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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) encompasses a spec-

trum of disorders ranging from simple steatosis to steatohepatitis. 

NAFLD is the most common cause of chronic liver disease world-

wide, affecting approximately 25% of the adult population in the 
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Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and affects 
approximately one third of adults in the United States. The disease is becoming a global epidemic as a result of the rising 
rates of obesity and metabolic disease. Emerging data suggest weight loss of ≥10% overall body weight is beneficial in 
resolving steatosis and reversing fibrosis. Prospective trials comparing various diets are limited by lack of sufficient power 
as well as pre- and post-treatment histopathology, and therefore no specific diet is recommended at this time. In this 
narrative review we examine the pathophysiology behind specific macronutrient components that can either promote 
or reverse NAFLD to help inform more specific dietary recommendations. Overall, the data supports reducing saturated 
fat, refined carbohydrates, and red and processed meats in the diet, and increasing the consumption of plant-based 
foods. Diets that incorporate these recommendations include plant-based diets such as the Dietary Approaches to Stop 
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United States (US) and globally.1 Approximately 25% of patients 

with NAFLD have nonalcoholic steatohepatitis (NASH), which is 

associated with a 20% risk of progression to cirrhosis.2 It is esti-

mated that NAFLD affects 40–70% of patients with type 2 diabe-

tes mellitus (T2DM),2-4 67% of adults with a body mass index 

(BMI) between 25 and 30 kg/m2, and up to 91% of adults with a 

BMI >30 kg/m.5-9

The diagnosis of NAFLD requires >5% hepatic steatosis with 

lack of secondary cause for hepatic fat accumulation. Steatosis re-

sults from a surplus of free fatty acids (FFAs) either from excessive 

lipolysis (60%), de novo  lipogenesis (DNL, 25%), dietary FFA 

(15%), diminished export by very low-density lipoprotein (VLDL), 

or impaired beta-oxidation (Fig. 1).10 Excess FFAs are stored as  

triglycerides in the hepatocytes. In NAFLD, peripheral lipolysis is 

resistant to suppression by insulin, further increasing serum FFA 

levels.11 Lipotoxicity, along with oxidative stress and a pro-inflam-

matory environment, lead to NASH.12

Due to lack of approved pharmacologic therapy, current treat-

ment recommendations for NASH are for weight loss of ≥10% to-

tal body weight, which is associated with resolution of steatohep-

atitis and fibrosis regression.13-15 Prospective trials comparing 

various diets are limited by lack of sufficient power as well as pre- 

and post-treatment histopathology.13 As a result, the American 

Association for the Study of Liver Disease has not made any spe-

cific dietary recommendation for NAFLD at this time. While guide-

lines from the European Association for the Study of the Liver 

(EASL) recommend exclusion of NAFLD-promoting components 

(processed food, high fructose foods and beverages) in addition 

to a macronutrient composition in line with a Mediterranean diet, 

this recommendation is only supported by evidence graded as 

“moderate” in quality.14 Here we review the pathophysiology be-

hind how the quality of proteins, carbohydrates (CHOs), and fats 

can promote or reverse NAFLD, the available data on specific di-

ets, and discuss ongoing knowledge gaps for future research.

ENERGY AND CALORIC RESTRICTION 

Observational studies

The diabetes, obesity and NAFLD epidemics are products of a 

significant rise in net population energy intake, resulting from en-

ergy-dense foods and a sedentary lifestyle. A high-calorie diet is 

fundamentally linked to obesity and is the initial trigger point for 

NAFLD through adipose tissue expansion, increased inflammation 

and mitochondrial dysfunction. It is often imbalanced with high 

quantities of saturated fatty acids (SFAs), refined CHOs, sugar-

sweetened beverages (SSBs) and alcohol excess. Understanding 

the individual impact of these factors is therefore a challenge for 

clinical trial design, and limits our understanding of the role of 

specific macronutrients outside the context of excess energy intake.

In terms of observational studies, a cohort study of 55 patients 
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Figure 1. The pathogenesis of NAFLD. TG, triglycerides; FFAs, free fatty acids; SREBP-1c, sterol regulatory element-binding protein-1c; ChREBP, carbohy-
drate response element-binding protein; NASH, nonalcoholic steatohepatitis; NAFLD, nonalcoholic fatty liver disease; VLDL, very low density lipopro-
tein.
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with NAFLD and 88 healthy controls observed that NAFLD pa-

tients consumed more calories overall (2,739 vs. 2,173 kcal), how-

ever the macronutrient composition (fat, CHO, fructose) was 

largely comparable between groups.16 Given this, energy restric-

tion, and thereby weight loss, plays a crucial role in the treatment 

of these patients. The largest prospective trial to date in this field 

followed 293 patients with biopsy-proven NASH for 52 weeks. 

