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Ode to Santa Ynez Valley

If Los Olivos means the olives

Why did I see grapes?

If Solvang is a Danish town

Why did I see crepes?

But maybe I’m too narrow minded

Not seeing the beau-ty

Wise words the coffee shop owner did tell me

“Redecorate, for su-shi”

Goard Lab Sea Shanty1

There once was a lab

That looked on the sea

Writing MATLAB code

And using the 2P

They fought pirates

For buried booty

Eating free pizza

Was their sworn duty

Hey!

1To be performed in rugged, handsome Scottish.
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Abstract

Experimental and Computational Interrogation of the Hippocampal Formation

by

William Thomas Redman

The hippocampal formation plays an important role in spatial navigation and episodic

memory. At the core of the neuroscience community’s understanding of this role, are

classes of functional cell types, such as place cells and grid cells. Despite being the sub-

ject of intense study for over half a century, how the complex recurrent circuitry of the

hippocampal formation generates these functional classes, and how they interact with

each other to support the critical cognitive processes the hippocampal formation under-

lies, is an area of open research. In this thesis, we present experimental and computational

work aimed at addressing some aspects of these questions.

First, we develop a novel technique to optically access the transverse plane of the hip-

pocampus in vivo, allowing – for the first time – the neural activity of multiple subregions

of the hippocampus to be simultaneously recorded. We utilize this tool to characterize

functional and structural properties across the hippocampal circuit, finding stable and

unstable populations of dendritic spines on the apical dendrites of CA1 pyramidal neu-

rons and heterogeneity in the amount of spatial information encoded by place cells along

the CA1-CA3 axis. Second, we test a long held assumption on properties of grid cells

in medial entorhinal cortex, analyzing recent cutting-edge experimental data. We find

evidence for the distribution of grid spacings and orientations in individual modules to

be non-uniform, having small, but significant variation. Computational modeling leads

us to conjecture that a grid code with such heterogeneity in its properties enables robust

encoding of local spatial information. And third, we study the emergence of localized
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responses in artificial neural network models. We find that, as these local features form,

the statistics of the internal representations of the network become increasingly non-

Gaussian, in-line with theoretical work that has suggested this to be a general mechanism

for driving localized responses. Sparsifying the network, via pruning or regularization,

amplifies the non-Gaussian statistics, emphasizing the role of sparsification on internal

representations. Each of these experimental and computational approaches motivates

exciting avenues of future direction to shed light on the computations performed by the

hippocampal formation.
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Chapter 1

Introduction

“Little bit of this / Little bit of

that”

Vince Staples (2016)

1.1 The Hippocampal Formation and Spatial

Navigation

All organisms exist within their environment. This environment has affordances (i.e.,

what the environment offers an organism [1]), which can be accessed by performing

specific actions, at specific locations in space. Examples include scavenging for food,

courting a mate, and hiding from predators. In each case, the ability to efficiently

navigate the environment is of great importance. This spatial navigation includes simple

behaviors, such as the “run and tumble” strategy bacteria perform to explore new parts

of their environment [2], as well as highly complex behaviors, such as migration patterns

of bats that involves traveling thousands of miles to specific caves [3].

1



Introduction Chapter 1

Given the range of organisms that spatially navigate, it is perhaps not surprising

that there are many different strategies that nature has discovered for performing spa-

tial navigation. One such approach is to maintain and store internal representations of

physical space. These representations can be with respect to oneself, known as egocentric

representations (e.g., the garage is to my left when I face my front door), or with respect

to a fixed external reference frame, known as allocentric representations (e.g., my house

is south of Los Padres mountains).

A major discovery in the past century of neuroscience, has been that there exist neural

correlates that support both egocentric and allocentric representations [4, 5, 6, 7, 8, 9,

10], and in certain cases, conjunctively contain egocentric and allocentric information

[11, 12, 13]. While allocentric encoding is transmitted broadly across the brain, being

found in primary visual cortex [14, 15] and somatosensory cortex [16], it is believed to

be generated by, and maintained in, the hippocampal formation. This is a brain region

comprised of the hippocampus (HPC – itself partitioned into the dentate gyrus (DG)

and cornu Ammonis (CA) subfields: CA1, CA2, and CA3), the subiculum, and the

entorhinal cortex (EC). The size of the hippocampal formation has been found to vary in

some animals in response to spatial navigation demands [17, 18, 19], and contains several

different functional cell types that encode space, and features in space, in an allocentric

manner. Below, we discuss some of these types of functional classes, as well as their

properties, in more detail.

1.1.1 Place Cells

The first functional class of neurons discovered in the hippocampal formation was

place cells (PCs) [20, 21]. These are neurons whose activity is local in space, and (largely)

insensitive to the way in which an animal is facing (Fig. 1.1A). The region in which an

2
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Figure 1.1: Illustration of key properties of place cells. (A) The activity of
three “idealized” PCs in a rectangular environment (Environment A). Yellow color
denotes 10 spikes per second, and blue color denotes 0 spikes per second. Note that
the activity is localized, with respect to allocentric space. (B) The same three PCs’
activity in a circular environment (Environment B). Note that the place fields move
(or are absent, in the case of Neuron 2), illustrating “re-mapping”. (C) The same
three PCs’ activity in Environment A, one day later. Note that the place fields have
moved, illustrating representational drift.

individual PC fires action potentials is referred to as its place field. While PCs were

historically characterized by having a single place fields, recording from the HPC in

larger, more realistically sized environments has revealed that they can have multiple

place fields [22, 23, 24, 25], each of which can have very different sizes [26], although the

population distribution contains statistical structure [27].

The amount of spatial information an individual PC contains (a quantity that can

be formally defined [28]) depends on several factors, including the size of the place fields

and the maximum firing rate (relative to baseline) of a neuron. In general, the more

local a place fields is, the more information it encodes about a single specific location,

and the less information it encodes about the rest of space. Indeed, place cells are not
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the most efficient way to encode space (a single neuron that has a different firing rate for

all positions in space – at a given resolution – would suffice), however they are robust

to noise (providing a faithful representation) and can be used to more easily associate

affordances (such as rewards) with individual locations. The locality and specificity of

PCs, which were not a priori guaranteed to be used by the brain, provided the first

explicit evidence that allocentric information was represented at the level of individual

neurons, and inspired the dominating hypothesis that the HPC generates and maintains

a cognitive map [4] that can be used for spatial navigation.

PCs have been discovered in all major subregions of the HPC. While there do appear

to be differences in the place fields properties among PCs in CA1, CA2, CA3, and DG

[29, 30, 31], the fact that PCs are present throughout the HPC suggests that they are a

fundamental “currency” of HPC computations.

Further evidence for map-like representations in the HPC came from the discovery

that in distinct environments, with different visual stimuli, the encoding by PCs changes.

In particular, PCs have place fields in different locations [32, 33], relative to the same en-

vironmental boundaries, a phenomenon termed “re-mapping” (Fig. 1.1B). The extent to

which re-mapping occurs (i.e., what percentage of PCs change their place fields) has been

extensively studied, with different subregions in the HPC having different sensitivities to

alterations of the stimuli and geometric landmarks that make up a given environment

[34, 35, 36]. These results have suggested distinct roles for each subregion in enabling

navigation in similar environments.

Additional support for the hippocampus as a cognitive map came from the fact that

early experiments to record from PCs in CA1 found their place fields to be stably present

across time [37, 38]. Subsequent work found that the stability of place fields was con-

trolled by NMDA receptors [39], and that attention could increase stability [40]. However,

experiments over the past five years with modern technology have cast uncertainty on
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the stability of place fields in general environments. Indeed, many studies describe insta-

bility in place fields [41, 42, 43, 44, 45, 46], although the exact nature of this instability

differs (Fig. 1.1C) [41, 42, 44, 43, 45]. Due to the fact that this “representational drift”

appears to be present in sensory cortices [47, 48, 49], as well as higher order areas, like

retrosplenial and parietal cortex [50, 51], there has been considerable interest in studying

how information encoded by local and specific neural responses can be stably extracted

in the face of unstable tuning [52, 53, 54].

1.1.2 Grid Cells

While PCs in the HPC encode a different kind of information than neurons in sensory

cortices, such as visually responsive cells in primary visual cortex, they do so in similar

ways (i.e., a single localized receptive field in visual or physical space). It was then of

major surprise when a new functional class was found in medial entorhinal cortex (mEC),

which responded to multiple locations in physical space [6]. Because these neurons re-

sponded to positions located on an allocentric triangular lattice (and thus, coined “grid

cells” – GCs) (Fig. 1.2A), they contain considerable geometric structure, making them

unlike the PCs with multiple place fields discovered later [22, 23, 24, 25, 26].

While GCs have multiple firing fields (or grid fields – grid fields), their responses can

be described by three different quantities (Fig. 1.2B): 1) the distance between individual

grid peaks, called grid spacing (λ); 2) the angular orientation of the grid, called grid

orientation (θ); and 3) the displacement of the grid relative to the center of the arena,

called the grid phase (ϕ). While grid cells of all phases have been found in mEC, grid

spacing and orientation have been found to take discrete sets of values, suggesting a

modular organization [55] (Fig. 1.2C). These modules are roughly arranged along the

dorsal-ventral axis, with grid spacing becoming increasingly large (from under half a
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Figure 1.2: Illustration of key properties of grid cells. (A) Three “idealized”
grid cell firing fields, each of which is from a different module. (B) Overview of the
three quantities that describe grid cells: grid spacing (λ); grid orientation (θ); and
grid phase (ϕ). Star denotes center of arena. (C) Illustration of grid properties taking
on discrete values as a function of dorsal ventral position.

meter to over a meter) as the position becomes increasingly ventral. Theoretical work has

shown that, while individual GCs has a degeneracy in their encoding of space, integration

of information across multiple grid modules enables accurate and efficient representation

of local space [56, 57, 58, 59, 60].

The triangular lattice structure of the grid fields has inspired considerable theoret-

ical interest, and many models have been put forth on how this property might be

implemented in neural circuits, such as those that make use of PCs [61] and finer reso-

lution theta fields [62]. More recent work has focused on pattern formation mechanisms

[63, 64, 65]. Beyond the formation of GCs, there has also been significant attention

paid to how GCs representations can be maintained. These have primarily put relied

on continuous attractor dynamics [66, 67, 68, 69], which has found experimental support

[70, 71, 72].

Given the strong connectivity between mEC and HPC (in both directions), work has
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been performed in understanding how representations, especially PCs and GCs, interact

and whether one emerges from the other. In particular, when GCs were first discovered,

a simple linear model, with inhibition, was shown to suffice to transform GCs, across

multiple modules, to PCs [73, 74]. This is aligned with experimental results that have

found the scale of grid fields impact the scale and stability of place fields [75, 76], as well

as findings that GCs make up the largest percent of inputs to PCs [77]. However, PCs

have been found to emerge before GCs during development [78, 79] and mEC lesioning

does not entirely destroy the place code of HPC [80], implying that GCs cannot be the

sole generator of PCs. There have also been proposals that PCs and GCs are learned

in the same manner using spike-timing dependent plasticity (STDP), with GCs or PCs

emerging depending on the smoothness properties of excitatory and inhibitory inputs

[63].

Beyond PCs, GCs have been suggested to play an important role in path integration

[67] (i.e., the process of maintaining and updating one’s own direction and distance

travelled along a path). This is because the triplet (λ, θ, ϕ) describing each GC can

be turned into a measure of distance and angle. Further support for this theory has

come from the discovery that artificial recurrent neural networks (RNNs), trained to

perform path integration, can generate internal representations that include grid cells

[81, 82, 64, 83]. This suggests that the need for path integration is a strong inductive

bias on the neural circuits that are tasked with performing it.

1.1.3 Other Functional Allocentric Cell Types

While PCs and GCs are the primary functional cell types studied in the hippocampal

formation, there exist several other classes of allocentric responses. These include border

cells, band cells, and spatially informative non-place cells.
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Border cells. An important determinant of the affordances, as well as the “dis-

affordances”, an environment provides are its boundaries. Cells responsive to borders

of an environment have been found in mEC [7, 84, 85], among other brain regions.

These border cells have been found to be present earlier in development than GCs [86],

suggesting a primacy in their representations for spatial navigation.

Band cells. In many environments, there is a symmetry along the x-axis or the

y-axis, with respect to certain affordances. For example, along a hallway, the doors are

spaced along the y-axis. In such settings, maintaining a representation of position along

the x-axis (to keep track of how close you are to the doors) and the y-axis (to keep track

of what door you are near) is useful. In-line with this intuition, cells in the mEC that

fire symmetrically along an axis have been discovered [8]. These so called band cells have

been subject to little study, so beyond this little is known about them.

Spatially informative non-place/grid cells. As noted earlier, while coding space

via PCs is interpretable (a single subset of cells active for a single location) and robust

to noise, it is not the only way to encode space. Indeed, cells that reliably respond differ-

ently at different parts of allocentric space can, in theory, be used for decoding space by

themselves. Recordings in mEC found that a majority of cells are not classifiable as bor-

der cells or GCs, but do contain significant and robust encoding of space [87]. Similarly,

in HPC, it was found to be possible to achieve similar performance on approximating the

position of an animal from a decoder built using the responses of neurons that had the

most PC like responses and the least PC like responses [88]. Additionally, considering

the activity of non-PCs was found to contain information about the responses of PCs,

including allowing for prediction of when a PC would not fire in its place fields [89]. Col-

lectively, this suggests that allocentric spatial encoding in mEC and HPC is a broader

phenonomenon and not restricted so purely PCs, GCs, border cells, or band cells.
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1.2 The Hippocampal Formation and Episodic

Memory

Just as all organisms exist within their environment, all episodic memories must

similarly exist within the context of an environment. Thus, many of the memories most

necessary for survival (e.g., the location of food, the location of home, the location of

mates) inextricably involve a notion of space. That the hippocampal formation, which

encodes spatial information, similarly has been found to play an important role in episodic

memory [90, 91], makes this point only more salient.

Research implicating the role of HPC in episodic memory has taken two main ap-

proaches. The first is to remove or inactivate the HPC, and examine the effects on tasks

that require episodic memory (early rodent literature on this topic is extensively reviewed

in [4]). In rare cases, this lesion occurs in humans, either by elective experimental surgery

or disease. Cases that particularly captured the imagination of the scientific community,

as well as the general public, were patients H.M. [92, 93] and E.P. [94]. In both cases, the

bilateral loss of the HPC led to an irrecoverable and nearly complete loss of the ability

to make and store new memories. Memories occurring before the loss, such as those in

childhood, were left intact.

The second approach, made possible through the development of systems neuroscience

tools, has been to create “false” memories in the HPC. In particular, the dominant theory

of how neural circuits are involved in memory holds that ensembles, or engrams [95, 91],

of cells are responsible for the encoding of individual memories. A corollary of this is

that direct re-activation of the correct ensemble of cells should lead to a recollection of

the memory. Revolutionary work did just that, re-activating neurons in the DG that

were active during fear conditioning, eliciting a freezing response in rodents in a neutral

environment [96, 97, 98, 99].
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1.2.1 Place and Grid Cells Beyond Space

Just as the HPC and mEC are used in both spatial and episodic memory, there is

evidence that the same functional cell classes are used as well. That is, that PCs and

GCs encode information along feature dimensions beyond space.

First, just as locations in space are at certain distances from each other, so too

are events in time. For instance, yesterday is a lot “closer” to today than three years

ago. This temporal metric plays an important role in episodic memory, as it provides

contextual information, such as the ordering of events, which makes their causes and con-

sequences more interpretable. Recordings from HPC and mEC have found that neurons

that are PCs and GCs can also encode the timing between events [100, 101, 102, 103, 104].

In addition to pure time, foundational work has shown that PCs and GCs also encode

task relevant, “abstract” information [105]. This was demonstrated by training rats to

pull a lever, while a pure tone underwent a frequency modulation, when the tone was

within a specific frequency range. The researchers found that PCs and GCs encoded one,

or multiple, tones in the sweep, and slowing the sweep widened the responses of these

tone responsive cells, demonstrating that they were not encoding time.

Another property of PCs, and GCs to a lesser extent, that has been interpreted as

a signature of the hippocampal formation playing a more general role in memory is the

phenomena of re-mapping. Indeed, the initial interpretation of the discovered change of

the place fields in different environments was that it was the HPC circuit recognizing a

change in context [32]. Such contextual cuing is essential for correct memory recall. This

has been recently formalized in a computational theory of hidden state inference [106].

Additionally, recent work has shown that remapping can be thought of more generally

as a change in the correlation structure of neurons in HPC, with different environments

causing changes in the way in which pairs of neurons were correlated [107].

10



Introduction Chapter 1

These results have led to the hypothesis that PCs might be an emergent property

of a computational system that compresses incoming sensory information in such a way

that maximizes the distinguishability of it with other, previously stored, memories [108].

Various model implementations of such a system led to place-like tuning when the mem-

ories being encoded were linked to spatial positions. Finally, another interpretation of

many disparate results from the PC and GC literature has been that of the predictive

map [109]. In this framework, representations of space becomes directly connected to

known and/or remembered affordances, as the HPC is used to encode the expected fu-

ture rewards at a given location. This inductive bias was found to be sufficient to lead

to the formation of PCs, and other PC properties.

1.3 Learning Localized Responses from Data

The growing appreciation for the multifaceted role PCs and GCs play in cognition,

beyond pure spatial navigation, has led to an increased appreciation for the computational

advantages a (sub-)population of neurons, with responses localized over the possible

values a given abstract variable can take, provides. In particular, PCs and GCs are

a “useful” representation, not only because they enable a simple GPS-like read-out of

allocentric space, but also because they can be used to learn temporal orderings [110, 111],

predict future outcomes [109], and form hierarchies [27]. In addition, such codes are sparse

(in that only a subset of neurons are active at a given time), and therefore, are more

efficient [112].

One of the first neural codes to be discovered as having with localized responses was

in primary visual cortex (V1), where a given visually driven neuron responds only when

a stimulus is present in a specific part of visual space [113]. This region is called the

receptive field (RF) of the neuron. While there are many differences between PCs, GCs,
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and V1 neurons with RFs, in each case, the neurons respond only in a local neighbor-

hood of all the possible visual or allocentric positions. Note that this differs from the

representation present in spatially informative non-place/grid cells [87, 88], where the

responses are non-localized.

While RFs in V1 are largely due to hard-wired connectivity patterns that emerge

during development, the slower time-scale over which PCs and GCs emerge [78, 79], as

well as the experience dependent nature of PC formation [114], suggest that the localized

responses in the hippocampal formation are learned and adapted. How exactly this

occurs, is not well understood.

Beyond elucidating fundamental properties of neural circuits, especially those present

in HPC and mEC, an understanding of how localized responses can emerge will lead to

better machine learning (ML) methods. Indeed, convolutional neural networks (CNNs)

[115, 116, 117], whose development, along with increasing computational resources and

curated data sets, led to the first wave of breakthroughs in deep learning (DL), in-

clude in their architectural design a form of local RFs [118, 119]. This encourages the

representations of CNNs to be invariant or equivariant to translations [120, 121, 122],

thereby respecting a fundamental symmetry present in the images they are trained on.

This makes CNNs more sample- and parameter-efficient than fully-connected networks

(FCNs), which do not take this symmetry into account explicitly [123, 124].

As deep learning moves into ever more diverse applications in science and beyond,

it is confronted with data sets whose symmetries are not necessarily known a priori. It

would thus be desirable to “learn” the localized responses directly from data. Below,

we discuss some approaches that have been able to learn localized responses in both

biologically plausible, as well as artificial, neural networks, from data.
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Figure 1.3: Illustration of approaches that have learned local receptive fields
from data. (Top row) Learning localized RFs via L1 regularization on the activa-
tions [125]. (Middle row) Learning localized RFs via iterative magnitude pruning
[127]. (Bottom row) Learning localized RFs via non-Gaussian data statistics [128].
(Left column) Data each method was trained on. (Middle column) Schematic of
network implementation, with constraints listed below. (Right column) Example re-
ceptive fields. Data and receptive fields of bottom row taken from [128]. Other figures
reproduced from code.

1.3.1 Learning Local Receptive Fields

Foundational work showing that a FCN, with no architectural constraints, could learn

(in an unsupervised manner) local RFs when a penalty (i.e. regularizer) enforcing sparse

activity was added [125] (Fig. 1.3 top row). That a global regularization on network

activity could lead to local responses led to the hypothesis that metabolically efficient

coding [126] is an inductive bias strong enough to shape the local neural responses found

in the brain [112].

Despite the early success, learning local RFs from “scratch” on larger FCNs has

proven difficult with stochastic gradient descent (SGD) on image classification tasks
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[124, 129]. It has only been within the past few years that new approaches have been

developed, including a more complex regularization technique [130] and iterative weight

sparsification (or “pruning” – Fig. 1.3, middle row) [127], that have enable (supervised)

learning of RFs.

Unlike past approaches, which have relied on modifications to the learning process

(via regularization or pruning), local RFs can emerge in FCNs when trained in an online

manner on synthetic images that are translation-invariant and contain sharp edges [128]

(Fig. 1.3, bottom row). The signal in the data that triggers the formation of the localized

receptive field is carried by higher-order (i.e., non-Gaussian) statistics of the data, and

the representations present in the activation of the units of the neural network become

distributed in an increasingly non-Gaussian manner.

