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Context effects occur when a choice between 2 options is altered by adding a 3rd alternative. Three major
context effects—similarity, compromise, and attraction—have wide-ranging implications across applied
and theoretical domains, and have driven the development of new dynamic models of multiattribute and
multialternative choice. We propose the multiattribute linear ballistic accumulator (MLBA), a new
dynamic model that provides a quantitative account of all 3 context effects. Our account applies not only
to traditional paradigms involving choices among hedonic stimuli, but also to recent demonstrations of
context effects with nonhedonic stimuli. Because of its computational tractability, the MLBA model is
more easily applied than previous dynamic models. We show that the model also accounts for a range
of other phenomena in multiattribute, multialternative choice, including time pressure effects, and that it
makes a new prediction about the relationship between deliberation time and the magnitude of the
similarity effect, which we confirm experimentally.
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We often have to choose among multiple options, each with
several attributes, such as when purchasing a car, where one option
might have better gas mileage but another might require less
maintenance. These types of decisions can be subject to “context
effects,” whereby a choice between two options is affected by the
introduction of a third option. For example, an initial preference
for a low-maintenance car with inferior gas mileage over a higher
maintenance car with good gas mileage could be reversed when a
third car with moderate gas mileage and high maintenance is also
considered.

Three major context phenomena are the similarity (Tversky,
1972), attraction (Huber, Payne, & Puto, 1982), and compromise
(Simonson, 1989) effects. These three effects are demonstrations
of how preferences for two existing alternatives can be influenced
by the inclusion of a third new option. The attraction effect occurs
when two original choices are augmented with a dominated option
(i.e., a new option that is slightly worse than one of the original

options) and the probability of selecting the better, dominant
alternative increases. The similarity effect arises from the intro-
duction of an option that is similar to, and competitive with, one of
the original alternatives, and causes a reduction in the probability
of choosing the similar alternative. The compromise effect occurs
when there is an enhancement in the probability of choosing an
alternative that becomes the intermediate option when a third
extreme option is added.

Beyond their practical implications for areas such as consumer
choice, the three effects are important for theories of preference
because they violate the property of simple scalability (Krantz,
1964; Tversky, 1972). Simple scalability is a property of most
utility models used to study choice behavior, including Luce’s
(1959) ratio of strengths model. Hence, developing a single theo-
retical framework able to accommodate all three effects is a
significant challenge.

Proposals addressing this challenge have involved dynamic pro-
cesses, that is, models that account for the time to make choices
(deliberation time) as well as the choices that are made. Over the
last decade, several dynamic models have been proposed, in par-
ticular, multialternative decision field theory (MDFT; Roe, Buse-
meyer, & Townsend, 2001) and the leaky competing accumulator
(LCA) model (Usher & McClelland, 2004). Although these mod-
els have provided great insight into multialternative choice behav-
ior, they are not without flaws. First, they are difficult to fit to data
because they require computationally intensive simulations. As a
result, evaluation of these models has rested almost entirely on
qualitative analyses, such as demonstrating the presence of all
three effects with the same set of parameters. Thus, it is unclear
whether the models can actually provide a quantitative account of
human behavior, although decision field theory has been fit to
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human data involving two alternatives (Busemeyer & Townsend,
1993).

Besides computational issues, the LCA model is also limited in
scope by its use of loss aversion to explain the attraction and
compromise effects. The loss aversion hypothesis applies to high-
level decision-making tasks where the options have hedonic attri-
butes, such as consumer products with attributes of price and
quality. The LCA model assumes that decision makers are partic-
ularly averse to losses of such quantities. However, recent studies
have demonstrated the three context effects using nonhedonic
stimuli, such as with perceptual choices about size (Trueblood,
Brown, Heathcote, & Busemeyer, 2013). It is difficult to imagine
how loss aversion could apply to such stimuli, where the concept
of “loss” is not easily imagined. This suggests that context effects
might be a general feature of choice behavior, not due to loss
aversion.

We introduce a new dynamic account, the multiattribute linear
ballistic accumulator (MLBA) model, as an alternative framework
for modeling multialternative choice. Unlike MDFT and the LCA
model, the MLBA model has an analytic likelihood function,
making it easier to fit to experimental data. It differs from the other
dynamic models by not including moment-to-moment random
variations in preference, and it is also based on a new psycholog-
ical theory about context effects that does not rely on loss aversion,
so it naturally applies to both hedonic and nonhedonic choices. The
MLBA model explains context effects through a front-end com-
ponent that transforms choice stimuli into selection tendencies and
a back-end process that transforms these tendencies into overt
choices. The computational tractability of the MLBA means that it
can easily be fit to data from individual subjects. This tractability
arises mainly from the simplifying assumption that moment-by-
moment randomness does not play an important role in decision
processes—an assumption borne out by recent model comparisons
in the response time literature (Donkin, Brown, Heathcote, &
Wagenmakers, 2011).

In the first two sections of this article we describe the three
context effects and discuss recent experimental results demonstrat-
ing these effects in inference (Trueblood, 2012) and perceptual
(Trueblood et al., 2013) tasks. We then review MDFT and the
LCA model and present the new MLBA model, outlining the
similarities and differences between the three models. In the sub-
sequent section we present qualitative analyses of the MLBA
model and show that it makes a new prediction about the relation-
ship between the magnitude of the similarity effect and delibera-
tion time, which we support with experimental evidence. The
remaining sections are devoted to quantitative analyses using the
inference and perceptual context-effect data.

Three Context Effects

The three context effects are laboratory demonstrations of intu-
itively plausible ways in which our preferences for existing alter-
natives can be altered by the introduction of new alternatives.
Suppose there are two options in some choice and that these are
almost equally attractive. If a third option is introduced that is very
similar to one of the existing two, the existing similar option
becomes less attractive—intuitively, because it has to “share”
space with the new, similar alternative. This is the similarity effect.
If, instead, the new third alternative is set up to make one of the

two existing alternatives appear as a compromise between the
other two options, then that compromise alternative becomes more
attractive than previously—this is the compromise effect. Finally,
if a third alternative is introduced that is quite like an existing
alternative, but just a bit poorer, it makes that better alternative
seem even better than it used to—the attraction effect.

The usual task used to examine these three standard context
effects—attraction, similarity, and compromise—has choices
among three alternatives that have two attributes each. In a typical
consumer goods decision task, for example, subjects might be
asked to choose among cars that vary on two attributes: price and
quality. Figure 1 graphically represents the options by plotting
price against quality.

The three context effects are sometimes studied using choices
between two options at a time (binary choices), and other times
using choices between three options (ternary choices). We discuss
the effects in terms of the latter method as it is used in the studies
we address. The all-ternary method also tends to produce larger
effect sizes (Wedell, 1991).

The Attraction Effect

The attraction effect enhances the probability of choosing an
option by introducing a similar, but inferior (“decoy”) option
(Choplin & Hummel, 2005; Huber et al., 1982; Maylor & Roberts,
2007). Consider the choice set {X, Y} and the decoy RX, which is

Figure 1. The various options producing context effects plotted in a
two-dimensional space defined by two attribute values such as price and
quality. The basic choice set includes three options: X, Y, and Z. Options
labeled R, F, and RF refer to attraction decoys, where R represents range
decoys, F represents frequency decoys, and RF represents range–frequency
decoys. Options labeled S refer to similarity decoys, and options labeled C
refer to compromise decoys. Although the figure shows all the different
kinds of stimuli used in different conditions, only three of the stimuli are
ever used in any single choice set.
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similar but inferior to X. The attraction effect occurs when people
show a stronger preference for option X when it is presented along
with its inferior comparison (RX) than otherwise. The attraction
effect can similarly be demonstrated for option Z, by introducing
the inferior decoy RZ. Formally, the attraction effect occurs when
the probability of choosing X is greater when the decoy favors X as

compared to when it favors Z, and vice versa: Pr[X | {X, Z, RX}] �

Pr[X | {X, Z, RZ}] and Pr[Z | {X, Z, RX}] � Pr[Z | {X, Z, RZ}].
In the attraction effect experiments by Trueblood (2012) and

Trueblood et al. (2013), three types of decoys were tested: range,
frequency, and range–frequency (Huber et al., 1982). The place-
ment of these decoys in the attribute space is illustrated in Figure
1. The range decoy (R) refers to an option that is a little weaker
than the focal alternative on the focal alternative’s weakest attri-
bute. (Throughout, we use the term focal to refer to the option that
is enhanced by the presence of the decoy.) The frequency decoy
(F) refers to an option that is a little weaker than the focal
alternative on the focal alternative’s strongest attribute. The range–
frequency decoy (RF) combines both a range and frequency ma-
nipulation. The three types of decoys are important because pre-
vious research has demonstrated that they result in attraction
effects with different magnitudes (Huber et al., 1982).

The Similarity Effect

The similarity effect occurs when a competitive option (i.e., an
option that is worse on one attribute but better on another) that is
similar to one of the existing alternatives is added to the choice set
and the probability of selecting the dissimilar option increases
(Maylor & Roberts, 2007; Tsetsos, Usher, & McClelland, 2011;
Tversky, 1972). Consider the choice set {X, Y} and two decoys, SX

and SY1, where SX is similar to X and SY1 is similar to Y, as
illustrated in Figure 1. The similarity effect occurs when the
probability of choosing X is greater when the decoy is similar to Y

as compared to when it is similar to X, and vice versa: Pr[X | {X,
Y, SX}] � Pr[X | {X, Y, SY1}] and Pr[Y | {X, Y, SX}] � Pr[Y | {X,
Y, SY1}].

The Compromise Effect

The compromise effect occurs if an option is made more attrac-
tive when presented as a compromise between the other alterna-
tives in the choice set compared to when it appears to be an
extreme alternative (Pettibone & Wedell, 2000; Simonson, 1989).
Consider a choice set {Y, Z} along with options X and CZ, where
X is an extreme option that makes Y assume the middle ground and
CZ is an extreme option that makes Z assume the middle ground,
as illustrated in Figure 1. Between these two choice sets, the option
Y changes from a compromise to an extreme position. The com-
promise effect occurs when the probability of choosing Y is greater
when Y appears as a compromise rather than an extreme alterna-

tive, and vice versa: Pr[Y | {X, Y, Z}] � Pr[Y | {Y, Z, CZ}] and
Pr[Z | {X, Y, Z}] � Pr[Z | {Y, Z, CZ}].

Violations of Simple Scalability

All three effects violate the simple scalability property (Krantz,
1964; Tversky, 1972), which underlies most of the utility models
used to study choice behavior including Luce’s (1959) ratio of

strengths model. In the ratio of strengths model, the probability of
selecting a particular option is simply the strength s of the option
divided by the sum of the strengths of all of the options:

Pr[X | {X, Y, Z}] �
s(X)

s(X) � s(Y) � s(Z)
.

To demonstrate a violation, consider the attraction effect. Ac-

cording to the simple scalability property, the inequality Pr[X | {X,
Z, RX}] � Pr[X | {X, Z, RZ}] implies that the strength of RX is less
than the strength of RZ. However, the inequality Pr[Z | {X, Z,
RX}] � Pr[Z | {X, Z, RZ}] implies that the strength of RZ is less
than the strength of RX. Because these two statements cannot both
be true, the property is violated. Similar arguments apply to the
similarity and compromise effects.

Previous Experimental Findings

The study of multialternative context effects began with Tver-
sky’s (1972) work on the similarity effect. Tversky was interested
in demonstrating the inadequacy of the simple scalability property
in accounting for multialternative choice behavior. He developed a
series of three experiments examining the similarity effect in
different domains. The first experiment examined the effect in
perception, where participants were shown squares containing
random dot patterns and asked to choose the square with the most
dots. In the second experiment, participants were asked to select
the most promising college applicant based on attributes of intel-
ligence and motivation. In the third experiment, participants were
asked to choose among two-outcome gambles where the attribute
values were the probability of winning and the amount that could
be won.

Tversky’s (1972) perceptual experiment failed to produce a
reliable similarity effect, whereas the remaining two experiments
produced reliable effects. Tversky concluded that the psychophys-
ical stimuli were perceived holistically, and that perceptual choices
followed the simple scalability property. Tversky explained the
similarity effect in the second and third experiments via his “elim-
ination by aspects” theory. However, this theory (and other con-
temporary theories: Hausman & Wise, 1978; McFadden, 1980)
predicted that choices should always obey the regularity principle:
the principle that adding extra options to a choice set must always
decrease the choice probability for existing options.1 Huber et al.
(1982) were interested in demonstrating that choices among con-
sumer products could produce a violation of this principle. This
work was the first to show that adding an option to a choice set can
increase the probability of choosing an alternative from the orig-
inal set. This result later became known as the attraction effect.
Following the work of Huber et al., Simonson (1989) developed
new experiments demonstrating the attraction and compromise
effects in consumer products.

