , ( ^ e ^ e ) 2)  , . . .  (3.71)

The most general Lagrangian that one can write down invariant under chiral symmetry and 

parity and containing the minimum number of derivatives is Eq. 3.70.

The infinite number of possible chirally invariant and parity even operators are organized 

in powers of derivatives (or momenta). We have discussed tha t Goldstone bosons couple 

to other particles and to one another proportional to their momenta [94]. If the momenta 

are sufficiently small relative to the cutoff of the EFT, then momentum factors can be 

considered small parameters, and the EFT can be organized as an expansion in small 

powers of momenta (derivatives).

This can be made more qualitative by examining a useful formula introduced by Wein­

berg [93]. In a theory without fermions, one can derive the following power counting formula 

tha t relates the overall power of momenta of a Feynman diagram in perturbation theory, 

Np, to the number of explicit momentum factors arising for each interaction vertex in the 

diagram Npj  and the number of loops L  [93,100,122].

Nv - 2  = Y , ( NP,i -  2) +  2L (3.72)
i

The power counting formula dictates that lower loop diagrams formed out of interaction 

vertices with higher powers of momenta contribute at the same order in the momentum 

expansion as higher loop diagrams formed out of interaction vertices with lower powers of 

momenta. So, it is possible to organize a systematic expansion in small powers of momenta 

divided by the EFT cutoff, d/A.  For example, working only at 0 ( p 2), only tree level 

diagrams constructed out of NPii = 2 interaction vertices contribute. At (9(p4), tree level 

diagrams constructed out of a single NPti = 4 vertex plus any number of Np^ = 2 vertices 

will contribute at the same order as one loop diagrams constructed out of any number 

of NPti = 2 vertices. Therefore, the number of derivatives that one must include in the

56



Lagrangian in directly related to the loop order to which one wishes to work. At tree level, 

one only needs to include the 0 ( p 2) operator in the chiral Lagrangian. At one loop order, 

one must include all the operators up to G(p4), and so on.

The chiral Lagrangian as we have presented it so far is an EFT for exactly massless 

NGBs. To include quark mass effects -  tha t is, sources of explicit chiral symmetry breaking 

-  one uses the method of spurion analysis to organize the symmetry breaking operators. 

The spurion is an auxiliary scalar field tha t mimics the effect of the quark mass matrix in 

the underlying gauge theory. In the gauge theory, the quark mass terms appear as

^Gauge D +  $ R j M (3.73)

where Ad is a Hermitian mass matrix in flavor space. Ad is typically taken to be diagonal as 

one works in the mass eigenbasis. For any constant nonzero matrix, Ad, the chiral symmetry 

will be explicitly broken. But notice tha t if the mass m atrix transforms as Ad —>■ LM.B)  

under the chiral symmetry, these mass terms would preserve the chiral symmetry.

As such, one can introduce a scalar field x(x ) int°  the chiral Lagrangian transforming 

as xix ) Lx{x )R) , and build operators that are invariant under the simultaneous trans­

formation of E(x) and x(x )- One then sets the spurion field equal to a constant matrix, 

X —» F?Ad, to break the chiral symmetry explicitly. Constructing all possible chirally (and 

parity) invariant operators in this way uniquely categorizes all possible breaking operators 

on symmetry grounds.

As with the derivative expansion, we must devise a power counting rule for ordering 

the infinite number of operators involving the spurion. Because the spurion is a small 

breaking of the symmetry, we will naturally have tha t operators with higher powers of the 

spurion are higher order in the power counting than operators with lower powers of the 

spurion. However, we must also decide how large powers of the spurion are relative to 

powers of derivatives. Because the spurion field is non-dynamical, there is no natural power 

counting assignment based on its engineering dimension; the spurion field does not have a 

predetermined engineering dimension.

Instead, one infers a power counting rule for the spurion based on the kinematic regime of
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interest and on the scale present in the underlying theory. For low momenta pions, one has 

tha t p «  oc where the the last proportionality follows from the GMOR relation. So, 

for low momenta pions -  which is typically what is considered -  one makes the conventional 

choice tha t the spurion counts as dimension 2 in the momentum expansion [100,123]. We 

emphasize, however, that this is a particular power counting assignment appropriate for a 

limited range of quark masses and a specific kinematic regime for the pion momenta [122]. 

Other power counting assignments for the spurion may be considered depending on the 

application (c.f. [124]). In our presentation of the linear sigma EFT framework for nearly 

conformal gauge theory in Section 3.3, the power counting of the spurion will play a crucial 

role in the formulation of the EFT.

To close our discussion of chiral perturbation theory, we write down some results for the 

observables Mx, Fn and the scattering length M ^ A  for the general SXJ(Nf) x SXJ(Nf) chiral 

Lagrangian at NLO [87,88].

effective field theory expression to the lattice data for N f  =  8 QCD.

3.3 Generalized Linear Sigma EFT

In this section we summarize new considerations for the application of the linear sigma 

model as a low energy description of nearly conformal gauge theories. This model has 

been developed in recent works by the present author and collaborators [75,89,90]. The 

model is motivated by a body of work from the lattice gauge theory community in studying

M l  =  M 2 1 +
N f M 2 
16tt2F 2

(3.74)

16?r2F 2

167t F 2 16it2F 2 V V

N p - 1 (2 — N f  +  2 N 2 +  iVj.)

(-2567T2 ((1 -  ~ ) ( L \  -  LI) + ^~f (LI + 2L\ + 2U2 +  L J))

(3.76)

(3.75)

where M 2 = 2B m q as usual. We will use these expressions in Section 3.4 when fitting
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gauge theories near and inside the conformal window, a subset of which we have reviewed 

in Section 1.4 and Chapter 2. One key feature of conformal and nearly conformal gauge 

theories exposed by these lattice studies is the ostensibly generic appearance of light flavor- 

singlet scalar states. The linear sigma model naturally incorporates a singlet scalar whose 

mass is tunable within the model. In the data for N f  = 8 QCD discussed in Chapter 2, 

we have also demonstrated how the infrared scale aAconf depends on the quark mass. In 

the linear sigma model, we will show tha t the vacuum expectation value (v.e.v.) which sets 

the scale of the model depends on the explicit chiral symmetry breaking potential at tree 

level, which may help to model the quark mass dependence of the infrared scales in the 

gauge theory. Finally, the linear sigma EFT naturally incorporates a multiplet of flavored 

scalar states. A study by the Lattice Higgs Collaboration (latHC) of the two flavors sextet 

model has reported tha t the flavored scalars become lighter than the p  meson close to the 

chiral limit [42]. If this is true, the inclusion of the flavored scalars in the EFT may extend 

the radius of convergence of the EFT. On the other hand, for an application in which the 

flavored scalars are not lighter than the cutoff, these states may be removed from the linear 

sigma EFT by an appropriate limit as we will show.

3.3.1 F ield  C ontent

The underlying gauge theory has the global symmetry breaking pattern SU L(Nf)  x SUr(1V/) x 

U v{  1) —> U y ( N f )  after the Ua { 1) symmetry is broken at the quantum level by topological 

effects. We have discussed in Section 3.2 tha t the EFT will be determined by a specification 

of the global symmetry group, a choice of field content transforming in some representa­

tion of the global symmetry group, and by a power counting rule to designate the relative 

importance of the operators allowed by the symmetries.

For a moment, let us consider the larger U(7Vy) xU (A j) group. We choose as our starting 

point for the fields to transform in a (bi)linear representation of U { N f )  x XJ(Nf ) .  This is 

the generalization of the original SU(2) x SU(2) linear sigma model [104,115] to N f  > 2, 

which was originally introduced by Levy [125] and later studied in many subsequent works, 

cf. [126-129]. As we have demonstrated in Section 3.2, the matrix field M{x)  must be 

complex valued in order for the representation to close for N f  > 2. The linear sigma fields
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transform in a (iVy, N f)  representation of U(iVy) x U(iVy),

M l  -> (3.77)

where L , R  £ UL,R.(Nf). The unbarred subscript (barred superscript) transform via lin­

ear action of a matrix in the fundamental (antifundamental) representation of Uz,(iVy)

( U W e  suppress the group indices in the remainder of the discussion where ever 

possible.

The complex representation has 2N j  real degrees of freedom. Depending on the parametriza- 

tion of the matrix field degrees of freedom, the component fields may transform in a variety 

of ways under the full group as we saw for the case of N f  = 2 in Section 3.2. However, 

under the unbroken subgroup Uv(Nf)  and under parity, we will always be able to identify 

N f  — 1 pseudoscalar pions and N j  — 1 scalar ao states, each set transforming irreducibly in 

adjoint representations of S U y  (iVy), as well as one pseudoscalar rf and one scalar a  state, 

each transforming irreducibly as singlets under SU (iVy). All of these states are mesonic and 

therefore transform as singlets under the Uy{ 1) baryon number symmetry. Thus, the Uy{ 1) 

symmetry is trivial in the EFT and we will neglect it going forward.

We may choose to express the 2N j  real degrees of freedom of M (x ) in a linear basis as 

follows.

M{x)  =  +  (a -^ )  +  i ^ x ) ) ^  (3.78)

This basis has the benefit of making the renormalizability of the theory more manifest be­

cause it is a linear function of the field components. However, it also masks the geometrical 

nature of the Goldstone bosons as coordinates on the coset space. We may alternatively 

use a nonlinear basis in which the Goldstones act as a group transformation on the heavy 

degrees of freedom. The field with the Goldstone degrees of freedom set to zero is

M(x) \^  ^  = S{x ) =  +  ai{x)Ti (3-79)

Then we reintroduce the Goldstones as a group transformation acting on the heavy degrees
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of freedom.

M (x)  = {L(x), R{x)) o S(x) = L(x)S(x)R^(x)  (3.80)

In the SU(2) case, the heavy state (cr(x)l) was invariant under SUy(2) transformations (H- 

transformations) and so it did not m atter how we chose to parametrize the Goldstone bosons 

in the coset space. Here, S(x)  transforms nontrivially under SUy(Afy) transformations. We 

choose to parametrize the coset such tha t the Goldstone bosons act entirely as a Ul (Nf ) 

transformation.

M (x)  =  (L(x), R(x))o R \ x f j  o(R(x), R(x))oS(x)  = ( l (x ) R \ x ), oS'(x)  (3.81)

where S'(x)  =  R(x)S(x)R)(x ) .  Notice tha t S(x)  is simply an expansion for a general 

Hermitian matrix in a basis of Hermitian generators. A vector transformation on a Her- 

mitian matrix yields another Hermitian matrix, therefore we can simply reexpand S ' ( x ) =  

cr ' (x ) /y /Nft  +  a^(x)Tj. Having established this, we will drop the primes. As in the SU(2) 

case, L(x)R)(x)  = E(x) is a general unitary matrix. Therefore, the nonlinear basis with 

our convention for the parametrization of the coset space is

M(x)  = H(x)S(x) (3.82)

where

E (x )=  exp , \ / ^ 7  (  v'jx) +  7Ti(x)Ti (3.83)
F

is a general unitary N f  x N f  matrix expressed as an exponential of a sum of Hermitian 

generators, and
r r (  nr}

(3.84)
W

is a general Hermitian N f  x N f  matrix expressed as a sum of Hermitian generators.

As in the SU(2) case, the nonlinear basis makes manifest many of the properties of the 

Goldstone bosons such as the fact tha t they are massless in the absence of explicit chiral 

symmetry breaking and that they are derivatively coupled to each other and to the heavy 

scalar states. We will choose to use the nonlinear basis not only as a m atter of convenience
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for these useful features, but also because of our treatm ent of the rf(x) degree of freedom. 

Under the unbroken SUv ( N f )  subgroup of the chiral symmetry, the various field components 

transform irreducibly only amongst themselves; tha t is, they do not mix with each other In 

particular, the a transforms as a SUy(iV/) singlet scalar, the rf transforms as a SUy(iV/) 

singlet pseudoscalar, the ai transform as SUv{N f )  adjoint scalars, and the 7Tj transform 

as SUv ( N f )  adjoint pseudoscalars. However, under the SUa (N/)  axial transformations, 

the components will mix with one another, and the way in which they mix under axial 

transformation will depend upon the choice of field basis. In the linear basis of Eq. 3.78, 

the rf{x) degree of freedom mixes with the other components under SUA{Nf).  But in the 

nonlinear basis of Eqs. 3.82-3.84, the rf{x) is a singlet under the complete chiral group 

SUh(Nf)  x SUR{Nf ) and only transforms under Uyi(l).

A study by the latKMI collaboration of the rf mass in many flavor QCD suggests that, 

as in QCD, the rf is heavier than the p and in fact that its mass increases relative to the p 

mass as the number of flavors is increased [130]. As such, we will choose to remove it from 

the EFT by setting this degree of freedom to zero by hand. In the nonlinear basis Eqs. 3.82- 

3.84, the multiplet remains closed under S U l(A /) x SUR{Nf)  chiral transformations when 

the rf degree of freedom is set to zero. But for the reasons that we have just described, in 

the linear basis of Eq. 3.78 the multiplet is not closed under chiral transformations when 

the rf degree of freedom is set to zero.

We emphasize tha t when the entire multiplet (cr, a*, 77', 7̂ ) is retained, any physical 

prediction is independent of the choice of field basis as it must be due to the invariance of 

the quantum field theory path integral under changes in the parametrization of the fields. 

However, when a component (the rf) of the multiplet is set to zero, the linear and nonlinear 

field bases are no longer equivalent because the degree of freedom tha t has been removed, 

while locally equivalent, is a different global degree of freedom in the two field bases. We 

will demonstrate this in more detail when we discuss nonlinear constraints.

We remark tha t a recent work by Meurice [131] which also considers a linear sigma model 

as a description of many flavor gauge theories chooses to retain the rf degree of freedom 

and to study the effect of determinant terms which explicitly break the U a {  1) symmetry. 

In this work, the take the viewpoint that the anomaly which gives rise to the rf mass is a
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UV effect which need not be encapsulated in the low energy EFT framework.

3.3 .2  L eading Order Lagrangian

Let us write down the leading order Lagrangian containing all operators constructed out of 

M(x)  and derivatives and invariant under the SUl(./V/-) x SU^(iV^) global chiral symmetry 

and parity. We define the leading order Lagrangian to contain all relevant and marginal 

operators based on the engineering dimension of the operator.

V0(M) = y  (m * m )  +  y  / ( A f tm ) 2\  (3.85)

£ = \  (d^Md^M) -  V0 (M) -  VSB (M)  (3.86)

Vo contains operators tha t are invariant under the full SU£,(i\fy) x SU r ( N j )  chiral sym­

metry. Vsb contains the operators tha t explicitly break the chiral symmetry down to the 

vector subgroup. For now, we allow the symmetry breaking potential to be general; we will 

specify its exact form in the discussion tha t follows. The chiral limit is the limit in which 

the symmetry breaking potential is set to zero, which we will show corresponds to vanishing 

quark masses in the underlying gauge theory. We will assume tha t the symmetry is spon­

taneously broken at the classical level, and therefore we will take fi2 < 0. It is convenient 

to reparametrize the couplings in the following way.

Vo(M) =  ( M tM ) +  M  ( (M tM )2)  (3.87)

We have exchanged the couplings /i2, Ai, and A2 for the couplings / 2, m 2, and m 2. The 

condition tha t the chiral symmetry is spontaneously broken in the chiral limit now corre­

sponds to m 2 > 0. We will show presently tha t / 2, m 2, and m 2 are the vacuum expectation 

value of the field, the mass of the flavor singlet scalar <r, and the mass of the flavored scalars 

ai , respectively, in the chiral limit. We will denote the values of these quantities away from 

the chiral limit by the corresponding capital letters F 2, M 2, and M 2.

The field takes on a vacuum expectation value which we choose by convention to be 

oriented along the a direction, (0|Maf,(x)|0) =  F j y /N f 5 ab, with F  determined by the ex-
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tremization condition 6V (M ) /S M (x )  = 0, which reduces to

P  m a da
= 0

(7 =  F , TTi=ai=0
(3.88)

After reexpanding the potential around this v.e.v., the tree level expression for the masses 

of the pions and scalars are given by

M l  =
d2VfSB

8 7T? cr=F, 7Tj=aj=0

3 F 2 1 d2V<
M ° m ° [ 2 F  2 ) "*" da 2

SB

,,2  2F2 m a ( F 2
M a  =  m a j 2 +  ~ Y P  1 j  +  da:?

cr—F, 7Tj=ai=0

a2vSB

(3.89)

(3.90)

(3.91)
cr=F, 7Ti=ai=0

Setting Vsb — 0, we confirm tha t F 2 =  / 2, and tha t the pions are

exactly massless NGBs.

As in the case of the SU(2) linear sigma model discussed in Section 3.1, the pion decay 

constant is not a separate scale from the scalar v.e.v. The axial vector current takes the 

same form, derived through the usual Noether procedure.

(3.92)

Expanding around the v.e.v. to leading order in the fields, we find

A? =
2 F

W f
d^Fi(x) +  . . . (3.93)

Finally, we plug into the matrix element Eq. 3.1 to find the pion decay constant with our 

normalization convention.

=  0 - F  (3.94)

It is an interesting feature of the linear sigma model tha t the pion decay constant is tied 

to the scalar v.e.v. In particular, through Eq. 3.88 the pion decay constant will depend on 

the chiral breaking potential Vsb at t ree level. In the lattice results that we have reviewed
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in Chapter 2, we saw that the chiral breaking operator (the quark mass) had a large effect 

on the infrared scale of the gauge theory, and tha t all massive quantities had a dominant 

behavior determined by the quark mass dependence of the infrared scale. Here we see an 

analogous situation in which the scale of the EFT, F,  depends on the chiral breaking at tree 

level. This effect is not present in the chiral Lagrangian, in which the pion decay constant 

only depends on the quark mass at loop level. This feature may make the linear sigma 

EFT framework better suited for describing the nearly conformal gauge theories discussed 

in Chapter 2.