1.3.2 Learning Place and Grid Cells

As discussed in Chapter 1.1.2, there exist many models that can generate PCs and

GCs, to various degrees of biological plausibility [131, 132, 133, 66, 73, 134, 135, ?, 67, 136,

137, 138, 69, 139, 140, 141, 61, 142, 143, 63, 81, 82, 64, 107, 83, 65]. While the GC models

have been, to some extent, unified under the lens of pattern formation [64, 83, 65], the

connection between various different PC models is less understood. Additionally, while

some of the models have been shown to be capable of learning weights, via synaptic

plasticity rules, such that exhibit PC tuning, other models rely on hand-tuned choice of

weights. Alternatively, some models assume all the weights to take the same value. Such

models are inherently limited in their biological plausibility.
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1.4 Summary and Motivation

The hippocampal formation has been appreciated by the neuroscience community as

playing an integral role in supporting episodic and spatial memory for over half a century.

Decades of neurophysiology have identified neural correlates to these cognitive processes

the hippocampal formation is supporting: individual neurons encode information about

spatial locations, as well as abstract variables that are related by some metric. However,

how this information, which is distributed across the mEC and HPC, as well as other

brain regions, is integrated at the circuit level is still largely unknown. Here, we use a wide

range of experimental and computational techniques to study some of the facets of this

open question. First, we developed a novel technique for optically imaging the transverse

plane of the HPC in vivo, enabling (for the first time) the simultaneous recording of

all three primary subregions of the HPC. Next, we re-analyze state-of-the-art neural

recordings of mEC, finding evidence for greater heterogeneity in the responses properties

of GCs, which we show via computational models, enables significantly more information

about local space than previously thought possible. Finally, we examine computational

models that give rise to localized activity (like that found in PCs), showing how sparsity

interacts with the statistics of the internal representations to give local RFs. These diverse

studies, provide new ways in which to interrogate and understand the complex ways in

which the hippocampal formation plays an key role in episodic and spatial memory.

1.5 Permissions and Attributions

1. The contents of Chapter 2 have been published in the journal eLife [144] and are

the result of collaboration with Prof. Michael Goard, Prof. Spencer Smith, Nora

Wolcott, Luca Montelisciani, Gabriel Luna, Tyler Marks, Dr. Kevin Sit, and Dr.
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Che-Hang Yu.

2. The contents of Chapter 3 are in preparation for submission and are the result of

collaboration with Prof. Michael Goard, Prof. Xuexin Wei, and Santiago Acosta.

3. The contents of Chapter 4 are under review at NeurIPS and are the result of collab-

oration with Prof. Sebastian Goldt, Dr. Alesandro Ingrosso, and Prof. Zhangyang

“Atlas” Wang.
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Chapter 2

Long-term Transverse Imaging of

the Hippocampus with Glass

Microperiscopes

Now here’s something we hope

you’ll really like

Rocket J. Squirrel (1964)

2.1 Introduction

The hippocampus is critical for episodic and spatial memory formation [4, 90, 91],

but the neural computations underlying these functions are not well understood. The

trisynaptic circuit linking entorhinal cortex (EC) to dentate gyrus (DG), DG to CA3, and

CA3 to CA1 is believed to endow the hippocampus with its functional capabilities. Since

the circuit was first described in the anatomical studies of Ramon y Cajal over a century

ago [145], considerable work has focused on each of the major hippocampal subfields
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(CA1-3 and DG) to identify their roles in hippocampal processing. The resulting body

of literature has indicated that the subfields have related, but distinct roles in pattern

separation and completion [146, 147, 34, 35, 36, 148, 149, 150, 151, 152], response to

novelty [153, 154, 155, 156, 157] and the encoding of social variables [158, 159, 160].

Additionally, there appear to be differences between the subfields in the stability of their

place fields [157, 41, 44]. Although this work has increased our understanding of each of

the subfields individually, it is not yet clear how neuronal activity is coordinated across

the hippocampus.

This lack of knowledge comes, in part, from the technological limitations that prevent

the recording of neuronal populations across hippocampal subfields in the same animal.

Historically, electrophysiology has been the principal tool used to study the hippocam-

pus. Electrophysiological recordings have the advantage of high temporal resolution and

can directly measure spiking, but they are typically limited to small numbers of neu-

rons in particular subfields. Additionally, localization of recorded neurons within the

hippocampus is approximate, requiring post-hoc histological analysis to estimate the po-

sition of the electrode tracks, with the distances between the recorded neurons and the

electrode sites being poorly defined. In recent years, calcium imaging approaches (i.e.

single photon mini-endoscopes and two-photon microscopy) have been used to record

hippocampal activity, allowing for the simultaneous measurement of large numbers of

neurons with known spatial relationships [44, 161, 162, 42, 163, 164]. However, these

approaches require aspiration of the overlying neocortex and are generally restricted to

a single subfield for each animal.

Taken together, current experimental techniques are limited in their ability to: (1)

record response dynamics and coordination across the hippocampus, (2) identify and

distinguish between different neural subtypes, (3) allow for the chronic recording of cells

across subfields, and (4) resolve key cellular structures, such as apical dendrites.
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To address these challenges, we have developed a procedure for transverse imaging

of the trisynaptic hippocampal circuit using chronically implanted glass microperiscopes.

As has been found with previous studies using implanted microprisms in cortex [165, 166,

167], the neural tissue remained intact and healthy for prolonged periods of time (up to 10

months), and both dendritic structure and calcium activity could be repeatedly measured

in awake mice. Optical modeling and point spread function measurements showed that

axial resolution is decreased compared to traditional cranial windows, but is sufficient

to image individual apical dendritic spines in hippocampal neurons several millimeters

below the pial surface. Using this approach, we quantified spine turnover in CA1 apical

dendrites across days. We then measured functional responses from CA1, CA3, and

DG in head-fixed mice as they explored a floating carbon fiber arena [168, 169]. We

found neurons in all regions whose activity met criteria to be considered place cells and

speed cells. Further, we found a non-uniform distribution of spatial information across

the extent of the DG-to-CA1 axis, supporting findings from earlier electrophysiological

studies that found similar heterogeneity [29, 30, 31]. Taken together, this approach adds

to the existing neurophysiological toolkit and will enable chronic structural and functional

measurements across the entire transverse hippocampal circuit.

2.2 Methods

2.2.1 Animals

For dendritic morphology experiments, Thy1-GFP-M (Jax Stock #007788) transgenic

mice (n = 7) were used for sparse expression of GFP throughout the forebrain. For

forebrain-wide calcium indicator expression, Emx1-IRES-Cre (Jax Stock #005628) ×

ROSA-LNL-tTA (Jax Stock #011008) x TITL-GCaMP6s (Jax Stock #024104) triple
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transgenic mice (n = 2) or Slc17a7-IRES2-Cre (Jax Stock #023527) × TITL2-GC6s-

ICL-TTA2 (Jax Stock #031562) double transgenic mice (n = 6) were bred to express

GCaMP6s in excitatory neurons. For imaging experiments, 8-51 week old (median 17

weeks) mice of both sexes (6 males and 9 females) were implanted with a head plate and

cranial window and imaged starting 2 weeks after recovery from surgical procedures and

up to 10 months after microperiscope implantation. The animals were housed on a 12 hr

light/dark cycle in cages of up to 5 animals before the implants, and individually after

the implants. All animal procedures were approved by the Institutional Animal Care and

Use Committee at University of California, Santa Barbara.

2.2.2 Surgical Procedures

All surgeries were conducted under isoflurane anesthesia (3.5% induction, 1.5 - 2.5%

maintenance). Prior to incision, the scalp was infiltrated with lidocaine (5 mg kg-1,

subcutaneous) for analgesia and meloxicam (2 mg kg-1, subcutaneous) was administered

preoperatively to reduce inflammation. Once anesthetized, the scalp overlying the dorsal

skull was sanitized and removed. The periosteum was removed with a scalpel and the

skull was abraded with a drill burr to improve adhesion of dental acrylic.

For hippocampal imaging, we used two types of custom-designed glass microperiscope

(Tower Optical). The first (v1CA1), for imaging the upper part of the hippocampus

(CA1/CA2) consisted of a 1 × 1 × 1 mm square base and a 1 mm right angle prism,

for a total length of 2 mm on the longest side (Fig. 2.1B, left). The second (v2HPC), for

imaging the entire transverse circuit (CA1-3, DG) had a 1.5 × 1.5 × 1.0 mm (L × W

× H) square base and a 1.5 mm right angle prism, for a total length of 2.5 mm on the

longest side (Fig. 2.1B, right). The hypotenuse of the right angle prisms were coated with

enhanced aluminum for internal reflectance. The microperiscope was attached to a 5 mm
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diameter coverglass (Warner Instruments) with a UV-cured optical adhesive (Norland,

NOA61). Prior to implantation, the skull was soaked in sterile saline and the cortical

vasculature was inspected to ensure that no major blood vessels crossed the incision

site. If the cortical vasculature was suitable, a 3-4 mm craniotomy was made over the

implantation site (centered at 2.2 mm posterior, 1.2-1.7 mm lateral to Bregma). For the

smaller microperiscope (v1CA1), a 1 mm length anterior-to-posterior incision centered at

-2.1 mm posterior, 1.2 mm lateral to Bregma was then made through the dura, cortex,

and mediodorsal tip of the hippocampus to a depth of 2.2 mm from the pial surface

with a sterilized diamond micro knife (Fine Science Tools, #10100-30) mounted on a

manipulator (Fig. 2.2A). For the larger microperiscope (v2HPC), two overlapping 1.0 mm

length anterior-to-posterior incisions were made centered at -1.8 mm posterior / 1.7 mm

lateral and -2.4 mm posterior / 1.7 mm lateral to Bregma to a depth of 2.7 mm, with a

total anterior-to-posterior incision length of 1.6 mm. Note that placements in the regions

shown in Fig. 2.2B required incision coordinates slightly posterior to those indicated on

the atlas. Care was taken not to sever any major cortical blood vessels. Gelfoam (VWR)

soaked in sterile saline was used to remove any blood from the incision site. Once the

incision site had no bleeding, the craniotomy was submerged in cold sterile saline, and

the microperiscope was lowered into the cortex using a manipulator, with the imaging

face of the microperiscope facing lateral (Fig. 2.2B). Once the microperiscope assembly

was completely lowered through the incision until the coverglass was flush with the skull,

the edges of the window were sealed with silicon elastomer (Kwik-Sil, World Precision

Instruments), then with dental acrylic (C&B-Metabond, Parkell) mixed with black ink

(Fig. 2.2C). Care was taken that the dental cement did not protrude over the window,

as it could potentially scratch the objective lens surface. Given the working distance

of the objective used in this study (3 mm), the smaller microperiscope (v1CA1) implant

enabled imaging from 2250 - 2600 µm below the coverglass surface, corresponding to
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approximately 150 - 500 µm into the lateral hippocampus (the 150 µm of tissue nearest

to the microperiscope face was not used for imaging). The larger microperiscope (v2HPC)

implant enabled imaging from 2650 - 2850 µm below the coverglass surface, corresponding

to approximately 150 - 350 µm into the lateral hippocampus (the 150 µm of tissue nearest

to the microperiscope face was not used for imaging). The microperiscope implantations

were stable for up to ten months following the surgery (Fig. 2.8E).

After microperiscope implantation, a custom-designed stainless steel head plate (eMa-

chineShop.com) was affixed using dental acrylic (C&B-Metabond, Parkell) mixed with

black ink. After surgery, mice were administered carprofen (5 - 10 mg kg-1, oral) every

24 hr for 3 days to reduce inflammation. Microperiscope designs and head fixation hard-

ware are available on our institutional lab web site (https://goard.mcdb.ucsb.edu/

resources).

2.2.3 Point Spread Function Measurements

To measure empirical point spread functions, fluorescent microspheres (0.2 µm yellow-

green fluorescent microspheres; ThermoFisher F8811) were embedded 1:2000 in 0.5%

agar and placed under the cranial window or on the face of the microperiscope. Im-

age stacks were taken through the microspheres (0.07 µm per pixel in XY; 0.5 µm per

plane in Z) located 50-100 µm from the microperiscope face (except for the microsphere-

microperiscope distance comparisons in Fig. 2.4J-K, which ranged from 25-500 µm from

the microperiscope face). Candidate microspheres were initially isolated using the Find-

Circles function in the Image Segmenter app (MATLAB image processing toolbox). Only

microspheres that were >25 pixels (1.7 µm) away from nearest neighbor microspheres

and were completely contained within the Z-stack were used for further analysis. We

registered isolated microspheres at their centroids and measured the full width at half
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maximum (FWHM) of the average XY and XZ profiles to determine the lateral and axial

resolution, respectively.

Since the geometry of the microperiscope limits the angle of the focusing light cone

through the microperiscope, it predominately determines the functional numerical aper-

ture at the imaging plane. Based on the microperiscope geometry, we calculated the

effective NA of the v1CA1 microperiscope and v2HPC, and used it to calculate the theo-

retical lateral and axial resolution according to the following formulae [?]:

ωXY =


0.320λ√
2NA

NA < 0.7

0.325λ√
2NA0.91 NA > 0.7

(2.1)

ωZ =
0.532λ√

2

[
1

n−
√
n2 −NA2

]
(2.2)

where ωXY and ωZ are the theoretical 1/e widths of the lateral and axial point spread

function, λ is the wavelength, and NA is the numerical aperture. Note that the FWHM

was calculated by multiplying the 1/e width (ω) by 2
√

ln(2).

To perform aberration correction with adaptive optics, a deformable mirror (Multi-

3.5, Boston Micromachines Corporation) was set at a plane conjugate to the raster scan-

ning mirrors and the back aperture of the objective lens in the two-photon imaging

system. Fluorescent microspheres (0.2 µm) were imaged, and the standard deviation

of the image brightness was maximized under different configurations of the deformable

mirror. Twelve selected Zernike modes are applied and modulated sequentially over a

total of three rounds. The 12 zernike modes are: 1) oblique astigmatism, 2) vertical

astigmatism, 3) vertical trefoil, 4) vertical coma, 5) horizontal coma, 6) oblique trefoil,

7) oblique quadrafoil, 8) oblique secondary astigmatism, 9) primary spherical, 10) ver-

tical secondary astigmatism, 11) vertical quadrafoil, 12) secondary spherical. For each
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Zernike mode, 21 steps of amplitudes were scanned through, and images were acquired

for each step. The amplitude that resulted in the largest standard deviation was saved

and set as the starting point of the DM configuration for the scanning of the next Zernike

mode. The brightness, the lateral resolution, and the axial resolution are compared with

and without the application of the deformable mirror correction.

2.2.4 Air-Floated Chamber

For measurement of spatial responses, mice were head-fixed in a floating carbon fiber

chamber [168] (Mobile Homecage, NeuroTar, Ltd). The chamber base was embedded

with magnets to allow continual tracking of the position and angular displacement of

the chamber. Behavioral data was collected via the Mobile HomeCage motion tracking

software (NeuroTar, versions 2.2.0.9, 2.2.014, and 2.2.1.0 beta 1). During imaging exper-

iments, image acquisition was triggered using a TTL pulse from the behavioral software

to synchronize the timestamps from the 2P imaging and chamber tracking.

A custom carbon fiber arena (250 mm diameter) was lined with four distinct visual

patterns (5.7 cm tall, 18.1 cm wide) printed on 7 mil waterproof paper (TerraSlate) with

black rectangles (5.7 cm tall and 1.5 cm wide) placed in between the four patterns. A

circular track (Fig. 2.11A; Video S4) was made by adding a removable inner circle (14 cm

in diameter and 4.2 cm tall) with visual cues that were matched to the outer wall printed

on 7 mil waterproof paper. The resulting circumference, along the middle of the circular

track, is 61.26 cm. Transparent tactile stickers (Dragon Grips) were placed on the arena

floors to give differential tactile stimuli along the track. In between each recording and

or behavioral session, the arena walls and floors were thoroughly cleaned.

Mice were acclimated to the arena by the following steps: 1) On the first day the

mice were placed into the chamber and allowed to freely explore without head fixation
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for 15 - 20 minutes. A piece of plexiglass with holes drilled through was placed on top

of the arena to keep the mice from climbing out. 2) On the second day, the mice were

head-fixed to a crossbar extending over the floating chamber (Fig. 2.11A) and allowed

to freely explore the floating chamber freely for 15 minutes. Air flow (3 - 6.5 psi) was

adjusted to maximize steady walking/running. On subsequent days, the head fixation

time was increased by increments of 5 minutes, as long as the mice showed increased

distance walked and percent time moving. This was continued until the mice would

explore for 30 - 40 minutes and run for greater than 15% of the time. 3) Mice were

head-fixed in the floated chamber for 20 minutes with a custom light blocker attached

to their headplate. 4) Mice were head-fixed and placed on the 2P microscope to allow

habituation to the microscope noise. 5) After mice were fully habituated, 20 - 40 minute

duration recording sessions on the 2P microscope were performed.

If at any point during the above acclimation protocol the mouse significantly decreased

distance traveled or percentage of time moving, then the mouse was moved back to the

previous step.

Custom software was written to process the behavioral data output by the Mobile

HomeCage motion tracking software. Because the Mobile HomeCage motion tracking

software sampling rate was faster than the frame rate of our 2P imaging, all behavioral

variables (speed, location, polar coordinates, and heading) that were captured within

the acquisition of a single 2P frame were grouped together and their median value was

used in future analysis. For the polar angle (which we used as the location of the mouse

in 1D track), the median was computed using an open source circular statistics toolbox

(CircStat 2012a) written for MATLAB [170]. We removed any time points when the

mouse was not moving, as is standard for measurement of place fields [161]. This helps

separate processes that are related to navigation from those that are related to resting

state. To do this, we smoothed the measured instantaneous speed and kept time periods

25



Long-term Transverse Imaging of the Hippocampus with Glass
Microperiscopes Chapter 2

> 1 s that had speeds greater than 20 mm/s (adding an additional 0.5 s buffer on either

side of each time period).

2.2.5 Two-Photon Imaging

After recovery from surgery and behavioral acclimation, GFP or GCaMP6s fluores-

cence was imaged using a Prairie Investigator 2P microscopy system with a resonant

galvo scanning module (Bruker). For fluorescence excitation, we used a Ti:Sapphire laser

(Mai-Tai eHP, Newport) with dispersion compensation (Deep See, Newport) tuned to λ

= 920 nm. Laser power ranged from 40-80 mW at the sample depending on GCaMP6s

expression levels. Photobleaching was minimal (<1% min−1) for all laser powers used.

For collection, we used GaAsP photomultiplier tubes (H10770PA-40, Hamamatsu). A

custom stainless-steel light blocker (eMachineShop.com) was mounted to the head plate

and interlocked with a tube around the objective to prevent light from the environment

from reaching the photomultiplier tubes. For imaging, we used a 16×/0.8 NA microscope

objective (Nikon) to collect 760 × 760 pixel frames with field sizes of 829 × 829 µm or

415 x 415 µm. Images were collected at 20 Hz and stored at 10 Hz, averaging two scans

for each image to reduce shot noise.

For imaging spines across days, imaging fields on a given recording session were aligned

based on the average projection from a reference session, guided by stable structural

landmarks such as specific neurons and dendrites. Physical controls were used to ensure

precise placement of the head plate, and data acquisition settings were kept consistent

across sessions. Images were collected once every day for 5 - 10 days.
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2.2.6 Two-Photon Post-Processing

Images were acquired using PrairieView acquisition software (Bruker) and converted

into multi-page TIF files.

For spine imaging, registration and averaging was performed for each z-plane spanning

the axial width of the dendrite to ensure all spines were captured across z-planes. The

resulting projections were weighted according to a Gaussian distribution across planes.

Non-rigid registration was used to align dendritic segments across consecutive recording

sessions. The registered images underwent high-pass filtering to extract low amplitude

spine features using code adapted from Suite2P’s enhanced mean image function [171]

(Fig. 2.5-Fig. 2.2A). The resulting ROIs were binarized using Otsu’s global threshold

method for spine classification (Fig. 2.5-Fig. 2.2A). In most cases, the global threshold

successfully isolated the single most prominent dendrite. In fields with higher background

dendrites that were not desired, these extraneous dendrites were manually excluded. To

identify spines that fall below the global threshold, the user manually specifies incre-

mentally lower thresholds from which to select spines that were excluded in the initial

binarization. (Fig. 2.5-Fig. 2.2A). Spines above the global threshold with an area of > 1

µm2 were included in our analysis. To classify each spine as one of the four major mor-

phological classes, we performed the following steps. First, we found the base of the spine

by identifying the region closest to the dendritic shaft. Second, we calculated the length

of the spine by taking the Euclidean distance between the midpoint of the spine base

and the most distant pixel. Third, this vector was divided evenly into three segments to

find the spine head, neck, and base areas respectively. Finally, spines were classified in

the four categories, considering the following threshold parameters (Fig. 2.5-Fig. 2.2B):

stubby (neck length < 0.2 µm and aspect ratio < 1.3), thin (neck length > 0.2 µm, spine

length < 0.7 µm, head circularity < 0.8 µm), mushroom (neck length > 0.2 µm, head
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circularity > 0.8 µm), and filopodium (neck length > 0.2 µm, spine length < 0.8 µm,

aspect ratio > 1.3).

For calcium imaging sessions, the TIF files were processed using the Python imple-

mentation of Suite2P [171]. We briefly summarize their pipeline here. First, TIFs in the

image stack undergo rigid registration using regularized phase correlations. This involves

spatial whitening and then cross-correlating frames. Next, regions of interest (ROIs) are

extracted by clustering correlated pixels, where a low-dimensional decomposition is used

to reduce the size of the data. The number of ROIs is set automatically from a threshold

set on the pixel correlations. We manually checked assigned ROIs based on location,

morphology and DF/F traces.