Since the experimental work by Simonson (1989), there have
been numerous studies demonstrating context effects in high-level
decision tasks were alternatives have hedonic attributes. These
studies include choices among consumer products both in the

1 Formally, the regularity principle states that for an option X � W � U,
the probability of selecting X out of W cannot be less than the probability
of selecting X out of U.
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laboratory (Pettibone & Wedell, 2000) and with real in-store
purchases (Doyle, O’Connor, Reynolds, & Bottomley, 1999),
choices among candidates in elections (Pan, O’Curry, & Pitts,
1995), choices among gambles (Wedell, 1991), likelihood judg-
ment problems (Windschitl & Chambers, 2004), selection of mates
(Sedikides, Ariely, & Olsen, 1999), and hiring decisions (High-
house, 1996). Although there has been extensive research on
context effects in high-level tasks with hedonic attributes, there has
been much less work in examining the existence of these effects in
high-level tasks where the attributes are nonhedonic. One study
that has explored this issue was an episodic memory experiment
conducted by Maylor and Roberts (2007), which demonstrated
both attraction and similarity effects. There is also little experi-
mental work examining context effects in low-level tasks. Choplin
and Hummel (2005) found the attraction effect with ovals and line
segments in a similarity judgment paradigm. Also, Tsetsos et al.
(2011) and Tsetsos, Chater, and Usher (2012) obtained the attrac-
tion and similarity effects using psychophysical stimuli, providing
the first evidence of the similarity effect with perceptual stimuli
since Tversky’s (1972) unsuccessful attempt. These two studies
involved the presentation of sequential information and reducing
the possibility of holistic processing.

Although these studies have added to our understanding of
context effects, the evidence for context effects in high-level tasks
with nonhedonic attributes and in low-level tasks is scanty and
distributed across different experimental paradigms and different
subject populations (see Table 1 for a summary of the experimen-
tal results). Only recently has there been experimental evidence
that all three context effects can arise in the same nonhedonic
paradigm. These recent experiments show that all three effects can
be obtained in both an inference task (Trueblood, 2012) and a
simple perceptual decision-making task (Trueblood et al., 2013).
These results suggest that context effects are a general property of
human choice behavior, and so are important outside the field of
consumer decision making and may be important for theories of
memory and categorization.

Inference Context Effects Experiments

Trueblood (2012) developed an inference paradigm involving
decisions about criminal suspects to examine attraction, similarity,
and compromise effects. In this paradigm, participants were asked
to infer which of three suspects was most likely to have committed
a crime based on two eyewitnesses. The evidence from each
eyewitness was given a strength rating ranging from 0 (very weak
evidence for guilt) to 100 (very strong evidence for guilt). The
three suspects were the choice options, and the two eyewitness
strengths were the attributes. For example, a single choice set
might be strength ratings of 64 (Eyewitness 1) and 32 (Eyewitness
2) for Suspect 1, strength ratings of 33 (Eyewitness 1) and 63
(Eyewitness 2) for Suspect 2, and strength ratings of 62 (Eyewit-
ness 1) and 30 (Eyewitness 2) for Suspect 3.

Three experiments were conducted where each effect was tested
separately. In each experiment, subjects completed 240 trials, half
of which were filler trials used to monitor participants’ accuracy.
In each experiment, the trials used to test for a context effect were
subdivided so that the decoy was similar to one alternative for
some trials and similar to the other alternative for other trials. With
the labels from Figure 1, the attraction effect was analyzed by
comparing the range choice sets {X, Z, RX} and {X, Z, RZ}, the
frequency choice sets {X, Z, FX} and {X, Z, FZ}, and the range–
frequency choice sets {X, Z, RFX} and {X, Z, RFZ}. The similarity
effect was tested using four ternary choice sets: {X, Y, SX}, {X, Y,
SY1}, {Y, Z, SZ}, and {Y, Z, SY2}. The first two choice sets in the
previous list provided one evaluation of the similarity effect, and
the second two choice sets provided a second evaluation of the
effect. This allowed the effect to be tested in different ranges of
the attribute space. The compromise effect was examined using the
sets {CX, X, Y}, {X, Y, Z}, {Y, Z, CZ}.

All three experiments produced the intended effects. In the
attraction experiment, the mean choice probability for the focal
alternative averaged across range, frequency, and range–frequency
decoys was approximately .53, as compared to .40 for the nonfocal

Table 1
Summary of Previous Research on Context Effects

Study Stimuli Attraction Similarity Compromise

Tversky (1972) Candidates X
Gambles X

Huber et al. (1982) Consumer goods X
Simonson (1989) Consumer goods X X
Wedell (1991) Gambles X

Consumer goods X
Pan et al. (1995) Candidates X
Highhouse (1996) Job candidates X
Doyle et al. (1999) Consumer goods X
Sedikides et al. (1999) Mates X
Pettibone & Wedell (2000) Consumer goods X
Choplin & Hummel (2005) Perceptual objects X
Maylor & Roberts (2007) Past events X X
Tsetsos et al. (2011) Perceptual objects X
Trueblood (2012) Inference X X X
Tsetsos et al. (2012) Perceptual objects X X
Trueblood et al. (2013) Perceptual objects X X X

Note. A successful demonstration of an effect is denoted by an X. Empty cells represent studies that did not
examine a particular effect.
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alternative. In the similarity experiment, the mean choice proba-
bility for the focal alternative was approximately .51, as compared
to .31 for the nonfocal alternative. In the compromise experiment,
the mean choice probability for the compromise alternative was
approximately .48, as compared to .38 for the extreme alternative.
All findings were statistically significant.

Perceptual Context Effects Experiments

In Trueblood et al. (2013) the three context effects were exam-
ined using a simple perceptual decision-making task: judging
which of three rectangles had the largest area, with the rectangles’
heights and widths acting as the two attributes. As in the inference
experiments just discussed, three experiments were conducted
testing the effects separately. In each experiment, participants
completed 720 trials including filler trials used to assess accuracy.

As in the inference experiments, the trials used for testing a
particular context effect were subdivided so that the decoy was
similar to one alternative for some trials and similar to the other
alternative for other trials. As before, three versions of the attrac-
tion effect corresponding to the three decoys (range, frequency,
and range–frequency) were tested. The similarity effect used four
ternary choice sets, where two choice sets tested the effect when
width was greater than height and two choice sets tested the effect
when height was greater than width. The compromise effect was
tested using two choice sets, {X, Y, Z} and {Y, Z, CZ}, where all
of the rectangles had equal area but height X � height Y � height
Z � height CZ.

All three perceptual experiments produced the expected effects.
In the attraction experiment, the range decoy produced the stron-
gest effect, with a mean choice probability for the focal alternative
of approximately .51, as compared to .46 for the nonfocal alter-
native. In the similarity experiment, the mean choice probability
for the focal alternative was approximately .37, as compared to .32
for the nonfocal alternative. In the compromise experiment, the
mean choice probability for the compromise alternative was ap-
proximately .42, as compared to .40 for the extreme alternative.
Although the magnitudes of the effects were small, all were
statistically reliable. Further, the effects were reliable at an
individual-subject level, with between 60% and 70% of partici-
pants demonstrating the effects at an individual-subject level.

Theoretical Implications

The experimental work by Trueblood (2012) and Trueblood et
al. (2013) shows that the three standard context effects from the
consumer choice literature also occur in inference and perceptual
choice tasks, and demonstrate the need for a unified account
of context effects across domains. The experiments suggest that
these context effects are a general feature of human choice behav-
ior because they are a fundamental part of decision-making pro-
cesses. Since the effects violate the property of simple scalability,
they appear to illustrate a fundamental way in which cognition
differs from rational judgment, providing an ongoing problem of
interest for cognitive science.

There are two prominent models that explain the effects by
postulating dynamic processing: multialternative decision field
theory (MDFT; Roe et al. 2001) and the leaky competing accu-
mulators (LCA) model (Usher & McClelland, 2004). Both models

assume that there is a single set of cognitive principles that
underlie the effects. The inference and perceptual experiments
discussed above confirm this assumption by demonstrating that the
three effects can arise in the same experimental paradigm. Al-
though MDFT and the LCA model share many features, a key
difference between them is that only the LCA model accounts for
the attraction and compromise effects using loss aversion. Loss
aversion is the assumption that losses impact the choice process
more than equivalent gains (Tversky & Kahneman, 1991; Tversky
& Simonson, 1993).

The existence of all three context effects in inference and
perception calls into question the loss aversion explanation. In
these experiments, the attributes are nonhedonic, and there is no
notion of gains or losses on which loss aversion could operate. It
might be possible to reinvent the LCA’s assumption of loss aver-
sion as an asymmetric weighting of advantages and disadvantages
(rather than losses and gains): a “disadvantage aversion” assump-
tion. Although the assumption of disadvantage aversion might
allow the LCA to predict context effects for perceptual choices, it
is premature to accept this assumption as a replacement for loss
aversion, because it has not been established how this change
influences the LCA’s account for the well-established context
effects using traditional consumer choices.

Although the LCA model uses loss aversion to account for
the attraction and compromise effects, MDFT accounts for
these effects by comparing options along dominance and indif-
ference dimensions (Hotaling, Busemeyer, & Li, 2010). This
explanation is able to generalize to multiple domains including
inference and perception because differences in attribute values
are not arbitrarily weighted. Instead, an option’s relevance is
determined by whether it is viewed as dominated or indifferent
to other options in the choice set. Even though MDFT provides
a parsimonious and general explanation of context effects, it
still requires computationally intensive simulations and is dif-
ficult to fit to data from multialternative choice experiments. In
the following sections, we provide an overview of both MDFT
and the LCA model and discuss their strengths and weaknesses.

Previous Dynamic Models

Both MDFT and the LCA model conceive choice behavior as
the gradual and random accumulation of evidence over time, with
a decision made when the accumulated evidence reaches a thresh-
old amount. This same idea forms the basis for a number of
different cognitive models used to study a wide range of phenom-
ena including recognition memory (Ratcliff, 1978), perceptual
discrimination (Link, 1992), sensory detection (Smith, 1995), con-
ceptual categorization (Ashby, 2000; Nosofsky & Palmeri, 1997),
cognitive architectures (Townsend & Wenger, 2004), and confi-
dence (Pleskac & Busemeyer, 2010).

Both MDFT and LCA also assume that evidence accumula-
tion is “leaky,” corresponding to memory loss for previous
preferences. Technically, the models assume an Ornstein–
Uhlenbeck diffusion process. Both models also build on Tver-
sky’s (1972) elimination by aspects heuristic, by incorporating
a sequential scanning of attributes. Details for both models can
be found in the appendices.
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Multialternative Decision Field Theory

MDFT extends decision field theory (Busemeyer & Townsend,
1992, 1993) to accommodate multialternative choice situations.
Decision field theory can explain numerous phenomena in deci-
sion making including violations of stochastic dominance, viola-
tions of independence between alternatives, regret, relations be-
tween choice probability and decision time, effects of time
pressure on decision accuracy, approach–avoidance, and violations
of strong stochastic transitivity.

MDFT assumes that the preferences for each alternative evolve
across time through a series of comparisons and evaluations of the
alternatives. The preferences continue to evolve until the prefer-
ence state for one of the options reaches a threshold level (a
“criterion”) and the corresponding option is selected. Preference
states are determined by valences for each option and competition
(lateral inhibition) among the options. The valence values repre-
sent the advantages or disadvantages of the alternatives at each
moment in time and are constructed from three components:
subjective values, stochastic attention weights, and a comparison
mechanism.

The strength of the lateral inhibition is determined by the
distance between two options in an “indifference/dominance”
space (Hotaling et al., 2010). The indifference/dominance space is
a way to represent how options are perceived in relationship to
each other and the goal of the choice. Options that fall along lines
of indifference are selected with equal probability. Options that are
dominated by other options are selected less often. In Hotaling et
al. (2010), it is assumed that the line of indifference corresponds to

the direction of the unit-length vector
1

�2
· ��1, 1�� and the line

of dominance corresponds to the direction of the unit-length vector
1

�2
· �1, 1��. In Figure 1, the line of indifference corresponds to

the dotted line, and the line of dominance would be perpendicular
to this line. Hotaling et al. assumed that lateral inhibition increases
slowly along the line of indifference and rapidly along the line of
dominance because dominated options are quickly discarded.

In total MDFT uses four free parameters for fitting choice
probabilities. One parameter, p(wP), is the attention weight reflect-
ing how important each attribute is to the decision maker. Another
parameter, the dominance dimension weight, �, is used in the
indifference/dominance distance function, which reflects how
much more weight is given to improvements in both attributes
versus trade-offs between the attributes. The final two parameters,
�1 and �2, are associated with a Gaussian mapping used to convert
distances to lateral inhibition strengths. The model also has a
variance parameter �2 that determines the noise in the accumula-
tion process and a threshold parameter associated with the decision
criterion. These two additional parameters are often fixed for
simulations. A formal description of the model is provided in
Appendix A.

The Leaky Competing Accumulator Model

In the LCA model, each option in a choice set is associated with
an activation value that changes across time. Similar to preferences
in MDFT, the amount of activation is determined by a series of
comparisons and evaluations of the alternatives. Activation

changes across time until one of the options reaches a decision
criterion and is selected. In contrast to the linear MDFT model, the
LCA model assumes two types of nonlinearity. First, activation
values are not allowed to become negative. Second, the model
incorporates an asymmetric value function.

Unlike MDFT, the LCA model does not compute valences to
compare options. Instead, the advantages or disadvantages of an
alternative are calculated using an asymmetric value function that
weights losses greater than gains following Tversky and Kahne-
man (1991) and Tversky and Simonson (1993). Activation states
for different alternatives are determined by input from the asym-
metric value function and lateral inhibition between options. The
strength of lateral inhibition is constant across alternatives and
does not depend on the distance between alternatives (as in
MDFT). A complete description of the model can be found in
Appendix B.