3.3 .3  N onlin ear C onstrain ts and th e  r f

Next let us consider some limiting cases of the leading order linear sigma Lagrangian. We 

have discussed tha t the flavored scalar states in nearly conformal gauge theories correspond­

ing to the ai degrees of freedom may be lighter than the p close to the chiral limit in a nearly 

conformal gauge theory [42]. However, if the flavored scalar states turn out to be heavy, we 

may want to remove them from our EFT description. This can be achieved by taking the 

limit —> oo holding m 2 and / 2 fixed. As we have discussed when taking the sigma mass

to infinity in the SU(2) linear sigma model in Section 3.2, the field becomes constrained 

such tha t the terms in the Lagrangian proportional to the coupling that is being taking 

to infinity are set to their stationary value. In the case of the scalar mass being taken to 

infinity,

( n ,  (  (M tM ) 2)  -  < M tM )2)  =  0 (3.95)

Performing the functional differentiation and rearranging the expression, one finds that the 

nonlinear constraint imposed on the fields by taking the flavored scalar mass to infinity is

M fM  =  ( m ^M^  1 (3.96)

which is independent of the choice of field basis. In the nonlinear basis Eq. 3.82-3.84, this 

constraint is satisfied by simply setting a*(:r) =  0. In the linear basis Eq. 3.78, imposing the 

constraint is much more complicated and the flavored scalar degrees of freedom are fixed
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to a complicated function of the remaining (cr,7q) degrees of freedom. Another advantage 

of working in the nonlinear basis is tha t it turns out to be more straightforward to impose 

this constraint.

We can also consider taking the singlet scalar mass to infinity m 2 oo with f 2 and m 2 

fixed. Carrying out a similar analysis, the nonlinear constraint imposed on the fields is

M ^ m ) = f 2t  (3.97)

In the nonlinear basis, this constraint becomes a 2 +  a2 = f 2. In the linear basis, the 

constraint is a 2 +  a2 +  n 2 = f 2. Again we see tha t the nonlinear constraint is simpler in the 

nonlinear basis than the linear basis.

Finally, let us consider a situation in which we have retained the rf degree of freedom 

in Eq. 3.83, and now wish to lift its mass by introducing a term into the Lagrangian that 

explicitly breaks the Ua (1) symmetry. There is not a unique choice for this term, and 

various different Ua (1) breaking terms have been considered in the past (c.f. [128,129]). 

Let us consider a breaking term tha t is particularly simple for the nonlinear field basis 

Eq. 3.82-3.84.
1 /  F  V  n r XT 2

In det M  — In det M t (3.98)

It is easy to check that this term explicitly breaks the £/a(1) symmetry. In the nonlinear 

basis, d e tM  =  exp(iNfrj '(x) /F)  det S(x) , and the U a { 1) breaking term is nothing more 

than a mass term for the eta prime: (1/ 2)m 2,r)'(x)2.

As we have done for the flavored scalar mass and the sigma mass, let us consider the 

nonlinear constraint imposed on the field when the coefficient of the Ua (^) breaking operator 

is taken to infinity, m 2, —>• 00. The fields are constrained to satisfy

In det M  — In det M ^
5M  tfy)

Making use of the identity for the derivative of a determinant

d

= 0 (3.99)

d M ab
det M  =  det M ( M  1)^a (3.100)
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we arrive at the nonlinear constraint

In det M  — In det = 0 (3.101)

Unsurprisingly, in the nonlinear basis to this expression reduces to rf{x) = 0. So, when we 

set the rf(x) degree of freedom to zero in the above discussion, we can imagine tha t we had 

actually retained the rf and the Ua ( 1) symmetry and then had subsequently broken the 

symmetry by introducing the operator Eq. 3.98 and had taken its coefficient to infinity.

A different operator which explicitly breaks the Ua {X) symmetry which we may have 

considered instead is

V  D ca det M  +  det M  ̂ (3.102)

While this operator has the advantage of being polynomial in the fields, it does not con­

tribute only a simple quadratic term for the rf mass. Rather, it contributes a degree N f  

polynomial involving not only the rf degree of freedom but also the scalar degrees of freedom. 

In the nonlinear basis, the operator takes the form

ca d e tM  +  detM ^ =  2c^ cos(Nfr j , ( x ) / F )  det S ( x )  (3.103)

The nonlinear constraint tha t is yielded when ones takes the coefficient ca —> 00 is

det M  = det =  0 (3.104)

which in the nonlinear basis is

e ± i N f H z ) / F d e t  g ^  =  q (3 .1 0 5 )

which is not simply satisfied by setting rf{x) =  0.

Since there is no unique procedure for giving a mass to the rf degree of freedom, and 

because we have demonstrated tha t there is at least one simple way to remove the rf from 

the theory without affecting the other states, we feel tha t our prescription of simply setting 

the rf degree of freedom to zero by hand is justifiable. Continuing forward, we will omit
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the rf degree of freedom as we have already indicated, and we will retain the flavored scalar 

degrees of freedom bearing in mind the available option of taking their mass heavy relative 

to the other states.

3 .3 .4  C hiral B reaking and Pow er C ounting

Next we must specify the chiral symmetry breaking potential Vsb which encapsulates the 

effect of quark mass terms in the underlying gauge theory. We have already discussed 

spurion analysis in Section13.2 for introducing quark mass effects into the chiral Lagrangian. 

The analysis in the linear sigma framework is carried out in the same way. We introduce 

an auxiliary spurion field x i x ) transforming as x i x ) Lx(x)B) under chiral rotations. 

Vsb contains all operators constructed out of M{x)  and x(x ) tha t are invariant under the 

simultaneous chiral transformation of the linear sigma fields and the spurion field. The 

spurion is set to a constant matrix proportional to the quark mass matrix to break the 

symmetry.

x(x)  —> BM.  (3.106)

B is a low energy constant, and M. is the quark mass matrix which we take to be proportional 

to the identity for the case of degenerate quarks, M. =  m q 1. Mass split systems may be 

studied in this framework by making a different choice for the mass matrix.

In our discussion of the SU(2) linear sigma model, we wrote down the simplest chiral 

breaking operator, {x^M + M^y), for the sake of demonstrating the PCAC and GMOR 

relationships in the context of a simple model. In our discussion of the chiral Lagrangian, 

we have discussed how the spurion is incorporated into the power counting and weighted 

relative to the chiral limit derivative expansion. The choice tha t x  is counted as dimension 

two in the derivative expansion leads one to the GMOR relation and the Gell-Mann Okubo 

formula from the chiral Lagrangian. In the linear sigma EFT framework, we must identify 

a power counting rule for the spurion field tha t is appropriate to the underlying theory that 

the EFT is to describe, nearly conformal gauge theories. We focus on the kinematic regime 

in which the momenta are of the same order of magnitude as the particle masses, which fixes 

d /A  ~  M ( x ) / A. Derivatives and fields in Lagrangian operators contribute factors of order
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the particle masses or field v.e.v. to physical observables, so that the expansion parameters 

have an order of magnitude size

d M M ° m r m
a  ~~K  ~  ~K ~  ( 3 '1 0 7 )

We have discussed in Chapter 2 tha t the chiral breaking effects may be large in the 

underlying gauge theory at the distance from the chiral limit tha t is accessible to current 

lattice calculations. A good measure of chiral symmetry breaking in the gauge theory is 

rriqBn where B n = (0|V ^|0)|m?=o //^ . Close to the chiral limit M 2 = 2mqB-K as given by 

the GMOR relation, but further from the chiral limit m qB 1r does not correspond to M%. In 

the linear sigma model, we quantify the relative size of the chiral breaking effects through 

the quantity a ( m q).
r r i g B n  { M rT\ ar*jA2 )  «  1 (3-108)

We emphasize tha t a  is not a low energy constant of the EFT, but rather a derived quantity 

tha t is in one to one correspondence with B ^ m q and quantifies the size of explicit chiral 

symmetry breaking effects. By matching to the underlying gauge theory and choosing an 

appropriate normalization for the spurion field, one can show tha t B  =  B w a t leading order. 

Utilizing this fact together with Eq. 3.108, we assign the power counting rule a  to the 

spurion field. The linear sigma field M(x)  and the derivative operator are each assigned a 

power counting rule of of one. Then the EFT is constructed out of the small quantities

3 M(X) ^ ” <<1 (3.109)
A A VA2.

where A is the cutoff of the EFT. All terms in the Lagrangian taking the schematic form

N p  /  N m  /  \  N y

C D

such tha t the coefficient of an operator has the order of magnitude \ 4- n p- n m- 2Nx_ rphgjj 

the power counting dimension of an operator in the Lagrangian is defined to be D = 

Np +  Nm  T a.Nx .
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Symbol Operator 3/5 <  a  < 1 1 < a  <  3

Oi ( x ' m  + m ' x ) / /

02 ( m ^m } ( x*M  +  M ^ x ) / X

03 ^(M tM )(x t M  +  M *x)) / X

04 ( XtM  +  M tx) 2 / X

05 ( Xt x M tM ) / X

06 ( m ' m ) / X

07 ( x ^ M x ^ M  + M ^ x M ^ x ) / X

08 ( x ^ x )  ( x fM  + M ^ x ) / X

09 { ( x h K x ^ M  + M ^ x) ) / X

Table 3.1: Operator content of leading-order breaking potential in various power counting 
regimes, with a  the power counting rule for the spurion field.

For simplicity, we focus on the chiral breaking regime 3/5 < a. For a < 3/5 the number 

of chiral breaking operators proliferates. The leading order potential is taken to contain 

all operators allowed by the symmetries with power counting dimension D  < 4. Table 3.1 

catalogs the chiral breaking operators in the leading order potential for this range of power 

countings specified by a. The most general leading order breaking potential for this range 

of a  may be parametrized as
9

Vsb = —^ 2  C{Oi(x) (3.111)
i=1

where some of the 9 operators in Vsb may not appear at leading order, depending upon 

the value of a. After x  BM.,  there is a redundancy in the low energy constants B  and 

Cj. Physical observables only depend on the product Bc\  and not on c\ individually. To 

remove the redundancy, we set c\ = f  / 1J W j  which also guarantees tha t B  = at leading 

order.

We compute the leading order expressions for the masses and the scalar v.e.v. (Eqs. 3.88- 

3.91) for the general breaking potential Eq. (3.111). We redefine the coefficients to absorb 

factors for N f  in order to clean up the expressions: 02,9 =  y/Nfd2,9, C3 =  cs/Nf,  =
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3 /  2NfC^6, c5)7 =  c5j7, and c8 =  A y c8.

/ 2 +  rnl
2 Brriq^- +  6B m q(c2 +  c3)F

r

+2i?2ra2(4c4 +  c5 +  c6 +  2c 7) +  2B 3m 3 ^  CQ (3.112)

f
M 2 =2 B m q— +  2 B m q(c2 +  c3)E  +  8B 2m 2(c4 +  c7)

+  2B3m 3 °8 ^  Cq (3.113)

/  ̂  7̂2  ̂\
Ml  =™l ( 2  J 2  “  2  ) _  1 2 5 m ? ( C2 +  c 3 ) i^

-  2F?2ra2(4c4 +  c5 +  c6 +  2c 7) (3.114)
p 2  /  p>2 \

M a = m l j 2  +  m a  ( J 2- “  1 ) “  4 B m q ( c 2 +  3c3)F

-  2B 2m q(c5 +  Cq + 2cj) (3.115)

Eqs. (3.112)-(3.114) can be combined to eliminate F  and to express M% in terms of M%.

3M 2 -  M 2 +  m 2 =  4F?2ra2(2c4 -  C5 -  eg +  4C7) (3.116)

must be positive in a theory with underlying spontaneous symmetry breaking, so any

a  regime in which the operators 0 4)5 ,̂7 are highly suppressed will give rise to the leading

order inequality

M 2 > 3M 2. (3.117)

This inequality will be relaxed slightly at loop level and at higher orders in the EFT ex­

pansion, but if the theory is weakly coupled and if the higher dimensional operators are 

sufficiently suppressed, these effects will be much smaller than M%.

We have demonstrated in Chapter 2 that lattice computations of nearly conformal gauge 

theories have found the a  to be similar in mass to the pions over an appreciable range of

quark masses, in tension with the inequality Eq. 3.117. Therefore, the regime of chiral

symmetry breaking in the EFT tha t is appropriate for nearly conformal gauge theories 

should be one in which the right hand side of Eq. 3.116 is a positive value of order M%.
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To determine which power counting regimes are compatible with the lattice data, we use 

Eq. 3.110 to estimate the sizes of the operator coefficients 04,5,6,7 ~  O (1/A2). In addition, 

Eq. 3.109 implies tha t B m q ~  A2-QM “ . The approximate size of the right hand side of 

Eq. 3.116 is
/ m  \ 2a~2

4 5 2m 2(2c4 — c5 — c6 T 4c7) ~  M 2 ( • (3.118)

Therefore a  must be close to one in order for Eq. 3.116 to appreciably relax the inequality 

Eq. 3.117. Values of a  th a t are too large lead to the constraint Eq. 3.117, whereas values 

of a  that are too small require the operator coefficients 04,5,6,7 to be finely tuned.

Various subtleties arise in the linear sigma construction, and one should carefully work 

with the form of the model tha t is most appropriate for the underlying theory to which 

the EFT is being applied. This includes the choice of whether or not to retain the flavored 

scalar degrees of freedom, and the power counting rule for the spurion. We also remark 

that for N f  < 4 determinant operators are leading order in the power counting and may 

need to be included [90].

In conclusion, we have developed a new EFT framework based on the linear sigma 

multiplet which we believe is a promising versatile model for describing nearly conformal 

gauge theories. The model includes a flavor singlet scalar and a multiplet of flavor-adjoint 

scalars with parametrically controlled masses, a pion decay constant which varies with the 

quark mass at tree level, and a generalized power counting for the spurion fields which 

should help to model the large quark mass effects in lattice calculations of nearly conformal 

gauge theories at the currently accessible distances from the chiral limit. We hope that the 

linear sigma EFT framework will help to answer important outstanding questions about 

nearly conformal gauge theories relevant for phenomenology such as the chiral limit value 

of the sigma mass relative to the pion decay constant. Further details of the linear sigma 

EFT may be found in the paper currently in preparation [90].

In Section 3.4, we present a first test the linear sigma EFT framework by performing 

explicit chiral fits to the spectral data for N f  = 8 QCD [38,75] discussed in Chapter 2.
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F ig u r e  3 .1 : F it s  o f  N f  = 8 L S D  d a ta  [38, 75] in  la t t ic e  u n it s  ( to p )  a n d  n u c le o n  u n its  
(b o t to m )  to  N L O X P T . D a s h e d  lin e s  a re  f its  t o  in d iv id u a l q u a n t it ie s .  T h e  s o lid  p u r p le  
lin e  is  a  s im u lta n e o u s  fit o f  M n a n d  F n . F it  lin e s  a re  d ra w n  for th e  c e n tr a l v a lu e s  o f  fit 
c o e ff ic ie n ts . C o n s e r v a t iv e  3% error b a rs  h a v e  b e e n  a d d e d  t o  la t t ic e  d a ta  to  a c c o u n t  for  
p o s s ib le  s y s t e m a t ic  errors. T h is  fig u re  o r ig in a lly  a p p e a r s  in  R e f. [75].

3.4  F its  o f  C hiral E ffective T h eories to  L attice  D a ta

In  th is  S e c t io n , w e  p r e se n t  th r e e  s e p a r a te  a n a ly s e s  in  w h ic h  E F T  e x p r e s s io n s  are  fit to  

la t t ic e  d a ta  for M ^ , M a , a n d  F n in  N f  = 8 Q C D  c o m p u te d  b y  th e  L a t t ic e  S tr o n g  D y n a m ic s  

c o l la b o r a t io n  [38, 75] a n d  d is c u s s e d  in  C h a p te r  2. T h e  first tw o  a n a ly s e s  w ere  p r e se n te d  in  

a  r e cen t p a p e r  b y  th e  p r e se n t a u th o r  [89]. T h e  th ir d  a n a ly s is  is  a  fir st a t t e m p t  a t  f it t in g  

th e  lin e a r  s ig m a  E F T  fr a m ew o rk  p r e s e n te d  in  S e c t io n  3 .3  t o  d a ta . W e w ill  p er fo rm  fits  

to  th e  d a ta  in  b o th  la t t ic e  u n it s  a n d  n u c le o n  u n it s  in  a c c o r d a n c e  w ith  o u r  d is c u s s io n  o f  

sc a le  s e t t in g  in  C h a p te r  2. W e w ill u se  th e  y 2/d .o . f .  a s  a  m e a su r e  o f  th e  g o o d n e s s  o f  th e  

ch ira l fit, b u t  w e  e m p h a s iz e  th a t  th is  is  o n ly  a  q u a lita t iv e  m e a su r e . W e d o  n o t  h a v e  a  

fu ll u n d e r s ta n d in g  o f  th e  s y s t e m a t ic  errors o n  th e  la t t ic e  d a ta , a n d  so  w e  a d d  c o n se r v a t iv e  

3% errors w h e n  p e r fo r m in g  a ll f its . A s  su c h , th e  y 2/d .o . f .  c a n n o t  b e  c o n s id e r  a n  a b s o lu te  

m e a su r e  o f  th e  g o o d n e s s  o f  fit in  th e  u su a l w ay.

F ir s t  w e  in v e s t ig a te  a  fit o f  N L O  y P T .  S in c e  th e  ch ira l L a g r a n g ia n  d o e s  n o t  c o n ta in  

th e  s ig m a  as a  d y n a m ic a l  d e g r e e  o f  fr e e d o m  a n d  th e r e fo r e  m a k e s  n o  p r e d ic t io n  a b o u t  i t s  

m a ss , w e  fit o n ly  to  th e  G o ld s to n e  o b se r v a b le s  a n d  F n . T h e  N L O y P T  e x p r e s s io n s  are  

g iv e n  in  E q s . 3 .7 4 -3 .7 5 . T h e  r e s u lts  for th e  f its  are  p r e s e n te d  in  F ig . 3 .1 . B o th  M n a n d
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F ig u r e  3 .2: F it s  o f  N f  =  8 L S D  d a ta  [38, 75] in  la t t ic e  u n it s  ( to p )  a n d  n u c le o n  u n it s  
( b o t to m )  to  th e  lin e a r  s ig m a  m o d e l  w ith  V sb =  ~ Y ^ i= ici^ i-  D a s h e d  lin e s  are  f its  to  
in d iv id u a l q u a n t it ie s .  T h e  so lid  p u r p le  lin e  is  a  s im u lta n e o u s  fit o f  a n d  F n , a n d  th e  
s o lid  b la c k  lin e  is  a  s im u lta n e o u s  fit t o  a ll th r e e  q u a n t it ie s .  F it  l in e s  are  d r a w n  for th e  
c e n tr a l v a lu e s  o f  fit c o e ff ic ie n ts . C o n s e r v a t iv e  3% error b a rs  h a v e  b e e n  a d d e d  to  la t t ic e  d a ta  
to  a c c o u n t  for p o s s ib le  s y s t e m a t ic  errors. T h is  fig u re  o r ig in a lly  a p p e a r s  in  R ef. [75].