Patients were advised to follow a low fat, hypocaloric diet which 

contained 750 kcal/day less than their daily energy needs, in addi-

tion to walking 200 minutes per week.15 Overall 19% had fibrosis 

regression, 47% had reduction in NAFLD activity score (NAS) on 

histology and 25% achieved complete resolution of steatohepati-

tis. The highest rates of fibrosis regression, NAS reduction and 

NASH resolution occurred in patients achieving ≥10% weight 

loss, however benefits were also seen for weight loss of ≥5%. Us-

ing nutritional counselling, a small study of 15 patients with biop-

sy-proven NASH and a BMI >25 found histologic improvement to 

be associated with greater weight reduction.17 After 1 year of cal-

orie restriction (mean reduction of 195 kcal/day), nine patients 

had histologic improvement and six had stable NAS. Histological 

improvement was associated with greater changes in weight re-

duction. 

Pathophysiology 

A high-caloric diet leads to adipose tissue expansion, one of the 

sentinel events in the pathogenesis of NAFLD. Visceral adipose 

tissue (VAT) is particularly biological active. Excess accumulation 

of VAT increases the production of FFAs through reduced insulin 

sensitivity, leading to increased fatty acid influx into the liver, DNL 

and insulin resistance. Hypertrophy and hyperplasia of adipocytes 

results in hypoxemia and adipocyte dysfunction.18 This exacer-

bates insulin resistance and dyslipidemia, and creates a pro-in-

flammatory environment within the adipose tissue. The secretion 

of adipokines (adiponectin, resistin, leptin, visfatin) and pro-in-

flammatory cytokines (interleukins and tissue necrosis factor α) 

from VAT induce a state of systemic low-grade chronic inflamma-

tion which can promote the onset of NAFLD and NASH.18-20

Randomized controlled trial data

The findings from key randomized controlled trials (RCT) in this 

field involving lifestyle intervention for NAFLD and NASH are sum-

marized in Table 1.21-24 Weight loss is consistently identified as be-

ing central to the metabolic benefits that result from calorie re-

striction. A meta-analysis of therapeutic options for NAFLD, 

including lifestyle interventions, reported that weight loss of ≥7% 

(achieved by <50% of patients even with intensive multi-disciplin-

ary support) led to improved histological disease activity deter-

mined by NAS, although there was no impact on fibrosis.25 

While guidelines currently recommend continuous energy re-

striction along with physical activity,26 there is increasing popular 

interest in intermittent fasting (IF), i.e., a low calorie period lasting 

less that 24 hours followed by a normal period of feeding. Evi-

dence suggests that intermittent energy restriction results in 

equivalent weight loss compared to continuous energy restriction 

in the short-term, with a lack of long-term data.27 Several RCTs 

have looked at the effectiveness of IF in the setting of NAFLD. An 

8 weeks modified alternate-day calorie restriction was found to 

lead to reductions in BMI, liver enzymes, liver steatosis and liver 

stiffness (based on shear wave elastography) compared to no in-

tervention with adherence rates of 75–83%.28 A larger trial com-

paring alternate-day and time-restricted feeding with a control 

group for 12 weeks revealed that both diets led to significant 

short-term reductions in weight and improvements in dyslipidae-

mia, although no changes were seen for fasting levels of insulin or 

liver stiffness.29

Clinical advice

Calorie restriction with a 500–1,000 kcal daily deficit is an ex-

tremely effective lifestyle intervention for both the prevention of 

NAFLD and histological improvement in patients with established 

disease. The goal of calorie reduction should be to achieve ≥10% 

overall body weight loss.

PROTEIN

Observational studies

The consumption of animal protein, specifically red and pro-

cessed meat, is associated with higher all-cause, cardiovascular 

and cancer-related mortality compared to plant protein.30-41 In a 

large US cohort, red and processed meats were associated with 

nine causes of death, with the strongest correlation being for 

mortality from chronic liver disease.34 High animal protein intake 

is also associated with NAFLD in overweight Caucasians indepen-

dent of sociodemographic, lifestyle and metabolic traits.42 Animal 

protein is positively associated with high fatty liver index (FLI) 
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Table 1. Summary of randomized controlled trial data examining the influence of hypocaloric diets on hepatic steatosis

Study Participant Intervention Result

Ueno et al.23 (1997) Obese adults  
(BMI >25 kg/m2; n=25) 

Randomized to receive the following 
for 3 months: 1) hypocaloric diet 
(ideal weight ×25 kcal/kg; 50% 
carbohydrate, 30% fat) combined 
with physical activity; 2) no 
intervention

The low calorie diet was associated with reductions 
in weight, aminotransferases, albumin, 
cholesterol and fasting glucose, in addition to 
histologically determined levels of steatosis. 
Improvements seen for other histological 
parameters did not reach statistical significance.