Discussion of MDFT and the LCA Model

MDFT and the LCA model have contributed greatly to our
understanding of multialternative, multiattribute choice behavior.
Both models can simulate choice tasks involving internally con-
trolled stopping times where the decision maker is free to delib-
erate as long as he or she desires before making a choice (Ratcliff,
1978; Vickers, Smith, & Brown, 1985). This procedure is com-
monly used in multialternative decision tasks including all of the
experiments presented here. However, because the simulations are
very computationally demanding, it is difficult to fit the models to
empirical data from a multialternative choice task using internally
controlled stopping times.

Externally controlled stopping time experiments—where deci-
sions are made at a fixed or designated time point—provide an
alternative to the internally controlled paradigm (Ratcliff, 1978,
2006; Vickers et al., 1985). MDFT has an analytic solution in the
externally controlled paradigm, and so can be easily fit to exper-
imental data. In contrast the LCA model does not have an analyt-
ical solution, due to its nonlinearities, and so computer-intensive
simulations are still required.

Another difficulty with the LCA model is its reliance on loss
aversion to produce the attraction and compromise effects. As
discussed previously, the loss aversion principle is difficult to
extend equally to perceptual experiments as well as the standard
consumer choice experiments. In perceptual experiments, there are
no trade-offs between losses and gains of attribute values. Tsetsos,
Usher, and Chater (2010) claimed that the LCA model follows
Tversky and Kahneman (1991) in the assumption that the asym-
metric relationship between losses and gains is a primitive and is
hardwired in the neural system. MDFT does not build in loss
aversion; instead loss aversion emerges from the dynamics of the
MDFT.

A difficulty with MDFT is the possibility of unbounded pref-
erence states in situations with long external stopping times. For
some parameter settings, the system becomes unstable and pref-
erence states grow without bound (Tsetsos et al., 2010). This
problem can be avoided by allowing different parameters settings
(particularly for the noise variance) between the three context
effects. Hotaling et al. (2010) argued that allowing the variance to
differ among effects captures differences in experimental stimuli.
Although this explanation might have been reasonable for previous
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experimental designs (e.g., Huber et al., 1982; Simonson, 1989;
Tversky, 1972), the new experiments reported by Trueblood
(2012) and Trueblood et al. (2013) found all three effects with the
same stimuli. In these cases, it is unclear why there should be
different noise parameters for the different effects.

Besides instability problems, MDFT is also restricted in explain-
ing experimental results involving the compromise effect. In
MDFT, the compromise effect is explained by the correlation of
extreme options. Because the extreme options are far apart in the
indifference/dominance space, there are weak inhibitory connec-
tions between these options. However, there are strong inhibitory
connections between the compromise option and the two extremes.
Due to these strong and weak interconnections, the momentary
preference states for the extreme options become anticorrelated
with the compromise option and correlated with each other. The
correlated extremes split their winnings and are selected less often
than the compromise option.

Usher, Elhalal, and McClelland (2008) experimentally tested
temporal correlation in the compromise effect. In their experiment,
subjects were given a ternary choice set and asked to choose one
of the options. Then, after the selection was made, subjects were
told that their preferred option was no longer available and were
asked to choose again. If extreme options are correlated, as in
MDFT, when one extreme is initially selected, the other also has a
high level of activation, and so is more likely to be selected as the
second choice. However, experimental results showed that the
compromise option was selected more often following an initial
choice of an extreme. Tsetsos et al. (2010) demonstrated through
simulations that the LCA model makes the correct prediction,
unlike MDFT. Hotaling et al. (2010) argued that MDFT can
account for the results of Usher et al. (2008) if asymmetric atten-
tion weighting is allowed. They argued that an extreme option is
only initially selected if an individual is attending to one dimen-
sion more than the other.

This discussion illustrates that there are several limitations to
both MDFT and the LCA model. We propose the MLBA model in
attempt to overcome these limitations. First, the model has simple
analytic solutions for both internally and externally controlled
decision tasks and can easily be fit to data using either procedure.
The model does not assume loss aversion, so can explain the
presence of context effects across a number of domains. Further, it
does not suffer from the same instabilities as MDFT with regard to
the compromise effect.

The Multiattribute Linear Ballistic
Accumulator Model

The MLBA model is an extension of the linear ballistic accu-
mulator (LBA) model developed by Brown and Heathcote (2008).
It also incorporates the LCA model’s use of pairwise differences in
calculating the inputs to each accumulator. We begin with a
discussion of the LBA model and then provide a detailed descrip-
tion of the MLBA model.

The Linear Ballistic Accumulator Model

The LBA models choice and response times using indepen-
dent accumulators that race toward a threshold. The accumula-
tors are linear and accumulate information deterministically

during a trial. Deterministic accumulation leads to greater math-
ematically tractability than stochastic models with moment-to-
moment fluctuations in information, but the LBA can still
accommodate benchmark empirical phenomena including pre-
dicting fast and slow errors and the shape of speed–accuracy
trade-off curves (Brown & Heathcote, 2008). The model has a
closed-form analytic likelihood function for choices between
any number of alternatives, making it easy to apply to data
(derivations for the LBA model’s likelihood functions can be
found in the appendix of Brown & Heathcote, 2008). The
analytic solutions are a consequence of the simplifying assump-
tions that evidence accumulation is both linear and determinis-
tic. Although these assumptions probably do not reflect the true
state of neurophysiological processes (at least at a single-cell
level), the model’s success in accounting for both behavioral
and neural data suggests that the LBA’s trade-off between
veracity and simplicity is reasonable (Forstmann et al., 2008,
2010).

In the LBA model, a choice between three alternatives is rep-
resented by a race between three evidence accumulators. For
example, Figure 2 illustrates a choice among options {X, Y, Z}. At
the beginning of a trial, each accumulator starts at a randomly
determined amount of evidence drawn independently for each
accumulator from a uniform distribution on the interval [0, A]. The
accumulators’ activations increase at speeds defined by a drift rate
associated with each response choice, until one of the accumula-

Figure 2. The linear ballistic accumulator model with three accumulators
for options X, Y, and Z. Accumulators begin at randomly determined
starting points and increase at speeds determined by the drift rates. The first
accumulator to reach the threshold � is selected.

185MULTIATTRIBUTE LINEAR BALLISTIC ACCUMULATOR MODEL



tors reaches its threshold �.2 The alternative associated with the
accumulator that reaches the threshold first is selected. On each
trial, the drift rates are drawn from normal distributions. In many
past applications, the normal distributions have freely estimated
mean values, d1, d2, d3, . . . , and a common standard deviation s,
which is often fixed.

The MLBA model adds to the LBA model by explicitly speci-
fying how drift rates arise from the evaluation of choice stimuli.
We call the LBA process the “back end” of the MLBA, because it
describes how a final choice is selected after the “front-end”
processes transform stimulus inputs into drift rates.

Description of the MLBA Model

Consider three options that vary along two attributes, P and Q.
Let Pi and Qi denote the actual value of option i on the two
dimensions. For example, in the inference experiment, Pi would
represent the testimony strength of eyewitness P for suspect i.
Likewise, Qi would represent the testimony strength of eyewitness
Q for suspect i. Alternatively, in a consumer choice experiment, P
and Q might indicate two attributes such as price and quality, with
Pi indicating the price of option i. Formally, the mean drift rate di

for each alternative i is defined by comparing that option against
the other two:

d1 � V12 � V13 � I0, (1a)

d2 � V21 � V23 � I0, (1b)

d3 � V31 � V32 � I0. (1c)

The term Vij represents a comparison between options i and j, and
I0 is a positive constant. The mean drift rates resemble the inputs
in the LCA model (see Equation B1), but are not determined by a
loss aversion function and do not fluctuate during the trial.

To determine Vij, we begin by calculating the subjective values
u for each alternative. These are psychological representations of
the raw stimulus values. In the LCA model, the subjective values
are determined by a loss aversion function, whereas MDFT does
not explicitly specify the form of subjective values. In the MLBA
model, we calculate subjective values by mapping objective quan-
tities (such as price, quality, eyewitness testimony strengths, or
rectangle height) to psychological magnitudes.

Consider a pair of options (P1, Q1) and (P2, Q2) designed to be
indifferent. In the inference experiments (Trueblood, 2012), for
example, options were defined as indifferent by the additive rule:
P1 � Q1 � P2 � Q2. In other words, two criminal suspects were
assumed to be indifferent if the sum of their eyewitness testimony
strengths were equal. In the perceptual experiments (Trueblood et
al., 2013), a pair of options were defined as indifferent if they had
equal area, that is, if log(P1) � log(Q1) � log(P2) � log(Q2).
However, these simple and rational definitions of indifference
might not correspond to human perceptions of indifference. In
other words, an individual’s subjective valuation of the options
might differ from the way the options were defined experimen-
tally. For example, suppose (P1, Q1) represents a criminal suspect
with extreme eyewitness testimony strengths such as (20, 80) and
(P2, Q2) is another suspect with intermediate eyewitness testimony
strengths such as (55, 45). Objectively, these two criminal suspects
should be viewed as equally likely to have committed the crime

because P1 � Q1 � P2 � Q2 � 100. However, Chernev (2004) has
argued that when options are described using the same metric, as
in the inference and perceptual experiments, the option with less
dispersion of its attribute values is preferred. With respect to our
example, the suspect with eyewitness strengths of (55, 45) would
be preferred to the one with eyewitness strengths of (20, 80).

To capture possible differences between extreme and interme-
diate alternatives, we introduce curvature to the attribute space as
illustrated in Figure 3. The curves are defined using an exponent m
and obey

�x

a�m

� �y

b�m

� 1. (2)

The relationship between extreme and intermediate alternatives is
governed by the value of the m parameter. If the curve is concave
(i.e., m � 1), then intermediate options (i.e., those with less
attribute dispersion) are preferred to extreme options. The opposite
is true when the curve is convex (0 � m � 1). When m � 1, the
curve reduces to a straight line, implying subjective and objective
values are equal. The curves also preserve equal preference for
symmetric options. That is, an option with attributes (P1, Q1) and
another option with attributes (Q1, P1) are indifferent. A detailed
description of the curvature mapping can be found in Appendix C.

Let (uPi, uQi) and (uPj, uQj) be the subjective values for options
i and j determined by the mapping from objective to subjective
values. Similar to Tversky and Simonson (1993) and Usher and
McClelland (2004), we assume that options are evaluated in rela-
tion to each other. That is, each option is used as a reference point
in the evaluation of the other options. In the valuation function Vij

in Equation 1, option i is the target and option j is evaluated
relative to it. We assume this function is defined by the difference
in the subjective values of the options:

Vij � wPij · (uPi � uPj) � wQij · (uQi � uQj). (3)

Note that because differences in subjective values can be both
positive and negative, V is not necessarily symmetric (i.e., Vij 	 Vji).

The weights wPij and wQij reflect the amount of attention given
to a particular comparison. Attention, quantified by visual fixation,
has been shown to influence the valuation process in multialter-
native choice—options that are fixated on more are more likely to
be chosen (Krajbich & Rangel, 2011). It is also well known that
fixation duration increases with decreasing discriminability of the
target (Gould, 1967, 1973; Hooge & Erkelens, 1998; Jacobs, 1986;
Jacobs & O’Regan, 1987). Thus, we hypothesize the attention
weights should be larger when attribute values are similar and
smaller when they are easy to discriminate. We define the weights
using Shepard’s (1987) famous law of generalization in which
similarity is an exponentially decaying function of distance:

wPij � exp(�� | uPi � uPj | )

wQij � exp(�� | uQi � uQj | ).
(4)

Tversky (1977) showed that similarity judgments often violate
symmetry (the similarity of A to B can be different from that of B

2 In other writing, the threshold parameter of the LBA model is often
denoted by b.
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to A). To allow for such violations, we follow Nosofsky (1991) in
using different parameterizations for wPij and wPji and likewise for
wQij and wQji. If the difference in attribute values is positive (e.g.,
uPi 
 uPj � 0), then we set � � �1. If the difference is negative,
we set � � �2.

Note that the attention weights do not add up to 1. The weights
are not meant to quantify the exact distribution of attention during
a trial. Rather, the weights capture the overall trend that similar,
difficult-to-discriminate options receive more attention than those
that are easy to discriminate. The weights are dependent on the
values of the attributes similar to those in multiattribute utility
theory (Keeney & Raiffa, 1976). However, unlike in multiattribute
utility theory, the weights do not represent the importance of the
attributes.

The constant I0 in Equation 1 ensures that at least one of the
mean drift rates is positive. This is necessary in order to avoid
nontermination in the LBA model.3 This value can be seen as a
baseline rate of evidence accumulation for the available options,
similar to I0 in the LCA model given in Equation B1.

In total, the MLBA model uses four free parameters to define
the mean drift rates: the curvature parameter m, the two decay
parameters �1 and �2 used to define the attention weights, and the
input constant I0. The model also has three additional parameters,
a starting point parameter A, a threshold parameter �, and a drift
rate noise parameter s. These additional parameters are fixed when
only modeling choice probabilities, but must be estimated if fitting
response times as well. Table 2 lists the model parameters and their
allowable ranges.

The MLBA model accounts for the attraction effect through the
attention weights wPij and wQij. Consider the choice set {X, Y, RX}
where RX is an inferior decoy near X. Because the distance be-
tween X and RX is smaller than the distance between Y and RX, the
attentions weights are larger for the comparison of X and RX than
Y and RX. Thus, the differences in subjective values for X and RX

receive more weight than the differences in subjective values for Y
and RX. Psychologically, the model predicts the attraction effect
occurs because X and RX are more difficult to discriminate than Y
and RX, which leads to increased attention to X and RX during the
evaluation process.

