
UCLA
UCLA Electronic Theses and Dissertations

Title
Topics in Persistent Homology and Complex Social Systems

Permalink
https://escholarship.org/uc/item/16f3r97k

Author
Luo, Jiajie

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/16f3r97k
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Topics in Persistent Homology and Complex Social Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Jiajie Luo

2024



© Copyright by

Jiajie Luo

2024



ABSTRACT OF THE DISSERTATION

Topics in Persistent Homology and Complex Social Systems

by

Jiajie Luo

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Mason Alexander Porter, Chair

The field of topological data analysis (TDA) uses tools from algebraic topology to capture

quantitative structural properties in a data set. Perhaps the most popular tool in TDA

is persistent homology (PH), which leverages homology theory to provide insights into the

structure of data by quantifying “holes” across different scales. PH has been applied to many

domains, including neuroscience, materials science, image processing, and social systems. In

this thesis, we study PH in both theory and application.

On the theory side, we build upon the foundations of PH by studying persistence modules

(which are algebraic objects that are fundamental to PH) and their interval decompositions.

The existence of interval decompositions of a persistence module underlies much of PH.

Interval decompositions are guaranteed to exist for persistence modules with coefficients in a

field. However, interval decompositions may not exist in more general settings, such as when

the coefficients are not in a field. We prove necessary and sufficient conditions for persistence

modules with coefficients in a principal ideal domains to have an interval decomposition. We

also formulate an algorithm to compute an interval decomposition when one exists.

ii



We then use PH to quantify and assess the accessibility of resources in a geographic area.

This allows us to identify regions that have poor resource access. Our work focuses on

the accessibility of polling sites across six geographic regions (five cities and Los Angeles

County). We adapt traditional approaches in PH to incorporate important factors of polling-

site accessibility, including travel times to and from polling sites and waiting times at those

sites.

Finally, we discuss the modelling of opinion dynamics on networks. We consider bounded-

confidence models (BCMs), which are models of opinion dynamics in which agents are recep-

tive only to agents whose opinions are sufficiently similar (i.e., within a confidence bound).

We formulate and analyze two BCMs with adaptive confidence bounds; our BCMs generalize

the Hegselmann–Krause and Deffuant–Weisbuch models. Using mathematical analysis and

numerical simulations, we demonstrate that our adaptive BCMs exhibit quantitatively and

qualitatively different behavior than the associated baseline (i.e., nonadaptive) HW and DW

BCMs. This includes fewer major opinion clusters, longer convergence times, and adjacent

nodes that converge to the same opinion but are not receptive to each other.
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CHAPTER 1

Introduction

In this thesis, we will discuss research in persistent homology, complex social systems, and the

interface between the two. Our work in persistent homology includes studying the structure

of persistence modules, which are algebraic objects that underlie persistent homology. We

also use persistent homology to study a complex social system — specifically, to analyze and

quantify resource accessibility in geographical regions. Beyond this, our work in complex

social systems has largely focused on modeling opinion dynamics. We have formulated and

analyzed new “bounded-confidence models,” which are models of opinion dynamics that are

motivated by the social phenomenon of “selective exposure.”

1.1 Persistent Homology

The structure in which data is organized plays an important role in helping us understand it.

In recent years, algebraic tools that were designed to study abstract topological spaces have

been adapted to describe and analyze the topological structure in data [EH08]. Under the

umbrella of topological data analysis (TDA), these tools have played important roles in nu-

merous domains, including neuroscience [Cur17,SGK18,SEN21], materials science [OKT19],

image processing [DCS18,PC14], and complex social systems [FP20,FP21,HNP22]. Perhaps

the most popular tool in TDA is persistent homology (PH) [Ghr07,ELZ02,OPT17], which

uses ideas from homology theory to provide insight into the underlying topological structure

of data by identifying and quantifying “holes” across different scales.
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PH is built on homology theory, an area of algebraic topology [Hat02] that characterizes a

topological space by its holes. For a fixed dimension k and topological space X, the rank

of the abelian group Hk(X;Z) — which is the kth “homology group” of X with integer

coefficients — is the number of k-dimensional holes in X. A continuous map f : X → Y

between topological spaces gives rise to a homomorphism (between the associated homology

groups) that relates holes in X with holes in Y . Notably, given an inclusion X ⊆ Y of topo-

logical spaces (viewed as a continuous map) and positive dimension k, the homomorphism

(between homology groups) that is associated with the inclusion map provides information

on the holes in X that are filled in Y and the holes in Y that are not in X. One can also

consider homology with coefficient in a general ring R; in this case, the homology groups are

R-modules instead of abelian groups.

To use PH to analyze a data set, one first builds a filtration, which is a nested family

K = {Ki}i∈I of topological spaces — in which the indexing set I ⊆ R is usually an interval

or a discrete set of points — that approximates the data across different scales. For example,

if a data set is in the form of a discrete setX of points (which is called a point cloud) in Rn, one

can construct the “C̆ech filtration” {Čr(X)}r>0, which is defined by Čr(X) =
⋃
x∈X Br(x).

One can use homology to provide information on how the topology changes in a filtration. In

particular, by studying the inclusions between spaces in a filtration, along with the associated

homomorphisms (which arise from inclusion) on the respective homology groups, one can

determine the scales at which holes form and subsequently fill in. This information can

be summarized in a “persistence diagram” (PD) [Rob00], which is a multiset {(bi, di)}i∈I of

points that correspond to the holes in a filtration. See Chapter 2 for more details.

The theory behind PH it built upon “persistence modules” [Oud15, Sch22], which are alge-

braic objects that arise naturally from PH and capture information about it. A persistence

module (which we define in Section 2.3) consists of the homology groups of a filtration and the

homomorphisms (which we call “structure maps”) between the homology groups that are asso-
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ciated with inclusion. Persistence modules can also be described more generally as a functor

from a totally-ordered poset category to a module category. An “interval decomposition” of a

persistence module provides the information that is recorded in a PD [Oud15,OY23,Pat18].

We will discuss persistence modules, along with their relationship to PH, in Section 2.3.

1.2 Models of Opinion Dynamics

Social interactions play an important role in shaping the opinions of individuals, communities

of people, and society at large [BAB21]. An individual’s opinion on a topic is often influenced

by the people with whom they interact [Jac08], and researchers in many disciplines study

such interactions and how they change opinions and actions [Noo20]. In an agent-based

model of opinion dynamics, each agent represents an individual and a network encodes

which agents are able to interact with each other. Each node (i.e., agent) of a network has

an opinion in some opinion space. Studying opinion models allows researchers to examine

the evolution of opinions on social networks with time, leading to insights into the spread

of ideas [FJ90, JMF15], when communities of individuals reach consensus and when they

do not [VBI21], and the formation of “opinion clusters” (i.e., clusters of nodes with similar

opinions) [Lor08].

Individuals are often influenced most by people and other sources whose opinions are similar

to theirs [CM11]. This phenomenon is encapsulated in a simple form in bounded-confidence

models (BCMs) [NVT20,HK02,DNA00] of opinion dynamics, in which the nodes of a network

have continuous-valued opinions and interacting nodes influence each others’ opinions if and

only if their opinions are sufficiently similar. A key feature of BCMs is the presence of a

“confidence bound,” which is a parameter that determines which nodes can influence each

other. A node can influence and be influenced by its neighbors only when the difference in

their opinions is less than their confidence bound.

The two most popular BCMs are the Hegselmann–Krause (HK) model [Kra00,HK02] and
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the Deffuant–Weisbuch (DW) model [DNA00]. Both of these models use discrete time. The

HK model updates synchronously; at each time, every node updates its opinions based on

the opinions of all of its neighbors. The DW model updates asynchronously; at each time,

one selects a dyad (i.e., a pair of adjacent nodes and the edge between them), and the two

nodes in the dyad interact and potentially influence each others’ opinions. The DW model

also has a compromise parameter, which controls how much nodes in a dyad influence each

other when they compromise their opinions. In both the HK model and the DW model,

the confidence bound is traditionally a single fixed scalar parameter that is the same for all

dyads.

1.3 Contributions

In Chapter 3, We formulate a necessary and sufficient condition for which interval decom-

positions exist for persistence modules with coefficients in a principal ideal domain (PID).

Persistence modules with coefficients in a field are guaranteed to have an interval decompo-

sition [Oud15,Gab72]. However, when considering persistence modules with coefficients in a

general ring, interval decompositions may not exist (e.g., see the discussion in Section 3.3).

We prove that, given a persistence module of pointwise free and finitely-generated modules

with coefficients in a PID, an interval decomposition exists if and only if the cokernel of every

structure map is free. We also formulate an algorithm to compute an interval decomposition

of a persistence module of freely- and finitely-generated modules over a PID when one exists.

The formulation of our algorithm is informed and underpinned by the our theoretical result

on the existence of interval decompositions.

In Chapter 4, we use TDA to quantify and assess the accessibility of resources in geographical

regions. We use PH to identify “holes in coverage,” which are regions that have poor access

to the resources in question. Our use of PH allows us to consider holes in coverage across all

scales, instead of choosing a fixed cutoff distance. To measure the accessibility of resources,
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we consider the time cost of resource access — namely, travel and waiting time — to construct

our filtration. We focused our work on polling-site access across six geographical regions (five

cities and Los Angeles County).

In Chapter 5, we formulate and analyze discrete-time BCMs with heterogeneous and adap-

tive confidence bounds. We introduce two new models: (1) a BCM with synchronous opin-

ion updates that generalizes the Hegselmann–Krause (HK) model and (2) a BCM with

asynchronous opinion updates that generalizes the Deffuant–Weisbuch (DW) model. We

analytically and numerically explore our adaptive BCMs’ limiting behaviors, including the

confidence-bound dynamics, the formation of clusters of nodes with similar opinions, and the

time evolution of an “effective graph,” which is a time-dependent subgraph of a network with

edges between nodes that are currently receptive to each other. For a variety of networks and

a wide range of values of the parameters that control the increase and decrease of confidence

bounds, we demonstrate numerically that our adaptive BCMs result in fewer major opinion

clusters and longer convergence times than the baseline (i.e., nonadaptive) BCMs.

1.4 Organization

In Chapter 2, we briefly present the background for PH that is relevant to this thesis. In

Chapter 3, we discuss interval decompositions of persistence modules over a principal ideal

domain, which is based on research presented in [LH23]. In Chapter 4, we discuss the use

of PH to study resource accessibility, which is based on research presented in [HJJ23]. In

Chapter 5, we discuss BCMs with adaptive confidence bounds, which is based on research

presented in [LLP23]. In Chapter 6, we give concluding remarks to this thesis.
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CHAPTER 2

Background on Persistent Homology

In this section, we give a brief summary of the background for persistent homology (PH).

For a more comprehensive background on PH, see [Ghr07,OPT17,DW22]. For background

on persistence modules and its relation to PH, see [Oud15,Sch22].

2.1 Homology

Before introducing PH, we provide intuition for homology theory, which is the theoreti-

cal foundation on which PH is built. For a comprehensive background and discussion on

homology (including the formal definition of a homology group), see [Hat02].

The theory of homology is an area of algebraic topology [Hat02] that characterizes a topolog-

ical space by its “holes.” Given a topological space X and a fixed dimension k > 0, the rank

of the abelian group Hk(X;Z) — which is the kth “homology group” of X with integer coef-

ficients — is the number of k-dimensional holes in X. One can think of k-dimensional holes

as follows: 1-dimensional holes are loops that cannot be contracted to a point, 2-dimensional

holes are regions bounded by a 2-dimensional surface, and so on. When k = 0, the homology

group H0(X;Z) is torsion-free and its rank is the number of connected components.

For example, suppose that X is the torus S1×S1. Because there is only one path component,

the zeroth homology group H0(X;Z) ∼= Z has rank 1. Because there are two 1-dimensional

holes (one for each S1 in the product), the first homology group H1(X;Z) ∼= Z2 has rank 2.
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Finally, because there is one region bounded by the torus (which is a 2-dimensional surface),

the second homology group H2(X;Z) ∼= Z has rank 1.

A continuous map f : X → Y between topological spaces gives rise to homomorphisms

between the associated homology groups. For a fixed dimension k, the homomorphism

f∗ : Hk(X;Z)→ Hk(Y ;Z) relates k-dimensional holes in X to those in Y . Notably, given an

inclusion X ⊆ Y of topological spaces (viewed as a continuous map) and positive dimension

k, the homomorphism between homology groups that is associated with the inclusion map

provides information on the holes in X that are filled in Y and the holes in Y that are not

in X.

Beyond integer coefficients, one can also consider homology with coefficient in a different

ring. If one considers homology with coefficients in a ring R, the homology groups are

R-modules instead of abelian groups.

2.2 Persistent Homology

2.2.1 Persistent homology overview

When performing PH, one starts with a filtration1 K = {Ki}i∈I of topological spaces. We

refer to the index i as the filtration parameter and specific values i ∈ I as filtration-parameter

values. In this setting, one is interested in understanding the filtration-parameter values that

holes form and fill in. Homology is a natural tool to understand the holes in a filtration.

Taking the nth homology with integer coefficients results in a sequence {Hn(Ki;Z)}i∈I of

homology groups and homomorphisms {ϕi,j : Hn(Ki;Z) → Hn(Ki;Z)|i, j ∈ I and i ≤ j}

(which we call structure maps) between the homology groups that arise from the inclusions

in K. In this setting, the homology groups are Z-modules2 and the structure maps are Z-

1Recall the definition of a filtration from Section 1.1.

2Z-modules are precisely abelian groups.
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module homomorphisms. Because the rank of the homology group Hn(Ki;Z) is the number

of n-dimensional holes in Ki, studying the homology groups and structure maps that arise

from K provides information on the holes in K. In particular, the elements (which we call

homology classes) of Hn(Ki;Z) represent n-dimensional holes in Ki. Studying the images of

homology classes under the structure maps help identify holes between different filtration-

parameter values.

In practice, one usually takes homology with coefficients in a field F . This results in a

sequence {Hn(Ki;F )}i∈I of homology groups that are vector spaces over F and structure

maps {ϕi,j : Hn(Ki;Z) → Hn(Ki;Z)|i, j ∈ I and i ≤ j} that are F -linear maps between

homology groups. The dimension of Hn(Ki;F ) approximates3 the rank of Hn(Ki;Z). One

can interpret elements of a basis of Hn(Ki;F ) as corresponding to the n-dimensional holes

in Ki. As r increases, new homology classes are “born” and existing ones “die.” A homology

class γ ∈ Hn(Kk;F ) is born at filtration-parameter value b if it is not in the image of ϕi,k

for any i < b. One can interpret the birth of a homology class at b as a hole that forms at

that filtration-parameter value in the filtration. Similarly, a homology class γ ∈ Hn(Kk;F )

dies at filtration-parameter value d if ϕk,d(γ) = 0 and ϕk,j(γ) ̸= 0 whenever j < d. One can

interpret the death of a homology class at d as a hole that fills in at that filtration-parameter

value in the filtration.

To identify homology classes between different filtration-parameter values in K, one can

choose a basis βi for each Hn(Ki;F ) such that, given a structure map ϕi,j : Hn(Ki;F ) →

Hn(Kj;F ), we have that ϕi,j maps elements of βi either to 0 or to elements of βj in a

one-to-one manner. That is, given v ∈ βi, precisely one of the following two statements

holds:

1. f(i ≤ j)(v) = 0;

3If Hn(Ki;Z) is torsion-free, then the dimension of Hn(Ki;F ) and the rank of Hn(Ki;Z) are equal. This
is often the case in practice (see [LTH21,OY23]).
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2. f(i ≤ j)(v) ∈ βj and f(i ≤ j)(ṽ) = f(i ≤ j)(v) implies that ṽ = v for any ṽ ∈ βi.

Such a choice of basis may not exist when the coefficient ring for computing homology is not

a field (e.g., see Section 3.3). This choice of bases gives a correspondence between homology

classes in K at different filtration-parameter values. For example, given v ∈ βi and w ∈ βj,

one can interpret ϕi,j(v) = w to mean that the hole corresponding to v at filtration-parameter

value i can be identified with the hole corresponding to w at filtration-parameter value j.

Similarly, one can interpret ϕi,j(v) = 0 to mean that the hole corresponding to v fills in

at filtration-parameter value j. This choice of basis gives the filtration-parameter values

that homology classes in K are born and die. This is often summarized by a persistence

diagram, which is a multiset PDn
F (K) = {(bk, dk)}k of points in R2 such that each point

(bk, dk) corresponds to a homology class that is born at filtration-parameter value bk and

dies at filtration-parameter value dk. If dk = ∞, the corresponding hole never dies. For

example, the filtration in Figure 2.1 has the associated persistence diagram in Figure 2.2.

2.2.2 Filtration of simplicial complexes

In many applications, one works with a filtration of simplicial complexes. A “simplicial

complex” is a set of “simplices” (which are vertices, edges, triangles, tetrahedrons, and

higher-dimensional analogues of these objects) that satisfy certain requirements on simplex

boundaries and pairwise simplex intersections.

More precisely, simplicial complexes are defined as follows. A k-simplex σ is a k-dimensional

convex hull of k + 1 vertices. A face of σ is the convex hull of a nonempty subset of the

vertices of σ. A simplicial complex X is a collection of simplices such that (1) if σ ∈ X, then

any face of σ is also in X and (2) given σ, τ ∈ X, we have that σ ∩ τ is a face of both σ and

τ . One often uses a simplicial complex to approximate a topological space.

Given a point cloud X = {x1, . . . , xn} in a metric space (M,d), there are several ways to

construct a filtration of simplicial complexes that approximates the shape of X. Two of

9



(a) K0 (b) K1 (c) K2 (d) K3 (e) K4

Figure 2.1: An example of a filtration of simplicial complexes. The simplicial complex Ki
has the associated filtration-parameter value i. [This figure appeared originally in [HNP22].]

Figure 2.2: The persistence diagram for the 0-dimensional (0D) and 1-dimensional (1D) PH
of the filtration in Figure 2.1. [This figure first appeared in [HNP22]]

the most common constructions are the Čech filtration and the Vietoris–Rips (VR) filtra-

tion [OPT17]. For r > 0, the Čech complex Čr(X,M, d) at filtration-parameter value r

is the simplicial complex that has a simplex with vertices [xi0 , . . . , xik ] if the intersection⋂
j B(xij , r) is nonempty, where B(x, r) := {y ∈ M | d(x, y) ≤ r}. That is, Čr(X,M, d) is

the nerve of the closed balls {B(xi, r)}xi∈X . By the Nerve Theorem [Bor48], Čr(X,M, d) is

topologically equivalent (more precisely, it is homotopy-equivalent) to the union
⋃
iB(xi, r)

of balls in M whenever the balls B(xi, r) are convex.4 This implies that
⋃
iB(xi, r) and

4This condition is satisfied for all r when (M,d) is Euclidean, but it is not always satisfied for non-
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Čr(X,M, d) have the same homology (i.e., the same set of holes). A Čech filtration is a

filtration of Čech complexes for increasing filtration-parameter value r. In Figure 2.3, we

show an example of a Čech filtration.

In practice, it is uncommon to use Čech filtrations because they are difficult to compute. A

Vietoris–Rips (VR) complex VRr(X,M, d) is an approximation of a Čech complex that is

faster to compute because it is only necessary to calculate pairwise distances between points.

The VR complex at filtration-parameter value r has a simplex with vertices [xi0 , . . . , xik ] if

d(xij , xiℓ) < 2r for all j and ℓ. A VR filtration is a filtration of VR complexes for a sequence

of increasing filtration-parameter values. A VR filtration “approximates” a Čech filtration in

the sense that

Čr(X,M, d) ⊆ VRr(X,M, d) ⊆ Č√
2r(X,M, d) (2.1)

for all r. The complexes VRr(X,M, d) and Čr(X,M, d) have the same set of edges for all r.

Figure 2.3: Illustration of a Čech filtration for a point cloud X that we sample from an
annulus. [This figure appeared originally in [HJJ23]. We generated this figure using [AS11].]

Weighted versions of the Čech and VR filtrations were described in [ACG19]. Given a point

cloud X = {x1, . . . , xn} in a metric space (M,d) and associated weights {w1, . . . , wn}, the

radius function at xi is

rxi(t) :=


−∞ , t < wi

t− wi , otherwise .
(2.2)

Euclidean metric spaces.

11



The closed ball B(xi, rxi(t)) has no points until time t = wi; at that time, the radius

starts growing linearly with t, which is the filtration parameter. The weighted Čech complex

Čweighted
t (X,M, d, {wi}) at filtration parameter t is the simplicial complex that has a sim-

plex with vertices [xi0 , . . . , xik ] if the intersection
⋂
j B(xij , rxij (t)) is nonempty. (That is,

Čweighted
t (X,M, d, {wi}) is the nerve of {B(xi, rxi(t))}xi∈X .) Like the unweighted Čech com-

plex, the weighted Čech complex is homotopy-equivalent to the union
⋃
iB(xi, rxi(t)) of balls

by the Nerve Theorem whenever the balls B(xi, rxi(t)) are convex for all xi. Much like an un-

weighted Čech complex, a weighted Čech complex requires too much time to compute in prac-

tice, so researchers usually instead compute a weighted VR complex VRweighted
t (X,M, d, {wi}).

This is the simplicial complex whose vertices are {xi | wi < t} and whose simplices

[xi0 , . . . , xik ] satisfy d(xij , xiℓ) + wij + wiℓ < 2t. The sequence {VRweighted
t (X,M, d, {wi})}t

for increasing t is the weighted VR filtration. Analogously to Equation (2.1), the weighted

VR filtration “approximates” the weighted Čech filtration in the sense that

Čr(X,M, d, {wi}) ⊆ VRr(X,M, d, {wi}) ⊆ Č√
2r(X,M, d, {wi}) (2.3)

for all r.

In addition to computing a persistence diagram, which tracks the birth and death of homol-

ogy classes, one can identify the “birth simplex” and “death simplex” of homology classes in a

filtration of simplicial complexes. The birth simplex is the simplex that creates a homology

class, and its death simplex is the simplex that fills it in. For example, in Figure 2.1, a

1-dimensional (1D) homology class is born at filtration-parameter value 2. Its birth simplex

is the edge with vertices 0 and 3. The same homology class subsequently dies at filtration-

parameter value 4. Its death simplex is the triangle with vertices 0, 2, and 3.
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2.3 Persistence Modules

Persistent homology yields an algebraic structure called a “persistence module” [Oud15,

Sch22]. We briefly discuss the theoretical framework of persistent modules and their relation

to persistent homology.

Let R be a ring. A (finitely-indexed) persistence module with R-coefficients is a functor

f : {0, 1, . . . ,m} → R-Mod, where {0, 1, . . . ,m} is a finite totally-ordered poset category and

R−Mod is the category of R-modules. That is, f can be viewed5 as an algebraic structure

that consists of (1) a finite collection {fi}mi=0 of R-modules and (2) R-homomorphisms {f(i ≤

j) : fi → fj}0≤i≤j≤m (which we call structure maps6) between the aforementioned R-modules

such that f(i ≤ i) = idfi and f(i ≤ j) = f(s ≤ j) ◦ f(i ≤ s) for i ≤ s ≤ j.

Given b, d ∈ {0, · · · ,m} such that 0 ≤ b < d ≤ m, let Ib,dR denote the persistence module

{(Ib,dR )i}mi=0 with R-coefficients such that

(Ib,dR )i =


R , b ≤ i < d

0 , otherwise ,

Ib,dR (i ≤ j) : (Ib,dR )i → (Ib,dR )j =


idR , b ≤ i ≤ j < d

0 , otherwise .

We refer to the persistence modules Ib,dR as interval modules. An interval decomposition of f

5In the category {0, . . . ,m}, the objects are integers i such that 0 ≤ i ≤ m; for each i, j ∈ {0, . . . ,m}
such that i ≤ j, there is a unique morphism (denoted “i ≤ j”) between i and j. As a functor, f assigns an
R-module fi to each i ∈ {0, · · · ,m} and a homomorphism f(i ≤ j) : fi → fj to each morphism i ≤ j.

6The structure maps discussed here are generalizations of the structure maps in Section 2.2. The structure
maps in Section 2.2 are homomorphisms between homology groups that are associated with the inclusion
map between their respective topological spaces, whereas the structure maps defined here can be any homo-
morphism between R-modules.
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is a decomposition of f into interval modules:

f ∼=
⊕
k

Ibk,dkR ,

where 0 ≤ bk < dk ≤ m. Another way to view an interval decomposition is to choose a basis

βi for each fi in a persistence module such that the structure map f(i ≤ j) : fi → fj maps

elements of βi either to 0 or to basis elements in βj in a one-to-one manner. That is, given

v ∈ βi, precisely one of the following two statements holds:

1. f(i ≤ j)(v) = 0;

2. f(i ≤ j)(v) ∈ βj and f(i ≤ j)(ṽ) = f(i ≤ j)(v) implies that ṽ = v for any ṽ ∈ βi.

The structure theorem of Gabriel [Gab72] is a general result describing the indecomposable

isomorphism classes of quiver representations. In the context of persistence modules, it

implies the following result.

Theorem 2.1 (Gabriel). Suppose that R is a field and that f is a persistence module over

R. Then

• f admits an interval decomposition;

• two direct sums of nonzero interval modules are isomorphic — that is,
⊕M

k=1 I
bk,dk
R

∼=⊕N
ℓ=1 I

b′ℓ,d
′
ℓ

R — if and only if M = N and there exists a permutation π such that

(b1, d1), . . . , (bM , dM) equals (b′π(1), d
′
π(1)), . . . , (b

′
π(M), d

′
π(M)).

By Theorem 2.1, when R is a field, every persistence module with coefficients in R admits

an interval decomposition. However, interval decompositions for persistence modules with

non-field coefficients are not guaranteed to exist.
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2.3.1 Relation to persistent homology

Interval decompositions of persistence modules provide a critical foundation to study PH.

Given a filtration K = {K}mi=0, one can take the nth homology with coefficients in a field F

to obtain a persistence module Hn(K;F ), which consists of (1) a sequence {Hn(Ki;F )}mi=0 of

vector spaces (these are the homology groups of K in dimension n) over F that correspond

to the topological spaces in K and (2) F -linear maps {ϕji : Hn(Ki;F )→ Hn(Kj;F )}0≤i≤j≤m

between homology groups (these are the structure maps) that arise from the inclusion maps.

Given an interval decomposition

Hn(K;F ) ∼=
r⊕

k=1

Ibk,dkF ,

the persistence diagram for K in dimension n with F -coefficients is the multiset PDF
n (K) =

{(bk, dk)}rk=1. The module Hn(K;F ) always admits an interval decomposition, as the coef-

ficient ring is a field. This characterization formalizes the notion of a persistence diagram,

which we discussed in Section 2.2. A persistence module can also arise from applying ho-

mology to a persistent topological space, which is a sequence X0 → · · · → Xm of topological

spaces and continuous maps.
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CHAPTER 3

Interval Decomposition of Persistence Modules over a

Principal Ideal Domain

In this chapter, we study persistence modules and their interval decompositions. The ex-

istence of interval decompositions of a persistence module underlies much theory behind

persistent homology (PH) (see Section 2.3). We study persistence modules with coefficients

in a principal ideal domain (PID). We formulate and prove necessary and sufficient condi-

tions for the existence of interval modules. Concretely, we show that a persistence module

that is pointwise1 free and finitely-generated over a PID splits as a direct sum of interval

modules if and only if every structure map has a free cokernel. We then provide an algo-

rithm that either (1) computes such a decomposition explicitly or (2) verifies that no such

decomposition exists. This chapter is adapted2 from [LH23], which is in collaboration3 with

Gregory Henselman-Petrusek.

Throughout this chapter, we use functor notation to describe persistence modules (see Sec-

tion 2.3 for details). Recall that a persistence module is a functor f : {0, . . . ,m} → R-Mod.

In the category {0, . . . ,m}, the objects are integers i such that 0 ≤ i ≤ m; for each

1The word “pointwise” modifies both “free” and “finitely-generated.” In Section 3.1, we define what it
means for a persistence module to be pointwise free and finitely-generated.

2All figures in this chapter originally appeared in [LH23].

3I proved the theoretical results in Sections 3.4, 3.5, and 3.6; formulated and proved the correctness of
Algorithm 3.1 in Section 3.7; formulated and proved the correctness of Algorithm 3.2 in Section 3.8 with G.
Henselman-Petrusek; and wrote the paper with G. Henselman-Petrusek.
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i, j ∈ {0, . . . ,m} such that i ≤ j, there is a unique morphism (denoted “i ≤ j”) between i

and j. As a functor, f assigns an R-module fi to each i ∈ {0, . . . ,m} and a homomorphism

(i.e., structure map) f(i ≤ j) : fi → fj to each morphism i ≤ j.

This chapter proceeds as follows. We introduce our problem and summarize our contributions

in Section 3.1. We discuss related works in Section 3.2. We relate our work to the indepen-

dence of persistence diagrams (PDs) with respect to field choice in Section 3.3. We present

and briefly prove the uniqueness of interval decompositions, when they exist, in Section 3.4.

We present a necessary and sufficient condition for the existence of interval decompositions

for pointwise free and finitely-generated persistence modules over PIDs in Section 3.5, and

we prove necessity and sufficiency in Sections 3.5 and 3.6, respectively. We then provide a

simple algorithm to compute an interval decomposition (when it exists), with a high-level

description in Section 3.7 and a detailed description in the language of matrix algebra in

Section 3.8. We conclude and discuss our results in Section 3.9. We give information about

the Smith-normal-form factorization of matrices and other relevant matrix-algebra facts in

Section 3.A.

3.1 Introduction

Persistence modules are algebraic objects that are central to PH. Under certain conditions,

a persistence module admits an interval decomposition, in which it decomposes into inde-

composable pieces called “interval modules.” Interval decompositions are rich in information.

For example, they provide the information for PDs (see Section 2.2).

The literature on PH has focused traditionally on homology groups with coefficients in a field

because persistence modules with field coefficients are guaranteed to decompose into interval

modules (see Theorem 2.1). However, there is an increasing amount of research on PH with

different coefficients (e.g., the ring of integers) [Pat18,GM23,PS23]. A fundamental question

that one can ask is how to determine whether or not a persistence module not decomposes
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into interval modules.

We answer this question for any persistence module f that is pointwise free and finitely-

generated over a principle ideal domain R. Concretely, this condition entails that f :

{0, . . . ,m} → R-Mod is a persistence module in which fa is a free and finitely-generated

R-module for all a ∈ {0, . . . ,m}. For any persistence module f that satisfies this condition,

we have Theorem 3.1, which is the main computational result of this chapter.

Theorem 3.1. Let f : {0, . . . ,m} → R-Mod be a persistence module that is pointwise free

and finitely-generated over R. There is a formal procedure (see Algorithm 3.2) to deter-

mine whether f admits an interval decomposition and, if so, to explicitly construct such a

decomposition. The procedure has finite (respectively, polynomial) time if matrices over the

coefficient ring R can be multiplied, inverted, and placed in Smith normal form in finite

(respectively, polynomial) time.

The procedure relies on and is informed by Theorem 3.2, which is the main theoretical result

of this chapter.

Theorem 3.2. Let f : {0, . . . ,m} → R-Mod be a persistence module that is pointwise free

and finitely-generated over R. The persistence module f splits into a direct sum of interval

modules if and only if the cokernel of every structure map f(a ≤ b) : fa → fb is free.

Theorem 3.2 offers structural insights into PH for both theoretical and applied researchers.

Theorists gain access to a wider variety of tools in settings in which interval decompositions

exist. For example, if a persistence module f of free abelian groups decomposes as a direct

sum of interval modules, then the PD of f ⊗F is identical for every choice of coefficient field

F (see Lemma 3.4). Practitioners gain both computational power and analytical insight

into persistence modules with non-field coefficients. For example, the ability to reason with

persistence modules with PID coefficients (and, in particular, Z-coefficients) is important

to several forms of dimension reduction that involve circular and projective coordinates
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(see [DV09,Per18,Per20,SGB23]).

3.2 Related Works

The study of interval decompositions belongs to a large body of literature dedicated to

understanding the isomorphism invariants of persistence modules [ELZ02, CZ09]. Patel

[Pat18] generalized the notion of PDs to persistence modules of the form f : {0, . . . ,m} →

C, where C is a symmetric monoidal category with images or (under a slightly differ-

ent construction) where C is an abelian category. These ideas were extended recently

using Galois connections [GM23] and Möbius homology [PS23]. An important class of

examples comes from 2-parameter persistence [BL23]; specifically, consider functors from

the poset category of {0, . . . ,m} × {0, . . . ,m} into C. These objects are used in appli-

cations [LW15, CDH22, BL24] and can be modeled as persistence modules of persistence

modules (i.e. functors {0, . . . ,m} → D, where D is the category4 of persistence modules

with values in C).