Since the hippocampal pyramidal cells are densely packed and the microperiscope

reduces the axial resolution, we perform local neuropil subtraction using custom code

(https://github.com/ucsb-goard-lab/two-photon-calcium-post-processing) to

avoid neuropil contamination. The corrected fluorescence was estimated according to

Fcorrected(n) = Fsoma(n)− α(Fneuropil(n)− F̄neuropil), (2.3)

where Fneuropil was defined as the fluorescence in the region < 30 µm from the ROI border

(excluding other ROIs) for frame n. F̄neuropil is Fneuropil averaged over all frames. α was

chosen from [0, 1] to minimize the Pearson’s correlation coefficient between Fcorrected and

Fneuropil. The ∆F/F for each neuron was then calculated as,

∆F

F
=

Fn − F0

F0

(2.4)

where Fn is the corrected fluorescence (Fcorrected) for frame n and F0 is defined as the

first mode of the corrected fluorescence density distribution across the entire time series.
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We deconvolved this neuropil subtracted ∆F/F to obtain an estimate for the in-

stantaneous spike rate, which we used (only) for the computation of neurons’ spatial

information (see below). This inferred spike rate was obtained via a MATLAB im-

plementation of a sparse, nonnegative deconvolution algorithm (OASIS) used for Ca2+

recordings [172] We used an auto-regressive model of order 2 for the convolution kernel.

Any cells that had spike rate > 10 spikes/sec. or <1 spikes/sec. were manually checked

and were removed from consideration if their traces appeared too noisy or sparse. Such

cells were not considered in future analysis and were not included in the total number of

cells recorded from.

2.2.7 Spine Imaging Data Analysis

After nonrigid registration, high pass filtering, and binarization of the dendritic seg-

ment, individual spines were extracted based on standard morphological criteria [173].

Spines projecting laterally from the dendritic segment were extracted and analyzed as

individual objects, as described previously (Fig. 2.5-Fig. 2.2). The sum of the members

of each spine class, as well as the total number of all spines, was recorded for each session.

Spine totals (Stotal) were then broken down into 10 µm sections of the dendritic segment

(Ssection) using the following calculation:

Ssection(n) =
Stotal(n)

Dlength × Fµm

Fpixels

× 10 (2.5)

where length of the dendritic segment, Dlength, was determined by skeletonizing the den-

dritic shaft to 1 pixel in diameter, then taking the area of the pixels. Fpixels is the FOV in

pixels, which here was 760 × 760 at 16× magnification, and Fµm is the FOV in microns,

which was 52 × 52 µm.

Turnover was estimated at 24 h increments; turnover here is defined as the net change
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in spines per day for each morphological class (Fig. 2.5F). To determine which specific

spines were involved in turnover across days, segments recorded 24 h apart were aligned

and overlaid using a custom MATLAB interface, which allowed the user to manually

select new or removed spines. Percent addition/subtraction Sa/s was calculated as:

Sa/s =
Na/s(t)

N(t)
× 100, (2.6)

where Na/s(t) is spines that have been added or subtracted and N(t) is the total average

number of spines. To account for variance in spine classification across days, turnover of

specific classes of spines was normalized to total cumulative turnover per day.

To calculate the survival fraction curve S(t), we determined which spines were present

at time tn that were not present at time t0 [174, 175, ?]. The dendritic segment from

t0 was transparently overlaid with segments from tn , and replacement spines that were

present in t0 but not tn were manually identified. Survival fraction was quantified as

S(t) =
Nr(tn)

N(t0)
× 100, (2.7)

where Nr(tn) are the total spines at tn that were also found in t0, and N(t0) are the total

number of spines that were present in t0. Survival fraction, as well as % addition and

subtraction, was calculated in 10 µm sections to control for segment length.

Dendrite registration (Fig. 2.5-Fig. supplement 2) was performed using built-in reg-

istration functions in the MATLAB image processing toolbox (rigid registration: imregis-

ter, non-rigid registration: imregdemons for displacement field estimation and warping).
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2.2.8 Calcium Imaging Data Analysis

For calcium imaging experiments during exploration of the air-floated chamber, pro-

cessed and synchronized behavioral data and 2P imaging data were used to identify place

and speed cells as follows.

First, the 1D track was divided into 72 equal bins (each ∼0.85 cm in length). Activity

as a function of position (we refer to these as spatial tuning curves) was computed for

each lap, with activity divided by occupancy of each binned location. We observed that

in certain cases, the mice traversed the track at high speeds. To avoid misattribution of

slow calcium signals to spatial bins (which were relatively small due to our small track),

any lap where the average instantaneous speed was greater than 180 mm/s was removed

and not considered for further analysis (an average of 7% of laps were removed). To assess

the consistency of spatial coding of each cell, we randomly split the laps into two groups

and computed the correlation coefficient between the averaged spatial tuning curves. We

then did the same for shuffled data in which each lap’s spatial tuning curve was circularly

permuted by a random number of bins. Note that this was done for each lap, to avoid

trivial effects that might emerge from circularly permuting data that was stereotyped

along the track. This was performed 500 times, and the distribution of actual correlation

coefficient values was compared to the distribution of circularly shuffled values using a

two-sample Kolmogorov-Smirnov test (α = 0.01). The distribution also had to pass a

Cohen’s D analysis, having a score of greater than 0.5. A cell that passed these tests was

considered a “consistent” cell.

To identify a neuron as a place cell, the neuron had to pass the consistency test, in

addition to being well fit by a Gaussian function, RDF/F = A0 + Ae
(X−B)2

C2 , with FWHM

= 2C
√
ln2. Note that in this convention, C2 = 2σ2. Specifically, we required that: 1)

the adjusted R2 > 0.375; 2) 2.5cm < FWHM < 30.6 cm (50% of track length – results
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in Fig. 2.11H did not significantly depend on this threshold); 3) A > 0; 4) A/A0 > 0.50.

Cells that met these conditions were characterized as place cells; with place fields at the

location of maximal activity and width defined as the FWHM. Note that these criteria

are somewhat strict compared to traditional place field criteria. When tested with data

in which individual laps were time shuffled, the approach yielded a false positive rate of

0%.

Speed cells were identified using a standard process developed for identification of

speed cells in medial entorhinal cortex and hippocampus [?, 176, 177]. We computed

the Pearson correlation of each cells’ DF/F trace with the mouse’s speed across the

experiment. This value is considered as a “speed score”. We then circularly shuffled the

DF/F 100 times (making sure that the amount shuffled was greater than 10 frames to

ensure that the shuffled distribution did not have artificially high correlations). Cells

whose speed score was greater than 99%, or less than 1%, of the shuffled distribution

were considered speed cells.

To compute the spatial information [28] of cell j (SIj), we used the following formula,

SIj =
1

āj

72∑
k=1

p(k)aj(k) log2

[
aj(k)

āj

]
, (2.8)

where āj is the mean inferred spike rate of cell j, aj(k) is the mean inferred spike rate of

cell j at position bin k, and p(k) is the probability of being at position bin k. We divide

by āj to have SI in units of bits/inferred spike. To align recordings where we recorded

along the CA1-DG axis, we found the inflection point of the axis and then computed the

distance of each cell to that point. To do this, we performed the following steps. 1) We

extracted the position of each identified cell using Suite2P’s centroid output. 2) We then

fit a function of the form a(x− b)2 + c to the cell positions by rotating the field-of-view

from 0 to 180 degrees and finding the rotation that maximized the R2 value of the fit.
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3) We determined the inflection point as the peak of the curve and de-rotated the fit

to determine the inflection point and curve in the original coordinates. The distance of

each cell to the inflection point was found by finding the point along the fit curve that

had the minimal distance to the cell’s centroid.

2.2.9 Immunohistochemistry

Samples were perfusion fixed using 4% paraformaldehyde in 0.1M sodium cacodylate

buffer (pH = 7.4) for 10 mins, and then immersion fixed overnight at 4◦C. Next, sections

were rinsed in cold PBS 5 × 5 mins and 1 × 1hr. Whole brains were then embedded

in 10% low-melting agarose. Subsequently, 100 µm coronal sections were cut using a vi-

bratome (Leica, Lumberton, NJ). Sections were then blocked overnight in normal donkey

serum (Jackson ImmunoResearch; West Grove, PA) diluted 1:20 in PBS containing 0.5%

bovine serum albumin, 0.1% Triton-X 100, and 0.1% sodium azide, hereafter, PBTA at

4◦C. Next, primary antibodies anti-GFAP (1:500; abcam; ab53554), anti-S100β (1:1000;

DAKO; Z0311) were diluted in PBTA and incubated overnight at 4◦C. Then, sections

were rinsed 5 × 5 mins and 1 × 1hr before corresponding secondary antibodies along

with the nuclear stain Hoechst33342 (1:5000; Molecular Probes; H-3570) were incubated

overnight at 4◦C. Lastly, secondary antibodies were rinsed, and sections mounted using

Vectashield (Vector laboratories Inc; H-1200) and sealed under #0 coverslips.

High resolution wide-field mosaics of brain samples were then imaged with a 20×

oil immersion lens and an Olympus Fluoview 1000 laser scanning confocal microscope

(Center Valley, PA) at a pixel array of 800 × 800 and then registered using the bio-image

software Imago (Santa Barbara CA).

We then calculated glial cell density as a function of distance from the microperiscope

face. First, each mosaic was rotated so that the medial-lateral axis of the brain sample
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was aligned to be parallel with the horizontal axis of the image. Then each mosaic

was cropped to remove extraneous pixels outside of the imaged brain slice. Next, a line

denoting the face of the microperiscope was manually drawn parallel to the dorsal-ventral

axis aligned with the location of the microperiscope face. We then used a custom cell-

counting algorithm that identified potential regions of interest (ROIs). We limited the

ROIs to be within the hippocampal formation in the brain slices. The Euclidean distance

between the closest point on the defined microperiscope face and each ROI’s centroid was

calculated. Afterward, a similar procedure was performed on the contralateral side of

the brain slice, with a mock “microperiscope face” defined at symmetric coordinates to

the true microperiscope face, to serve as a control. These steps were repeated for each

channel of the mosaic.

After extracting each ROIs distance from the microperiscope face, we counted the

number of cells in each 50 µm distance bin. To account for basal glial cell density, we

calculated the percent change of glial cell density on the microperiscope side with respect

to the control side. This procedure was repeated 1000 times using randomly sampled

distances, with replacement, to bootstrap the sample variance.

2.2.10 Statistical Information

Violin plots were made using an open-source MATLAB package [178]. Statistical tests

for spine morphological types were calculated using a one-way ANOVA. Reliability across

laps was tested with a two-sample Kolmogorov-Smirnov test. Comparisons between

model fits for spatial distribution of spatial information and place field width used a

General Linear F-test.
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2.3 Results

2.3.1 Optical Access to the Transverse Hippocampus Using

Implanted Microperiscopes

To image the transverse hippocampal circuit using two-photon (2P) imaging, we de-

veloped a surgical procedure for chronically implanting a glass microperiscope into the

septal (dorsomedial) end of the mouse hippocampus (Fig. 2.1A; Fig. 2.2; see Sec. 2.2.2).

For imaging CA1 only, we used a 1 mm × 1 mm × 2 mm microperiscope (v1CA1; Fig.

2.1B, left), and for imaging the entire transverse hippocampus (CA1-CA3, DG), we

used a 1.5 mm × 1.5 mm × 2.5 mm microperiscope (v2HPC; Fig. 2.1B, right). The

microperiscope hypotenuse was coated with enhanced aluminum in order to reflect the

imaging plane orthogonally onto the transverse plane (Fig. 2.1C, D). To insert the mi-

croperiscope, we made an incision through the dura and tissue (Fig. 2.2A), then lowered

the tip of the microperiscope into the incision (Fig. 2.2B), pushing the cortical tissue

medially (Fig. 2.2C). Although this approach eliminated the need for the aspiration of

cortical tissue typically performed prior to hippocampal imaging [161], it nonetheless

results in severed connections and compressed tissue medial to the implant. Since the

septal end of the hippocampus was affected by the implant, we used immunohistochem-

istry to quantify the effect of microperiscope implantation on astrocyte proliferation, as

a function of distance from the imaging face of the microperiscope (Fig. 2.1E; Fig. 2.3).

Similar to previous research using microprism implants [166], we found an increase in the

prevalence of astrocytes close to the microperiscope face, but the density decreased with

distance and was indistinguishable from the control hemisphere beyond 300 µm from the

microperiscope face (Fig. 2.1F).
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Figure 2.1: Implanted microperiscopes allow imaging of the hippocampal
transverse plane. (A) Three-dimensional schematic [179] illustrating microperiscope
implantation and light path for hippocampal imaging. (B) Schematics [180] showing
the imaging plane location of v1CA1 (1 mm imaging plane, 2 mm total length) and
v2HPC (1.5 mm imaging plane, 2.5 mm total length) microperiscopes. (C) Tiled
average projection of the transverse imaging plane using the v2HPC microperiscope
implant in a Thy1-GFP-M transgenic mouse. Scale bar = 100 µm. Enlarged images
of hippocampal subfields (CA1, CA3, DG) corresponding to the rectangles in (C).
Scale bar = 50 µm. (E) Example histological section stained for astrocyte cell bodies
(S100β, red) and processes (GFAP, green). Scale bar = 600 µm. Quantification of
astrocyte density as a function of distance from the microperiscope face, normalized
to the density in the unimplanted contralateral hemisphere (n = 2 mice; 288 and 316
days post-implant; mean ± bootstrapped s.e.m.).
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Figure 2.2: Overview of microperiscope implantation surgery. (A) Schematic
view from front (top row) and top (bottom row) of mouse brain indicating placement
of the incision. The incision is made using a diamond microknife prior to the implan-
tation of microperiscope. The microknife bevel faces medial to leave a flat surface for
the microperiscope face. (B) Schematic view from front (top row) and top (bottom
row) of the brain during microperiscope implantation. The microperiscope is attached
to the coverglass prior to implantation using optical glue, and the assembly is lowered
into the incision using a blunt 18 gauge syringe mounted on a manipulator and held
using a vacuum line. Once the assembly has been cemented to the skull, the vacuum is
released, and the manipulator removed. The microperiscope faces lateral for imaging
of the transverse plane of the dorsomedial hippocampus. (C) Post implantation view
of microperiscope assembly, with identified hippocampal subregions.
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Figure 2.3: Additional visualization of astrocyte immunohistochemistry.
(A) Mosaic confocal image of entire slice from mouse implanted with v2HPC mi-
croperiscope. Note that tissue shrinkage around implant margins increases apparent
implant size. Green: GFAP (astrocyte processes); Red: S100β (astrocyte cell bodies);
scale bar = 1mm. (B) Higher zoom image from cyan box in (A). Scale bar = 500 µm.
(C) Higher zoom image from orange box in (B). Scale bar = 100 µm. (D) Higher zoom
image from cyan box in (C). Note co-staining of individual astrocytes with GFAP and
S100β; S100β used for all quantification (Fig. 2.1F) due to improved localization of
cell bodies. Scale bar = 50 µm.
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2.3.2 Characterizing Optical Properties of the Microperiscope

Use of the microperiscope requires imaging through several millimeters of glass, which

could cause beam clipping or optical aberrations, potentially resulting in decreased sig-

nal intensity and optical resolution. However, the extent to which imaging through

glass prisms affects optical signal quality is not well understood. To determine how our

approach affects 2P image properties, we modeled the expected optical properties and

compared it to the experimentally-determined signal intensity and point spread function

measurements using fluorescent microspheres (Fig. 2.4A). To characterize signal inten-

sity, we measured the minimum laser power necessary for saturation at the center of

the microsphere, holding other imaging parameters constant (Fig. 2.4B). We found that

signal intensity imaged through the microperiscope was reduced compared to a standard

coverslip (v1CA1 microperiscope: 59.0% ± 6.6%; v2HPC microperiscope: 67.2% ± 8.5%;

mean ± s.d.; Fig. 2.4C). To measure resolution, we imaged small diameter (0.2 µm)

fluorescent microspheres and determined the point spread function (PSF), measured as

the full width at half maximum (FWHM) of the lateral and axial microsphere profiles.

Compared to a standard cranial window using a 0.15 mm coverslip. We found that the

FWHM was higher for both lateral (coverslip: 0.6 µm; v1CA1 microperiscope: 1.0 µm;

v2HPC microperiscope: 0.8 µm; Fig. 2.4D-G) and axial (coverslip: 3.4 µm; v1CA1 mi-

croperiscope: 11.7 µm; v2HPC microperiscope: 9.5 µm; Fig. 2.4D-G) dimensions. Optical

modeling indicated that the decrease in resolution is predominantly due to clipping of

the excitation beam, resulting in a reduction of the functional numerical aperture of the

imaging system (theoretical axial PSF FWHM of v1CA1 microperiscope: 10.9 µm; v2HPC

microperiscope: 7.7 µm; see Sec. 2.2.3) rather than optical aberrations. As a result,

use of adaptive optics did not significantly improve the axial resolution, though adaptive

optics did improve the signal intensity by 40-80% (data not shown). We next mea-
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sured whether the optical properties changed across the microperiscope imaging plane,

measuring the lateral and axial microsphere FWHM across the horizontal extent of the

microperiscope (Fig. 2.4H). We found that the resolution was mostly uniform, with no

significant differences observed in lateral or axial resolution as a function of horizontal

position (Fig. 2.4I; lateral: F(14, 593) = 0.53, p = 0.91; axial: F(14, 593) = 0.91, p =

0.55; one-way ANOVA). Finally, we measured resolution as a function of distance from

the face of the microperiscope (Fig. 2.4J). The lateral FWHM did not change as a func-

tion of distance from the microperiscope face (Fig. 2.4K; F(19, 109) = 0.53, p = 0.26;

one-way ANOVA). The axial FWHM slightly increased with greater distances from the

microperiscope face (Fig. 2.4K; F(19, 109) = 2.51, p = 0.002; one-way ANOVA), though

none of the individual positions were significantly different when corrected for multiple

comparisons (p > 0.05 for all positions, Tukey-Kramer post hoc test).

Taken together, these results indicate that imaging through the microperiscope lowers

signal intensity and axial resolution. Despite these effects, the quality is still sufficient

to image individual HPC neurons (Fig. 2.1C) and sub-micron morphological structures

(Fig. 2.5) with laser power well below the photodamage threshold.

2.3.3 Imaging Spines on the Apical Dendrites of CA1

Dendritic spines are highly dynamic and motile structures that serve as the postsynap-

tic sites of excitatory synapses in the hippocampus [181, 182]. Previous in vitro studies

suggest a role for dendritic spines in structural and functional plasticity, but the transient

and dynamic nature of these structures make them ideally suited for being studied in

vivo [183, 184, 174]. Although existing techniques allow imaging of spines on the basal

CA1 dendrites near the surface of the hippocampus [174, 175, ?], as well as transverse

offshoots of apical dendrites [185, 186], imaging hippocampal neurons along the major
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Figure 2.4: Optical characterization of cranial window and microperiscopes.
(A) Schematic of signal yield and resolution characterization experiments to allow
comparison of microperiscopes (v1CA1 and v2HPC) and standard coverslip window
(0.15 mm thickness) using 0.2 µm fluorescent microspheres imaged with a 16×/0.8
NA objective. (B) Example microspheres imaged through the window, v1CA1 mi-
croperiscope, and v2HPC microperiscope. Laser power was gradually increased to the
minimum level necessary to saturate the centroid of the microsphere with all other
imaging parameters held constant. (C) Distribution of signal intensity values (n =
12 microspheres for each condition), measured as the reciprocal of the minimum laser
intensity for saturation, and normalized to the mean intensity through the window
(v1CA1: 59.0% ± 6.6%; v2HPC: 67.2% ± 8.5%, mean ± s.d.). (D) Average X-Y
profile (left) and X-Z profile (right) of fluorescent microspheres (n = 58 microspheres)
imaged through the window. (E) Average X-Y profile (left) and X-Z profile (right)
of fluorescent microspheres (n = 48 microspheres) imaged through the v2HPC mi-
croperiscope (2.5 mm path length through glass). Caption continued on next page.
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Figure 2.4: (F) Plot of normalized fluorescence intensity profile of X dimension (lateral
resolution; FWHM = 0.6 µm) and Z dimension (axial resolution; FWHM = 3.4 µm)
through the centroid of the microsphere (n = 58 microspheres) imaged through the
window. (G) Plot of normalized fluorescence intensity profile of X dimension (lateral
resolution; v1CA1 FWHM = 1.0 µm, orange; v2HPC FWHM = 0.8 µm, blue) and
Z dimension (axial resolution; v1CA1 FWHM = 11.7 µm; v2HPC FWHM = 9.5 µm)
through the centroid of the microsphere (n = 28 microspheres for v1CA1, n = 48
microspheres for v2HPC). (H) Schematic of the experiment used to characterize lateral
and axial resolution across the horizontal axis of the microperiscope. Version v2HPC

used for larger horizontal range. (I) Lateral (green) and axial (magenta) FWHM
(mean ± s.e.m.) of average microsphere profile as a function of horizontal distance
from the center of the microperiscope. FWHM values normalized to the mean at
the center of the imaging axis (-100 to +100 µm). There was no effect of horizontal
position on lateral FWHM (F(14, 593) = 0.53, p = 0.91) or axial FWHM (F(14, 593)
= 0.91, p = 0.55; one-way ANOVA). (J) Schematic of the experiment used to measure
resolution as a function of distance from the microperiscope face. Version v1CA1 used
for larger working distance. (K) Lateral (green) and axial (magenta) FWHM (mean
± s.e.m.) of average microsphere profile as a function of distance from the face of
the microperiscope, with FWHM values normalized to the closest position (25 µm).
There was no effect of distance of imaging depth on lateral FWHM (F(19, 109) = 0.53,
p = 0.26). There was a difference for axial FWHM (F(19, 109) = 2.51, p = 0.002;
one-way ANOVA), though no individual position was significantly different from the
first position when corrected for multiple comparisons (Tukey-Kramer post hoc test).

somatodendritic axis has not previously been possible. Using the microperiscope, we

were able to track apical dendritic spine dynamics along the dendrite for CA1-3 neurons

in awake mice, though we focused on CA1 dendrites in this study.