The model predicts that the similarity effect can occur when
people weight supportive information more than disconfirmatory
evidence. Consider the choice set {X, Y, SX} where SX is a
competitive option near X. In the valuation function VXSX

, option X
acts as a reference point and option SX is evaluated relative to it. If
the decay constants obey �1 � �2, negative differences “decay”
faster than positive differences. In other words, evidence support-
ing the reference option X is weighted more than evidence against
X. Overall, this can lead to a small positive valuation VXSX

because
the differences in subjective values are small (i.e., the distance
between X and SX is small) and positive differences receive more
weight than negative differences. Similarly, the comparison of
option Y to option SX can result in a large positive valuation VYSX
because the differences in subjective values are large (i.e., the
distance between Y and SX is large) and positive differences
receive more weight. Thus, the mean drift rate for Y can be larger
than the mean drift rate for X, leading to the similarity effect.
Asymmetry in attention weights where positive differences receive
more weight than negative differences could reflect a confirmation
bias (Nickerson, 1998). Research has suggested that people tend to
seek information that supports a selected point of view rather than
disconfirmatory evidence (Koriat, Lichtenstein, & Fischhoff,
1980). Although asymmetry of attention weights is a necessary
condition for producing the similarity effect, it is not necessary for
the attraction and compromise effects. These effects can arise for
any relationship between �1 and �2.

The compromise effect arises through the subjective value func-
tion given in Equation 2. This function allows for curvature that
can result in advantages for compromise options. For example, if
the m parameter is greater than 1, midrange options (i.e., those
with less attribute dispersion) are preferred to extremes, thus
producing a compromise effect. The compromise effect is further
enhanced through the attention weights wPij and wQij. Consider the
choice set {X, Y, CX} where Y and CX are extreme options and X
is the compromise. Because the distance between the compromise
and extremes is smaller than the distance between the two ex-
tremes, the attention weights are larger for the comparison of X to
Y and X to CX than comparisons of the extremes. This implies that
the differences in subjective values involving X receive more
weight than those involving extremes.

Model Predictions for Deliberation Time Effects

The MLBA model predicts that preferences are determined “in
expectation” during the front-end, preprocessing stage, but these
preferences are subject to random variation during the back-end

3 The MLBA model can be further constrained to ensure that all of the
drift rates are positive. This could be done in several different ways. For
example, I0 could be defined as the absolute value of the minimum of the
sums {V12 � V13, V21 � V23, V31 � V32} plus a constant. Another
alternative is to define the drift rates as an exponential function of the
binary comparisons, for example d1 � c· exp(V12 � V13). Positivity is not
necessary for termination in the LBA model. As long as one of the drift
rates is positive, the model can produce a decision.
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Figure 3. Function used to map experimentally defined options to sub-
jective values. The curve is defined by one free parameter and can be
concave or convex depending on the value of the parameter.

187MULTIATTRIBUTE LINEAR BALLISTIC ACCUMULATOR MODEL



selection process. In particular, the back-end process allows for
both variability in the starting point and rate of evidence accumu-
lation. The combination of both the front-end and back-end pro-
cesses are crucial for understanding how preferences are influ-
enced by deliberation time. The MLBA model predicts that
preferences strengthen with deliberation time, which also means
that context effects are predicted to increase as deliberation time
increases. Below we discuss previous results demonstrating that
the attraction and compromise effects increase with longer delib-
eration time. We then describe two new experiments showing that
the similarity effect also increases with deliberation time.

Attraction and Compromise Time Pressure Effects

Recently, Pettibone (2012) tested the effects of time pressure on
both the attraction and compromise effects, using choices about
consumer products. In this experiment, subjects were assigned to
either an attraction or compromise condition and also to one of
four deliberation time conditions: 2, 4, 6, or 8 s. At the end of the
deliberation time, the choice sets were removed from the computer
screen and subjects were instructed to make a decision. Results
showed that as deliberation time increased, the size of the attrac-
tion and compromise effects increased. There is also some past
experimental evidence suggesting that the compromise effect in-
creases with deliberation time. Simonson (1989) found that sub-
jects who selected compromise options provided longer self-
reports of their decision protocols. Also, Dhar, Nowlis, and
Sherman (2000) found a decrease in the size of the compromise
effect when deliberation time was limited, as compared to subjects
with unlimited deliberation time.

Both MDFT and the LCA model predict that the attraction and
compromise effects increase as deliberation time increases. In
these models, the attraction and compromise effects are produced
by comparisons of the options across time. As the number of
comparisons increase, the effects grow in magnitude. In MDFT,
this comparison process is based on distance-dependent lateral
inhibition in indifference and dominance coordinates. In the LCA
model, the comparison process is based on an asymmetric loss
aversion function.

To examine the MLBA model’s predictions for time pressure
effects, we calculated the choice probabilities for the model as a
function of deliberation time using the artificial stimuli given in
Table 3. In this demonstration we fixed the parameters to the
following values: the curvature parameter m � 5, the two decay
parameters �1 � .2 and �2 � .4, and the initial input I0 � 5. This
set of parameters is one of many possible combinations that can
produce all three effects simultaneously. For this demonstration,

we also set A � 1 and s � 1. We used an externally controlled
stopping time procedure, so there was no response boundary. A
more detailed discussion of the model’s ability to simultaneously
produce all three effects is provided in a later section. Figure 4
illustrates the relationship between effect size and deliberation
time for all three context effects. As with MDFT and the LCA
model, the MLBA model predicts that the attraction and compro-
mise effects grow as deliberation time increases. The MATLAB
programs that produced the predictions and Figure 4 are in the
supplemental materials.

Similarity Time Pressure Effects

For the compromise and attraction effects, all three models
discussed above make the same predictions—that the effects will
grow with deliberation time. However, the similarity effect is
different and might distinguish between the models. The MLBA
model predicts the similarity effect will grow with deliberation
time. In MDFT, the relationship between deliberation time and the
magnitude of the similarity effect is governed by the attention
switching mechanism. When equal weight is placed on the two
attributes (i.e., p(wP) � p(wQ) � .5 in Appendix A), MDFT
predicts the similarity effect diminishes with increased delibera-
tion time (Busemeyer & Johnson, 2004). However, when there is
unequal attribute weighting, so that more weight is placed on the
most favorable attribute of the dissimilar alternative, MDFT pre-
dicts the similarity effect increases with increased deliberation
time. Currently, it is unknown whether the LCA model predicts an
increase or decrease in the similarity effect with deliberation time.
However, the LCA model uses the same attention switching mech-
anism as MDFT, and thus it is likely that the relationship between

Table 2
Parameters and Allowable Ranges for the Multiattribute Linear Ballistic Accumulator Model 2

Parameter Description Allowed ranges

m Exponent transforming objective to subjective values m � 0
�1 Decay constant for attention weights with positive differences �1 � 0
�2 Decay constant for attention weights with negative differences �2 � 0
I0 Baseline input I0 � 0
A Uniform distribution range for accumulator starting points Fixed A � 1 for choices only
� Threshold amount of evidence required to trigger a choice Fixed � � 2 for choices only
s Drift rate variability across repeated decisions Fixed s � 1 for choices only

Table 3
Artificial Stimuli Used in the Qualitative Analyses of the
Multiattribute Linear Ballistic Accumulator Model

Effect X Y Decoy

Attraction (range decoy) Set 1 (4, 6) (6, 4) (3.4, 6)
Attraction (range decoy) Set 2 (4, 6) (6, 4) (6, 3.4)
Attraction (frequency decoy) Set 1 (4, 6) (6, 4) (4, 5.4)
Attraction (frequency decoy) Set 2 (4, 6) (6, 4) (5.4, 4)
Attraction (range–frequency decoy) Set 1 (4, 6) (6, 4) (3.7, 5.7)
Attraction (range–frequency decoy) Set 2 (4, 6) (6, 4) (5.7, 3.7)
Similarity Set 1 (4, 6) (6, 4) (3.8, 6.2)
Similarity Set 2 (4, 6) (6, 4) (6.2, 3.8)
Compromise Set 1 (4, 6) (6, 4) (8, 2)
Compromise Set 2 (4, 6) (6, 4) (2, 8)
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the similarity effect and deliberation time is contingent on the
attention weights as in MDFT.

We are not aware of any experimental work examining the
relationship between time pressure and the similarity effect, which
makes these model predictions truly a priori. Thus, we developed
two new experiments to investigate this relationship. In the first
experiment, participants made decisions about criminal suspects
based on eyewitness testimony strengths, as in Trueblood (2012).
In the second experiment, participants made decisions about the
size of rectangles, as in Trueblood et al. (2013). In both experi-
ments, deliberation time was manipulated similarly to Pettibone
(2012).

Inference Time Pressure Experiment

Forty-seven undergraduate students from the University of Cal-
ifornia, Irvine, participated for course credit, completing the
computer-based experiment online at a time of their choosing.
Participants were told that on each trial they would see eyewitness
testimony strengths for three criminal suspects from two eyewit-
nesses, and they should select the suspect most likely to have
committed the crime. Participants were told that the eyewitness
testimony strengths ranged from 0 to 100, with 0 implying very
weak evidence of guilt and 100 implying very strong evidence of
guilt. Eyewitness strengths were determined in the same manner as
in Trueblood (2012). Participants were also told that the eyewit-
ness strengths would only be shown for a brief period and would
be hidden after this period. They were asked to make their deci-
sions as quickly as possible once the testimony strengths had been
removed. This method for creating time pressure is similar to the
one used by Pettibone (2012).

Three deliberation times were used: 1, 2, and 5 s. Each partic-
ipant completed a practice block of 15 trials with the shortest
deliberation time of 1 s. After completing the practice trials, each
participant completed three blocks of 48 randomized trials that
were divided into 28 similarity trials and 20 filler trials. The 28
similarity trials were further divided so that the decoy was placed
near one alternative for half of the trials and near the other
alternative for half of the trials. The filler trials were used to assess

accuracy as in Trueblood (2012). The three blocks corresponded to
the three deliberation times, and their presentation order was
randomized across subjects. This provides a powerful within-
subjects test of the relationship between time pressure and the
similarity effect. Note that the same amount of information was
presented on all trials. The only difference between blocks was the
duration the information was on the screen.

Results for the Inference Time Pressure Experiment

One subject was excluded from the analyses because his or her
accuracy on the filler trials was 2 standard deviations lower than
the average. For all three deliberation times, the mean accuracy on
the filler trials was above the probability of guessing of .33 (M �
.40 for the 1-s block, M � .50 for the 2-s block, and M � .61 for
the 5-s block). Figure 5 shows the mean choice probability of the
focal alternative (i.e., the dissimilar alternative) compared to the
mean choice probability of the nonfocal alternative collapsed
across the different positions of the decoy for the three deliberation
times. To analyze the data, we conducted a 2 (context) � 3
(deliberation time) repeated-measures analysis of variance. The
dependent variable was the percentage of times that a subject
chose an option (focal or nonfocal). A main effect of context, F(1,
45) � 95.76, p � .001, indicated that participants preferred the
focal option to the nonfocal option, demonstrating a strong simi-
larity effect. There was no significant main effect of deliberation
time, F(2, 90) � 1.25, p � .29. However, the interaction of context
by deliberation was significant, F(2, 90) � 7.51, p � .001, indi-
cating that the similarity effect increases with longer deliberation
times as predicted by the MLBA model.

One explanation for the data is that participants were unable to
read all pieces of information during the trials in the 1-s block.
Thus, the results could be influenced by regression effects due to
increased noise under time pressure. This is not problematic from
a theoretical perspective, as the mechanism by which time pressure
causes reduced similarity effects in the MLBA is consistent with
regression toward chance responding: With greater time pressure
comes greater influence of start point variability, just as in the

Figure 4. Multiattribute linear ballistic accumulator model predictions for the relationship between deliberation
time and the size of context effects. The model predicts that all three effects grow over time, shown by the
increasing probability of choosing the focal or compromise alternative.
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speed–accuracy trade-off described in the standard LBA model
(Brown & Heathcote, 2008).

Perceptual Time Pressure Experiment

We wanted to demonstrate that the relationship between the size
of the similarity effect and deliberation time was not specific to the
inference paradigm discussed above. As such, we developed a new
experiment to test this relationship in perception. For this experi-
ment, 47 undergraduate students from the University of California,
Irvine, participated for course credit, completing the computer-
based experiment online at a time of their choosing. Participants
were told that on each trial they would see three rectangles and to
select the rectangle that had the largest area. As in the inference
time pressure experiment discussed above, participants were told
that the rectangles would only be shown for a brief period and
would be hidden after this time. They were asked to make their
decisions as quickly as possible once the rectangles had been
removed.

Three deliberation times were used: 250, 400, and 800 ms. Each
participant completed three practice trials with the shortest delib-
eration time of 250 ms. After completing the practice trials, each
participant completed three blocks of 80 randomized trials, which
were divided into 60 similarity trials and 20 filler trials. The 60
similarity trials were further divided so that the decoy was placed
near one alternative for half of the trials and near the other
alternative for half of the trials. The filler trials were used to assess
accuracy as in Trueblood et al. (2013). The three blocks corre-
sponded to the three deliberation times, and their presentation
order was randomized across subjects.