Kirk et al.24 (2009) Obese adults (mean 
BMI, 36.5±0.8 kg/m2; 
n=22)

Randomized to receive the following 
for 11 weeks: 1) high carbohydrate 
1,000 kcal daily energy deficit diet; 
2) low carbohydrate 1,000 kcal daily 
energy deficit diet 

IHTG content and insulin-mediated glucose uptake 
were similar in both dietary groups after 7% 
weight loss, i.e., calorie restriction and weight loss 
more important than macronutrient composition 
for these parameters. 

Harrison et 
al.155 (2009)

Obese adults  
(BMI ≥27 kg/m2) with 
biopsy-proven NASH 
(n=50) 

Randomized to receive the following 
for 36 weeks: 1) 1,400 kcal/day + 
vitamin E 800 IU daily; 2) 1,400 
kcal/day + vitamin E 800 IU daily + 
Orlistat 120 mg three times daily

Weight loss (6.0% vs. 8.3%, P=NS), reductions 
in aminotransferases, hepatic steatosis, 
necroinflammation, ballooning, and NAS were 
similar between groups. Overall cohort stratified 
according to weight loss: loss ≥5% body weight 
vs. <5% led to improved insulin sensitivity 
(P=0.001) and steatosis (P=0.015); loss ≥ 9% body 
weight vs. <9% also led to improved ballooning 
(P=0.04), inflammation (P=0.045) and NAS 
(P=0.009).

Lazo et al.21 (2010) Overweight adults 
(BMI ≥25 kg/m2) 
with T2DM who 
underwent proton 
magnetic resonance 
spectroscopy of the 
liver (n=96) 

Ancillary study linked to the “Look 
AHEAD” RCT. Participants had 12 
months of either: 1) intensive lifestyle 
intervention: moderate calorie 
restriction (1,200–1,500 kcal/day 
for individuals weighing <114 kg, 
1,500–1,800 kcal/day for those >114 
kg; <30% calories from fat and <10% 
from SFAs) and increased physical 
activity; 2) general education

Lifestyle intervention group vs. controls: lost on 
average 8.3% of their body weight vs. 0.03% 
(P<0.001), had significant improvements in HbA1c 
(-0.7% vs. -0.2%, P=0.04) and a greater decrease 
in hepatic steatosis (-50.8% vs. -22.8%, P=0.04).

Individuals who lost ≥10% of their body weight 
achieved a 79.5% reduction in steatosis vs. 13.7% 
for those with little weight change (±1%). 

NAFLD incidence was significantly lower in the 
lifestyle intervention group compared to controls.

Promrat et al.22 (2010) Obese adults (BMI 
25–40 kg/m2) with 
biopsy-proven NASH 
(n=31) 

Randomized 2:1 to receive the 
following for 48 weeks: 1) intensive 
lifestyle intervention: moderate 
hypocaloric diet (1,000–1,200 
kcal/day if baseline weight <200 
lb or 1,200–1,500/day if >200 lb), 
with restrictions on fat intake, in 
combination with physical activity;  
2) general education 

Lifestyle intervention group vs controls: lost on 
average 9.3% of their body weight vs. 0.2% 
(P=0.003), had significant improvements in their 
NAS (72% vs. 30%, P=0.03).

% weight reduction correlated significantly with 
improvement in NAS (r=0.497, P=0.007). 

Individuals achieving ≥7% weight loss experienced 
significant improvements in steatosis, lobular 
inflammation, ballooning and NAS vs individuals 
who lost <7%.

Lin et al.156 (2009) Obese (BMI >30 kg/m2)
Taiwanese adults 

(n=132)

Randomized to receive the following 
for 12 weeks: 1) very low calorie diet 
450 kcal/day (VLCD-450); 2) very low 
calorie diet 800 kcal/day (VLCD-800)

Both groups had 2 weeks run in of 
1,200 kcal/day

The percentage change in body weight for the 
groups was -9.1% (VLCD-450) and -9.0% (VLCD-
800) (P=NS). The improvement rate of NAFLD 
as determined by ultrasound was 41.5% in the 
VLCD-450 group and 50.0% in the VLCD-800 
group. No serious adverse events were reported 
in either group. 