In order to visualize apical dendrites in CA1 neurons, we implanted a cohort of Thy1-

GFP-M mice, sparsely expressing GFP in a subset of pyramidal neurons [187], with v1CA1

microperiscopes (Fig. 2.5A; n = 7 mice). We focused on CA1 apical dendrites, but both

apical and basal dendrites could be imaged in CA1-3 neurons. Although it is theoretically

possible to image DG dendritic structures using the microperiscope, the Thy1-GFP-M

mouse line has dense expression throughout DG (Fig. 2.1C, D), which prevented clear

identification of distinct processes. To resolve individual spines along the dendrite, high-

resolution images were taken from several axial planes spanning the segment, and a
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composite image was generated using a weighted average of individual planes (Fig. 2.5B;

see Methods). We reduced noise by filtering and binarizing, and isolated dendrites of

interest for tracking across days (Fig. 2.5C, D; Fig. 2.6A; see Methods).

Previous studies have shown that dendritic spines fall into four major morphologi-

cal subtypes: filopodium, thin, mushroom, and stubby [188, 189, 190]. We found that

our resolution was sufficient to classify dendritic spines into their relative subtypes and

evaluate density and turnover based on these parameters (Fig. 2.5E, F; Fig. 2.6B). Con-

sistent with previous studies, we found a non-uniform distribution of dendritic spines:

30.4% thin, 41.0% stubby, 26.2% mushroom, and 2.3% filopodium (F(3,100) = 51.47,

p < 0.0001, one-way ANOVA; Fig. 2.5E). The low proportion of filopodium found in

this and previous 2P imaging and histological studies [191, 192] (2-3%), as compared

to electron microscopy studies [193, 194] (∼ 7%), may result from the narrow width of

these structures causing them to fall below the detection threshold [174, ?, 185, 195].

Consistent with previous work [196, 197, 173], we found that particular classes, such as

filopodium, had a high turnover rate, while other classes were more stable across sessions

(F(3,100) = 7.17, p < 0.001, one-way ANOVA; Fig. 2.5F).

We found that total turnover dynamics reflect 15.0% ± 2.0% spine addition and

13.0% ± 1.9% spine subtraction across consecutive days, representing a high degree of

instability (Fig. 2.5H, I). We computed the survival fraction, a measure indicating the

fraction of spines still present from day one [184, 174, ?]. Although daily spine addition

and subtraction was approximately 15.0% (Fig. 2.5H, I), the survival fraction curve yields

a more conservative estimate of turnover dynamics (Fig. 2.5G). Across 10 days, we found

a 23.5% net loss in original spines, indicating that most spine turnover takes place within

an isolated population of transient spines. Both our cumulative turnover and survival

fraction results were generally similar to previous findings from basal dendrites in CA1

[174, 175, ?], indicating that apical and basal dendrites exhibit similar spine dynamics.
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Figure 2.5: Chronic imaging of spine morphology in CA1 apical den-
drites. (A) Average projection of CA1 neurons sparsely expressing a GFP reporter
(Thy1-GFP-M) imaged through the v1CA1 microperiscope. Scale bar = 100 µm. (B)
Weighted projection (see Methods) of the apical dendrites shown in the dashed box of
(A). Scale bar = 10 µm. (C) Filtered and binarized image (Figure 3-figure supplement
1A; see Methods) of the dendrites in (B) to allow for the identification and classifi-
cation of individual dendritic spines. Scale bar = 10 µm.(D) Tracking CA1 dendritic
spines over consecutive days on a single apical dendrite. Arrowheads indicate sub-
tracted spines and circles indicate added spines. Colors indicate spine type of added
and subtracted spines: filopodium (magenta), thin (grey), stubby (blue), and mush-
room (green). (E) Average number of spines per 10 µm section of dendrite, for each
of the four classes of spine (n = 26 dendrites from 7 mice); one-way ANOVA, F(3,100)
= 51.47, ∗∗∗∗p < 0.0001. Error bars indicate the interquartile range (75th percentile
minus 25th percentile) and circle is median. (F) Percent spine turnover across days in
each spine type (n = 26 dendrites from 7 mice); one-way ANOVA, F(3,100) = 7.17,
∗∗∗p < 0.001. Error bars indicate the interquartile range (75th percentile minus 25th
percentile) and circle is median. Spine survival fraction across processes (n = 26 den-
drites from 7 mice) recorded over 10 consecutive days. (H) Percent of spines added
between days over 10 days of consecutive imaging. (I) Percent of spines subtracted
between days over 10 days of consecutive imaging.
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Figure 2.6: Dendritic morphology image processing pipeline and spine clas-
sification. (A) Steps in dendritic morphology image processing pipeline (see Sec.
2.2.7). Weighted mean image is obtained by acquiring average projections from 4
planes spaced by 3 µm and weighting the images around the brightest part of the
dendrite. Next, the mean image is high-pass filtered to reveal fine structures. The
image is then binarized using a global threshold, to filter out less prominent den-
drites. Morphological opening is applied to remove any elements of the high-pass
filtered image that survive the binarization process that are too small to be the prin-
cipal dendrite. A semi-automated manual curation process is then used to add back
any individual spines that were lost during binarization and remove any unwanted
dendritic segments. Cyan arrowheads indicate manually added spines. To isolate the
spines, the image is skeletonized and structures that protrude laterally from the den-
dritic shaft and have a total area of >1 µm2 are identified as spines. Scale bar = 10
µm. (B) Mean profile of all filopodium, mushroom, stubby, and thin spines (n = 47,
431, 695, and 495, respectively), computed by averaging across the registered spines
of each morphological classification. Spines were classified according to spine length,
neck length, neck width, head circularity, and eccentricity (see Sec. 2.2.7).
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It should be noted that some previous studies used super-resolution techniques to detect

smaller spines and reduce optical merging. Thus, our results may suggest an inflated

degree of stability due to resolution limitations that prevent capture of filipodia and

other small spine structures [174, ?, 185, 195]. Despite these limitations, we found that

we could identify the same dendritic processes over long time periods (up to 150 days;

Fig. 2.7), allowing for longitudinal experiments tracking isolated dendritic structures

over long-time intervals.

2.3.4 Recording Place Cells and Speed Cells in CA1, CA3,

and DG

Much of the experimental work testing the hypothesized roles of CA1, CA3, and DG

neurons has come from place cell (PC) recordings [34, 35, 36, 151, 198, 88]. While the re-

sults of these studies have been instrumental, it has not been possible to measure activity

throughout the transverse hippocampal circuit in the same animals. We therefore inves-

tigated the ability of our microperiscope to record from PCs in each of the hippocampal

subfields during exploration of a spatial environment.

To measure functional responses, we implanted v2HPC microperiscopes in transgenic

mice expressing GCaMP6s in glutamatergic neurons [199, 200] (see Methods). As with

the Thy1-GFP-M mice, we were able to image neurons from CA1-CA3, and DG in the

same animal (Fig. 2.8A, B). In some cases, depending on microperiscope placement, we

were able to record from all three areas simultaneously (Fig. 2.9). In all HPC subfields,

we found normal calcium dynamics with clear transients (Fig. 2.8C, D). The imaging

fields remained stable, and the same field could be imaged over 100 days later (Fig. 2.8E).

In addition, microperiscope implantation allowed measurement of neural responses from

mossy cells in the dentate gyrus (Figs. 2.9, 2.10A) and, depending on microperiscope
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Figure 2.7: Long-term imaging of the same dendrite. (A) Example weighted
average projection of a dendritic process imaged 17 days after microperiscope implan-
tation. Same as (A), imaged 167 days after microperiscope implantation (150 days
later). Arrowheads mark examples of spines that are present in locations along the
dendrite at day 17, but not day 167 (“lost”, magenta), present in locations at day 167,
but not 17 (“gained”, green), and present in locations at both days 17 and 167 (“pre-
served”, white). Note that the dendrite was not imaged continuously, so we cannot be
certain the preserved spines were there during the entire duration. (B) Images from
(A) and (B) overlaid, using rigid registration. (C) Images from (A) and (B) overlaid,
using nonrigid registration (see Sec. 2.2.7). Scale bar = 10 µm.
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placement, simultaneous imaging of deep-layer cortical neurons in parietal cortex (2.10B).

As 2P microscopy generally requires the animal to be head-fixed, the behavioral as-

says used to probe PC activity are limited. Previous work has made use of virtual reality

(VR) [44, 161], however it remains unclear how similar rodent hippocampal activity in

real world environments is to that in VR [201, 202]. To study PC activity in a physical

environment, our head-fixed mice explored a carbon fiber arena that was floated using an

air table [168] (Fig. 2.11A; see Methods). The mice were thus able to navigate the phys-

ical chamber by controlling their movement relative to the floor. Although this approach

lacks the vestibular information present in real world navigation, it captures somatosen-

sory and proprioceptive information missing from virtual environments [169, 202, 203].

Moreover, recent work has found that place field width and single cell spatial information

using this approach is comparable to the responses of free foraging animals [169]. For

measurement of place coding, we allowed mice to navigate a curvilinear track over the

course of 20-40 minutes (Video S4). As found previously [169], using a curvilinear track

allowed for robust sampling of the spatial environment and improved place field localiza-

tion, though they could also be measured in the open field. In order to measure spatial

properties of the hippocampal neurons independent of reward, we relied on exploration

rather than active reward administration for sampling of the environment.

To characterize place fields, we recorded from neurons in CA1, CA3, and DG (CA1:

n = 1001; CA3: n = 832; and DG: n = 463) in transgenic mice with panexcitatory

expression of GCaMP6s (Fig. 2.11B; n = 8 mice). We found PCs by assessing lap-

by-lap reliability and goodness-of-fit to a Gaussian in all three subfields (Fig. 2.11C;

false positive rate in shuffled data = 0%; see Methods). The distribution was in general

agreement with previous 2P imaging experiments in mice [44, 157] (Fig. 2.11D, G; CA1:

26.0%; CA3: 18.9%; DG: 14.0%), with fields that spanned the entirety of the track (Fig.

2.11F). We found that place field widths were comparable across the three regions (Fig.
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Figure 2.8: Microperiscope imaging of calcium dynamics across subfields in
awake mice. (A) Example tiled image (as in Fig. 2.1C) for a single panexcitatory
transgenic GCaMP6s mouse (Slc17a7-GCaMP6s). Scale bar = 100 µm. (B) Enlarged
images of each hippocampal subfield (CA1, CA3, DG) corresponding to the rectangles
in (A). Scale bar = 50 µm. (C) Example GCaMP6s normalized fluorescence time
courses (% DF/F) for identified cells in each subfield. (D) Distribution of average
inferred spiking rate during running for each hippocampal subfield (CA1, CA3, DG;
see Methods). Median is marked by black arrowhead. Example average projection
of CA2/3 imaging plane 196 days post implantation (left) and 111 days later. Image
was aligned using non-rigid registration (see Methods) to account for small tissue
movements. Magenta arrowheads mark example vasculature and blue arrowheads
mark example neurons that are visible in both images. Scale bar = 100 µm.
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Figure 2.9: Simultaneous imaging of all three hippocampal subfields. Maxi-
mum projection, and example GCaMP6s fluorescence time courses for identified cells,
from a recording in which CA1 (n = 55 cells), CA3 (n = 158), and DG (n = 28) were
simultaneously recorded from the same image plane. Scale bar = 100 µm.
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Figure 2.10: Additional applications for microperiscope imaging. (A) Two
maximum projections of imaging planes in which both the granular cell layer and
the hilus in the DG could be imaged simultaneously. Example putative mossy cells
indicated with cyan arrowheads. Scale bar = 50 µm. (B) Maximum projection from
an imaging session in which both CA1 and L6 of the neocortex are visible, allowing
simultaneous imaging of neurons in CA1 and deep layers of the parietal cortex. Scale
bar = 100 µm.
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2.11H; CA1: mean (median) ± s.e.m = 18.8 (19.4) ± 0.4 cm; CA3: 18.6 (18.8) ± 0.5

cm; DG: 18.9 (19.5) ± 0.8 cm) and that spatial information was highest in CA1, followed

by CA3, then DG (Fig. 2.11I; CA1: mean (median) ± s.e.m. = 0.95 (0.87) ± 0.03

bits/inferred spike; CA3: 0.89 (0.68) ± 0.05 bits/inferred spike; DG: 0.79 (0.61) ± 0.08

bits/inferred spike). The place field width and spatial information of the CA1 place cells

were similar to those found in a previous study using the same floating chamber design

with a traditional hippocampal window implant [169].

To determine if neurons close to the microperiscope face showed unusual response

properties, we imaged functional responses as a function of distance. Place cell width

did not vary significantly as a function of depth of the imaging plane from the face of

the microperiscope (Fig. 2.9A; F(4, 241) = 1.6, p = 0.17, one-way ANOVA). Spatial

information did vary as a function of depth (F(4, 1872) = 15.9, p = 8.6 × 10−13, one-way

ANOVA), but there was no systematic effect (Fig. 2.12B). Decay constant for the fitted

transients [172] did have a significant relationship with imaging depth (F(4, 1872) = 29.8,

p = 4.5×10−24), which may be due to aberrant activity in a small subset of neurons close

(≤130 µm) to the microperiscope face (Fig. 2.12C).

As cells responsive to speed have recently been found in the medial EC[?, 176] and

CA1 [176, 177], we also identified neurons as speed cells (SCs) if their activity was

significantly related to running speed [?] (see Methods; average speed per recording:

CA1, 71.3 ± 33.7 mm/s; CA3, 76.2 ± 32.1; DG, 101.1 ± 49.0; Two-sample Kolmogorov-

Smirnov test: CA1-CA3, p = 0.90; CA3-DG, p = 0.53; CA1-DG, p = 0.32). We found

SCs in CA1, CA3, and DG, with all areas having cells that showed both increased

and decreased activity with higher running speeds (Fig. 2.11E). Speed cells were most

abundant in DG (Fig. 2.11G; CA1: 9.4%; CA3: 13.5%; DG: 30.2%), consistent with

recent work that found it was possible to decode the speed of freely moving animals from

the activity of DG, but not CA1 [88].
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Figure 2.11: Prevalence of place and speed cells across hippocampal sub-
fields. (A) Schematic of air-lifted carbon fiber circular track (250 mm outer diameter)
that the mice explored during imaging. Four sections of matched visual cues lined the
inner and outer walls. (B) Example maximum projections of GCaMP6s-expressing
neurons in each subfield. Scale bar = 50, 100, 50 µm respectively. (C) Lap-by-lap
activity and Gaussian fits, with r2 value reported, of example place cells for each hip-
pocampal subregion to illustrate our process of identifying place cells (see Methods).
(D) Examples of mean normalized calcium response (% DF/F) versus position along
the circular track for four identified place cells (PCs) in each subregion. Shaded area
is s.e.m.
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Figure 2.11: (E) Examples of mean calcium response (% DF/F) versus speed along
the circular track for two identified speed cells (SCs) in each subregion. Shaded area
is s.e.m. (F) Cross-validated average responses (normalized % DF/F) of all PCs found
in each subfield, sorted by the location of their maximum activity. Responses are plot-
ted for even trials based on peak position determined on odd trials to avoid spurious
alignment. (G) Distribution of cells that were identified as PCs, SCs, conjunctive PC
+ SCs, and non-coding in each subregion. (H) Distribution of place field width for all
place cells in each subregion. Error bars indicate the interquartile range (75th per-
centile minus 25th percentile) and circle is median. Two-sample Kolmogorov-Smirnov
test: CA1-CA3, p = 0.67; CA3-DG, p = 0.70; CA1-DG, p = 0.51. NS, not significant
(p > 0.05). (I) Distribution of spatial information (bits per inferred spike) for all place
cells in each subregion. Error bars and circle are the same as in (H). Two-sample Kol-
mogorov-Smirnov test: CA1-CA3, p = 0.05; CA3-DG, p = 0.36; CA1-DG, p = 0.01.
∗p < 0.05.

2.3.5 Distribution of Place Cell Properties Along the

DG-CA1 Axis

Recent work has suggested that PC properties are heterogeneously distributed along

the extent of the DG-to-CA1 axis. In particular, place field width and spatial information

have been found to vary among different subregions of CA3, with distal CA3 (dCA3) and

CA2 having lower spatial information and larger place fields than medial CA3 (mCA3)

[29, 30, 31], and proximal CA3 (pCA3) having values most similar to DG [151]. Such

distributions could be supported by known anatomical gradients in connectivity of CA3

[204, 205, 206, 207, 208]. However, given that these studies required separate animals

for the recording of each location along the DG-to-CA1 axis, and that electrophysiology

has limited spatial resolution along the transverse axis, we used our microperiscopes to

measure these properties throughout the DG-to-CA1 axis in the same mice with high

spatial resolution.

Using the v2HPC microperiscope, we simultaneously imaged from several hundred cells

(mean ± s.d.; 215 ± 74 neurons per recording; total: 1075 neurons) extending from pCA3

to pCA1 (Fig. 2.13A). Recordings from distinct imaging planes in different mice (n = 5)
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Figure 2.12: Place cell properties as a function of distance from the face of
the microperiscope. (A) Place field width as a function of imaging depth relative to
the microperiscope face. Error bars indicate the interquartile range (75th percentile
minus 25th percentile) and circle is median (F(4, 241) = 1.6, p = 0.17, one-way
ANOVA). (B) Same as (A), but for spatial information of place cells (F(4, 1872) =
15.9, p = 8.6×10−13, one-way ANOVA; Tukey-Kramer post hoc test for depth vs.
30µm: 80µm, p = 1.1×10−3; 130µm, p = 0.34; 180µm, p = 9.92×10−9; 230µm, p =
0.15). ∗p < 0.05 Tukey-Kramer post hoc test. (C) Same as (A), but for decay rate
[172] of place cells (F(4, 1872) = 29.8, p = 4.5×10−24 ; Tukey-Kramer post hoc test
for depth vs. 30µm: 80µm, p = 6.70×10−3; 130µm, p = 9.38×10−7; 180µm, p =
9.92×10−9; 230µm, p = = 9.92×10−9). ∗p <0.05 Tukey-Kramer post hoc test.

were compared by calculating the distance of individual cells from the inflection point of

the DG-to-CA1 transverse axis (Fig. 2.13A; see Sec. 2.2.8). In agreement with previous

studies [29, 30, 31], we found a non-uniform distribution of spatial information along this

axis (Fig. 2.13B, C; F(4, 1047) = 5.10, p = 4.6 × 10−4; General Linear F-test against

a flat distribution with the same mean). In particular, we found that pCA3 cells had

spatial information that was closer in value to those in DG than mCA3 (Fig. 2.13B, C;

Fig. 2.11I), and that mCA3 had spatial information that was greater than dCA3/CA2

(Fig. 2.13B, C). We found that place field widths were narrowest in mCA3, although

we failed to find a statistically significant non-uniform distribution with respect to place

field width across the extent of the DG-to-CA1 axis (Fig. 2.14; F(4, 206) = 1.63, p =

0.17, General Linear F-test against a flat distribution with the same mean).
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Figure 2.13: Spatial information of neurons varies along the DG-to-CA1
axis. (A) Maximum projection of an example DG-to-CA1 axis recording. Approxi-
mate locations of CA3 and CA1 subfields are labeled. Inflection point labeled with
red line. Scale bar = 100 µm. (B) Spatial information (bits/inferred spike), pseudo–
colored on a logarithmic scale, for each neuron, overlaid on the maximum projection
in (A). (C) Spatial information, as a function of distance along the DG-to-CA1 axis
(pCA3 to dCA1), calculated with a sliding window; mean ± bootstrapped s.e.m.; real
data (blue), shuffled control (black). Red lines indicate values that are outside the
shuffled distribution (p < 0.05). A general Linear F-test against a flat distribution
with the same mean revealed significant non-uniformity: F(4, 1047) = 5.10, p = 4.6
× 10−4 (cells with distance greater than 600 or less than -600 were not included in
the statistical analysis).
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Figure 2.14: Place field width does not significantly vary along the DG–
to-CA1 axis. (A) Place field width, pseudo-colored for each place cell, overlaid on
the maximum projection from Fig. 2.13 Any cell that was not a place cell is not
pseudo-colored. Scale bar = 100 µm. (B) Place field width, as a function of distance
along the DG-to-CA1 axis (pCA3 to pCA1), of real data (blue) vs. shuffled control
(black). Shaded area is s.e.m. Red line indicates individual positions with place field
values that were outside of the shuffled distribution (p < 0.05). A general Linear
F-test, against a flat distribution with the same mean, revealed no significant non-u-
niformity: F(4, 206) = 1.63, p = 0.17 (cells with distance greater than 600 or less
than -600 were not included in the statistical analysis).
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2.4 Discussion

The microperiscope hippocampal imaging procedure we developed allows researchers,

for the first time, to chronically image neuronal structure and functional activity through-

out the transverse hippocampal circuit in awake, behaving mice. This approach builds on

microprism procedures developed for imaging cortical columns [165, 166, 167], allowing

multiple hippocampal subfields in the same animal to be accessed optically. Using the

microperiscope, we were able to resolve spines on the apical dendrites of CA1 pyrami-

dal cells and track them across time. Additionally, we were able to characterize place

cells (PCs) and speed cells (SCs) in all three hippocampal subfields and investigate their

anatomical distribution across subfields.