Obayashi and Yoshiwaki [OY23] studied the dependence of PDs on the choice of field in the

setting of filtrations (i.e., nested sequences of topological spaces). They introduced conditions

on the homology of a filtration that are necessary and sufficient for the associated PDs to be

independent of the choice of field5 (see Section 3.3). They produced an algorithm to verify

field-choice independence by adapting a standard algorithm to compute PDs for simplex-

wise filtrations.6 They also conducted numerical experiments that demonstrate empirically

that PDs rarely depend on the choice of field. Li et al. [LTH21] reported similar empirical

results.

4Concretely, this is the category whose objects are functors of the form f : {0, . . . ,m} → C.

5We will prove that these conditions are equivalent to the condition that the associated persistence module
with Z-coefficients splits as a direct sum of interval submodules (see Theorem 3.3).

6A simplex-wise filtration on a simplicial complex K = {σ1, . . . , σm} is a nested sequence of sub-simplicial
complexes ∅ = K0 ⊆ · · · ⊆ Km = K such that Kp = {σ1, . . . , σp} for all p ∈ {0, . . . ,m}.
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There remain several gaps in the current literature. Although PDs have been defined for

general families of functors {0, . . . ,m} → C [Pat18], it is only known that interval decompo-

sitions exist when C is a category of finite-dimensional vector spaces (see Theorem 2.1). Our

results concerning the fundamental structure of persistence modules have ramifications in

PH. In particular, we complement the results of [OY23] by linking field-independence to the

algebraic structure (concretely, the indecomposable factors) of a persistence module, rather

than the topology of an underlying simplicial complex. Such a perspective is important, as

it helps one to relate topological ideas involving filtrations with algebraic ideas involving the

corresponding persistence modules. By better understanding persistence modules, we also

gain a better grasp of their relation to PH and its generalizations.

3.3 Persistent Diagrams and Independence of Field Choice

Theorem 3.2 allows us to deduce that the PD of a filtered topological space is independent of

the choice of coefficient field if and only if the associated persistence module over Z splits as

a direct sum of interval submodules (subject to an extra homological condition that we state

in Theorem 3.3). Our proof relies on a result of Obayashi and Yoshiwaki [OY23, Theorem

1.9] that guarantees the equivalence of conditions 3 and 4 in Theorem 3.3.

Theorem 3.3. Let K = {Ki}mi=0 be a filtration of topological spaces. Suppose that the

homology groups Hk−1(Ka;Z) and Hk(Ka;Z) are free for every a such that 0 ≤ a ≤ m. Then

the following are equivalent.

1. The persistence module Hk(K;Z) splits as a direct sum of interval submodules.

2. For all a and b such that 0 ≤ a ≤ b ≤ m, the cokernel of the structure map ϕba :

Hk(Ka;Z)→ Hk(Kb;Z) is free.

3. (Obayashi and Yoshiwaki) For all a and b such that 0 ≤ a ≤ b ≤ m, the relative

homology group Hk(Kb,Ka) is free.
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4. (Obayashi and Yoshiwaki) The persistence diagram PDF
k (K) of dimension k is inde-

pendent of the choice of coefficient field F .

Proof. Obayashi and Yoshiwaki [OY23, Theorem 1.9] showed that conditions 3 and 4 are

equivalent. Theorem 3.2 gives the equivalence between 1 and 2. It remains to show the

equivalence between 2 and 3.

We have the following long exact7 sequence for relative homology8:

· · · → Hk(Ka;Z)
ϕba→ Hk(Kb;Z)

j∗→ Hk(Kb,Ka;Z)
∂→ Hk−1(Ka;Z)→ · · · ,

from which we can extract the following short exact sequence

0→ coker(ϕba)→ Hk(Kb,Ka;Z)→ Im(∂)→ 0 .

Suppose that coker(ϕba) is free. Because Im(∂) is free (it is a subgroup of the free abelian

group Hk−1(Xa;Z)), this short exact sequence splits, which implies that Hk(Kb,Ka;Z) ∼=

coker(ϕba)⊕ Im(∂). Because coker(ϕba) is free, Hk(Kb,Ka;Z) must also be free.

Conversely, if Hk(Kb,Ka;Z) is free, then coker(ϕba) must also be free, because it injects into

a free abelian group.

Remark 3.1. In a prior version of [OY23] (which is available on arXiv [OY20]), Obayashi

and Yoshiwaki gave a constructive proof of the equivalence of conditions 1 and 3 in the special

case in which {Ki}mi=1 is a simplex-wise filtration on a simplicial complex [OY20, Lemma 2].

7A sequence M1
η1→ M2

η2→ · · · → Mn of modules is exact if Im(ηj) = ker(ηj+1) for all j. If it precisely
of the form 0 → A → B → C → 0, we say that it is a short exact sequence. Otherwise, it is a long exact
sequence.

8Such a long exact sequence exists for any pair of nested topological spaces. The key detail in our
discussion is that the sequence is exact; the precise definitions of j∗ and ∂ are not important. See [Hat02,
Section 2.1] for a detailed exposition, including the definitions of j∗ and ∂.
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We illustrate the relation between the field-choice independence of a PD of a filtration and

the existence of an interval decomposition of the corresponding persistence module with Z

coefficients. Consider the following persistent topological space K:

• ↪→ S1 f→ S1 ↪→ C ,

where • is a single point, S1 = {z ∈ C| ∥x∥ = 1}, and f(z) = z2. By taking the first

homology over a field F , we obtain the following persistence module9:

0→ F
·2→ F → 0 .

If char(F ) = 2, the multiplication-by-2 map is the zero map, so we can write

(0→ F
·2→ F → 0) ∼= (0→ F → 0→ 0)⊕ (0→ 0→ F → 0) .

Otherwise, the multiplication-by-2 map is an isomorphism and the persistence module in

question is an interval module. Therefore, when indexing from 0, the corresponding PD

PDF
1 (K) for first homology depends on the characteristic of the coefficient field:

PDF
1 (K) =


{(1, 2), (2, 3)} , char(F ) = 2 ,

{(1, 3)} , otherwise .

When taking the first homology of K with integer coefficients, the corresponding persistence

module is

0→ Z ·2→ Z→ 0 ,

which does not decompose into interval modules.

9The map F ·2→ F denotes the multiplication-by-2 map, which is given by x 7→ 2x.
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3.4 Uniqueness of Interval Decompositions

In this section, we prove that interval decompositions of persistence modules that are point-

wise free and finitely-generated over a PID are unique when they exist.

We fix a PID R and a persistence module f that is pointwise free and finitely-generated over

R; we use the notation R and f for the rest of this chapter. We also assume, without loss of

generality, that f0 = fm = 0.

Lemma 3.4. Let f : {0, . . . ,m} → R-Mod be a persistence module that is pointwise free and

finitely-generated over R. Suppose that f admits an interval decomposition

f ∼=
⊕
k

Ibk,dkR .

Let F = Frac(R) be the field of fractions of R, and consider the persistence module f ⊗ F ,

which is the persistence module over F that is given by

(f ⊗ F )a = fa ⊗ F ,

(f ⊗ F )(a ≤ b) = f(a ≤ b)⊗ idF .

Then
⊕

k I
bk,dk
F is an interval decomposition of f ⊗ F .

Proof. Observe that Ib,dR ⊗F = Ib,dF . Because a tensor product distributes over a direct sum,

f ⊗ F ∼=

(⊕
k

Ibk,dkR

)
⊗ F

=
⊕
k

(Ibk,dkR ⊗ F )

=
⊕
k

Ibk,dkF ,

as desired.
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Theorem 3.5. Let f : {0, . . . ,m} → R-Mod be a persistence module that is pointwise free

and finitely-generated over R, and suppose f admits an interval decomposition. Then the

associated multiset of intervals is unique.

Proof. Let F = Frac(R) be the field of fractions of R. Suppose that
⊕r

k=1 I
bk,dk
R and⊕r′

ℓ=1 I
b′ℓ,d

′
ℓ

R are both interval decompositions of f . By Lemma 3.4, both
⊕r

k=1 I
bk,dk
F and⊕r′

ℓ=1 I
b′ℓ,d

′
ℓ

F are interval decompositions of f ⊗ F . Theorem 2.1 guarantees that interval de-

compositions of persistence modules over F are unique up to permutation, so r = r′ and

there exists a permutation π such that (bk, dk) = (b′π(k), d
′
π(k)) for every k.

Theorem 3.5 extends to persistence modules with coefficients in any integral domain.

3.5 Proof of Theorem 3.2: Necessity

We may now prove the main theoretical result, which we repeat here for ease of reference.

Theorem 3.2. Let f be a persistence module that is pointwise free and finitely-generated

over R. Then f splits into a direct sum of interval modules if and only if the cokernel of

every structure map f(a ≤ b) is free.

The condition that f(a ≤ b) has a free cokernel is equivalent to the following well-known

conditions:

• The module fb splits as a direct sum I ⊕C for some submodule C ⊆ fb, where I is the

image of f(a ≤ b).

• In the language of the Smith normal form (see Section 3.A), the map f(a ≤ b) has

unit elementary divisors. That is, if A is the matrix representation of f(a ≤ b) with

respect to some pair of bases for fa and fb, and if SAT = D is the Smith normal form
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of A, then the nonzero diagonal entries of D are units.10

The proof of Theorem 3.2 has two halves: necessity and sufficiency. Necessity is straightfor-

ward and is established in Lemma 3.6. Sufficiency requires substantially greater effort and

is established in Section 3.6.

Lemma 3.6 (Necessity). If f splits into a direct sum of interval modules, then the cokernel

of every structure map f(a ≤ b) is free.

Proof. Suppose that we can write f = h1 ⊕ h2 ⊕ · · · ⊕ hr, where each hk is an interval

module. Fix a and b such that 0 ≤ a ≤ b ≤ m, and let N = {k : hkb ̸= 0} be the indices

of the interval modules that are nonzero at b. Let X = {k ∈ N : hka ̸= 0} (i.e., the set of

indices of intervals including [a, b]) and Y = {k ∈ N : hka = 0} (i.e., the set of indices that

are 0 at a). In particular,
⊕

k∈X h
k
b = Im(f(a ≤ b)), because X is precisely the set of indices

for the intervals that contain [a, b].

We note the following:

fb =
r⊕

k=1

hkb

=
⊕
k∈N

hkb

=
⊕
k∈X

hkb ⊕
⊕
k∈Y

hkb

= Im(f(a ≤ b))⊕
⊕
k∈Y

hkb .

Because fb is free and submodules of free modules are free, Coker(f(a ≤ b)) = fb/Im(f(a ≤

b)) ∼=
⊕

k∈Y h
k
b is free.

10A “unit” is a ring element that has a multiplicative inverse.
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3.6 Proof of Theorem 3.2: Sufficiency

We now build the framework to prove sufficiency. That is, we prove the following theorem.

Theorem 3.7 (Sufficiency). Let f be a persistence module that is pointwise free and finitely-

generated over R, and suppose that the cokernel of every structure map f(a ≤ b) is free. Then

f splits into a direct sum of interval modules.

To prove Theorem 3.7, we proceed as follows. For each module fa, we will study the “saecular

lattice” [GH21] of fa. The saecular lattice (see Definition 3.7) is a submodule lattice that

consists of submodules generated by all images into and all kernels out of fa. We will use

this lattice of submodules to prove the existence of certain subspace complements, which

will allow us to leverage the free-cokernel assumption to build structured families of bases

through incremental extensions. These bases will yield a constructive proof of existence for

interval decompositions. We use these ideas to formulate Algorithm 3.2 in Section 3.8.

Before building the necessary machinery for the proof of Theorem 3.7, we first provide

intuition by illustrating the key ideas of our proof. See Figures 3.1 and 3.2 for illustrations.

For a non-negative integer n, let n = {1, . . . , n}. This definition holds even when n = 0; in

this case, 0 = ∅. We note that f is indexed by {0, 1, . . . ,m}, which can also be written as

m ∪ {0}. Because f0 = fm = 0, every map of form f(0 ≤ p) or f(p ≤ m) is a zero map.

Definition 3.1. Fix a ∈m, and let x, y ∈m ∪ {0}. Define

Ker[a, y] =


ker(f(a ≤ y)) , a ≤ y

0 , otherwise

and

Im[x, a] =


Im(f(x ≤ a)) , x ≤ a

fa , otherwise .
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Figure 3.1: Given fa, we illustrate how the summands given by {Aija }1≤i,j≤m form (left)
Im[x, a] and (right) Ker[a, y].

Note that Ker[a,m] = fa because fm = 0 and that Ker[a, 0] = 0 because 0 ≤ a. Thus,

for each a, we have a nested sequence of submodules 0 = Ker[a, 0] ⊆ · · · ⊆ Ker[a,m] = fa

beginning with 0 and ending with fa that are the kernels of the maps f(a ≤ x). Similarly,

the submodules Im[x, a] form a nested sequence 0 = Im[0, a] ⊆ · · · ⊆ Im[m, a] = fa of

submodules beginning with 0 and ending with fa that are the images of the maps f(x ≤ a).

For each fa, we construct a family {Aija }1≤i,j≤m of submodules such that11

⊕
j≤y

Aija = Ker[a, y] ,

⊕
i≤x

Aija = Im[x, a] .

In the context of PH, one can view Aija as a submodule of fa consisting of homology classes

that are born at i and die at j. Note that Aija = 0 when a /∈ [i, j). We construct our family

of submodules {Aija }1≤i,j≤m for each fa such that when fixing a, b ∈ {0, . . . ,m} with a ≤ b,

11See Figure 3.1 for an illustration.
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Figure 3.2: Given a and b with a ≤ b, we illustrate that f(a ≤ b)(Aija ) ⊆ Aijb .

we have 12

f(a ≤ b)(Aija ) ⊆ Aijb .

In this setting, the restricted map f(a ≤ b)|Aij
a
: Aija → Aijb is an isomorphism when a, b ∈

[i, j). If a or b lies outside [i, j), then Aija or Aijb is 0, so the map between them is a zero map.

This construction allows us to identify Aija with Aijb whenever both of these modules are

nonzero. Because a basis of Aija yields a basis of Aijb (and vice versa), we can start with an

appropriate basis on the left end of our persistence module and work our way right. That is,

we can use a basis of fa to construct a suitable basis of fb. This yields a collection of bases

(one for each fa) that forms an interval decomposition.

3.6.1 A brief overview of lattice theory

This section uses many ideas from lattice theory. We provide a brief overview of the relevant

lattice-theoretic ideas. For a more comprehensive background on lattice theory, see [Bir95,

12See Figure 3.2 for an illustration
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Gra12].

Definition 3.2. A lattice (L,≤) is a poset that is closed under greatest lower bound and

least upper bound. That is, every a, b ∈ L has a greatest lower bound and least upper bound

in L. The join of a and b is their greatest lower bound, which we denote a∧ b. The meet of

a and b is their least upper bound, which we denote a ∨ b.

An important lattice to consider is the order lattice of submodules. Given an R-module M ,

the order lattice of submodules (which we also call the “submodule lattice”) of M is the set of

submodules of M ordered by inclusion, where the meet and join operations are intersection

and sum, respectively. We denote the order lattice of submodules of M by Sub(M).

An important property of submodule lattices is that they are modular (see [Gra12, Theorem

2.2.6(a)]).

Definition 3.3. A lattice L is modular if, for any ℓ1, ℓ2, ℓ3 ∈ L such that ℓ1 ≤ ℓ3, we have

ℓ1 ∨ (ℓ2 ∧ ℓ3) = (ℓ1 ∨ ℓ2) ∧ ℓ3.

We now review other relevant definitions.

Definition 3.4. Let L be a lattice. We say that a subset S ⊆ L is a sublattice if S is closed

under meet and join.

Definition 3.5. Let L andM be lattices. A function Λ : L →M is a lattice homomorphism

if Λ preserves meet and join. That is, for all a, b ∈ L, we have Λ(a ∧ b) = Λ(a) ∧ Λ(b) and

Λ(a ∨ b) = Λ(a) ∨ Λ(b).

Definition 3.6. A lattice C is a chain if it is totally ordered. That is, for every a, b ∈ C, we

have either a ≤ b or b ≤ a.
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3.6.2 Saecular submodule lattices and homomorphisms

Definition 3.7. The saecular lattice of fa is the sublattice of Sub(fa) generated by all

submodules of the form Im[x, a] and Ker[a, y]. We denote this sublattice by ImKer(fa).

Given a ≤ b, we can relate submodules in ImKer(fa) and ImKer(fb) by pushing forward (i.e.,

applying f(a ≤ b) to submodules in ImKer(fa)) and pulling back (i.e., applying f(a ≤ b)−1

to submodules in ImKer(fb)). Lemmas 3.8, 3.9, and 3.10 express these relationships.

Lemma 3.8. Fix a, b ∈m such that a ≤ b. The following hold for any x, y ∈m ∪ {0}:

f(a ≤ b)(Im[x, a]) = Im[x, b] ∩ Im[a, b] , (3.1)

f(a ≤ b)(Ker[a, y]) = Ker[b, y] ∩ Im[a, b] . (3.2)

Proof. We first show identity (3.1). Let L and R, respectively, denote the left-hand side and

right-hand sides of the identity (3.1).

Suppose first that x ≤ a. Then Im[x, b] ⊆ Im[a, b], so

R = Im[x, b]

= f(x ≤ b)(fx)

= (f(a ≤ b) ◦ f(x ≤ a))(fx)

= f(a ≤ b)(Im[x, a])

= L .

Now suppose that a ≤ x ≤ b. Then Im[x, a] = fa, so L = f(a ≤ b)(fa) = Im[a, b]. Because

Im[a, b] ⊆ Im[x, b], the right-hand side is also Im[a, b].

Finally, suppose that a ≤ b ≤ x. Then the left-hand side is again f(a ≤ b)(fa) = Im[a, b].

Because Im[x, b] = fb, the right-hand side is also Im[a, b].
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We now show identity (3.2). Let L and R, respectively, denote the left-hand side and right-

hand sides of identity (3.2).

Suppose first that y ≤ a ≤ b. Then Ker[a, y] and Ker[b, y] are 0, by definition, and 0 = L = R.

Now suppose that a ≤ y ≤ b. Then Ker[a, y] ⊆ Ker[a, b], so 0 = f(a ≤ b)(Ker[a, y]) = L.

The right-hand side of (3.2) also vanishes, because Ker[b, y] = 0, by definition.

Finally, suppose a ≤ b ≤ y. Then L ⊆ Ker[b, y], because f(b ≤ y)(f(a ≤ b)(Ker[a, y])) =

f(a ≤ y)(Ker[a, y]) = 0. Because L ⊆ Im[a, b] as well, it follows that L ⊆ R. To prove

the opposite containment, suppose that z′ ∈ L. Then z′ = f(a ≤ b)(z) for some z ∈ fa,

which implies that 0 = f(b ≤ y) ◦ f(a ≤ b)(z) = f(a ≤ y)(z). Thus, z ∈ Ker[a, y], so

z′ ∈ f(a ≤ b)(Ker[a, y]) = L. Because z′ is arbitrary, it follows that R ⊆ L. The desired

conclusion follows.

Lemma 3.9. Fix a, b ∈m such that a ≤ b. The following holds for any x, y ∈m ∪ {0}:

f(a ≤ b) (Im[x, a] ∩Ker[a, y]) = Im[x, b] ∩Ker[b, y] ∩ Im[a, b] . (3.3)

Proof. First, consider a ≤ x. In this case, Im[x, a] = fa and Im[a, b] ⊆ Im[x, b]. Our task

therefore reduces to showing that f(a ≤ b)(Ker[a, y]) = Ker[b, y]∩ Im[a, b], which we proved

in Lemma 3.8.

Now suppose that y ≤ b. Then f(a ≤ b)(Ker[a, y]) = 0, so f(a ≤ b)(Im[x, a]∩Ker[a, y]) = 0.

Therefore, the left-hand side of (3.3) vanishes. Because Ker[b, y] = 0, by definition, the

right-hand side of (3.3) also vanishes. This proves the desired result for y ≤ b.

This leaves x < a ≤ b < y. Because x < a, we have Im[x, b] ⊆ Im[a, b], so we only need to

show that
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f(a ≤ b)(Im[x, a] ∩Ker[a, y]) = Im[x, b] ∩Ker[b, y] . (3.4)

Applying f(a ≤ b) to each term in the intersection on the left-hand side of (3.4) yields a

subset of the corresponding term in the intersection on the right-hand side of (3.4), so the left-

hand side is a subset of the right-hand side. For the other inclusion, fix an arbitrary element of

Im[x, b]∩Ker[b, y], which can be expressed in the form f(x ≤ b)(α) for some α. We note that

f(x ≤ b)(α) = f(a ≤ b)◦f(x ≤ a)(α), so it is sufficient to show that f(x ≤ a)(α) ∈ Ker[a, y].

This holds because f(a ≤ y)◦f(x ≤ a)(α) = f(b ≤ y)◦f(a ≤ b)◦f(x ≤ a)(α) = 0. Thus, we

see that f(x ≤ a)(α) ∈ Im[x, a]∩Ker[a, y], so f(x ≤ b)(α) ∈ f(x ≤ b)(Im[x, a]∩Ker[a, y]).

Lemma 3.10. Fix a, b ∈m such that a ≤ b. The following holds for any x, y ∈m ∪ {0}:

f(a ≤ b)−1(Im[x, b] + Ker[b, y]) = Im[x, a] + Ker[a, y] + Ker[a, b] . (3.5)

Proof. Throughout this proof, let L and R denote the left-hand side and right-hand side of

Equation (3.5), respectively.

We consider three cases: (i) a ≤ x, (ii) y ≤ b, and (iii) x ≤ a ≤ b ≤ y.

We first consider (i). In this case, the right-hand side is simply fa, because Im[x, a] = fa.

If b ≤ x, then Im[x, b] = fb, which implies that the left-hand side is f(a ≤ b)−1(Im[x, b] +

Ker[b, y]) = f(a ≤ b)−1(fb) = fa, as desired. Otherwise, with a ≤ x ≤ b, we see that

f(a ≤ b)−1(Im[x, b] + Ker[b, y]) ⊇ f(a ≤ b)−1(Im[x, b])

⊇ f(a ≤ b)−1(Im[a, b])

= fa

so the left-hand side is fa as well.
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Now consider (ii). In this case, Ker[b, y] = 0 and Ker[a, y] = 0. Therefore, we only need to

show that

f(a ≤ b)−1(Im[x, b]) = Im[x, a] + Ker[a, b] .

We subdivide (ii) into three subcases: b ≤ x, a ≤ x ≤ b, and x ≤ a.

If b ≤ x, we see that Im[x, b] = fb and Im[x, a] = fa; because f(a ≤ b)−1(fb) = fa, the

desired expression holds.

If a ≤ x ≤ b, then the right-hand side is fa, because Im[x, a] = fa. We note that

f(a ≤ b)−1(Im[x, b]) ⊇ f(a ≤ b)−1(Im[a, b])

= fa ,

so the left-hand side is fa, and the desired expression again holds.

Consider x ≤ a. First, we show that L ⊇ R. If we take f(x ≤ a)(w) ∈ Im[x, a], then f(a ≤

b) ◦ f(x ≤ a)(w) = f(x ≤ b)(w) ∈ Im[x, b]. We see that Ker[a, b] ⊆ f(a ≤ b)−1(Im[x, b]),

so L ⊇ R. To see that L ⊆ R, we note that if z ∈ f(a ≤ b)−1(Im[x, b]), then f(a ≤

b)(z) = f(x ≤ b)(α) for some α ∈ fx. Because f(x ≤ b) = f(a ≤ b) ◦ f(x ≤ a), we see

that f(a ≤ b)(z) = f(a ≤ b) ◦ f(x ≤ a)(α), which implies that z = f(x ≤ a)(α) + ζ for

ζ ∈ Ker[a, b], as desired.

Finally, we consider (iii). In this situation, Ker[a, b] ⊆ Ker[a, y], so our desired expression

reduces to

f(a ≤ b)−1(Im[x, b] + Ker[b, y]) = Im[x, a] + Ker[a, y] .

We first show that L ⊇ R. Indeed, if we take f(x ≤ a)(w) ∈ Im[x, a], then f(a ≤ b) ◦ f(x ≤

a)(w) = f(x ≤ b)(w) ∈ Im[x, b]. Additionally, if we take z ∈ Ker[a, y], then f(a ≤ b)(z) ∈

Ker[b, y], as f(b ≤ y) ◦ f(a ≤ b)(z) = f(a ≤ y)(z) = 0. Thus, L ⊇ R.
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To see that L ⊆ R, we take z ∈ f(a ≤ b)−1(Im[x, b] + Ker[b, y]). Note that f(a ≤ b)(z) =

f(x ≤ b)(α) + ζ for α ∈ fx and ζ ∈ Ker[b, y]. As f(x ≤ b) = f(a ≤ b) ◦ f(x ≤ a), the

right-hand side is equal to f(a ≤ b) ◦ f(x ≤ a)(α) + ζ. Applying f(b ≤ y) to both sides then

gives f(a ≤ y)(z) = f(a ≤ y) ◦ f(x ≤ a)(α). This implies that z = f(x ≤ a)(α) + ξ for

ξ ∈ Ker[a, d], as desired.

As the above cases are now all settled, we are done.

Having now established some basic properties of the saecular lattice, we introduce a second

lattice.

Definition 3.8. Let n1 and n2 be non-negative integers. Define n1n2 := n1 × n2 as the

product poset of n1 and n2. That is, given (p, q), (p′, q′) ∈ n1n2, we have that p′ ≤ p and

q′ ≤ q if and only if (p′, q′) ≤ (p, q). A subset S ⊆ n1n2 is down-closed if (p, q) ∈ S implies

that (p′, q′) ∈ S for all (p′, q′) ≤ (p, q). We write DownSets(n1n2) for the poset of down-

closed subsets of n1n2, ordered under inclusion. The poset DownSets(n1n2) forms a lattice,

where the meet and join operations are intersection and union, respectively.

The DownSet and saecular lattices can be related with the following theorem, which is a

consequence of a result in Birkhoff [Bir95].

Theorem 3.11. For each a ∈m, there exists a (unique) lattice homomorphism

Λa : DownSet(mm)→ ImKer(fa)

such that xm 7→ Im[x, a] and my 7→ Ker[a, y].

Proof. This proof uses the modularity of submodule lattices.

Consider the lattice Sub(fa) of submodules of fa. Let p and q be the chains p0 ≤ · · · ≤ pm and

q0 ≤ · · · ≤ qm, respectively. Define lattice homomorphisms λp : p → Sub(fa) and λq : q →
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Sub(fa) by λp(px) = Im[x, a] and λq(qy) = Ker[a, y], respectively. By [Bir95, Section III.7,

Theorem 9], there exists a unique lattice homomorphism Λa : DownSet(mm) → Sub(fa)

such that the following diagram commutes:

DownSet(mm)

p Sub(fa) q

ψp ψqΛa

λp λq

In this diagram, ψp : p → DownSet(mm) and ψq : q → DownSet(mm) are defined by

ψp(px) = xm and ψq(qy) = my, respectively. Moreover, the codomain of Λa can be restricted

to ImKerfa because the images of λp and λq are both in ImKerfa. We therefore have a unique

lattice homomorphism Λa : DownSet(mm)→ ImKer(fa), as desired.

Definition 3.9. We call Λa : DownSet(mm) → ImKer(fa) the saecular homomorphism

correstricted to a.

The saecular homomorphisms allow us to define a pair of commutative diagrams, which we

introduce in Theorems 3.12 and 3.13. These diagrams have great utility; for example, we

will use them to show that the direct image operator H 7→ f(a ≤ b)(H) and the inverse

image operator G 7→ f(a ≤ b)−1(G) induce homomorphisms between saecular lattices.

Theorem 3.12. Fix a, b ∈m such that a ≤ b. The following diagram commutes:

S S ∩ am

xm my DownSets(mm) DownSets(mm) xm my

Im[x, a] Ker[a, y] ImKer(fa) ImKer(fb) Im[x, b] Ker[b, y]

H f(a ≤ b)(H)

g

ΛbΛa

h
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Proof. We first consider sets of the form cm ∩md. On one hand, Lemma 3.9 implies that

cm ∩md
Λa7−−−−−→ Im[c, a] ∩Ker[a, d]

h7−−−−→ Im[c, b] ∩Ker[b, d] ∩ Im[a, b] .

On the other hand,

cm ∩md
g7−−−−→ cm ∩md ∩ am

Λb7−−−−−→ Im[c, a] ∩Ker[b, d] ∩ Im[a, b] .

Therefore, h ◦ Λa(cm ∩md) = Λb ◦ g(cm ∩md). All sets in DownSets[mm] can be formed

as unions of sets of the form cm ∩md. Because g, Λa, and Λb are lattice homomorphisms

and h preserves join (because the image of unions of sets is equal to the union of images of

sets), it follows that h ◦ Λa and Λb ◦ g agree on every set in Downsets(mm), so the diagram

commutes.

We have a similar commutative diagram for f(a ≤ b)−1.

Theorem 3.13. Fix a, b ∈m such that a ≤ b. The following diagram commutes:

S ∪ma S

xm my DownSets(mm) DownSets(mm) xm my

Im[x, a] Ker[a, y] ImKer(fa) ImKer(fb) Im[x, b] Ker[b, y]

f(a ≤ b)−1(H) H

g

ΛbΛa

h

Proof. First, we consider sets of the form cm ∪md. On one hand,

cm ∪md
g7−−−−→ cm ∪md ∪ma

Λa7−−−−−→ Im[c, a] + Ker[a, d] + Ker[a, b] .

36



On the other hand, by Lemma 3.10, applying Λb followed by h yields

cm ∪md
Λb7−−−−−→ Im[c, b] + Ker[b, d]

h7−−−−→ Im[c, a] + Ker[a, d] + Ker[a, b] .

Thus, for sets of the form cm ∪md, we see that Λa ◦ g = h ◦ Λb.

Any set in DownSets(mm) can be written as an intersection of sets of the form cm ∪md.

Because g, Λa, and Λb are lattice homomorphism and h preserves meet (because the preimage

of an intersection is equal to the intersection of preimages), we see that Λa ◦ g = h ◦ Λb for

every set in DownSets(mm).

Remark 3.2. Theorems 3.12 and 3.13 imply that the function h (which is given by applying

f(a ≤ b) and f(a ≤ b)−1, respectively) in both diagrams are lattice homomorphisms. This

is because, in each diagram, the functions g, Λa, and Λb lattice homomorphisms and Λa and

Λb are surjective.

3.6.3 Complements in the saecular submodule lattices

In this section, we show that if the cokernel of f(a ≤ b) is free for all a and b such that

0 ≤ a ≤ b ≤ m, then for any fc and A,B ∈ ImKer(fc) such that A ⊆ B, the cokernel of

the inclusion A ⊆ B (i.e., the quotient B/A) is free. This implies that whenever we have

an inclusion A ⊆ B between elements of a saecular lattice, there exists a complementary

submodule C such that A⊕ C = B.

Definition 3.10. We say that C complements A ⊆ B (or that C is a complement of A in

B) whenever A⊕C = B. In this situation, we say that A admits (or has) a complement in

B.

Remark 3.3. Complements are not unique in general. For example, let B = Z2 and A =

{(a, 0)|a ∈ Z}. Consider C1 = {(0, b)|b ∈ Z} and C2 = {(b, b)|b ∈ Z}. Both C1 and C2 are

complements of A in B.
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In Section 3.6.4, we will use these complements to explicitly construct interval decomposi-

tions.

For convenience, we adopt the notation

Coker[x, a] = fa/Im[x, a] .

For the remainder of Section 3.6, we assume that the cokernel of every structure map f(a ≤ b)

is free. Thus,

fb ∼= Im[a, b]⊕ Coker[a, b] .

Theorem 3.14. Fix a, b ∈ m such that a ≤ b. For any x, y ∈ m ∪ {0}, the submodule

Ker[a, y] + Im[x, a] ⊆ fa has a complement in fa.

Proof. First note that if y ≤ a, then Ker[a, y] + Im[x, a] = Im[x, a], which we know has a

complement in fa that is isomorphic to Coker[x, a].

If a ≤ x, then Ker[a, y] + Im[x, a] = fa has a trivial complement C = 0 in fa.

We now need to prove the result for x ≤ a ≤ y. Because fa is free, it is sufficient to show

that the quotient fa
Ker[a,y]+Im[x,a]

is free.

Let C be a complement of Im[a, y] in fy. Then we have a chain of isomorphisms:

Coker[x, y] ∼=
fy

Im[x, y]

=
Im[a, y]⊕ C
Im[x, y]

∼=
Im[a, y]

Im[x, y]
⊕ C (3.6)

∼=
fa

Ker[a, y] + Im[x, a]
⊕ C . (3.7)
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The last two isomorphisms (i.e., (3.6) and (3.7)) must be proved.