F n a re  in d iv id u a lly  w e ll fit b y  th e  N L O y P T  e x p r e s s io n  in  b o t h  la t t ic e  u n it s  a n d  n u c le o n  

u n its .  T h e s e  f its  a re  sh o w n  b y  th e  b lu e  a n d  red  d o t t e d  lin e s , r e s p e c t iv e ly , in  F ig . 3 .1 . A  

s im u lta n e o u s  c o m b in e d  fit t o  M n a n d  F\  w a s  p e r fo r m e d  for th e  d a ta  b o th  in  la t t ic e  u n its  

a n d  n u c le o n  u n it s .  T h e  b e s t  fit lin e  is  sh o w n  b y  th e  p u r p le  c u r v e s  in  F ig . 3 .1 . T h e  c o m b in e d  

fit t o  M n a n d  F'n in  la t t ic e  u n it s  y ie ld e d  a  m in im u m  y 2/ d .o . f .  o f  2 9 .7 7 . T h e  c o m b in e d  fit 

to  M n a n d  F n in  n u c le o n  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  o f  7 .6 5 .

N e x t  w e  c o n s id e r  a  fit t o  th e  lin e a r  s ig m a  E F T  w h e r e  th e  s y m m e tr y  b r e a k in g  p o te n t ia l  

o n ly  c o n ta in s  th e  o p e r a to r s  Oi, O2 , O3 sp e c if ie d  in  T a b le . 3 .1 . W h ile  th is  s y m m e tr y  b r e a k in g  

p o te n t ia l  d o e s  n o t  c o r r e sp o n d  to  a  p o w er  c o u n t in g  for a  p a r t ic u la r  v a lu e  o f  a  a s  p r e se n te d  

in  S e c t io n  3 .3 , it  is  in te r e s t in g  t o  t e s t  w h e th e r  th e  lin e a r  s ig m a  E F T  c a n  p r o v id e  a  g o o d  

fit u s in g  o n ly  ch ira l b r e a k in g  o p e r a to r s  th a t  are  first o rd er  in  th e  s p u r io n  fie ld . T h e  lin ea r  

s ig m a  E F T  e x p r e s s io n s  are  g iv e n  in  E q s . 3 .1 1 2 -3 .1 1 4 . T h e  r e s u lts  for th e  f its  are  p r e se n te d  

in  F ig . 3 .2 . E a c h  q u a n tity , Aln, F^, a n d  M a is  in d iv id u a lly  w e ll f it  in  b o th  la t t ic e  u n its  

a n d  n u c le o n  u n its .  T h e  r e s u lt s  for t h e  in d iv id u a l f its  a re  sh o w n  a s  d a sh e d  b lu e , red , a n d  

g r e e n  lin e s  r e sp e c t iv e ly . T h e  c o m b in e d  fit t o  o n ly  M n a n d  F\  is  s h o w n  b y  th e  p u r p le  c u rv es .  

T h e  c o m b in e d  fit to  a n d  Fn in  la t t ic e  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  o f  0 .6 . T h e
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F ig u r e  3 .3 : F i t s  o f  N f  =  8 L S D  d a ta  [38, 75] in  la t t ic e  u n it s  ( to p )  a n d  n u c le o n  u n it s  
(b o t to m )  t o  th e  lin e a r  s ig m a  m o d e l  w ith  V sb — — Ya= i  ci@i- T h e  s o lid  b la c k  lin e  is  a  
s im u lta n e o u s  fit  t o  a ll  th r e e  q u a n t it ie s .  F it  l in e s  are  d ra w n  for th e  c e n tr a l v a lu e s  o f  fit 
c o e ff ic ie n ts . C o n s e r v a t iv e  3% error b a rs  h a v e  b e e n  a d d e d  to  la t t ic e  d a ta  t o  a c c o u n t  for  
p o s s ib le  s y s t e m a t ic  errors.

c o m b in e d  fit t o  M 7r a n d  F/  in  n u c le o n  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  o f  1 .9 . W e a lso  

p e r fo r m e d  a  c o m b in e d  fit t o  a ll th r e e  q u a n t it ie s ,  M ^ , Fn, a n d  M G) sh o w n  b y  th e  b la c k  

c u r v e s . T h e  c o m b in e d  fit t o  a ll  th r e e  q u a n t it ie s  in  la t t ic e  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  

o f  6 .1 . T h e  c o m b in e d  fit t o  a ll th r e e  q u a n t it ie s  in  n u c le o n  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  

o f  3 .7 5 .

F in a l ly  w e  c o n s id e r  a  fit t o  th e  lin e a r  s ig m a  E F T  w h e r e  th e  s y m m e tr y  b r e a k in g  p o te n ­

t ia l  c o n ta in s  th e  o p e r a to r s  0\-Oq  s p e c if ie d  in  T a b le . 3 .1 , w h ic h  c o r r e sp o n d s  t o  th e  p o w er  

c o u n t in g s  w ith  3 / 5  <  a  <  1. T h e  r e s u lts  for th e  f its  a re  p r e se n te d  in  F ig . 3 .3 . W e  p er fo rm  

a  s im u lta n e o u s  fit to  F n , a n d  M a sh o w n  b y  th e  b la c k  c u r v e s . T h e  c o m b in e d  fit t o  a ll  

th r e e  q u a n t it ie s  in  la t t ic e  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  o f  1 .3 . T h e  c o m b in e d  fit t o  a ll 

th r e e  q u a n t it ie s  in  n u c le o n  u n it s  y ie ld e d  a  m in im u m  y 2/d .o . f .  o f  1 .4 .

In  su m m a r y , th e  le a d in g  o rd er  lin e a r  s ig m a  E F T  h a s  p r o v id e d  a  s u b s ta n t ia l  im p r o v e m e n t  

ov er  N L O y P T . In  f i t t in g  th e  G o ld s to n e  o b se r v a b le s , a n d  FV, N L O y P T  w a s  n o t  a b le  

to  p r o v id e  a  g o o d  c o m b in e d  fit. T h e  lin e a r  s ig m a  E F T  s ig n if ic a n t ly  r e d u c e d  th e  y 2/d .o . f .  

e v e n  w ith  o n ly  a  r e s tr ic te d  s e t  o f  o p e r a to r s , 0 \ -  O^. T h e  fu ll b a s is  o f  le a d in g  o rd er  ch ira l 

b r e a k in g  o p e r a to r s  0 \ -  O9 w a s  a b le  to  p r o v id e  a  g o o d  c o m b in e d  fit t o  M ^ , Fn, a n d  M a)
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at least qualitatively. In future works, we would like to extend this analysis to keep track 

of systematic errors in the lattice data and to extract the errors on the fit coefficients in 

the chiral fits. We would also like to fit to an expanded set of observables, including the 

7T7T scattering length studied in Section 2.2, in order to further test and constrain the linear 

sigma EFT.
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Chapter 4

N ew  M ethods for CFTs on the  

Lattice

The preceding sections have demonstrated some of the difficulties tha t arise when studying 

conformal (or nearly conformal) systems using traditional lattice methods. As one ap­

proaches a conformal fixed point, correlations grow without bound such that finite volume 

artifacts become more significant. While we have not yet discussed conformal correlation 

functions and critical scaling dimensions, it is generically true tha t correlation functions at 

a conformal fixed point take on power law rather than exponential form, which leads to 

difficulty in extracting the eigenvalues of an individual state. When studying a conformal 

fixed point numerically, one is interested in extracting the CFT data -  the scaling dimen­

sions and the OPE coefficients -  rather than extracting masses, but the explicit breaking 

of dilatation symmetry by the lattice regulator can lead to large lattice artifacts. Here we 

discuss a new formulation of lattice field theory tha t promises to ameliorate many of the 

challenges of numerical lattice studies of CFTs.

In developing lattice methodology, it is often useful to first recast the problem into 

a more agreeable form in the continuum and then to apply a lattice regularization tha t 

preserves the im portant symmetries. For studying conformal field theories, it is beneficial 

to make use of radial quantization [132] in which a Euclidean CFT on is mapped to the
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cylinder R x 1.

ds^d = dr2 +  r 2dftd_ l = e2t (dt2 +  d£l2d_^j  ->• dt2 +  dQ,d_ 1 = d s^xgd_i (4.1)

The coordinates r  and t are related simply by an exponential map, r = el . One sees tha t the 

two spaces are equivalent up to a Weyl factor i72 =  e2t. When one tunes the theory to the 

critical region, Weyl factors cancel out of homogeneous ratios of correlation functions such 

tha t the conformal field theory is insensitive to these local rescalings of the metric. The two 

spaces Rd and R x Sd_1 can be viewed as equivalent in this sense. Spherical shells at fixed r  

in Rd are mapped to spherical cross sections of the cylinder at fixed t in R x Sd_1, and the 

dilatation operator becomes an operator which generates translations down the cylinder. 

Correlation functions which exhibit power law behavior in the Euclidean distance at the 

conformal point are mapped to correlation functions which decay exponentially in t down 

the cylinder, and the timescale which governs the exponential decay is exactly the scaling 

dimension of the operator. Thus, in this formalism one is poised to extract nonperturbative 

CFT data from Euclidean correlation functions much in the same way tha t one would 

extract hadron masses from Euclidean correlation functions in lattice QCD.

In any numerical implementation of this idea, one will first have to compactify the space 

in some why such tha t the volume is finite. The simplest choice is to compactify the time 

direction with periodic boundary conditions such tha t the geometry becomes § x §d_1. The 

infinite volume limit will correspond to taking the circle infinitely long compared to the 

radius of the sphere; i.e. the aspect ratio goes to infinity. In two dimensions, the continuum 

geometry of radial quantization (after compactification) is § x § =  T2. That is, a 2-torus. 

At this point, one might ask how this is different from the starting point of a canonical 

lattice construction of flat, two dimensional space with periodic boundary conditions. The 

distinction comes in how one takes the infinite volume limit. Denote the radii of the the 

circles as R\  and R 2. The limit i?i, R 2 -> 00 with R 1/ R 2 fixed corresponds to § x § -> R2, 

while the limit R\  —)• 00 with R 2 fixed corresponds to § x § —>• R x S. Notice tha t the 

problem of large finite volume corrections is greatly alleviated in this geometry. Roughly 

speaking, doubling the temporal extent of the cylinder corresponds to squaring the physical
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volume in the original Euclidean space. Although, we remark tha t the map between the two 

spaces becomes more nontrivial after compactification, and it is only in the infinite volume 

limit tha t the two spaces are related by a simple Weyl factor.

Having identified a preferred formulation of the problem in the continuum, we may 

turn our attention to how this problem may be formulated on the lattice. It was pointed 

out by Cardy [133] tha t conformal invariance leads to universal scaling behavior for “in­

finite strips,” which was demonstrated explicitly in a variety of analytical and numerical 

calculations [134,135]. Cardy subsequently pointed out tha t for d > 2, the infinite strips 

R x Sd_1 are curved, which may lead to difficulties in using radial quantization as a nu­

merical (lattice) method for extracting scaling dimensions [136]. More recently, Brower et 

al. attem pted a lattice study of the 3D Ising conformal fixed point on R x S2 in which 

the 2-sphere was approximated by a regular icosahedron [137]. While the system exhibited 

critical behavior, the two point correlation function at criticality indicated a breaking of 

rotational symmetry at the I =  3 level that persisted in the continuum limit. This indicated 

tha t the full continuum isometries of the 2-sphere were not being recovered and therefore 

tha t the fixed point did not correspond strictly to the 3D Ising CFT on t rf. A better lattice 

approximation to the continuum S2 was needed. In the last five years, the work has been 

extended to incorporate smooth approximations to §2 [138-140]. The more complicated 

lattices necessary for a smooth approximation to §2 introduced additional complexity into 

the problem, including the need for explicit renormalization by quantum counterterms, and 

for simplicity the authors focused their study on scalar 04 theory in two dimensions on the 

§2.

Recently the authors have achieved a successful implementation of the methodology on 

§2 by demonstrating the recovery of the continuum limit and the successful extraction of 

CFT data corresponding to the minimal c =  1/2 Ising CFT in two dimensions [140,141] 

They also argue tha t the methodology is applicable not only for lattice studies of theories 

on spheres and cylinders, but more generally for nonperturbative quantum field theory on 

any smooth Riemannian manifold.

In this chapter, we review the methodology in i t’s most general form. We will discuss the 

construction of lattice actions for scalar fields [142] on simplicial lattices which approximate
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smooth Riemann manifolds. The construction has also been worked out for Dirac-Wilson 

fermions, and we refer the reader to Ref. [142] for details of the construction. In Chap­

ter 5, we present examples of the methodology applied to scalar field theories and fermionic 

theories on §2 and R x §2.

4.1 General Approach to Lattice Regularization of Quantum  

Field Theory on Curved Riemannian Manifolds

In this short section, we provide an overview of the general course of action for constructing 

a lattice regularized quantum field theory in curved space. Each step will be discussed in 

detail in the sections tha t follow. For a general quantum field theory consisting of scalar 

0, spinor ip, and vector A  fields on a Riemannian manifold {Ad,#}, the lattice construction 

consists of four steps:

1. Topology: The continuum (target) manifold Ad is replaced by an infinite sequence 

of simplicial complexes {A4CT}o-eN» each homeomorphic to the target manifold and 

composed of elementary d-simplices. a denotes the refinement of the simplicial com­

plex, which is proportional to the linear size of the system: a ex \ f N y  and N y  is the 

number of vertices (O-simplicies) in the complex.

2. Geometry: A simplicial metric ga is constructed at each refinement by assigning 

lengths lij to links (i j ) and extending the metric into the interior of each simplex 

with piecewise flat volumes, promoting the simplicial complex to a Regge Manifold. 

The construction is arranged such tha t limcr_).00(A4(T, ga) = (Ad, <7) corresponds to the 

continuum limit.

3. Hilbert Space: The field space is truncated at each refinement by introducing a 

finite element basis for the fields on each simplex. Alternatively, one may introduce 

form fields onto the Regge Manifold using Discrete Exterior Calculus. The truncated 

space of fields will define the Hilbert space of the quantum theory through the path 

integral.
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4. Quantum Correction: The lattice action is supplemented with explicit countert­

erms to cancel UV fluctuations sensitive to the nonuniformities in the Regge Manifold 

near the UV cutoff.

In what follows, we will focus on scalar fields. The construction for Dirac-Wilson fermions 

is detailed in Ref. [142], and detailed studies of gauge fields and general k-form fields are 

left to future works.

4.2 Topology: Simplicial Complexes

The first step is somewhat of a formality, but it is useful both as a conceptual step in 

the mathematical construction of a discrete manifold and as a practical step when writing 

code for numerical implementations of discrete manifolds. For each refinement, the target 

manifold is partitioned into a set of d-simplices which cover the manifold yielding a simplicial 

d-complex, and higher refinements are defined such that the number of d-simplices in M.a+i 

is strictly greater than the number of d-simplices in A4a. d-simplices are “glued together” at 

shared faces which are (d—l)-simplices, and these (d—l)-simplices are in turn glued together 

at shared id — 2)-simplices, iteratively giving a sequence: —>■ ctd-i ••• —>• 04 —> erg. This

hierarchy is specified by the boundary operator.

k
dak{i0...ik) = ' * r ( - l ) lak- i ( i 0...il ...ik) (4.2)

1=0

where i/ means to exclude this site, and the sign specifies the orientation of the simplex. Note 

tha t the simplicial complexes tha t we consider are homogeneous because every fc-simplex 

for k d is the face of a (A: T l)-simplex. At this point, it is im portant to recognize that the 

construction is purely topological in tha t we have not assigned lengths to links or specified 

the geometry on the interior of the d-simplices We have not assigned a metric anywhere. M.a 

is best described as an abstract simplicial complex, and a particular geometrical realization 

will be defined in Section 4.3 when we introduce lengths and a metric.

An abstract simplicial complex is a purely combinatoric description of the discrete geom­

etry, defined as follows. A family of nonempty finite sets is an abstract simplicial complex if
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for every set X  which is an element of the family and for every nonempty subset Y  C X , Y 

is also an element of the family. The definition implies a simplicial structure in tha t every 

subset of vertices of a simplex is itself a simplex of lower dimensionality, and therefore all 

subsets should be included as part of the simplicial complex. A set of cardinality k +  1 

in the family is a fc-simplex, and the elements of the set are vertices of the simplex. Note 

tha t we take these sets to be ordered such tha t the ordering specifies the orientation of the 

simplex: even permutations of set elements are equivalent, while odd permutations give the 

simplex with the opposite orientation. At the lowest level, the abstract simplicial complex 

provides a graph -  a set of points connected to nearest neighbors by links -  and the graph 

encodes the topology of the space. If one would prefer to work with nonsimplicial com­

plexes, a similar discussion could be carried out for more general abstract cell complexes. 

However, for the discussion that follows we prefer, for simplicity, to restrict the discussion 

to simplicial complexes.

For the first refinement Adi we typically choose our abstract simplicial complex to 

be isomorphic to the abstract simplicial complex of a regular polyhedron. This allows 

us to choose geometrical realizations tha t preserves a discrete subgroup of the continuum 

symmetries of the manifold. For a simple example, consider the target manifold M. =  M2. 

We may choose our first refinement

M i  = {{a, 6, c}, {a, &}, {&, c}, {c, a}, {a}, {6}, {c}} (4.3)

which is the abstract simplicial complex of a triangle with vertices a, 6, c. When we assign 

a geometrical realization to the abstract simplicial complex, the first refinement, {M \ ,g i )  

typically breaks the continuum isometries to the a discrete lattice subgroup, and higher 

refinements do not break the symmetries further. In the example of Eq. 4.3, we may 

choose the geometrical realization such tha t (M i , g i )  is a flat equilateral triangle, which 

preserves the discrete subgroup S$ C  0(2). The abstract simplicial complex of Eq. 4.3 

and its geometrical realization as an equilateral triangle are illustrated in the left column 

of Fig 4.1. Notice that the abstract simplicial complex itself, being purely topological, 

does not necessarily preserve any of the symmetries of the target space; it is simply a
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a b a d b
Figure 4.1: The abstract simplicial complex (top row) and a particular geometrical real­
ization (bottom row) for a simplicial complex consisting of a single 2-simplex (left column) 
and four 2-simplexes (right column).

partitioning. However, the partitioning must be chosen judiciously in order to enable the 

desired symmetries to be preserved when the particular geometrical realization is assigned.