2.4.1 Comparison to Other Methods

Over the past five decades, electrophysiology has been the principal tool used to study

the hippocampus. Electrophysiological recordings have much higher temporal resolution

than calcium imaging and can directly measure spikes, but have limited spatial resolution.

Our approach allows large scale imaging of neurons across multiple hippocampal subfields,

with known spatial and morphological relationships. In addition, our approach allows

genetically-controlled labeling of particular cell types, imaging of cellular structures such

as dendrites and spines, and unequivocal tracking of functional and structural properties

of the same cells across time, none of which are possible with existing electrophysiological

approaches.

Several approaches making use of optical imaging have been developed for use in the

hippocampus. These include gradient index (GRIN) lenses [209, 210], and cannulas that

can be combined with both one-photon head-mounted microendoscopes [162, 42, 163]

and 2P imaging [44, 161, 164]. These methods have been limited to horizontal imaging
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planes, making it difficult to image CA3 and DG, and intractable to image all three

subfields in the same animal. While all of these methods cause damage to the brain,

and some require the aspiration of the overlying cortex, the damage is largely restricted

to superficial hippocampus. This contrasts with the implantation of our microperiscope,

which is inserted into the septal end of the hippocampus and necessarily causes some

damage to the structure. Despite this, we find normal response properties (Fig. 2.8,

Fig. 2.11-Fig. 2.2), including selectivity for location and speed, in CA1-CA3 and DG

(Fig. 2.11). Damage in the direction orthogonal to the transverse axis caused by the

implantation of the microperiscope is similar to that caused by microprisms in cortex

[166], as glial markers were found to decay to baseline levels with increased distance

from the face of the microperiscope (Fig. 2.1E, F). We showed that, following successful

implantation, the imaging fields were stable, and the same cells could be imaged up to

3 months later (Fig. 2.8E). However, we emphasize that tissue damage caused by the

microperiscope assembly to the hippocampus should be taken into consideration when

planning experiments and interpreting results, and that imaging planes should be at least

150 µm away from microperiscope face to avoid aberrant responses.

We found that imaging through the microperiscope had some effect on signal inten-

sity and axial resolution. The effect depended not only on the path length through the

glass, but also on the geometry of the microperiscope. For example, the larger v2HPC mi-

croperiscope had slightly better optical properties than the smaller v1CA1 microperiscope

(Fig. 2.4), likely due to reduced beam clipping. The optical properties should be consid-

ered along with the potential tissue damage during the planning of experiments. More-

over, further customizing the microperiscope geometry for particular applications may

help optimize signal quality and minimize damage to neural structures.

To assess the ability of our optical and behavioral experimental methods to capture

spatial coding, we chose to measure place fields in the absence of reward, which is known
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to modulate hippocampal activity [211]. Recent work has found that place cells are

significantly less stable in the absence of reward [212, 213], which may explain the lower

lap-wise reliability in our experiments compared to similar experiments using the same

behavioral apparatus [169]. However, we found similar percentages of place fields as

other optical imaging studies, despite using a strict criteria for place cell inclusion (see

Methods), and these properties did not change systematically as a function of distance

from the face of the periscope (Fig. 2.11-Fig. 2.2A, B). This provides further support

that the functional properties of the hippocampal circuitry remained intact when using

the microperiscope. However, we note that it is possible that the place cell characteristics

we measured might be altered in the presence of reward, and that this decision should

be taken into account when interpreting the results.

2.4.2 Structural and Functional Properties Along the

Transverse Hippocampal Circuit

We utilized the microperiscope in two experiments that would not have been possible

with existing methods: (1) we tracked the spines along apical CA1 dendrites in vivo

(Fig. 2.5); (2) we simultaneously recorded from PCs along the extent of the DG-to-CA1

transverse axis (Fig. 2.13).

Several studies have tracked the spines of basal CA1 dendrites in vivo by imaging the

dorsal surface of the hippocampus [174, 175, ?, 186, 195]. However, imaging spines along

the major dendritic axis has not been accomplished in vivo. Given that these spines

make up the majority of the input to CA1 pyramidal neurons, there is a significant need

for understanding their dynamics, and how the dynamics differ as a function of position

along the somatodendritic axis. Using the microperiscope, we tracked isolated apical

dendrites for up to 10 consecutive days (Fig. 2.5D). We found considerable addition
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and subtraction across days, indicating dynamic turnover in apical dendrites (Fig 3H,

I). However, consistent with previous studies in basal spines [174, 175, ?], we found the

majority of spines (76.5%) survived throughout the imaging period (Fig. 2.5G). This

high survival fraction suggests that the daily turnover rates we observe are reflective of

a distinct pool of unstable transient spines, while the majority of spines are moderately

stable, and remain present over a longer timescale. It should be noted that some prior

results were obtained using super-resolution microscopy techniques that are more suited

to capturing the dynamics of filipodia and small spines, and thus our results may reflect

an inflated degree of stability [174, ?, 186]. The microperiscope is in principle compatible

with super-resolution microscopy, and future imaging studies that combine the two could

characterize apical dendritic spine dynamics with improved accuracy [174, ?, 186]. Taken

together, our results add to the increasingly appreciated idea that, even in the absence of

salient learning and reward signals, dendritic spines are dynamic and unstable structures

[174, 214, 215] Understanding the nature and timescales of these dynamics has significant

implications for the reported instability of PCs [41, 44, 42, 40, 43, 46].

Previous studies have found gradients of connectivity in CA3 [204, 205, 206, 207, 208],

suggesting that there may be functional gradients as well. Electrophysiological recordings

have indeed found that spatial information and place field width vary as a function of

distance along the DG-to-CA1 axis [29, 30, 31], and that the most proximal part of CA3

is functionally more similar to DG than to the rest of CA3 [151]. This has led to a more

nuanced understanding of the hippocampal circuit, with coarse anatomical subdivisions

having finer functional subdivisions. However, given that these previous studies relied

on recordings in different animals for each location along the DG-to-CA1 axis, and given

that electrodes have poor spatial resolution in the transverse axis, the results must be

cautiously interpreted. Using the microperiscope, we imaged several hundred neurons

in multiple mice along the extent of the DG-to-CA1 axis (Fig. 2.13A). The location
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of each neuron relative to the CA3 inflection point could be easily identified, allowing

for unequivocal characterization of spatial information and place field width along the

DG-to-CA1 axis across animals. Similar to the previous studies [29, 30, 31], we found a

non-uniform distribution of spatial information (Fig. 2.13B, C). Place field width also

appeared to vary along the DG-to-CA1 axis, though we failed to find statistically signif-

icant non-uniformity with respect to place field width (Fig. 2.13-Fig. 2.2B). Indeed, we

found that spatial information, but not place field width, differed significantly between

CA1, CA3, and DG (Fig. 2.11H, I). Given the high spatial resolution and ability to simul-

taneously record from cells across the DG-to-CA1 axis using this approach, our results

strengthen the hypothesis of distributed spatial coding across, and within, hippocampal

subfields.

2.4.3 Future applications

This paper explored a few possible uses for the microperiscope in interrogating the

hippocampal circuit. However, there are a number of candidate applications we did not

pursue that could reveal novel insight into hippocampal function. Here, we describe sev-

eral of these, chosen to highlight the utility of the microperiscope in addressing questions

that are challenging or intractable with existing approaches: (1) The microperiscope al-

lows for the recording from multiple hippocampal subfields simultaneously (Fig 6; Fig.

2.8-Fig. 2.2), allowing investigation of interactions between neurons in different sub-

fields during behavior. This could also be useful for determining the effect of neuron-

or subfield-specific optogenetic manipulations on downstream subfields. (2) The mi-

croperiscope enables the investigation of local circuits by allowing morphological and

genetic identification of different cell types. This includes identifying genetically-distinct

hippocampal neurons (e.g. CA2 neurons, specific interneuron subtypes), as well was iden-

62



Long-term Transverse Imaging of the Hippocampus with Glass
Microperiscopes Chapter 2

tifying particular cell types by position or morphological characteristics (e.g. mossy cells

in DG; Fig. 2.8-Fig. supplement 2A). As these distinct cell types play important roles in

hippocampal function [158, 114, 216, 217, 218, 215], having access to them will enable a

greater understanding of the hippocampal circuit. (3) The microperiscope can be com-

bined with retrograde-transported viruses to allow projection-based cell identification,

making it possible to identify neurons that project to specific downstream targets. Since

hippocampal neurons that project to different brain regions have been found to exhibit

distinct functional properties (e.g. neurons in ventral CA1 that project to the nucleus

accumbens shell have been implicated in social memory [159]), the union of these tools

will be a powerful means for understanding hippocampal outputs. (4) Finally, the mi-

croperiscope provides access to the entire dendritic tree of pyramidal neurons (Fig.s 1C,

3A, 5B; Video S2), giving optical access to dendritic signaling over a much larger spatial

extent than has been previously possible [219, 220, 221]. By sparsely expressing calcium

or glutamate sensors in hippocampal pyramidal neurons, spines throughout the soma-

todendritic axis could be imaged, allowing determination of how place field responses

arise from the responses of individual spines, similar to experiments in visual cortex

investigating the cellular origin of orientation tuning from synaptic inputs [222, 223].

Combined with existing electrophysiological and imaging approaches, imaging of the

transverse hippocampal circuit with microperiscopes will be a powerful tool for investi-

gating hippocampal circuitry, structural dynamics, and function.
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Chapter 3

Robust Variability of Grid Cell

Properties Within Module Enhances

the Coding Capacity of Single Grid

Modules

“More is different.”

Paul W. Anderson (1972)

3.1 Introduction

The discovery of grid cells (GCs) in medial entorhinal cortex (mEC) [6], character-

ized by multiple firing fields centered along a triangular lattice, has led to considerable

experimental and computational work aimed at identifying their origin [68, 66, 62, 69,

81, 82, 63, 64, 65, 83] and their function [224, 73, 74, 67, 225, 226, 227, 75, 76].

The organization of GCs into discrete modules [6, 55], with grid properties (e.g.,
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grid spacing and grid orientation) being conserved within module, but not between,

has shaped the way in which these questions of origin and function have been studied.

For instance, the increasing size and spacing of grid modules along the dorsal-ventral

axis of mEC, by a near constant ratio, has been argued to be optimal for encoding

local spatial information [59, 60], when GC activity across all modules is integrated

together [56, 57, 58, 59, 60]. This is despite the fact that the hippocampus, downstream

target of the mEC, recieves inputs from only a portion of the dorsal-ventral axis [228].

Additionally, the modularity of the grid system has been proposed to simplify the wiring

necessary for continuous attractor networks [66, 68, 67, 69], a computational mechanism

for supporting grid cells that enjoys considerable experimental support [70, 71, 72].

This prior work has made the additional corollary assumption that GC properties are

“identical within module”. However, the distributions of measured spacing and orienta-

tion show non-zero variability [6, 55, 72]. This could be due to finite recording times,

neurophysiological noise, and/or sensitivity of numerical methods used to fit grid proper-

ties. Alternatively, this variability could reflect an inhomogeneity, at a fine scale, within

module. Despite the fundamental way in which GC function has been informed by their

modular organization, to the best of our knowledge, no characterization of the degree and

stability of variability in grid properties within individual modules has been performed.

If robust variability of grid properties does exist, then it is possible that this heterogene-

ity could be exploited to encode additional information about local space, reducing the

requirement of integration across multiple grid modules.

In this paper, we perform detailed analysis of state-of-the-art mEC electrophysiolog-

ical recordings [72]. We characterize the degree of variability of grid properties within

individual modules, and find evidence for small, but robust variability of grid spacing

and orientation. This variability is present whether a single value of grid spacing and

orientation is assigned to each GC, or whether grid distortion [229, 230] is taken into
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account by considering the three grid spacings and orientations independently. To assess

the computational implications of this heterogeneity, we perform numerical experiments

on synthetic grid cell populations. We find that the variability in GC spacing and orien-

tation, at a similar degree as present in the data we analyzed, leads to near zero decoding

error of local space, when using the activity of a single module. To our knowledge, this

is the first time this has been demonstrated. This leads us to hypothesize that the small

degree of inhomogeneity enhances the capability of individual modules, while at the

same time maintaining the distinction between modules and not breaking the continuous

attractor network.

Taken together, our results challenge a decades long held assumption and support a

growing appreciation of the local spatial information grid populations can encode [87,

231, 232, 233]. Additionally, they encourage the field to think more broadly about what

benefits, beyond the encoding of local space, multiple modules endows the grid code with.

3.2 Methods

3.2.1 Electrophysiology Recordings

The data analyzed in this chapter comes from a publicly available data set, which is

described in detail in [72]. Here we give a briefly summarize the methodology and the

experimental paradigms used during the recordings.

Three male rats (Long Evans – Rats Q, R, and S) were implanted with Neuropixels

silicon probes [234, 235]. These probes were targeted at the mEC-parasubiculum region

and the surgery was performed as described in [236, 235]. After three hours of recovery,

recordings were performed.

In the recordings analyzed in this chapter, the animals foraged for randomly dispersed
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corn puffs in a 1.5 × 1.5m square open field arena, with walls of height 50cm. The rats

were familiar with the environment and task, having trained 10–20 times prior to the

implantation. The rats were fiid restricted to motivate their foraging, being kept at a

minimum of 90% of their original body weight (300–500 grams).

All procedures were approved by the Norwegian Food and Safety Authority and done

in accordance with the Norwegian Animal Welfare Act and the European Convention

for the Protection of Vertebrate Animals used for Experimental and Other Scientific

Purposes.

3.2.2 Electrophysiology Post-Processing

The data utilized in this chapter had been previously post-processed. We describe, in

brief, the post-processing performed by [72], as well as the post-processing we performed

on the downloaded data.

Spike sorting was done on the data from the electrode arrays using KiloSort 2.5 [235].

Individual units were deemed putative cells if their average spike rate was in the range

of 0.5–10Hz, and 99% of their interspike intervals were greater than 2ms.

For each putative cell, ratemaps were constructed by averaging the activity at binned

spatial positions in the open field arena. This raw ratemap was smoothed, using a

Gaussian kernel. The autocorrelation of these ratemaps were computed, and a grid score

calculated, as describe previously [12]. To determine which putative cells were GCs, and

to which module they belonged, autocorrelograms of raw ratemaps were constructed,

with some of the bins corresponding to the closest and furthest distances removed. These

“cropped” ratemaps were then clustered using UMAP [237] to project the data onto a

two-dimensional subspace. All the cells in the non-largest cluster were found to have

similar grid spacing and orientation, as well as high grid scores. They were therefore
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deemed putative GCs. All cells in these clusters had their spike trains placed public

repository from which we downloaded the data.

From the downloaded spike trains, we similarly constructed ratemaps and autocorrel-

ograms in a similar manner, using code made publicly available by [82]. To ensure that

the effects we saw were not driven by cells whose GC quality was low, we included in our

analysis only GCs grid score greater than 0.8.

3.2.3 Electrophysiology Data Analysis

To compute the grid spacing and orientation, we used the following procedure. First,

we computed the autocorrelogram of each GC from their smoothed ratemaps. We then

computed the sum of the autocorrelation along a circle of growing radius (centered at

the center of the autocorrelation). Interpolation methods were used to judge the auto-

correlation value at arbitrary points. The radius corresponding to the first non-trivial

peak of this quantity, λ0, is used as a fist pass of the grid spacing. The values of the

autocorrelogram along the circle with radius λ0 is unwrapped and each peak is identified

using scipy.stats.find peaks. If there were at least five peaks (we allowed for one

less than six, in the case that the last peak is at the edge of the autocorrelegram) at a

minimum distance of 45 degrees from each other, the orientations of the first three peaks

(which, by symmetry of the autocorrelogram, are the same as the last three peaks, up to

a rotation of 180 degrees) were defined as the three orientations of the grid (θ1, θ2, θ3).

With these orientations, we then computed the values of the autocorrelation along lines

that emanated from the center of the autocorrelogram and went the length of the auto-

correlogram, at each of three orientations. The distances along the lines where the first

non-trivial peak was located were defined to be the grid spacings (λ1, λ2, λ3). For some

analyses, we considered a single grid spacing (λ) and orientation (θ) for the entire grid,
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defining those to be the mean of the three individual quantities.

To characterize the within and between GC variability of grid spacing and orientation,

we employed the following approach. First, we split the data into time bins of fixed length

(both 1 second and 5 second bins were considered). From this, we randomly assigned

each interval to one of two blocks (denoted as blocks a and b), with exactly half the

total number of intervals in each block. For each GC, we computed the grid spacing

(λ
(i)
a and λ

(i)
b ) and orientation (θ

(i)
a and θ

(i)
b ), from the data in each block. The within

cell differences of grid spacing and orientation are determined as ∆θ(i) = θ
(i)
a − θ

(i)
b and

∆λ(i) = λ
(i)
a − λ

(i)
b . Each GC’s properties were also compared to another GC, with the

match being made using random sampling without replacement. These comparisons were

determined as ∆θ
(i,j)
shuffle = θ

(i)
a − θ

(j)
b and ∆λ

(i,j)
shuffle = λ

(i)
a − λ

(j)
b . This process was repeated

100 times, per recording. The resulting distributions of ∆θ, ∆λ, ∆θshuffle, and ∆λshuffle,

across GCs and splits of the data were then compared. If the variability in grid spacing

and orientation for each GC was smaller than that between GCs, we concluded that the

variability of GC properties was a robust feature of the data and not due to noise.

3.2.4 Synthetic grid cells

To study how variability in GC properties might endow the grid code with computa-

tional advantages, we generated synthetic GC ratemaps, so that specific manipulations

could be performed. These synthetic GC ratemaps were constructed as follows.

First, the lengths of the “arena”, within which the simulated GCs exist, along each

dimension (Lx and Ly), were set. Then, for N ∈ N GCs, the grid spacing and orientation

were sampled via λ(i) ∼ N (µλ, σλ) and θ(i) ∼ N (µθ, σθ) where N (µ, σ) is a normal distri-

bution with mean µ and variance σ2. Grid phase was sampled as ϕ(i) ∼ U([0, Lx]×[0, Ly]),

where ϕ is a two dimensional vector, with first component uniformly sampled from [0, Lx]
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and second component uniformly sampled from [0, Ly]. To construct a population with

no variability in grid properties (to use as a control), we set σλ = 0 m. and σθ = 0◦.

For each GC, we generated idealized grid responses by summing three two-dimensional

sinusoids [73], such that the activity at x = (x, y) ∈ [−Lx/2, Lx/2] × [−Ly/2, Ly/2] is

given by

X(i)(x) = Xmax2

3

(
1

3

3∑
j=1

cos
[
R(θi)kj(x+ ϕi)π/λi

])
, (3.1)

where Xmax is the maximal firing rate, R(θi) is the two-dimensional rotation matrix,

with rotation θi, and kj are the wave vectors with 60◦ and 120◦ angular differences [i.e.,

k1 = (1, 0)T ,k2 = (1/2,
√
3/2)T ,k3 = (1/2,−

√
3/2)T ].

3.2.5 Linear decoding

To determine the extent to which local spatial information can be decoded from the

activity of populations of GCs with different degrees of variability in their grid properties,

we performed the following analysis.

We generated noisy synthetic spike rates of N GCs by assuming a Poisson process and

sampling using the idealized ratemaps found as described in Sec. 3.2.4. More concretely,

the activity of GC i at position (x, y) was assumed to be a random variable with a Poisson

distribution, whose mean was X(i)(x, y),

X̃(i)(x, y) ∼ P
(
X(i)(x, y)

)
. (3.2)

For a given resolution of the arena, we generated X̃
(i)
j (x, y), where j = 1, ..., 10.

That is, we constructed 10 noisy ratemaps. We performed cross-validated decoding by

averaging across 9 of the 10 ratemaps, to get an average ratemap X̂(i)(x, y). For sake of
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simplicity, consider X̂(i)(x, y) = 1/9
∑9

j=1 X̃
(i)
j (x, y). To decode local position from the

held out noisy ratemap [e.g. X̃
(i)
10 (x, y)], we multiply the activity at each position by all

the positions in the average ratemap, taking the sum and assigning the decoded position

as that with the largest value. The Euclidean distance between the decoded position and

the true position is considered the error.

3.3 Results

3.3.1 Consistent Difference in Grid Orientation Across Grid

Modules

To determine the extent to which variability of grid properties in individual modules

exists, and to what extent this variability is due to noise, as opposed to being a property

of the underlying grid code, we analyzed previously published data [72] (see Sec. 3.2.1

for more details). We focused on the six recordings with the most GCs with high grid

scores (see Sec. 3.2.3), for a total of 316 GCs, across four modules in three rats.