Results for the Perceptual Time Pressure Experiment

For all three deliberation times, the mean accuracy on the filler
trials was above the probability of guessing of .33 (M � .57 for the
250-ms block, M � .56 for the 400-ms block, and M � .73 for the
800-ms block). This shows that even at the shortest deliberation
time, participants were not simply guessing. Figure 6 shows the
mean choice probability of the focal alternative (i.e., the dissimilar
alternative) compared to the mean choice probability of the non-
focal alternative collapsed across the different positions of the
decoy for the three deliberation times. To analyze the data, we
calculated a 2 (context) � 3 (deliberation time) repeated-measures
analysis of variance on choice proportions. A main effect of
context, F(1, 46) � 38.49, p � .001, indicated that participants
preferred the focal option to the nonfocal option, demonstrating a
strong similarity effect. There was no significant main effect of
deliberation time, F(2, 92) � 1.31, p �.275. However, the inter-
action of context by deliberation time was significant, F(2, 92) �
3.98, p �.022, indicating that the similarity effect increases with
deliberation time as in the inference experiment and as predicted
by the MLBA model.

Discussion of Experimental Results

Both the inference and perceptual experiments demonstrate that
the similarity effect increases with deliberation time. The results of
the experiments support the prediction of the MLBA model that
context effects strengthen with longer deliberation. The MLBA
model produces an increase in all three context effects with time
due to variability in the starting points of the evidence accumula-
tors. This initial randomness in the accumulated evidence results in
the options being equally favored at very short deliberation times.

Figure 6. Mean choice probabilities for the perceptual time pressure
experiment with error bars showing the standard error of the mean. The
similarity effect increases with increasing deliberation time (250, 400, and
800 ms), as predicted by the multiattribute linear ballistic accumulator
model.

Figure 5. Mean choice probabilities for the inference time pressure
experiment with error bars showing the standard error of the mean. The
similarity effect increases with increasing deliberation time (1, 2, and 5 s),
as predicted by the multiattribute linear ballistic accumulator model.

190 TRUEBLOOD, BROWN, AND HEATHCOTE



As deliberation time increases, the initial randomness is overcome
by the integration of evidence for each option (quantified by the
drift rate) so that one option is favored over the others. This is the
same mechanism that gives rise to the well-known speed–accuracy
trade-off in the LBA model (Brown & Heathcote, 2008). This
mechanism is consistent with, and is a mechanistic explanation for,
the notion that context effects reduce with time pressure due to
regression toward chance responding.

Qualitative Modeling Results

In this section, we discuss several qualitative results for the
MLBA model. First, we illustrate that the model can account for
all three context effects using the same set of parameters. We then
demonstrate the model can account for the findings of Usher et al.
(2008) involving unavailable options in the compromise effect. We
conclude by showing that the model can also produce violations of
the regularity principle.

Predictions for Three Context Effects

Both MDFT and the LCA model can account for all three
context effects using a single set of parameter values. In previous
literature, this has typically been demonstrated by selecting one set
of parameters and running simulations showing the three effects
with these parameters. Rather than find just one set of MLBA
parameters that can produce the effects, we were interested in
exploring the entire parameter space. Because the MLBA model
has analytical solutions, this is computationally feasible. Our goal
was to find multiple parameter combinations that can simultane-
ously produce five effects: the similarity effect, the compromise
effect, and the three kinds of attraction effects (for range, fre-
quency, and range–frequency decoys).

We used artificial stimuli in a two-dimensional attribute space,
with a similar stimulus structure to Figure 1. These stimuli are
given in Table 3. For each effect, two choice sets were defined
with the decoy placed near one alternative in one set and near the
other alternative in the other set, mirroring standard experimental
procedures. The effects were assessed using the method of com-
paring ternary choice sets described previously in relation to the
experimental work.

In our exploration of the parameter space, we examined the
values of the four parameters used to define the mean drift rates:
the curvature parameter m, the two decay parameters �1 and �2,
and the initial input I0. Because we were only analyzing choice
probabilities, we fixed the starting point parameter to A � 1, the
threshold parameter to � � 2, and the drift rate noise parameter to
s � 1. These parameters are important for fitting response times,
but not response proportions, unless they differ between accumu-
lators and/or experimental conditions. In this case, the three pa-
rameters can also affect choice proportions.

We defined a grid over the parameter space and examined 3,840
parameter combinations across the ranges .5 � m � 5, .1 � �1 � .8,
.1 � �2 � .8, and 5 � I0 � 10. Out of these combinations, 348
produced the five effects simultaneously. Although the parameter
values producing the effects are specific to the stimuli used, other sets
of stimuli will also give rise to the co-occurrence of the effects; the
MLBA model’s ability to account for the effects simultaneously does
not depend on the specific stimuli given in Table 3.

Figure 7 plots the effects of different decoy options on choices
between options X � (4, 6) and Y � (6, 4) for parameter values
m � 5, �1 � .2, �2 � .4, and I0 � 5. (As before, A � 1, � � 2,
and s � 1.) The different decoys are defined as points in the
attribute space with values ranging from 1 to 9, shown on the x-
and y-axes of Figure 7. The shades capture the relative choice
share for option X as compared to option Y, defined as

p�X�
p�X� � p�Y�

, where p(X) is the choice probability from the MLBA

model for option X in the presence of the decoy and likewise for
option Y. Values near 1 (light shades in the plot) represent greater
preference for X as compared to Y when the decoy is included in
the choice set. Similarly, values near 0 (dark shades in the plot)
represent greater preference for Y as compared to X. Values equal
to .5 indicate equal preference between X and Y.

In the Figure, all three context effects are demonstrated.4 For
example, when the decoy is located at (3.8, 6.2), the relative choice
share for X is .41, indicating a similarity effect. However, as the
decoy is moved further away from X, the similarity effect is
replaced by the compromise effect. For example, when the decoy

4 The phantom decoy effect cannot be observed in the figure (Pettibone &
Wedell, 2007; Pratkanis & Farquhar, 1992). This effect occurs when the decoy
is positioned so that it dominates the focal option and the removal of the
dominating decoy from the choice set increases the preference for the initially
dominated focal alternative. The MLBA can produce the phantom decoy effect
if the model is extended to include an attribute bias parameter, as discussed in
the fits to the perceptual experiments. In this case, the model produces the
phantom decoy by assuming that the phantom decoy influences the evaluation
of the remaining options by increasing the weight placed on the phantom
decoy’s most favorable attribute.
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Figure 7. Relative choice shares for option X � (4, 6) as compared to
option Y � (6, 4) for various positions of the decoy. Points labeled A, S,
and C indicate positions of the decoy associated with the attraction,
similarity, and compromise effects, respectively. The shade at any point
reflects the relative choice share for X when the decoy at that location is
included in the choice set. Lighter shades indicate increased preference for
X over Y. Darker shades indicate the opposite.
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is located at (2, 8), the relative choice share for X � .62.5 The
attraction effect can also be seen in the figure. For the range decoy
at (3.4, 6), the relative choice share for X is .58. The range–
frequency decoy at (3.7, 5.7) produces a smaller effect, with the
relative choice share for X being .52. The frequency decoy at (4,
5.4) does not produce an attraction effect with this set of param-
eters (i.e., relative choice share for X is .45). However, the model
can produce the attraction effect for all three decoys with other
parameter values, as indicated by the results of the grid search.
Note that the ordering of the magnitude of the attraction effect
predicted by MLBA (range followed by range–frequency followed
by frequency) has been demonstrated empirically (Huber et al.,
1982; Trueblood et al., 2013). However, these results are depen-
dent on the model parameters and may differ with other parameter
values. Going away from X � (4, 6) toward (1, 3), the range–
frequency decoy becomes increasingly dominated. Along this di-
agonal line, the magnitude of the attraction effect increases for a
while and then decreases (e.g., (2, 4) produces a smaller effect than
(3, 5)). Recently, Soltani, De Martino, and Camerer (2012) found
that the attraction effect increases as the distance between the focal
option and decoy increases, but the opposite result has also been
shown (Wedell, 1991; Wedell & Pettibone, 1996). Perhaps, as
predicted by MLBA, the attraction effect increases for a while as
the distance between the focal and decoy options increases, but
when the decoy is extremely dominated, the effect lessens. Future
work could investigate these possibilities in more detail.

Predictions for Usher et al.’s (2008) data

MDFT has difficulty accounting for the results of a two-stage
compromise experiment reported by Usher et al. (2008). In this
experiment, participants were asked to select one of three options,
from a set in which one option was a compromise between the
other two. Following a participant’s selection of an extreme op-
tion, the option was sometimes announced as unavailable. Partic-
ipants were then asked to select a second choice between the
remaining two options. In this situation, participants mostly se-
lected the compromise option as the second choice. In order to
allow a compromise option to be selected as the second choice
after an initial selection of an extreme, MDFT uses asymmetric
attention weighting.

We show that the MLBA model can account for this finding
across a wide range of parameters, without extra assumptions. For
this demonstration, we used the compromise stimuli (Set 1) given
in Table 3 and searched across the ranges .5 � m � 5, .1 � �1 �
.8, .1 � �2 � .8, and 5 � I0 � 10. We also set A � 1, � � 2, and
s � 1 as before. To test the effect, we examined the number of
instances the model predicted the compromise option as the second
choice after an initial selection of an extreme. Out of the 3,840
parameter combinations examined, 1,938 resulted in an extreme
option being selected first. Of these 1,938 parameter sets, the
model predicted the compromise option would be the second
choice 61.6% of the time. This pattern fits with Usher et al.’s
(2008) findings that the compromise option is favored as the
second choice.

The MLBA model can produce this result across a range of
different parameter values. For example, it can produce the result
when the subjective value function is both convex and concave
(i.e., m � 1 and m � 1). When m � 1, all three options are equally

likely because the differences in subjective values are 0. The result
also holds for both �1 � �2 and �2 � �1. When the two decay
constants are equal, the compromise option is always the first
choice. In this case, positive and negative differences between the
attributes of the compromise and extremes are weighted equally.
Because the differences are smaller between the compromise and
extremes, the weights are larger and the compromise is preferred.
If the decay constants are unequal, then it is possible for one of the
extremes to emerge as the first choice.

Violations of Regularity

When comparing binary and ternary choice sets, the attraction
effect produces a violation of the regularity principle. Informally,
the regularity principle asserts that adding extra choice options to
a set cannot increase the probability of selecting an existing option.
Mathematically, if there is a larger choice set U that nests a
restricted choice set, W, then Pr[X | W] � Pr[X | U]. The attraction
effect violates the regularity principle because the inclusion of an
inferior decoy similar to one of the alternatives increases the
probability of choosing the dominating alternative. Our parameter
search reported above does not address this effect, as we used only
ternary choices in those simulations (as in our experiments).

We tested whether the MLBA model can produce a violation of
the regularity principle using the same stimulus sets defined in
Table 3. Specifically, we used two options: X � (4, 6) and Y � (6,
4). We also used range decoys RX � (3.4, 6) and RY � (6, 3.4).
With these stimuli, the MLBA model always predicts Pr[X | {X,
Y}] � Pr[Y | {X, Y}] � .5.6 To show that the model produces a
violation of regularity, the probability of choosing X when RX is
also included in the choice set must be greater than .5. Likewise,
the probability of Y when RY is included in the choice set must be
greater than .5.

To examine violations of the regularity principle, we performed
a grid search across the parameters for the following ranges: .5 �
m � 5, .1 � �1 � .8, .1 � �2 � .8, and 5 � I0 � 10. A total of
3,840 parameter sets were examined, and 1,914 of these sets
yielded both Pr[X | {X, Y, RX}] � .5 and Pr[Y | {X, Y, RY}] � .5.
Even more impressively, the MLBA can produce a violation of
regularity and all three context effects simultaneously with the
same set of parameters (e.g., m � 5, �1 � .2, �2 � .4, and I0 � 5
for the stimuli in Table 3).

Quantitative Modeling Results

In the following sections, we report quantitative analyses of
MDFT and the MLBA model. We begin by fitting MDFT and the
MLBA model to the data from the inference experiments discussed
above. Then, we apply the generalization criterion methodology to
examine the model fits adjusted for complexity (Busemeyer &
Wang, 2000). For this method, we conducted a new experiment

5 The MLBA model can also produce a compromise effect when the
compromise option is not the option with the least amount of attribute disper-
sion. For example, if X � (3, 7) is a compromise between CX � (1, 9) and Y �
(5, 5), the model will produce a compromise effect for parameter values m �
5, �1 � .3, �2 � .3, and I0 � 5.

6 To produce unequal preference for symmetric alternatives, the model
would need to be extended to include an attribute bias parameter, as
discussed in the fits to the perceptual experiments.
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testing all three context effects simultaneously in the inference
domain. Following the model comparison, we provide a discussion
of model parameters including a prediction from the MLBA model
for a general preference for intermediate options (i.e., those with
less attribute dispersion), which we confirm experimentally. We
conclude by fitting both MDFT and the MLBA model to individ-
ual data from the perceptual experiments. We did not fit the LCA
model because it requires computationally intensive simulations.
Although the issue also prevented us from fitting the MDFT model
for internally controlled stopping times, we were able to fit the
MDFT model with an externally controlled stopping time, since
there are analytical solutions for this situation.

Model Fits to Inference Experiments

For the inference experiments (Trueblood, 2012), we fit the
average choice probabilities across subjects because there were not
enough data to analyze each subject individually. For example, in
the inference attraction experiment, there were only 20 trials for
each choice set, whereas for the perceptual attraction experiment
(Trueblood et al., 2013) there were 90 trials for each set. We
discuss individual fits to the perceptual data in a later section.