The isomorphism (3.6) holds because Im[x, y] ⊆ Im[a, y].

For the isomorphism (3.7), recall that x ≤ a ≤ y and that the following hold by definition:

• Ker[a, y] = ker(f(a ≤ y));

• Im[x, a] = Im(f(x ≤ a)) = f(x ≤ a)(fa);

• Im[x, y] = Im(f(x ≤ y)) = f(x ≤ y)(fx) = f(a ≤ y)(f(x ≤ a)(fx));

• Im[a, y] = Im(f(a ≤ y)) = f(a ≤ y)(fa).

We now show the following chain of isomorphisms:

Im[a, y]

Im[x, y]
∼=

f(a ≤ y)(fa)

f(a ≤ y)(f(x ≤ a)(fx))
(3.8)

∼=
f(a ≤ y)(fa)

f(a ≤ y)
(
f(x ≤ a)(fx) + ker(f(a ≤ y))

) (3.9)

∼=
fa/ ker(f(a ≤ y))(

f(x ≤ a)(fx) + ker(f(a ≤ y))
)
/ ker(f(a ≤ y))

(3.10)

∼=
fa

f(x ≤ a)(fx) + ker(f(a ≤ y))
(3.11)

∼=
fa

Ker[a, y] + Im[x, a]
. (3.12)

The isomorphism (3.9) is a follows from the inequality

f(a ≤ y)(f(x ≤ a)(fx)) = f(a ≤ y)
(
f(x ≤ a)(fx) + ker(f(a ≤ y))

)
.

The isomorphism (3.10) is a result of the first isomorphism theorem.13 The isomorphism

13The first isomorphism theorem states that given an R-module homomorphism ψ : M1 → M2, we have
the isomorphism ψ(M1) ∼=M1/ ker(ψ). See [DF04, Section 10.2, Theorem 4.1].
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in (3.11) is a result of the third isomorphism theorem.14 This establishes the isomorphism

(3.7). The isomorphism (3.7) shows that fa
Ker[a,y]+Im[x,a]

can be viewed as a submodule of

Coker[x, y], which is free by hypothesis. Because submodules of free modules over PIDs

are free, fa
Ker[a,y]+Im[x,a]

is free. Therefore, the inclusion Ker[a, y] + Im[x, a] ⊆ fa has a free

cokernel, so the submodule Ker[a, y] + Im[x, a] has a complement in fa, as desired.

Using Theorem 3.14, as well as some lemmas that we state and prove shortly, we have the

following result.

Theorem 3.15. Let a ∈ m and L,H ∈ ImKer(fa) such that L ⊆ H. Then L has a

complement in H.

We prove Theorem 3.15 using the results of Lemmas 3.16, 3.17, 3.18, and 3.19.

Remark 3.4. In our proof of Lemma 3.16, we will use the fact that a finitely-generated

module over a PID is free if and only if it is torsion-free.

Lemma 3.16. Let G be a free and finitely-generated module over R, and let A ⊆ G. Then

the following are equivalent:

(1) A has a complement in G;

(2) G/A is torsion-free;

(3) if mz ∈ A for z ∈ G and nonzero m ∈ R, then z ∈ A.

Proof. The equivalence between (1), (2), and (3) follows from standard properties of finitely-

generated modules over a PID.

To see that (1) implies (2), we note that if G = A ⊕ B, then G/A ∼= B, which is free (and

14The third isomorphism theorem states that given an R-module M with submodules M1,M2 ⊆ M such
that M1 ⊆M2 ⊆M3, we have the isomorphism M/M2

∼= M/M1

M2/M1
. See [DF04, Section 10.3, Theorem 4.1].
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therefore torsion-free), as it is a submodule of a free module over a PID.

We now show that (2) implies (1). Let ϕ : G→ G/A denote the projection map. Let {g̃i}i∈I

be a basis of G/A (we can choose such a basis because G/A is torsion-free and therefore

free), and choose gi ∈ ϕ−1(g̃i). Let B ⊆ G be the submodule generated by {gi}i∈I . We claim

that A ⊕ B = G. Any nontrivial linear combination of the elements gi yields a nontrivial

linear combination of elements g̃i under ϕ; this linear combination is nonzero because the

g̃i are linearly independent. Therefore, no nontrivial linear combination of elements gi lies

in ker(ϕ) = A, so A ∩ B = 0. We now show that A + B = G. Take g ∈ G, and write

ϕ(g) =
∑

i∈I cig̃i =
∑

i∈I ciϕ(gi) for some ci ∈ R. From this, we see that g =
∑

i∈I cigi + a

for a ∈ ker(ϕ) = A, as desired.

We now show that (2) implies (3). Suppose that mz ∈ A with nonzero m ∈ R and z ∈ G.

If z ∈ G \ A, then z + A ∈ G/A is nonzero, but mz + A = 0. This implies that z + A is in

the torsion of G/A, which is a contradiction.

We now show that (3) implies (2). If G/A has torsion, then there is a nonzero z + A such

that mz +A = 0 for a nonzero m ∈ R. This implies that z ∈ G \A and that mz ∈ A. This

shows the desired result by contrapositive, thus completing the proof.

Lemma 3.17. If the submodules H,K ⊆ fa each admit complements, then so does H ∩K.

Proof. Suppose that mz ∈ H ∩K for nonzero m ∈ R and z ∈ fa. Because mz ∈ H and H

admits a complement, we see by Lemma 3.16 that z ∈ H. Similarly, z ∈ K, which implies

that z ∈ H ∩K. Therefore, by Lemma 3.16, H ∩K has a complement in fa.

Lemma 3.18. If L ⊆ H ⊆ fa and L admits a complement in fa, then L admits a complement

in H.

Proof. By Lemma 3.16, it is enough to show that H/L is free. Because H/L ⊆ fa/L and
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fa/L is free, we must have that H/L is free as well.

Lemma 3.19. Every element of the saecular lattice ImKer(fa) can be expressed as an in-

tersection of submodules of the form Im[c, a] + Ker[a, d] for some choice of c, d ∈m ∪ {0}.

Proof. Submodules of the form Im[c, a] + Ker[a, d] are precisely the image of subsets of

the form cm ∪ md under Λa. Because any set in DownSets(mm) can be written as an

intersection of sets of the form cm ∪ md (noting that c or d can be 0) and Λa is a lattice

homomorphism, it follows that any submodule of fa can be written as an intersection of

submodules of the form Im[c, a] + Ker[a,m].

Lemmas 3.16, 3.17, 3.18, 3.19, and Theorem 3.14 allow us to prove Theorem 3.15.

Proof of Theorem 3.15. By Lemma 3.19, every L ∈ ImKer(fa) can be represented as an

intersection of submodules of the form Im[c, a] + Ker[a, d]. By Theorem 3.14 and Lemma

3.17, L admits a complement in fa. By Lemma 3.18, L has a complement inH, as desired.

3.6.4 Existence of interval decompositions

We now use the saecular lattice (see Definition 3.7) of each fa and the existence of comple-

ments in the saecular lattice (see Theorem 3.15) to prove the existence of interval decompo-

sitions. We once again assume that all structure maps f(a ≤ b) have free cokernel.

Our argument proceeds as follows. First, we use the results of Section 3.6.3 to obtain a

direct-sum decomposition fa ∼=
⊕

i,j A
ij
a for all a, where each Aija is a complement in the

saecular lattice (see Theorem 3.22). We then modify the summands in each decomposition

so that f(a ≤ b)(Aija ) ∈ {A
ij
b , 0} whenever a ≤ b (see Lemma 3.24). The resulting family of

summands Aija then naturally combines to form an interval decomposition of f .
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Lemma 3.20. Suppose that we have a diagram of inclusions of down-closed sets in mm:

Y T

X S ,

where15 Y = X ⊔{(i, j)} and T = S ⊔{(i, j)}. Let Aija be a complement of Λa(X) in Λa(Y ).

Then Aija is also a complement of Λa(S) in Λa(T ).

Proof. Note that Aija is a submodule of Λa(T ). Moreover, Y ∩ S = X and Y ∪ S = T . From

this, we have

Λa(Y )

Λa(X)
=

Λa(Y )

Λa(Y ∩ S)

=
Λa(Y )

Λa(Y ) ∩ Λa(S)

∼=
Λa(Y ) + Λa(S)

Λa(S)
(3.13)

=
Λa(Y ∪ S)
Λa(S)

=
Λa(T )

Λa(S)
.

The isomorphism in (3.13) arises from the second isomorphism theorem.16 We therefore have

the commutative diagram
Λa(Y )/Λa(X)

Aija Λa(T )/Λa(S) ,

∼=

so the map Aija → Λa(T )/Λa(S) is injective. Therefore, Λa(S)∩Aija = 0. Moreover, Λa(S) +

15Given a set S and subsets A1,A2 ⊆ S, the set S is a disjoint union of A1 and A2 (which we write
A1 ⊔ A2 = S) if A1 ∪ A2 = S and A1 ∩ A2 = ∅.

16The second isomorphism theorem states that given an R-module M and submodules S, T ⊆ M , there
is an isomorphism ψ : S/(S ∩ T ) → (S + T )/T given by ψ(a + (S ∩ T )) = a + T . See [DF04, Section 10.2,
Theorem 4.2].
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Aija = Λa(T ), because

Λa(S) + Aija = Λa(X) + Aija + Λa(S)

= Λa(Y ) + Λa(S)

= Λa(Y ∪ S)

= Λa(T ) .

As a result, Aija is a complement of Λa(S) in Λa(T ), as desired.

For each fa, the submodule Aija in Lemma 3.20 can identified with (i, j) ∈mm. In fact, the

set of Aij are summands of fa. One can also use these summands of fa to construct any

submodule in ImKer(fa).

Theorem 3.20 tells us that every complement of Λa(X) ⊆ Λa(Y ) is also a complement of

Λ(S) ⊆ Λ(T ) when X and Y are small enough with respect to inclusion (i.e., satisfy the

relation in Lemma 3.20).

For the remainder of Section 3.6, we fix a family of complements, with X and Y as small as

possible. That is, for each a, i, j ∈m, choose a direct-sum decomposition

Λa(Y ) = Λa(X)⊕ Aija (3.14)

in which Y and X are defined Y = ij = im ∩mj and X = Y \ {(i, j)}.

Our next technical result is Lemma 3.21. Viewed at a high level, this result states that when

a space of the form Im[x, a] and a space of the form Ker[a, y] are each large enough to contain

Aija , then so is their intersection. However, decrementing x and y by a single unit can make

the image and kernel spaces small enough so that they do not include any nonzero element

of Aija , even when we take the sum of the two spaces.

44



Lemma 3.21. For each (i, j) ∈mm, we have

0 = Aija ∩
(
Im[i− 1, a] + Ker[a, j − 1]

)
, (3.15)

Aija = Aija ∩
(
Im[i, a] ∩Ker[a, j]

)
(equivalently, Aija ⊆ Im[i, a] ∩Ker[a, j] .) (3.16)

Proof. Define down-closed sets X ⊆ Y and S ⊆ T such that

X = Y \ {(i, j)} = Y ∩ S ,

Y = ij = im ∩mj ,

S = {(p, q) ∈mm : p < i or q < j} = (i− 1)m ∪m(j− 1) ,

T = S ∪ {(i, j)} = S ∪ Y .

Then Aija complements Λa(S) ⊆ Λa(T ), where Λa(S) = Im[i−1, a]+Ker[a, j−1], so Equation

(3.15) follows. Likewise, Aija complements Λa(X) ⊆ Λa(Y ), where Λa(Y ) = Im[i, a]∩Ker[a, j].

Therefore, Aija ⊆ Im[i, a] ∩Ker[a, j], so Equation (3.16) follows.

Theorem 3.22. For every down-closed subset S ⊆mm, we have

Λa(S) =
⊕

(i,j)∈S

Aija .

Proof. Choose a sequence of down-closed sets ∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S such that

each set difference Sp \ Sp−1 is a singleton {(ip, jp)}. The submodule Aip,jpa complements

Λa(Sp−1) ⊆ Λa(Sp) for all p, by Lemma 3.20. Therefore,

Λa(S) =
⊕
p

Aip,jpa =
⊕

(i,j)∈S

Aija .
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In the special case where f is a persistence module from PH, one can view each Aija as

homology classes that are born at i and die at j. This interpretation is valid by Lemma 3.21,

because Aija ⊆ Ker[a, j], Aija ∩ Ker[a, j − 1] = 0, Aija ⊆ Im[i, a], and Im[i − 1, a] ∩ Aija = 0.

Lemmas 3.23 and 3.24 provide additional context for this interpretation. They also provide

the necessary ingredients to prove Theorem 3.7.

Lemma 3.23. If a /∈ [i, j), then Aija = 0.

Proof. On one hand, if a < i, then Im[i, a] = fa = Im[i − 1, a]. Because we also have

Im[i− 1, a] ∩ Aija = 0, it follows that Aija = 0.

On the other hand, a ≥ j implies that Ker[a, j] = 0. Because Aija ⊆ Ker[a, j], it follows that

Aija = 0.

Lemma 3.24. Suppose that a, b ∈ [i, j), where a ≤ b. Define Y = ij and X = Y \ {(i, j)}.

Then

Λb(Y ) = Λb(X)⊕ f(a ≤ b)(Aija ) .

That is, the image f(a ≤ b)(Aija ) satisfies the same condition (namely, Equation (3.14)) that

we impose on Aijb with b in place of a. Furthermore, f(a ≤ b) restricts to an isomorphism

Aija → f(a ≤ b)(Aija ).

Proof. Define X ′Λa(X), Y ′Λa(Y ), X ′′Λb(X), and Y ′′Λb(Y ).

Let g be the map S 7→ S ∩ am, and let h be the direct image-operator H 7→ f(a ≤ b)(H).

By hypothesis Y ′ = X ′ ⊕ Aija . First, we wish to show that Y ′′ = X ′′ ⊕ h(Aija ).

Because g(X) = X and g(Y ) = Y , it follows from Theorem 3.12 that h(X ′) = (h◦Λa)(X) =

(Λb ◦ g)(X) = X ′′ and h(Y ′) = (h ◦ Λa)(Y ) = (Λb ◦ g)(Y ) = Y ′′. Additionally, because the

kernel of f(a ≤ b)|Y ′ equals Ker[a, b] ∩ Y ′ = Λa(mb) ∩ Λa(Y ) = Λa(mb ∩ Y ), which is a
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submodule of Λa(X) = X ′, we have

Y ′′ = f(a ≤ b)(Y ′) = f(a ≤ b)(X ′ ⊕ Aija ) = h(X ′)⊕ h(Aija ) = X ′′ ⊕ h(Aij) ,

as desired. In addition, because the kernel of f(a ≤ b)|Y ′ is a submodule of X ′, it follows

that f(a ≤ b) restricts to an isomorphism Aija → h(Aija ). The desired conclusion follows.

To prove Theorem 3.7, we first introduce the notion of generalized interval modules. We will

show that they decompose as a direct sum of interval modules.

Definition 3.11. Let R be a commutative ring. A generalized interval module over R is

a persistence module J ij : {0, 1, . . . ,m} → R-Mod such that J ija = 0 for a /∈ [i, j) and

J ij(a ≤ b) : J ija → J ijb is an isomorphism whenever a, b ∈ [i, j).

Proposition 3.25. Let J ij be a generalized interval module. Then J ij decomposes as a direct

sum of interval modules.

Proof. Choose any basis βi of J iji . For a /∈ [i, j), let βa = ∅; for a ∈ (i, j), let βa = J ij(i ≤

a)(βi).

It suffices to show that, for all a, we have that βa is a basis of J ija and that J ij(a ≤ b) maps

βa \ ker(J ij(a ≤ b)) injectively into βb for all a ≤ b.

When a or b are outside [i, j), this is trivial, as one of βa or βb must be empty. When

i ≤ a ≤ b < j, we note that J ij(a ≤ b) is an isomorphism. Therefore, each βa for a ∈ [i, j) is

a basis and J ij(a ≤ b) is a bijection between βa and βb, which satisfies our desired claim.

We conclude this section by proving Theorem 3.7, thus completing the proof of Theorem 3.2.

Theorem 3.7. It suffices to show that f decomposes as a direct sum of generalized interval

modules, which decompose into interval modules by Proposition 3.25. By Lemmas 3.23 and

47



3.24, we can assume without loss of generality that

Aija =


f(i ≤ a)(Aiji ) , a ∈ [i, j) ,

0 , otherwise .

Additionally, Lemma 3.24 implies that f(a ≤ b)|Aij
a
: Aija → Aijb is an isomorphism whenever

a, b ∈ [i, j) and is the zero map otherwise. It therefore follows that, for each i and j, there

is a persistence submodule Aij such that (Aij)a = Aija and Aij(a ≤ b) = f(a ≤ b)|Aij
a
. Thus,

Aij is a generalized interval module. For each a, we have

fa =
⊕
ij

Aija (by Theorem 3.22)

=
⊕
ij

(Aij)a .

Additionally, for each a and b such that a ≤ b, we have

f(a ≤ b) =
⊕
i,j

f(a ≤ b)|Aij
a

=
⊕
i,j

Aij(a ≤ b) .

Therefore, f is a direct sum of the generalized interval modules Aij, as desired.

3.7 Algorithm for Computing an Interval Decomposition

In this section, we provide a simple presentation of our algorithm to compute interval de-

compositions for persistence modules that are pointwise free and finitely-generated over R.

We provide a detailed description in the language of matrix algebra in Section 3.8.

Let f : {0} ∪ m → R-Mod be a persistence module that is pointwise free and finitely-

generated over R. Recall that f0 = fm = 0 by convention (see Section 3.6). Our task is to
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define a sequence of bases βi ⊆ fi such that f(i ≤ j) maps βi \ Ker[i, j] injectively into βj

for all i ≤ j.

Suppose that the cokernel of f(i ≤ j) is free for each i, j ∈ {0, . . . ,m} such that i ≤ j. For

each i ≤ j, let Ki
j be a complement of

(
Im[i− 1, i] + Ker[i, j − 1]

)
∩Ker[i, j]

in Ker[i, j]. That is,

((
Im[i− 1, i] + Ker[i, j − 1]

)
∩Ker[i, j]

)
⊕Ki

j = Ker[i, j] .

Such complements exist by Theorem 3.15. Let γij be a basis of Ki
j.

We now present Algorithm 3.1, which computes an interval decomposition.

Algorithm 3.1 Computation of an interval decomposition.
Require: A persistence module f : {0} ∪m → R-Mod that is pointwise free and finitely-

generated over R. For each i, j ∈ {0} ∪m such that i ≤ j, we require the map f(i ≤ j)
to have a free cokernel.

Ensure: Returns an interval decomposition
1: β0 ← ∅
2: for i = 1, . . . ,m− 1 do
3: βi ← f(i− 1 ≤ i)(βi−1)
4: βi ← βi \ {0}
5: for j = i+ 1, . . . ,m do
6: βi ← βi ∪ γij
7: return β1, . . . , βm−1

Theorem 3.26. Let β1, · · · , βm−1 be bases that are returned by Algorithm 3.1. Each βi is

a basis of fi that contains a basis of each Ker[i, j] and Im[k, i]. Moreover, the bases βi ⊆ fi

yield an interval decomposition of f .

Proof. We first show that each basis βi that Algorithm 3.1 returns contains a basis of each
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Ker[i, j] and Im[k, i]. We proceed by induction.

Let i = 1. Because f0 = 0, we have that f(0 ≤ 1)(β0) = ∅. For each j = 1, . . . ,m in the

inner loop (see line 5 of Algorithm 3.1), we append to β1 a basis γ1j of a complement K1
j

of Ker[1, j − 1] in Ker[1, j]. This process gives a basis of Ker[1,m] = f1 (because fm = 0).

Additionally, note that Im[0, 1] = 0 and Im[k, 1] = f1 for k ≥ 1. Whether Im[k, 1] = 0 (when

k = 0) or Im[k, 1] = f1 (when k ≥ 1), we can a find subset of S ⊆ β1 (either ∅ or β1) such

that S spans Im[k, 1]. Thus, β1 is a basis of f1 that contains a basis of every Im[i, j] and

Im[k, i]. This completes the base case.

Now suppose that β1, . . . , βi−1 are bases of f1, . . . , fi−1, respectively, that contain bases of

the relevant images and kernels. We will show that βi is a basis of fi that contains a basis

of each kernel and image.

We first show that f(i−1 ≤ i)(βi−1)\{0} is linearly independent (as a multiset). To see this,

we first note that βi−1 is a basis of fi−1 and contains a basis of each Ker[i− 1, j]. Consider

κi−1 = βi−1∩Ker[i−1, i] and κ⊥i−1 = βi−1\κi−1. We note that Ker(f(i−1 ≤ i)) = span(κi−1),

which implies that f(i− 1 ≤ i)(κ⊥i−1) (which is precisely f(i− 1 ≤ i)(βi−1) \ {0}) is linearly

independent. Moreover, f(i − 1 ≤ i)(βi−1) \ {0} spans Im[i − 1, i], so it forms a basis of

Im[i− 1, i]

For each j = i + 1, . . . ,m in the inner loop (see line 5 of Algorithm 3.1), adding the el-

ements of γij to βi preserves linear independence. This is the case because the union of

linearly independent sets of complementary spaces is linearly independent. In fact, on the

jth iteration, we are extending βi from a basis of Im[i − 1, i] + Ker[i, j − 1] to a basis of

Im[i − 1, i] + Ker[i, j]. After the j = m iteration of the inner loop, we have a basis of

Im[i− 1, i] +Ker[i,m] = Ker[i,m] = fi because fm = 0. By construction, βi contains a basis

of every Ker[i, j].

We now show that βi contains a basis of every Im[k, i] by induction on i. The base case
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i = 0 is trivial. Additionally, we only need to consider k < i because Im[k, i] = fi for k ≥ i.

The inductive hypothesis implies that βi−1 contains a basis of Im[k, i − 1] for each k < i.

Let ιi−1
k ⊆ βi−1 be a basis of Im[k, i − 1]. Then f(i − 1 ≤ i)(ιi−1

k ) is a spanning set of

f(i − 1 ≤ i)(Im[k, i − 1]) = Im[k, i]. Because f(i − 1 ≤ i)(ιi−1
k ) \ {0} ⊆ βi, we see that βi

contains a spanning set (in fact, a basis, because βi is a basis of fi) of Im[k, i]. Thus, βi

contains a basis of each Im[k, i], as desired. This concludes the argument that βi contains a

basis of each submodule of the form Ker[i, j] and Im[k, i].

We still need to show that the bases β1, . . . , βm−1 decompose f into a direct sum of interval

submodules. That is, we need to verify that for i, j ∈ {0, . . . ,m} such that 0 < i < j < m,

the structure map f(i ≤ j) (1) sends βi ∩Ker[i, j] to 0 and (2) injectively maps βi \Ker[i, j]

into βj. The first claim (1) holds by Definition 3.1. The second claim (2) holds because

f(i ≤ j)(βi)\{0} is linearly independent (as a multiset) and because f(i ≤ j)(βi)\{0} ⊆ βj,

by construction.

3.8 Matrix Algorithm

In this section, we translate Algorithm 3.1 into the language of matrix algebra. We describe

the algorithm in Section 3.8.1, prove that this algorithm is correct in Section 3.8.2, and

provide a complexity bound in Section 3.8.3. We give a review of relevant facts on Smith-

normal-form factorization in Section 3.A.

For simplicity, assume that each module fa is a copy of Rd, for some d, where R is the

ring of coefficients. We identify the elements of Rd with length-d column vectors, and we

let Fa denote the matrix such that f(a ≤ a + 1)(v) = Fav for all v ∈ fa. Given matrices

M1,M2, · · · ,Mr of the same height, we denote [M1|M2| · · · |Mr] as the matrix obtained by

concatenating M1,M2, · · · ,Mr.

Recall that f0 = fm = 0 by convention (see Section 3.6). As in Section 3.7, our task is to
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define a sequence of bases βi ⊆ fi such that f(i ≤ j) maps βi \ Ker[i, j] injectively into βj

for all i ≤ j.

Definition 3.12. Let A ∈ Mr,s(R) be given. We say that the span of A is the span of its

columns. If r ≥ s and A has unit elementary divisors, we say that B ∈ Mr,r−s(R) is a

complement of A if [A|B] is invertible.

Definition 3.13. A kernel filtration matrix at fa is an invertible matrix

Xa = [Xa+1
a | · · · |Xn

a ]

with column submatrices Xa+1
a , . . . , Xn

a such that

Colspace([Xa+1
a | · · · |Xj

a]) = Ker[a, j]

for all j.

We write (Xj
a)

−1 for the row submatrix of X−1
a such that (Xj

a)
−1Xj

a = I is the identity

matrix. That is, the row indices of (Xj
a)

−1 in X−1
a equal the column indices of Xj

a in Xa.

3.8.1 The algorithm

We give a self-contained description of the matrix algorithm (see Algorithm 3.2).
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Algorithm 3.2 Interval decomposition via matrix factorization.

Require: A persistence module f : {0, . . . ,m} → R-Mod such that each fi equals Rk for
some k. Concretely, this module is encoded by a sequence of matrices Fi representing
the maps f(i ≤ i + 1) for each integer i such that 1 ≤ i < m − 1. We do not require f
to admit an interval decomposition.

Ensure: Returns an interval decomposition of f , if such a decomposition exists. Otherwise
returns a certificate that no such decomposition exists.

1: Let βi = ∅ for i = 1, . . . ,m
2: Let Y0 be the (unique and trivial) kernel filtration matrix17at f0
3: for i = 1, . . . ,m− 2 do
4: Compute a kernel filtration matrix Xi = [X i+1

i | · · · |Xm
i ] at fi via repeated Smith-

normal-form factorization (see Proposition 3.33)
5: for j = i+ 1, . . . ,m− 1 do
6: Obtain a Smith-normal-form factorization of Aji := (Xj

i )
−1Fi−1Y

j
i−1

7: if this factorization yields a complement Bj
i of Aji (see Proposition 3.32) then

8: Define Y j
i = [Xj

iB
j
i |Fi−1Y

j
i−1]

9: else
10: STOP; the persistence module f does not split into interval submodules
11: Let βi be the set of columns of Yi = [Y i+1

i | · · · |Y m
i ]

12: return β1, . . . , βm

When matrix multiplication and the computation of a Smith normal form are polynomial-

time procedures with respect to matrix dimensions, it is readily checked that Algorithm 3.2

is polynomial time with respect to matrix dimension and persistence-module length. We

compute the complexity of Algorithm 3.2 (see Proposition 3.31) relative to the complexity

of matrix multiplication, matrix inversion, and computing a Smith normal form.

Remark 3.5. We can perform the computations of the inner-loop iterations (see line 5) of

Algorithm 3.2 in parallel. That is, for any fixed i ∈ {1, · · · ,m − 2}, we can compute each

Aji and its Smith-normal-form factorization for j ∈ {i+ 1, · · · ,m− 1} in parallel.

17Because the rank of f0 is 0, any basis of f0 is empty. We view the kernel filtration matrix at f0 as a
degenerate 0× 0 matrix.
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3.8.2 Correctness of Algorithm 3.2

We now prove that Algorithm 3.2 is correct.

We say that the matrices Y1, . . . , Yi cohere if Yk = [Y k+1
k | · · · |Y m

k ] is a kernel filtration matrix

at fk for all k < i. By construction of Yk, this implies that for k < i − 1, the following

conditions hold:

• the set of columns of Y k+1
k maps to 0 under Fk;

• the set of columns of Y j
k maps injectively into the set of columns of Y j

k+1 under Fk for

j > k + 1.

Therefore, the bases β1, . . . , βm, which are given by the columns of the matrices Y1, . . . , Ym,

decompose f into interval modules if Y1, . . . , Ym cohere.

Lemma 3.27. Suppose that i satisfies 1 ≤ i ≤ m− 1. If Aqp admits a complement for every

p and q such that q > p and p ≤ i, then Y1, . . . , Yi cohere.

Proof. We will show that Y1, . . . , Yi cohere for all i. We proceed by induction on i.

First, suppose that i = 1. Because Y0 is a degenerate matrix, each Aj1 is also degenerate so we

can view Aj1 as a matrix of size d×0 for some d. It follows that any d×d invertible matrix Bj
1

is a complement of Aj1. Because X1 = [X2
1 | · · · |Xm

1 ] is a kernel filtration matrix by hypothesis

and the column space of Xj
1 equals that of Xj

1B
j
1, the matrix Y1 = [X2

1B
2
1 | · · · |Xm

1 B
m
1 ] is also

a kernel filtration matrix. This establishes the base case i = 1.

Now suppose that the desired conclusion holds for i < k, and consider i = k. The matrix

Yi−1 is a kernel filtration matrix. Therefore, given a kernel filtration matrix Xi at fi, for all j

such that i+1 ≤ j ≤ m−1, the columns of Fi−1Y
j
i−1 lie in the column space of [X i+1

i | · · · |X
j
i ].
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Therefore, the matrix X−1
i Fi−1Yi−1 has the following block structure:

X−1
i Fi−1Yi−1 =


0 Ai+1

i ∗ · · · ∗

0 0 Ai+2
i · · · ∗

...
... . . . . . . ...

0 0 0 · · · Ami

 . (3.17)

Consider the matrix

M =


Ai+1
i Bi+1

i ∗ 0 · · · ∗ 0

0 0 Ai+2
i Bi+2

i · · · ∗ 0
...

...
...

... . . . ...
...

0 0 0 0 · · · Ami Bm
i

 ,

where Bj
i is a complement of Aji . The matrix M is invertible because each matrix [Aki |Bk

i ]

is invertible. Moreover, the product XiM = Yi is a kernel filtration matrix because Xi is

a kernel filtration matrix and M is block-upper-triangular with invertible diagonal blocks.

The desired conclusion follows.

Lemma 3.28. Suppose i satisfies 1 ≤ i ≤ m− 1. If Yi−1 is a kernel filtration matrix, then

the columns of Aji in Equation (3.17) are linearly independent for j > i.

Proof. Suppose that j > i, and let C = {k + 1, k + 2, . . . , k + p} denote the set of column

indices in the matrix (3.17) that contain the submatrix Aji .

Seeking a contradiction, suppose that the columns of Aji are linearly dependent. Then there

exists a nonzero vector v̂ such that Aji v̂ = 0. Define a vector v by padding v̂ with 0 entries

to align the nonzero entries with the columns that contain Aji in the matrix (3.17). That is,
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we define v such that

vq =


v̂ℓ , q ∈ C and q = k + ℓ

0 , otherwise .

By inspection of the block structure of (3.17) and recalling that Aji v̂ = 0, it follows that

Fi−1Yi−1v lies in the column space of [X i+1
i | · · · |X

j−1
i ], which equals Ker[i, j − 1]. Conse-

quently, Yi−1v lies in Ker[i− 1, j − 1]. However, because Yi−1 is a kernel filtration matrix at

fi−1, the space Ker[i − 1, j − 1] equals the column space of [Y i
i−1| · · · |Y

j−1
i−1 ]. Therefore, the

columns of Yi−1 are linearly dependent. This contradicts the hypothesis that the columns of

Yi−1 form a basis of fi−1. The desired conclusion follows.

Lemma 3.29. If Algorithm 3.2 terminates because some Aji lacks a complement, then f

does not split as a direct sum of interval modules.

Proof. Let i and j be the first indices such that Aji lacks a complement. For each p < i, the

matrix Aqp has a complement. For each q < j, the matrix Aqi has a complement; let Bq
i be a

complement of Aqi .

Consider the matrix

N =



Ai+1
i Bi+1

i ∗ 0 · · · ∗

0 0 Ai+2
i Bi+2

i · · · ∗
...

...
...

... . . . ...

0 0 0 0 · · · Aji

0 0 0 0 · · · 0


.

Because each submatrix of the form [Aki |Bk
i ] is invertible, the span of the product XiN

contains the span of [X i+1
i | · · · |X

j−1
i ], which equals Ker[i, j − 1] because Xi is a kernel

filtration matrix.
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Because every preceding matrix Aqp admits a complement, by Lemma 3.27, the matrix Yi−1

is a kernel filtration matrix at fi−1. The columns of the matrix [Y i
i−1| · · · |Y

j
i−1] therefore

span the subspace Ker[i − 1, j] of fi−1. Consequently, the columns of the product matrix

Fi−1[Y
i
i−1| · · · |Y

j
i−1] span a subspace belonging to the saecular sublattice of fi, because the

direct image operator restricts to a homomorphism of saecular lattices (see Theorem 3.12).

This image subspace equals the span of Fi−1[Y
i+1
i−1 | · · · |Y

j
i−1], because Fi−1Y

i
i−1 = 0. Every

column ofXiN is a column of Fi−1[Y
i+1
i−1 | · · · |Y

j
i−1] or a column in the span of [X i+1

i | · · · |X
j−1
i ],

so XiN spans a subspace S in the saecular lattice at fi.