BMI, body mass index; IHTG, intrahepatic triglyceride; NASH, nonalcoholic steatohepatitis; NS, not significant; NAS, NASH histological activity score; T2DM, 
type 2 diabetes mellitus; AHEAD, Action for Health in Diabetes; RCT, randomized controlled trial; SFAs, saturated fatty acids; HbA1c, haemoglobin A1C; NAFLD, 
nonalcoholic fatty liver disease; VLCD, very low calorie diet.
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scores, whereas plant protein is inversely related.43 In a cross-sec-

tional study, patients with NAFLD ate 27% more animal protein 

compared to controls (P<0.001), with 46% of those in the highest 

quartile of consumption having NAFLD, compared with only 17% 

in the lowest quartile (P=0.001).44 A follow-up study showed a 

significant association between total (P=0.028), red and/or pro-

cessed meat (P=0.031) consumption with NAFLD and insulin re-

sistance even after adjustment for BMI, physical activity, alcohol, 

energy, SFA and cholesterol intake.45

Pathophysiology 

Red and processed meats likely lead to NAFLD, insulin resis-

tance and T2DM as a result of their high content of SFAs, choles-

terol, heme-iron, nitrates and nitrites, preservatives, advanced-

glycation end-products and branched chain amino acids 

(BCAAs).46 BCAAs, found in higher concentrations in animal pro-

tein, lead to impaired insulin sensitivity by recruiting mammalian 

target of rapamycin (mTOR) and assembling mTOR complex 1 in 

combination with insulin (Fig. 2).47 mTOR complex 1 induces sterol 

regulatory element-binding protein-1c (SREBP-1c) leading to 

DNL.48,49 Diets low in methionine (found predominantly in meat, 

fish and dairy products), can prevent the development of insulin 

resistance in animal models via activation of fibroblast growth 

factor 21 (FGF21), which inhibits SREBP-1, suppressing DNL while 

activating hepatic FFA oxidation;50-55 although it should be noted 

that in addition to methionine-rich diets, methionine-deficient 

and methionine and choline-deficient diets, can also induce 

NAFLD in the animal model as a result of their ability to promote 

lipid dysregulation and oxidative stress.56,57 Red and processed 

meats also contain high levels of phosphatidylcholine and L-carni-

tine, which are metabolized to trimethylamine (TMA) by gut mi-

crobiota (Fig. 2). TMA is oxidized in the liver by hepatic flavin-

containing monooxygenases to form trimethylamine oxide 

(TMAO), which is then released into the circulation. TMAO pro-

motes atherosclerosis via the up-regulation of multiple macro-

phage scavenger receptors,58,59 and high TMAO levels correlate 

with increased incidence of major cardiovascular events.60 It is hy-

pothesized TMAO may promote NAFLD by altering the synthesis 

and transport of bile acids, decreasing the overall bile acid pool 

and reversing the direction of cholesterol transport and glucose 

and energy homeostasis.61 Indeed, plasma TMAO levels correlate 

with the presence and severity of biopsy proven NAFLD in a large 

Chinese adult population.61 Individuals eating a vegan diet have 

an altered intestinal microbiota composition compared to omni-

vores, with reduced capacity to produce TMAO.62

Randomized controlled trial data

It is therefore hypothesized that a vegetarian diet would be su-

perior to an omnivorous diet in reversing NAFLD and metabolic 

parameters.63 This was not borne out, however, in a small ran-

domized prospective study comparing the influence of a 6-week 

isocaloric high-protein diet using either plant or animal protein on 

Figure 2. Potential mechanisms linking the consumption of animal protein with the development of NAFLD. TMA, trimethylamine; mTOR, mammalian 
target of rapamycin; TMAO, trimethylamine oxide; SREBP-1, sterol regulatory element-binding transcription factor 1c; FGF21, fibroblast growth factor 21; 
FFA, free fatty acid; NAFLD, nonalcoholic fatty liver disease.

Animal protein (red and processed meats)

Branched chain amino acids
Phosphatidylcholine, L-carnitine

? Altered synthesis & transport of bile acids
(reverse direction of cholesterol transport &
glucose homeostasis)

Gut microbiota

Liver: hepatic flavin- 
containing monooxygenases

FGF21 activation
(diet low in methionine, i.e., low meat, fish, dairy)

Activate hepatic FFA oxidation

Insulin  
resistance

Hepatic steatosis

TMA

TMAOmTOR → mTOR complex 1 (+ insulin)

De novo hepatic lipogenesis

SREBP-1

Saturated fat Cholesterol

Nitrates & intrites
Heme-iron Preservatives

Advanced glycation end-products



388 http://www.e-cmh.orghttps://doi.org/10.3350/cmh.2020.0067

Volume_26  Number_4  October 2020

liver fat and lipogenic indices in patients with T2DM and NAFLD. 