We fit the three inference experiments separately, obtaining a
different set of parameter estimates for each effect. The experi-
ments were fit separately rather than combined because there were
different groups of subjects in each experiment, and it is reason-
able to assume that they used different strategies or settings in
different conditions. In a later section, we fit the three context
effects simultaneously using data from a combined experiment.

We fit the MLBA model and MDFT to choice probabilities only
rather than choice probabilities and response times. In the multi-
alternative choice literature, MDFT and the LCA model have only
been analyzed with respect to choice probabilities. Future work
could use response time measures to further test the models. The
MLBA model was fit by numerically integrating over decision
times as discussed in Hawkins et al. (2013). For the MLBA model,
we allowed the four parameters used to define the mean drift rates
to vary freely but fixed the starting point parameter to A � 1, the
threshold parameter to � � 2, and the drift rate noise parameter to
s � 1. The boundary � plays a role in response bias and overall
response speed, but without response times, response bias can be
absorbed into the drift rates and speed is irrelevant. The relation-
ship between A and � is important in speed–accuracy trade-off
manipulations, but Hawkins et al. showed that different values of
A and � produce almost equivalent results when integrating over
decision times.

We fit MDFT in two ways. First, we fit the model by fixing the
variance parameter �2 � 1 and allowing four parameters to vary
freely: the attention weight p(wP), the dominance dimension
weight �, and the two parameters �1 and �2 associated with the
Gaussian mapping used to determine the strength of lateral inhi-
bition (see Equation A8). We then refit the model, allowing �2 to
be a free parameter along with the other four parameters. Hotaling
et al. (2010) argued that for externally controlled stopping times,
the variance parameter should be allowed to vary for different
effects. For both ways of fitting the model, we fixed the decision
time to t � 1,001, as in Hotaling et al. In previous simulations, the
subjective values in the M matrix of MDFT have been between 0
and 10 (Hotaling et al., 2010). Because the attribute values for the

inference experiments were associated with eyewitness testimony
strengths ranging from 0 to 100, we used the attribute values
divided by 10 in both versions of MDFT and the MLBA model.
(Note that with the externally controlled stopping time, MDFT
does not use a response boundary.)

For the attraction effect experiment, we fit 18 choice probabil-
ities. These probabilities arise from the six ternary choice sets used
to test range, frequency, and range-frequency decoys. For each
decoy, two choice sets were used to examine the effect: one choice
set with the decoy favoring one alternative and another choice set
with the decoy favoring the other alternative. For the similarity
effect experiment, we fit 12 choice probabilities, from four ternary
choice sets: {X, Y, SX}, {X, Y, SY1}, {Y, Z, SZ}, {Y, Z, SY2}. For the
compromise effect experiment, we fit nine choice probabilities
from three ternary choice sets: {CX, X, Y}, {X, Y, Z}, {Y, Z, CZ}.
We fit both the MLBA model and MDFT by minimizing the sum
of squared error between the model predictions and the data. When
fitting mean probabilities, parameters that minimize sum of
squared error will approximate the maximum likelihood, as long as
the probabilities are not too close to 0 or 1 (as here).

The mean square error and R2 values for the MLBA model and
two versions of MDFT are given in Table 4. Figure 8 shows the
observed and fitted mean choice probabilities for the MLBA
model and both versions of MDFT. For all three inference exper-
iments, the MLBA model is able to account for about 85%–95% of
the variability in the choice proportions. MDFT is able to account
for a high proportion of the variability in the attraction effect data,
but fails to account for the variability in the similarity and com-
promise data. The R2 values for the similarity and compromise
effects improve significantly when �2 is allowed to vary freely, but
they are still substantially poorer than the MLBA’s fits. It is
unlikely that the MDFT’s poor fits are due to the externally
controlled stopping time procedure, as Hotaling et al. (2010) found
that the externally controlled stopping time model produced es-
sentially the same results as long internally controlled stopping
times.

Generalization Criterion Methodology

The model fits above consider only goodness of fit and do not
take into account the relative complexity of the models. Overly
complex models can sometimes “overfit,” generating very good
agreement with particular data sets by describing random noise
rather than systematic patterns. To examine the fit of the MLBA
model and MDFT adjusted for complexity, we used the general-
ization criterion methodology (GCM) formalized by Busemeyer
and Wang (2000). The GCM is an extension of cross-validation,
using two statistically independent samples, where one of the
samples is used to calibrate the models and the other is used to test
the generalizability of the models. Each model is fit to the cali-
bration data by minimizing the discrepancy between the observed
data and the model predictions. For our purposes, we define the
discrepancy as the mean square error. The best fitting parameters
from the calibration stage are then used to compute new predic-
tions for the generalization data. Thus, each model makes a priori
predictions for the new data set. The discrepancy between these
predictions and the data is computed for each model. The models
are then compared by choosing the model with the smallest dis-
crepancy in the generalization data set. The GCM provides a
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measure of fit adjusted for complexity because overfitting in the
calibration stage is punished by poor generalization.

For the calibration stage, we used the results from a combined
experiment testing all three context effects simultaneously in the
inference paradigm developed by Trueblood (2012). As in True-
blood, participants were asked to make choices about criminal
suspects based on eyewitness testimony strengths. However, the
numerical values of these strengths differed from those of True-
blood. In pilot experiments, it was found that the effects interfered
with one another so that all three effects were not demonstrated
simultaneously. In particular, we found a strong similarity effect,
a weak attraction effect, and no compromise effect. Berkowitsch,
Scheibehenne, and Rieskamp (2013) found similar results in a
combined experiment with consumer products. However, in their
experiment, the attraction and compromise effects were strong and
the similarity effect was weak. To help remove any possible
interference effects, we used different regions of the attribute space
for different effects. For the similarity and attraction effects, the
values of the eyewitness testimony strengths were below 45. For
the compromise effect, the strengths ranged from 35 to 75. Exam-
ple stimuli for this experiment are given in the top three rows of
Table 5. Example stimuli for the separate experiments discussed in
Trueblood are given in the bottom three rows of the Table 5. For
the separate experiments, the stimuli for the attraction and simi-
larity effects were in the same range as the stimuli for the com-
promise effect as shown in the table.

Method

Sixty-eight undergraduate students from Indiana University par-
ticipated for course credit. Participants were told they would see
three suspects of a crime on each trial and were instructed to select
the suspect that seemed most likely to have committed the crime
based on the strengths of two eyewitness testimonies. Participants
were also told that the testimonies of both eyewitnesses were
equally valid and important and that the strengths of the testimo-
nies were equated. The suspects and eyewitness strengths were
presented in a table format with different suspects in different
rows. Participants did not receive feedback.

Each participant completed 240 trials that were divided into
three blocks of 80 trials. The three blocks were used to test the
three effects and were presented in randomized order across par-

ticipants. Within each block, participants saw 40 trials testing one
of the effects and 40 filler trials. The presentation order of the trials
within each block was also randomized. Filler trials where one
alternative was clearly superior were used to assess accuracy
throughout the experiment. The trials used to test for context
effects were subdivided so that the decoy was placed near one
alternative for some trials and near the other alternative for other
trials. The similarity effect was tested using four ternary choice
sets, as in Trueblood (2012).

Results

Data from three participants were not analyzed because their
accuracy was 2 standard deviations lower than the average accu-
racy on the filler trials. Figure 9 shows the mean choice probabil-
ities for focal and nonfocal alternatives in the attraction, similarity,
and compromise effect trials. For the attraction effect trials, the
choice probability for the focal alternative (M � .55) was signif-
icantly larger than the choice probability for the nonfocal alterna-
tive (M � .42), t(64) � 3.14, p � .003. The similarity trials also
showed that across all four choice sets the choice probabilities
were significantly larger for focal options (M � .43) than nonfocal
options (M � .36), t(64) � 2.58, p � .012. For the compromise
effect, the choice probability for compromise alternatives (M �
.47) was significantly larger than the choice probability for ex-
treme alternatives (M � .41), t(64) � 2.17, p � .034. We also
examined how frequently multiple effects occurred within a single
participant. Fifty-seven percent of participants demonstrated at
least two effects (11% showed all three effects, 17% showed the
attraction and similarity effects, 14% showed the attraction and
compromise effects, and 15% showed the similarity and compro-
mise effects).

Model Comparison

For the calibration stage of the GCM, we fit both versions of
MDFT (with �2 fixed and free) and the MLBA model to the
average choice probabilities across subjects from the combined
inference experiment discussed above. We did not fit individual
choice probabilities because there were not enough data from each
subject. The models were fit to choice probabilities only rather
than choice probabilities and response times.

Table 4
Mean Square Error and R2 Values for the Multiattribute Linear Ballistic Accumulator (MLBA) Model and Multialternative Decision
Field Theory (MDFT) for the Inference and Perceptual Experiments

Experiment

MLBA MDFT

� � 1 � free �2 � 1 �2 free

MSE R2 MSE R2 MSE R2 MSE R2

Attraction inference .003 .92 .002 .94 .002 .94
Similarity inference .004 .89 .023 .29 .018 .43
Compromise inference .004 .94 .038 .34 .031 .47
Combined inference .007 .86 .037 .25 .034 .32
Attraction perceptual .027 (.026) .62 (.17) .011 (.007) .83 (.06) .005 (.003) .90 (.06) .002 (.002) .95 (.04)
Similarity perceptual .009 (.014) .49 (.31) .007 (.013) .65 (.27) .016 (.021) .21 (.23) .014 (.018) .30 (.25)
Compromise perceptual .007 (.013) .75 (.31) .005 (.010) .86 (.21) .028 (.032) .56 (.24) .027 (.033) .63 (.26)

Note. Standard deviations are given in parenthesis for the perceptual experiments.
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We fit 24 choice probabilities arising from the eight ternary
choice sets used in the experiment. The models were fit by mini-
mizing the sum of squared error between the model predictions
and the data as before. The mean square error and R2 values for the
MLBA model and two versions of MDFT are given in Table 4.
Figure 8 (fourth row) shows the observed and fitted mean choice
probabilities for the MLBA model and both versions of MDFT.
The MATLAB programs for fitting the MLBA model and choice
probability data are available in the supplemental materials.

For the generalization stage, we used the best fitting parameters
for each model from the calibration stage (data from the combined
experiment) to predict the data from the separate inference exper-
iments presented in Trueblood (2012). We then calculated the
discrepancy for each model in the generalization data (separate
experiments). A comparison of MDFT with �2 fixed versus �2

free found that the �2 fixed version was preferred. After this,

we compared the discrepancy of the MLBA model to that of the
MDFT model with �2 fixed and found that the MLBA had a
smaller discrepancy (mean square error smaller by .08), imply-
ing that the MLBA model fits best, even after accounting for
model complexity.

Parameter Values

Table 6 gives the best fitting parameters for the MLBA model
for the inference experiments. For all of the experiments, the m
parameter is greater than 1, indicating that options with less
attribute dispersion are preferred. The m parameter is much
smaller for the attraction experiment than the remaining three
experiments because there were no intermediate options in this
experiment. Further, all options had similar degrees of attribute
dispersion (i.e., (35, 65) and (65, 35)). The similarity, compro-
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Figure 8. Observed and fitted mean choice probabilities for the inference experiments. The first column shows
the fits of the multiattribute linear ballistic accumulator (MLBA), the second column shows the fits of
multialternative decision field theory (MDFT) with fixed �2, and the third column shows the fits of MDFT when
�2 was allowed to vary freely. The first row shows the fits to the attraction data (18 mean choice probabilities),
the second row shows the fits to the similarity data (12 mean choice probabilities), the third row shows the fits
to the compromise data (nine mean choice probabilities), and the fourth row shows the fits to the combined
inference experiment (24 mean choice probabilities).
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mise, and combined experiments included intermediate options
such as (55, 55) (see Table 5 for details). For m � 1, the model
predicts a general preference for intermediate options. We
confirmed this preference experimentally with a new study
examining binary choice sets in the inference domain, discussed
below.

Table 7 gives the best fitting parameter values of MDFT (�2

free) to the inference experiments. The parameter values for the
four experiments are generally quite different, although the atten-
tion weight is similar for the experiments. We do not provide an
in-depth discussion of the MDFT parameters, as this has been done
previously (Hotaling et al., 2010; Roe et al., 2001). However, it is
interesting to note that the �2 parameter differs greatly across the
experiments. In particular, �2 is largest for the attraction and
combined experiments and smallest for the similarity experiment.
This follows the intuition of Hotaling et al. (2010) that the variance
of the noise is greater for the attraction and compromise effects
than for the similarity effect.

Binary Inference Experiment

Results from the quantitative fitting of the MLBA model sug-
gest that individuals show extremeness aversion (i.e., mediocre
options are preferred to extreme options), as seen by values of the
m parameter that are greater than 1. To test the generality of this
preference, we ran a new experiment comparing mediocre and
extreme options in binary choice. For this experiment we used the
inference paradigm with stimuli similar to those used in the com-
promise experiment.

Method

Fifty-one undergraduate students from the University of Cali-
fornia, Irvine, participated for course credit, completing the
computer-based experiment online at a time of their choosing. The
experiment used the same eyewitness testimony procedure as
described above. Unlike the previous inference experiments, the
choice sets in this experiment only contained two options. Each
participant completed four blocks of 34 randomized trials, which
were divided into 24 trials with one mediocre and one extreme
option and 10 filler trials. An option was defined as mediocre if it
was the alternative in the choice set with eyewitness strengths
closest to 50. The different choice sets used for testing extremeness
aversion are given in Table 8. Noise was added to the attribute
values to introduce variation to the task similar to the previous

inference experiment. For example, on a trial using Choice Set 1
from the table, participants might see (74, 36) and (67, 43). The
filler trials contained one option that was clearly superior and were
used to assess accuracy as in previous experiments.