In the examples tha t we consider, higher refinements are always constructed iteratively 

from the previous refinement. In the example of Eq. 4.3, we may construct the second 

refinement in an iterative way by introducing the vertices d, e, and /  on the links ab, be, 

and ca, respectively, and adding new links de, e f ,  and fd.  Note tha t when we do this ab 

(for example) is no longer a link in the simplicial complex because it has been broken by
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the point d. The resulting abstract simplicial complex is

M 2 ={{adf  }, {dbc}, {f e e }, {fde},  {ad}, {db}, {be}, {ec}, {c/}, { fa},  {de}, {ef } ,  { f d },

{a}, {b}, {c}, {d}, {e}, {/}} (4.4)

If we choose a particular geometrical realization in which the four 2-simplices in A i 2 are 

flat, equilateral triangles with the same edge length, then the S 3 symmetry persists at this 

refinement. The abstract simplicial complex of Eq. 4.4 and its geometrical realization as 

a regular lattice of equilateral triangles is illustrated in the right column of Fig 4.1. We 

can continue to refine iteratively in this way and continue to preserve the S 3 symmetry at 

all refinements by choosing our geometrical realization such that all 2-simplices in A4a are 

congruent, flat, equilateral triangles.

There are many schemes for constructing sequences of simplices complexes other than 

the regular, iterative method described here. In the classic works on random lattice field 

theory [143-145], simplicial complexes are constructed by throwing points at random in flat 

space and connecting the points with links to form simplices via the Delaunay construction 

[146]. Higher refinements are constructed by simply throwing more random points. In the 

random lattice construction, one attem pts to recover continuum symmetries by summing 

over many random lattices at each refinement. In our construction we take a different 

approach, choosing to preserve the largest possible discrete subgroup of the continuum 

symmetries and to recover the remainder to the continuum isometries dynamically in the 

infrared as in conventional lattice field theory. In the limit of infinite refinement, the 

simplicial complex contains an infinite number of infinitesimal partitions and is constructed 

to become equal to the target manifold, \iTaa^ OQM.a = A4.

At the level of abstract simplicial complexes, it is already possible to introduce form 

fields onto our discrete manifold. This makes sense intuitively because differential forms 

may be defined on a continuous manifold without specifying a metric tensor. On our discrete 

manifold (abstract simplicial complex), a A:-form field is defined as a map from fc-simplices



to a field K. which is typically either R or C.

(it;*, <7fc( i o , ik)) =  wk(i0, ..., I*.) <= K  (4.5)

We define this map to be linear on chains (formal sums of simplices) such tha t (wk, (Tk{io, «&) +  

o'fcO’o, jfc) =  Wfcfa), —,ik) +  WfcO'o, •••, jfc)- One may arrive at these properties by defining

the discrete differential forms to be integrals over simplices of continuously defined interpo­

lating fields, but we instead take these properties as definitions of the discrete differential 

fields. The generalized Stokes Theorem

{dwk,(Jk+i) = {wkldak+i) (4.6)

provides a natural definition of the discrete exterior derivative via the boundary operator 

Eq. 4.2.

fc+i

(d w k , (jfc_|_i(io) •••5 ^fc+i ))  =  d w k ( i Q i . . . ,  i k .\-1) — ] ( 1)  (w k , crk { io ,  ••., i / , . . . ,  1) )  ( 4 - 7 )
l= o

Note that because the boundary operator is closed, this definition of the discrete exterior 

derivative is automatically closed. It is instructive to look at the two simplest examples.

The discrete exterior derivative of a 0-form field 0 is a 1-form field given by

d(p(ij) = (f>(i) -  (f>(j) (4.8)

We recover the standard finite difference for the gradient of a scalar field. The discrete 

exterior derivative of a 1-form field U is a 2-form field given by

dU(ijk)  = U(ij)  +  U(jk)  +  U(ki) (4.9)

We arrive at a plaquette-like object associated with the 2-simplex o~2(ijk).

We emphasize again tha t we were able to introduce all of these structures without the 

need for a metric tensor, embedding spaces, or any notion at distances whatsoever. In
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F ig u r e  4 .2 : V is u a liz a t io n  o f  1 -fo rm s lio a n d  d u a l v e c to r s  ft1 o n  a  3 -s im p le x .

th e  n e x t  s e c t io n , w e  w ill  d is c u s s  p a r t ic u la r  g e o m e tr ic a l r e a liz a t io n s  t h a t  are  w e ll s u ite d  for  

p e r fo r m in g  rea l c a lc u la t io n s .

4.3  G eom etry: R egge C alcu lus

H ere  w e  in tr o d u c e  a  p a r t ic u la r  g e o m e tr ic a l  r e a liz a t io n  for th e  a b s tr a c t  s im p lic ia l  c o m p le x e s  

d isc u s s e d  in  th e  p r e v io u s  s e c t io n . W e w ill  fo c u s  o n  R e g g e  C a lc u lu s  [147] in  w h ic h  th e  

s im p lic ia l  c o m p le x  is  ta k e n  to  b e  p ie c e w is e  f la t . W ith  th is  c h o ic e , a ll  c u r v a tu r e  b e c o m e s  

c o n c e n tr a te d  a t  th e  d — 2 d im e n s io n a l h in g e s  -  a t  v e r t ic e s  in  tw o  d im e n s io n s ,  a t  lin k s  in  

th r e e  d im e n s io n s ,  e tc .  W e b e g in  b y  in tr o d u c in g  lin k  le n g th s  o n  o u r  s im p lic ia l  c o m p le x . T o  

ea c h  1 -s im p le x , o\(ij) ,  w e  a s s ig n  th e  le n g th  \cri(ij)\ =  kj.  T h e  in te r io r s  o f  th e  s im p lic e s  are  

ta k e n  to  b e  p ie c e w is e  f la t  v o lu m e s . T h is  l if t s  th e  a b s tr a c t  s im p lic ia l  c o m p le x  to  a  R e g g e  

r e p r e s e n ta t io n  o f  a  m a n ifo ld  w h ic h  is  c o n t in u o u s  b u t  n o t  d if fe r e n t ia b le . T h e  m e tr ic  o n  th e  

R e g g e  m a n ifo ld  is  p ie c e w is e  c o n s ta n t  a n d  is  d e te r m in e d  e n t ir e ly  b y  th e  s e t  o f  e d g e  le n g th s  

in  th e  s im p lic ia l  c o m p le x  a t  e a c h  re fin e m e n t: g —>■ gc ({hj})-

O n  e a c h  d -s im p le x , w e  m a y  c h o o se  C a r te s ia n  c o o r d in a te s  su c h  th a t  th e  m e tr ic  te n s o r  is  

s im p ly  th e  K ro n eck er  d e lta .  H o w ev er , it  is  c o m p lic a te d  t o  s p e c ify  th e  ra n g e  o f  th e  C a r te s ia n
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coordinates which span the interior of the simplex. A coordinate system better suited to 

simplicial geometry is barycentric coordinates. We introduce the barycentric coordinates 

as follows. Any point y in the interior of the simplex may be parametrized by

d

y =  E ? v " (4 1 °)
72 =  0

where rn are vectors pointing to the d + 1 vertices of the simplex and the overcomplete 

barycentric coordinates always satisfy one constraint J2n=o =  1- On the interior of the 

simplex, the barycentric coordinates satisfy 0 < < 1. Taking t q  as an arbitrary origin,

we may define the relative vectors ho =  fy — ro and use the constraint to eliminate the 

coordinate £° and remove the degeneracy of the overcomplete basis.

d

y = ro + '52£Hio (4.11)
2 = 1

This step has the downside of not treating the d +  1 vertices on equal footing. From the 

measure

ds2 = dy- dy = • ^ d g d g  (4.12)

we can read off the constant valued metric on each simplex in barycentric coordinates.

_  dy dy _  -  f  
9<r,tj — ' Q g  ~  HO ’ hO  (4.1cS)

It is clear from this discussion tha t the ko are components of a 1-form with basis elements 

d l The dual tangent vectors ft1 are given by

O  r \

V  = v e —r  = f?— r (4.14)

In component notation, the 1-forms and dual tangent vectors resemble a vierbein and dual 

vierbein, each carrying one orthonormal Cartesian coordinate index a and one barycentric 

coordinate index i.
diia

= and n * = - P -  (4.15)
d ?  a dna K J
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It is easy to check the duality relationships

nal% = 6j and n aliO =  Sa (4-16)
a i

The dual metric tensor is given by

glJ  = n l • (4.17)

and satisfies glJ g a,jk =  ^ -  A representative visualization of some of the geometrical struc­

tures tha t we have introduced in the barycentric coordinate description of simplices is shown 

in Fig. 4.2.

At this stage, we have constructed a continuous, piecewise flat (not differentiable) Regge 

manifold; we have introduced a convenient set of coordinates for doing geometry on sim­

plices; and we have written down the expressions for im portant geometrical quantities such 

as the metric tensor and the gradient operator in these coordinates. We are already equipped 

with all of the necessary machinery for writing down simple field theories on this Regge 

manifold. For example, the scalar <fi4 action is given simply by

S = j E  f
adEA4cr Jad

9a + ™ V (0  +  A04(O (4.18)

We emphasize that the above action is still an action for a continuum field theory on a 

continuous Regge manifold. We have not yet discretized the problem. We have only chosen 

a particular manifold A4a and coordinate system well suited for discretization. We will 

discuss the restriction to a finite field space in Section 4.4.

Next we introduce the Voronoi dual [148] of our Regge lattice which we denote by A i* . 

The dual lattice is composed of polytopes crj£ of dimension d —k dual to the original simplices 

fjfc. As in the original lattice, these polytopes form a hierarchy Og cr̂  specified by

the boundary operator Eq. 4.2. One may also think of the duality as a bijective map from 

simplices to polytopes in the dual lattice and from polytopes to simplices in the original 

lattice: *<Tfc =  cr£, * * a*. =  *cr£ =  cr*,. We my also introduce the coboundary operator *5* 

which maps from fc-simplices to (k + l)-simplices or from fc-cells to (k + l)-cells in the dual 

lattice. I t ’s action on a fc-simplex G M.a is given by straightforwardly applying Eq. 4.2



F ig u r e  4 .3 : R e g g e  m a n ifo ld  a n d  V o r o n o i d u a l in  tw o  d im e n s io n s . D o t t e d  lin e s  d e n o te  lin k s  
in  th e  d u a l c o m p le x  w h ile  s o lid  lin e s  d e n o te  lin k s  in  th e  o r ig in a l s im p le x . A  r e p r e se n ta t iv e  
lin k  <Ji a n d  a  d u a l lin k  o\  a re  s h a d e d  in  b la c k . A  r e p r e s e n ta t iv e  2 -s im p le x  <72 is  s h a d e d  in  
y e llo w , a n d  a  r e p r e s e n ta t iv e  d u a l 2 -c e ll  ctq is  s h a d e d  in  red . A  h y b r id  c e ll o\  A a\  is  sh a d e d  
in  b lu e .

a n d  th e  d u a lity  o p e r a to r .

* d * a k = Y  ° k + i -  Y  crfe+i (4-19)
{<Tfc+ilcrfeS5crfc+1} (tffc+i |—tffcCdo-fc+i}

T h e  p a r t ic u la r  d u a l c o m p le x  th a t  w e  fo c u s  o n  is  a  c ir c u m c e n te r  d u a l la t t ic e .  I t is  c o n ­

s tr u c te d  in  a n  i t e r a t iv e  fa sh io n . O n e  first id e n t if ie s  th e  c ir c u m c e n te r s  (m id p o in ts )  o f  lin k s .  

N o r m a ls  are  d r a w n  from  th e  c ir c u m c e n te r s  o f  th e  lin k s  in to  th e  in te r io r  o f  e a c h  2 -s im p le x .  

In s id e  o f  e a c h  2 -s im p le x , th e  th r e e  n o r m a ls  in te r s e c t  a t  e x a c t ly  o n e  p o in t  w h ic h  is  th e  c ir ­

c u m c e n te r  o f  th e  2 -s im p le x . T h is  p r o c e d u r e  c o n t in u e s  ite r a t iv e ly . O n c e  th e  c ir c u m c e n te r s  

o f  a ll (k — l ) - s im p l ic e s  are  id e n t if ie d , n o r m a ls  a re  d ra w n  fro m  th e  c ir c u m c e n te r s  o f  th e  

(k — l ) - s im p l ic e s  in to  th e  in te r io r  o f  e a c h  /c -s im p lex . T h e  k +  1 n o r m a ls  in te r s e c t  a t  e x a c t ly  

o n e  p o in t  in s id e  e a c h  ^ -s im p le x  w h ic h  is  th e  c ir c u m c e n te r . T h e  c o l le c t io n  o f  c ir c u m c e n te r s  

a n d  n o r m a l lin e s  c o n s tr u c te d  in  th is  w a y  fo rm  th e  g r a p h  o f  th e  V o ro n o i d u a l la t t ic e .  N o t ic e  

th a t  w ith o u t  in tr o d u c in g  a  m e tr ic  a n d  a  n o t io n  o f  d is ta n c e  o n  th e  lin k s , th is  d u a l g ra p h  

c o u ld  n o t  b e  c o n s tr u c te d . T h e  n o t io n  o f  g e o m e tr ic  d u a lity  is  c lo s e ly  t ie d  to  th e  m e tr ic  o f  

th e  sp a c e .
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In the circumcenter construction, dual cells are always orthogonal to the simplex in the 

Regge lattice to which they correspond. A consequence of this orthogonality is tha t hybrid 

cells a*; A <j formed from a fc-simplex and i t ’s dual polytope form a proper tiling of the 

Regge manifold, and the volume formula for the hybrid cell factorizes in a simple way.

\<yk^cl\ = k '( d ~ k) '-\ak \\at\ (4.20)

An example of a two dimension Regge manifold and its Voronoi' dual complex is shown in 

Fig. 4.3.

Having introduced the notion of geometric duality, we may also now define the discrete 

analog of Hodge duality for the discrete differential forms introduced in Section 4.2. Recall 

tha t for standard differential forms on manifolds, the Hodge star operation is an inner

product between the canonical volume form, e =  yfgdx1 A ... A dxd, and a k-form, w The

metric is a crucial components of Hodge duality. Accordingly the notion of distance is 

incorporated into the discrete Hodge star operation by defining it as follows [149].

tA t * Wk{cr*k) =  j K w k(ak) (4.21)
Fjfel \ak\

The discrete codifferential operator £ which maps (k T  l)-forms to k forms may be defined 

in terms of the discrete exterior derivative Eq. 4.7 and the Hodge star operator Eq. 4.21. 

I t ’s action on a (k +  l)-form is given by

6wk+i = ( ~ l )dk+1 * d* wM  (4.22)

W ith these definitions in place, it is possible to  write down the discrete Laplace-Beltrami 

operator. I t ’s action on a 0-form field (f) is given by

_ r  7 i(-\ _  l°~o(0l _  x(a\\ — ~  ^ 0 )  / a 9Q\
K » ! , - £ )  1̂ 1 to)I  1% ( ]

where Vff = \(J\(ij) A cr$(ij)\.

In this section we have introduced a Regge metric and its Voronoi dual. On the one
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hand, we are already equipped to study a discretized theory of form fields following the 

prescription of Discrete Exterior Calculus [149]. On the other hand, the Regge manifold 

is a continuous space and we may naively write down a field theory on this manifold as in 

Eq. 4.18. The latter approach consists of an infinite number of field degrees of freedom. 

In the next section, we discuss a different approach to constructing a discrete field space, 

the finite element approach, in which this continuous field space is truncated using a finite 

element basis.

4.4 Hilbert Space: Finite Elem ents and D iscrete Exterior 

Calculus

We have discussed how to introduce form fields on our discrete manifold in a natural way 

by associating numbers with simplices in the complex. This provides a simple construction 

of a naturally discrete Hilbert space, but we have distanced ourselves from the continuum 

description of the field theory by constructing our fields on the discrete manifold. Here we 

discuss an alternative construction of discrete Hilbert space which is a truncation of infinite 

number of degrees of freedom on a continuous Regge manifold.

4.4.1 F in ite  E lem ent C on stru ction  for Scalar F ield  T heory

Here we discuss the finite element construction for scalar fields (for further reading on finite 

element methods, we refer the reader to [150]). We truncate the field basis to a discrete set 

of degrees of freedom (f)n living at the sites of the Regge manifold. The field everywhere in 

the interior of each simplex is given by an interpolation.

d
= £  E n (x )<t>n (4.24)

n = 0

This defines our finite element basis. The elements obey E n(xm) =  <5̂  such tha t the inter­

polating field takes the proper value at the vertices. We impose the constraint J2t=o E n — 1 

in order to properly interpolate a constant function. Using this constraint to eliminate F°,
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we have
d

<f>a(x) = (f>0 +  E \ x ) (<Pi -  <f>o) (4.25)
i—1

Linear finite elements are the simplest choice. We take the finite elements to be the 

barycentric coordinates themselves, E *(£) =  The gradients of the field with respect to 

the barycentric coordinates are constant functions.

di<Pa{0 = 4>i-(f)o (4.26)

Plugging into our expression for the continuum scalar field action on a Regge manifold 

in barycentric coordinate Eq. 4.18, we find for the kinetic term in the action on a single 

simplex,

I° = \ [  (4.27)
 ̂ J(Ta

The integrand is a constant and the integral reduces to a simple Feynman parameter integral.

1) =  4  (4.28)
71 =  0

so that
1 d

Ia = 2d! ^  \ f99lJ(<Pi ~  <Po){(pj ~ <h) (4-29)
‘ i,j=1

This form of the scalar kinetic action is somewhat asymmetric looking. It is anchored

around the zeroth vertex of each simplex due to our arbitrary choice of an origin, but it is

nonetheless correct.

A more symmetric form is achieved by evaluating the action for the linear finite element 

fields in a different way. Recall that the gradients of the barycentric coordinates are the 

dual vectors, V£z =  n l. The gradient of (pa expanded in a linear finite element basis is

v ( e ^ « )  = E ^ "  (4-3°)
\n = 0  /  n=0

The duals vectors are constant on each simplex, so plugging into the action the integrand
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is once again constant and the integration yields a volume factor.