A visualization of the distribution of GC properties for an example recording (Rat

R Day 1 Module 2 – 58 GCs with grid score > 1.0) is presented in Fig. 3.1A, B.

While many of the computed values of grid spacing (λ) and orientation (θ) are near the

module mean, both of these distributions have a sizeable range (λmax − λmin ≈ 0.3m and

θmax − θmin ≈ 8◦).

To assess the robustness of this variability, and to determine whether it may be due to

noise or a property of the underlying grid code, we performed a shuffle analysis, splitting

data into two equal length, non-overlapping halves (see Sec. 3.2.3 for details). For ease

of notation, we refer to one half as “even” and the other as “odd”, although we do not

actually split the data into odd and even intervals, but instead randomly sample. For
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Figure 3.1: Grid spacing and orientation is variable across an individual grid
module. (A)-(B) Distribution of θ and λ across individual grid module [72] (58 GCs
total). (C)-(D) θ and λ computed across 50 separate splits of the spiking data, sorted
according to the ordering in the “even” half. (E)-(F) Difference in θ and λ, across
each split of the data (∆λ and ∆θ), compared to a shuffled distribution, where the
difference was computed for a randomly selected cell. (C)-(F) were computed from
data first binned into 1 second, non-overlapping intervals.

both grid spacing and orientation, we find that, across 50 random shuffles of the data, the

ordering of θ and λ is fairly conserved (Fig. 3.1 C, D – Kendall correlation: τλ = 0.68,

p-value < 0.05, τθ = 0.33, p-value < 0.05). We compared the difference of each cell’s

computed λ and θ for odd and even trials (“within” GC – ∆λ and ∆θ) and between

the odd and even trials of randomly sampled GCs (“between” GCs – ∆shuffle). We find

that the distribution of ∆shuffle is much broader, and has less of a peak at 0, than the

respective ∆shuffle distributions (Fig. 3.1E, F).

We performed the same analysis on the other five recordings, finding similar results.
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Figure 3.2: Variability of grid spacing and orientation is more consistent than
expected from noise. (A)-(B) Grid orientation and spacing for all six recordings
considered (3 rats, 4 modules, 316 GCs), as a function of grid score. Dots colored
by recording each GC belongs to. (C)-(D) Mean ∆λ and ∆θ versus their respective
shuffle values, ∆shuff, computed across 50 randomized splits of the data. Percentage of
cells with the within cell measure greater than the between cell measure (denoted as
“% above x = y”) and mean difference for those cells, are reported. (C)-(D) computed
from data first binned into 1 second, non-overlapping intervals.

To quantify this across the entire data set, we computed the average value of ∆λ and ∆θ,

as well as their respective shuffled distributions ∆shuffle, across all 50 randomizations of

the data, for each GC. We find that the majority of the GCs have greater average ∆shuffle,

than ∆λ and ∆θ, respectively (Fig. 3.1 C, D – 65% of GCs satisfy |∆θ| < |∆shuffle|, 77% of

GCs satisfy |∆λ| < |∆shuffle|). For those GC with smaller degree of within cell variation,

than between cell variation, we find that the mean |∆shuffle| − |∆θ| ≈ 1◦ and the mean

|∆shuffle| − |∆λ| ≈ 3.0cm.

These results do not depend on the bin size used to divide the data into intervals to

be sampled from during the shuffling procedure (Figs. 3.3 and 3.4).
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Figure 3.3: Grid spacing and orientation is variable across individual grid
module, for increased choice of time bins. Same as in Fig. 3.1, but for using 5
second, non-overlapping intervals.
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Figure 3.4: Variability of grid spacing and orientation is more consistent
than expected from noise, for increased choice of time bins. Same as in Fig.
3.2, but for using 5 second, non-overlapping intervals.
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Because previous work has found that grid fields can become distorted, shearing in

response to the presence of objects and boundaries placed in arenas, as well as having

small deviations from true hexagonal grids in open field arenas [229, 230], we examined

to what extent the variability of grid properties changed when measured for each of the

three unique peaks in the autocorrelogram separately. Note that there are three, and not

six, unique peaks because the autocorrelogram is symmetric. We denote the grid spacing

and grid orientation λ1, λ2, λ3 and θ1, θ2, θ3, respectively.

Analyzing the same grid module as before (Fig. 3.1), we find that, in addition to the

individual grid fields having different medians of their respective distributions (median

λ1 = 0.86m, median λ2 = 0.84m, median λ3 = 0.82m; median θ1 = 5.6◦, median

θ2 = 5.9◦, 8.5◦), suggesting that there are indeed some distortions, the individual grid

fields also show significant range in their spacing and orientation (λ1,max−λ1,min ≈ 0.3m,

λ2,max − λ2,min ≈ 0.5m, λ3,max − λ3,min ≈ 0.4m; θ1,max − θ1,min ≈ 8◦, θ2,max − θ2,min ≈ 14◦,

θ3,max − θ3,min ≈ 14◦) (Fig. 3.5A, B).

As before, splitting the data into non-overlapping halves and computing the grid

properties (this time, on the individual fields) leads to similarly ordered values (Fig.

3.5C, D – Kendall correlation: τλ = 0.66, p-value < 0.05; τθ = 0.47, p-value < 0.05).

Performing the shuffle analysis similarly identifies that the variability of grid spacing and

orientation within GC is much smaller than the variability of grid spacing and orientation

across GCs (Fig. 3.5E, F). This result holds when considering all recordings (Fig. 3.6C,

D). For those GC fields that had smaller within variability in their computed for their

computed grid properties, as compared to the shuffled distribution, |∆shuffle| − |∆λ| ≈

3.4cm and |∆shuffle| − |∆θ| ≈ 1.9◦.
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Figure 3.5: Grid spacing and orientation is variable across individual grid
fields. Same as Fig. 3.2, except all individual grid peaks’ λ and θ are reported, as
opposed to averaged.
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Figure 3.6: Variability of grid spacing and orientation is more consistent
than expected from noise, when treating each grid field separately. Same
as Fig. 3.2, except all individual grid peaks’ λ and θ are reported, as opposed to
averaged.
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3.3.2 Variability in Grid Orientation Across Single Module Im-

proves Spatial Decoding

The variability in GC properties identified via the data analysis performed in Sec.

3.3.1, while statistically significant, is small. Can a computational benefit be gained from

such inhomogeneity?

To test this at a level where we have complete control over the variability of GC

responses (σλ and σθ), we generated populations of synthetic GCs (see Sec. 3.2.4 for

more details). By sampling from a Poisson process, we were able to create noisy “GC-

like” ratemaps (Fig. 3.7A) for populations of varying sizes. Leveraging a simple linear

decoder (see Sec. 3.3.2, we were able use these populations of noisy GCs to generate

likelihood densities of where a given population vector came from. When the population

of synthetic GCs being considered had no variability in λ and θ (σλ = 0m and σθ = 0◦),

the likelihood densities were highly grid like, leading to large decoding errors, as the

decoded position was essentially randomly chosen among the peaks of the grid (Fig.

3.7B, bottom row). However, when the simulated GC population had variability like

that in the data analyzed (σλ = 0.03m and σθ = 1◦), the “gridiness” of the likelihood

densities was decreased, and the decoded position was much closer to the true position

(Fig. 3.7B, top row). This difference in decoding error, between the fixed and variable

simulated GC populations, was present across the entirety of the simulated arena, except

for the center (Fig. 3.7 C).

Despite the observed variability being small, we find that the decoding error scales

like a powerlaw, with respect to GC population size. That is, the decoding error for a

population of 2N simulated GCs, e(2N), decreases as

e(2N) ∝
(
2N
)−β

(3.3)

79



Robust Variability of Grid Cell Properties Within Module Enhances the Coding Capacity of Single
Grid Modules Chapter 3

for some exponent β (Fig. 3.7D, green line). Plotting this on a log2 scale gives us that the

error scales linearly, which is what we observe (Fig. 3.7D). This is in contrast with the

nearly static decoding performance of a population of GCs with fixed grid properties (Fig.

3.7D, black line). By 512 neurons, the mean decoding error of the variable population is

≈ 6× smaller than that of the fixed population. This is despite the fact that the σθ is a

single degree, and σλ is on the order of a centimeter.

To determine the extent to which the increase in decoding performance depends

on the exact variability, we performed a grid search over 36 pairs of (σλ, σθ) values in

[0◦, 5◦]× [0.00m., 0.05m.]. As expected, when the variability of both grid properties was

large, we found a large decrease in decoding error (Fig. 3.7E). However, even when one

σλ = 0 or σθ = 0, increasing σθ or σλ, respectively, even over a small range, led to a large

decrease in decoding error. Finally, we find that, even when σλ = 0.01m and σθ = 1◦,

the decoding error is still decreased by approximately half of what it was for the fixed

population.

Similar results were found when using GCs of different grid spacing (λ = 0.75 m.

shown in Fig. 3.7, λ = 0.5 m. and λ = 1.0 m., shown in Fig. 3.8). However, a greater

improvement was found when λ was smaller, presumably due to the fact that the number

of grid fields was greater when λ was smaller, as well as the fact that σλ = 0.03 m. is a

greater percentage of λ when λ is small.

Taken together, these results suggest that individual grid modules can gain a signifi-

cant computational benefit, in terms of encoding local space, by containing heterogeneity,

even to a small degree, in their grid properties.
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Figure 3.7: Variability in GC properties enables increased decoding from
activity from single grid module. (A) Example noisy GC ratemaps sampled from
Poisson process. Size of square arena taken to be 1.5m × 1.5 m [72]. (B) Likelihood
estimates from linear decoder applied to the population vectors of 512 noisy GC inputs,
for two example positions. Top row, variable GC population (with values for σθ and
σλ taken from experimental analysis – Fig. 3.2). Distance between true and decoded
position denoted by white line. (C) Mean decoding error, across 10 samples of GC
input, for each position, across the entirety of the arena. Top and bottom rows same
as in (B). (D) Decoding error, as a function of population size. Solid line is mean
across 5 independent GC populations. Shaded area is ± S.E.M. of the 5 indendepnt
populations. (E) Decoding error, over a grid of σλ and σθ values. White star denotes
value used in plots (B) - (D).
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3.4 Discussion

While comprising a minor portion of the neurons in mEC [87], GCs have been subject

of major investigation. The organization of their multiple firing fields along a triangular

lattice, a unique functional feature, has been historically interpreted as a limiting feature

of their encoding of local space, but a powerful feature enabling the encoding of path

integration [67]. Particularly influential in shaping this view has been the discovery of

the distribution of GCs into distinct modules, with GC spacing (λ) and orientation (θ)

preserved within, but not across, modules [6, 55]. While evidence for discontinuity in the

GC properties across modules is strong, the corollary assumption, that within module

the values of λ and θ are, up to noise, identical, has not been studied.

Dissecting recently performed, state-of-the-art mEC recordings led to the identifica-

tion of variability in the grid properties within individual modules (Fig. 3.1). Despite

considering only GCs that were unequivocally GCs (grid score > 1.0), we found this

variability was large, with GC in the same module having up to a 0.3 m. difference in

grid spacing and 8◦ difference in grid orientation. Statistical analysis of this variability

shows that it is more robust, for the majority of GCs, than expected from noise (Fig.

3.2). Importantly, our analysis is robust to choices of parameters (Fig. SI2) and whether

we treat each grid field independently, or take the average across grid fields (Fig. 3.6).

We speculated that this variability can be used to increase the fidelity at which indi-

vidual grid modules can encode local space. This is in-line with a large literature showing

that heterogeneity in the responses of populations of neurons increases the robustness of

encoding [238, 239, 240, 241]. We indeed find, in noisy models of GCs, that the observed

level of variability in grid properties leads to highly accurate encoding of spatial position

(Fig. 3.7). This benefit is increased with increasing number of neurons by approximately

a power-law (Fig. 3.7D), is general to even smaller amounts of variability (Fig. 3.7E),
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and was most pronounced in modules with smallest λ (Fig. 3.8), although even the

module with λ = 1.0 m saw a considerable decrease in decoding error.

We note that these results extend recent work which has argued that heterogeneity

in maximum firing rates across individual grid fields [87, 231, 232] and grid sheering

[229, 230, 233] lead to the ability to encode local spatial information. That is, even in

the absence of any of these types of perturbations, individual grid modules can contain

information about spatial position. This suggests that the encoding of local spatial

information is a fundamental property of the grid code.

Importantly, these results motivate the field to ask “why are multiple grid modules

present in the mammalian brain”? We hypothesize that the use of GCs beyond spatial

navigation [242, 243, 105, 244, 245, 246], where hierarchical representations are impor-

tant [247, 111], may be a sufficient implicit bias for the formation of multiple modules,

extending upon the recent work that has shown that grid responses emerge in recurrent

neural networks (RNNs) tasked with path integration [82, 81, 64, 83]. This is aligned

with calls for asking different questions of GCs beyond purely path integration [248].

Finally, given that previous attempts to add variability in maximum firing rates of

grid fields to the continuous attractor neural network models [66, 68, 67, 69] that have

enjoyed broad experimental support [70, 71, 236, 72] has been challenging [232], we

wonder whether and how the heterogeneity of grid properties discovered in this work can

be naturally extended to continuous attractor neural network. Future work can explore

whether this variability is an emergent phenomenon of RNN models [82, 81, 64, 83], as

well as other mechanistic models that generate GCs [65].
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Figure 3.8: Variability in GC properties enables improved decoding of local
space from the activity of GCs from individual grid modules with different
spacing. (A), (C) Decoding error, as a function of population size, for λ = 0.5 m.
and λ = 1.0 m., respectively. Solid line is mean across 5 independent GC populations.
Shaded area is ± S.E.M. of the 5 independent populations. (B), (D) Decoding error,
over a grid of σλ and σθ values, for λ = 0.5 m. and λ = 1.0 m., respectively. White
stars denotes value used in plots (A), (C).
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Chapter 4

Sparsity Enhances Non-Gaussian

Data Statistics During Local

Receptive Field Formation

“I asked her for water/ She brought

me gasoline”

Howlin’ Wolf (1959)

4.1 Introduction

The first wave of deep learning breakthroughs came in computer vision, when deep

convolutional neural networks (CNNs) [115, 116, 117], armed with the necessary com-

pute and (large) amounts of data [249], achieved huge improvements on the ImageNet

benchmark. This success has been attributed to the interplay of network architecture

and symmetries in the data. The architecture of deep CNNs [118, 119] encourages repre-

sentations to be invariant or equivariant to translations, depending on whether pooling
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layers are included or not [120, 121, 122]. The learned representations thus respect the

same fundamental symmetry as the images they are trained on, making CNNs more

sample- and parameter-efficient than fully-connected neural networks (FCNs), which do

not explicitly take this symmetry into account [123, 124].

As deep learning moves into ever more diverse applications, it is confronted with data

sets whose symmetries are not necessarily known a priori. It would thus be desirable to

“learn” the right architecture directly from the data. For image classification however,

learning convolutions from scratch has proven difficult with vanilla stochastic gradient

descent (SGD) on image classification tasks [124, 129], and prior successful work has

relied on elaborate regularisation mechanisms [130].

While the combination of vanilla SGD on image classification tasks does not yield

receptive fields by itself, two recent works observed receptive field formation in slightly

augmented settings. Ingrosso & Goldt (2022) [128] showed that two-layer fully-connected

networks trained on synthetic images that are translation-invariant and contain sharp

edges learn localised receptive fields from scratch, without any explicit regularisation. In

particular, they showed that the signal in the training data that triggers the formation of

the localised RFs was carried by the higher-order, i.e. non-Gaussian, input statistics, and

in particular the fourth-order cumulant related to the kurtosis. While this work offered

a novel statistical perspective on receptive field formation and how such structure can

be learnt from “scratch”, computer vision data sets have non-Gaussian properties, such

as sharp luminosity changes, and have therefore non-trivial higher-order cumulants. So

why do FCNs trained on such data sets not contain local RFs?

One possible explanation is that this structure is embedded within trained FCNs.

Indeed, when Pellegrini & Biroli (2022) [127] analysed the architecture resulting from

iterative magnitude pruning (IMP) [250, 251] of simple, fully-connected neural networks,

they found that the surviving node connectivity is local in input space, and organized in
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patterns reminiscent of the ones found in convolutional networks. In other words, SGD

on image classification tasks imprints a localised structure on the weights, which can be

recovered with the help of IMP, but it is not clear where the signal for the localisation

of the receptive fields comes from.

These results raise two questions: first, do embedded local RFs form in FCN trained

on real images in the same way as suggested by Ingrosso and Goldt (2022), namely via

higher-order cumulants? Second, given that use of IMP leads to stronger localisation,

does IMP amplify the non-Gaussian statistics of the learnt representations of the network?

In this work, we take the first step to address these questions. Our main contributions

are as follows:

• We find that the increasing localisation of RFs, embedded in FCNs during train-

ing, is accompanied by neural representations becoming increasingly non-Gaussian

(Sec. 4.4.1). Changing the task and hyper-parameters associated with training

leads to changes in pre-activation statistics that are concomitant with those found

in localisation (Sec. 4.4.2).

• We analyze the impact of pruning dynamics on the statistics of network internal

representations, finding that each round of IMP makes the statistics of representa-

tions increasingly non-Gaussian, as measured by their kurtosis (Sec. 4.4.3). To the

best of our knowledge, this is the first time that the statistics of internal represen-

tations during IMP have been characterised.

• We study two forms of dynamic sparse machine learning, L1 weight regularisation

and RigL [252], a form of dynamic sparse training (DST). While L1 regularisation

leads to localisation and a concomitant increase in pre-activaton kurtosis, RigL

does not (Sec. 4.4.4). We hypothesize that starting from a dense FCN architecture
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(as pruning and L1 regularisation do) may enable more efficient discovery of local

RFs.

• We show evidence that increases in non-Gaussian preactivation statistics accompa-

nying local RF formation goes beyond simple FCNs trained on supervised computer

vision tasks. In particular, we find increases accompanying localisation of RFs dur-

ing an unsupervised learning task [125] (Sec. 4.5).

4.1.1 Further related work

Learning the right architectures for various data modalities. A large amount

of work has recently proposed architectures that are tailored to different invariances and

geometries in datasets, such as social or gene regulatory networks [253, 254, 255, 256,

257, 258, 259, 260, 261]. Deep scattering networks [262, 263, 264] have been proposed

as architectures that are invariant to a rich class of transformations. The vision trans-

former [265, 266, 267] is such a general-purpose architecture that learns approximately

localised attention maps when pre-trained on large amounts of images. Here, we fo-

cus instead on training the simplest general architecture, an FCN, and trying to learn

convolutions directly from data. Neybashur (2020) recently proposed a lasso-type reg-

ularisation technique, called β-lasso, which encourages localised RFs, at the price of

explicitly encouraging sparsity, which may not be the appropriate constraint for general

data modalities [130]. Additionally, this approach relied on extensive data augmentation,

whose role in driving local RF formation is not known.

What is learnt from pruning? After the discovery of “winning lottery tickets” in

the initialisation of deep neural networks [251], a considerable body of work has focused

on extending the original idea to larger data sets and architectures, e.g. [268]. While
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a detailed understanding the inductive biases that come with IMP is lacking, it has

been found that winning tickets have properties that make them transferable across

tasks [269, 270, 271, 272]. Additional attention has been focused on understanding the

lottery ticket hypothesis through a loss landscape perspective [268, 273, 274]. Recent

work has studied the interaction between data and masks found via IMP [275, 276]. To

the best of our knowledge, our work is the first to analyse the effect of IMP on the

statistics of the internal presentations in neural networks.

4.2 Methods

4.3 Methods

4.3.1 Measuring Non-Gaussian Statistics

We denote a neural network by f(θ;x), where θ are its N parameters and x are data

samples used for training, which come from an underlying distribution, X .

The activations of units in the first hidden layer of the neural network are given by

a
(1)
i = h

[∑
j

w
(1)
ij xj

]
+ b

(1)
i , (4.1)

where h(·) is a nonlinear function (e.g., ReLU, sigmoid), w
(1)
ij are the weights going from

the data to the first hidden layer, and b
(1)
i is the bias of unit i in the first hidden layer.

Note that, given Eq. 4.1, the input to the neural network is not x, but the product

of x with the W (1), the weight matrix describing all w
(1)
ij . This quantity is referred to as
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the “preactivation”, and is computed as

λi =
∑
j

w
(1)
ij xj = W

(1)
i x. (4.2)

In some cases, the data is transformed using batch normalization [277], which applies

the following transformation

x̃j = γjxj + βj, (4.3)

where γj and βj are free parameters that are learned during the course of neural network

training. In this case, Eq. 4.2 is modified such that λi = W
(1)
i x̃.

One way to measure the statistics of the input to the neural network, that is, to

measure the statistics of the preactivations, is to consider how Gaussian it is. To quantify

this, the kurtosis can be computed

kurt[λi] =
E (λi − Eλi)

4[
(λi − Eλi)

2]2 , (4.4)

where E is the expectation (mean) computed over some sample of x’s. If λi is distributed

according to a Gaussian distribution, then kurt[λi] = 3. If kurt[λi] > 3, then the distri-

bution in more peaked than a Gaussian. If kurt[λi] < 3, the distribution is more broad

than a Gaussian.