Results and Discussion

One subject was excluded from the analysis because his or her
accuracy on the filler trials was 2 standard deviations lower than
the average. The mean choice probability for mediocre options
(M � .58) was significantly larger than the mean choice probabil-
ity for extreme options (M � .42), t(49) � 2.25, p � .029. The
choice probabilities for the different choice sets listed in Table 8
are shown in Figure 10. Choice sets that contained symmetric
options such as (35, 75) and (75, 35) were combined for the figure
(e.g., Choice Set 1 was combined with Choice Set 4). This result
indicates that participants had a general preference for mediocre
alternatives, as predicted by the MLBA model when m � 1.7

This result also confirms a previous finding by Usher et al.
(2008) for greater preference for compromise options in both
binary and ternary choice. In their experiment, participants were
given either binary or ternary choice sets containing consumer
products such as laptops and asked to select the one they preferred.
The results indicated that in both types of choice sets, the midrange
options were selected more often. Usher et al. interpreted this
finding as support for the LCA model because the value function
used in the model produces equal preference curves where mid-
range options have higher utility than extreme options.

Model Fits to Perceptual Experiments

In this section, we provide fits for both MDFT and the MLBA
model to the perceptual experiments presented in Trueblood et al.
(2013). For these experiments, we introduce an extended version
of MLBA that allows for perceptual biases. Holmberg and Holm-
berg (1969) found that as the height-to-width ratio of rectangles
increased, so did their apparent area. This “elongation effect”
suggests that height might play a more important role in area
judgment than width. We model attribute biases by allowing a bias
parameter � to mediate the attention weights:

wPij � exp(�� | uPi � uPj | )

wQij � exp(��� | uQi � uQj | ),
(5)

where � � 0. There is a bias toward attribute Q when � � 1 and
a bias toward attribute P when � � 1. When � � 1, there is no
bias. For the inference experiments, we had no reason to believe
participants would be biased toward one eyewitness over the other,
since they were instructed to treat them equally. However, one
might find attribute biases in other high-level domains. For exam-
ple, in a choice among consumer products, price might receive
more weight than quality.

7 Extremeness aversion was more pronounced in the compromise exper-
iment than in the binary experiment. In the compromise experiment, the
midrange option with attribute values (55, 55) was selected 60%–70% of
the time. As a result, the best fit m parameter was quite large. Extremeness
aversion might be weaker in the binary experiment because it is easier to
discern the additive indifference rule with fewer options.

Table 5
Example Stimuli From the Combined and Separate
Inference Experiments

Choice set Option 1 Option 2 Option 3

Combined
Attraction (25, 45) (45, 25) (17, 45)
Similarity (25, 45) (45, 25) (24, 46)
Compromise (75, 35) (55, 55) (45, 65)

Separate
Attraction (35, 65) (65, 35) (28, 65)
Similarity (35, 75) (55, 55) (33, 77)
Compromise (75, 35) (65, 45) (55, 55)
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For these experiments, we used the same fitting methods as for
the inference experiments, but applied them to the individual
choice probabilities, which was possible because we had a lot of
data per subject. We fit two versions of MLBA (e.g., with and
without fixed �) and two versions of MDFT (e.g., with and without
fixed �2). We converted attribute values to log coordinates to
allow objectively indifferent options (i.e., rectangles with the same
area) to follow an additive rule rather than a multiplicative rule.
Specifically, the attribute dimensions were height and width, and a
pair of options were experimentally defined as indifferent if they
had equal area, that is, P1· Q1 � P2· Q2 or equivalently log(P1) �
log(Q1) � log(P2) � log(Q2).

For the attraction experiment, we fit 18 choice probabilities
arising from the six ternary choice sets used in the experiment.
Four subjects were removed from the model fitting because
their accuracy on the filler trials (which have a clear correct
response) was 2 standard deviations lower than the average.
These subjects were also removed from the data analyses in
Trueblood et al. (2013). For the similarity experiment, we fit 12
choice probabilities arising from the four ternary choice sets
used in the experiment. No subjects were removed from the
model fitting. For the compromise experiment, we fit six choice
probabilities arising from the two ternary choice sets used in the
experiment. These choice sets were {X, Y, Z} and {Y, Z, CZ}.
Four subjects were removed from the model fitting because
their filler accuracy was 2 standard deviations lower than the
average. These subjects were also removed from the data anal-
yses in Trueblood et al.

The mean square error and R2 values for the two versions of
MLBA and MDFT are given in Table 4. Figure 11 gives the
observed and fitted mean choice probabilities for the MLBA
model with free � and two versions of MDFT. The two versions

of MDFT were able to account for almost all of the variability
in the attraction effect data as indicated by R2 values above .9.
The MLBA model with � free provided good fits to the attrac-
tion and compromise data and accounted for more than 80% of
the variability in the choice proportions. The MLBA fits to the
similarity data were poorer, probably reflecting closer-to-
random choices made by participants in these conditions, as
seen by choice probabilities near .33 in Figure 11. The average
R2 values for the similarity and compromise data were much
lower for both versions of MDFT. These fits were also worse
than those of the MLBA model with no perceptual bias (i.e.,
� � 1).

From Table 4, the MLBA model is able to provide a consistent
account of the variability in the data across the different context
effects and experimental domains. On the other hand, MDFT
provides an excellent account of the attraction effect data in both
the inference and perceptual experiments, but has difficulty ac-
counting for the compromise data in the inference experiment and
the similarity data in both the inference and perceptual experi-
ments.

General Discussion

MDFT and the LCA model have provided great insight into
multialternative choice behavior. However, these models have
some drawbacks. The LCA model is difficult to fit to data because
it requires computationally intensive simulations for both inter-
nally and externally controlled stopping rules. Further, the model
assumes an asymmetry in the treatment of losses and gains, which
has an uncertain ability to generalize to paradigms where the
definition of loss is arbitrary (such as perceptual choices). Unlike
the LCA model, MDFT has an analytical solution for externally

Table 6
Best Fitting Parameters for the Multiattribute Linear Ballistic
Accumulator Model for the Inference Experiments

Experiment m �1 �2 I0

Attraction 1.68 .024 .001 7.73
Similarity 32.02 .325 .897 0.31
Compromise 29.48 .234 .204 15.21
Combined 22.30 .193 .278 13.39

Table 7
Best Fitting Parameters for Multialternative Decision Field
Theory (�2 Free) for the Inference Experiments

Experiment p(wP) � �1 �2 �2

Attraction .52 6.16 .50 .11 2.00
Similarity .50 1.00 .001 .25 0.0001
Compromise .61 1.00 .007 .50 0.001
Combined .53 1.00 .001 .04 15.18

Figure 9. Mean choice probabilities with error bars showing the standard error of the mean for the attraction,
similarity, and compromise effects from the combined inference experiment.
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controlled stopping times and does not assume loss aversion as a
primitive. However, this model requires simulations for tasks with
internally controlled stopping times and has some stability prob-
lems. The MLBA model is similar to MDFT and the LCA model
in many regards, but it is simpler and more tractable. It has
analytical solutions for both internally and externally controlled
stopping times and, unlike the LCA model, does not assume loss
aversion.

The MLBA model passes the tests that have been applied to
previous dynamic models of multialternative choice (e.g., MDFT
and the LCA model), including accounting for all three context
effects with a single set of parameters. It also passes more difficult
tests such as accounting for the data from Usher et al. (2008)
involving unavailable options in the compromise effect, and nat-
urally predicts previous results for the attraction and compromise
effects under time pressure. Going beyond MDFT and the LCA
model, the MLBA model makes a new prediction about the influ-
ence of time pressure on the similarity effect, which we confirmed
experimentally.

All the above, and previous work, has focused on qualitative
analyses of the models; that is, does the model produce the
expected ordering of some probability measures? We took this a
step further in applying the MLBA to data from inference and
perceptual decision tasks, by examining the model’s quantitative
fit—at an individual-subject level, where possible. These quanti-
tative analyses represent one of the first attempts at fitting a
dynamic model to empirical data for all three context effects (see
Berkowitsch et al., 2013, for a comparison of MDFT and utility
models for context effects in consumer choice). The quantitative
analyses showed that the MLBA model provided a better descrip-
tion of the data than MDFT. Further, the generalization criterion
methodology confirmed that the MLBA model’s superior fit to
data was not due to greater model complexity.

The Front-End Process

The MLBA model consists of two components: a front-end
process that compares options to produce response tendencies
(drift rates) and a back-end process that determines the probability
that a particular option will be selected and the time it takes to
make that selection. The back-end process is the LBA model
developed by Brown and Heathcote (2008). This article develops
the front-end attribute processing component. The coupling of
front-end and back-end processes is not new. For example, the
SAMBA model (Brown, Marley, Donkin, & Heathcote, 2008) of
choice and response times in absolute identification tasks proposes
a front end to the ballistic accumulator model (Brown & Heath-

cote, 2005). In this model, physical magnitudes are used to set up
the front-end process that feeds into the ballistic accumulator back
end. As in the SAMBA model, in the MLBA model we assumed
that the front-end process completes in a fixed time, with variabil-
ity in deliberation time explained by the time taken by the back-
end process to integrate information.

The coupling of front-end and back-end processes to produce
context effects maps to a common idea in the neurophysiological
literature, where the front-end process modulates action selection
in the back-end process. For example, Frank (2005) and O’Reilly
and Frank (2006) developed a model in which the striatum mod-
ulates motor actions and working memory updating in frontal
cortex. We do not argue for a particular mapping between the
processes in our model and specific brain regions, but speculate
that the gating of actions by a front-end process could have a
neural explanation. More generally, the LBA model has been
successfully used in model-based neuroimaging (Forstmann et al.,
2008, 2010). This approach uses a cognitive model to isolate and
quantify the latent cognitive processes of interest to more effec-
tively associate them to brain measurements. The MLBA model
could play a similar role in future research.

Elements of the front-end process could also be incorporated
into MDFT. In particular, MDFT might benefit from the subjective
value function in Equation 2 that is used to map physical stimuli
into psychological magnitudes. By introducing such a function,
MDFT might provide better fits to data. Decision field theory has
been shown to provide an excellent account for binary choice data
(Busemeyer & Townsend, 1993), so it seems likely that the fits of
MDFT to multialternative choice data could be significantly im-
proved by making such changes.

Recent Alternative Models

Bhatia (2013) proposed a model of multialternative, multiattrib-
ute choice called the associative accumulation model that assumes
that preferences are determined by the accessibility of attributes. In
this model, the preference for an alternative is a weighted sum of
its attribute values where the greater the amount of an attribute, the

Table 8
Choice Sets Used in the Binary Inference Experiment to Test
Preferences for Extreme Versus Mediocre Options

Choice set Extreme Mediocre

1 (75, 35) (65, 45)
2 (75, 35) (55, 55)
3 (65, 45) (55, 55)
4 (35, 75) (45, 65)
5 (35, 75) (55, 55)
6 (45, 65) (55, 55)

Figure 10. Mean choice probabilities with error bars showing the stan-
dard error of the mean for the binary inference experiment. In general,
participants preferred midrange options to extremes.
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more heavily that attribute is weighted. The model can produce all
three contexts effects, but similar to MDFT and the LCA model,
computationally intensive simulations are needed to do so. The
model can also produce a bias toward midrange options similar to
the MLBA and LCA models, but can only do so if each attribute
is assumed to have a high level of initial activation. Without this
initial activation of attributes, the model produces an extremeness
bias contrary to the experiments presented here and in Usher et al.
(2008).

Wollschläger and Diederich (2012) developed the 2N-ary choice
tree model of preferential choice that can also produce the three
context effects. The model implements pairwise comparisons of
alternatives on weighted attributes through an information sam-
pling process. Similar to the MLBA model, the 2N-ary choice tree
has closed form solutions for choice probabilities and response
deadlines. Also, like the MLBA model, the 2N-ary choice tree does
not use inhibition or loss aversion to account for the effects.

However, the model requires unequal attribute weights in order to
account for the attraction effect, and it is unclear whether the
model can account for all three effects with the same set of
parameters.

Soltani et al. (2012) developed the range-normalization model to
explain the attraction, similarity, and asymmetrically dominant
decoy effects. This model is neurally inspired and accounts for
context effects by adjusting the neural representations of available
options on a trial-by-trial basis. The model suggests that context
effects are the natural result of biophysical limits on neural repre-
sentations in the brain. The model has yet to be applied to the
compromise effect.

One challenge for the MLBA model is accounting for coherence
effects, that is, the finding that attribute weights (Simon, Krawc-
zyk, & Holyoak, 2004) and the subjectively perceived validity of
cues in probabilistic inference (Holyoak & Simon, 1999) are
changed in the decision process to favor the option that is ulti-
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Figure 11. Observed and fitted mean choice probabilities for the perceptual experiments. The first column
shows the fits of the multiattribute linear ballistic accumulator (MLBA) when � was allowed to vary freely, the
second column shows the fits of multialternative decision field theory (MDFT) with fixed �2, and the third
column shows the fits of MDFT when �2 was allowed to vary freely. The first row shows the fits to the individual
choice probabilities in the attraction experiment, the second row shows the fits to the individual choice
probabilities in the similarity experiment, the third row shows the fits to the individual choice probabilities in
the compromise experiment.
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mately selected. These effects suggest bidirectional reasoning from
the attributes to the evaluation of options, and vice versa. Coher-
ence effects can be explained by parallel constraint satisfaction
network models such as the one in Glöckner and Betsch (2008,
2012), which has been successful in predicting choice, decision
time, and confidence in probabilistic inference tasks. Future work
could generalize the MLBA model to allow the drift rates to
change within a trial. Changes in drift rates across a trial could
correspond to changes in attention. This type of generalization
might allow the MLBA model to account for coherence effects.
However, it is difficult to imagine that such a model could have
closed formed solutions for choice and response times.