Because Aji lacks a complement, at least one of two conditions must hold; either (i) Aji has

a non-unit elementary divisors or (ii) the columns of Aji are linearly dependent. Because

Yi−1 is a kernel filtration matrix, the columns of Aji are linearly independent, by Lemma

3.28. Therefore, Aji has a non-unit elementary divisor. It follows that the quotient fi/S has

torsion, which implies that S does not admit a complement in fi. This implies that f does

not split as a direct sum of interval modules, by Theorems 3.2 and 3.15.

Theorem 3.30. Let f : {0, · · · ,m} → R−Mod be a persistence module that is pointwise

free and finitely-generated. If f has an interval decomposition, then Algorithm 3.2 returns

an interval decomposition. If f has no interval decomposition, then Algorithm 3.2 certifies

that no interval decomposition exists.

Proof. Algorithm 3.2 terminates either at line 10 or at line 12. If f has an interval decom-

position, then by Lemma 3.29, Algorithm 3.2 does not terminate at line 10. This implies

that Algorithm 3.2 terminates at line 12. By Lemma 3.27, Algorithm 3.2 yields a set of

bases β1, . . . , βm that gives an interval decomposition of f . If f does not have an inter-

val decomposition, then by Lemma 3.27, Algorithm 3.2 does not terminate at line 12. So,

Algorithm 3.2 must terminate at line 10, which certifies that f does not have an interval

decomposition.
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3.8.3 Complexity of Algorithm 3.2

We now provide a worst-case upper bound on the computational complexity of Algorithm

3.2. The upper bound depends on the computational complexity of multiplying two matrices,

inverting a matrix, and computing the Smith normal form of a matrix. We denote the

complexity of these operations on d × d matrices by Md, Rd, and Sd, respectively. Because

the complexity of these operations depends on the choice of R, we express the complexity of

Algorithm 3.2 in terms of Md, Rd, and Sd.

Proposition 3.31. Let f : {0, . . . ,m} → R-Mod be a persistence module that is pointwise

free and finitely-generated, and let d = maxi(rank(fi)). Let Md be the complexity of matrix

multiplication of two d × d matrices, Rd be the complexity of inverting a d × d matrix, and

Sd be the complexity of computing the Smith normal form of a d× d matrix. Algorithm 3.2

has worst-case complexity O(mKm,d), where Km,d = max(mMd,mSd, Rd).

Proof. Consider the ith iteration of the outer loop (see line 3) of Algorithm 3.2. In this

iteration, we must compute one kernel filtration matrix at fi and run once through the inner

loop (see line 5).

We first account for the computation of the kernel filtration matrix at fi. To do this, we

follow the procedure in Proposition 3.33. For each step k = i, . . . ,m − 1, we take the

matrix product Fk−1 · · ·FiT+
i · · ·T+

k−2, multiply by Fk on the left, and multiply by T−
k−1 on

the right to obtain the matrix product Fk · · ·FiT+
i · · ·T+

k−2T
−
k−1. We then compute the Smith

normal form. Each step thus requires two matrix multiplications and one Smith-normal-form

factorization. Because the dimension of each Fi is at most d× d, the dimensions of matrices

Fk, T+
k−1, T

−
k−1, and Fk−1 · · ·FiT+

i · · ·T+
k−2 is at most d × d. Lastly, we need to compute

Fk · · ·FiT+
i · · ·T+

k−2T
+
k−1, which is needed for step k + 1. This requires an additional matrix

multiplication, where we multiply by T+
k−1 instead of by T−

k−1 on the right. In total, we

require the computation of three matrix multiplications and one Smith normal form. The
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total computational cost is thus at most 3Md + Sd. We iteratively perform these operations

m − i times, so in total the computation of a kernel filtration matrix requires at most

(m− i)(3Md + Sd) arithmetic operations.

We now account for the computations of the inner loop (see line 5 of Algorithm 3.2). By

construction, each matrix Aji is a submatrix of X−1
i Fi−1Yi−1. Thus, the combined cost

of computing every matrix Aji is at most the cost of one matrix inversion and two matrix

multiplications (of matrices with sizes of at most d×d). In addition, for each j = i+1, . . . ,m−

1, we must compute (1) a complementBj
i of Aji (if one exists), which requires the computation

of one Smith normal form, and (2) a matrix Y j
i , which requires two matrix multiplications

(see line 8 of Algorithm 3.2). Thus, in total, we require one matrix inversion, 2+2(m−i−1) =

2(m− i) matrix multiplications, and m− i− 1 Smith-normal-form factorizations. In total,

the inner loop computation requires at most 2(m − i)Md + (m − i − 1)Sd + Rd arithmetic

operations.

Overall, each iteration i = 1, . . . ,m − 2 of the outer loop (see line 3) of Algorithm 3.2

requires at most of at most 5(m − i)Md + (2m − 2i − 1)Sd + Rd arithmetic operations.

The worst-case complexity of Algorithm 3.2 therefore is at most O(mKm,d), where Km,d =

max(mMd,mSd, Rd).

Remark 3.6. Proposition 3.31 provides a worst-case complexity of Algorithm 3.2, but we

believe that a typical computation is much faster. We did not calculate the typical number

(e.g., average-case complexity) of required arithmetic operations that is required by Algorithm

3.2.

3.9 Conclusion

We showed that a finitely-indexed persistence module that is pointwise free and finitely-

generated over a PID splits as a direct sum of interval submodules if and only if the cokernel
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of every structure map is free (see Theorem 3.2). One direction of this equivalence is simple to

prove (see Section 3.5), but the other requires significant machinery. We studied the saecular

lattice of each module in the persistence module, and we constructed a compatible direct-sum

decomposition. This gives the necessary ingredients to build an interval decomposition. We

constructed the bases that comprise our interval decomposition by relating corresponding

direct summands in different modules to each other.

We gave a concise algorithm that returns either an interval decomposition or a certificate

that no such decomposition exists. This algorithm has two variants. The first, Algorithm

3.1, is primarily combinatorial; it exposes the underlying algebra in a simple format. It

works by iteratively extending a family of bases with new elements that are compatible with

the saecular lattice. The second, Algorithm 3.2, translates this procedure into the language

of matrix algebra; it requires no special machinery beyond the Smith normal form, and it

offers natural possibilities for parallelization.

3.9.1 Future directions

A theoretical direction to explore is to extend our work to the setting of persistence modules

of general R-modules, rather than restricting ourselves to free modules. This requires us to

generalize the notion of “interval decomposition” to the setting of persistence modules valued

over modules with torsion. One can then determine the conditions on persistence modules

for the existence of interval decompositions. One can perhaps take inspiration from [Pat18]

for insights into generalized persistence.

It also would be interesting to generalize our work from the setting of finitely-indexed persis-

tence modules (for which the domain category is a finite totally-ordered poset category) to

continuously-indexed persistence modules (for which the domain category is a continuous-

valued totally-ordered poset category, such as [0, 1] or R). We expect that many of the ideas

from the present chapter can be adapted to this more general setting, although the treatment

60



may require extra care with respect to limits (specifically, upper continuity of the saecular

lattice; see [GH21]).

It is natural to ask whether the methods explored in this chapter can also be applied in

the setting of zig-zag persistence modules. A persistence module consists of a sequence

{Mi}mi=0 of R-modules with maps ϕi : Mi → Mi+1. Zig-zag persistence modules [CS10] are

generalizations of persistence modules that consist of a sequence {Mi}ri=1 of R-modules in

which the maps ϕi can go in either direction (i.e., either ϕi :Mi →Mi+1 or ϕi :Mi+1 →Mi).

When the ring of coefficients is a field, Gabriel’s theorem [Gab72] guarantees that any zig-zag

persistence module admits an interval decomposition. It would be interesting to consider the

conditions under which zig-zag persistence modules of free and finitely-generated modules

over a PID admit interval decompositions.

3.A Details on the Smith Normal Form

The decomposition procedure in Algorithm 3.2 requires no special machinery except the

Smith normal form. In this section, we provide a cursory review of the relevant facts about

the Smith normal form. See [DF04] for a detailed introduction.

We say that a matrix S with entries in a PID R is invertible if there exists a matrix S−1

with entries in R such that SS−1 = S−1S is the identity.

A Smith-normal-form factorization of a matrix A ∈ Mm,n(R) is an equation SAT = D ,

where S and T are invertible and D is a diagonal matrix of form diag(α1, . . . , αr, 0, . . . 0) in

which αi divides αi+1 for all i < r. We refer to α1, . . . , αr as the elementary divisors of A.

We say that A has unit elementary divisors if its elementary divisors are all units.18

We refer to the column submatrix of T that consists of the first r columns as the positive

18Recall that a unit is a ring element with a multiplicative inverse.
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part of T ; we denote it by T+. The submatrix that consists of the remaining m− r columns

is the negative part of T ; we denote it by T−. These matrices are complementary in the

sense of Definition 3.14.

Definition 3.14. Let A ∈ Mp,q(R), where p ≥ q and A has unit elementary divisors. We

say that B ∈Mp,p−q(R) is a complement of A if [A|B] is invertible.

Remark 3.7. Let A ∈ Mm,n(R), and let SAT = D be a Smith-normal-form factorization.

Then AT+ has linearly-independent columns and AT− = 0.

We define the positive part of S−1 to be the submatrix (S−1)+ composed of the first r

columns and the negative part of S−1 to be the submatrix (S−1)− composed of the last

m − r columns. These submatrices bear a special relationship to the cokernel of A, as

formalized in Proposition 3.32. The proof consists of straightforward calculations in matrix

algebra.

Proposition 3.32. Fix a matrix A ∈ Mm,n(R), and let SAT = D be a Smith-normal-form

factorization of A. Then the following are equivalent:

1. The homomorphism represented by A has a free cokernel.

2. The diagonal entries of D are units or 0.

When these conditions hold,

1. the image of A is the column space of (S−1)+;

2. the column space of (S−1)− is a complement of the image space of A.

The Smith normal form also has a useful relationship with nested kernels. Given a persistence

module f : {0, . . . ,m} → R-Mod, recall that Fa is the matrix representation of the map

f(a ≤ a+ 1).

Proposition 3.33. Given a ∈ {0, . . . ,m}, let SaFaTa be a Smith-normal-form factorization
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Figure 3.3: A product of matrices with block structure. The matrix Rk has linearly inde-
pendent columns and can be expressed in the form (3.20). Observe that Rm−1 = 0 because
Fm−1 = 0.

of Fa, and let Sk and Tk be inductively defined such that

Sk

(
Fk · · ·FaT+

a · · ·T+
k−1

)
Tk (3.18)

is a Smith-normal-form factorization of the product matrix Fk · · ·FaT+
a · · ·T+

k−1 for all k > a.

If Xk := T+
a · · ·T+

k−1T
−
k , then the columns of [Xa+1| · · · |Xk] form a basis of the kernel of

f(a ≤ k) for all k > a.

Proof. For any k, we have that Fk · · ·Fa·[Xk| · · · |Xa+1] = 0. This is because, by construction,

Fr · · ·FaXr = Fr · · ·FaT+
a · · ·T+

r−1T
−
r = 0 for all r satisfying a < r ≤ k. This implies that

the columns of [Xk| · · · |Xa+1] are in the kernel of Fk · · ·Fa.

A straightforward calculation yields19

[Xm| · · · |Xa+1] = Ta · diag(Ta+1, id) · · · diag(Tm, id) , (3.19)

where diag(Tk, id) denotes the block-diagonal matrix with Tk in the upper-left corner and an

identity matrix of appropriate size in the lower-right corner to form a matrix of the same size

as Ta. Therefore, [Xm| · · · |Xa+1] is invertible because it is a product of invertible matrices.

19Observe that T−
m−1 = Tm−1 because Fm−1 is the zero map.

63



Consequently, for any k, the matrix [Xk| · · · |Xa+1] has linearly independent columns.

We still need to show that the columns of [Xk| · · · |Xa+1] span the kernel of Fk · · ·Fa. Let

F̃ =



Fa

Fa+1Fa
...

Fm−2 · · ·Fa

Fm−1 · · ·Fa


and consider the product F̃ [Xm| · · · |Xa+1], which is of the form in Figure 3.3.

For each k, we can write

Rk = Fk · · ·FaT+
a · · ·T+

k [ T
+
k+1 · · ·T

+
m−2T

−
m−1 | T+

k+1 · · ·T
+
m−3T

−
m−2 | · · · | T−

k+1 ] . (3.20)

This implies that the columns of [Xk| · · · |Xa+1] span a submodule L of the kernel (which we

denote K) of Fk · · ·Fa. Because Fk · · ·FaT+
a · · ·T+

k and

[ T+
k+1 · · ·T

+
m−2T

−
m−1 | T+

k+1 · · ·T
+
m−3T

−
m−2 | · · · | T−

k+1 ] have linearly independent columns,

the submatrix Rk also has linearly independent columns. Therefore, by counting dimensions,

we have dim(L) = dim(K). Therefore, L = K if and only if K/L is torsion-free. Because

[Xk| · · · |Xa+1] admits a complement — namely, [Xm| · · · |Xk−1] — we see that c · v ∈ L

implies that v ∈ L for every nonzero scalar c ∈ R. Therefore, K/L is torsion-free, so K = L.

Because the columns of [Xk| · · · |Xa+1] are linearly independent, they form a basis of K.

64



CHAPTER 4

Persistent Homology for Resource Coverage: A Case

Study of Access to Polling Sites

In this chapter, we use persistent homology (PH) to study the accessibility of resources that

are distributed in a geographical region. We investigate the accessibility of polling sites

across six geographical regions (five cities and Los Angeles County) in the United States.

The information from PH provides summary statistics of the distribution of polling sites.

We use these statistics to infer which regions have poor polling-site access. This chapter is

adapted1 from [HJJ23], which was led jointly by Abigail Hickok, Benjamin Jarman, Michael

Johnson and me and was co-authored with Mason A. Porter.2

This chapter proceeds as follows. We introduce the goals of our work in Section 4.1, describe

our approach in Section 4.2, present our persistence diagrams (PDs) and analyze them Sec-

tion 4.3, and conclude and discuss implications, limitations, and potential future directions

of our work in Section 4.4. Our code is available at https://bitbucket.org/jerryluo8/

coveragetda/src/main/.

1All figures in this chapter originally appeared in [HJJ23].

2I co-designed the methodology with A. Hickok, B. Jarman, and M. Johnson; computed the distance
matrices (as described in Section 4.2.1) with B. Jarman and M. Johnson; computed the persistence diagrams
in Section 4.3; and wrote the paper with all co-authors.
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4.1 Introduction

The geographical distribution of resources such as polling sites (i.e., locations where people

vote), hospitals, COVID-19 vaccination sites, Department of Motor Vehicles (DMV) loca-

tions, and Planned Parenthood clinics is a major factor in the equitability of access to those

resources. Consequently, given the locations of a set of resource sites, it is important to

quantify their geographical coverage and to identify underserved geographical regions (i.e.,

“holes in coverage”).

A naive approach to quantifying resource coverage is to consider the geographical distances

from resource sites by simply calculating the percentage of people who reside within some

cutoff distance D of the nearest resource site. This naive approach is common in policy. For

example, in March 2021, United States President Joseph Biden announced a goal to ensure

that at least 90% of the adult U.S. population is within 5 miles (i.e., D = 5 miles) of a

COVID-19 vaccination site [The21]. As another example, it is required by Indian law that

100% of voters live within 2 km of a polling site [SSH19] (i.e., D = 2 km). However, such

an approach poses at least two issues:

(1) it requires choosing an arbitrary cutoff distance D; and

(2) using only geographical distance fails to account for many other factors, such as pop-

ulation density and the availability (and facility) of public transportation, that affect

the ease of access to a resource.

These issues severely limit the utility of this naive approach.

In the present chapter, we use topological data analysis (TDA) to study holes in resource

coverage. As we discussed in Chapter 2, one of the main tools in TDA is PH, which uses

ideas from algebraic topology to (1) identify clusters and holes in a data set and (2) measure

their persistences at different scales. We use PH to analyze data in the form of a point
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cloud in a metric space (M,d).3 In this chapter, X is a collection of resource sites, with

specified latitudes and longitudes, and M = R2 with a non-Euclidean distance function d

(see Section 4.2). Given a point cloud X and a scale parameter r > 0, one can consider the

r-coverage Cr :=
⋃n
i=1B(xi, r). As the scale parameter r grows, holes arise and subsequently

fill in. PH tracks the formation and disappearance of these holes. When a point cloud is

a collection of resource sites, one can interpret holes that persist for a large range of r as

holes in coverage. Our TDA approach gives a way to measure and evaluate how equitably a

resource is distributed geographically.

Our approach using PH addresses both of the issues (see points (1) and (2)) of the naive

approach that we discussed above. First, PH eliminates the need to choose an arbitrary cutoff

distance because one can study holes in coverage at all scales. Second, instead of employing

geographical distance as a metric, we construct a distance function d that is based on travel

times. We also incorporate the waiting time at each resource site by constructing a weighted

Vietoris–Rips (VR) filtration (see Section 2.2.2). In a city with a high population density

or a poor transportation system, the time that is spent waiting at or traveling to a resource

site can be a much higher barrier to access than geographical distance [GS03, HK05]. We

estimate waiting times using Global Positioning System (GPS) ping data from mobile phones

at the resource sites, and we estimate travel times using street-network data, per capita car-

ownership data, and the Google Maps application programming interface (API) [Goo]. Using

these estimates, we construct a weighted VR filtration. We weight vertices by our estimates

of waiting times, and we define the distance between two vertices to be the estimated round-

trip travel time between them. Because the weighted VR filtration is stable, small errors in

our estimates cause only small errors in the resultant PH [ACG19].

In the present chapter, we examine polling sites as a case study of using PH to study

3One can weaken the requirement that d is a metric. In this chapter, we use a distance function d that
is not technically a metric because it does not satisfy the triangle inequality.

67



the coverage of resource sites. We restrict our attention to six cities: Atlanta, Chicago,

Jacksonville (in Florida), Los Angeles4, New York City (NYC), and Salt Lake City. We use

these cities in part because data about them (e.g., car-ownership data) is widely available.

Additionally, these cities differ considerably in their demographics and infrastructures, and

we can thus compare a variety of different types of cities. Atlanta and NYC are both infamous

for long waiting times at polling sites, especially in non-White neighborhoods [Fow20,Kan19].

In 2020, some counties in the Atlanta metropolitan area had a mean of 3,600 voters per

polling site; the number of polling sites had been cut statewide in Georgia by 10% since

2013 [Fow20]. In NYC, each polling site had a mean of 4,173 voters in 2018. As a comparison,

in 2004, Los Angeles County and Chicago had only an estimated 1,300 and 725 voters per

polling site, respectively [Kan19]. However, Los Angeles is infamous for its traffic [Sch21],

which can affect voters’ travel times to polling sites. Los Angeles and Chicago also differ in

the quality of their public transportation, which also affects travel times to polling sites. In

our investigation, we seek both to compare the coverage of polling sites in our six focal cities

and to identify underserved areas within each city.

4.1.1 Related work

One can use tools from geography to study resource accessibility. Pearce et al. [PWB06] used

a geographical-information-systems (GIS) approach to examine the accessibility of commu-

nity resources and how it affects health. Hawthorne and Kwan [HK12] used a GIS approach

and a notion of perceived distance to measure healthcare inequality in low-income urban

communities. Brabyn and Barnett [BB04] illustrated that there are regional variations in

geographical accessibility to general-practitioner doctors in New Zealand and that these

regional variations depend on how one measures accessibility.

Another motivation for our study of resource-site coverage is the related problem of sensor

4For Los Angeles, we actually study Los Angeles County. We discuss the reasons for this choice in
Section 4.2.5.
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coverage. Given a set S of sensors in a domain Ω ⊆ R2, one seeks to determine if every point

in Ω is within sensing range of at least one sensor in S. Typically, each sensor has a fixed,

uniform sensing radius rs. In this case, the problem is equivalent to determining whether

or not the domain Ω is covered by balls of radius rs around each s ∈ S. In [SG07, SG06],

de Silva and Ghrist gave homological criteria for sensor coverage. Approaches to study

sensor coverage that use computational geometry (specifically, ones that involve the Voronoi

diagram of S and the Delauney triangulation of S) were discussed in [LWF03,MKP01].

Our problem is also a coverage problem, but there are important differences. The key

conceptual difference is that we consider neighborhoods whose sizes depend on a filtration

parameter, rather than neighborhoods with a fixed radius. Additionally, we do not seek

to determine whether or not balls of any particular radius cover a domain; instead, our

goal is to quantify the coverage at all choices of radius and to determine how the holes

in coverage evolve as we increase the filtration parameter. Another difference between the

present chapter and sensor-coverage problems is that our point cloud represents a set of

resource sites (in particular, polling sites), rather than a set of sensors. In a sensor network,

pairwise communication between sensors can play a role in whether or not the sensors are

fully “connected” to each other (in a graph-theoretic sense) and in determining whether or

not a domain is covered [ZH05]. By contrast, communication between resource sites does

not play a role in access to those resource sites.

Several studies include applications of PH to geospatial data [CJ23]. Feng and Porter [FP21]

developed two methods to construct filtrations—one that uses adjacency structures and one

that uses the level-set method [OF03] of front propagation—and applied their approaches

to examine geospatial distributions of voting results in the 2016 United States presidential

election. They identified “political islands” (i.e., precincts that voted more heavily for a

candidate than its surrounding precincts). In [FP20], Feng and Porter used their approaches

to study various spatial networks. Stolz et al. [SHP16] used PH to examine the geospatial
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distribution of voting results in the “Brexit” referendum. Hickok et al. [HNP22] used PH to

study geospatial anomalies in COVID-19 case-rate data (see also [FHP22]) and vaccination-

rate data. Cocoran and Jones [CJ23] used PH to perform (1) a point-pattern analysis of

pubs across different cities in the United Kingdom (UK) and (2) a spatiotemporal analysis

of rainfall in the UK.

4.2 Our Construction of Weighted VR Complexes

For each city, we construct a weighted VR filtration (see Section 2.2.2) in which the point

cloud X = {xi} is the set of polling sites in R2 and the weight wi of a point xi is an estimate

of the waiting time at the corresponding polling site. Instead of computing a weighted VR

filtration with respect to Euclidean distance, we define a distance function that estimates

the mean amount of time that it takes to travel to and from a polling site. With respect

to this distance function, the union
⋃
iB(xi, rxi(t)) (see 2.2) is the set of points y such that

the estimated time for an individual at y to vote (including waiting time and travel time5

in both directions) is at most t. The weighted Čech complex Čweighted
t (X,R2, d, {wi}) is an

approximation of
⋃
iB(xi, rxi(t)). When the balls B(xi, rxi(t)) are convex, the weighted Čech

complex is homotopy-equivalent to
⋃
iB(xi, rxi(t)), so these two complexes have the same

homology (i.e., the same set of holes). The weighted VR complex VRweighted
t (X,R2, d, {wi})

is an approximation of the weighted Čech complex.

We construct our distance function as follows. Let x and y be two polling sites. We estimate

the expected time for an individual to travel from x to y and back to be

d̃(x, y) := C(Z(x))min{tcar(x, y), tpub(x, y), twalk(x, y)}

+ [1− C(Z(x))]min{tpub(x, y) , twalk(x, y)} ,

5Incorporating information (such as waiting times) other than travel times is sensible both in principle and
in practice. In our computational experiments, using only travel times yields results that differ drastically
from those that we present in this chapter.
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where Z(x) is the zip code that includes x (a polling site), C(Z(x)) is an estimate of the

fraction of voting-age people in Z(x) who can travel by car to a polling site, and tcar(x, y),

tpub(x, y), and twalk(x, y) are estimates of the expected travel times from x to y and back

by car, public transportation, and walking, respectively. We calculate C(Z(x)) by dividing

an estimate of the number of personal vehicles in Z(x) by an estimate of the voting-age

population in Z(x) (see Section 4.2.3). We discuss how we calculate tcar, tpub, and twalk in

Section 4.2.1.

Our definition of d̃(x, y) captures the cost (in time) to vote. In particular, d̃(x, y) is an

estimate of the mean travel time for an individual who resides in zip code Z(x) to travel from

x to y and back. We assume that all individuals choose the fastest mode of transportation

that is available to them. Therefore, individuals who can travel by car choose the fastest

option between driving, taking public transportation, and walking. Their travel time is

min{tcar(x, y), tpub(x, y), twalk(x, y)}. Likewise, we assume that individuals who do not have

access to travel by car choose the fastest option between taking public transportation and

walking. Their travel time is min{tpub(x, y), twalk(x, y)}. Our estimate of the fraction of a

population that has a car is C(Z(x)), so the fraction without a car is 1−C(Z(x)). Therefore,

d̃(x, y) is the estimated mean time for an individual who resides in zip code Z(x) to travel

from x to y and back.

The function d̃(x, y) is not symmetric (i.e., d̃(x, y) ̸= d̃(y, x)) because C(Z(x)) ̸= C(Z(y)).

However, we need a symmetric function to construct a weighted VR filtration. To construct

a symmetric distance function that is based on d̃(x, y), we define the distance between x and

y to be a weighted average of d̃(x, y) and d̃(y, x), where we determine the weights from the

populations of the zip codes that include x and y. More precisely, we define the distance

between x and y to be

d(x, y) :=
1

P
[PZ(x)d̃(x, y) + PZ(y)d̃(y, x)] , (4.1)
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where PZ(x) and PZ(y) are the populations of zip codes Z(x) and Z(y), respectively, and

P := PZ(x) + PZ(y) is the sum of the populations of Z(x) and Z(y). With respect to this

distance function, the ball B(x, r) is the set of points y such that the expected time for an

individual to travel back and forth between x and y is at most r, where the individual to

start randomly at x or y with probabilities that are weighted by the populations of their

associated zip codes. Although our distance function is not technically a metric (because

it does not satisfy the triangle inequality), we can still construct a weighted VR filtration

using the definition in Section 2.2.2.

4.2.1 Estimating travel times

To compute our distance function (see 4.1), we need to estimate the pairwise travel times

by car, public transportation, and walking between each pair of polling sites. We measure

these times in minutes.

We estimate the time that it takes to walk between each pair of polling sites by using street

networks, which are available through the OpenStreetMap tool [Ope21], for each of our cities.

Using OpenStreetMap, we calculate a shortest path (by geographical distance) between each

pair of polling sites. In Figure 4.1, we show an example of a shortest path between two

polling sites in Atlanta.

Let L(x, y) denote the length (which we measure in meters) of a shortest path (by geograph-

ical distance) between polling sites x and y. Our estimate of the walking time (in minutes)

from x to y and back is twalk(x, y) := 2L(x, y)/vwalk, where vwalk = 85.2 meters per minute is

an estimate of the mean walking speed of an adult human [BBH06].

To estimate the travel times by car and public transportation, we use the Google Maps

Distance Matrix API [Goo]. Because of budgetary constraints (and the cost of five dollars

per thousand API queries), we use this API to estimate only the travel times between each

polling site and its 25 geographically closest polling sites. We refer to these sites as a polling
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Figure 4.1: A shortest path (by geographical distance) between two polling sites in zip code
30314 in Atlanta.

site’s 25 nearest neighbors.

For each of the 25 nearest neighbors, we separately calculate both the time from a polling

site to each neighbor and the time to a polling site from each neighbor. These two travel

times are often different because of different traffic conditions or other factors. We estimate

the remaining pairwise travel times as follows. Let G be the unweighted, undirected graph

whose vertices are the polling sites and whose edges connect each vertex to its 25 nearest

neighbors.6 Let Gcar and Gpub be the weighted, directed graphs whose vertices and edges7

6The relation of being one of a vertex’s 25 nearest neighbors is not symmetric. Therefore, the degrees of
some vertices are larger than 25.

7We view each undirected edge (xi, xj) of G as a bidirectional edge, and we include both of the associated
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are those of G and whose weights are the travel times (by car and public transportation,

respectively) that we compute using the Google Maps API. The weight of the directed edge

from vertex x to vertex y is the travel time from x to y. Therefore, the weight of the edge

from x to y may differ from the weight of the edge from y to x. For any two polling sites x

and y, let the travel times t̃car(x, y) and t̃pub(x, y) be the length of a shortest weighted path

from x to y in the graphs Gcar and Gpub, respectively. The corresponding symmetrized travel

times tcar(x, y) and tpub(x, y) are

tcar(x, y) := t̃car(x, y) + t̃car(y, x) ,

tpub(x, y) := t̃pub(x, y) + t̃pub(y, x) .

4.2.2 Estimating waiting times

Our weighted VR filtrations have weights at each vertex (i.e., polling site) that are given by

an estimate of the mean time that a voter spends (i.e., the mean waiting time) at that polling

site. In a nationwide study of waiting times at polling sites during the 2016 U.S. presidential

election [CHP19], Chen et al. used smartphone data of hundreds of thousands of voters to

estimate waiting times. They also examined potential relationships between waiting times

and racial demographics.

We construct our waiting-time estimates using the congressional district-level estimates in

[CHP19] (see their Table C.2). For each polling site x, we use the mean of the waiting-time

estimates for each congressional district that overlaps with the zip code Z(x) that contains

x. This averaging procedure yields estimates of waiting times at the zip-code level. (We

transform our waiting-time data to the zip-code level because the rest of our data is at the

zip-code level.)

directed edges in the directed graphs Gcar and Gpub.

74



4.2.3 Estimates of demographic information

We obtain estimates of demographic data at the zip-code level from 2019 five-year Amer-

ican Community Survey data [US]. We use voting-age population data from their Table

ACSDT5Y2019.B29001 and vehicle-access data from their Table ACSDT5Y2019.B25046.

4.2.4 Polling-site zip codes

Much of our data is at the zip-code level, and we treat a polling site’s zip code as representa-

tive of its local area. Certain polling sites (predominantly government buildings) have their

own zip codes, despite their populations of 0. We adjust the zip codes of such polling sites

to match the zip codes of the directly surrounding areas.

4.2.5 Treatments of our cities

The city of Atlanta does not include the suburbs of the Atlanta metropolitan area, so we

use the entire area that is served by the Atlanta Regional Commission.

Chicago’s boundary is not convex (especially in the northwest), so we include all areas of all

zip codes, even when only a small portion of the zip code lies within the city of Chicago.

Because of the oddly-shaped city boundaries of Los Angeles, which include several holes, we

use the entirety of Los Angeles County (except for its islands).

Because of the disconnected nature of New York City, we subdivide it into three regions

(Queens and Brooklyn, Manhattan and the Bronx, and Staten Island) and treat each region

separately. We then combine our results for the three regions into a single presentation. For

example, we combine the PDs into a single PD for all of New York City.

See the file "readme.txt" in our repository

https://bitbucket.org/jerryluo8/coveragetda/src/main/ for more information about

the city boundaries.
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4.3 Results

We compute the PH of the weighted VR filtrations of Section 4.2 for Atlanta, Chicago,

Jacksonville, Los Angeles County, New York City, and Salt Lake City. We show their PDs

in Figure 4.2. We examine both 0D and 1D homology classes. The 0D homology classes

represent holes between different connected regions of coverage, and the 1D homology classes

represent holes in coverage that are bounded by closed paths. A homology class that dies

at filtration-parameter value t represents a hole in coverage that persists until time t. An

individual who lives in a hole in coverage that dies at time t needs t minutes (including both

waiting time at a polling site and travel time back and forth to the site) to cast a vote.

In our analysis, we emphasize homology-class death values. We view homology-class birth

values as largely irrelevant to our application. A homology-class birth value indicates the

filtration-parameter value at which a coverage hole materializes. We use birth values only

in the following way. If the death value divided by the birth value (i.e., the “death/birth

ratio") of a homology class is very small (i.e., it is close to 1), then it is possible that this

class is merely an artifact of using a VR approximation of a Čech complex. We thus focus

on homology classes whose death/birth ratios are at least 1.05.8 Beyond this, we use only

the homology-class death values and death simplices.

Larger homology-class death values suggest that a city may have worse coverage, and a

wider distribution of death values suggests that there may be more variation in polling-site

accessibility within a city. In Figure 4.3, we show a box plot of the distribution of homology-

class death values for each city. In Table 4.1, we show the medians and variances of the 0D

and 1D homology-class death values for each city.

We compare the coverages of the cities by examining the death values in the PDs. For

8Interested readers can explore thresholds other than 1.05 by using our data, which is available at https:
//bitbucket.org/jerryluo8/coveragetda/src/main/. We describe the data in detail in the “readme.txt"
file.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City
Figure 4.2: The PDs for each city for the PH of our weighted VR complexes.