While the high animal protein diet led to large postprandial in-

creases in BCAA and methionine compared to the plant protein 

group, both groups experienced significant improvements in 

FGF21, reductions in liver fat and down-regulation of lipolysis.64 

The results may have been similar due to small sample size and 

significant weight loss in both groups. Furthermore, the type of 

animal protein consumed (red, processed, lean) was not de-

scribed. 

Clinical advice

While large, prospective, RCTs are lacking to determine the im-

pact of animal protein on the progression of NAFLD, it is reason-

able to advise patients with NAFLD to reduce their intake of red 

and processed meats in light of their increased cardiovascular risk.

CHOS

Observational studies

Studies examining the association between CHOs and NAFLD 

are heterogeneous due to lack of differentiation between refined 

and unrefined CHOs. Low-diets have been associated with higher 

all-cause and cardiovascular mortality despite their benefits on 

initial weight loss, presumably due to reduced intake of unrefined 

CHOs (which are high in fiber, antioxidants, minerals, and vita-

mins), and increased consumption of animal protein, cholesterol 

and SFAs.65 In a small study evaluating intestinal permeability, pa-

tients with NAFLD were found to have significantly higher intake 

of protein and CHOs, specifically mono- and disaccharides, com-

pared to controls.66 Protein and CHO intake correlated to higher 

alanine aminotransferase (ALT) levels in this group. High CHO in-

take (>70% of overall energy intake) has also been associated 

with higher aminotransferases and presence of the metabolic syn-

drome in a large Korean cohort, which persisted after adjustment 

for overall energy intake and BMI.67 The opposite was found in a 

Portugal cohort comparing the diets of 45 patients with NASH to 

856 controls, where lower CHO consumption was seen in patients 

with NASH, although this was accompanied by other differences 

in dietary composition.68 A European cohort of 55 NAFLD patients 

and 88 controls found no significant differences in the relative in-

take of CHOs or fructose, although patients with NAFLD con-

sumed more calories overall.16 In children, total CHO intake has 

also been shown to be significantly higher in obese children with 

NAFLD compared to those without.69 CHO intake has also been 

shown to increase in parallel to the degree of liver fat detected by 

ultrasonography.69

No studies thus far directly compares the impact of refined ver-

sus unrefined CHOs on NAFLD, however there are several studies 

evaluating refined CHOs alone. In two small studies, consumption 

of dietary fructose has been shown to be significantly higher 

among NAFLD patients compared to controls.70,71 SSBs, a surro-

gate for free sugars, have been associated with NAFLD in an Is-

raeli population based study independent of age, gender, BMI 

and total caloric intake.44,72 In the Framingham Heart Study co-

hort, higher consumption of SSBs incrementally increased the 

odds ratio for NAFLD across quartiles of consumption, even after 

adjustment for BMI, energy intake, dietary fiber, fat, protein and 

diet soda.72 SSB consumption was also positively associated with 

ALT levels in this group. After controlling for dietary composition 

and physical activity, SSB consumption has been shown to be an 

independent variable to predict NAFLD with sensitivity of 100%, 

specificity 76%, positive predictive value 57% and negative pre-

dictive of 100%.73

The data on histologic impact of CHO consumption is limited. 

When comparing nutrient intake of 28 patients with biopsy-prov-

en NASH to 18 with simple steatosis, those with NASH had higher 

intake of CHOs, specifically simple CHOs.74 In a bariatric surgery 

cohort, higher CHO intake was significantly associated with in-

flammation, but not fibrosis, on liver biopsy.7 In older adults with 

NAFLD, higher daily fructose consumption has been associated 

with fibrosis, hepatic inflammation and hepatocyte ballooning.75

Pathophysiology 

CHOs induce DNL by activating the CHO responsive transcrip-

tion factor, CHO response element binding protein (Fig. 1).76 Fruc-

tose is metabolized predominantly in the liver where it is convert-

ed into glyceraldehyde-3-phosphate, which can be used for 

gluconeogenesis or acetyl-CoA production.77 The latter can be ox-

idized, or used for lipogenesis. Diets high in fructose contribute to 

NAFLD by increasing DNL and reducing fatty acid oxidation.78-81 

Fructose can also activate fatty acid synthase and stearoyl-CoA-

desaturase-1,82 sensitizing the liver towards inflammation, which 

may promote the development of NASH.83 Although data are 

lacking, unrefined CHOs are likely to be protective against NAFLD 

as a result of their low glycemic index, high fiber content, and role 

in increasing production of short-chain fatty acids in the gut.84
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Randomized controlled trial data