Concluding Comments

The MLBA model provides a dynamic account of multialterna-
tive, multiattribute decision making. The model postulates a new
psychological theory of how a front-end attribute processing com-
ponent gates choices and response times in a back-end process.
MLBA makes testable new predictions, such as about the influence
of time pressure on context effects, which we confirmed experi-
mentally. At the quantitative level, the model is easily fit to
individual subject data from the perceptual experiments. These
quantitative analyses go beyond the standard qualitative tests and
set a new bar for evaluating models of context effects.

Past research has shown that context effects play a significant
role in choice behavior and can impact real-life decisions. How-
ever, this research has mainly focused on the presence of context
effects in high-level tasks where options have hedonic values. The
inference and perceptual experiments discussed offer evidence
suggesting that context effects are not confined to choices among
options that have affective value, such as consumer products.
These results provide strong support for the conclusion that con-
text effects are a general feature of choice behavior and are
fundamental to decision making. This is an important result that
has consequences for not only decision making but other fields
such as memory, categorization, and signal detection that use
Luce’s (1959) ratio of strengths model.

The experiments also offer the first evidence that all three
effects can occur within the same nonhedonic experimental para-
digm, using simple perceptual decisions. All three models dis-
cussed in this article—MDFT, the LCA model, and the new
MLBA model—assume that a single set of cognitive principles can
be used to account for all three effects. The inference and percep-
tual experiments provide a crucial test of this assumption. More-
over, the combined inference experiment shows that all three
context effects can be obtained within a single subject in a single
experiment.

In the perceptual experiments, the magnitude of the context
effects was much smaller than in the inference experiments. We
hypothesize that this is due to short response times in the percep-
tual domain. As shown in the experiments by Pettibone (2012) and
the new experiments discussed above, all three effects grow with
longer deliberation time, as predicted by the MLBA model. Future
experiments could be designed to examine the relationship be-
tween effect magnitude and response times in perception. We
anticipate that such experiments will confirm the previous exper-
imental evidence for the positive relationship between deliberation
time and the magnitude of the effects.

Dynamic models were developed to explain context effects
because these effects violate the assumptions of static choice rules
such as Luce’s (1959) ratio of strengths model. However, the extra
flexibility introduced by the inclusion of dynamics needs to be
justified. Response time measures provide one way to test the
dynamic assumptions of these models. Further, it might be
possible to distinguish the three models on the basis of response
time data as described by Tsetsos et al. (2010). Perceptual
choice is one possible domain for exploring the relationship
between preference and response time because choices are
made quickly and response time measurement is easy. Future
experiments could exploit this characteristic of perceptual
choices to further understanding of the dynamic nature of
context effects.
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Appendix A

Multialternative Decision Field Theory

Multialternative decision field theory models preferences by
associating each alternative with a valence value that represents
the advantages or disadvantages of the alternative at each moment
in time. For a set of options such as {X, Y, Z}, the valences can be
described by the vector V(t) � [vX(t), vY(t), vZ(t)]=, where V(t) is
defined by three components.

The first component is a subjective evaluation of each alter-
native on each attribute value. This subjective value is meant to
capture personal assessment of the options. In the case where
there are two attributes, let Pi and Qi denote the actual value of
option i on the attributes. In the model, the values mPi and mQi

represent the subjective value of option i on attributes P and Q.

The collection of all the subjective evaluations can be written as
an n � m matrix, where n is the number of options and m is the
number of attributes. In the case of three options with two
attributes, the matrix form is given by Equation A1:

M � �
mP1 mQ1

mP2 mQ2

mP3 mQ3
	. (A1)

The second component of the valence vector is an attention weight
for each attribute. It is assumed a decision maker allocates a certain
amount of attention to each attribute at each moment in time. Let
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wj(t) denote the attention allocated to attribute j at time t. It is assumed
the attention weights change across time to reflect an individual’s
shifts in attention. For example, in the inference experiments, an
individual might pay more attention to one of the eyewitnesses early
in the trial but switch attention to the other eyewitness later in the trial.
This attention switching mechanism was motivated by the elimination
by aspects heuristic (Tversky, 1972).

In the case where there are only two attributes, let wP(t) be the
attention weight for attribute P and wQ(t) be the attention weight for
attribute Q. In Roe et al. (2001), it is assumed that attention changes
across time in an all-or-none fashion so that wP(t) � 1 and wQ(t) �
0 at one moment and wP(t � 1) � 0 and wQ(t � 1) � 1 at the next
moment. The shifts in attention are determined by fixed probabilities
p(wP) and p(wQ) � 1 
 p(wP). This scanning of attributes is imple-
mented according to a Bernoulli process. More complex models of
attention switching have also been proposed, such as models with the
Markov property (Diederich, 1997). The attention weights for both
attributes can be written as the following vector:

W(t) � �wP(t) wQ(t) ��. (A2)

The subjective evaluations given by the M matrix can be combined
with the attention weights given by the W(t) matrix to produce a
weighted value of each option on each attribute at every moment in
time: MW(t). The entries in the matrix take the form wP(t)· mPi �
wQ(t)· mQi. This is similar to a classical weighted utility model;
however, the sum is stochastic because of the changes in attention
weights over time.

The third component of the valence vector is a comparison mech-
anism that contrasts the weighted evaluation of the alternatives. This
mechanism is used to determine the relative advantages and disad-
vantages for each option in the choice set. The valence for each option
is defined as the difference of the weighted value of one alternative
against the average of all the others. For n alternatives with two
attributes, the valence of option i can be written as

vi(t) � (wP(t) · mPi � wQ(t) · mQi) � � 1

n � 1�
j�i

n�1

(wP(t) · mPj

� wQ(t) · mQj). (A3)

For three options, this comparison process can also be described
by a matrix operation by first defining the contrast matrix:

C ��
1 �

1

2
�

1

2

�
1

2
1 �

1

2

�
1

2
�

1

2
1
	. (A4)

With this matrix, the valence vector can be written as the matrix product

V(t) � CMW(t), (A5)

where each row corresponds to a weighted comparison of the
options as defined in Equation A3.

In the model, each alternative is associated with a preference
state Pi(t) that fluctuates across time. This preference state is
determined by integrating all of the valences for option i up until
time t. The preference states for all of the options can be written as
a vector. For example, for three options {X, Y, Z}, the preference
state vector is P(t) � [PX(t), PY(t), PZ(t)]=. The preference state at
time t � 1 is determined by the previous preference state and the
current valence:

P(t � 1) � SP(t) � V(t � 1). (A6)

It is assumed that the initial preference state is P(0) � 0. The
feedback matrix S allows for cross-talk among the options. Spe-
cifically, the S matrix contains positive self-connections and neg-
ative interconnections among the options.

The self-connections in the S matrix determine an individu-
al’s memory of previous preference states. If these self-
connections are set to 1, then the individual has perfect memory
of the preference states. If the self-connections are set to 0, then
the individual has no memory for previous preference states.
Values between 1 and 0 correspond to decay in memory across
time. The interconnections in the S matrix determine how
options influence one another and these values, which are
typically negative, can be interpreted as implementing lateral
inhibition. The effects of lateral inhibition are typically as-
sumed to be distance dependent. Specifically, the strength of
the lateral inhibition is determined by the distance between two
options in an “indifference/dominance” space.

Consider a pair of options (Pi, Qi) and (Pj, Qj). Define the
distance between these two options as (
P, 
Q) � (Pi 
 Pj,
Qi 
 Qj). These distances are then mapped to the corresponding
coordinates in the indifference and dominance space:

�	I,	D� � 1�2 · ��	Q � 	P�,�	Q � 	P��, where 
I is the
difference along the indifference dimension and 
D is the
difference along the dominance dimension. With these coordi-
nates, the distance function that weights changes more in the
dominance dimension than the indifference dimension is de-
fined as

Distij � �(	I)2 � � · (	D)2. (A7)

These distances between the options determine the feedback ma-
trix, S, via the Gaussian function:

Sij �� 1 � 
2, if i � j

�
2 · exp(�
1 · Distij
2), if i � j.

(A8)
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Appendix B

The Leaky Competing Accumulators Model

In the leaky competing accumulators (LCA) model, each option
is associated with an activation value determined by an input value
Ii(t) and lateral inhibition. The input for option i in a choice set
with n alternatives is given by

Ii(t) � I0 � 

j�i

n�1

V(dij(t)), (B1)

where I0 is a positive constant and dij(t) is the advantage or
disadvantage of option i as compared to option j at time t. In the
case of three alternatives {X, Y, Z}, the input values can be written
as the vector I(t) � [IX(t), IY(t), IZ(t)]=.

At each moment in time, attention is allocated to one attribute
dimension or the other in an all-or-none fashion where shifts in
attention are determined by fixed probabilities p(wP) and p(wQ) �
1 
 p(wP). This attention switching procedure is the same as in
multialternative decision field theory (MDFT), again motivated by
the elimination by aspects heuristic (Tversky, 1972). If attribute P
is selected at time t, then dij(t) is the difference Pi 
 Pj and
likewise for attribute Q.

The function V in Equation B1 is an asymmetric value function
consistent with the Tversky and Kahneman (1991) and Tversky
and Simonson (1993) loss aversion function:

V(x) �� z(x), if x � 0

��z( | x | ) � [z( | x | )]2
, if x � 0,
(B2)

where z(x) � log(1 
 x). As proposed by Tversky and Kahneman,
the function V(x) has a steeper slope in the loss domain as com-
pared to the gain domain. Usher and McClelland (2004) claim that
this aspect of the model is essential for accounting for the attrac-
tion and compromise effects.

In the model, each alternative is associated with an activation
state Ai(t) that fluctuates across time. For three options {X, Y, Z},
the activation states can be written as the vector A(t) � [AX(t),

AY(t), AZ(t)]=. The activation state at time t � 1 is determined by
the previous activation state and input values:

A(t � 1) � SA(t) � (1 � �)[I(t) � �(t)]. (B3)

Negative activations are truncated to 0, and �(t) is a vector
[�1(t), �2(t), �3(t)]= of noise terms. It is assumed that �i is
normally distributed with mean equal to 0 and standard devia-
tion given by �.

As in MDFT, the feedback matrix S allows for cross-talk among
the options and contains positive self-connections and negative
interconnections. However, these connections are not determined
by an indifference/dominance distance function. Rather, the S
matrix in the LCA model is defined as

S � �
� �� · (1 � �) �� · (1 � �)

�� · (1 � �) � �� · (1 � �)

�� · (1 � �) �� · (1 � �) �
	, (B4)

where � is a decay parameter and � is a lateral inhibition param-
eter. As in MDFT, it is assumed that memory for a previous state
can decay across time. The � parameter ranges from 0 to 1 with a
value of 0 corresponding to no memory of previous activation
states and a value of 1 corresponding to perfect memory of
previous states. An important difference between MDFT and the
LCA model is that off-diagonal elements in the S matrix for the
LCA model are constant. In MDFT the magnitude of these ele-
ments is determined by the distance function.

In total the LCA model has four free parameters: the attention
weight p(wP), the initial input I0, the decay parameter �, and the
lateral inhibition parameter �. The model also has a variance
parameter � that determines the noise in the accumulation process
and a threshold parameter associated with the decision criterion.
These two additional parameters are typically fixed for simula-
tions.

(Appendices continue)
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Appendix C

Mapping Objective to Subjective Values

Consider a pair of options (P1, Q1) and (P2, Q2) objectively
defined as indifferent by the additive rule: P1 � Q1 � P2 � Q2.
The line connecting these options can be written as x/a � y/b � 1,
where the x-intercept is a � P1 
 Q1(P2 
 P1)/(Q2 
 Q1) and the
y-intercept is b � Q1 
 P1(Q2 
 Q1)/(P2 
 P1). Notice that this line

will be in the direction of the unit-length vector
1

�2
· ��1 ,1�� because

indifference is defined by an additive rule. The transformation
from objective to subjective values maps the line to a curve
satisfying the equation (x/a)m � (y/b)m � 1. There are several
ways the mapping can be defined. We use the trigonometric
mapping given below because it has an analytical solution and
extremeness aversion increases with increasing concavity (i.e.,
increasing values of m).

Let � be the angle between the x-axis and the vector � P1, Q1 �,
which can be written as


 � arctan�Q1

P1
�. (C1)

Let �uP1
, uQ1

� be the subjective values for Option 1 on the curve.
These subjective values are given by

uP1
�

b

�tanm�
� � �b

a�m� 1
m

(C2)

and

uQ1
�

a · tan�
�

�1 � �a

b�m

tanm�
�� 1
m

. (C3)

The mapping of Option 2 proceeds in a similar fashion by first
defining the angle � and then using this angle to calculate the
subjective values. If there is a third option in the choice set
containing Options 1 and 2 that does not lie on the line x/a � y/b �
1, then the x- and y-intercepts for the line passing through Option

3 in the direction of the unit-length vector
1

�2
· ��1 ,1�� are used.
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