4.3.2 Measuring Localisation

To quantify how local the remaining weights of a pruned FCN are, we compute the

distribution of pixels at a given distance that are connected to the same input unit in the

first layer of the FCN, S(d), as per Pellegrini and Biroli (2022). Distance, in this case, is

defined as dxx′ = d[(x, y), (x′, y′)] = (x−x′, y−y′), where (x, y) and (x′, y′) are the spatial
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coordinates of the two pixels. S(d) is defined as, S(d) =
∑

(x,y)

∑
(x′,y′)|dxx′=dmx,ymx′,y′ .

The sum can be restricted to subsets of the mask that come from pixels in the same

color channel, S(sc)(d), or different channels, S(dc)(d). We quantify receptive field locality

by fitting two-dimensional Gaussians on S(d), giving a measure of width in the x and y

directions, σx and σy respectively.

4.3.3 FCN Training

For our experiments, we follow the approach of Pellegrini and Biroli (2020) [127]. We

used the official implementation publicly available at https://github.com/phiandark/

SiftingFeatures, with several modifications. First, we scaled the FCN down to have

two hidden layers, instead of three. Second, we decreased the batch size from 1000 to

40. Lastly, we decreased the total number of training iterations from 100, 000 to 40, 000.

For more details, see Table 4.1. Similar choices were made when training our FCNs on

CIFAR-10 and CIFAR-10 GP (Table 4.2).

Table 4.1: Default FCN parameters for ImageNet32 experiments (unless otherwise noted).

Parameters

Architecture 3072:1024:1024:1000
Activation function ReLU

Batch size 40
Learning rate 0.1
Optimizer SGD

Training iterations 40,000
Validation size 7,000
Rewind iteration 1,000
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Table 4.2: Default FCN parameters for CIFAR-10 and CIFAR-10 GP experiments
(unless otherwise noted).

Parameters

Architecture 3072:1024:1024:10
Activation function ReLU

Batch size 40
Learning rate 0.1
Optimizer SGD

Training iterations 40,000
Validation size 1,000
Rewind iteration 1,000

4.3.4 Iterative Magnitude Pruning

A foundational result in the field of deep learning is that deep neural networks

(DNNs) can (generally) have a large percentage of their parameters removed (i.e., set

to 0) after training, with little to no effect on the DNN’s performance. The removal

of DNN parameters is called “pruning”, and substantial work has been focused on

determining which parameters are optimal, with respect to some metric, to remove

[278, 279, 280, 281, 282, 250, 283]. These include using the magnitude of a parameter

(i.e., its absolute value), the gradient of a parameter, and the Hessian of the parameter

to determine. While these tend to be static measures, there exist methods that take into

account dynamics [284], which, in certain cases, is equivalent to the static measures.

While DNN pruning was known to be possible, and possible to a large extent (i.e.,

DNNs admitted large sparsification using some of the pruning strategies), for several

decades, training sparse DNNs, at initialization, was found to be challenging, yielding

poor performance. This led to the paradigm that overparametrization, or dense con-

nectivity, was necessary in order for standard DNN training techniques to find a well

performing DNN state.
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However, work on the Lottery Ticket Hypothesis (LTH) [251] hypothesized that sparse

DNNs, that were trainable to the same performance as the dense model, from initializa-

tion (or near initialization) exist. To support this conjecture, they leveraged a simple

technique, called iterative magnitude pruning (IMP) [250], to find such sparse subnet-

works.

An explosion of work has been performed on the LTH, and it has become clear that

the subnetworks discovered by IMP are intimately linked to the underlying geometry of

the loss landscape [268, 274], are transferable to other tasks [269, 285, 270, 272, 286] and

architectures [287].

IMP is performed according to the following steps. First, the DNN f(θ;x) is initialized

with parameters θ0. The DNN is trained, using the optimizer T (e.g., stochastic gradient

descent) for T training steps. The parameters of the DNN are scored according to their

magnitude s(ωi) = |ωi|. The parameters with score in the pth percentile are set to 0, by

setting an auxiliary variable m ∈ {0, 1}N , called the “mask”, to 0. That is, if s(ωi) < τp,

where τp is a threshold determined by the pth percentile, then mi = 0. The DNN is

then evaluated as f(ω ⊙ m;x), where ⊙ is the elementwise product. The thresholding

of the parameters, τp, can be done using the pth percentile, across the distribution of all

the parameters in the entire DNN, or using the pth percentile, computed for each layer

individually. While the latter was performed initially with respect to the LTH [251],

subsequent work has found that the former (a global threshold) leads to better accuracy

[268, 283].

The remaining parameters (i.e., those parameters such that mi = 1) are “rewound”

to a previous value that occurred during training θrewind. While the original LTH found

it possible to set θrewind = θ0 [251], subsequent work found that, in order for IMP to

find good performing sparse subnetwork, θrewind = θt, for some t > 0, must be chosen

[268, 288]. The previous steps are then performed, with the pth percentile of the remaining
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parameters used as the threshold for pruning.

This entire process is iterated n times, inducing an trajectory in the space of DNN

parameters, via θrewind → θrewind ⊙ m(1) → θrewind ⊙ m(2) → ... → θrewind ⊙ m(n). This

iterative sparsificiation changes the way in which the units of the network are coupled,

leading to a coarse-graining that has common characteristics for among different tasks

[289].

4.3.5 L1 Weight Regularisation

In the main text, we consider adding L1 regularisation to the loss function. The loss

function then becomes

L = [cross entropy] + λ
∑
i,j

|w(1)
ij |, (4.5)

where the sum is over all the weights between the input and the first hidden layer and

λ is the weight of the regularisation. In our experiments, we set λ = 5 · 10−5. After

training the same FCN detailed in Table 4.1, using the loss function described by Eq. ,

we oneshot pruned the FCN parameters.

4.3.6 L1 Sparse, Unsupervised Learning Model

The discovery of local RFs in the mammalian visual system [113], much like the

discovery of place cells and grid cells in the hippocampal formation, inspired a large body

of computational and theoretical work that aimed to understand how this functional

property might be utilized in computations the brain performed. By the mid 1990’s

it was appreciated that local RFs, along with the other properties found in visually

responsive neurons, such as orientation selectivity, enabled an efficient coding of the

sensory data that the visual system deals with [290, 291, 292, 293, 294, 295]. In particular,

the statistics of natural images, which have been found to contain unique properties
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[294, 296]. Remarkably, efficient coding, from the standpoint of minimizing the activity,

was then found to be a strong enough inductive bias to lead to the formation of local

RFs [125], much like path integration has been found to be a strong enough inductive

bias to lead to the formation of grid cells [82, 81, 64].

The framework for studying how enforcing sparse activations impacts local RF for-

mation is the following [125]. A given image I(x, y), with x and y indexing the nx and ny

pixels in the x and y dimension of the image, respectively, is assumed to admit a linear

decomposition into a set of N basis functions ϕi(x, y). That is,

I(x, y) =
N∑
i=1

aiϕi(x, y), (4.6)

where ai are coefficients specific to each image. In the context of the visual system, the

ϕi can be thought of as the tuning profiles of visual neurons, and the ai as the activity

of the neurons. Important, the ϕi are assumed to not only be a set of basis functions

that describes the image I(x, y), but all images that come from the same underlying

distribution, I.

To learn the basis functions ϕi, from data, an optimization problem is cast, using the

following cost function,

E =
∑
x,y

[
I(x, y)−

∑
i

aiϕi(x, y)

]2
+ λ

∑
i

S
(ai
σ

)
. (4.7)

Here S(·) is a nonlinear function, σ is a scaling function, and λ is a positive real number,

whose size controls how much the cost function depends on the activations. Note that∑
i aiϕi(x, y) is the reconstructed image using the estimated basis functions and their

associated coefficients. This reconstruction is denoted as Î(x, y). For sake of computa-

tional resources, the training occurs not over individual images, but patch subsampled

95



Sparsity Enhances Non-Gaussian Data Statistics During Local Receptive Field Formation
Chapter 4

on natural images (in Olshausen and Fields (1996), these images were 512×512 grayscale

images taken in the woods [125]; in our work we use CIFAR-10 and CIFAR-10 GP).

To minimize Eq. 4.7, gradient descent is performed on the ϕi, where the update rule

is performed as follows,

∆ϕi(xm, yn) = ηE
(
ai

[
I(xm, yn)− Î(xm, yn)

])
, (4.8)

where η is the learning rate and the expectation, E(·) is taken over a batch of images. For

a given image, the value of ai is estimated by taking the inner product of the image and

the associated basis function, ai = ηIϕT
i .The ai are then fed through the nonlinearity,

and their values optimised using gradient descent, with learning rate η, such that the

norm of vector A, composed of all N of the ai, is sufficiently small. Because this occurs

on the activations, after the nonlinearity has been performed, we measure the kurtosis

of ai = IϕT
i .

We implemented this approach using publicly available code https://github.com/

takyamamoto/SparseCoding-OlshausenField-Model. We used all the off-the-shelf pa-

rameters, except for the following modifications: 1) we trained on grayscale CIFAR-10

or CIFAR-10 GP, instead of the grayscale natural images trained on by Olshausen and

Fields (1996) [125]; 2) we used ReLU as our nonlinearity (Eq. 4.7). When training on

CIFAR-10 GP, we create the Gaussian model for each patch that is sampled. For more

details, see Table 4.3

4.3.7 Dynamic Sparse Training

While IMP, and many other pruning methods, transform a dense DNN (dense, in

terms of connectivity) into a sparse DNN, other approaches, called “dynamic sparse

training” (DST), start with a sparse DNN, and optimize which parameters are kept,
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Table 4.3: Default parameters of L1 activation regularisation.
Parameters

N 10
nx 16
ny 16

Batch size 250
η 0.01

Training iterations 500

while maintaining sparsity [297, 298, 299, 300]. DST methods have been found to be

scalable to very large DNNs [301], have been cast in the framework of the LTH [301],

and appear to gain some of their capability from being “dense in-time”, by sampling a

large proportion of the total possible connectivity in the DNN [301].

We focus on one approach of the many that DST encompasses, called RigL (“Rig-

ging the Lottery”) [252]. This was chosen due to its connection to the LTH. We made

use of the publicly available repository of a PyTorch implementation of RigL, found at

https://github.com/nollied/rigl-torch. For the choices used in our implementa-

tion, see Table 4.4.

This was chosen due to its connection to the LTH. RigL has four main steps. First,

a sparse DNN is initialized with a given distribution. This can be a uniform distribution

(each layer initialized with (1 − p)% of its weights), or one that keeps more weights

in some layers and less in others (e.g. Eros-Renyi distribution [298]). Here we use

a uniform distribution, as it is consistent with the IMP work used to discover local

RFs [127]. Second, a schedule to update the topology of the DNN (i.e., the identity of

which weights kept and which are removed) is chosen. This has several free parameters,

including the number of iterations between updates (∆T ), the iteration at which the

updates stop and the topology is fixed for the rest of training (Tend), the initial fraction

of the weights updated (α), and a decaying function that changes what percentage of
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weights at each step are updated (e..g cosine annealing). To make our analysis simple,

we fixed Tend to be the total number of iterations and use a constant decay function (that

is, no decay, but a constant fraction of weights that are updated at each step). Third,

a criterion for dropping weights must be selected. In RigL, and this work, parameter

magnitude is used (i.e., s(θ) = |θ|). And fourth, a criteria for growing weights must be

chosen. In RigL, this is taken to be the magnitude of the gradient of the parameters,

(i.e., |∇θL|, for some choice of loss function, L). Because prior work has found that this

choice can lead to less exploration of the underlying parameter space, we use random

growth, scoring all possible weights to be grown via a random number.

Table 4.4: Default FCN parameters for RigL experiments.
Parameters

Data set CIFAR-10
Architecture 3072:1024:1024:10

Activation function ReLU
Batch size 10

Learning rate 0.1
Optimizer SGD
Epochs 50

p 0.95
∆T 2500 training steps
Tend 50 epochs
α 0.95

Decay function Constant
Sparsity distribution Uniform

Growth criteria Gradient
Dropping criteria Magnitude
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4.4 Results

We began by replicating the results of Pellegrini and Biroli (2022), training an FCN

(with a few modifications – see Sec. 4.3.3 for details) on ImageNet32. In line with

their results, we find that the masks found from one-shot pruning after training are

localised (Fig. 4.1A, C), illustrating that SGD brings the FCN towards a local minima

that contains local RFs, albeit in an embedded manner, where pruning is required to

extract this feature. Additionally, we find that performing multiple rounds of IMP leads

to stronger localisation than is found using one-shot pruning (Fig. 4.1B, D), illustrating

that the iterative nature of IMP affects the solution to which the FCN converges to.

Figure 4.1: One-shot pruning and IMP discover local RFs embedded in
FCNs trained on ImageNet32. (A)-(B) Local RFs present in the masks found
after pruning (oneshot and IMP, respectively) FCNs trained on ImageNet32 to 97.2%
sparsity (equivalent to 10 rounds of IMP, with s = 0.3). The masks shown are those
with the greatest number of weights remaining [127]. (C)-(D) Local distance matrices,
S(d), for same and different channel, of masks in (A)-(B).

Motivated by these results, and in light of the work of Ingrosso and Goldt (2022) [128],

we ask the following four questions, which we answer in turn below:

• Q1: Is the emergence of embedded local RFs in FCNs during training accompanied

by an increase in the non-Gaussianity of the pre-activation statistics?

• Q2: How does changing the dataset and the hyper-parameters used for training af-

fect the localisation of one-shot pruning masks and statistics of the pre-activations?
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• Q3: What effect does IMP have on the statistics of the internal representations?

• Q4: How does IMP compare to other methods for sparsifying FCNs such as L1

and RigL in terms of localisation and preactivation statistics.

4.4.1 Emergence of embedded local RFs in FCNs trained on

ImageNet32 is accompanied by increase in non-Gaussian

preactivation statistics.

To understand the nature of the preactivation statistics, as local RFs emerge, we

made copies of the FCN parameters at intervals during training. From these copies, we

computed the preactivations (Eq. 4.2), using the ImageNet32 test set (50, 000 images, 50

images per class) as inputs. The kurtosis of the preactivations (Eq. 4.4), per class, was

then evaluated, with the average being taken across all classes for each unit. The saved

parameters were also used to construct oneshot pruning masks, from which the locality

of the RFs (σx and σy) were estimated. This allows us to estimate the extent to which

any embedded local structures has emerged.

We find that, early in training (5, 000 training iterations), the oneshot pruning masks

are highly diffuse, showing little to no localisation (Fig. 4.2A). By the mid-part of train-

ing (15, 000 training iterations), the oneshot pruning masks of some units have begun

to show localisation (Fig. 4.2B). In-line with this, we find that the mean σdc
x steadily

decreases with training time. Interestingly, as the oneshot masks are becoming increas-

ingly localised, we find that the mean kurtosis of the preactivations increases, implying

that the preactivatons are becoming increasingly non-Gaussian with training time. We

therefore able to answer our first question (Q1) in the affirmative.

A1: Non-Gaussian preactivation statistics do emerge as localised structure, embed-

ded within FCNs, emerges.
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Figure 4.2: Increased localisation of RFs occurs during an increase in non–
Gaussian preactivation statistics. (A)-(B) Masks found after pruning to 97.2%
after 5,000 and 15,000 training steps, respectively. (C) Median σdc

x , as a function of
training time. (D) Median preactivation kurtosis, computed per class, as a function
of training time. In (A)-(B), black line denotes mean and gray shaded area denotes
minimum and maximum across three independent seeds. The corresponding preacti-
vation kurtosis and σdc

x values, at the training times shown in (A)-(B), is indicated
with pink and blue arrows, respectively.

4.4.2 Training data and hyper-parameters affect localisation of

RFs and statistics of preactivations.

Given that the emergence of embedded local RFs is a dynamic phenomenon, requiring

training to increase localisation and non-Gaussian statistics of preactivations, we won-

dered how the data used to train the FCN, as well as the hyper-parameters associated

with training, affected these results.

To examine this, we first trained our FCN on CIFAR-10 (see Appendix 4.3.3 for more

details). When we used the same hyper-parameters as used for ImageNet32 (batch size,

b = 40, and learning rate, η = 0.1), localisation was less strong (Fig. 4.3A-B, pink) than
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Table 4.5: Performance of FCNs trained with different choices of training data, hy-
per-parameter, and sparsification strategies. Minimum and maximum of three inde-
pendent seeds are presented.

Data set Sparsification Hyper-parameters Best val. accuracy

ImageNet32 SGD training b = 40, η = 0.1 [0.066, 0.067]
ImageNet32 L1 weight reg. b = 40, η = 0.1 [0.053, 0.055]
ImageNet32 10 rounds IMP b = 40, η = 0.1 [0.095, 0.095]

CIFAR-10 SGD training b = 10, η = 0.1 [0.533, 0.537]
CIFAR-10 RigL b = 10, η = 0.1 [0.491, 0.500]
CIFAR-10 SGD training b = 40, η = 0.1 [0.561, 0.567]
CIFAR-10 SGD training b = 400, η = 0.1 [0.570, 0.572]

CIFAR-10 GP SGD training b = 10, η = 0.1 [0.781, 0.785]
CIFAR-10 GP SGD training b = 10, η = 0.1 [0.722, 0.727]

it had been. By decreasing the batch size (and thus, increasing the learning rate to batch

size ratio, η/b, which has been proposed to lead to convergence to flat minima with good

generalization properties [302], as well as to lead to learning of sparse features [303]) we

were able to increase localisation (Fig. 4.3A-B, orange). Decreasing η/b, by increasing

b, led to nearly a complete loss in localisation (Fig. 4.3A-B, red). This difference in

localisation is not explainable by the larger batch sizes leading to worse accuracy (see

Table 4.5).

Concomitant with these changes in localisation of oneshot pruning masks, were changes

to the preactivation kurtosis, measured on the CIFAR-10 test set (10, 000 images, 100

per class). In particular, we found that the more localised the RFs were, the larger

the preactivation kurtosis was (Fig. 4.3C). Note that, because we trained our FCNs with

batch normalisation [277], and because the exact value the kurtosis takes can be sensitive
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to scaling of variance, we considered the normalised preactivation kurtosis, dividing by

the preactivation kurtosis of the FCN after 1, 000 training steps, when comparing across

experiment conditions.

Figure 4.3: Training FCNs on CIFAR-10 leads to less localisation of embed-
ded RFs, with batch size and data statistics playing an important role. (A)
Masks found pruning FCNs trained on CIFAR-10 at 97.2% sparsity, for three choices
of batch size (b) and learning rate (η). (B) Mean preactivation kurtosis, normalized
to the preactivation kurtosis of the units after 1000 training iterations, for all three
choices of b and η. (C) Mean σdc

x , for all three choices of b and η. (D)-(F) same
as (A)-(C), but for FCNs trained on Gaussian clone of CIFAR-10. In (B)-(C) and
(E)-(F), bar plot shows mean value, and error bars show minimum and maximum,
across three separate seeds.

Sharp luminosity changes, which feature contours and edges in images, have been

recognised as hallmarks of natural images [304, 295, 125, 305]. From a statistical per-

spective, these sudden changes translate into large higher-order cumulants. A generative

model which samples images from a Gaussian distribution, where all cumulants after

the second (i.e., the covariance) are zero, thus cannot reproduce this feature of realistic

images. While we have found that local RFs emerge with increasing non-Gaussian statis-

tics of local representations, we also verified the importance of having a non-Gaussian

contribution to the training data itself.

To test this, we trained FCNs on a “Gaussian clone” of CIFAR-10, for which we

re-sampled the test set from a mixture of 3× 10 Gaussians, one for each colour channel
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of each class of inputs [306]. The mean and covariance of each Gaussian are fitted to the

images in that class. Training on this clone allows us to test the impact that higher-order

cumulants of the CIFAR-10 images have on RF formation. We find that masks found

when oneshot pruning after training on the Gaussian clones are less local for b = 10

and b = 40 (compare Fig. 4.3B and E). Additionally, the kurtosis hardly changes with

training (Fig. 4.3F), highlighting that a necessary ingredient of the localisation is in the

higher-order cumulants of the training images, even though, by themselves, they are not

enough to trigger localisation. Note that sufficiency in this case has not been shown,

as training on noise with non-Gaussian statistics, but no connected sharp edges, is not

expected to drive local RF formation.

A2: The data used to train FCNs plays a large role on the localisation that emerges.

Increasing the decreasing the batch size increases localisation and non-Gaussian statistics

of the internal representations, but only when the data itself has non-Gaussian features.

4.4.3 IMP increases non-Gaussian preactivation statistics.

We next turn our attention to understanding how IMP is able to improve upon

the masks found by oneshot pruning and increase localisation (Fig. 4.1, Fig. 4.4A).

Importantly, this ability of IMP does not come from an increase in training time, because

of the rewinding step in the IMP algorithm. Thus, while many rounds of IMP have to be

performed (in our case, 10 rounds), the network parameters at the rewind state (θrewind)

themselves are always trained the same amount of iterations as they are in the case of

vanilla SGD. The only change is which weights are included in the training.

Because the iterative pruning of IMP affects the FCN parameters, it also necessarily

affects the preactivations (Eq. 4.2). We hypothesised that IMP may be able to increase

the localisation of its masks by removing parameters that made the internal representa-
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Figure 4.4: IMP increases preactivation kurtosis and localisation on FCNs
trained on ImageNet32, to a greater extent than oneshot pruning. (A)
Mean σdc

x , as a function of sparsity induced by IMP, oneshot, and random pruning.
(B) Mean normalized kurtosis of preactivations, per class, as a function of sparsity
induced by IMP, oneshot, and random pruning. In (A)-(B), solid line is mean and
shaded area is minimum and maximum of three independent seeds.

tions more Gaussian. We indeed find that the kurtosis of the preactivations at the rewind

state, normalized to its original value pre-pruning, increases with rounds of IMP (Fig.