Ia  =  M  £  a 1 ■ Rm 4>i4>j =  ■ # (4>i - 4>i? (4.31)
n , m = 0 ‘ ( i j )

In the second equality we have made use of the identities |<7d| =  yfg^/d). and Yhm™™' =  0- 

Eq. 4.31 provides an appealing, symmetric expression which treats all edges in the simplex 

on equal footing. One can prove the equivalence of Eq.4.29 and Eq. 4.31 using the identity 

nm =  0 for the dual vectors.

Focusing for a moment on two dimensions, we may compute the dual vectors and the 

metric explicitly in terms of the edge lengths Z12, l23, h i  on each simplex. The expression 

for the action on a single triangle in two dimensions in terms of the edge lengths is

lo +s a 12~  -  ^ ) 2 +  (23) +  (31)

= ^ (12 (4>1 ; / 2)2 +  (23) +  (31) (4.32)

(3)where A \2 is the area of the triangle formed by the vertices 1, 2, and the circumcenter 

02(123). Summing the action over the entire simplicial complex yields the simple form

=  (4.33)
a  ( i j )  '  ^  '

Each link (ij) receives two contributions, one from each triangle that borders it. The

resulting weight is the area of the hybrid dual cell A® = lij\(j\(ij)\/2 = \ai(ij)  A crl(ij) |.

We find tha t in two dimensions, linear finite elements give an equivalent expression to the 

discrete exterior calculus action.

Let us remark briefly what happens above two dimensions. The weight of the finite 

element scalar action for each link is proportional to the inner product of dual vectors, 

which is proportional to the cosine of the hinge angle opposite the link. This weight vanishes 

when a hinge angles becomes right. On the other hand, the discrete exterior calculus action 

gives a weight which is proportional to the volume of the hybrid dual cell at the link. The 

hybrid cell volume vanishes when a right angle forms at a vertex k sharing a face with the
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link (ij), causing the face circumcenter to coincide with the link circumcenter and the dual 

volume to vanish. In two dimensions, the hybrid dual volume vanishes precisely when the 

dual vectors become orthogonal. In higher than two dimensions it is possible to have a 

right angled hinge without the hybrid dual volume vanishing. By this logic, it is easy to 

show by counterexample tha t the FEM action and the DEC action are not equivalent for 

d > 2. Therefore, in d > 2 the FEM and DEC methods provide alternate formulations for 

the classical scalar field theory, and the choice of classical action is a m atter of preference 

which should be explored for each particular application.

4.5 Interactions and Quantum Corrections

Thus far, we have presented a systematic method for constructing classical field theory on a 

discrete Riemann manifold. The geometric space was constructed using simplicial geometry 

and Regge calculus, and fields have been introduced through either discrete exterior calculus 

or the finite element method. Here we make some general remarks about interactions and 

the renormalizability of the quantum field theory. It is difficult to make general statements 

or to provide proofs about renormalizability for these lattice theories on curved spaces. 

Instead, we will motivate some general principles and guidelines for renormalizing these 

types of lattice theories by working in close analogy with existing methods for conventional 

lattice field theory.

4.5 .1  In teraction  Term s in D E C  and FE M

We have mainly focused on differential operators and kinetic terms in the preceding dis­

cussion. Interaction terms may be introduced into the Lagrangians following either the 

prescription of discrete exterior calculus or the finite element method. In the discrete ex­

terior calculus picture, a potential for scalar (0-form) fields may be introduced by simply 

summing with the proper metric weight. For example

Vint, d e c  D ^ ( i ) A p0p(i) (4.34)
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where the local metric at a site is the volume of the Voronoi dual cell. More generally, 

interactions between fc-form fields may be constructed by defining an appropriate inner 

product between forms [149]. We leave this discussion to a future work.

Alternatively, one may construct interactions following the finite element prescription to 

the letter by plugging the (linear) finite element expansion for the field into the continuum 

action and performing the integration over each simplex as we have done for the kinetic 

term. Strict adherence to the finite element prescription has the advantage tha t the finite 

element method constitutes a variational approach. The spectrum will always converge 

from above and thus high modes will be suppressed in the propagator which may mitigate 

lattice artifact due to irregularities in the lattice near the UV cutoff. However, the FEM 

prescription also generally leads to point-split expressions in the lattice action for local 

interaction terms in continuum. For example, the scalar mass term in two dimensions is 

given by

[ d2£\/<7<T02(O =  i23 (01 +  02 +  4*1 4- 0102 +  0203 +  030l) (4.35)Ja2( 123) D

These point split interactions complicate the lattice action, and for algorithmic purposes it 

is often preferable to consider ultralocal interactions. In our numerical studies presented in 

Chapter 5, we follow the DEC prescription and introduce ultralocal interactions.

4.5 .2  R enorm alizab ility

We will show by explicit example in Chapter 5 tha t a straightforward application of the 

D EC/FEM  formalism fails to produce a lattice quantum field theory that converges to the 

continuum field theory in the continuum limit. Here we present a method for correcting 

the D EC/FEM  action with explicit counterterms, leading to a renormalized lattice field 

theory with a well defined continuum limit. Proofs are difficult for lattice field theory 

on a general Regge manifold, so we will support our arguments by working closely with 

the established renormalization theorem for conventional lattice field theory and providing 

explicit examples to support our claims.

In conventional lattice field theory, one may think about renormalization either pertur-
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(a) 1-Loop (b) 2-Loop

Figure 4.4: Divergent Feynman diagrams in scalar (f)4 theory in two and three dimensions.

batively or nonperturbatively [151]. In perturbation theory, the lattice is simply a specific

all the divergences that arise in lattice perturbation theory as the lattice spacing a —> 0

atic method for keeping tracking divergences in lattice Feynman integrals. Reisz defines a 

lattice degree of divergence Deg(7) for a Feynman integral I  -  which is the counterpart of 

the superficial degree of divergence familiar from continuum field theory -  and proves that 

any integral with Deg(I) < 0 is finite and given by the naive continuum limit as a —> 0.

Let us consider the example of the 1-loop and 2-loop contributions to the mass in lattice 

cf)4 theory. The 1-loop Feynman integral is given by

propagator. Notice tha t discrete translation invariance plays a crucial role by allowing us 

to express the Feynman amplitude in momentum space. For a Regge manifold with no 

translation symmetry we will have to work in position space. Deg(Ji) = d — 2, so the 

diagram is divergent in d = 2, 3 dimensions. However, the divergence is independent of 

the momentum k flowing through the diagram -  it is a translationally invariant divergence. 

Therefore, we may introduce a single universal mass counterterm at 0 ( A) to cancel the 

divergence in perturbation theory.

type of UV regulator. It is natural to ask for a renormalizable field theory if one can remove

with a finite number of counterterms at each order. Reisz [152-155] introduced a system-

(4.36)

where q2 =  (2 /a)2 sin(ag/i/2 )2 is the standard momentum factor appearing in the scalar
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A slightly more nontrivial example is given by the two loop Feynman integral

  ̂ _  a 2 r /0 A  A '  i i  i
, m, a) (2tt)2 (27t)2 a2 + m 2 r —'— \ 2 \ 2 (4.37)

7r/a ( )  {  ) Q m 2 ^ q t  — k j  +  m 2

Deg(/2) — 2c? — 6, so the integral is divergent in three dimensions but not two. Unlike 

the 1-loop diagram, the 2-loop integral has a nontrivial dependence on the momentum k 

flowing through the diagram. We can reexpress the diagram trivially as a sum of the k = 0 

piece and the difference D 2 between the k =  0 piece and the k ^  0 piece: l 2(k,m',a) =  

72(0,ra; a) +  D 2{k,m-,a). It is straightforward to show tha t the momentum independent 

piece, / 2(0, 771; a), is divergence while the momentum dependent difference D2(k, tti; a) has a 

lattice degree of divergence less than zero and therefore has a well defined continuum limit. 

The divergent piece is canceled by a universal counterterm, and the momentum dependent 

piece becomes its naive continuum analogue when the lattice spacing is taken to zero. 

Thus, the theory is renormalized by a finite number of universal (position independent) 

counterterms, and the renormalized lattice theory gives Lorentz invariant expressions in 

perturbation theory as the lattice spacing is taken to zero. In this way, the continuum 

limit can be shown to exist in perturbation theory to all orders for a renormalizable lattice 

quantum field theory.

Nonperturbatively, the continuum limit of a lattice theory is taken by the Wilsonian 

approach of tuning to a critical point. Bare couplings are tuned so that the theory lies on 

the critical surface. On the critical surface, the renormalized values of masses and other 

dimensionful couplings go to zero or infinity as correlations in the theory become infinite 

(or as large as the box in a finite volume). Divergences are removed by tuning the bare 

couplings to the critical surface at incrementally smaller values of the lattice spacing, and 

one is left with a renormalized theory at the critical point in the continuum limit.

The renormalization of the DEC/FEM  action on a Regge manifold with require the 

introduction of perturbative counterterms in the UV using bare perturbation theory near 

the Gaussian fixed point followed by a nonperturbative tuning of bare couplings to the 

critical surface in order to remove divergences and take the continuum limit. Perturbatively, 

the UV divergent diagrams are sensitive to the irregularities in the Regge manifold are
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short distances. These diagrams will be position dependent due to the nonuniform UV 

cutoff inherent in the Regge manifold, leading to position dependent quantum corrections 

to physical amplitudes. If these contributions are not canceled by explicit counterterms, 

they prohibit the lattice theory from reaching the continuum limit.

To correct our DEC/FEM  action, we introduce explicit counterterms to precisely cancel 

the position dependent quantum loop corrections. The method relies on two key assump­

tions:

1. Only UV divergent diagrams are position dependent in the continuum limit.

2. The divergence is universal: it is position independent and equal to i t ’s continuum 

value.

The first property ensures that for superrenormalizable quantum field theories, the D EC/FEM  

action can be corrected by a finite number of counterterms. The second property ensures 

that the counterterms are finite functions on the manifold. In a sense, the renormalization 

procedure is a position dependent scheme change because it involves only finite corrections 

to the bare couplings. However, because these finite corrections are position dependent, 

they have physical consequences (unlike global scheme changes). After the perturbative 

counterterms are added to the DEC/FEM  action, the divergences are absorbed by tuning 

the bare couplings to the critical surface in the usual Wilsonian way.

Working in analogy with our discussion of perturbative renormalization for traditional 

lattice theory, a Feynman diagram in position space J(x, m; a) may be written as

7(x, m; a) =  I(m; a) +  D(x,  m; a) (4.38)

where

/(m ; a) =  ^ g a{x)I(x,  m; a)/ J 2  \j'9a(x) (4.39)
X X

and D = I  — I. If the Feynman diagram is UV divergent, it should have a position 

independent divergent piece and a position dependent finite piece (following from our key 

assumptions), I ( x , m; a) =  c(m; a) +  /(x , m; a) where lima_̂ .o c =  oo and lima_>.o f ( x ,  m; a) =
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/(# , ra). The average piece of the diagram becomes

/(ra ; a) = c(ra; a) +  /(ra ; a) oo as a —> 0 (4.40)

and the subtracted piece becomes

D(x,m',a)  = f(x,m-,a)  — f(m-,a) ^  f ( x , m )  — f ( m )  as a —> 0 (4-41)

The universal divergence can be left alone as it will be removed by tuning to the critical 

surface. We see tha t we need only to introduce a counterterm oc —D{x,m\,a) into our 

D EC/FEM  action to explicitly cancel the position dependent quantum corrections and 

reach the continuum limit. We will demonstrate this procedure with explicit examples in 

Chapter 5.
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Chapter 5

Num erical Studies of Lattice Field  

Theories on Riem ann M anifolds

In this chapter, we present detailed numerical studies of lattice actions constructed through 

the quantum finite element formalism of Chapter 4. First we will study the free scalar 

Laplacian on a nontrivial Riemann manifold. We will focus on confirming the property of 

spectral fidelity — the rapid convergence of the classical spectrum to the continuum — for 

our lattice operator, which is a crucial prerequisite for any lattice field theory constructed 

in this manner to converge to the continuum limit at the quantum level. Once we have 

established that the free theory rapidly converges to the continuum limit, we will turn our 

attention to interacting quantum field theory. In particular, we will study scalar 04 theory 

on §2 and I  x §2. Each of these actions contains an interacting infrared fixed point [156], 

corresponding to the 2D and 3D Ising CFT respectively. The former has been solved both 

as a CFT by identifying it with the minimal c =  1/2 CFT [157,158] and at finite lattice 

spacing on a square lattice by Onsager [159]. As such, it serves as a useful, nontrivial check 

of the QFE formalism. The latter is an unsolved problem tha t has recently been greatly 

constrained by the numerical conformal bootstrap program [160-163]. We hope tha t our 

study of the 3D Ising CFT in radial quantization with the QFE method will serve as evidence 

that this new lattice methodology is a useful tool for studying conformal systems in a way 

that is complementary to the conformal bootstrap approach.
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F ig u r e  5 .1: T h e  L = 3 r e f in e m e n t o f  th e  ic o sa h e d r o n  w ith  V  — 2 +  1 0 L 2 =  92  v e r t ic e s  or  
s it e s .  T h e  ic o sa h e d r o n  o n  th e  le f t  is  r e fin ed  in  th e  m id d le  w ith  L 2 =  9 e q u ila te r a l tr ia n g le s  
o n  e a c h  fa ce , a n d  th e n  o n  th e  r ig h t th e  n e w  v e r t ic e s  are  p r o je c te d  o n to  th e  u n it  sp h e r e . T h e  
r e s u lt in g  s im p lic ia l  c o m p le x  p r e se r v e s  th e  ic o sa h e d r a l s y m m e tr ie s .

5.1 Scalar L aplacian on th e  2-Sphere

In  th is  s e c t io n  w e  s t u d y  th e  sc a la r  L a p la c ia n  o f  E q . 4 .3 3  o n  th e  s p e c if ic  R ie m a n n  m a n ifo ld  

§ 2 . T h e  2 -sp h e r e  is  a  s im p le  e x a m p le  o f  a  m a n ifo ld  w ith  n o n z e r o  c u r v a tu r e , a n d  it  is  a  

m a x im a lly  s y m m e tr ic  s p a c e  w ith  is o m e tr y  g r o u p  0 ( 3 )  in  w h ic h  t h e  s p e c tr a l p r o p e r t ie s  o f  

th e  L a p la c ia n  are  w e ll k n o w n . T h is  w ill  a llo w  u s  t o  t e s t  th e  s p e c tr u m  o f  th e  la t t ic e  o p e r a to r  

a g a in s t  th e  k n o w n  c o n t in u u m  r e s u lts  a n d  t o  e s ta b lis h  th e  p r o p e r ty  o f  spectral fidelity.

F o llo w in g  th e  p r o c e d u r e  d e ta i le d  in  C h a p te r  4 , w e  m u s t  first c o n s tr u c t  a  s e q u e n c e  o f  

a b s tr a c t  s im p lic ia l  c o m p le x e s  w ith  th e  t o p o lo g y  o f  S 2 . In  o u r  c o n s tr u c t io n , w e  c h o o se

to  w o rk  w ith  a  R e g g e  m a n ifo ld  w h ic h  p r e se r v e s  th e  la r g e s t  p o s s ib le  d is c r e te  su b g r o u p  o f  th e  

is o m e tr ie s  o f  th e  sp h e r e . T h e  la r g e s t  d is c r e te  su b g r o u p  o f  0 ( 3 )  is  th e  ic o sa h e d r a l g r o u p , so  

w e c h o o s e  o u r  fir st r e f in e m e n t  A41 t o  b e  th e  a b s tr a c t  s im p lic ia l  c o m p le x  o f  th e  ic o sa h e d r o n  

c o n s is t in g  o f  12 v e r t ic e s , 30  e d g e s , a n d  20  fa c e s  w ith  th e  a p p r o p r ia te  c o n n e c t iv i ty  s a t is fy in g  

V  — E  +  F  =  2 for a  s p a c e  w ith  th e  t o p o lo g y  o f  th e  sp h e r e . H ig h er  r e f in e m e n ts  are  

c o n s tr u c te d  b y  in s e r t in g  a — I v e r t ic e s  o n  e a c h  ic o sa h e d r a l e d g e , a n d  c o n n e c t in g  th e m  in  

t h e  fa sh io n  o f  a  reg u la r  tr ia n g u la r  la t t ic e  o n  e a c h  o n  th e  20  fa c e s  o f  th e  ic o sa h e d r o n . E a c h  

ic o s a h e d r a l fa c e  is  d iv id e d  in to  a 2 tr ia n g u la r  fa c e s .

T o  p r o m o te  th e  a b s tr a c t  s im p lic ia l  c o m p le x  to  a  R e g g e  m a n ifo ld  w e  m u s t  a s s ig n  le n g th s  

t o  lin k s  a n d  c h o o s e  a  g e o m e tr y  for th e  in te r io r  o f  e a c h  s im p le x . I t is  s im p le s t  t o  d o  th is  

b y  w o r k in g  in  th e  e m b e d d in g  s p a c e  R 3. A  r eg u la r  ic o sa h e d r o n  is  c ir c u m sc r ib e d  in s id e  o f
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F ig u r e  5 .2 : L eft: T h e  21 +  1 s p e c tr a l v a lu e s  for m  E [—1,1] a re  p lo t t e d  a g a in s t  I for L =  8 . 
R ig h t:  T h e  e ig e n v a lu e s  a v e r a g e d  o v er  m  c o m p a r e d  to  th e  b e s t  fit c u r v e  I +  1 .0 0 0 0 2  12 — 
1 .2 7 4 5 5  x 1 0 ~5 /3 — 5 .5 8 2 4 6  x 1 0 ~6 /4 for L  =  128  a n d  I <  3 2 . T h e s e  r e su lts  o r ig in a lly  
a p p e a r  in  R e fs . [1 4 0 ,1 4 1 ]

a  u n it  s p h e r e  ( th e  ta r g e t  m a n ifo ld )  in  M3 . T h e  fa c e s  o f  th e  ic o sa h e d r o n  a re  d iv id e d  in to  

a  m e s h  o f  a 2 e q u ila te r a l t r ia n g le s . N e x t ,  th e  v e r t ic e s  o f  th is  m e sh  are  p r o je c te d  o u tw a r d s  

fro m  th e  o r ig in  o n to  th e  c ir c u m sc r ib in g  sp h e r e . T h e  s e c a n t  d is ta n c e s  ( in  th e  e m b e d d in g  

sp a c e )  b e tw e e n  th e  im a g e s  o f  th e s e  v e r t ic e s  o n  th e  sp h e r e  a re  ta k e n  t o  b e  th e  lin k  le n g th s  o n  

th e  R e g g e  m a n ifo ld . T h e  in te r io r s  o f  tr ia n g le s  a re  ta k e n  to  b e  f la t . A  v is u a l iz a t io n  o f  th is  

c o n s tr u c t io n  for a = 3 is  sh o w n  in  F ig . 5 .1 . In  w h a t  fo llo w s  w e w ill  u se  L = o to  d e s ig n a te  

th e  lin e a r  s iz e  o f  th is  p a r t ic u la r  R e g g e  m a n ifo ld .