77



City Homology
Dimension

Median
(minutes)

Variance
(minutes)

Atlanta 0 59.9 75.4
1 77.1 150.8

Chicago 0 53.1 30.2
1 66.3 59.7

Jacksonville (Florida) 0 42.8 75.7
1 57.5 394.4

Los Angeles County 0 59.6 53.3
1 76.1 84.6

New York City 0 65.1 49.2
1 82.9 207.1

Salt Lake City 0 82.8 37.3
1 N/A N/A

Table 4.1: The medians and variances of the homology-class death values for each city. (As
we discussed in the main text, we consider Los Angeles County, rather than only the city of
Los Angeles.) We consider homology classes whose death/birth ratio is at least 1.05. Salt
Lake City has no such 1D homology classes.

Figure 4.3: Box plots of the death values of the 0D and 1D homology classes for each city.
We only consider homology classes whose death/birth ratio is at least 1.05. Salt Lake City
has no such 1D homology classes.
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(a) 0D homology classes (b) 1D homology classes

Figure 4.4: Histograms of the death values of the 0D and 1D homology classes for Atlanta
and Chicago. We only consider homology classes whose death/birth ratio is at least 1.05.

example, in the PDs for Atlanta and Chicago in Figure 4.2, we see that Atlanta’s homology

classes tend to die later than Chicago’s homology classes. We also see this in the box plots

Figure 4.3 and in Figure 4.4, in which we plot the distributions of death values for Atlanta

and Chicago. Our PDs and visualizations of summary statistics suggest that Chicago has

better polling-site coverage than Atlanta.

We use the death simplices to locate and visualize holes in polling-site coverage. We interpret

the death simplex of a homology class as the “epicenter” of an associated coverage hole

because the death simplex represents the last part of the hole to be covered. The death

simplex of a 0D homology class is an edge between two polling sites; there is a hole in

coverage between those two sites. Similarly, the death simplex of a 1D homology class is

a triangle that is the convex hull of three polling sites; there is a hole in coverage between

those three sites. In Figures 4.5 and 4.6, we show the death simplices with the largest death
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values9 for the 0D and 1D homology classes,10 respectively. For example, consider panels (a)

and (b) of Figure 4.5 and Figure 4.6, in which we show the 0D and 1D homology-class death

simplices for Atlanta and Chicago. The areas of lowest coverage (i.e., the areas that have

the death simplices with the largest death values) in Atlanta tend to be in the southwest,

whereas the areas of lowest coverage in Chicago tend to be in the northwest and southeast.

There is one 1D homology class in Atlanta that has a significantly larger death filtration

value than the other classes in Atlanta and any of the classes in Chicago. This homology

class represents a hole in coverage in southwest Atlanta (see Figure 4.6a).

4.4 Conclusions and Discussion

4.4.1 Summary

We showed that PH is a helpful approach to study accessibility and equitability. It allows

one to examine holes in resource coverage with respect to an appropriate choice of “distance,"

which one constructs to incorporate important features of a problem of interest. The distance

can be based on geography, time, or something else. In the present chapter, we used PH to

study and quantify holes in polling-site coverage in six United States cities (technically, in

five cities and in Los Angeles County). For each city, we constructed a filtration in which

a homology class that dies at time t represents a geographical region in which it takes t

minutes to cast a vote (including both travel time and waiting time). We interpreted the

9More precisely, for each city and each homology dimension (0 and 1), we show the death simplices whose
death values have a z-score of at least 1. We calculate the z-scores as follows. Let d be the death value of a
p-dimensional homology class (where p = 0 or p = 1) for city C. The z-score of d is z = (d−µC,p)/σC,p, where
µC,p and σC,p are the mean and standard deviation of the distribution of death values of the p-dimensional
homology classes for city C.

10In Figure 4.6, in which we show the death simplices of the 1D homology classes, some of the polling
sites appear to be covered by death simplices whose vertices are other polling sites. At least two factors
may contribute to this. One factor is that our measure of distance is not a Euclidean metric, even though
we plot the death simplices in Figure 4.6 as Euclidean triangles. The Euclidean triangles can sometimes
cover polling sites that are not among its vertices, but geodesic triangles may not cover those polling sites.
Another possibility is that a polling site x has such a long waiting time that it does not show up in the
filtration until after the homology class whose death simplex includes x has already died.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 4.5: Death simplices with the largest death values for the 0D homology classes. The
colors correspond to the death values (in minutes). We only consider homology classes whose
death/birth ratio is at least 1.05.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 4.6: Death simplices with the largest death values for the 1D homology classes. The
colors correspond to the death values (in minutes). We only consider homology classes whose
death/birth ratio is at least 1.05.
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death simplex of a homology class as the location of the corresponding hole in resource

coverage. The information in the PH allowed us both to compare the accessibility of voting

across our chosen cities and to determine the locations of the coverage holes within each city.

A key benefit of PH is that it enabled us to identify holes in polling-site coverage at all

time scales. It also allowed us to use a distance that we designed for the problem at hand,

rather than merely using geographical distance, which does not capture important factors

in resource accessibility [BB06]. We based our distance function on estimates of travel time,

which is more reasonable and accurate than geographical distance for capturing resource

accessibility [PWB06].

4.4.2 Limitations

To conduct our study, we needed to estimate a variety of quantities (see Section 4.2), in-

cluding travel times, waiting times, and demographic information. We also made several

simplifications because of computational and monetary constraints. We now discuss some

issues that are important to address before attempting to incorporate our approach into

policy-making.

One limitation of our study is our estimation of travel times. As we discussed in Section 4.2.1,

we computed travel times using the Google Maps API. Because of monetary constraints, we

only computed a subset of the relevant travel times and used a graph-based estimate to

determine the others. Additionally, we computed each travel time between polling sites

only once. Computing more precise estimates of travel times is important to better capture

the accessibility of polling sites. One way to do this is to compute travel times between

the same two polling sites multiple times across different days and times of day and take

an average. Such additional computations can also help yield estimates of best-case and

worst-case scenarios.

Another limitation of our study is the granularity of our data. As we discussed in Sec-
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tion 4.2.2, our waiting-time data is at the scale of congressional districts. Because there is

heterogeneity in the waiting times at different polling sites in the same congressional district,

it is important to obtain finer-grained data for the waiting times at polling sites. Having

finer-grained waiting times (e.g., if possible, procuring an estimated waiting time for each

polling site) would improve our ability to capture voting accessibility.

We also made several topological approximations. We worked with a weighted VR filtration,

which approximates a weighted Čech filtration, which in turn approximates the nested set

{
⋃
iB(xi, rxi(t))}t∈R of spaces, where {xi} is a set of polling sites and rxi(t) is the radius

function that we defined in Section 4.2. The nested set of spaces is directly relevant to

our application, as the holes in
⋃
iB(xi, rxi(t)) are the true holes in polling-site coverage.

We made our approximations, which are standard in TDA and are well-justified [OPT17]

(see our discussion in Section 2.2.2), to reduce computational cost. However, the convexity

condition of the Nerve Theorem, which justifies the approximation of
⋃
iB(xi, rxi(t)) by a

weighted Čech complex, is not guaranteed to be satisfied for all times t. The Nerve Theorem

implies that the weighted Čech complex is homotopy-equivalent to
⋃
iB(xi, rxi(t)) whenever

the balls B(xi, rxi(t)) are convex. This condition always holds in Euclidean space, but it is

not guaranteed to hold in the space that we defined in Section 4.2.11 Homotopy-equivalence

is important because homotopy-equivalent spaces have the same homology and thus have

the same set of holes.

Finally, our approach only detects holes in the convex hull of a set of resource sites. Although

this may be inconsequential if resource sites are sufficiently spread out geographically, it can

11Although our space is not Euclidean, it is still reasonable to assume that it is approximately locally
Euclidean. That is, for each polling site x, there is a constant a > 0 such that if y is sufficiently close to
x, then d(x, y) ≈ a · dE(x, y), where d(x, y) is defined by (4.1) and dE(x, y) is the Euclidean distance. This
approximation holds because car-ownership rates and traffic conditions do not vary much within a sufficiently
small neighborhood. We verified empirically that our distance function is approximately locally Euclidean
by showing that, for each polling site x, there is a strong linear correlation between the pairwise distances
d(x, y) and the pairwise Euclidean distances dE(x, y) when y is sufficiently close to x. Because our distance
function is approximately locally Euclidean, sufficiently small balls (with respect to our distance function)
behave like Euclidean balls, so the Nerve Theorem is applicable for sufficiently small filtration values.
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be problematic if the resource sites are overly concentrated near a few locations. One way

to address this issue is to incorporate city boundaries into the construction of the filtrations.

This would help capture holes in coverage in regions that lie outside the convex hull of the

resource sites, and it would also help identify the filtration-parameter value t at which an

entire city is covered by the balls B(xi, rxi(t)).

4.4.3 Future work

As we discussed in Section 4.4.2, we made several topological approximations of our math-

ematical object of interest, which is the nested set {
⋃
iB(xi, rxi(t))}t∈R of spaces. In-

stead of using a weighted VR filtration, one can construct a more direct approximation

of {
⋃
iB(xi, rxi(t))}t∈R. One can first discretize a city by imposing a grid on it. For each

point on such a grid, one can then construct the filtered cubical complex that is induced

by the travel time to the nearest polling site. However, this is much more computationally

expensive than our approach, and it would also entail many more travel-time queries (which

cost money) than in the present chapter.12

It is also important to incorporate city boundaries into the construction of filtrations. One

way to do this is as follows. Let x1, . . . , xn denote the resource sites, and let y1, . . . , ym denote

the points that one obtains by discretizing a city boundary. One can extend our distance

function (4.1) by defining13

d(xi, yj) :=
2

P
[PZ(xi)d̃(xi, yj) + PZ(yj)d̃(yj, xi)] , (4.2)

12Our distance function (4.1) is symmetric, but recall that it is not a metric because it does not satisfy the
triangle inequality. Therefore, we cannot use techniques such as distance transforms and level-set propagation
to reduce the computational complexity of calculating the filtration {

⋃
iB(xi, rxi

(t))}t∈R}.
13The factor of 2 arises from the fact that xi is a resource site but yj is not a resource site.

85



where P , Z, and d̃ are the same as in the distance function (4.1) and

d(yi, yj) =


0 , yi and yj are adjacent points of the discretized city boundary

∞ , otherwise .
(4.3)

At each filtration-parameter value, the simplicial complex that one constructs using the

distance function (4.1) with the extensions (4.2) and (4.3) includes both the points that one

obtains by discretizing the boundary and the edges that connect adjacent boundary points.

The largest death value is then the filtration-parameter value t that corresponds to the time

at which an entire city is covered by the balls {B(xi, rxi(t))} (i.e., when there are no longer

any holes in coverage).

In this chapter, we used death simplices to locate holes in coverage, but other approaches

are also possible. For example, by calculating minimal generators [LTH21], one can identify

representative cycles that encircle holes. The topological pipeline “hyperTDA" was intro-

duced recently [BYM22] to analyze the structure of minimal generators by constructing a

hypergraph, calculating hypergraph centrality measures, and employing community detec-

tion. This approach may provide insights into the spatial structure of minimal generators.

Another potentially viable approach is to use decorated merge trees (DMTs) [CHM22] to

locate holes in coverage. DMTs allow one to match holes with associated clusters of points.

Although we explored a specific case study (namely, the accessibility of polling sites), it

is also relevant to conduct similar investigations for other resources, such as public parks,

hospitals, vaccine distribution centers, grocery stores, Planned Parenthood clinics, and DMV

locations. One can use similar data to construct a filtration, although it may be necessary

to modify the choices of distance and weighting. One can also use ideas from mobility

theory [BBG18] to help construct suitable distances and weightings. For example, all DMV

offices offer largely the same services, so it seems reasonable to assume that people will go to

their nearest office. Therefore, in a study of DMV accessibility, it seems appropriate to use
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travel time as a distance function, just as we did in our analysis of polling sites. However, in

other applications, it is not reasonable to use travel time alone as a distance function. For

example, different grocery stores may offer different products at different prices, so travel

time alone may not be appropriate as a choice of distance function. Additionally, although

waiting time is a significant factor for investigating the coverage of polling sites, there are

many applications for which it does not make sense to incorporate waiting time. For example,

the time that is spent in a public park or recreation center is typically not a barrier to access.

In applications in which waiting time is not an accessibility factor, it seems more appropriate

to use a standard VR filtration than a weighted VR filtration. With salient modifications

(such as those that we described in this subsection and in Section 4.4.2), we can apply our

approach to many other types of resource sites.
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CHAPTER 5

Bounded-Confidence Models of Opinion Dynamics with

Adaptive Confidence Bounds

In this chapter, we study bounded-confidence models (BCMs) with adaptive confidence

bounds. As we discussed in Section 1.2, a BCM is a model of opinion dynamics on a

network such that agents (represented by network nodes) have continuous-valued opinions

and are only receptive to neighbors whose opinions are sufficiently similar (i.e., they differ by

less than a “confidence bound”). We formulate and analyze two new BCMs that incorporate

distinct, time-dependent confidence bounds for each dyad (i.e., pair of adjacent nodes). One

of our models generalize the Hegselmann–Krause (HK) model (see Section 5.2.1) and the

other generalizes the Deffuant–Weisbuch (DW) model (see Section 5.2.3). This chapter is

adapted1 from [LLP23], which was led jointly by Grace J. Li and me and is co-authored with

Mason A. Porter.2

This chapter proceeds as follows. In Section 5.1, we introduce the context and motivation for

the formulation of our BCMs. In Section 5.2, we introduce our adaptive-confidence BCMs

and discuss associated baseline BCMs. In Section 5.3, we give theoretical guarantees for

our adaptive-confidence BCMs. We describe the specifications of our numerical simulations

1All figures in this chapter originally appeared in [LLP23].

2I contributed the main idea for this project (incorporating adaptive confidence bounds in BCMs); for-
mulated our adaptive BCMs with G. J. Li; formulated and proved Theorem 5.2, Theorem 5.6, Theorem 5.8,
and Theorem 5.11; and wrote the paper with all co-authors.
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in Section 5.4 and the results of our numerical simulations in Section 5.5. In Section 5.6,

we summarize our main results and discuss possible avenues of future work. In Section 5.A

and Section 5.B, we prove the results of Section 5.3.2. We present additional numerical

results for our adaptive-confidence HK model in Section 5.C, and we present additional

numerical results for our adaptive-confidence DW model in Section 5.D. Our code and plots

are in our code repository, which is available at https://gitlab.com/graceli1/Adaptive-

Confidence-BCM.

5.1 Introduction and Motivation of Our Models

An individual’s opinion on a topic is often influenced by the people with whom they interact

[Jac08], and researchers in many disciplines study such interactions and how they change

opinions and actions [Noo20]. Individuals are often influenced most by people and other

sources whose opinions are similar to theirs [CM11]. This phenomenon is encapsulated in

a simple form in BCMs [NVT20, HK02, DNA00], in which the nodes of a network have

continuous-valued opinions and interacting nodes influence each others’ opinions if and only

if their opinions are sufficiently similar. A key feature of BCMs is the presence of a confidence

bound, which determines which nodes can influence each other. A node can only influence

and be influenced by its neighbors when the difference between their opinions is less than

their confidence bound.

The two most popular BCMs are the HK model [Kra00,HK02] and the DW model [DNA00].

In the HK and DW models, the confidence bound is a constant scalar value that is shared

by all dyads (i.e., pairs of adjacent nodes). In the present chapter, we formulate and study

adaptive-confidence BCMs that generalize the HK and DW models by incorporating distinct,

time-dependent confidence bounds for each dyad. The confidence bounds in our adaptive-

confidence BCMs change after nodes interact with each other. These changes highlight the

idea that the quality of an interaction between individuals can affect how much they trust
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each other [GAP13,CS20,LMM17]. For example, in online marketplaces, trust between users

depends on their past experiences with each other and on the reported experiences of other

users in reputation systems [SNP13,RKK07,RKZ00]. The word “trust” can have different

meanings in different disciplines; one interpretation is that trust represents an expectation

about future behavior [SNP13]. Rather than considering trust, our BCMs use a notion of

“receptiveness,” which encodes the willingness of an individual to consider the future opinions

of another individual. When two nodes interact with each other, their mutual receptiveness

changes. See [BCF07,XLC17,NGW23] for other opinion models with interaction-influenced

receptiveness.

In our adaptive-confidence BCMs, when two nodes successfully compromise their opinions in

an interaction (i.e., they have a “positive interaction”), they become more receptive to each

other. Likewise, when two nodes interact but do not change their opinions (i.e., they have a

“negative interaction”), they become less receptive to each other. When nodes i and j interact

and influence each others’ opinions (i.e., their current opinion difference is smaller than their

current confidence bound), we increase their confidence bound cij. When nodes i and j

interact and do not influence each others’ opinions (i.e., their current opinion difference is at

least as large as their current confidence bound), we decrease their confidence bound cij. In

our adaptive-confidence BCMs, each dyad has a distinct confidence bound and interactions

are symmetric (i.e., either both nodes influence each other or neither node influences the

other). One can interpret the increase of a dyadic confidence bound in our BCMs as nodes

becoming more receptive to nodes with whom they compromise, and one can interpret the

decrease of a dyadic confidence bound as nodes becoming less receptive to nodes with whom

they do not compromise. When nodes in our BCMs have a negative interaction, they adapt

their dyadic confidence bounds, but their opinions stay the same. Other researchers have

considered BCMs with “repulsion,” in which the opinions of interacting nodes with sufficiently

different opinions move farther apart from each other [AC15,HDJ08,KF23].
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In the present chapter, we study the time evolution and long-term behaviors of our adaptive-

confidence HK and DW models. We examine the formation of “limit opinion clusters” (i.e.,

sets of nodes that converge to the same opinion), the dynamics of the confidence bounds,

and the convergence rate of the opinions. We simulate our models on various networks (see

Section 5.4.1) and study the time evolution of their associated “effective graphs,” which are

time-dependent subgraphs of a network with edges only between nodes that are receptive

to each other (see Section 5.3). We show numerically that our adaptive-confidence BCMs

tend to have less “opinion fragmentation”3 than their associated baseline (i.e., nonadaptive)

BCMs. In our numerical simulations, we study “final” opinion clusters (see Section 5.4.2)

to approximate limit opinion clusters. We demonstrate numerically that the connected

components of the final effective graphs in our BCMs can have more complicated structures

than those of the baseline BCMs.

5.1.1 Related work

There has been much research on standard (i.e., nonadaptive) HK and DW models on

networks through numerical simulations [MVP18, For04, Lor06, HK02] and both heuristic

analytical arguments and mathematically rigorous proofs [BKR03,Lor05,Lor08,HK02]. The

DW model was studied initially on both a fully-mixed population (i.e., a complete network)

and on a square-lattice network [DNA00], and the HK model was studied initially only on

a fully-mixed population [HK02]. Subsequently, the DW and HK models have been studied

on a variety of networks [For05,MVP18,SFH21]. See [NVT20,Noo20,BAP24] for reviews of

research on the standard DW and HK models and their generalizations.

Many researchers have generalized the HK and DW models by incorporating heterogeneity

into the confidence bounds. Lorenz [Lor09] extended these BCMs so that each node has

3In our study, “opinion fragmentation” signifies the existence of at least two “major” opinion clusters,
which include more than 1% of the nodes of a network. In Section 5.4.3, we give more detail about how we
define opinion fragmentation and major opinion clusters.
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its own confidence bound, which can result in asymmetric influence and opinion updates.

Using numerical simulations, Lorenz demonstrated that these BCMs are more likely than

the baseline BCMs to reach a consensus state when there are both open-minded and close-

minded nodes (which have large and small confidence bounds, respectively). By analyzing

the heterogeneous-confidence DW model of [Lor09] on a complete graph, Chen et al. [CSM20]

proved almost-sure convergence of opinions for certain parameter values and derived sufficient

conditions for the nodes of a network to eventually reach a consensus. In a related work, Chen

et al. [CSD20] examined a heterogeneous HK model with “environmental noise” (e.g., from

media sources) and showed that heterogeneous confidence bounds in this setting can yield

larger differences in node opinions in the infinite-time limit. Su et al. [SGW17] examined

the heterogeneous-confidence HK model of [Lor09] and proved that at least some nodes of a

network converge to a steady-state opinion in finite time.

Researchers have also incorporated edge-based heterogeneities in the confidence bounds

of BCMs. Etesami [Ete19] examined an HK model on networks with time-independent

edge-heterogeneous confidence bounds and proved that their model is Lyapunov stable.

Shang [Sha14] studied a DW model in which each edge has a confidence bound that takes a

value from an independent and identically distributed Poisson process. They derived suffi-

cient conditions for consensus to occur almost surely for a one-dimensional lattice graph.

Other generalizations of BCMs and related opinion models generalize the model parameters

by making them time-dependent or adaptive. Weisbuch et al. [WDA02] studied a general-

ized DW model in which each node has a heterogeneous, time-dependent confidence bound

that is proportional to the standard deviation of the opinions that that node observed in all

prior interactions. They also considered a variant of their model that places more weight

on the observed opinions from recent interactions. Deffuant et al. [DAW02] examined a DW

model with “relative agreement”. In their model, each node has an uncertainty parameter

that determines (1) whether it and the node with which it interacts influence each other and
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(2) the amount by which they influence each other. A node changes both its opinion and

its uncertainty when it is influenced by another node. Bagnoli et al. [BCF07] considered

a BCM on complete graphs in which each pair of adjacent nodes (i.e., each dyad) has an

associated time-dependent affinity value (which determines whether or not they can influ-

ence each other) that depends on the magnitude of their opinion difference. Chacoma and

Zanette [CZ15] examined opinion and confidence changes in a questionnaire-based experi-

ment, and they then proposed an agent-based opinion model based on the results of their

experiment. Their model is not a BCM, but it does incorporate a notion of time-dependent

confidence between nodes. Bernardo, Vasca, and Iervolino [VBI21,BVI22] developed vari-

ants of the HK model in which nodes have individual, time-dependent confidence bounds4

that depend on the opinions of neighboring nodes. In their models, nodes adapt their con-

fidence bounds through a heterophilic mechanism (i.e., they seek neighboring nodes whose

opinions differ from theirs). By contrast, in our models, nodes do not actively seek neighbors

with different opinions. Instead, their mutual receptiveness increases when their opinions

are sufficiently close to each other.

In this chapter, we incorporate adaptivity into the confidence bounds of BCMs, but one can

instead incorporate adaptivity in the network structures of BCMs [KB08a,KB08b,DSC17,

KFP23].5 Kozma and Barrat [KB08a,KB08b] modified the DW model to allow rewiring of

“discordant” edges, which occur between nodes whose opinions differ from each other by more

than the confidence bound. In their model, rewired edges connect to new nodes uniformly at

random. Recently, Kan et al. [KFP23] generalized this model by including both a confidence

bound and an opinion-tolerance threshold, with discordant edges occurring between nodes

whose opinions differ by more than that threshold. They incorporated opinion homophily

into the rewiring probabilities, so nodes are more likely to rewire to nodes with more similar

opinions. They observed in numerical simulations that it is often harder to achieve consensus

4The confidence bounds update with time in different ways in the models in [VBI21] and [BVI22].

5See the reviews [SBL23,BGK23] for discussions of various notions of adaptivity in dynamical systems.
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in their adaptive DW model than in an associated baseline DW model.

There has been much theoretical development of models of opinion dynamics, and it is im-

portant to empirically validate these models [Vaz22,GOD21]. Some researchers have used

questionnaires [CZ15,VMG16,TFM16] or data from social-media platforms [Koz22a,Koz23]

to examine how opinions change in controlled experimental settings. Another approach is to

develop models of opinion dynamics that infer model parameters [CLP24,Koz22b] or opin-

ion trajectories [MDB20] from empirical data. There are many challenges to developing and

validating models of opinion dynamics that represent real-world situations [Mas19,BAB21],

but mechanistic modeling is valuable, as it (1) forces researchers to clearly specify relation-

ships and assumptions during model development and (2) provides a framework to explore

complex social phenomena [Vaz22,HL15].

5.2 Baseline and Adaptive BCMs

We extend the DW and HK models by introducing adaptive confidence bounds. For both

the HK and DW models, which we study on networks, we first present the baseline BCM and

then introduce our adaptive-confidence generalization of it. The nodes in our BCMs represent

agents that have opinions that lie in the closed interval [0, 1]. Let G = (V,E), where V is

the set of nodes and E is the set of edges, denote a time-independent, unweighted, and

undirected graph without self-edges or multi-edges. The edges in the set E specify which

pairs of nodes can interact with each other at each discrete time t. Let N = |V | denote the

number of nodes of the graph (i.e., network), xi(t) denote the opinion of node i at time t, and

x⃗(t) denote the vector of the opinions of all nodes at time t (i.e., the entry [x⃗(t)]i = xi(t)).

We denote the edge that is attached to adjacent nodes i and j by (i, j).
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5.2.1 The Hegselman–Krause (HK) model

The baseline HK model [Kra00, HK02] is a discrete-time synchronous BCM on a time-

independent, unweighted, and undirected graph G = (V,E) with no self-edges or multi-

edges.6 At each time t, we update the opinion of each node i by calculating

xi(t+ 1) = |I(i, x(t))|−1
∑

j∈I(i,x(t))

xj(t) , (5.1)

where7 I(i, x(t)) = {i} ∪ {j | |xi(t)− xj(t)| < c and (i, j) ∈ E} ⊆ {1, 2, . . . , N}. The confi-

dence bound c controls the “open-mindedness” of nodes to different opinions. We say that

adjacent nodes i and j are receptive to each other at time t if their opinion difference is

less than the confidence bound c (i.e., |xi(t) − xj(t)| < c). Accordingly, I(i, x(t)) is node i

itself along with all adjacent nodes to which i is receptive.8 The confidence bound c in the

baseline HK model is homogeneous (i.e., the confidence bound is the same for all dyads) and

time-independent.

5.2.2 Our HK model with adaptive confidence bounds

Our HK model with adaptive confidence bounds is similar to the baseline HK model with

update rule (5.1), but now each edge (i, j) ∈ E has a dyadic confidence bound cij(t) ∈ [0, 1]

that is time-dependent and changes after each interaction between the nodes in that dyad.

We refer to this model as our adaptive-confidence HK model. Instead of a fixed confidence

bound, there is an initial confidence bound c0 ∈ (0, 1) and we initialize all of the confidence

6The HK model was examined initially on a fully-mixed population [HK02], but we use its extension to
networks (see e.g., [For05,PFT18,SFH21]) as our “baseline HK model”.

7In [Kra00,HK02], I(i, x(t)) = {i} ∪ {j | |xi(t)− xj(t)| ≤ c and (i, j) ∈ E}. We use a strict inequality to
be consistent with the strict inequality in the DW model.

8An alternative interpretation is that each node has a self-edge. We do not use this interpretation.
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bounds9 to cij(0) = c0 for each edge (i, j) ∈ E. There is also a confidence-increase parameter

γ ∈ [0, 1] and a confidence-decrease parameter δ ∈ [0, 1], which control how much cij(t)

increases and decreases, respectively, after each interaction.

At each time t, we update the opinion of each node i by calculating

xi(t+ 1) = |I(i, x(t))|−1
∑

j∈I(i,x(t))

xj(t) , (5.2)

where10 I(i, x(t)) = {i} ∪ {j | |xi(t)− xj(t)| < cij(t) and (i, j) ∈ E} ⊆ {1, 2, . . . , N}. Adja-

cent nodes i and j are receptive to each other at time t if their opinion difference is less than

their dyadic confidence bound cij (i.e., |xi(t)−xj(t)| < cij(t)). At each time, we also update

each confidence bound cij by calculating

cij(t+ 1) =


cij(t) + γ(1− cij(t)) , if |xi(t)− xj(t)| < cij(t)

δcij(t) , if |xi(t)− xj(t)| ≥ cij(t) .

(5.3)

That is, if the opinion difference between nodes i and j is smaller than their confidence

bound at time t, their associated dyadic confidence bound cij increases; otherwise, their

dyadic confidence bound decreases. Larger values of γ correspond to sharper increases in

the receptiveness between nodes when nodes compromise their opinions. Smaller values of δ

correspond to sharper drops in the receptiveness between nodes when nodes interact but do

not compromise.

Because c0 ∈ (0, 1) and γ, δ ∈ [0, 1], the update rule (5.3) preserves cij(t) ∈ (0, 1) for each

9When c0 = 0, nodes are never receptive to their neighbors (i.e., cij(t) = 0 for all adjacent nodes i and j
at all times t). When c0 = 1, all nodes are always receptive to all of their neighbors (i.e., cij(t) = 1 for all
adjacent nodes i and j at all times t). We do not examine these values of c0.

10Although Equations (5.1) and (5.2) look the same, they use different definitions of the quantity I(i, x(t)).
Equation (5.1) has a homogeneous and time-independent confidence bound, whereas Equation (5.2) has
heterogeneous and adaptive confidence bounds.
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edge (i, j) and all times t. If (γ, δ) = (0, 1), then cij(t) = c0 for all t and all edges (i, j) ∈ E.

That is, the confidence bounds are homogeneous and time-independent, so our adaptive-

confidence HK model reduces to the baseline HK model.

5.2.3 The Deffuant–Weisbuch (DW) model

The baseline DW model [DNA00] is a discrete-time asynchronous BCM on a time-independent,

unweighted, and undirected graph G = (V,E) with no self-edges or multi-edges. At each

time t, we choose an edge (i, j) ∈ E uniformly at random. If nodes i and j are receptive to

each other (i.e., if the opinion difference |xi(t)− xj(t)| is less than the confidence bound c),

we update the opinions of these nodes by calculating

xi(t+ 1) = xi(t) + µ(xj(t)− xi(t)) ,

xj(t+ 1) = xj(t) + µ(xi(t)− xj(t)) ,
(5.4)

where µ ∈ (0, 0.5] is the compromise parameter11. Otherwise, the opinions xi and xj remain

the same. At a given time t, we do not update the opinions of any nodes other than i and j.

The confidence bound c in our baseline model is homogeneous (i.e., the confidence bound is

the same for all dyads) and time-independent. As in the HK model, the confidence bound

c controls the open-mindedness of nodes to different opinions. The compromise parameter

µ indicates how much nodes adjust their opinions when they interact with a node to whom

they are receptive. When µ = 0.5, two interacting nodes that are receptive to each other

precisely average their opinions; when µ ∈ (0, 0.5), interacting nodes that are receptive to

each other move towards each others’ opinions, but they do not adopt the mean opinion.

Unlike in the HK model, the asynchronous update rule (5.4) of the DW model incorporates

only pairwise opinion updates.

11Alternatively, one can consider µ ∈ (0, 1) as in Meng et al. [MVP18], although this is an uncommon
choice. When µ > 0.5, nodes “overcompromise” when they change their opinions; they overshoot the mean
opinion and change which side of the mean opinion they are on.
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5.2.4 Our DW model with adaptive confidence bounds

We refer to our DW model with adaptive confidence bounds as our adaptive-confidence DW

model. As in the baseline DW model, there is a compromise parameter µ ∈ (0, 0.5]. As in our

adaptive-confidence HK model, we initialize the confidence bounds in our adaptive-confidence

DW model to be cij(0) = c0, where c0 ∈ (0, 1) is the initial confidence bound.12 There again

is a confidence-increase parameter γ ∈ [0, 1] and a confidence-decrease parameter δ ∈ [0, 1],

which control how much cij(t) increases and decreases, respectively, after each interaction.

At each time t, we select an edge (i, j) ∈ E uniformly at random. If nodes i and j are

receptive to each other (i.e., if |xi(t) − xj(t)| < cij(t)), we update the opinions of nodes

i and j using the DW update rule (5.4). Otherwise, the opinions xi and xj remain the

same. We also update the dyadic confidence bound cij using Equation (5.3). That is, if

the opinions of nodes i and j differ by less than their current dyadic confidence bound at

time t, the confidence bound increases; otherwise, it decreases. The update rules preserves

cij(t) ∈ (0, 1) for each edge (i, j) and all times t. All other opinions and confidence bounds

remain the same. Our adaptive-confidence DW model reduces to the baseline DW model

when (γ, δ) = (0, 1).

5.3 Theoretical Results

We now discuss some theoretical guarantees of our BCMs.

As a consequence of Theorem 5.1 (which we state shortly), the opinion of each node in our

BCMs converges to some limit value. We define the limit opinion xi of node i as lim
t→∞

xi(t).

12As in our adaptive-confidence HK model, when c0 = 0, nodes are never receptive to any of their neighbors
(i.e., cij(t) = 0 for all adjacent nodes i and j at all times t). When c0 = 1, nodes are always receptive to
all of their neighbors (i.e., cij(t) = 1 for all adjacent nodes i and j at all times t). We do not examine these
values of c0.
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We say that nodes i and j are in the same limit opinion cluster if

lim
t→∞

xi(t) = lim
t→∞

xj(t) . (5.5)

Therefore, Equation (5.5) gives an equivalence relation on the set of nodes; the limit opinion

clusters are the equivalence classes.