Several RCTs have been performed to evaluate the effects of a 

low CHO diet (<50% of daily calories) on NAFLD. In attempt to 

consolidate the data, a meta-analysis of 10 RCTs was performed, 

however significant heterogeneity was encountered.85 The overall 

conclusion was that a low CHO diet could reduce intrahepatic lip-

id content (IHLC) by over 10%, however significant weight loss 

across all intervention groups limited the ability to isolate the ef-

fects of a low CHO diet alone. Two of the trials evaluated a keto-

genic diet (8% CHO in one, <20 g CHO per day in the other) over 

2 and 24 weeks, respectively.86,87 Despite weight loss in both, 

there was no significant reduction in ALT, however the 2 weeks 

study did show reduction in liver fat content. When low (<60 g/day) 

and high CHO (>180 g/day) diets were compared over an 11 

weeks calorie restriction intervention, reduction in IHLC was com-

parable between both groups after 7% weight loss.24 Further-

more, a direct comparison of hypocaloric diets (30% energy re-

stricted) either low in CHO (and high in fat), or low in fat in 170 

overweight individuals for 6 months, revealed comparable de-

creases in body weight, visceral fat and IHLC.88 A meta-analysis of 

13 trials with a total of 260 participants reported an association 

between a high fructose diet and NAFLD incidence and severity.89 

Only seven of these trials were isocaloric however, and in these 

studies fructose had no significant effect on IHLC or ALT.89 Unfor-

tunately the majority of studies were small, of short duration and 

marred by confounding factors. Similarly a subsequent meta-anal-

ysis of 21 interventional studies found only low levels of evidence 

that a high fructose diet was associated with increased liver fat 

content and transaminases as studies were significantly con-

founded by excess energy intake.90

In adolescent boys, those on a limited free sugar diet (<5% dai-

ly calories) for 8 weeks experienced a significant decrease in he-

patic steatosis and aminotransferases compared to those with no 

dietary intervention, though weight loss was greater in the inter-

vention cohort.91 Focusing specifically on fructose reduction (by 

50%), a small pilot study showed reduction in IHLC and amino-

transferases over 6 months.92 Results are difficult to interpret giv-

en lack of control group as well as significant reduction in weight, 

SFA and sucrose intake. Over-feeding studies further highlight the 

association between SSB and NAFLD. When randomized to 1 L 

daily of sugar sweetened soda, skim milk, diet soda, or water for 

6 months, those consuming the sugar sweetened soda had signif-

icant increases in IHLC, visceral fat, and skeletal muscle fat, com-

pared to no changes in the other groups, despite no significant 

weight changes.93 After overfeeding overweight adults with 1,000 

kcal/day of candy or SSBs for 3 weeks, body weight increased by 

2% accompanied by 27% increase in IHLC.94 IHLC returned to 

baseline once baseline weight was achieved over the following  

6 months. Whole, unrefined CHOs are protective against cardio-

vascular disease, T2DM, colorectal and breast cancer,95 and are 

associated with decreased all-cause mortality,96 however data in 

NAFLD is lacking.

Clinical advice

Clinicians should advise reduction in refined CHOs, specifically 

fructose, in patients with NAFLD. 

FIBER

Observational studies

High fiber consumption is associated with a 15–30% decrease 

in all-cause and cardiovascular-related mortality, lower risk of 

heart disease, stroke, T2DM and gastro-intestinal cancer.95 Epide-

miological studies suggest there may be an association between 

a low fiber diet and the development of NAFLD. In a study of  

45 patients with NASH and over 800 controls, more than one-

third of patients with NASH consumed lower than the recom-

mended requirements of fiber, although this did not reach statisti-

cal significance compared to the controls unless the consumption 

of soluble fiber was considered in isolation (in this case nearly 

90% of patients consumed less than 10 g/day).68 Similarly, in an 

observational study of 55 NAFLD patients and 88 controls, NAFLD 

patients were found to consume less fiber.16 These findings were 

supported by a case-control study from Iran (NAFLD, n=159; con-

trols, n=158),97 however both studies are limited by differing mac-

ronutrient composition compared to controls. Fiber consumption 

has also been shown to be significantly lower in obese children 

with moderate and severe hepatic steatosis, compared to obese 

children without NAFLD.69 In a small uncontrolled pilot study, liver 

enzymes normalized in 75% of NAFLD patients eating 10 g/day of 

soluble fiber for 3 months.98 This study is limited not only by lack 

of a control group, but also reduction in BMI, waist circumference, 

insulin resistance index and cholesterol levels in two thirds of patients.
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Pathophysiology