In  tw o  d im e n s io n s , th e  D E C  a n d  F E M  p r e s c r ip t io n s  for th e  sc a la r  L a p la c ia n  o n  a  R e g g e  

m a n ifo ld  c o in c id e . F or th e  m a ss  te r m , w e  ta k e  th e  D E C  a p p r o a c h  o f  d e f in in g  u ltr a lo c a l  

in te r a c t io n s . T h e  a c t io n  for a  free  s c a la r  f ie ld  o n  o u r  R e g g e  m a n ifo ld  o f  F ig . 5 .1 is  d e n o te d

=  V<PiMij(pj =  -(pi [K{j  +  TTlidij] (pj (5 .1 )

W h e r e  th e  L a p la c ia n  m a tr ix  K  is  a n  a p p r o p r ia te  r e w r it in g  o f  th e  sc a la r  k in e t ic  a c t io n  

E q . 4 .3 3  in  m a tr ix  form . W e h a v e  d e fin e d  th e  p o s it io n  d e p e n d e n t  m a ss  t o  in c lu d e  th e  

m e tr ic , mi  =  y/girriQ.

O u r first n u m e r ic a l in v e s t ig a t io n  is  t o  c h a r a c te r iz e  th e  free  th e o r y  b y  s tu d y in g  th e  s p e c ­

tr u m  o f  th e  o p e r a to r  M .  In  a  c u r v e d  s p a c e , e ig e n fu n c t io n s  are  o r th o n o r m a l w ith  r e s p e c t  to  

th e  p r o p er  m e tr ic , a n d  a c c o r d in g ly  th e  m e tr ic  e n te r s  in to  th e  e ig e n v a lu e  e q u a t io n . T o  c o m ­

p u te  th e  e ig e n v e c to r s  a n d  e ig e n v a lu e s  o f  th e  m a tr ix  M , w e  so lv e  th e  g e n e r a liz e d  e ig e n v a lu e
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problem for the metric y/gi.

= £ " v » "  =  ( E n’° + m l )  y /g i t f  (5.2)

E n are the eigenvalues for the eigenfunction 0n, and E n,° are the eigenvalues at zero mass. 

The results are presented in Fig 5.2. The spectrum of the FEM /DEC Laplacian on the 

simplicial §2 rapidly approaches the continuum spectrum 1(1 +  1) with the correct 21 +  1 

degeneracy. One sees tha t the IR spectrum is close to the continuum result while the 

spectrum deviates at large I due to lattice artifacts; this is always true of lattice operators. 

Each eigenvalue converges to the continuum result like 1 /L 2 as L —>■ oo. The only difference 

between our FEM /DEC lattice Laplacian and a conventional lattice Laplacian on a square 

lattice is tha t we lack the convenient Fourier space techniques to solve for the spectrum 

analytically, and so we must make do with this numerical confirmation of spectral fidelity.

5.2 2D Ising CFT from Scalar 04 Theory on the 2-Sphere

Our first study of an interacting quantum field theory will be scalar </>4 theory on the 2- 

sphere. At the Wilson Fisher fixed point [156], scalar 04 theory on R2 becomes conformally 

invariant, and thus the same CFT should exist on any Riemann manifold tha t is related 

to R2 by a Weyl rescaling factor. A stereographic projection maps between the plane and 

the Riemann sphere. The stereographic projection map may be constructed by using the 

embedding space. In the embedding space R3, a sphere is placed with its south pole at the 

origin of the plane. Straight lines in the embedding space are drawn from the north pole 

of the sphere though a point on the sphere, and each line intersects a unique point on the 

plane. This generates a 1:1 mapping between points on the plane and the sphere. The point 

at infinity is mapped to the north pole. Adopting polar coordinates on the plane (r, <fi) and 

standard spherical coordinates on the sphere (9, p) the stereographic map between the two 

spaces is

r  =  212 cot (0/2) , cf) = ip (5-3)
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where R  is the radius of the sphere. One finds tha t the metrics between the two spaces are 

related by

ds^2 = dr2 +  r2d(j)2 — Q2(6 , ip) ( d62 +  sin2(9)dip2 ĵ — 0 2d s |2 (5.4)

The conformal (Weyl) factor is Q =  R  esc2(9 /2). Thus, <pA theory on the 2-sphere at the

critical Wilson-Fischer fixed point should reproduce the critical behavior of (pA theory on 

the plane, which is the minimal c =  1/2 CFT.

In introducing the quartic interaction, we continue to follow the DEC approach of defin­

ing ultralocal interactions. The complete two dimensional scalar action tha t we study is 

given by

S[(j)] = Sf[(f>] +  Xi(f>t = ^(pi [Kij + rriiSij] <pj +  A*04 (5.5)

Where the free scalar action Sf[(p] was defined in Eq. 5.1. As with the mass term, we have

defined the position dependent quartic coupling to include the metric, A* =  y/giXo.

A convenient quantity for assessing the critical behavior of the theory is the Binder 

cumulant [164] defined in terms of the magnetization density m  = \fgi<Pi/N where 

\fOi =  IV is normalized to be the number of vertices.

In the thermodynamic limit, the binder cumulant is zero in the disordered phase and is one 

in the ordered phase. It should take the form of a Heaviside function when plotted against 

the relevant coupling with the step occurring at the critical value of the coupling.

The left panel of Fig. 5.3 presents a numerical Monte Carlo study of the Binder cumulant 

for the FEM /DEC action Eq. 5.5. For modest lattice sizes L  ^  64 the Binder cumulant 

appears to be approaching a step function as a function of the relevant coupling fi^. However, 

at larger L, the curves begin to turn around and oscillate signifying an obstruction to 

reaching the continuum limit. The classical FEM/DEC procedure fails to converge to the 

continuum quantum field theory.

We can trace the issue back to our construction of the icosahedral Regge manifold in 

Fig. 5.1. The projection from the icosahedron onto the circumscribing sphere caused a dis­
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F ig u r e  5 .3: D e m o n s tr a t io n  o f  th e  fa ilu r e  o f  th e  c la s s ic a l  F E M /D E C  a c t io n  for q u a n tu m  
fie ld  th e o r y . L eft: th e  B in d e r  c u m u la n t  v s  1 /L  fa ils  to  c o n v e r g e  to  a  s t e p  fu n c t io n  as  
L  —> oo  in d ic a t in g  a n  o b s tr u c t io n  t o  c r it ic a lity . R ig h t:  ( 0 ( x ) 2 ) p lo t t e d  a s  a  fu n c t io n  o n  
t h e  sp h e r e . T h e  lo c a l  s u s c e p t ib i l i t y  is  s e n s i t iv e  to  th e  v a r ia t io n  in  th e  la t t ic e  s p a c in g . T h is  
f ig u re  o r ig in a lly  a p p e a r s  in  R ef. [140].

to r t io n  in  th e  lo c a l la t t ic e  s p a c in g . T h e  la t t ic e  s p a c in g  is  s m a lle r  n ea r  th e  12 ic o sa h e d r a l  

v e r t ic e s  a n d  la rg er  n ea r  th e  c e n te r  o f  th e  20  ic o sa h e d r o n  fa c e s . W h ile  th is  R e g g e  m a n ifo ld  

p r o v id e d  a  s m o o th  e n o u g h  in te r p o la t io n  o f  th e  c o n t in u u m  ta r g e t  m a n ifo ld  for th e  c la s s ic a l  

s p e c tr u m  t o  c o n v e r g e  in  F ig . 5 .2 , th e  q u a n tu m  th e o r y  is  m o re  d e m a n d in g  b e c a u s e  i t  is  s e n ­

s it iv e  to  a ll le n g th  s c a le s . Q u a n tu m  lo o p s  are  a ffe c te d  b y  th e  v a r ia t io n  in  th e  la t t ic e  sp a c in g  

a n d  c o n tr ib u te  d iffe r e n t  v a lu e s  to  th e  r e n o r m a liz e d  q u a rk  m a s s  a t  d ifferen t s i t e s  o n  th e  

la t t ic e .  W e m u s t  c o r r e c t  th e  F E M /D E C  a c t io n  E q .5 .5  b y  in tr o d u c in g  e x p lic it  g e o m e tr ic a l  

c o u n te r te r m s  fo llo w in g  th e  g e n e r a l p r o c e d u r e  d e ta i le d  in  S e c t io n  4 .5 .

(f)A th e o r y  is  s u p e r r e n o r m a liz a b le  in  tw o  d im e n s io n s . T h e  o n ly  d iv e r g e n t  d ia g r a m  in  

p e r tu r b a t io n  th e o r y  is  th e  o n e  lo o p  c o r r e c tio n  t o  th e  tw o  p o in t  fu n c t io n , w h ic h  c o n tr ib u te s  

a  lo g a r ith m ic  d iv e r g e n c e  to  th e  m a ss ..  I f  o u r  k e y  a s s u m p t io n s  fro m  S e c t io n  4 .5  are  c o r r e c t, 

th is  d ia g r a m  s h o u ld  c o n ta in  tw o  term s: a  universal d iv e r g e n c e  w h ic h  is  p o s it io n  in d e p e n d e n t  

a n d  e q u a l t o  th e  v a lu e  o f  th e  c o n t in u u m  d iv e r g e n c e , a n d  a  p o s it io n  d e p e n d e n t  f in ite  p ie c e  

w h ic h  m u s t  b e  c a n c e le d  b y  a n  e x p lic it  c o u n te r te r m  in  o u r  r e n o r m a liz e d  q u a n tu m  fin ite  

e le m e n t  a c t io n . W e  c a n  e x p l ic i t ly  ch eck  th e s e  p r o p e r t ie s  b y  s tu d y in g  th e  o n e  lo o p  a n d  tw o  

lo o p  d ia g r a m s  in  b a r e  la t t ic e  p e r tu r b a t io n  th e o r y . T h e  a m p u ta te d  1 P I  a m p litu d e  is  g iv e n

b y

Jlij =  — 12A iGaSij +  96\i\jG?j -I- (9(Aq) (5-7)

f/4 at Aq =  1. no CT

105



where we have defined the matrix propagator G = M ~ l . The diagrams for these two terms 

are shown in Fig. 4.4. When we considered these diagrams on a square lattice in Section 4.5, 

we were able to write down closed form expressions for them in Fourier space. W ithout the 

convenience of discrete translation invariance and Fourier methods, we are left to study the 

terms in Eq. 5.7 by numerically computing the lattice propagator G.

The continuum expression for the one loop diagram with a momentum cutoff is

^  ^  t  ̂ _  VS f A <fk 1 _  V 3 ( A2
c o n t i n u u m ^ ,Z iJ -  2 Jg (2 jr )2 j.2 +  m 2 “  8?r ln  ^ m 2

The extra factor of y/S/2 in the density of states is due to the fact tha t the hexagonal dual 

areas at a site on an equilateral triangular lattice have volume a2\ / 3/2 while the square 

dual cells on a square lattice have area a2, and this factor carries over into momentum 

space: (1 /N)Yhi  y/gl f A d2kp(k) where p is the density of states. We fix the physical 

mass m  so tha t the dimensionless mass in units of the effective lattice spacing vanishes like 

a2m 2 =  0 ( 1 / N )  as L —> oo. The UV cutoff is position dependent and given by A —> l/a*. 

Thus the approximate continuum expression for the one loop diagram reads.

G'*^ lnw + ̂ ln($) <5-9>
The first term  is position independent and diverges logarithmically as L —> o o . The second 

term approaches a finite value that depends on position as L —> oo .

We confirm these properties by directly computing the lattice Feynman diagram numer­

ically. The results are shown in Fig. 5.4. As discussed in Section 4.5, we divide the diagram 

into an average piece and a subtracted piece (the difference).

Gii — j y  ^>2 VoiGu +  '̂Ga — — ^ 2  (5.10)

The first term -  the average piece -  is shown on the left panel of Fig. 5.4. One sees that to 

high accuracy it behaves (and diverges) as a logarithmic function of N  with the coefficient 

\/3/(87t) given by the continuum expression. The second term -  the subtracted piece -  is 

shown plotted against In [y/gi] on the right panel of Fig. 5.4. The subtracted diagram is

(5.8)
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Fit: c + Q log(N )  
c =  0.64033(7)

Q =  0.069100(6)
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F ig u r e  5 .4: O n e  lo o p  d ia g r a m  Ga in  la t t ic e  p e r tu r b a t io n  th e o r y . L eft: T h e  a v e r a g e  v a lu e  
o f  th e  o n e  lo o p  d ia g r a m  (1 /N )  y/glGu p lo t t e d  a g a in s t  N  = 1 0L 2 +  2 is  sh o w n  t o  fit th e  
a p p r o x im a te  c o n t in u u m  e x p r e s s io n  ( \ / 3/ 87r) In iV  +  c «  0 .0 6 8 9 1 6  In A7" +  c. R ig h t:  T h e  o n e  
lo o p  c o u n te r te r m  w ith  th e  a v e r a g e  p ie c e  s u b tr a c te d  is  s h o w n  t o  a p p r o a c h  a s  f in ite  fu n c t io n  
a s L  —> oo , a n d  th is  f in ite  fu n c t io n  is  a p p r o x im a te ly  a  lin e a r  fu n c t io n  o f  In yjgi. T h is  fig u re  
o r ig in a lly  a p p e a r s  in  R e f. [140].

n o t  d iv e r g in g ; it  a p p r o a c h e s  a  f in ite  fu n c t io n  a s  L —> oo . F u r th e r m o r e , th is  f in ite  fu n c t io n  is  

g iv e n  a p p r o x im a te ly  b y  th e  c o n t in u u m  e x p r e s s io n , a lth o u g h  a  d e v ia t io n  c a n  b e  s e e n  a t  th e  

s m a lle s t  v a lu e s  o f  yjgl w h ic h  c o r r e sp o n d  to  th e  tw e lv e  s p e c ia l  ic o sa h e d r a l v e r t ic e s . T h e s e  

r e s u lt s  c o n fir m  o u r  k e y  a s s u m p t io n  th a t  th e  d iv e r g e n c e  is  p o s it io n  in d e p e n d e n t  a n d  u n iv e r sa l  

in  th a t  it  m a tc h e s  th e  c o n t in u u m  e x p r e s s io n .

W e rem a rk  t h a t  th is  is  h ig h ly  a n a lo g o u s  to  o u r  d is c u s s io n  o f  R ie s z ’s  p o w er  c o u n t in g  

for th e  o n e  lo o p  d ia g r a m  o n  a  sq u a r e  la t t ic e .  T h e r e , th e  k =  0  p ie c e  I \(k  = 0 , m ; a )  h a d  

d e g r e e  o f  d iv e r g e n c e  zero; it  w a s  d iv e r g e n t  a n d  h a d  n o  c o n t in u u m  lim it .  B u t  b e c a u s e  it  

w a s th e  t r a n s la t io n a lly  in v a r ia n t p ie c e , it  c o u ld  b e  c a n c e le d  b y  a  s in g le  c o u n te r te r m  in  

p e r tu r b a t io n  th e o r y  or r e m o v e d  n o n p e r tu r b a t iv e ly  b y  tu n in g  a s in g le  r e le v a n t c o u p lin g  to  

th e  c r it ic a l  su r fa c e . T h e  d iffe r e n c e  D(k,m ;a)  = I i( k ,m;a)  — I\{k  =  0 , m ; a )  w a s  f in ite  

a n d  t r a n s la t io n a lly  in v a r ia n t  a n d  h a d  a  w e ll d e fin e d  c o n t in u u m  v a lu e  g iv e n  b y  th e  n a iv e  

c o n t in u u m  lim it  -  i .e . it  w a s  c o m p le te ly  in n o c u o u s

In  o u r  c o n s tr u c t io n , w e  w ill  a llo w  th e  d iv e r g e n t  a v e r a g e  p ie c e  o f  Ga to  b e  r e m o v e d  

n o n p e r tu r b a t iv e ly  b y  tu n in g  th e  b a re  m a ss  t o  th e  c r it ic a l  su r fa c e . H o w ev er , th e  s u b tr a c te d  

p ie c e  is  t r o u b le s o m e  in  th a t  it  c o n tr ib u te s  a  p o s it io n  d e p e n d e n t  sh if t  t o  th e  r e n o r m a liz e d  

m a ss . W e m u st  in tr o d u c e  a n  e x p lic it  c o u n te r te r m  to  c a n c e l it .  T h is  c o u n te r te r m  a p p e a r s
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F ig u r e  5 .5 : L o c a l a p p r o x im a t io n  t o  tw o  lo o p  d ia g r a m  in  tw o  d im e n s io n s  y/dj^ij-  L eft: 
A v era g e  v a lu e  o f  d ia g r a m  p lo t t e d  a g a in s t  TV. R ig h t:  T w o  lo o p  d ia g r a m  w ith  a v e r a g e  p ie c e  
s u b tr a c te d  p lo t t e d  a g a in s t  yjgi for v a r io u s  v a lu e s  o f  L. T h e  r ig h t p a n e l o f  th is  fig u re  
o r ig in a lly  a p p e a r s  in  R e f. [140].

in  th e  a c t io n  a s

S c r  =  E  6Ad  G"-  O/W ) E j j (5 .1 1 )

w h e r e  w e  h a v e  sh o w n  th e  s u m m a t io n s  e x p l ic i t ly  for c la r ity . In  th e  r e s u lt in g  r e n o r m a liz e d  

p e r tu r b a t io n  th e o r y , th e  p o s it io n  d e p e n d e n t  c o n tr ib u t io n  fro m  t h e  o n e  lo o p  d ia g r a m  is 

e x a c t ly  c a n c e le d .