Let G = (V,E) be a time-independent, unweighted, and undirected graph without self-edges

or multi-edges. We study our BCMs on such graphs. A graph G in a BCM has an associated

time-dependent effective graph Geff(t), which is a subgraph of G with edges only between

nodes that are receptive to each other at time t.13 That is,

Geff(t) = (V,Eeff(t)) , (5.6)

Eeff(t) = {(i, j) ∈ E such that |xi(t)− xj(t)| < cij(t)} .

Consider the following theorem, which was stated and proved by Lorenz [Lor05].

Theorem 5.1. Let {A(t)}∞t=0 ∈ RN×N
≥0 be a sequence of row-stochastic matrices. Suppose

that each matrix satisfies the following properties:

(1) The diagonal entries of A(t) are positive.

(2) For each i, j ∈ {1, . . . , N}, we have that [A(t)]ij > 0 if and only if [A(t)]ji > 0.

(3) There is a constant α > 0 such that the smallest positive entry of A(t) for each t is

larger than α.

13Other researchers have referred to the effective graph as a “confidence graph" [BAP24], a “communication
graph" [BBC13], and a “corresponding graph" [YDH14].
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Given times t0 and t1 with t0 < t1, let

A(t0, t1) = A(t1 − 1)× A(t1 − 2)× · · · × A(t0) . (5.7)

If conditions (1)–(3) are satisfied, then there exists a time t′ and pairwise-disjoint classes

I1 ∪ · · · ∪ Ip = {1, . . . , N} such that if we reindex the rows and columns of the matrices in

the order I1, . . . , Ip, then

lim
t→∞

A(0, t) =


K1 0

. . .

0 Kp

A (0, t′) , (5.8)

where each Kq, with q ∈ {1, 2, . . . , p}, is a row-stochastic matrix of size |Iq| × |Iq| whose

rows are all the same.

As stated in [Lor05], Theorem 5.1 guarantees that the opinion of each node convergences

to a limit opinion in the baseline HK and DW models. Because the node opinions in our

adaptive-confidence HK and DW models update in the same way as in the corresponding

baseline BCMs (see (5.1) and (5.4), respectively), it follows that the node opinions in our

models also converge to a limit opinion.

5.3.1 Adaptive-confidence HK model

5.3.1.1 Confidence-bound analysis

In Theorem 5.2, we give our main result about the behavior of the confidence bounds (which

update according to (5.3)) in our adaptive-confidence HK model.

Theorem 5.2. In our adaptive-confidence HK model (with update rules (5.2) and (5.3))

with parameters γ ∈ (0, 1] and δ ∈ [0, 1), the dyadic confidence bound cij(t) of each pair of

adjacent nodes, i and j, converges either to 0 or to 1. Furthermore, if i and j are in different
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limit opinion clusters, then cij(t) converges to 0.

We prove Theorem 5.2 by proving Lemma 5.3, Lemma 5.4 and Lemma 5.5, which we state

shortly. Because cij(t) ∈ [0, 1], Lemma 5.4 gives convergence (because an eventually mono-

tone14 sequence in [0, 1] must converge). By Lemma 5.5, we then have convergence either to

0 or to 1. Furthermore, by Lemma 5.4, if nodes i and j are in different limit opinion clusters,

then cij(t) must eventually be strictly decreasing and hence must converge to 0. However,

if adjacent nodes i and j are in the same limit opinion cluster, then cij does not necessarily

converge to 1. In fact, as we discuss in Section 5.5, our numerical simulations suggest that

it is possible for the confidence bound of adjacent nodes in the same limit opinion cluster to

instead converge to 0.

In Theorem 5.2, Lemma 5.4, and Lemma 5.5, we consider our adaptive-confidence HK model

with parameters γ ∈ (0, 1] and δ ∈ [0, 1). These parameter restrictions preclude the baseline

HK model (which is equivalent to our adaptive-confidence HK model with (γ, δ) = (0, 1)).

However, in Lemma 5.3, we consider γ ∈ [0, 1] and δ ∈ [0, 1]. Therefore, Lemma 5.3 also

applies to the baseline HK model, so we use it in our proof of Theorem 5.7 for the baseline

HK model.

Lemma 5.3. Consider our adaptive-confidence HK model (with update rules (5.2) and (5.3))

with parameters γ ∈ [0, 1] and δ ∈ [0, 1]. There is a time T such that no adjacent nodes i

and j in different limit opinion clusters (i.e., xi ̸= xj) are receptive to each other (i.e.,

|xi(t)− xj(t)| < cij(t)) at any time t ≥ T .

Proof. Consider a pair of adjacent nodes, i and j, that are in different limit opinion clusters

(i.e., xi ̸= xj). Let d be 1 more than the largest degree of a node of the graph G; that is,

14We say that a discrete time series a(t) is “eventually monotone increasing” (respectively, “eventually
monotone decreasing”) if there exists a time T such that a(t + 1) ≥ a(t) (respectively, a(t + 1) ≤ a(t)) for
all t ≥ T . Additionally, we say that a(t) is “eventually strictly increasing” (respectively, “eventually strictly
decreasing”) if there exists a time T such that a(t + 1) > a(t) (respectively, a(t + 1) < a(t)) for all times
t ≥ T .
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d = 1 +max
i∈V

deg(i). Choose T such that the inequalities

|xk(t)− xk| <
1

4d
min
xm ̸=xn

|xm − xn| , (5.9)

|xk(t)− xk(t′)| <
1

4d
min
xm ̸=xn

|xm − xn| . (5.10)

hold for each node k and for all t′ > t ≥ T .

We claim that nodes i and j are not receptive to each other at any time t ≥ T . Suppose

the contrary. There then must exist some time t ≥ T and adjacent nodes i and j with

xi ̸= xj and |xi(t) − xj(t)| < cij(t). Fix such a value of t and choose a node i that gives

the smallest limit opinion value xi such that there is a neighboring node j with xj ̸= xi and

|xi(t)− xj(t)| < cij(t).

For this node i, let q = |I(i, x(t))| ≤ d. Because of our choice of xi, we have

1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi − xj)

∣∣∣∣∣∣∣∣ =
1

q

∑
j∈I(i,x(t))

j ̸=i

(xj − xi) ≥ 1

d
min
xm ̸=xn

|xm − xn| . (5.11)
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Using (5.9), we obtain

1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi − xj)

∣∣∣∣∣∣∣∣ ≤
1

q

∑
j∈I(i,x(t))

j ̸=i

∣∣xi(t)− xi∣∣+ 1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi(t)− xj(t))

∣∣∣∣∣∣∣∣
+

1

q

∑
j∈I(i,x(t))

j ̸=i

∣∣xj(t)− xj∣∣

< 2

(
q − 1

q

)(
1

4d

)
min
xm ̸=xn

|xm − xn|+ 1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi(t)− xj(t))

∣∣∣∣∣∣∣∣
<

1

2d
min
xm ̸=xn

|xm − xn|+ 1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi(t)− xj(t))

∣∣∣∣∣∣∣∣ . (5.12)

Combining (5.11) and (5.12) yields

1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi(t)− xj(t))

∣∣∣∣∣∣∣∣ >
1

2d
min
xm ̸=xn

|xm − xn| . (5.13)

Using the HK opinion-update rule (5.2) and the inequality (5.10), we also have

1

q

∣∣∣∣∣∣∣∣
∑

j∈I(i,x(t))
j ̸=i

(xi(t)− xj(t))

∣∣∣∣∣∣∣∣ = |xi(t+ 1)− xi(t)| <
1

4d
min
xm ̸=xn

|xm − xn| . (5.14)

The relations (5.13) and (5.14) cannot hold simultaneously, so nodes i and j are not receptive

to each other at any time t ≥ T .

Lemma 5.4. In our adaptive-confidence HK model (with update rules (5.2) and (5.3)) with

parameters γ ∈ (0, 1] and δ ∈ [0, 1), the dyadic confidence bound cij(t) of each pair of adjacent

nodes, i and j, is eventually either strictly increasing or strictly decreasing. That is, there
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is a time T such that exactly one of the inequalities cij(t1) < cij(t2) and cij(t1) > cij(t2)

holds for all times t2 > t1 ≥ T . Furthermore, if nodes i and j are in different limit opinion

clusters (i.e., if xi ̸= xj), then cij(t) is eventually strictly decreasing.

Proof. We first consider cij for adjacent nodes i and j that are in different limit opinion

clusters (i.e., xi ̸= xj). By Lemma 5.3, there is a time T such that nodes i and j are

mutually unreceptive at all times t ≥ T . Consequently, cij(t) cannot increase at any time

t ≥ T and must be monotone decreasing.

Because the adaptive-confidence HK model updates synchronously and the initial confidence

bound c0 ∈ (0, 1), each confidence bound cij must change at each time t. That is, for all

pairs of adjacent nodes i and j and all times t, we have cij(t+1) ̸= cij(t). Consequently, for

all adjacent nodes i and j in distinct limit opinion clusters and for all times t ≥ T , we have

that cij is strictly decreasing (i.e., cij(t+ 1) < cij(t)).

Now consider adjacent nodes i and j that are in the same limit opinion cluster (i.e., xi = xj).

Choose T > 0 such that

|xk(t)− xk| <
γ

2
(5.15)

for each node k and all t ≥ T . We claim that there exists some Tij ≥ T such that the dyadic

confidence bound cij is either strictly decreasing (i.e., cij(t+1) < cij(t)) or strictly increasing

(i.e., cij(t+ 1) > cij(t)) for all times t ≥ Tij.

If cij is strictly decreasing for all t ≥ T , we choose Tij = T . If cij is not strictly decreasing for

all t ≥ T , there must exist some time Tij ≥ T at which |xi(Tij)−xj(Tij)| < cij(Tij); therefore,

cij(Tij + 1) > cij(Tij). Without loss of generality, let Tij be the earliest such time. We will

show by induction that cij(t + 1) > cij(t) for all t ≥ Tij. By assumption, this inequality

holds for the base case t = Tij.

Suppose that cij(t + 1) > cij(t) for some value of t ≥ Tij. We must then also have |xi(t) −
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xj(t)| < cij(t) and

cij(t+ 1) = cij(t) + γ(1− cij(t)) ≥ γ . (5.16)

By the inequality (5.15), we have that

|xk(t′)− xk′(t′)| ≤ |xk(t′)− xk|+ |xk − xk
′|+ |xk′ − xk′(t′)| < γ (5.17)

for each node pair k and k′ with xk = xk
′ and all times t′ ≥ T . Because t + 1 > Tij ≥ T , it

follows that

|xi(t+ 1)− xj(t+ 1)| < γ < cij(t+ 1) , (5.18)

so cij(t + 2) > cij(t + 1). Consequently, by induction, if cij increases at t = Tij, then cij is

strictly increasing (i.e., cij(t + 1) > cij(t)) for all t ≥ Tij. Therefore, there exists some time

Tij such that cij is either strictly decreasing or strictly increasing for all t ≥ Tij.

In summary, we have shown that cij is eventually strictly decreasing for all adjacent nodes

i and j in different limit opinion clusters. Additionally, for all adjacent nodes i and j in the

same limit opinion cluster, we have shown that cij is eventually either strictly decreasing or

strictly increasing.

Lemma 5.5. In our adaptive-confidence HK model (with update rules (5.2) and (5.3)), let

γ ∈ (0, 1] and δ ∈ [0, 1). Suppose that cij = lim
t→∞

cij(t) exists. It then follows that either

cij = 0 or cij = 1.

Proof. Given ϵ > 0, choose a time T so that the inequalities

|cij(t)− cij| < ϵ/2 , (5.19)

|cij(t1)− cij(t2)| <
1

2
(min{1− δ, γ}) ϵ (5.20)
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hold for all times t, t1, t2 ≥ T . Fix some time t ≥ T . It must be the case that either

cij(t+ 1) = δcij(t) (5.21)

or

cij(t+ 1) = cij(t) + γ(1− cij(t)) . (5.22)

Suppose first that cij(t + 1) = δcij(t). In this case, we claim that cij = 0. To verify this

claim, first note that cij(t)− cij(t+1) = (1− δ)cij(t). Because cij(t)− cij(t+1) < 1
2
(1− δ)ϵ,

we see that cij(t) < ϵ/2. Therefore,

0 ≤ cij ≤ |cij − cij(t)|+ |cij(t)|

< ϵ/2 + ϵ/2

= ϵ ,

which implies that cij = 0.

Now suppose that cij(t+1) = cij(t)+γ(1−cij(t)). Note that cij(t+1)−cij(t) = γ(1−cij(t)) <
1
2
γϵ, which implies that 1− cij(t) < ϵ/2. Additionally,

0 ≤ 1− cij ≤ |1− cij(t)|+ |cij(t)− cij|

< ϵ/2 + ϵ/2

= ϵ ,

which implies that cij = 1.

Therefore, it follows that either cij = 0 or cij = 1.
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5.3.1.2 Effective-graph analysis

In this section, we discuss the convergence of effective graphs in our adaptive-confidence

HK model (see Theorem 5.6) and the baseline HK model (see Theorem 5.7). Our proofs of

convergence employ some results from Section 5.3.1.1.

Theorem 5.6. In our adaptive-confidence HK model with parameters γ ∈ (0, 1] and δ ∈

[0, 1), the effective graph Geff(t) is eventually constant with respect to time. That is, there is

some time T such that Geff(t) = Geff(T ) for all times t ≥ T . Moreover, all of the edges of

the limit effective graph lim
t→∞

Geff(t) are between nodes in the same limit opinion cluster.

Proof. By Lemma 5.4, we can choose a time T such that each dyadic confidence bound cij

is either strictly increasing or strictly decreasing for all times t ≥ T .

For t ≥ T , if cij(t) is strictly decreasing, then we necessarily have that |xi(t) − xj(t)| ≥

cij(t) for all t ≥ T , so (i, j) /∈ Eeff(t) for all t ≥ T . If cij(t) is strictly increasing, then

|xi(t)− xj(t)| < cij(t) for all t ≥ T , so (i, j) ∈ Eeff(t) for all t ≥ T . Therefore, the set Eeff(t)

of edges of the effective graph is constant for all t ≥ T , so the effective graph is constant for

t ≥ T .

For nodes i and j in different limit opinion clusters (i.e., xi ̸= xj), Lemma 5.4 guarantees that

the confidence bound cij is strictly decreasing for all times t ≥ T . Therefore, |xi(t)−xj(t)| ≥

cij(t) for all t ≥ T , so (i, j) /∈ Eeff(t) for all t ≥ T .

Theorem 5.6 states that all edges of a limit effective graph are between nodes in the same

limit opinion cluster. However, the edges between nodes in the same limit opinion cluster

do not have to exist in the limit effective graph. As we will discuss in Section 5.4.3 and

Section 5.5, our numerical simulations suggest that our adaptive-confidence BCMs can have

adjacent nodes in the same limit opinion cluster whose associated dyadic confidence bound

converges to 0. The associated edge is thus not in the limit effective graph.
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Theorem 5.7 guarantees that the effective graphs in the baseline HK model converge in the

limit t → ∞. Unlike in our adaptive-confidence HK model, all edges between nodes in the

same limit opinion cluster in the baseline HK model must exist in the limit effective graph.

Therefore, the limit opinion values in the baseline HK model fully determine the structure

of the limit effective graph.

Theorem 5.7. In the baseline HK model (with update rule (5.1)), the effective graph Geff(t) =

(V,Eeff(t)) is eventually constant with respect to time. Moreover, the edge (i, j) ∈ E exists

in the limit effective graph if and only if this edge is between two nodes in the same limit

opinion cluster (i.e., xi = xj).

Proof. We first consider adjacent nodes, i and j, that are in different limit opinion clusters

(i.e., xi ̸= xj). By Lemma 5.3, because our adaptive-confidence HK model with γ = 0 and

δ = 1 reduces to the baseline HK model, there exists a time T1 such that nodes i and j are

not receptive to each other (i.e., |xi(t)− xj(t)| ≥ c) at any time t ≥ T1. Therefore, the edge

(i, j) /∈ Eeff(t) at any time t ≥ T1.

Now consider adjacent nodes, i and j, that are in the same limit opinion cluster (i.e., xi = xj).

Choose a time T2 such that |xk(t)− xk| < c/2 for each node k and all times t ≥ T2. For all

t ≥ T2, we then have

|xi(t)− xj(t)| ≤ |xi(t)− xi|+ |xi − xj|+ |xj − xj(t)| < c/2 + 0 + c/2 = c .

Therefore, at any time t ≥ T2, nodes i and j are receptive to each other and the edge

(i, j) ∈ Eeff(t). By taking T = max{T1, T2}, for any time t ≥ T , we have that (i, j) /∈ Eeff(t)

for all edges (i, j) with xi ̸= xj and that (i, j) ∈ Eeff(t) for all edges (i, j) with xi = xj.
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5.3.2 Adaptive-confidence DW model

In this section, we discuss our theoretical results for the confidence bounds and effective

graphs in our adaptive-confidence DW model. Both the baseline DW model and our adaptive-

confidence DW model are asynchronous and stochastic. At each discrete time, we uniformly

randomly select one pair of adjacent nodes to interact. Because of the stochasticity in the

baseline and adaptive-confidence DW models, our theoretical results for them are in an

“almost sure” sense. By contrast, our theoretical results (see Section 5.3.1) are deterministic

for the baseline and adaptive HK models.

5.3.2.1 Confidence-bound analysis

We now give our main result about the behavior of the confidence bounds in our adaptive-

confidence DW model (which has the update rules (5.4) and (5.3)). This result mirrors the

main result for our adaptive-confidence HK model in Section 5.3.1.1.

Theorem 5.8. In our adaptive-confidence DW model (with update rules (5.4) and (5.3))with

parameters γ ∈ (0, 1] and δ ∈ [0, 1), the dyadic confidence bound cij(t) converges either to 0

or to 1 almost surely. Moreover, if nodes i and j are in different limit opinion clusters (i.e.,

xi ̸= xj), then cij(t) converges to 0 almost surely.

We prove Theorem 5.8 by proving Lemma 5.9 and Lemma 5.10, which we state shortly and

prove in Section 5.A.1. Because our adaptive-confidence DW model updates asynchronously,

Lemma 5.9 guarantees eventual monotone increase or decrease of the confidence bounds. This

result differs from the eventual strict increase or decrease in the confidence bounds in our

adaptive-confidence HK model (see Lemma 5.4). (See Footnote 14 for our usage of the terms

“eventual monotone increase" (and decrease) and “eventual strict increase" (and decrease).)

Because cij(t) ∈ [0, 1], Lemma 5.9 implies convergence (because an eventually monotone

sequence in [0, 1] must converge). By Lemma 5.10, we have almost sure convergence to 0

or to 1. Moreover, if nodes i and j are in different limit opinion clusters, then Lemma 5.9
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guarantees that cij(t) is monotone decreasing. By Lemma 5.10, cij(t) thus almost surely

converges to 0.

Lemma 5.9. In our adaptive-confidence DW model (with update rules (5.4) and (5.3)) with

parameters γ ∈ (0, 1] and δ ∈ [0, 1), the dyadic confidence bound cij(t) of each pair of adjacent

nodes, i and j, is eventually monotone increasing or monotone decreasing. That is, there is

a time T such that exactly one of the inequalities cij(t1) ≤ cij(t2) and cij(t1) ≥ cij(t2) holds

for all times t2 > t1 ≥ T .

Furthermore, if nodes i and j are in different limit opinion clusters, then cij(t) is eventually

monotone decreasing.

Lemma 5.10. Consider our adaptive-confidence DW model (with update rules (5.4) and

(5.3)) with parameters γ ∈ (0, 1] and δ ∈ [0, 1). Suppose that cij = lim
t→∞

cij(t) exists. It then

follows that, almost surely, either cij = 0 or cij = 1.

5.3.2.2 Effective-graph analysis

We now present Theorem 5.11, which is our main result about effective graphs in our

adaptive-confidence DW model. In Section 5.A.2, we present its proof, which uses results

from Section 5.3.2.1.

Theorem 5.11. In our adaptive-confidence DW model (with update rules (5.4) and (5.3))

with parameters γ ∈ (0, 1] and δ ∈ [0, 1), the effective graph Geff(t) almost surely eventually

has edges only between nodes of the same limit opinion cluster. That is, there is almost

surely some time T such that (i, j) ∈ Eeff(t) implies that xi = xj for all t ≥ T .

Unlike in our adaptive-confidence HK model, lim
t→∞

Geff(t) may not exist in our adaptive-

confidence DW model. When the limit does exist, we refer to lim
t→∞

Geff(t) as the limit effective

graph.

For completeness, we now state Theorem 5.12, which guarantees the almost-sure convergence
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of the effective graphs as t → ∞ in the baseline DW model. In Section 5.B, we prove

Theorem 5.12 by first proving Lemma 5.13 and Lemma 5.14. Because the baseline DW

model has a time-independent confidence bound c, our proof of Theorem 5.12 uses different

ideas than our proof of Theorem 5.11.

Theorem 5.12. Consider the baseline DW model (with update rule (5.4)). Almost surely,

the effective graph Geff(t) is eventually constant with respect to time. That is, there is almost

surely a time T such that Geff(t) = Geff(T ) for all times t ≥ T .

Furthermore, suppose that the limit effective graph lim
t→∞

Geff(t) exists. If adjacent nodes i and

j have the same limit opinion (i.e., if xi = xj), then the edge (i, j) is in the limit effective

graph. Additionally, if the edge (i, j) is in the limit effective graph, then xi = xj almost

surely.

5.4 Details of Our Numerical Simulations

We now discuss the details of our numerical simulations of our adaptive-confidence HK and

DW models.

5.4.1 Network structures

We first simulate our adaptive-confidence HK and DW models on complete graphs to better

understand their behaviors. We subsequently examine how different network structures affect

those behaviors. We simulate our adaptive-confidence HK model on synthetic networks that

we generate using random-graph models, and we simulate both adaptive-confidence BCMs

on networks from empirical data. Because of computational limitations, we consider larger

networks for the adaptive-confidence HK model than for the adaptive-model DW model.

We simulate our adaptive-confidence HK model on a complete graph, G(N, p) Erdős–Rényi

(ER) random graphs, and two-community stochastic-block-model (SBM) random graphs. In

each case, we consider graphs with 1000 nodes. We also simulate our adaptive-confidence
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HK model on social networks from the Facebook100 data set [RKM11,TMP12].

A G(N, p) ER graph has N nodes and independent probability p of an edge between each pair

of distinct nodes [New18]. When p = 1, this yields a complete graph. We consider G(N, p)

graphs with p ∈ {0.1, 0.5} to vary the sparsity of the graphs while still yielding connected

graphs for our simulations. All of the ER graphs in our simulations are connected.

To determine how a network with an underlying community structure affects the dynamics

of our adaptive-confidence HK model, we consider undirected SBM networks [New18] with

a 2× 2 block structure in which each block corresponds to an ER graph. To construct these

SBMs, we partition a network into two sets of nodes; one set (which we denote by A) has

75% of the nodes, and the other set (which we denote by B) has the remaining 25% of the

nodes. Our choice is inspired by the two-community SBM that was considered in [KP20].

We define a symmetric edge-probability matrix

P =

PAA PAB

PAB PBB

 , (5.23)

where PAA and PBB are the probabilities of an edge between two nodes within the sets A

and B, respectively, and PAB is the probability of an edge between a node in set A and a

node in set B. In our simulations, PAA = PBB = 1 and PAB = 0.01.

In addition to synthetic networks, we also simulate our adaptive-confidence HK model on

several real-world networks. For each network, we use the largest connected component15

(LCC). In Table 5.1, we give the numbers of nodes and edges in the LCCs of these networks,

which are social networks from the Facebook100 data set [RKM11, TMP12]. In each of

these networks, the nodes are the Facebook pages of individuals at a university and the edges

encode Facebook “friendships” between individuals in a one-day snapshot of the network from

15A connected component [New18] of an undirected network G is a maximal subgraph with a path between
each pair of nodes.
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fall 2005 [RKM11,TMP12]. The numbers of nodes in the LCCs of the examined Facebook

networks range from 962 to 14,917.

For our adaptive-confidence DW model, we examine a complete graph and one real-world net-

work. We simulate our adaptive-confidence DW model on a 100-node complete graph, which

is one tenth of the size of the complete graph that we consider for our adaptive-confidence

HK model. We use this smaller size because of computational limitations. Our simulations

of our adaptive-confidence DW model on a 100-node complete graph frequently reach our

“bailout time” (see Section 5.4.2 and Table 5.5) for small initial confidence bounds. We also

simulate our adaptive-confidence DW model on the LCC of the real-world NetScience

network of coauthorships between researchers in network science [New06].

Table 5.1: The real-world networks on which we simulate our adaptive-confidence BCMs.
For each network, we use the largest connected component and indicate the numbers of
nodes and edges in that component.

Network Number of Nodes Number of Edges Model
NetScience 379 914 DW
Reed 962 18,812 HK
Swarthmore 1657 61,049 HK
Oberlin 2920 89,912 HK
Pepperdine 3440 152,003 HK
Rice 4083 184,826 HK
UC Santa Barbara 14,917 482,215 HK

5.4.2 Simulation specifications

In Table 5.2, we indicate the values of the model parameters that we examine in our sim-

ulations of our BCMs. The BCM parameters are the confidence-increase parameter γ, the

confidence-decrease parameter δ, the initial confidence bound c0, and (for the adaptive-

confidence DW model only) the compromise parameter µ. For both our HK and DW models,

the parameter pair (γ, δ) = (0, 1) corresponds to the associated baseline BCM.

Our BCM simulations include randomness from the initial opinions of the nodes and from the
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specific networks in random-graph ensembles. The adaptive-confidence DW model also has

randomness from the selection of nodes at each time step. We use Monte Carlo simulations

to mitigate the effects of noise. For each parameter set of a random-graph model (i.e., the

ER and SBM graphs), we generate 5 graphs. Additionally, for each graph, we generate 10

sets of initial opinions uniformly at random and reuse these sets of opinions for all BCM

parameter values.

Table 5.2: The BCM parameter values that we examine in simulations of our adaptive-
confidence BCMs. We consider more parameter values for complete graphs than for the
other networks. We consider all of the indicated values for complete graphs, and we consider
values without the asterisk (∗) for the ER, SBM, and real-world networks.

Model BCM Parameters

Adaptive-Confidence HK
γ ∈ {0, 0.0001∗, 0.0005∗, 0.001, 0.005, 0.01, 0.05, 0.1∗}
δ ∈ {0.01∗, 0.1∗, 0.5, 0.9, 0.95, 0.99, 1}
c0 ∈ {0.02, 0.03, . . . , 0.19, 0.20, 0.30, 0.40, 0.50}

Adaptive-Confidence DW

γ ∈ {0.1, 0.3, 0.5∗}
δ ∈ {0.3∗, 0.5, 0.7∗}
c0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
µ ∈ {0.1, 0.3, 0.5}

∗ We consider these parameter values only for complete graphs.

For our numerical simulations, we need a stopping criterion, as it can potentially take ar-

bitrarily long for nodes to reach their limit opinions in a BCM simulation. We consider

the effective graph Geff(t), which we recall (see Section 5.3) is the subgraph of the original

graph G with edges only between nodes that are receptive to each other at time t. In our

simulations, each of the connected components of Geff(t) is an “opinion cluster” Kr(t) at time

t. Our stopping criterion checks that the maximum difference in opinions between nodes in

the same opinion cluster is less than some tolerance. That is,

max{|xi(t)− xj(t)| such that i, j ∈ Kr(t) for some r} < tolerance . (5.24)

We use a tolerance value of 1 × 10−6 for our adaptive-confidence HK model. Because of
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computational limitations, we use a tolerance value of 0.02 for our adaptive-confidence DW

model. We refer to the time Tf at which we reach our stopping criterion as the “convergence

time” of our simulations. In our simulations, the “final effective graph” is the effective graph at

the convergence time (i.e., the time Tf that a simulation reaches our stopping criterion). We

refer to the connected components of the final effective graph as the “final opinion clusters”

of a simulation; they approximate the limit opinion clusters.

Our theoretical results about effective graphs inform our stopping criterion. Theorem 5.6

and Theorem 5.7 give theoretical guarantees for our adaptive-confidence HK model and the

baseline HK model, respectively, that eventually the only edges of an effective graph are those

between adjacent nodes in the same limit opinion cluster. Theorem 5.11 and Theorem 5.12

give similar but weaker guarantees for our adaptive-confidence DW model and the baseline

DW model. Consequently, if one of our simulations runs for sufficiently many time steps,

its final opinion clusters are a good approximation of the limit opinion clusters. However,

instead of imposing a set number of time steps for our simulations, we use a tolerance value

as a proxy to determine a “sufficient” number of time steps.

The final and limit opinion clusters in our models may not be the same, as our choice of

tolerance values can lead to simulations stopping before we can determine their limit opinion

clusters. Additionally, if two distinct connected components in an effective graph converge

to the same limit opinion value, the nodes in those connected components are in the same

limit opinion cluster. However, the sets of nodes that constitute these connected components

are distinct final opinion clusters. In practice, our simulations are unlikely to have distinct

opinion clusters that converge to the same opinion in the infinite-time limit. Therefore,

for small tolerance values, our final opinion clusters are a good approximation of the limit

opinion clusters.

To ensure that our simulations stop after a reasonable amount of time, we use a bailout

time of 106 time steps. Our simulations of the adaptive-confidence HK model in the present
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chapter never reach this bailout time. However, our simulations of the adaptive-confidence

DW model frequently reach the bailout time for small values of c0. See Section 5.D.1 and

Table 5.5.

5.4.3 Quantifying model behaviors

In our numerical simulations, we investigate the convergence time and characterize the final

opinions. To examine the convergence time, we record the number Tf of time steps that it

takes for simulations to reach our stopping criterion. To characterize opinions, we determine

whether there is consensus or opinion fragmentation (which we define shortly), quantify the

opinion fragmentation using Shannon entropy, and examine the numbers of nodes and edges

in each opinion cluster.

In models of opinion dynamics, it is common to investigate whether or not nodes eventually

reach a consensus (i.e., arrive at the same opinion) [NVT20]. In practice, to determine

whether a simulation reaches a consensus state, we use notions of “major” and “minor”

clusters. Consider a 1000-node network in which 998 nodes have one steady-state opinion

but the remaining 2 nodes have a different steady-state opinion. In applications, it does

not seem appropriate to characterize this situation as opinion polarization or fragmentation.

Therefore, we use notions of major and minor opinion clusters [Lor08, LAZ04], which we

characterize in an ad hoc way. We define a “major” opinion cluster as a final opinion cluster

with strictly more than 1% of the nodes of a network. A final opinion cluster that is not a

major cluster is a “minor” cluster. We say that a simulation that results in one major cluster

yields a “consensus” state and that a simulation that results in at least two major clusters

yields “opinion fragmentation” (i.e., a “fragmented” state).16 We track the numbers and sizes

of all major and minor clusters, and we use all clusters (i.e., both major and minor clusters)

16In studies of opinion dynamics, it is common to use the term “fragmentation” to refer to situations with
three or more opinion clusters and to use the term “polarization” to refer to situations with exactly two
opinion clusters. In the present chapter, it is convenient to quantify any state other than consensus as a
fragmented state.
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to quantify opinion fragmentation.

There are many ways to quantify opinion fragmentation [BGS16,MRU22,AWA22]. We distin-

guish situations in which the final opinion clusters (major or minor) are of similar sizes from

situations in which these clusters have a broad range of sizes. Following Han et al. [HFQ20],

we calculate Shannon entropy to quantify opinion fragmentation.17 At some time t, suppose

that there are R opinion clusters, which we denote by Kr(t) for r ∈ {1, 2, . . . , R}. We refer

to the set {Kr(t)}Rr=1, which is a partition of the set of nodes of a network, as an “opinion-

cluster profile”. The fraction of nodes in opinion cluster Kr(t) is |Kr(t)|/N , where N is the

number of nodes of a network. The Shannon entropy H(t) of an opinion-cluster profile is

H(t) = −
R∑
r=1

|Kr(t)|
N

ln

(
|Kr(t)|
N

)
. (5.25)

We calculate H(Tf ), which is the Shannon entropy of the opinion-cluster profile of final

opinion clusters at convergence time. Computing Shannon entropy allows us to use a scalar

value to quantify the distribution of opinion-cluster sizes, with larger entropies indicating

greater opinion fragmentation. The Shannon entropy is larger when there are more opinion

clusters. Additionally, for a fixed number R of opinion clusters, the Shannon entropy is larger

when the opinion clusters are evenly sized than when the sizes are heterogeneous. When

comparing two opinion-cluster profiles, we consider both the numbers of major clusters and

the Shannon entropies. When there are sufficiently few minor clusters, we expect the number

of major clusters to follow the same trend as the Shannon entropy.