The majority of studies looking at the benefits of fiber on car-

diovascular risk factors have focused on soluble fiber. Soluble fi-

ber is thought to be protective against NAFLD by reducing serum 

low-density lipoprotein (LDL)-cholesterol levels.99 The mechanism 

for this is unclear, although it has been proposed that soluble fi-

ber may bind to bile acids or cholesterol during the formation of 

micelles, lowering the cholesterol concentration in hepatocytes, 

leading to up-regulation of LDL receptors and clearance of LDL-

cholesterol.100 Soluble fiber can also slow the rate at which CHOs 

are absorbed into the circulation reducing post-prandial hypergly-

cemia, i.e., high fiber foods have a low glycemic index leading to 

improved glucose tolerance.101

Randomized controlled trial data

RCTs studying the effect of fiber intake in isolation on NAFLD 

are lacking, as this usually forms part of a wider dietary interven-

tion. In one study, 70 obese individuals with features of the meta-

bolic syndrome were randomized to two energy-restricted diets 

for 6 months.102 Participants who consumed higher levels of fiber 

from fruit experienced improvements in their FLI, hepatic steatosis 

index, NAFLD liver fat score and liver enzymes, supporting the 

consumption of fiber in the context of energy restriction for pa-

tients with NAFLD. In a small, randomized double-blind crossover 

trial, seven patients with NASH received 16 g/day of oligofructose 

(a prebiotic fiber), or placebo for 8 weeks. Oligofructose led to a 

significant reduction in insulin levels, as well as ALT and aspartate 

aminotransferase after 4 and 8 weeks, respectively, independent 

of a significant effect on plasma lipids.103

Clinical advice 

Increasing fiber intake by increasing intake of fruits, vegetables, 

whole grains and legumes, should be encouraged in patients with 

NAFLD.

FATS

Observational studies

There is a strong degree of concordance between observational 

studies to show that a higher intake of SFAs,68,69,74,97,104 and a low-

er intake of polyunsaturated fatty acids (PUFAs),69,74,104 is associat-

ed with NAFLD and NASH. In a cohort of 25 patients with NASH 

and 25 BMI matched controls, 7-day alimentary records revealed 

that patients with NASH consumed significantly higher propor-

tions of SFAs and a lower percentage of PUFAs, although differ-

ences were also seen between their intake of cholesterol, fiber 

and anti-oxidant vitamins.104 The ratio of PUFAs to SFAs was also 

Figure 3. Mechanisms via which saturated and unsaturated fatty acids influence the pathogenesis of NAFLD. PPAR, peroxisome proliferator-activated 
receptor; FFAs, free fatty acids; VLDL, very low density lipoprotein; SREBP-1c, sterol regulatory element-binding protein-1c; NAFLD, nonalcoholic fatty 
liver disease.
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lower in patients with NASH and NAFLD compared to the general 

population in a Japanese cohort.74 These findings were replicated 

in pediatric cohort in which SFA intake correlated proportionally 

to the degree of hepatic steatosis.69 Furthermore, omega-3 fatty 

acid consumption was lower in pediatric NAFLD patients and this, 

along with insulin resistance, remained the most significant factor 

following multiple regression analysis. Cortez-Pinto et al.68 also 

reported higher total fat consumption in NASH patients compared 

to controls, including higher consumption of omega-6 fatty acids, 

which differs from other studies. This study may have been con-

founded by differences in CHO and fiber consumption between 

groups.

Pathophysiology

SFAs exert their effects on the liver through the promotion of 

insulin resistance and oxidative stress. They induce hepatic steato-

sis by increasing lipolysis as well as DNL, which occurs through 

the promotion of the transcription of peroxisome proliferator-acti-

vated receptor (PPAR) γ coactivator-1β and SREBP-1c (Fig. 3).105 

SFAs also promote lipotoxicity through ceramides and diacylglyc-

erides,106 and can induce hepatocyte apoptosis and increase oxi-

dative stress, which may encourage progression towards NASH.107 

Conversely, monounsaturated fatty acids (MUFAs) activate tran-

scription factors PPARγ and PPARα, promoting safe fatty acid 

storage in adipose tissue and lipid detoxification via fatty acid oxi-

dation, respectively.108 PUFAs increase the transcription of PPARα, 

increasing lipid metabolism and mitochondrial oxidation, thereby 

reducing hepatic FFA concentrations.109,110 They also inhibit SREBP-

1c, reducing fatty acid synthesis.111,112 Omega-3 fatty acids lower 

the hepatic triglyceride content by suppressing hepatic VLDL apo-

lipoprotein B-100,113 and inhibit inflammatory cells involved in 

NASH.114

Table 2. Summary of randomized controlled trial data examining the influence of diets high in saturated fatty acids and poly- and mono-unsaturated 
fatty acids on hepatic steatosis