A s  a  ch eck  o f  o u r  o th e r  k e y  a s s u m p t io n  th a t  U V  fin ite  d ia g r a m s  b e c o m e  p o s it io n  d e ­

p e n d e n t  in  th e  c o n t in u u m  lim it ,  w e  a lso  s t u d y  th e  tw o  lo o p  d ia g r a m . U n lik e  th e  o n e  lo o p  

d ia g r a m , th e  tw o  lo o p  d ia g r a m  is n o n lo c a l.  T h is  c o r r e sp o n d s  to  a  n o n tr iv ia l  d e p e n d e n c e  o n  

th e  m o m e n tu m  k f lo w in g  th r o u g h  th e  d ia g r a m  w h e n  s tu d ie d  in  th e  c o n t in u u m  in  m o m e n ­

tu m  sp a c e . In  th e  sp ir it  o f  d r o p p in g  h ig h e r  d e r iv a t iv e  te r m s  in  a  m o m e n tu m  e x p a n s io n , w e  

c a n  r e p la c e  th e  tw o  lo o p  d ia g r a m  b y  a  lo c a l a p p r o x im a tio n .

96XiXjGfj ~  96Xi(J^  XiGfi)Sij
l

(5 .1 2 )

W e in v e s t ig a te  th is  lo c a l a p p r o x im a t io n  to  th e  d ia g r a m  b y  a g a in  d iv id in g  it  in to  th e  a v e r a g e  

p ie c e  a n d  th e  s u b tr a c te d  p ie c e . T h e  r e s u lt s  are  g iv e n  in  F ig . 5 .5 . N o te  th a t  w e  m u s t  m u lt ip ly  

t h e  d im e n s io n le s s  la t t ic e  d ia g r a m  b y  1/TV fs  a2 t o  g e t  th e  c o r r e c t  d im e n s io n fu l d ia g r a m  w ith  

u n its  o f  ( m a s s ) - 2 . T h e  le f t  p a n e l sh o w s  th a t  th e  v a lu e  o f  th e  d ia g r a m  a v e r a g e d  o v er  th e  

l a t t ic e  a p p r o a c h e s  a  c o n s ta n t  v a lu e  lik e  0 ( 1 / N )  a s  L  ->  oo . A s  e x p e c te d ,  th e  d ia g r a m
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F ig u r e  5 .6 : B in d e r  c u m u la n ts  for th e  q u a n tu m  f in ite  e le m e n t  sc a la r  0 4 a c t io n  o n  § 2 . L eft: 
T h e  fo u r th  b in d e r  c u m u la n t  U4 v s  in v e r se  la t t ic e  s iz e  1 /L .  T h is  f ig u re  o r ig in a lly  a p p e a r s  in  
R ef. [140].

c o n ta in s  n o  d iv e r g e n c e . In  th e  r ig h t p a n e l, w e  se e  th a t  th e  s u b tr a c te d  d ia g r a m  is r a p id ly  

a p p r o a c h in g  zero . T h e  d ia g r a m  h a s  n o  p o s it io n  d e p e n d e n c e  a s  L  —> 00 . T h is  is  a n  e x p lic it  

c o n fir m a tio n  o f  o u r  first k e y  a s s u m p t io n  t h a t  U V  f in ite  d ia g r a m s  a re  p o s it io n  in d e p e n d e n t  

in  th e  c o n t in u u m  l im it .  W e h a v e  n o  n e e d  t o  in tr o d u c e  a n  e x p lic it  tw o  lo o p  c o u n te r te r m .

5.2.1 C ritica lity  and th e  C ontinuum  Lim it o f th e  Q FE A ction

W e r e n o r m a liz e  o u r  f in ite  e le m e n t  a c t io n  th r o u g h  th e  a d d it io n  o f  th e  o n e  lo o p  c o u n te r te r m  

E q . 5 .1 1 . W e refer  to  th e  r e s u lt in g  a c t io n  a s  th e  quantum finite element  (Q F E )  a c tio n :  

S[fi] — Sf[4> ] +  5 in t[0 ] +  'S 'ct[0]- W e c o u ld  j u s t  a s  w e ll h a v e  c a lle d  it  th e  q u a n tu m  d isc r e te  

e x te r io r  c a lc u lu s  a c t io n , b u t  w e  c h o o s e  t o  u se  t h e  fo rm er  te r m . T o  a s s e s s  th e  c r it ic a l  b e h a v io r  

o f  th e  Q F E  a c t io n , w e  o n c e  a g a in  s t u d y  th e  fo u r th  B in d e r  c u m u la n t  o f  th e  m a g n e t iz a t io n  

E q . 5 .6 . T h e  r e su lt  is  p r e se n te d  in  F ig . 5 .6 . T h e  B in d e r  c u m u la n t  w a s  c o m p u te d  o n  v e r y  

la r g e  la t t ic e s  u p  to  L  =  8 0 0  a n d  for v e r y  f in e ly  s p a c e d  r e le v a n t c o u p lin g s  /Oq n ea r  th e  c r it ic a l  

su r fa c e . T h e r e  is  n o  v is ib le  o b s tr u c t io n  to  c r it ic a l i ty  a t  th e s e  la r g e  la t t ic e  s iz e s , a  m a rk ed  

im p r o v e m e n t  o v er  th e  u n r e n o r m a liz e d  f in ite  e le m e n t  a c t io n  in  w h ic h  th e  B in d e r  c u m u la n t  

sh o w e d  v is ib le  fr u s tr a t io n  o n  s ig n if ic a n t ly  c o a rser  la t t ic e s ,  n ea r  L  =  100 . W e in te r p r e t  

F ig . 5 .6  a s  s tr o n g  e v id e n c e  t h a t  th e  Q F E  a c t io n  e x h ib it s  g e n u in e  c r it ic a l b e h a v io r  a n d  th a t

nl  =  1.822440 
nl  =  1.822430 
H20 = 1.822420 
/d  =  1.822410 
Hi = 1.822400 

= 1.822390 
nl  =  1.822380
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the continuum limit exists as L  —> oo with no obstruction.

A more quantitative assessment of the magnetization moments and Binder cumulants 

may be carried out through a finite size scaling analysis, details of which can be found 

in the recent work [140]. The result for the critical values of the fourth and sixth mag­

netization Binder cumulants [166] from the finite size scaling analysis are found to be 

Ua,ct — 0.85020(58) (90) and U§,cr = 0.77193(37) (90). We compare these results to the con­

tinuum values of the critical Binder cumulants. In the continuum, magnetization moments 

are computed from CFT correlators by integrating n-point functions over the manifold.

r n d V  /------
m n = (M n) = J ^ Y l  -^\/9^){<f>(xi)...(f>{xn)) (5.13)

As such, the critical values of the magnetization moments and of the Binder cumulants 

are geometry dependent quantities; under conformal mappings, they are “covariant” rather 

than invariant. The n-point correlation functions of the 2d Ising CFT may be constructed 

in principle for any n [157, 158,167,168]. Explicit expressions have been written down 

previously for the 4-point and 6-point correlation functions [169]. The two-point correlator 

integrated over the sphere is a closed form expression [165].

7112 = = £  2 ( 2 - 2 c L 12)1/8 , W l 2  =  ^  (5' 14)

The task of integrating the four- and six-point correlators over the sphere is more non­

trivial. The fourth magnetization moment m 4 is an eight dimensional integral which may 

be reduced to a five dimensional integral using rotational invariance on the sphere. Deng 

and Blote [165] compute the fourth magnetization moment using 1000 independent Monte

Observable QFE +  FSS Analytic Deng and Blote Analytic Brower et. al.
Ua 0.85020(58)(90) 0.8510061(108) 0.8510207(63)
U6 0.77193(37) (90) N/A 0.7731441(213)

Table 5.1: Values for the fourth and sixth Binder cumulants for the Ising CFT on the 2- 
sphere. The second column shows results from the Monte Carlo and subsequent Finite Size 
Scaling (FSS) analysis of the quantum finite element (QFE) action [140]. The third and 
fourth columns show results from numerically integrating the analytic conformal correlators 
by Deng and Blote [165] and Brower et. al. [140] respectively.
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F ig u r e  5 .7 : F o u r th  B in d e r  c u m u la n t  in  th e  q u a n tu m  f in ite  e le m e n t  0 4 a c t io n  o n  th e  2 -sp h e r e  
a t s tr o n g  b a re  c o u p lin g .

C a r lo  e s t im a te s ,  y ie ld in g  m \  =  1 .1 9 8 7 8 (2 )  a n d  a  p r e d ic t io n  for th e  fo u r th  B in d e r  c u m u ­

la n t  C /| =  0 .8 5 1 0 0 6 1 (1 0 8 ) .  W e h a v e  r e c o m p u te d  th e s e  v a lu e s  t o  h ig h e r  a c c u r a c y  u s in g  th e  

MonteCarlo r o u t in e  o f  Mathematica '1 s  NIntegrate [] fu n c t io n . W e s e t  AccuracyGoal —> 

4  y ie ld in g  a  M o n te  C a r lo  w ith  s ta n d a r d  d e v ia t io n  a p p r o x im a te ly  1 0 - 4 . W e c o m p u te  100  

M o n te  C a r lo  e s t im a t e s  o f  th e  in te g r a l w ith  th e s e  p a r a m e te r s  to  a c q u ir e  a  s a m p le  d is tr i­

b u t io n . O u r r e su lt  is  m l = 1 .1 9 8 7 5 3 1 (1 1 6 )  w h e r e  th e  error is  th e  s ta n d a r d  error o n  th e  

m e a n  o f  th e  s a m p le  d is tr ib u t io n . T h e  c o r r e s p o n d in g  r e su lt  for th e  fo u r th  B in d e r  c u m u la n t  

is  C /| = 0 .8 5 1 0 2 0 7 (6 3 ) .  W e ca r r y  o u t  a  s im ila r  c a lc u la t io n  for th e  s ix th  m a g n e t iz a t io n  

m o m e n t  me.  T h e  c a lc u la t io n  is  a  tw e lv e  d im e n s io n a l in te g r a l w h ic h  w e  r e d u c e  t o  a  n in e  

d im e n s io n a l in te g r a l u s in g  r o ta t io n a l  in v a r ia n c e . U s in g  th e  s a m e  Mathematica r o u t in e  b u t  

n o w  s e t t in g  AccuracyGoal—>3 t o  y ie ld  a  M o n te  C a r lo  d is tr ib u t io n  w ith  s ta n d a r d  d e v ia t io n  

a p p r o x im a te ly  1 0 ~ 3 , g e n e r a te  a  s a m p le  d is tr ib u t io n  b y  c o m p u t in g  50  M o n te  C a r lo  sa m p le s .  

O u r r e su lt  is  rag =  1 .6 3 2 8 5 1 (2 5 3 ) .  T h e  c o r r e s p o n d in g  r e su lt  for th e  s ix th  B in d e r  c u m u la n t  

is  £7g =  0 .7 7 3 1 4 4 1 (2 1 3 ) .  A  c o m p a r iso n  b e tw e e n  th e  n u m e r ic a l c o m p u ta t io n  o f  th e  B in d e r  

c u m u la n ts  a n d  th e  a n a ly t ic  r e su lt s  c a n  b e  fo u n d  in  T a b le  5 .1 . R e s u lt s  a g r e e  w ith in  errors, 

p r o v id in g  fu r th e r  c o n f ir m a tio n  t h a t  th e  Q F E  a c t io n  is  c o n v e r g in g  to  th e  co r r e c t c r it ic a l  

th eo ry .

W e c lo s e  th is  s e c t io n  w ith  a n  in s tr u c t iv e  rem a rk  o n  w h a t  c a n  h a p p e n  t o  th e  Q F E  a c t io n

C/4 at Aq =  10.0
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at larger values of the bare quartic coupling. So far we have only studied the FEM and QFE 

actions at a single value of the bare coupling Ao =  1.0. In Fig. 5.7 we show the fourth Binder 

cumulant for the quantum finite element action at a very strong value of the bare coupling 

Aq =  10.0. One notices immediately tha t the theory does not appear to be reaching the 

continuum limit, but rather it appears to become frustrated near L = 100. Interestingly, 

this is roughly the same lattice size at which the uncorrected finite element action become 

frustrated. Though, this may be little more than a coincidence.

There are two interpretations of this ostensible problem at strong bare coupling, neither 

of which undermine the validity of the results tha t we have presented for weak bare coupling. 

The first interpretation is tha t because the QFE method as we have presented it is based on 

bare perturbation theory, the renormalization scheme fails for bare couplings outside of the 

radius of convergence of the perturbation expansion. In this case, the QFE lattice theory 

would have a phase diagram with two or more phases. At sufficiently weak bare coupling, 

the theory flows to the continuum limit and the correct critical Ising CFT. At stronger bare 

coupling, there is a transition (which could be first or second order) and on the other side 

of the phase transition line, the theory does not flow to the continuum CFT but flows to a 

lattice bulk phase in the IR. This is a familiar phenomenon in lattice QCD; when the bare 

coupling is too strong the theory does not reach the continuum limit. In a future work, one 

could study the phase behavior of the QFE action by running calculations at many different 

values of (1q and Ao and mapping out the phase diagram.

On the other hand, it is possible tha t the QFE theory at strong coupling does eventually 

reach the continuum limit, but one has to go to very large values of L to see it converge. 

If our key assumptions are correct, then any diagram appearing in perturbation theory 

(besides the one loop diagram) will eventually become position independent as L  —>• oo. 

However, diagrams at higher orders in perturbation theory may require one to go to incre­

mentally larger values of L  in order for the position dependent contributions arising from 

these diagrams at finite lattice spacing to be negligible. These questions may be addressed 

in future works by studying the perturbation expansion to higher orders.

Let us emphasize that even if the QFE method with perturbative counterterms only 

works for sufficiently weak bare couplings in the UV, the theory still flows to strong coupling
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(to the Wilson Fisher fixed point) in the IR. The results for the critical Binder cumulants 

that we have presented in Fig. 5.1 are features of the strongly coupled fixed point. These 

are nonperturbative results computed to high accuracy with the QFE method. In the 

next section, we build on this success by studying the two point and four point correlation 

functions and extracting nonperturbative CFT data.

5.2.2 2- and 4-p oin t Functions

Here we briefly review results for the two- and four-point correlation functions tha t have 

been recently presented in Ref. [140]. The two point function of the primary <p{x) on R2 is 

constrained by conformal symmetry to have the form [170,171]

where f  = f \  — f 2 and the scaling dimension of (p in the c =  1/2 minimal Ising CFT is

where 012 =  fi\ • n 2. We may express the two point function in angular momentum space 

by projecting onto Legendre Polynomials.

We sample the two point function in our QFE Monte Carlo calculation, binning the

correlator is strong evidence tha t the QFE procedure is reaching the correct critical CFT 

as L —> 00.

complex during the Monte Carlo evolution of the QFE action. The conformal four point

(5.15)

=  1/8. Mapping to the sphere, the expression for the two point function on §2 is

92{0u ) = (0(ni)0(n2))§2
1

(5.16)
(2 - 2  cos 0i2)

(5.17)

values in 912 in order to project onto Legendre coefficients. The results are shown in Fig. 5.8. 

The Legendre coefficients of the lattice two-point function approach the continuum values 

like 1/L as L —> 00. The rapid approach of the two-point function to the exact conformal

We also study the four-point function by randomly sampling the (p field on the simplicial
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A0 =  1.0, $  =  1.823405
10'

200 5 10 15

0.20
A o = 1.0, Mo = 1-823405

F ig u r e  5 .8: L e g e n d r e  C o e ff ic ie n ts  o f  tw o -p o in t  c o r r e la t io n  fu n c t io n . L eft: L e g e n d r e  co e ffi­
c ie n t  v s  I for s e v e r a l la t t ic e  s iz e s  c o m p a r e d  to  e x a c t  c o n t in u u m  e x p r e s s io n . R ig h t: D iffe r e n c e  
b e tw e e n  la t t ic e  a n d  c o n t in u u m  L e g e n d r e  c o e ff ic ie n ts  v s  1/L  for I = 1 , . . . ,  6 . T h is  fig u re  o r ig ­
in a l ly  a p p e a r s  in  R e f . [140].

fu n c t io n  m a y  b e  w r it te n  in  a  m a n if e s t ly  t - c h a n n e l  s y m m e tr ic  w ay.

G(u, V, 013, 0 2 4 ) =  92  (013)<?2 { ^ 2a ) G { u 1 V) 

w h e r e  (u, v) a re  th e  c o n fo r m a l c r o ss  r a t io s

(5 .1 8 )

r 2 r 2 

u = ^ ^  = \z\2ry»̂> ry-t ̂
13 24

r 2 r 2 
' 1 4 ' 2 3  
r 2 r 2 

13 24
= li (5 .1 9 )

e q u iv a le n t  to  th e  s in g le  c o m p le x  v a r ia b le  2 . T h e  e x p lic it  fo rm  o f  G(u, v ) is  k n o w n  for th e  

m in im a l c  =  1 / 2  I s in g  C F T  as a  s u m  o f  V ir a so r o  b lo c k s  [171].

G(u, v ) =  vAg(u , v)
1

2|2|V4|1 - 2 | V 4 l l  +  v T ^ I  +  l i - V i (5 .2 0 )

T h e  e x a c t  s o lu t io n  is  c o m p a r e d  to  th e  n u m e r ic a l c o m p u ta t io n  o f  th e  fo u r  p o in t  fu n c t io n  

a t th e  c r it ic a l  p o in t  u s in g  th e  Q F E  a c t io n  in  F ig . 5 .9 . T h e  fu n c t io n s  a re  p lo t t e d  in  p o la r  

c o o r d in a te s  2 =  re10 a n d  c o m p a r e d  a lo n g  a  f ix e d  r a d ia l l in e  0 =  0 . T h e  Q F E  M o n te  

C a r lo  c a lc u la t io n  is  in  c lo s e  a g r e e m e n t  w ith  th e  e x a c t  s o lu t io n  e v e n  a t  c o m p a r a t iv e ly  sm a ll  

r e fin e m e n t, L = 36 . T h e  c o n v e r g e n c e  is  b e s t  n ea r  th e  s y m m e tr y  p o in t  r =  1 / 2 .  In  a  sc e n a r io  

in  w h ic h  th e  e x a c t ly  fo u r  p o in t  fu n c t io n  w a s  n o t  k n o w n , w e  w o u ld  n o t  b e  in  a  p o s it io n  

to  m a k e  su c h  a  d ir e c t  c o m p a r iso n . I n s te a d , o n e  m a y  p r o je c t  th e  n u m e r ic a lly  c o m p u te d  

fou r  p o in t  fu n c t io n  o n to  c o n fo r m a l b lo c k s , w h ic h  are  e x a c t ly  c o m p u ta b le  b a s is  fu n c t io n s
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F ig u r e  5 .9 : F o u r  p o in t  fu n c t io n  a t  th e  c r it ic a l  p o in t  o f  th e  Q F E  a c t io n  c o m p a r e d  to  th e
e x a c t  c o n fo r m a l fou r  p o in t  fu n c t io n . T h e  fu n c t io n s  are  c o m p a r e d  in  p o la r  c o o r d in a te s  
z = rei6 a }o n g  a  fix e c l r a d ia l lin e , 6  — 0. T h is  fig u re  o r ig in a lly  a p p e a r s  in  R e f. [140].