To examine the structure of final opinion clusters, we study the properties of final effective

graphs. Our theoretical results allow the possibility that some adjacent nodes converge to

the same opinion without being mutually receptive. We observe this phenomenon in our

numerical simulations. (See Section 5.5 for more discussion.) To quantify this behavior, we

17See [LP23] for another study that followed [HFQ20] by calculating Shannon entropy to help quantify
opinion fragmentation in a BCM.
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calculate a weighted average of the fractions of edges (which we call the “weighted-average

edge fraction”) that are in each opinion cluster of the final effective graph. In an opinion-

cluster profile {Ki(t)}Rr=1, let E(r) denote the set of edges of the original graph G between

nodes in opinion cluster r and let Eeff(t, r) denote the set of edges of the effective graph

Geff(t) that are in opinion cluster r. That is,

E(r) = {(i, j) ∈ E such that i, j ∈ Kr(t)} ,

Eeff(t, r) = {(i, j) ∈ Eeff(t) such that i, j ∈ Kr(t)} .

The weighted average of the fractions of edges (i.e., the weighted-average edge fraction) that

are in the effective graph for each opinion cluster is

W (t) =
R∑
r=1

E(r) ̸=0

(
|Kr(t)|
N − ℓ

)(
|Eeff(t, r)|
|E(r)|

)
, (5.26)

where ℓ is the number of isolated nodes of the effective graph.18 An isolated node is an

opinion cluster with E(r) = 0. We are interested in the value of W (t) at the convergence

time Tf . Therefore, we calculate the weighted-average edge fraction W (Tf ). If each opinion

cluster of an effective graph has all of its associated original edges of G, then W = 1. The

value of W is progressively smaller when there are progressively fewer edges between nodes in

the same opinion cluster of the effective graph. In Figure 5.1, we show examples of effective

graphs with W (Tf ) < 1.

5.5 Results of Our Numerical Simulations

We now present the results of numerical simulations of our adaptive-confidence BCMs. We

consider various values of the BCM parameters, which are the initial confidence bound c0, the

18If every component of an effective graph is an isolated node (i.e, N = ℓ), then one can take either
W (t) = 0 or W (t) = 1. In our simulations, this situation never occurred.
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(a) One final opinion cluster in a simulation
of our adaptive-confidence HK model that
does not reach consensus on a 1000-node
complete graph with γ = 0.001, δ = 0.5,
and c0 = 0.1.

(b) The final effective graph in a simulation
of our adaptive-confidence DW model that
reaches consensus on a 100-node complete
graph with γ = 0.1, δ = 0.5, c0 = 0.1, and
µ = 0.1.

Figure 5.1: Examples of final effective graphs with W (Tf ) < 1. We color the nodes by their
initial opinion values.

confidence-increase parameter γ, the confidence-decrease parameter δ, and (for the adaptive-

confidence DW model only) the compromise parameter µ. We use the BCM-parameter values

in Table 5.2, including the values that correspond to the baseline models (i.e., (γ, δ) = (0, 1)).

Our code and plots are available in our code repository.

As we described in Section 5.4.3, for both of our adaptive-confidence BCMs, we examine

the number of major clusters (which we use to determine whether a simulation reaches a

consensus state or a fragmented state), the number of minor clusters, the Shannon entropy

H(Tf ) (see Equation (5.25)), the weighted-average edge fractionW (Tf ) (see Equation (5.26)),

and the convergence time Tf . When the Shannon entropy and the number of major clusters

follow similar trends, we only show results for the number of major clusters, as it is easier to

interpret than the entropy. To avoid drowning readers with too much repetition, we include

some of our plots of our adaptive-confidence HK model and adaptive-confidence DW model

in Section 5.C and Section 5.D, respectively. Furthermore, we do not show plots for all of

our numerical results; the omitted plots are available in our code repository.

119

https://gitlab.com/graceli1/Adaptive-Confidence-BCM
https://gitlab.com/graceli1/Adaptive-Confidence-BCM


Our simulation results and theoretical results about effective graphs complement each other.

In Theorem 5.2, we proved for our adaptive-confidence HK model that all dyadic confidence

bounds converge either to 0 or to 1. We also proved that the dyadic confidence bounds

for node pairs in different limit opinion clusters must converge to 0. However, we have not

proven whether or not the dyadic confidence bounds for nodes in the same limit opinion

cluster converge to 1, so it is possible for such confidence bounds to converge to 0. (We

first mentioned this point in Section 5.3.1.1.) If a dyadic confidence bound convergences to

0, then the corresponding edge is absent in the limit effective graph (which is guaranteed

to exist by Theorem 5.6). Our numerical simulations suggest that a final opinion cluster

can include adjacent nodes whose dyadic confidence bound converges to 0. In particular,

in many simulations, we observe that the weighted-average edge fraction W (Tf ) < 1, which

corresponds to absent edges of the final effective graph between nodes that are in the same

final opinion cluster. For our adaptive-confidence DW model, we prove analogous theoretical

results (see Theorem 5.8 and Theorem 5.11) and we again observe simulations with W (Tf ) <

1.

5.5.1 Adaptive-confidence HK model

5.5.1.1 Summary of our simulation results

For our adaptive-confidence HK model, all of our numerical simulations reach a consensus

state for c0 ≥ 0.3. We show our simulation results for c0 ∈ {0.02, 0.03, . . . , 0.20}; we include

the results for the other examined values of c0 (see Table 5.2) in our code repository. We

examine the numbers of major and minor clusters, the Shannon entropy H(Tf ) (see Equation

(5.25)), the weighted-average edge fractionW (Tf ) (see Equation (5.26)), and the convergence

time Tf . We plot each of these quantities versus the initial confidence bound c0. For each

value of the confidence-increase parameter γ, we generate one plot; each plot has one curve

for each value of the confidence-decrease parameter δ. Each point in our plots is a mean

of our numerical simulations for the associated values of the BCM parameter set (γ, δ, and
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Table 5.3: Summary of the observed trends in our adaptive-confidence HK model. Unless we
note otherwise, we observe these trends for the complete graph, all examined random-graph
models, and all examined real-world networks.
Quantity Trends

Convergence
Time

• For fixed values of the initial confidence bound c0, our adaptive-
confidence HK model tends to converge more slowly than the base-
line HK model.
• When our simulations reach a consensus state, for fixed values of
c0 and the confidence-increase parameter γ, our model converges
faster when the confidence-decrease parameter δ = 1 than when
δ ≤ 0.9. For δ ∈ {0.95, 0.99}, the convergence time transitions from
the δ ≤ 0.9 behavior to the δ = 1 behavior as we increase c0.

Opinion
Fragmentation

• Our adaptive-confidence HK model yields consensus for γ ≥ 0.05.

• For fixed values of c0, our adaptive-confidence HK model tends
to yield fewer major clusters than the baseline HK model. When
we fix the other BCM parameters, the number of major clusters
decreases as either (1) we decrease δ or (2) we increase γ.
• For our synthetic networks, we observe that the trends in Shannon
entropy match the trends in the numbers of major clusters and
that our adaptive-confidence HK model tends to yield less opinion
fragmentation than the baseline HK model.∗

• For the baseline HK model, as we increase c0, the number of major
clusters tends to decrease. In our adaptive-confidence HK model,
for simulations without consensus and for sufficiently large γ, the
number of major clusters first increases and then decreases as we
increase c0.

W (Tf )

• When δ = 1, both our adaptive-confidence HK model and the
baseline HK model yield W (Tf ) = 1.
• For fixed γ and c0, as we increase δ, the weighted-average edge
fraction W (Tf ) tends to decrease.
• For simulations that reach a consensus state, we observe two quali-
tative behaviors for W (Tf ): for δ ≤ 0.9, we observe that W (Tf ) < 1
and that there is a seemingly linear relationship between W (Tf )
and c0; for δ = 1, we observe that W (Tf ) = 1. Additionally, for
δ ∈ {0.95, 0.99}, the behavior of W (Tf ) transitions from the δ ≤ 0.9
behavior to the δ = 1 behavior as we increase c0.

∗ For the Facebook100 networks, we do not observe this trend, seemingly because of the large numbers
of minor clusters (which are incorporated in our calculation of Shannon entropy in (5.25)) for these
networks.

121



c0). We also show one standard deviation from the mean. For our simulations on a complete

graph and the Facebook100 networks, each point in our plots is a mean of 10 simulations

(from 10 sets of initial opinions). For our simulations on G(N, p) ER random graphs and

SBM random graphs, each point in our plots is a mean of 50 simulations (from 5 random

graphs that each have 10 sets of initial opinions). We include all plots — including those

that we do not present in the present section, in Section 5.5.1, or in Section 5.C — in our

code repository. In Table 5.3, we summarize the trends that we observe in our simulations.

In all of our simulations of our adaptive-confidence HK model, we observe that γ ≥ 0.001

results in fewer major clusters than in the baseline HK model. For a fixed initial confidence

bound c0, our adaptive-confidence HK model tends to yield fewer major opinion clusters

and less opinion fragmentation as either (1) we increase γ for fixed δ or (2) we decrease

δ for fixed γ. Intuitively, one expects larger values of γ to encourage consensus because a

larger γ entails a larger increase in a dyadic confidence bound after a positive interaction.

Less intuitively, smaller values of δ, which entail a larger decrease in a dyadic confidence

bound after a negative interaction, also seem to encourage consensus. In our adaptive-

confidence HK model, we update opinions synchronously, with each node interacting with of

all its neighboring nodes at each time. When two adjacent nodes are mutually unreceptive,

their dyadic confidence bound decreases. Given the synchronous updates in our adaptive-

confidence HK model, we hypothesize that small values of δ yield a faster decrease than large

values of δ in the dyadic confidence bound between mutually unreceptive nodes. For small

values of δ, pairs of nodes may quickly become mutually unreceptive and remain mutually

unreceptive. Meanwhile, individual nodes can be receptive to (and thus average) fewer

“conflicting” opinions19, possibly aiding in reaching a consensus.

In the baseline HK model, the number of major opinion clusters tends to decrease as we

19When the neighbors to which a node is receptive have large differences in opinions with each other, we
say that that node is receptive to “conflicting” opinions.
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increase c0. For intermediate values of γ (e.g., γ ∈ {0.005, 0.01} for a complete graph;

see panels (E) and (F) in Section 5.5.1.2), we do not observe this trend in our adaptive-

confidence HK model. Instead, as we increase c0, we observe an increase and then a decrease

in the number of major clusters; unlike for the baseline HK model, small values of c0 tend

to promote more consensus (i.e., it tends to yield fewer major clusters). For smaller values

of c0, it seems that nodes tend to be receptive to fewer nodes early in a simulation, so

fewer opinions can influence them. Therefore, for these values of c0, nodes that are mutually

receptive may quickly approach a consensus when γ is sufficiently large. Our calculations of

the weighted-average edge fraction W (Tf ) support this hypothesis. For sufficiently large γ,

small values of c0 yield small values of W (Tf ), indicating that final opinion clusters tend to

have many pairs of mutually unreceptive nodes.

5.5.1.2 A complete graph

We now discuss the simulations of our adaptive-confidence HK model on a complete graph.

We summarize the observed trends in Table 5.3.

In Section 5.5.1.2, we observe for a 1000-node complete graph that our adaptive-confidence

HK model yields fewer major clusters (i.e., it encourages more consensus) than the base-

line HK model for a wide range of BCM parameter values. Our adaptive-confidence HK

model always reaches a consensus state for γ ≥ 0.05. In our simulations that do not reach

consensus, we tend to observe progressively more major clusters and more opinion fragmen-

tation as either (1) we decrease γ for fixed δ and c0 or (2) we increase δ for fixed γ and

c0. For the baseline HK model and our adaptive-confidence HK model with small values

of γ (specifically, γ ∈ {0.0001, 0.0005, 0.001}), the number of major opinion clusters tends

to decrease as we increase c0. We do not observe this trend for larger values of γ (specifi-

cally, γ ∈ {0.005, 0.01}). Instead, for these values of γ, small values of c0 tend to promote

more consensus. For example, simulations always reach a consensus state when γ = 0.01 and

c0 ≤ 0.08. At the end of Section 5.5.1.1, we discussed our hypothesis behind this observation.
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Figure 5.2: The numbers of major clusters in simulations of our adaptive-confidence HK
model on a 1000-node complete graph for various combinations of the BCM parameters γ, δ,
and c0. In this and subsequent figures, we plot the mean value of our simulations for each set
of BCM parameters. The bands around each curve indicate one standard deviation around
the mean values. For clarity, in this figure and in subsequent figures, the vertical axes of
different panels have different scales.

We observe very few minor clusters in our simulations of our adaptive-confidence HK model

on a 1000-node complete graph. For each value of the BCM parameter set (γ, δ, c0), the

mean number of minor clusters in our 10 simulations is bounded above by 1. Because there

are few minor clusters, the Shannon entropy (which accounts for both major clusters and

minor clusters; see Equation (5.25)) and the number of major clusters follow similar trends

for a 1000-node complete graph.

In Section 5.5.1.2, we show W (Tf ) (see Equation (5.26)), which is the weighted average

of the fractions of edges in the opinion clusters of the final effective graph. When δ = 1,

both our adaptive-confidence HK model and the baseline HK model yield W (Tf ) = 1. This

indicates that all final opinion clusters (i.e., the connected components of the effective graph

at time Tf ) are complete subgraphs (i.e., cliques). By contrast, in our adaptive-confidence
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Figure 5.3: The weighted-average edge fractionW (Tf ) (see Equation (5.26)) in simulations of
our adaptive-confidence HK model on a 1000-node complete graph for various combinations
of the BCM parameters γ, δ, and c0.

HK model, when δ < 1 and for a wide range of the other BCM parameters, we observe that

W (Tf ) < 1. This indicates that some nodes that are adjacent in the graph G and in the

same final opinion cluster do not have an edge between them in the final effective graph

Geff(Tf ). The nodes in these dyads are thus not receptive to each other (and hence do not

influence each other’s opinions), but they nevertheless converge to the same opinion. When

δ is sufficiently small (specifically, δ ≤ 0.9), we observe that our adaptive-confidence HK

model can reach a consensus with W (Tf ) < 1. For sufficiently large values of γ (specifically,

γ ≥ 0.05), even though the nodes in some dyads are not receptive to each other, most nodes

(at least 99% of them, based on our definition of major cluster) still converge to the same

final opinion and hence reach a consensus.

For fixed values of γ and c0, we observe that W (Tf ) tends to decrease as we decrease δ. For

γ ∈ {0.05, 0.1}, our simulations always reach a consensus state. In these simulations, for

each fixed δ, we observe that W (Tf ) appears to increase monotonically with respect to c0.

125



Additionally, for these values of γ, we observe a transition in W (Tf ) as a function of δ. For

δ ≤ 0.9, we observe that W (Tf ) < 1 and that there is a seemingly linear relationship between

W (Tf ) and c0. When δ = 1, we observe that W (Tf ) = 1. For δ ∈ {0.95, 0.99}, the behavior

of W (Tf ) transitions from the δ ≤ 0.9 behavior to the δ = 1 behavior as we increase c0. This

transition between behaviors occurs for smaller c0 for δ = 0.99 than for δ = 0.95.

Figure 5.4: The convergence times (in terms of the number of time steps) on a logarithmic
scale in simulations of our adaptive-confidence HK model on a 1000-node complete graph
for various combinations of the BCM parameters γ, δ, and c0.

In Section 5.5.1.2, for fixed c0, we observe that our adaptive-confidence HK model takes

longer to converge than the baseline HK model. For a 1000-node complete graph and fixed

BCM parameters (i.e., γ, δ, and c0), we observe that the logarithm log10(Tf ) of the conver-

gence time Tf for our adaptive-confidence HK model can be up to 4 more than the logarithm

of the convergence time for the baseline HK model. That is, the convergence time can be as

much as 104 times larger. The convergence time tends to increase as either (1) we increase γ

for fixed δ and c0 or (2) we decrease δ for fixed γ and c0. For large values of γ (as is especially

evident for γ ∈ {0.05, 0.1}), the convergence time decreases with c0. As with W (Tf ), for

these values of γ, we observe a transition in the convergence time as a function of δ. In
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Section 5.5.1.2, the curves of log10(Tf ) versus c0 for δ ≤ 0.9 overlay each other and indicate

larger convergence times than the curve for δ = 1. The curves for δ = 0.95 and δ = 0.99

transition from the δ ≤ 0.9 behavior to the δ = 1 behavior as we increase c0. By contrast,

for the baseline HK model and for our model with small values of γ, we observe no clear

pattern between the convergence time and initial confidence bound. When our adaptive-

confidence HK model reaches a consensus state, we observe from the behavior of W (Tf ) (see

Section 5.5.1.2) and the convergence times (see Section 5.5.1.2) in our simulations that there

is qualitative transition in the model behavior as we vary δ. We are not aware of previous

discussions of similar transitions in variants of the HK model.

5.5.1.3 Erdős–Rényi (ER) and two-community stochastic-block-model (SBM)

graphs

We now discuss our simulations of our adaptive-confidence HK model on G(N, p) ER random

graphs and two-community SBM random graphs. As in our simulations on the complete

graph, we observe the trends in Table 5.3. We briefly discuss how our observations for these

random graphs differ from our observations for the complete graph. We give additional

details about our ER simulations in Section 5.C.1, and we give additional details about our

SBM simulations in Section 5.C.2.

For fixed BCM parameters (namely, γ, δ, and c0), we tend to observe fewer major opinion

clusters for G(1000, 0.1) graphs than for the 1000-node complete graph. Additionally, for

small initial confidence bounds (specifically, c0 ≤ 0.04), we observe more minor clusters for

the G(1000, 0.1) graphs than the G(1000, 0.5) graphs and the 1000-node complete graph.

(For G(1000, 0.1) graphs, once we take the mean for each BCM parameter set, we sometimes

observe as many as 20 minor clusters.) The expected mean degree of a G(N, p) ER graph is

p(N − 1) [New18]. Therefore, for small probability p, we expect more nodes to have small

degrees. For small initial confidence bounds, we hypothesize that many nodes with small

degrees quickly disconnect to form minor opinion clusters in the effective graph.
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For our two-community SBM graphs, for fixed BCM parameters, the numbers of major

clusters and Shannon entropies are similar to those for the complete graph. Each of our

SBM graphs consists of two complete graphs that are joined by a small number of edges

(see Section 5.4.1) to yield a two-community structure. It seems that this two-community

structure does not significantly impact the simulation results of our adaptive-confidence HK

model.

5.5.1.4 Facebook100 university networks

We now discuss our simulations of our adaptive-confidence HK model on Facebook100

networks (see Section 5.4.1) [RKM11, TMP12]. We show plots of the number of major

clusters and Shannon entropy for the UC Santa Barbara network. In Section 5.C.3, we show

a plot of the number of major clusters for Reed College. In our code repository, we include all

plots for our simulations on Facebook100 networks (including plots for the other examined

quantities and the other four universities in Table 5.1).

The six Facebook100 networks (see Table 5.1) mostly exhibit the same trends.20 Except

for the trends in Shannon entropy, we observe the same trends (see Table 5.3) for the Face-

book100 networks that we observed for the synthetic networks. For the Facebook100

networks, most of the final opinion clusters for both our adaptive-confidence HK model and

the baseline HK model are minor opinion clusters. Our simulations on the UC Santa Bar-

bara network yield more minor clusters than our simulations on the other Facebook100

networks; when c0 = 0.02 and δ ≤ 0.9, the UC Santa Barbara network has more than 4000

minor clusters. Our calculation of Shannon entropy (see (5.25)) includes contributions from

minor opinion clusters. Therefore, because of the large numbers of minor clusters for the

Facebook100 networks, the Shannon entropy and numbers of major opinion clusters fol-

20The Reed College network is a notable exception. For small initial confidence bounds c0 ≤ 0.04 and
fixed values of the BCM parameters, it tends to have more major clusters and larger Shannon entropies than
the other five Facebook100 networks. We hypothesize that this observation, which we discuss further in
Section 5.C.3, arises from finite-size effects.
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low different trends. For these networks, they thus give complementary views of opinion

fragmentation.

Figure 5.5: The numbers of major clusters in simulations of our adaptive-confidence HK
model on the UC Santa Barbara network for various combinations of the BCM parameters
γ, δ, and c0.

In Figure 5.5, we observe for the UC Santa Barbara network that our adaptive-confidence

HK model always yields consensus (the number of major clusters is exactly 1) when γ ≥

0.005. For these values of γ, the Shannon entropy (see Figure 5.6) tends to decrease as

we increase c0 for fixed values of γ and δ. This trend occurs because the number of minor

opinion clusters also tends to decrease as we increase c0 for fixed values of γ and δ. This

observation contrasts with our simulations of our adaptive-confidence HK model on synthetic

networks (see Sections 5.5.1.2 and 5.5.1.3), for which we observed that the Shannon entropy

follows similar trends as the number of major clusters as we vary one of γ, δ, or c0 while

fixing the other BCM parameters. We believe that one reason for this difference is that the

Facebook100 networks have many small-degree nodes, which allow more minor opinion

clusters to form.
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Figure 5.6: The Shannon entropies in simulations of our adaptive-confidence HK model on
the UC Santa Barbara network for various combinations of the BCM parameters γ, δ, and
c0.

5.5.2 Adaptive-confidence DW model

We now briefly discuss our simulations of our adaptive-confidence DW model on a 100-node

complete graph and the NetScience network [New06]. In Table 5.4, we summarize the

trends that we observe in these simulations. Because of the long computation times, we

consider much smaller graphs and fewer BCM parameter values for our adaptive-confidence

DW model than we did for our adaptive-confidence HK model. Notably, the value of the

compromise parameter µ (which is in the DW models but is not the HK models) affects our

simulation results.

Our adaptive-confidence DW model yields some of the same trends that we obtained in our

adaptive-confidence HK model. One of these trends is that, for both the 100-node complete

graph and the NetScience network, the weighted-average edge fraction W (Tf ) < 1 for

some BCM parameters. Another trend is that our adaptive-confidence DW model has longer

convergence times than the baseline DW model in our simulations on the 100-node complete

graph. Additionally, for the 100-node complete graph, we observe less opinion fragmentation
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as we increase γ. We do not observe these latter two trends in our simulations on the

NetScience network. In Section 5.D, we give a detailed discussion of the results of our

simulations of our adaptive-confidence DW model.

Table 5.4: Summary of the observed trends in our adaptive-confidence DW model.

Quantity Trends

Convergence
Time

• For the complete graph, for fixed values of the compromise pa-
rameter µ and initial confidence bound c0 ≤ 0.3, our adaptive-
confidence DW model tends to converge more slowly than the base-
line DW model.
• For the NetScience network, for fixed values of µ and c0, our
adaptive-confidence DW model and the baseline DW model have
similar convergence times.

Number of
Major Clusters

• For the complete graph, when we fix the other BCM parame-
ters, we (1) tend to observe fewer major clusters as we increase the
confidence-increase parameter γ and (2) observe little effect on the
numbers of major clusters when we vary the confidence-decrease
parameter δ.
• For the complete graph, for a fixed value of c0 ≤ 0.3, our adaptive-
confidence DW model yields fewer major clusters when µ = 0.1
than when µ ∈ {0.3, 0.5}. The baseline DW model does not have
this behavior.
• For the NetScience network, for a fixed value of c0, our
adaptive-confidence DW model yields at least as many major clus-
ters as the baseline DW model. For this network, µ has little effect
on the number of major clusters.

W (Tf )

• The baseline DW model always yields W (Tf ) = 1. Our adaptive-
confidence DW model also yieldsW (Tf ) = 1 for the complete graph
with c0 ≥ 0.4 and the NetScience network with c0 ∈ {0.8, 0.9}.
•When W (Tf ) < 1, for fixed values of the parameters γ, δ, and c0,
decreasing µ tends to also decrease W (Tf ) for both the complete
graph and the NetScience network.
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5.6 Conclusions and Discussion

5.6.1 Summary and discussion of our results

We developed two bounded-confidence models (BCMs) — a synchronously-updating one

that generalizes the Hegselmann–Krause (HK) model and an asynchronously-updating one

that generalizes the Deffuant–Weisbuch (DW) model — with adaptive confidence bounds.

The confidence bounds in our adaptive-confidence BCMs are distinct for each dyad (i.e., pair

of adjacent nodes) of a network and change when nodes interact with each other. One can

interpret the changes in confidence bounds as changes in receptiveness between nodes. We

demonstrated that incorporating time-dependent, adaptive confidence bounds in our BCMs

yields a variety of interesting behaviors, such as adjacent nodes that converge to the same

limit opinion but are eventually unreceptive to each other.

For both our adaptive-confidence HK model and our adaptive-confidence DW model, we

proved convergence properties for the dyadic confidence bounds and the limiting behaviors

of effective graphs, which track which nodes of a network are able to influence each other. We

demonstrated using numerical simulations that our BCMs have fewer major opinion clusters

and take longer to converge than the associated baseline BCMs. See Table 5.3 for a summary

of the trends in our adaptive-confidence HK model, and see Table 5.4 for a summary of the

trends in our adaptive-confidence DW model.

The results of our numerical simulations of our adaptive-confidence BCMs complement our

theoretical results (which informed the stopping criteria in our computations). For our

adaptive-confidence HK model, we proved that (1) all dyadic confidence bounds must con-

verge either to 0 or to 1 and (2) the dyadic confidence bounds between nodes in different

limit opinion clusters must converge to 0 (see Theorem 5.2). For our adaptive-confidence

DW model, we proved that analogous results hold almost surely (see Theorem 5.8). However,

in both of our adaptive-confidence BCMs, the dyadic confidence bounds between nodes in
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the same limit opinion cluster do not necessarily converge to 1, as it is possible for them to

instead converge to 0. Indeed, when the confidence-decrease parameter δ < 1, our numerical

simulations of both of our adaptive-confidence BCMs demonstrate for a wide range of the

other BCM parameter values that some dyads in the same final opinion cluster have confi-

dence bounds that converge to 0. Although the nodes in these dyads are unreceptive to each

other, they still converge to the same opinion. The nodes in these dyads do not have an edge

between them in the final effective graph, so the final opinion clusters (i.e., the connected

components of the final effective graph) in our BCMs can have a richer structure than those

in the baseline BCMs.

5.6.2 Future work

Our investigation lays groundwork and provides a point of comparison for the study of more

complicated adaptive-confidence mechanisms in BCMs. Future investigations of adaptive-

confidence BCMs include establishing additional theoretical guarantees, examining and val-

idating such BCMs in sociological contexts, and generalizing these models in various ways.

It is worthwhile to further explore the theoretical guarantees of our adaptive-confidence

BCMs. We showed (see Theorem 5.11) that, almost surely, the effective graph in our

adaptive-confidence DW model eventually only has edges between nodes in the same limit

opinion cluster. However, unlike for our adaptive-confidence HK model (see Theorem 5.6),

we did not prove any guarantee that the effective graph of our adaptive-confidence DW

model is eventually constant (not even almost surely). Further theoretical analysis of our

adaptive-confidence DW model can help strengthen knowledge of its properties, including

the structural properties of the limit effective graphs.

It is also relevant to analytically and numerically study the mutual receptiveness of nodes in

our BCMs when they reach a consensus state. In our numerical simulations of our adaptive-

confidence BCMs, when the confidence-decrease parameter δ < 1, some adjacent nodes in
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the same final opinion cluster are eventually not receptive to each other. More specifically,

our numerical simulations suggest that some adjacent nodes can converge to the same limit

opinion without having an edge between them in the limit effective graph. One can explore

this behavior of our BCMs and determine how the model parameters influence the existence

of edges between adjacent nodes with the same limit opinion in limit effective graphs.

It is also important to consider how the behaviors of our BCMs connect to real-life social

situations. One can interpret the opinion values in our models as representing outwardly ex-

pressed opinions, which may differ from internally held beliefs [Kur95]. The achievement of a

“consensus” can represent agents arriving at the same outwardly expressed behavior or deci-

sion, rather than achieving an actual agreement of their internal values [Hor62]. Researchers

have studied models with both internal and expressed opinions [Noo20,CLY20,HLJ21], and

one can incorporate such considerations into adaptive-confidence BCMs.

In our adaptive-confidence BCMs, adjacent agents that are unreceptive to each other’s

opinions can still interact with each other. Alternatively, a pair of agents can eventu-

ally stop interacting with each other — effectively changing the network structure — af-

ter repeated negative interactions. Researchers have modeled such ideas, along with net-

work restructuring to consider new social interactions, using adaptive networks with edge

rewiring [KFP23, PRM22]. A possible area of further study is the investigation of which

models effectively have “mediator” nodes that assist in bringing together the opinions of

agents that are unreceptive to each other or no longer interact. If there are such mediator

nodes, one can examine whether or not they share common characteristics or are identifiable

from network structure and initial agent opinions.

There are many possible areas to explore in the study of adaptive opinion models. In research

on opinion dynamics, it is important to incorporate network adaptivity, which provides fertile

ground for theoretical, computational, and empirical investigations of opinion dynamics.
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5.A Proofs of Our Theoretical Results for Our Adaptive-Confidence

DW Model

We now prove the results for our adaptive-confidence DW model that we presented in Sec-

tion 5.3.2.

5.A.1 Proofs of our confidence-bound results

We first prove Lemma 5.9, which states that each confidence bound cij(t) is eventually

monotone.

Proof of Lemma 5.9. We first consider cij(t) for adjacent nodes, i and j, that are in different

limit opinion clusters (i.e., xi ̸= xj). Choose a time T such that the inequalities

|xk(t)− xk| <
1

4
min
xm ̸=xn

|xm − xn| , (5.27)

|xk(t)− xk(t′)| <
µ

4
min
xm ̸=xn

|xm − xn| (5.28)

hold for each node k and all times t′ > t ≥ T .

We claim that cij(t) is monotone decreasing (i.e., cij(t+1) ≤ cij(t)) for all t ≥ T . Note that

|xi − xj| ≥ min
xm ̸=xn

|xm − xn| . (5.29)

By the triangle inequality and (5.27), we have

|xi − xj| ≤ |xi − xi(t)|+ |xi(t)− xj(t)|+ |xj(t)− xj|

<
1

2
min
xm ̸=xn

(|xm − xn|) + |xi(t)− xj(t)| .
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Rearranging terms and using (5.29) yields

|xi(t)− xj(t)| >
1

2
min
xm ̸=xn

|xm − xn| . (5.30)

Suppose that cij(t) increases (i.e., cij(t + 1) > cij(t)) at time t ≥ T . This implies that

xj(t+ 1) = xj(t) + µ(xi(t)− xj(t)), which in turn implies that

|xj(t+ 1)− xj(t)| = µ|xi(t)− xj(t)| . (5.31)

By (5.28), we have

|xj(t+ 1)− xj(t)| <
µ

4
min
xm ̸=xn

|xm − xn| , (5.32)

and (5.31) and (5.32) together imply that

|xi(t)− xj(t)| <
1

4
min
xm ̸=xn

|xm − xn| . (5.33)

The inequalities (5.30) and (5.33) cannot hold simultaneously. Therefore, any interactions

between nodes i and j for times t ≥ T must result in a decrease of cij. Consequently, for all

adjacent nodes i and j from distinct limit opinion clusters, cij is monotone decreasing (i.e.,

cij(t+ 1) ≤ cij(t)) for all t ≥ T .

Now consider adjacent nodes, i and j, that are in the same limit opinion cluster (i.e., xi = xj).

Choose a time T > 0 such that

|xk(t)− xk| <
γ

2
(5.34)

for each node k and all times t ≥ T . We claim that there is some time Tij ≥ T such that

either cij(t) is monotone decreasing (i.e., cij(t+1) ≤ cij(t)) or it is monotone increasing (i.e.,

cij(t+ 1) ≥ cij(t)) for all t ≥ Tij.

If cij(t) is monotone decreasing for all t ≥ T , choose Tij = T . If cij(t) is not monotone
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decreasing for all t ≥ T , there must exist a time Tij ≥ T at which |xi(Tij)−xj(Tij)| < cij(Tij).

This implies that

cij(Tij + 1) = cij(Tij) + γ(1− cij(Tij)) ≥ γ . (5.35)

We claim that cij(t) only increases or remains constant for times t ≥ Tij. By (5.34), we have

|xk(t)− xk′(t)| ≤ |xk(t)− xk|+ |xk − xk
′|+ |xk′ − xk′(t)| < γ (5.36)

for each node pair k and k′ with xk = xk
′ and all times t ≥ T . Therefore,

|xi(t)− xj(t)| < γ (5.37)

for all times t ≥ Tij ≥ T , which implies that subsequent interactions between nodes i and

j increase cij(t) (because cij(t) ≥ γ). Consequently, if cij(t) increases at a certain time

Tij ≥ T , then it subsequently either increases or remains constant. If cij(t) never increases

after time T , then by definition it is eventually monotone decreasing. This implies that

cij(t) is either eventually monotone increasing (i.e., cij(t2) ≥ cij(t1) for all t2 > t1 ≥ T ) or

eventually monotone decreasing.