4.4B, black curve). This increase is significantly greater than when random pruning is

used, implying that it is not merely an artifact of sparsity (Fig. 4.4B, red curve). Ad-

ditionally, the increase in non-Gaussian statistics of the preactivations is greater when

using IMP than when using the masks found using oneshot pruning, after a single round

of training (Fig. 4.4B, blue curve).

A3: IMP selectively enhances the non-Gaussian statistics of the preactivations at

the rewind point, thus amplifying the degree to which the inputs to the FCN are non-

Gaussian.

4.4.4 Local RFs and non-Gaussian preactivation statistics when

training with other sparse supervised learning methods.

Given the large amount of development in sparse machine learning, we wondered

whether other sparsification strategies, applied to our FCNs, might find localised RFs,
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with a concomitant increase in non-Gaussian statistics of internal representations.

We first tried adding L1 regularisation of the weights in the first hidden layer to our

loss function. Unlike IMP, this sparsifier is applied at every step of training (see Sec. ??

for more details). However, like IMP, it induces overall sparsity in the weights (although,

in terms of the L1, and not L0, norm). We find strongly localised RFs when using

L1 regularisation (Fig. 4.5A), with an increase in preactivation kurtosis across training

(Fig. 4.5B). Interestingly, while the localisation is increased, with respect to vanilla SGD,

the preactivation kurtosis does not see as large an increase (Fig. 4.6). This may be due

to the fact that the added L1 regularisation allows for an additional mechanism by which

localisation can occur, making each increase in non-Gaussian statistics more effective at

driving local RF formation. Note that, aside from finding the correct scale of L1 penalty,

this approach is much less costly than IMP, in terms of wall clock time and compute. We

therefore expect that L1 regularisation may be optimal in some trade-off between cost

and localisation.

We then tried using RigL, a dynamic sparse training (DST) method [252] (see Sec. 4.3.7

for more details). Due to computational constraints, we were not able to run our ex-

periments on ImageNet32. We focused instead of CIFAR-10, with batch size b = 10

and learning rate η = 0.1. Such a setting was found to lead to some, albeit less strong,

localisation (Fig. 4.3A-B, orange). Despite training with the same underlying FCN back-

bone, the masks found with RigL did not show any localisation (Fig. 4.5C). Consistent

with this, we found no increase in normalized preactivation kurtosis during the course

of training (Fig. 4.5D). We hypothesise that this may be due to the fact that CIFAR-10

does not explicitly require localisation for the FCN to perform well (indeed, we find sim-

ilar accuracy between FCNs trained using vanilla SGD, before sparsification, and RigL

– Table 4.5), and RigL is not biased towards finding a localised solution. While there

exist many of DST approaches that future work should explore, it is possible that the
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Figure 4.5: Masks and statistics of internal representations using L1 regu-
larisation of weights and RigL. (A) Example masks found oneshot pruning after
training on ImageNet32 using SGD with L1 regularisation. (B) Mean normalised kur-
tosis of preactivations, per class, as a function of training iterations, when using SGD
with L1 regularisation. (C)-(D), same as (A)-(B), but for RigL trained on CIFAR-10.
In (B) and (D), solid line is mean and shaded area is minimum and maximum of three
independent seeds.

Figure 4.6: Comparing SGD with and without L1 weight regularisation.
(A) Mean σdc

x , as a function of sparsity induced by oneshot pruning, for training via
SGD with and without L1 weight regularisation. (B) Mean normalized kurtosis of
preactivations per class, as a function of sparsity induced by oneshot pruning, for
training via SGD with and without L1 weight regularisation. (A)-(B), solid line is
mean and shaded area is minimum and maximum of three independent seeds.
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discovery of local RFs requires (or is much enhanced by) starting from the full dense

architecture (as one-shot pruning, IMP, and L1 weight regularisation all are).

A4: L1 regularisation is able to find increased localised RFs and non-Gaussian pre-

activation statistics, like IMP, but RigL is not.

4.5 Discussion

In this work, we took the first step to addressing the question of how the statistics of

the preactivations evolve as FCNs, trained on standard computer vision benchmark data

sets, develop embedded local RFs. As predicted from the theory developed by Ingross

and Goldt (2022), we find increasingly non-Gaussian statistics of the preactivations ac-

companying increases in embedded locality (Fig. 4.2). This signal is further strengthened

by the use of IMP (Fig. 4.4), whereby recursively rewinding and pruning leads to the re-

moval of weights that support Gaussian statistics of the preactivations. Importantly, this

improvement comes not just from sparsity or increased training, but from information

that is gained by identifying how the FCN weights are coupled together.

We additionally expanded on the work done by Pellegrini and Biroli (2022), studying

the dependence on the localisation using data beyond ImageNet32 (Fig. 4.3) and sparsi-

fication beyond IMP, SNIP [307], and SynFlow [308] (Fig. 4.5). We find that L1 weight

regularisation leads to increased localisation, via an increase in preactivation kurtosis, as

well as via mechanisms related to the continuous sparsification (Fig. 4.6 of Sec. 4.3.5).

RigL [252], while a powerful framework to train sparse DNNs, is not able to discover

local RFs, and sees no increase in preactivation kurtosis.

Limitations. This work is the first to study the statistics of internal representations

during local RF formation embedded within general FCNs trained on computer vision
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tasks, as well as the first to study how IMP affects these representations. While the

results are consistent with the theory developed by Ingrosso and Goldt (2022), which

proved that the local RF formation was driven by the non-Gaussian distribution of

preactivations, in this extended setting, no such proof of causality exists. We view this

as an important direction for the future. We additionally recognize that our definition of

locality, namely the σx and σy, fitted on S(d), is not the only possible measure. Finally,

while an explicit goal of ours was to connect the works of Pellegrini and Biroli (2022)

and Ingrosso and Goldt (2022), both of which studied FCNs on computer vision tasks,

this necessarily limited our scope. We believe future exploration of how the structure

that emerges in other network architectures, on other tasks, depends on the internal

representations, is an exciting direction motivated by this work (we discuss this more

below). Finally, our failure to find local RFs using RigL could be due to the fact that

there are a number of hyper-parameters that must be tuned, of which we explored only

part of the combinatorial space. Additionally, even if RigL is not able to find local RFs,

there a number of other DST methods that exist, whose ability to find local RFs should

be tested (we discuss this more below).

Beyond FCNs. While the work has been focused exclusively on FCNs trained on su-

pervised learning computer vision tasks, there exist other settings where localised RFs

emerge. These include unsuperivsed learning [125], multi-layer perceptrons (MLP) mixer

[?], and vision transformers [266]. A natural question to ask is whether the framework de-

veloped in Ingrosso and Goldt (2022) [128], and extended here, holds in such cases. That

is, are increasing deviations from Gaussian distributions in the statistics of the internal

representations, a necessary ingredient in localisation? Evidence of the answer being an

affirmative, especially in contexts beyond computer vision, would greatly improve the

field’s understanding of how to learn useful structure in general tasks.
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Figure 4.7: Localisation of RFs and increase in non-Gaussian statistics of
preactivations both rely on statistics of data in unsupervised learning task.
(A)-(B) RFs learned when applying unsupervised learning on CIFAR-10 and GP CI-
FAR-10, respectively, with L1 penalty λ = 0.005. (C) Median normalized preactiva-
tion kurtosis, as a function of training time. Solid line denotes mean, and shaded area
denotes minimum and maximum, across three independent seeds.

While studying this problem is beyond the scope of this paper, we demonstrate that

some of the key observations of this paper hold in the case of unsupervised learning

[125] (Fig. 4.7). In particular, we find that, while L1 regularisation (on the activations,

not the weights) enables the discovery of Gabor-esque filters from CIFAR-10 data, it is

not sufficient when the data is the Gaussian clone of CIFAR-10 (Fig. 4.7A, B). This

emphasizes the point made earlier (Fig. 4.3) that the data must be itself sufficiently

non-Gaussian for local RFs to emerge. Additionally, we find that the non-Gaussanity of

the preactivations increases only in the case where local RFs are found (Fig. 4.3C).

Lessons for sparse machine learning. We end by noting that our work suggests

several fruitful directions for the sparse machine learning community. First, our failure

to find local RFs when using RigL motivates the question, when (if at all) do IMP and

dynamic sparse training methods learn the same structure? Secondly, our result showing

that the degree of locality discovered by IMP depended on the data set (Fig. 4.3),
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as well as Pellegrini and Biroli’s (2022) result that locality was reduced when training

on a smaller percentage of ImageNet32 [127], make us question whether attempts to

discover winning tickets with less data [309, 275] may lead to less sparse subnetworks

with less structure. Finally, identifying whether structure in the IMP masks found on

large, complex data sets is what enables for transfer on downstream, smaller data sets

[269, 270, 272] could provide a mechanistic explanation for the “universality” of some

winning tickets. Addressing these questions will lead to additional research avenues and

increase what the community has learned from studying sparse machine learning [310].
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Conclusion

“This looks like the way to

Zanesville, Ohio”

Aunt Denise (1972)

5.1 Summary

5.1.1 Optically Accessing the Transverse Plane of the

Hippocampus

The circuit level mechanisms that enable the hippocampus (HPC) to support critical

cognitive functions, such as episodic [90, 91] and spatial [21] memory has remained un-

clear, despite decades of study. A major contributor to this is the complex anatomy of the

HPC, which distributes the principal subregions (CA1, CA3, and DG) across a curved

volume of tissue that extends both dorsoventrally and medialaterally (see green region

in Fig. 2.1A). This has challenged experimental paradigms, making it difficult (or im-

possible) to record neural from multiple subregions simultaneously, to identify structural

112



Conclusion Chapter 5

components of the circuit (e.g., dendritic spines on the apical dendrites), and to unequiv-

ocally identify distinct cell types (e.g., mossy and granular DG neurons, pyramidal and

inter-neurons).

By developing a novel approach, via the implantation of microperiscopes that respect

the geometry of the mouse HPC, we were able to circumvent these limitations. In par-

ticular, we were able to resolve and track spines on the apical dendrites of CA1 neurons

(Figs. 2.4, 2.6, and 2.7) and record neural activity, simultaneously, across the HPC circuit

2.8, 2.9, and 2.13).

Leveraging our microperiscopes, we were able to show that there are populations of

stable and unstable spines on apical dendrites, in similar proportion to what has been

observed on basal dendrites [174], and that there is inhomogeneity in spatial encoding

along the CA1-DG axis, in-line with electrophysiological recordings in distinct animals

[29, 30, 31]. These results demonstrate how the microperiscope is a powerful addition

to the existing neurophysiological toolkit used to study HPC function, and we proposed

several ways in which it could be further used for chronic structural and functional

measurements across the entire transverse HPC circuit.

5.1.2 Identifying Variability in Grid Spacing and Orientation

in Individual Grid Modules

The discovery that grid cells (GCs) along the dorsoventral axis in medial entorhinal

cortex (mEC) are organized into modules, with each module having GCs of similar grid

spacing and orientation [6, 55], has led to the assumption that activity from GCs present

in multiple modules must be integrated across in order for local spatial information to

be decoded [73, 56, 57, 58, 59, 60]. However, the extent to which GCs in an individual

module contain the same grid properties, has not been quantified.
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By analyzing data from recent state-of-the-art mEC recordings [72], we found that

the distribution of grid spacing and orientation covered a range of values (Fig. 3.1).

evidence for variability in grid spacing and orientation that was more robust than what

would be expected by from noise (Figs. 3.2). This property was consistent across choices

made in the analysis (Fig. 3.4) and when considering each grid field independently 3.6).

While the observed variability was small (on the order of centimeters and degrees),

modeling analysis showed a large increase in the ability to encode local spatial informa-

tion, as compared to populations of GCs with fixed spacing and orientation (Fig. 3.7).

These results challenge the field to answer the question of why are there multiple grid

modules?

5.1.3 Studying the Statistics of Neural Network Representa-

tions During the Formation of Local RFs

Neurons that belong to functional classes characterized by activity that is local (with

respect to some set of stimuli – e.g., physical position, retinal position), such as PCs, GCs,

and visually tuned neurons in visual cortex, contain several advantages, from a coding

perspective. First, they respect certain key symmetries, such as translational invariance.

Second, they are robust to noise, and enable error correction mechanisms. And third,

they enable hierarchical association. While local receptive fields (RFs) appear to be

hard-wired in the early stages of the visual system, PCs and GCs develop over the course

of development [78, 79], and the emergence of individual PCs depend on experience, as

well as underlying physiological properties [114, 163]. Many models exist that lead to

the learning of PCs and GCs [131, 132, 133, 66, 73, 134, 135, ?, 67, 136, 137, 138, 69,

139, 140, 141, 61, 142, 143, 63, 81, 82, 64, 107, 83, 65], but what common mechanisms

exist between them all, remains unclear.
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Recent work has suggested that a generic driver of local RF formation could be non-

Gaussian statistics present in data [128]. Examples of this include sharp luminosity

changes, which feature contours and edges, in the context of images. While this work

was performed when studying artificial neural networks, trained on synthetic data, given

that most real-world data is distributed in ways that contain non-Gaussian features, such

a mechanism could apply more generally. The first step in validating that this could be

the case, was to address why, in the case of training FCNs on natural images, instead of

synthetic data, no local RFs emerge.

One explanation is that local RFs emerge only in an embedded form [127]. That

is, pruning must be performed in order for this structure to be resolved. We show that

during the formation of the embedded local RFs, the “non-Gaussianity” of the data

indeed plays an important role (Fig. 4.2), just as it did in the case of the synthetic data

[128]. Further, we find that the data set used to train, as well as the training’s associated

hyper-parameters, play an important role in shaping the amount of non-Gaussanity that

can be extracted during training (Fig. 4.3). The use of iterative magnitude pruning

(IMP) [250, 251] amplifies the non-Gaussian structure of the data (Fig. 4.4), as does L1

regularisation of the FCN weights (Fig. 4.5). Collectively this suggests that sparsity can

play a powerful role in the statistics of the network internal representations. We find

evidence that this framework holds even in the context of unsupervised learning [125]

(Fig. 4.7).
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5.2 Future Directions

5.2.1 Circuit Level Computations in HPC

While considerable experimental and theoretical work has established distinct func-

tional roles for each of the major subregions of the HPC, these roles have not always found

support in more recent experiments, most particularly those in CA3 and DG [311, 198].

To better establish what computations each of these subregions are performing, for a

given task, a necessary step is to be able to simultaneously record neural activity across

the HPC circuit.

Our developed microperiscope (Chapter 2) enables such an experimental approach.

Combining opto- and chemo-genetical with the microperiscope will further enable high

levels of control of the HPC. A particularly exciting avenue of future work would be to

optogenetically manipulate DG spiking activity, which has been found to control HPC

function [312], and monitor the effects on neural activity in CA3 and CA1.

5.2.2 The Role of Multiple Grid Modules

By showing that individual grid modules, via the heterogeneity present in their grid

properties, can encode considerable information about local space (Chapter 3), the ques-

tion of why there exist multiple grid modules must be answered. One possibility is that

GCs are utilized more generally than for just path integration [105, 111]. In such a

case, a desirable property of a generalized coding scheme would be the ability to form

hierarchical representations, which provide computational benefits [313, 314].

Such an organization has recently been found in the activity of PCs of CA1 in large

environments [27]. Given that grid fields increase in their size across grid modules, this

is a natural feature of a grid code with multiple modules. Additionally, given the inter-
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connectivity between HPC and mEC, multiple modules may be useful for driving PCs

with multiple place fields in large environments [22, 23, 24, 25, 26]. Whether heterogeneity

in GC properties, within single grid modules, can enhance this, is an interesting question

to address in future work.

5.2.3 Continuous Attractor Networks that Can Support Het-

erogeneity in Grid Properties

A major goal of work on the grid cell circuit has been the identification of the circuit

level mechanism that allows for stable, multi-field representations. To this end, the

success of continuous attractor neural network (CANN) models to show the capacity for

path integration [67, 315], as well as extensive experimental support [70, 71, 236, 72] has

led this model as the canonical model.

However, such CANN models require specific wiring, and the reported variability

in grid field firing [87, 231] has proven challenging to adapt to CANNs (although see

[?]). How our additional discovery of heterogeneity in the distribution of grid properties

in individual grid modules (Chapter 3) can be supported in CANNs, without highly

restrictive wiring, is unclear. A straightforward next step would be to examine whether

recurrent neural network (RNN) models that have developed GC properties [82, 81, 64,

315] also see variability in grid properties. Examination for variability in another recently

proposed mechanism for the establishment of GCs [65] should also be performed.

We view this general research program as synergistic with other work that has sought

to understand why and how non-GC spatially modulated cells emerge [316].
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5.2.4 A Causal Link between Non-Gaussian Preactivations and

Local RFs

While our results on studying the statistics of the internal representations of FCNs

during the formation of local RFs shows correlation between locality and the pres-

ence/degree to which non-Gaussian statistics emerge (Chapter 4), we have yet to establish

causality. In addition to extending the theory developed in the case of synthetic images

where local RFs emerge without the need of pruning [128], we can probe this causal-

ity by performing experiments where the weights that lead the most to non-Gaussian

internal representations are removed at each iteration. Should this lead to strong local

RFs, this would be evidence for a causal link. Additionally, control experiments, where

the weights that contribute the most to Gaussian internal representations are removed,

should be performed.

Additionally, identifying what elements of the training dynamics encourage or sup-

press local RF formation would be an interesting avenue of future work. This could

be achieved by utilizing a dynamical systems theoretic framework, such as Koopman

operator theory [317, 318, 319, 320, 321, 322, 323], whose spectral objects and linear

representation have enabled the acceleration, optimization, and analysis of deep neural

networks [324, 325, 326, 327, 328, 284, 329, 330, 331, 332].

5.2.5 Non-Gaussian Inputs, Excitatory and Inhibitory Plastic-

ity, and the Formation of place fields

Our results supporting the role of non-Gaussian statistics for local RF formation in

FCNs trained on computer vision motivate the question, “how far can this be extended?”

Of particular interest is whether biologically plausible neural network models for the for-

mation of PCs exhibit a similar increase in the statistics of their internal representations.
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We note that some of these recent models have placed importance on inhibitory, as well

as excitatory, plasticity [63, 107]. Weber and Spreckler (2018) specifically showed that

the relative smoothness between the excitatory and inhibitory inputs, in a spiking neural

network with spike-time dependent plasticity, determined what functional responses the

downstream neuron would develop. These included PCs, GCs, and head direction cells.

We speculate that inhibitory inputs, modulated via plasticity mechanisms, may deter-

mine the overall statistics of inputs into real neurons [333]. If the inputs are sufficiently

non-Gaussian, then representations such as place fields may emerge. We note that, if the

resulting distribution is broader than a Gaussian (i.e., its kurtosis is less than 3, as is the

case of a uniform distribution), the resulting phenomenon of over-dispersion [334].

5.3 Conclusion

The brains remarkable ability to store and manipulate information has fascinated

scientists and scholars for millennia. A brain region integral to this capability is the

hippocampal formation, whose composite structure, diverse morphology, and loop net-

work architecture, endow it with a high computational capacity to support such critical

cognitive processes. Despite decades of work revealing aspects of the neurophysiology of

the hippocampal formation, the circuit level mechanisms used are poorly understood. In

this thesis, we present new tools and perspectives for understanding the important open

question, at the heart of neuroscience.
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Maloine, volume 2 ed., 1911.

[146] P. E. Gilbert, R. P. Kesner, and I. Lee, Dissociating hippocampal subregions: A
double dissociation between dentate gyrus and ca1, Hippocampus 11 (2001)
626–636.

[147] I. Lee, D. Yoganarasimha, G. Rao, and J. J. Knierim, Comparison of population
coherence of place cells in hippocampal subfields ca1 and ca3, Nature 430 (7,
2004) 456–459.

[148] T. J. McHugh, M. W. Jones, J. J. Quinn, N. Balthasar, R. Coppari, J. K.
Elmquist, B. B. Lowell, M. S. Fanselow, M. A. Wilson, and S. Tonegawa, Dentate
gyrus nmda receptors mediate rapid pattern separation in the hippocampal
network, Science 317 (7, 2007) 94–99.

131



[149] T. Nakashiba, J. D. Cushman, K. A. Pelkey, S. Renaudineau, D. L. Buhl, T. J.
McHugh, V. R. Barrera, R. Chittajallu, K. S. Iwamoto, C. J. McBain, M. S.
Fanselow, and S. Tonegawa, Young dentate granule cells mediate pattern
separation, whereas old granule cells facilitate pattern completion, Cell 149 (3,
2012) 188–201.

[150] M. A. Kheirbek, L. J. Drew, N. S. Burghardt, D. O. Costantini, L. Tannenholz,
S. E. Ahmari, H. Zeng, A. A. Fenton, and R. Henl, Differential control of learning
and anxiety along the dorsoventral axis of the dentate gyrus, Neuron 77 (2013)
955–968.

[151] J. P. Neunuebel and J. J. Knierim, Ca3 retrieves coherent representations from
degraded input: Direct evidence for ca3 pattern completion and dentate gyrus
pattern separation, Neuron 81 (1, 2014) 416–427.
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[322] I. Mezić, Koopman operator, geometry, and learning of dynamical systems, Not.
Am. Math. Soc 68 (2021), no. 7 1087–1105.
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