B y  f i t t in g  to  th e  c o n fo r m a l b lo c k  e x p a n s io n , o n e  m a y  e x tr a c t  th e  s c a lin g  d im e n s io n s  a n d  

O .P .E . c o e ff ic ie n ts  o f  th e  C F T . T h is  p r o c e d u r e  h a s  b e e n  d e m o n s tr a te d  in  th e  r e c e n t  w ork  

R ef. [140]. T h e  c o n fo r m a l d im e n s io n  A e a n d  th e  O .P .E . c o e ff ic ie n ts  Ae a n d  c ( th e  c e n tr a l  

c h a r g e )  w ere  fo u n d  t o  Ire in  c lo s e  s t a t i s t ic a l  a g r e e m e n t  t o  th e  e x a c t ly  k n o w n  v a lu e s .

5.3 3D  Ising C F T  in R adial Q u antization

N e x t  w e  c o n s id e r  th r e e  d im e n s io n a l sc a la r  0 4 th e o r y  o n  th e  m a n ifo ld  R x § 2 , th e  g e o m e tr y  

o f  r a d ia l q u a n t iz a t io n . W e h a v e  e x p la in e d  a t  th e  b e g in n in g  o f  C h a p te r  4 th a t  in  a n y  n u m b e r  

o f  d im e n s io n s  th e  sp a c e s  R d a n d  R x a re  r e la te d  b y  a  W e y l r e sc a lin g  fa c to r . A s  su ch ,  

sc a la r  0 4 th e o r y  a t  th e  c r it ic a l  p o in t  o n  R  x S2 s h o u ld  b e  e q u iv a le n t  t o  th e  c r it ic a l  b e h a v io r  

o f  th e  th e o r y  o n  R 3, w h ic h  is  th e  3 D  I s in g  c o n fo r m a l f ix e d  p o in t . W e h a v e  a lso  d e ta ile d  

a t  th e  b e g in n in g  o f  C h a p te r  4  th e  a n t ic ip a te d  a d v a n ta g e s  o f  s tu d y in g  c o n fo r m a l th e o r ie s  

in  r a d ia l q u a n t iz a t io n  o n  th e  la t t ic e .  W e  sh o w  h ere  th a t  th e  Q F E  0 4 a c t io n  o n  R x § 2 

a p p e a r s  to  b e  r e a c h in g  a  c r it ic a l  p o in t  w h ic h  is  a  m a jo r  s te p  to w a r d s  r e a liz in g  la t t ic e  ra d ia l  

q u a n t iz a t io n  in  a  n o n tr iv ia l  th e o r y . W e le a v e  th e  c o m p le te  c h a r a c te r iz a t io n  o f  th is  f ix ed  

p o in t  t o  b e  p r e s e n te d  in  a  fu tu r e  w ork .

T h e  F E M /D E C  la t t ic e  a c t io n  is  a  tr iv ia l  e x te n s io n  o f  th e  la t t ic e  a c t io n  for  sc a la r  fie ld  

th e o r y  o n  § 2 ; o n e  s im p ly  e x te n d s  th e  a c t io n  w ith  a  fla t t im e  d ir e c t io n  w ith  p e r io d ic  b o u n d a r y

1 1 5



conditions.

The spectrum of the Laplacian operator on R x §2 does not contain any subtleties once 

the FEM /D EC Laplacian has been analyzed on §2. One may transform to frequency space

via a discrete Fourier transform in the periodic time dimension: t —> u. Then, for each 

frequency mode o;n, the spectrum is equivalent to the spectrum of the massive Laplacian 

on §2 with a shifted mass m 2 = tuq +  cj2.

Having understood the classical problem, let us consider the interacting quantum field 

theory. As in the two dimensional case, we will have to introduce explicit counterterms 

in the FEM /DEC Lagrangian in order to cancel position dependent loop contributions to 

the couplings. Three dimensional scalar 04 theory is also superrenormalizable. It generates 

two divergent diagrams in the perturbative series both contributing to the renormalization 

of the two point function. The one loop diagram is linearly divergent, and the two loop 

diagram is logarithmically divergent. The computation of the one- and two-loop diagrams 

in lattice perturbation theory follows exactly the procedure detailed in Section 5.2 for the 

two dimensional theory. Let us define the quadratic differential operator as a rewriting of 

the quadratic terms in Eq. 5.21 into matrix form.

Recall again tha t by the key assumption of our QFE procedure, UV divergent diagrams 

should break up into a position independent divergence piece -  which is the universal con­

tinuum divergence -  and a position dependent finite piece.

First we study the one loop diagram. The average piece of the one loop diagram should

(5.22)

Then the propagator is the inverse of this matrix: Gi^j,t' =  (M

The am putated 1PT amplitude for the two point correlator is given by

(5.23)
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F ig u r e  5 .1 0 : O n e  lo o p  d ia g r a m  Gi^i,t in  la t t ic e  p e r tu r b a t io n  th e o r y  in  th r e e  d im e n s io n s .
L eft: T h e  a v e r a g e  v a lu e  o f  th e  o n e  lo o p  d ia g r a m  ( 1 / V )  J2i t p lo t t e d  a g a in s t  N  =

1 0 L 2 +  2 is  sh o w n  t o  c o n v e r g e  t o  a  c o n s ta n t  a s  1 / \/~N. R ig h t:  T h e  o n e  lo o p  c o u n te r te r m  
w ith  th e  a v e r a g e  p ie c e  s u b tr a c te d  is  sh o w n  to  a p p r o a c h  a s  f in ite  fu n c t io n  a s L —> o c , a n d  
th is  f in ite  fu n c t io n  is  a p p r o x im a te ly  a  lin e a r  fu n c t io n  o f  In yjg^.
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F ig u r e  5 .1 1 : L o c a l a p p r o x im a t io n  to  tw o  lo o p  d ia g r a m  in  tw o  d im e n s io n s  Y!j ■ L eft:
A v era g e  v a lu e  o f  d ia g r a m  p lo t t e d  a g a in s t  N . R ig h t:  T w o  lo o p  d ia g r a m  w ith  a v e r a g e  p ie c e  
s u b tr a c te d  p lo t t e d  a g a in s t  yjg[ for v a r io u s  v a lu e s  o f  L.

c o n ta in  th e  lin e a r  d iv e r g e n c e . W e se e  in  th e  le f t  p a n e l o f  F ig . 5 .1 0  th a t  th e  a v e r a g e  p ie c e  

o f  a p p r o a c h e s  a  c o n s ta n t  a s  N  —> o c . T h is  is  c o n s is te n t  w ith  th e  u su a l in tu it io n  th a t

th e r e  a re  n o  p o w er  d iv e r g e n c e s  o n  th e  la t t ic e  b e c a u s e  th e r e  a re  n o  d im e n s io n fu l q u a n t it ie s .  

T o p u t  th e  o n e  lo o p  d ia g r a m  in  p h y s ic a l u n it s ,  w e  m u lt ip ly  b y  1 / a  ~  x/TV ~  L. T h e n ,  

s in c e  t h e  a v e r a g e  p ie c e  o f  th e  d ia g r a m  in  la t t ic e  u n it s  a p p r o a c h e s  a  c o n s ta n t  a s  L  —>• oo , th e  

a v e r a g e  p ie c e  in  p h y s ic a l u n it s  w ill  d iv e r g e  lin e a r ly  w ith  L a s  L  oo  a s  e x p e c te d .  In  th e  

r ig h t p a n e l o f  F ig . 5 .1 0 , w e  p lo t  th e  s u b tr a c te d  o n e  lo o p  d ia g r a m  a s  a  fu n c t io n  o f  In [^/gi\ 

for v a r io u s  v a lu e s  o f  L. W e se e  th a t  a s  in  th e  tw o  d im e n s io n a l c a se  th e  s u b tr a c te d  d ia g r a m  

is  a p p r o a c h in g  a  f in ite  fu n c t io n  t h a t  is  a p p r o x im a te ly  lin ea r  in  In [^gl]-

N e x t  w e  c o n s id e r  th e  tw o  lo o p  d ia g r a m . A s  in  S e c t io n  5 .2 , w e  a p p r o x im a te  th e  p o in t
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split two loop diagram as an ultralocal function.

(5.24)

This is equivalent to dropping the higher terms in a derivative expansion of the diagram. 

Since the 2-loop diagram is log-divergent, the higher derivative components will be conver­

gent and should not add any further position dependent contributions which would require 

cancellation by an explicit counterterm. In the left panel of Fig. 5.11, we show the average 

piece of the local approximation to the two loop diagram as a function of N . We have fixed 

the temporal extent of the lattice to Lt = 4L. There is a clear logarithmic divergence which 

we confirm by an explicit fit to the form a +  b\n(N ). In the right panel of Fig. 5.11, show 

the subtracted two loop diagram as a function of In [y/gi] for various values of L. We see 

that it is approaching a smooth function over the sphere.

We introduce two counterterms into our action Eq. 5.21 to cancel the position dependent 

contributions shown in the right panels of Fig. 5.10 and Fig. 5.11.

we have shown the summations explicitly for clarity, and we have defined V  = L tN . The 

position dependent contributions from the one- and two-loop diagrams will be exactly can­

celed

We study the fourth Binder cumulant of the magnetization with a Monte Carlo simula­

tion of our QFE action for the 3D theory.

and see no visible signs of an obstruction to criticality. As a point of comparison, the theory 

will become frustrated at L  «  64 when one does not include the counterterms of Eq. 5.25.

(5.25)

S[4>] = S f [4>] + + S c t (5.26)

The results are shown in Fig. 5.12. We have studied the theory up to a refinement of L = 96
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F ig u r e  5 .1 2 : F o u r th  B in d e r  c u m u la n t  in  th e  q u a n tu m  f in ite  e le m e n t  0 4 a c t io n  o n  1  x  § 2
a t  Ao =  0 .1 . T h e  te m p o r a l  e x te n t  o f  th e  la t t ic e  is  f ix e d  to  b e  Lt =  4 L .

W e a lso  rem a rk  t h a t  a s  in  th e  tw o  d im e n s io n a l c a se , w h e n  th e  b a re  c o u p lin g  is  m a d e  s tr o n g e r  

t h e  s y s t e m  d o e s  n o t  a p p e a r  to  rea ch  c r it ic a lity . B e c a u s e  th e  M o n te  C a r lo  c a lc u la t io n s  are  

s ig n if ic a n t ly  m o r e  c o s t ly  a n d  t im e  c o n s u m in g  for th e  th r e e  d im e n s io n a l c a lc u la t io n  th a n  

th e  c a lc u la t io n s  in  tw o  d im e n s io n s , w e  a re  n o t  a b le  t o  s t u d y  th e  3 D  th e o r y  m u ch  b e y o n d  

a b o u t  L  =  100 . O u r c o l la b o r a t io n  is  w o r k in g  to  d e v e lo p  a  p a r a lle l c o d e  so  th a t  th e  c r it ic a l  

b e h a v io r  o f  th e  th r e e  d im e n s io n a l th e o r y  c a n  b e  m o r e  firm ly  e s ta b lis h e d  b y  g o in g  t o  larger  

L. W ork  is  u n d e r  w a y  to  c h a r a c te r iz e  th e  c r it ic a l  b e h a v io r  o f  th e  o s te n s ib le  c r it ic a l  su r fa c e  

n ea r  (Ao =  0 . 1 , /ig  =  0 .1 3 5 0 9 )  in c lu d in g  f in ite  s iz e  s c a lin g  a n a ly s is  o f  th e  m a g n e t iz a t io n  

m o m e n ts  a n d  a n  a n a ly s is  o f  th e  tw o - a n d  fo u r -p o in t  fu n c t io n s .  A  fu tu r e  w o rk  w ill  r e p o r t  

o n  c o n t in u e d  p r o g r e ss .

119



Chapter 6

Conclusions and Future Work

In this manuscript, we have reported on a variety of efforts towards characterizing confor­

mal and nearly conformal strongly coupled quantum field theories in two, three, and four 

dimensions using a combination of traditional and novel techniques. In four dimensions, we 

have discussed the interesting interacting conformal fixed points tha t arise at the conformal 

window of Yang Mills gauge theories with fermions. These fixed points are of interest for 

building models of composite Higgs bosons and other possible applications to beyond the 

standard model physics. However, we have demonstrated in Chapter 2 some of the diffi­

culties of studying these conformal and nearly conformal gauge theories using traditional 

lattice methods. We have proponed two separate novel approaches to making progress on 

this difficult problem.

The first approach, detailed in Chapters 2 and 3 is to use lattice data to identify the best 

low energy EFT description of the nearly conformal gauge theories. This EFT should serve 

as an aid to guide and compliment ongoing lattice calculations and as a bridge between the 

numerical studies being carried out on the lattice and phenomenological applications. We 

have presented a study of tttt scattering in a nearly conformal gauge theory, and we have 

demonstrated the tension between the lattice calculation and the prediction from chiral per­

turbation theory. In Chapter 3, we presented a formulation of a new effective field theory 

framework based on the linear sigma model and demonstrated tha t already at leading order 

it can provide a substantial improvement over NLO chiral perturbation theory in fitting 

lattice data for a nearly conformal gauge theory.
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There are numerous future directions for this effort tha t we hope to pursue in the near 

future. One piece of low hanging fruit is to carry out a more comprehensive analysis of the 

linear sigma EFT as applied to N f = 8 QCD. This includes incorporating a larger basis 

of observables from the lattice in the analysis such as the maximal isospin itit scattering 

length and the chiral condensate. We would also like to carry out our analysis in such a way 

tha t we can keep track of systematic errors from the lattice and place reliable error bars 

on the fitted low energy constants. Continued lattice studies of new observables in nearly 

conformal gauge theories would help to further constrain the EFT description, including the 

vector and scalar form factor of the pion and the 1 = 1 and I  = 0 irir scattering channels.

The second novel approach tha t we have presented for making progress on studying 

strongly coupled conformal systems is the quantum finite elements method detailed in 

Chapters 4 and 5. In Chapter 4 we have explained the general method for constructing 

lattice regularizations of superrenormalizable quantum field theories on an arbitrary smooth 

Riemann manifold. The general formalism is applicable to field theory in any number of 

dimensions. In Chapter 5 we have provided explicit numerical computations of interacting 

scalar field theory on §2 and l x § 2. In the former study, we have shown a comprehensive 

numerical analysis characterizing the critical behavior of the theory and showing it to be in 

close statistical agreement with the exact c = 1/2 minimal Ising CFT. In the latter study, 

we have demonstrated that the theory appears to have been renormalized appropriately at 

sufficiently weak bare coupling in tha t the fourth Binder cumulant appears to be showing 

critical behavior.

The quantum finite element method provides many directions for future research. In 

the short term, we will provide a complete characterization of the 3D Ising conformal fixed 

point in radial quantization. We hope that the numerical results will be competitive with 

the numerical conformal bootstrap program. There are a variety of near future projects that 

one might consider for study with the quantum finite element radial lattice quantization 

program, including the O(N) model in 3D, the Gross-Neveu model in 3D, pure Yang Mills 

gauge theory in various dimensions, scalar QED in 3D, and so on. Not only are there many 

interest quantum field theories to study with the existing formalism, but there are many
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direction for extending the formalism including different fermion discretizations, different 

renormalization schemes including nonperturbative renormalization, nonperturbative field 

theory on AdS space, and so on.

Continued study of strongly interacting systems promises to provide deeper insight into 

the structure of quantum field theory and to unveil new mechanisms tha t may be realized 

in physics beyond the standard model. We hope tha t the tools and techniques developed 

in this dissertation will be of use in this im portant effort.
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A ppendix A

Useful Identities for su(Nj)  Lie 

Algebras

Lie algebras are defined through the structure constants which determine the the commu­

tation relations between basis elements, or generators, of the algebra.

[Tu Tj ] = i f i kTk (A.l)

Choosing an arbitrary normalization for the Killing metric

(TiTj) = A<5y (A.2)

the structure constants may be expressed as a trace over three generators.

fm  = ^([Ti,Tj ]Tk) (A.3)

The fijk  structure constants are totally antisymmetric. We may define the symmetric 

structure constants through the anticommutator.

2A{Ti, Tj} = ——Sijt + dijkTk (A.4)
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Inverting this expression, the symmetric structure constants are given by

dijk = ^  {{Ti,Tj}Tk) ( A . 5)

Combining these two definitions for the structure constants, we may express the product of 

two generators as follows.

TiTj = \  ([Th Tj\ + {Ti,Tj}) =  i  + (dijk + ifijk)Tk)  (A.6)

Defining the complex structure constant h^k = dijk +  ifijki

T%Tj =  —- 8 i j l  +  —hijkTk (A .7)

Using this definitions for the structure constants, we may compute the traces of any 

number of generators in terms of structure constants. The results for up to four generators 

are

(Ti) = 0 (A.8)

(TiTj) = XSij (A.9)

(TiTjTk) = ^ hijk (A.10)

(TiTjTkT,) = -SijSkl + ^hijmhklm (A.11)

Finally, we have the Jacobi Identities which define the Lie algebra,

[[Ti, Tj\, Tk] + \\Th Tk], Ti] + [[Ti,, Ti], T,] = 0 (A.12)

[{Tj, T,-}, Tk] + [{Tj, Tk),Ti] + [{Tjt, Ti}, Tj] = 0 (A.13)

which imply the corresponding Jacobi Identities for the structure constants.

f i j m f m j k  “I" f j k m f m i l  f k i m  f m j k  =  o (A. 14)

d i j m f m j k  U d j k m f m i l  d k i m f m j k  ~  0  (A. 15)
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