We now prove Lemma 5.10, which states that if cij(t) converges, then its limit cij = lim
t→∞

cij(t)

is either 0 or 1 almost surely.

Proof of Lemma 5.10. We prove this lemma using an argument that is similar to the one

that we used to prove Lemma 5.5. Unlike in an HK model, adjacent nodes in a DW model

need not interact with each other at each discrete time. In fact, it is possible (although it

occurs with probability 0) that there exists a pair of adjacent nodes that only interact a

finite number of times.
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Given ϵ > 0, choose a time T such that the inequalities

|cij(t)− cij| < ϵ/2 , (5.38)

|cij(t1)− cij(t2)| <
1

2
(min{1− δ, γ}) ϵ (5.39)

hold for all times t, t1, t2 ≥ T . Suppose that we choose the adjacent nodes i and j to

interact at some time t ≥ T . It then follows that either cij(t + 1) = δcij(t) or cij(t + 1) =

cij(t) + γ(1− cij(t)).

Suppose that cij(t+1) = δcij(t). In this case, we claim that cij = 0. To verify this claim, note

that cij(t)−cij(t+1) = (1−δ)cij(t). We know from (5.39) that cij(t)−cij(t+1) < 1
2
(1−δ)ϵ,

so cij(t) < ϵ/2. Therefore, with (5.38), we obtain

0 ≤ cij ≤ |cij − cij(t)|+ |cij(t)|

< ϵ/2 + ϵ/2

= ϵ ,

which implies that cij = 0.

Now suppose that cij(t+1) = cij(t)+γ(1−cij(t)). Rearranging terms yields cij(t+1)−cij(t) =

γ(1− cij(t)) < 1
2
γϵ, which implies that 1− cij(t) < ϵ/2. Therefore,

0 ≤ 1− cij ≤ |1− cij(t)|+ |cij(t)− cij|

< ϵ/2 + ϵ/2

= ϵ ,

which implies that cij = 1 .

Consequently, if nodes i and j interact infinitely often, cij must be either 0 or 1. By the Borel–
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Cantelli lemma, nodes i and j interact infinitely many times with probability 1. Therefore,

it is almost surely the case that either cij = 0 or cij = 1.

5.A.2 Proof of the effective-graph theorem for our adaptive-confidence DW

model

We now prove Theorem 5.11, which is our main result about effective graphs in our adaptive-

confidence DW model. It states that, almost surely, an effective graph in our adaptive-

confidence DW model eventually has edges only between adjacent nodes in the same limit

opinion cluster.

Proof of Theorem 5.11. By Theorem 5.8, for adjacent nodes i and j that are in different

limit opinion clusters, cij(t) almost surely converges to 0. Therefore, almost surely, there is

some T1 such that

cij(t) <
1

2
min
xm ̸=xn

|xm − xn| (5.40)

for all times t ≥ T1. We also choose T2 such that

|xk(t)− xk| <
1

4
min
xm ̸=xn

|xm − xn| (5.41)

for each node k and all times t ≥ T2.

Let T = max{T1, T2}, and fix adjacent nodes i and j that are in different limit opinion

clusters. The time T exists almost surely because T1 exists almost surely. For all times

t ≥ T , the inequality (5.41) implies that

|xi − xj| ≤ |xi(t)− xi|+ |xi(t)− xj(t)|+ |xj(t)− xj|

≤ 1

2
min
xm ̸=xn

|xm − xn|+ |xi(t)− xj(t)| .
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Because min
xm ̸=xn

|xm − xn| ≤ |xi − xj|, it follows that

min
xm ̸=xn

|xm − xn| ≤ 1

2
min
xm ̸=xn

|xm − xn|+ |xi(t)− xj(t)| . (5.42)

Therefore, with (5.40), we obtain

cij(t) <
1

2
min
xk ̸=xk′

|xk − xk′| ≤ |xi(t)− xj(t)| .

That is, |xi(t) − xj(t)| ≥ cij(t) for all t ≥ T , so the edge (i, j) is not in the effective graph

at time t for all t ≥ T . Therefore, the only edges in the effective graph for times t ≥ T are

between nodes in the same limit opinion cluster.

The effective-graph theorem for our adaptive-confidence DW model (see Theorem 5.11) is

weaker than that for our adaptive-confidence HK model (see Theorem 5.6). In particular,

we are unable to conclude for the adaptive-confidence DW model that the effective graph is

eventually constant (or even almost surely eventually constant). The obstruction to obtaining

such a guarantee is the stochasticity that arises from the asynchronous opinion updating of

the adaptive-confidence DW model. In particular, consider adjacent nodes i and j in the

same limit opinion cluster. By Lemma 5.9, there exists a time T such that cij is monotone

for all times t ≥ T . Suppose that cij is monotone decreasing for all t ≥ T . If nodes i and j

interact at time t ≥ T , then cij(t) decreases and the edge (i, j) is not in the effective graph

(i.e., (i, j) /∈ EEff(t)). However, if nodes i and j do not interact at time t, it is possible that

edge (i, j) ∈ EEff(t).(By contrast, for our adaptive-confidence HK model, which updates

synchronously, the existence of a time T such that cij is strictly decreasing for all times

t ≥ T implies that the edge (i, j) /∈ EEff(t) for times t ≥ T .) Suppose that t1, t2, . . . are

successive times at which nodes i and j interact after time T . For each s, it can be the case

that both the inequality |xi(ts)−xj(ts)| ≥ cij(ts) holds and there is a time t̃s between ts and

ts+1 such that |xi(t̃s) − xj(t̃s)| < cij(t̃s) = cij(ts). That is, between each pair of interaction
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times ts and ts+1, the opinions of nodes i and j can (because of other adjacent nodes) first

become close enough so that the difference between their opinions is less than their confidence

bound and then subsequently become sufficiently far apart so that the difference between

their opinions exceeds their confidence bound. In this situation, the effective graph is not

eventually constant.

Although the example in the previous paragraph may seem pathological, it is unclear whether

and how frequently such situations can occur. There also may be other scenarios in which

an effective graph is not eventually constant. This issue does not arise in the proof of

Theorem 5.6 because the nodes in each dyad interact at every time in the adaptive-confidence

HK model.

5.B Proof of the Effective-Graph Theorem for the Baseline DW

Model

We now prove Theorem 5.12, which is our convergence result for effective graphs in the

baseline DW model. To do this, we first prove Lemma 5.13 and Lemma 5.14.

Lemma 5.13. Consider the baseline DW model (with update rule (5.4)). There is a time T1

and there is almost surely a time T2 such that the following statements hold for all adjacent

nodes i and j.

(1) If |xi − xj| < c, then |xi(t)− xj(t)| < c and the edge (i, j) is in the effective graph for

all times t ≥ T1.

(2) If |xi − xj| > c, then |xi(t)− xj(t)| > c and the edge (i, j) is not in the effective graph

at any time t ≥ T1.

(3) If |xi − xj| = c, then |xi(t)− xj(t)| ≥ c and the edge (i, j) is not in the effective graph

at any time t ≥ T2.
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Proof. Consider adjacent nodes i and j, and let ∆ij = |xi−xj| denote the difference between

their opinions.

We first consider the case in which ∆ij ̸= c. Choose a time Tij such that

|xk(t)− xk| <
1

2
|c−∆ij| (5.43)

for node k ∈ {i, j} and all times t ≥ Tij.

Suppose that ∆ij < c. For all times t ≥ Tij, we have

|xi(t)− xj(t)| ≤ |xi(t)− xi|+ |xi − xj|+ |xj(t)− xj|

< 2

(
1

2

)
(c−∆ij) + ∆ij

= c .

Therefore, the edge (i, j) is in the effective graph for all t ≥ Tij.

Now suppose that ∆ij > c. Without loss of generality, let xi > xj. For all times t ≥ Tij, we

have

xi(t)− xj(t) >
(
xi − 1

2
|c−∆ij|

)
−
(
xj +

1

2
|c−∆ij|

)
= (xi − xj)− |c−∆ij|

= ∆ij −∆ij + c

= c .

Therefore, the edge (i, j) is not in the effective graph at any time t ≥ Tij.

142



If there are no adjacent nodes i and j with |xi − xj| ≠ c, then let T1 = 0. Otherwise, let

T1 = max
(i,j)∈E

{Tij such that |xi − xj| ≠ c} . (5.44)

We have shown that statements (1) and (2) hold for all times t ≥ T1.

We now consider the case ∆ij = c. Without loss of generality, let xi > xj. Choose a time

T̃ij so that

|xk − xk(t)| <
µc

2(1 + 2µ)
(5.45)

for node k ∈ {i, j} and all times t ≥ T̃ij. We will show that, almost surely, there are a finite

number of times t ≥ T̃ij such that |xi(t)−xj(t)| < c. Suppose on the contrary that there is a

sequence t1, t2, . . . of times such that tk ≥ T̃ij and |xi(tk)−xj(tk)| < c for all k. At each time

t, nodes i and j interact with probability 1/|E| > 0, where |E| is the number of edges in

the graph. Therefore, with probability 1, nodes i and j interact at some time tk ≥ T̃ij with

|xi(tk)− xj(tk)| < c. Nodes i and j compromise their opinions at time tk, so the inequality

(5.45) implies that

|xi(t+ 1)− xi(t)| = µ|xi(t)− xj(t)| ≥ µ

[(
xi − µc

2(1 + 2µ)

)
−
(
xj +

µc

2(1 + 2µ)

)]
= µ

[
c− 2

(
µc

2(1 + 2µ)

)]
=
µc[(1 + 2µ)− µ]

1 + 2µ

= (1 + µ)
µc

1 + 2µ

>
µc

1 + 2µ
. (5.46)

From the inequality (5.45), we have

|xi(t+ 1)− xi(t)| ≤ |xi(t+ 1)− xi|+ |xi − xi(t)| < 2

(
µc

2(1 + 2µ)

)
=

µc

1 + 2µ
,
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which cannot hold simultaneously with inequality (5.46). Therefore, with probability 1,

there are a finite number of times t ≥ T̃ij such that |xi(t)− xj(t)| < c. Consequently, there

almost surely exists some time Tij ≥ T̃ij such that |xi(t) − xj(t)| ≥ c and the edge (i, j) is

not in the effective graph for any t ≥ Tij.

If there are no adjacent nodes i and j with |xi − xj| ≠ c, then let T2 = 0. Otherwise, let

T2 = max
(i,j)∈E

{Tij such that |xi − xj| = c} , (5.47)

where T2 exists almost surely because each Tij exists almost surely. We have shown that

statement (3) holds for all times t ≥ T2 if T2 exists.

Lemma 5.14. For adjacent nodes i and j with |xi − xj| < c, we have that xi = xj almost

surely.

Proof. Fix adjacent nodes i and j with |xi−xj| < c, and let ∆ij = |xi−xj| denote the distance

between their opinions. Without loss of generality, let xi > xj. We want to show that ∆ij = 0

almost surely. Suppose instead that ∆ij > 0. Fix ϵ so that 0 < ϵ < min{1
4
(c−∆ij),

∆ij

2(1+1/µ)
}

and choose Tij so that

|xk − xk(t)| < ϵ (5.48)

for each node k and all times t ≥ Tij.

By the Borel–Cantelli lemma, there is almost surely some time t ≥ Tij at which nodes i and

j interact. The inequality ϵ < 1
4
(c−∆ij) implies that

|xi(t)− xj(t)| ≤ |xi(t)− xi|+ |xi − xj|+ |xj − xj(t)|

<
1

4
(c−∆ij) + ∆ij +

1

4
(c−∆ij) =

1

2
(∆ij + c)

< c ,
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so nodes i and j are receptive to each other at time t. Consequently, if they interact at time

t, they update their opinions and

xj(t+ 1) = xj(t) + µ[xi(t)− xj(t)]

≥ xj(t) + µ[xi − ϵ− (xj + ϵ)]

= xj(t) + µ(∆ij − 2ϵ)

≥ (xj − ϵ) + µ(∆ij − 2ϵ)

> xj + ϵ , (5.49)

where the last inequality holds because ϵ < ∆ij

2(1+1/µ)
, which we rearrange to obtain 2ϵ <

µ(∆ij − 2ϵ). The inequality (5.48) implies that

|xj − xj(t+ 1)| < ϵ , (5.50)

which cannot hold simultaneously with the inequality (5.49). Therefore, if 0 < xi − xj < c,

then nodes i and j cannot interact at times t ≥ Tij. However, by the Borel–Cantelli lemma,

nodes i and j almost surely interact infinitely often. Consequently, 0 < xi − xj < c with

probability 0. Therefore, we almost surely have xi = xj.

We now use Lemma 5.13 and Lemma 5.14 to prove Theorem 5.12.

Proof of Theorem 5.12. There is a time T1 such that statements (1) and (2) of Lemma 5.13

hold, and there is almost surely a time T2 such that statement (3) of Lemma 5.13 holds.

Therefore, there is almost surely a time T = max{T1, T2} such that all three statements

(1)–(3) of Lemma 5.13 hold for all times t ≥ T . Consequently, the edges of the effective

graph satisfy EEff(t) = EEff(T ) for all t ≥ T . The effective graph is thus eventually constant

with respect to time for all t ≥ T .
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Suppose that the limit effective graph lim
t→∞

Geff(t) exists. For adjacent nodes i and j with

the same limit opinion (i.e., xi = xj), we know that |xi − xj| = 0 < c. By statement (1) of

Lemma 5.13, there thus exists a time T1 such that the edge (i, j) is in the effective graph for

all times t ≥ T1. Therefore, the edge (i, j) is in the limit effective graph.

Now suppose that the edge (i, j) is in the limit effective graph. We seek to show that xi = xj

almost surely. Because the edge (i, j) is in the limit effective graph, there exists a time T̃

such that (i, j) ∈ EEff(t) for all times t ≥ T̃ . Consequently, by statement (2) of Lemma 5.13,

it cannot be the case that |xi − xj| > c. Therefore, by statement (3) of Lemma 5.13, it

almost surely cannot be the case that |xi − xj| = c. Consequently, we almost surely have

|xi − xj| < c. By Lemma 5.14, it is almost surely the case that xi = xj.

5.C Additional Results and Discussion of Our Numerical Simula-

tions of Our Adaptive-Confidence HK Model

In this section, we show additional numerical results for our adaptive-confidence HK model

on ER graphs (see Section 5.C.1), two-community SBM graphs (see Section 5.C.2), and

the Reed College network (see Figure 5.9). We again examine the numbers of major and

minor clusters, the Shannon entropy H(Tf ) (see Equation (5.25)), the weighted-average edge

fraction W (Tf ) (see Equation (5.26)), and the convergence time Tf . We consider the values

of the BCM parameters (namely, the confidence-increase parameter γ, confidence-decrease

parameter δ, and initial confidence bound c0) in Table 5.2. Each point in our plots is a mean

of our numerical simulations for the associated values of the BCM parameter set (γ, δ, c0).

All plots, including those that we do not include in this section, are available in our code

repository.
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5.C.1 Erdős–Rényi graphs

We now discuss additional results of our simulations of our adaptive-confidence HK model

on G(N, p) ER random graphs. We generate 5 ER random graphs for each value of p ∈

{0.1, 0.5}. Each point in our plots is a mean of 50 simulations (from 5 random graphs that

each have 10 sets of initial opinions). For fixed BCM parameters (namely, γ, δ, and c0), our

results for G(1000, 0.5) graphs are more similar than those for G(1000, 0.1) graphs to our

results for the 1000-node complete graph.

Figure 5.7: The numbers of major clusters in simulations of our adaptive-confidence HK
model on G(1000, p) ER random graphs with (A–E) p = 0.1 and (F–J) p = 0.5 for various
combinations of the BCM parameters γ, δ, and c0.

In Section 5.C.1, we show the numbers of major clusters in our simulations of our adaptive-

confidence HK model on ER graphs. For a complete graph and G(1000, 0.5) graphs, for fixed

values of γ and δ, the number of major clusters tends to decrease as we increase c0. For the
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G(1000, 0.1) graphs, when γ = 0.001, small values of c0 tend to yield few major clusters. As

we increase c0, we observe an initial increase in the number of major clusters followed by

a decrease in that number. By contrast, for the 1000-node complete graph, small values of

c0 tend to yield the most major clusters. As we discussed in Section 5.5.1.3, G(1000, 0.1)

graphs have more small-degree nodes than the complete graph. These small-degree nodes

can easily form minor opinion clusters, especially for small values of c0. We hypothesize that

these minor clusters form quickly in a simulation and that the nodes in them quickly become

unreceptive to the other nodes of a network. It is thus possible that the nodes that are not

in these minor clusters become receptive to fewer neighbors with conflicting opinions.21

As we discussed in Section 5.5.1.3, for small values of c0, our simulations of the adaptive-

confidence HK model on the G(1000, 0.1) graphs yield more minor clusters than our simula-

tions on the G(1000, 0.5) graphs and the 1000-node complete graph. Nevertheless, although

Shannon entropy (see Equation (5.25)) accounts for minor clusters, we still observe that it

follows similar trends as the number of major clusters for both p = 0.1 and p = 0.5. Specif-

ically, the Shannon entropy tends to increase as either (1) we decrease γ for fixed δ and c0

or (2) we increase δ for fixed γ and c0.

For our simulations on ER graphs with both p = 0.1 and p = 0.5, we observe the convergence-

time trends in Table 5.3. For fixed values of γ, δ, and c0, the mean convergence time for

p = 0.1 is at least as long as that for p = 0.5. Unlike for the complete graph, the ER graphs

do not have a clear trend in the dependence of the convergence time either on γ (with fixed

δ and c0) or on δ (with fixed γ and c0). As with the 1000-node complete graph, our fastest

convergence times for ER graphs typically occur for δ = 1. For fixed γ and c0, we often

observe that the convergence time increases as we decrease δ. However, we do not always

observe this trend; for some values of γ and c0, smaller values of δ yield faster convergence

21When the neighbors to which a node is receptive have very different opinions, recall (see Footnote 19)
that that node is receptive to “conflicting” opinions., resulting in more consensus (i.e., fewer major opinion
clusters).
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than larger values of δ.

5.C.2 Two-community stochastic-block-model graphs

We now discuss additional results of our simulations of our adaptive-confidence HK model

on two-community SBM graphs. Each of our SBM graphs consists of two complete graphs

that are joined by a small number of edges (see Section 5.4.1). This yields a two-community

structure.

In Figure 5.8, we show the numbers of major clusters in our simulations on SBM graphs.

For fixed values of the BCM parameters (namely, γ, δ, and c0), these simulations yield

similar numbers of major clusters as in our simulations on the 1000-node complete graph

(see Section 5.5.1.2) and G(1000, 0.5) ER graphs (see Section 5.C.1). We observe few minor

clusters; for each BCM parameter set, the mean number of minor clusters is bounded above

by 3. Consequently, the Shannon entropy and the number of major clusters follow similar

trends.

Figure 5.8: The numbers of major clusters in simulations of our adaptive-confidence HK
model on 1000-node SBM random graphs with connection probabilities paa = pbb = 1 and
pab = 0.01 for various combinations of the BCM parameters γ, δ, and c0.

The convergence times in our simulations on SBM graphs follow the trends in Table 5.3. For
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fixed values of γ and c0, we do not observe a clear trend in how the convergence time changes

as we vary δ. One commonality between the SBM graphs, the ER graphs, and the complete

graph is that δ = 1 gives the fastest convergence times. For a wide range of fixed values of

γ and δ, we also observe that the convergence time tends to decreases as we increase c0 for

both our adaptive-confidence HK model and the baseline HK model.

5.C.3 Number of major clusters in simulations on the Reed College network

In our simulations of our adaptive-confidence HK model on the Facebook100 networks,

the Reed College network (see Figure 5.9) has more major opinion clusters than the other

universities for very small initial confidence bounds c0 (specifically, c0 ∈ {0.02, 0.03, 0.04}).

This difference may arise from the small size of the Reed College network in concert with

our definition of major cluster. For example, a final opinion cluster with 20 nodes is a major

cluster for the Reed College network (which has 962 nodes in its LCC), but an opinion cluster

of that size is a minor cluster for the UC Santa Barbara network (which has 14,917 nodes in

its LCC).

Figure 5.9: The numbers of major clusters in simulations of our adaptive-confidence HK
model on the Reed College network for various combinations of the BCM parameters γ, δ,
and c0.
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5.D Additional Results and Discussion of Our Numerical Simula-

tions of Our Adaptive-Confidence DW Model

We now further discuss our simulations of our adaptive-confidence DW model. We simulate

this model a 100-node complete graph and the NetScience network. We simulate our

adaptive-confidence DW model with the values of the BCM parameters (namely, the initial

confidence bound c0, the confidence-increase parameter γ, the confidence-decrease parameter

δ, and the compromise parameter µ) in Table 5.2. See Table 5.4 for a summary of the trends

for the two networks.

We explore the dependence of the numbers of major and minor clusters, the Shannon entropy

H(Tf ) (see Equation (5.25)), the weighted-average edge fractionW (Tf ) (see Equation (5.26)),

and the convergence time Tf on the initial confidence bound c0. For each value of (γ, δ),

we generate one plot; each plot has one curve for each value of the compromise parameter

µ. Each point in our plots is the mean of 10 numerical simulations (from 10 sets of initial

opinions) with one BCM parameter set (γ, δ, c0, µ). We also show one standard deviation

from the mean. All plots, including those that we do not present in this section, are available

in our code repository.

5.D.1 A complete graph

We first discuss our simulations of our adaptive-confidence DW model on a 100-node complete

graph. In the present section, we show plots of the numbers of major opinion clusters (see

Figure 5.10) and the weighted-average edge fractions W (Tf ) (see Figure 5.11).

Our adaptive-confidence DW model tends to converge more slowly than both the baseline

DW model and our adaptive-confidence HK model. Our simulations of our adaptive DW

model often reach the bailout time, particularly for small values of c0 and µ. In Table 5.5,

we indicate the numbers of simulations that reach the bailout time. In some simulations,
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Table 5.5: Summary of the numbers of simulations of our adaptive-confidence DW model
that reach the bailout time of 106 time steps. For each combination of the BCM parameters
(γ, δ, c0, and µ), we run 10 simulations, which each have a different set of initial opinions.
In each table entry, the focal number is the number of simulations that reach the bailout
time and the number in parentheses is the number of those simulations for which we are also
unable determine the final opinion clusters. We run our simulations with (γ, δ) = (0.1, 0.5)
to convergence (i.e., without a bailout time); for those simulations, we do not track the
number of opinion clusters at the bailout time.

Number of simulations that reach bailout
(number of simulations for which we are also
unable to determine the final opinion clusters)

µ = 0.1 µ = 0.3 µ = 0.5
c0 = 0.1 c0 = 0.2 c0 = 0.3 c0 = 0.1 c0 = 0.2 c0 = 0.1

γ = 0.1
δ = 0.3 9 (7) 2 (2) 1 (1) 0 0 0
δ = 0.5 8 1 0 1 0 0
δ = 0.7 9 (6) 2 (2) 1 (1) 2 (0) 0 0

γ = 0.3
δ = 0.3 9 (5) 0 0 2 (1) 0 2 (0)
δ = 0.5 8 (7) 0 0 2 (2) 0 0
δ = 0.7 7 (4) 0 0 5 (3) 2 (1) 0

γ = 0.5
δ = 0.3 9 (6) 0 0 2 (2) 1 (0) 0
δ = 0.5 8 (4) 0 0 2 (1) 0 0
δ = 0.7 6 (4) 0 0 7 (4) 0 1 (1)

despite reaching the bailout time, we are still able to identify the final opinion clusters.

However, the maximum difference in the opinions of the nodes in these clusters is not within

our tolerance value (see (5.24)) of 0.02 for our adaptive-confidence DW model. In those

instances, we still use the cluster information to calculate the numbers of major and minor

opinion clusters, the Shannon entropy H(Tf ), and the weighted-average edge fraction W (Tf ).

For our simulations of our adaptive-confidence DW model with (γ, δ) = (0.1, 0.5), we run

each simulation to convergence (i.e., until we reach the stopping condition that we described

in Section 5.4.2). We plot the results of these simulations in Figure 5.10E and Figure 5.11B.

Although some simulations reach the bailout time, the information that we are able to obtain

about the opinion clusters (from both the simulations that we run to convergence and the

simulations that reach the bailout time) give us confidence in the trends in Table 5.4.

In Figure 5.10, we observe for a wide range of BCM parameter values that our adaptive-
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confidence DW model yields fewer major clusters (i.e., it encourages more consensus) than the

baseline DW model. When c0 ≥ 0.5, our adaptive-confidence DW model and the baseline DW

model always reach consensus. For fixed values of γ, δ, and c0, when our adaptive-confidence

DW model does not reach consensus, decreasing the compromise parameter µ tends to result

in fewer major clusters. By contrast, µ has little effect on the number of major clusters in

the baseline DW model. Increasing γ with the other BCM parameters (i.e., δ, c0, and µ)

fixed also tends to result in fewer major clusters. Changing δ with the other parameters

fixed has little effect on the number of major clusters. In fact, changing δ with the other

parameters fixed appears to have little effect on any of the computed quantities, so we show

results only for δ = 0.5 in our subsequent figures. In our code repository, we include plots

for the other examined values of δ.

We observe very few minor clusters in our simulations of our adaptive-confidence DW model

on the 100-node complete graph. For each BCM parameter set (γ, δ, c0, µ), the mean number

of minor clusters in our 10 simulations is bounded above by 1. Consequently, the number of

major clusters and Shannon entropy follow similar trends. Overall, in our simulations on the

100-node complete graph, our adaptive-confidence DW model encourages more consensus

than the baseline DW model and this difference between these two models becomes more

pronounced for larger values of the confidence-increase parameter γ and smaller values of

the compromise parameter µ.

In Figure 5.11, we show the weighted-average edge fraction W (Tf ) (see (5.26)). The baseline

DW model always has W (Tf ) = 1. By contrast, for sufficiently small initial confidence

values c0, our adaptive-confidence DW model yields W (Tf ) < 1. For µ = 0.1 and small

c0 (specifically, c0 ≤ 0.3), our adaptive-confidence DW model can reach consensus with

W (Tf ) < 1. As in our adaptive-confidence HK model (see our discussion in Section 5.5.1.2),

this observation indicates that some adjacent nodes in the same final opinion cluster are not

receptive to each other.
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For fixed values of c0 ≤ 0.3 and µ, our adaptive-confidence DW model tends to converge more

slowly than the baseline DW model. Additionally, when we fix the other BCM parameters

(i.e., γ, δ, and µ), the convergence time tends to increase as we decrease c0. As we showed

in Table 5.5, for small values of c0 (specifically, c0 ∈ {0.1, 0.2}), more simulations reach the

bailout time as we decrease µ. In both our adaptive-confidence DW model and the baseline

DW model, µ = 0.1 yields longer convergence times than µ ∈ {0.3, 0.5} for fixed values of γ,

δ, and c0.

5.D.2 Network of network-scientist coauthorships

We now discuss our simulations of our adaptive-confidence DW model on the NetScience

network [New06], which is a network of network scientists with unweighted and undirected

edges that encode paper coauthorships.

For the NetScience network and fixed values of c0 and µ, our adaptive-confidence DW

model tends to have at least as many major opinion clusters (see Figure 5.12) and mi-

nor opinion clusters (see Figure 5.13) as the baseline DW model. In Figure 5.13, we see for

c0 ≤ 0.5 that both our adaptive-confidence DW model and the baseline DW model yield many

more minor clusters for the NetScience network than for the 100-node complete graph.

For values of c0 that are near the transition between consensus and opinion fragmentation

(specifically, c0 ∈ {0.3, 0.4, 0.5}), our adaptive-confidence DW model yields noticeably more

major clusters and minor clusters than the baseline DW model. The transition between con-

sensus and fragmentation appears to occur for a larger threshold in our adaptive-confidence

DW model than in the baseline DW model. For the NetScience network (and unlike for

the 100-node complete graph), changing the value of µ with the other BCM parameters fixed

appears to have little effect on the numbers of major and minor opinion clusters.

For the NetScience network and fixed values of c0 and µ, our adaptive-confidence DW

model has convergence times that are similar to those of the baseline DW model. All of our
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simulations of our adaptive-confidence DW model on the NetScience network converge

before reaching the bailout time. We obtain the longest convergence times for c0 = 0.3. By

contrast, for the 100-node complete graph, the convergence time increases as we decrease

c0 and many simulations reach the bailout time for c0 ∈ {0.1, 0.2}. In both our adaptive-

confidence DW model and the baseline DW model, µ = 0.1 yields longer convergence times

than µ ∈ {0.3, 0.5} for fixed values of γ, δ, and c0. We do not observe a clear trend in

how the convergence time changes either as a function of γ (with fixed δ, c0, and µ) or as a

function of δ (with fixed γ, c0, and µ).

155



Figure 5.10: The numbers of major clusters in simulations of (A) the baseline DW model
and (B–J) our adaptive-confidence DW model on a 100-node complete graph for various
combinations of the BCM parameters γ, δ, c0, and µ. In this figure and subsequent figures,
we do not use simulations in which we are unable to determine the final opinion clusters
(see Table 5.5) to calculate the means and standard deviations. In (E), in which we show
our simulations with (γ, δ) = (0.1, 0.5), we run all of our simulations to convergence (i.e.,
we ignore the bailout time) and use all of our simulations to calculate the mean numbers of
major opinion clusters.
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Figure 5.11: The weighted-average edge fraction W (Tf ) (see Equation (5.26)) in simulations
of (A) the baseline DW model and (B–D) our adaptive-confidence DW model on a 100-node
complete graph for various combinations of the BCM parameters γ, δ, c0, and µ. In (E),
in which we show our simulations with (γ, δ) = (0.1, 0.5), we run all of our simulations to
convergence (i.e., we ignore the bailout time) and use the resulting final opinion clusters.

Figure 5.12: The numbers of major clusters in simulations of (A) the baseline DW model
and (B, C) our adaptive-confidence DW model on the NetScience network for various
combinations of the BCM parameters γ, δ, c0, and µ.

Figure 5.13: The numbers of minor clusters in simulations of (A) the baseline DW model
and (B, C) our adaptive-confidence DW model on the NetScience network for various
combinations of the BCM parameters γ, δ, c0, and µ.
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CHAPTER 6

Conclusion

In this thesis, we explored persistent homology (PH), complex social systems, and the inter-

face between the two.

We began by discussing persistence modules over a principal ideal domain (PID) and con-

ditions under which interval decompositions exist. In the context of PH, an interval de-

composition of a persistence module gives important topological information to compute the

persistence diagram (PD) of a filtration (see Section 2.3). We proved that a persistence

module that is pointwise free and finitely-generated over a PID has an interval decomposi-

tion if and only if its structure maps have free cokernels. This theoretical result informs our

formulation of Algorithm 3.2, which takes, as input, a persistence module that is pointwise

free and finitely-generated over a PID and outputs an interval decomposition (if one exist).

Our work provides structural insights into persistence modules over non-field coefficients. It

also provides insights into the computation of PH — namely, the conditions under which a

PD is independent of field choice.

Following our theoretical contributions in PH, we studied an application of PH to resource

coverage in geographical regions. A key advantage of using PH is that it allows us to

consider resource coverage across all scales, eliminating the need to choose a fixed cutoff

distance. We investigated polling-site access in six geographical regions (five cities and Los

Angeles County) as a case study. For each region, we constructed a weighted Vietoris–Rips

(VR) complex based on travel times to and from and waiting times at polling sites. By
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computing PH, we quantitatively identified holes in coverage (i.e., regions that have poor

resource access). Our work demonstrates the benefits of using PH to assess and quantify the

accessibility of resources.

Finally, we formulated and analyzed new discrete-time bounded-confidence models (BCMs)

of opinion dynamics with heterogeneous and adaptive confidence bounds. In our BCMs,

individuals who have positive interactions are more receptive to each other in future inter-

actions, and individuals who have negative interactions are less receptive to each other in

future interactions. We extended the traditional Hegselmann–Krause (HK) and Deffuant–

Weisbuch (DW) BCMs by incorporating parameters that control the increase and decrease

of confidence bounds. We analytically explored the properties and behavior of our BCMs,

including the confidence-bound dynamics, the formulation of opinion clusters, and the time-

evolution of an effective graph. For a variety of networks and a wide range of values of

our BCM parameters, we numerically demonstrated that our adaptive BCMs result in fewer

major opinion clusters and longer convergence times than the baseline HK and DW BCMs.

In conclusion, we studied PH and complex social systems, both individually and together.

We established new insights into the theoretical foundations of PH, introduced an applica-

tion of PH to study complex social systems that have a geospatial component, and studied

opinion dynamics by formulating new BCMs. There are many opportunities to advance PH

and complex social systems — both individually and in tandem — through theoretical and

computational exploration.
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