Study Participant Intervention Result

Bozzetto et al.119 (2012) Adults with T2DM (n=45) 8 weeks diet, either: 1) high-
carbohydrate/high-fiber/low-glycemic 
index diet; 2) high-MUFA diet; 3) high-
carbohydrate/high-fiber/low-glycemic 
index diet plus physical activity; and  
4) high-MUFA diet plus physical activity 

An isocaloric diet high in MUFA led to a 
reduction in liver fat, independent of weight 
loss and exercise compared to patients 
consuming a high-carbohydrate, high-fiber, 
low-glycaemic index diet 

Bjermo et al.117 (2012) Obese adults (sagittal 
abdominal diameter 
>25 cm, or waist 
circumference >88 cm 
[women] or >102 cm 
[men]; n=67) 

10 weeks isocaloric diet high in omega 
6 PUFAs or SFAs (butter); no other 
changes to macronutrients

A modest increase in weight was seen, 
however this did not differ between groups.

The SFA group had significant increases 
in liver fat (assessed using MRI), serum 
triglycerides, total and LDL cholesterol and 
insulin resistance compared to the group 
receiving PUFAs, in which all these markers 
improved.

Rosqvist et al.116 (2014) Young, normal weight 
adults (n=39) 

750 extra kcal/day for 7 weeks from 
muffins high in SFAs vs. muffins high in 
PUFAs 

The SFA group had greater increases in liver 
fat (P=0.033) and a 2-fold increase in VAT 
(P=0.035). The PUFA group had a 3-fold 
increase in lean tissue (P=0.015).

Errazuriz et al.118 (2017) Adults with pre-diabetes 
(n=43)

12 week isocaloric weight-maintaining 
diets: 1) high MUFAs (olive oil), 2) fiber-
rich, and 3) standard US food

Only the MUFA group demonstrated a 
significant decrease in liver fat fraction as 
determined by MRI (P<0.0003), in addition 
to improvements in hepatic and total insulin 
sensitivity.

Luukkonen et al.115 
(2018)

Overweight adults (mean 
BMI, 31±1 kg/m2; n=38) 

1,000 extra kcal/day for 3 weeks from 
either SFAs/unsaturated fat/simple 
sugars 

Overeating 1,000 kcal/day of SFAs increased 
IHTG more than unsaturated fats (55% vs. 
15%, P<0.05).

T2DM, type 2 diabetes mellitus; MUFA, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids; MRI, magnetic resonance 
imaging; LDL, low-density lipoprotein; VAT, visceral adipose tissue; US, United States; BMI, body mass index; IHTG, intrahepatic triglyceride.
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Randomized controlled trial data

The beneficial effects of PUFAs and MUFAs, and metabolically 

harmful effects of SFAs, are shown in Table 2.115-119 Two meta-

analyses have examined the effects of omega-3 supplementation 

on NAFLD.120,121 The number of eligible studies analysed were nine 

and 10, respectively (335 individuals and 577 individuals with 

NAFLD). Both reported that omega-3 supplementation was bene-

ficial in reducing liver fat (predominantly quantified using ultra-

sound), but did not impact liver biochemistry. The analyses, how-

ever, were limited by poor quality study design and heterogeneity. 

It was not possible to comment on an optimal dose. In terms of 

histology, a trial comparing the effect of a diet high in PUFAs vs. 

placebo for 1 year in individuals with NASH revealed no signifi-

cant difference in NAS (≥2 point reduction) despite a greater re-

duction in liver fat in the treatment group, although participant 

numbers were small (n=34).122

Clinical advice

Clinicians should advise patients with NAFLD to replace dietary 

SFAs with PUFAs or MUFAs. 

DIETS

The Dietary Approaches to Stop Hypertension (DASH) diet is a 

low-glycemic, low energy-dense diet characterized by high intake 

of fruits and vegetables, whole grains, and low fat dairy products, 

with limited SFAs. An RCT comparing patients with NAFLD eating 

the DASH diet versus a control diet for 8 weeks (both of which 

contained 52–55% CHOs, 16–18% protein, 30% fat and approxi-

mately 1,900 kcal/day), showed that the DASH group had signifi-

cantly greater reduction in aminotransferases and metabolic 

markers, including serum triglycerides, total cholesterol, VLDL 

cholesterol, high sensitivity c-reactive protein, insulin and Homeo-

static Model Assessment of Insulin Resistance (HOMA-IR).123 The 

data are confounded by greater weight loss in patients following 

the DASH diet, however the high fiber and antioxidant content, 

and low saturated fat and refined CHOs content, is likely to be 

beneficial for NAFLD.

Soy is also thought to be helpful in NAFLD by inhibiting SREBP-

1c and activating PPARα, reducing lipid deposition and increasing 

antioxidant capacity. A three-arm RCT comparing patients eating 

a low calorie diet to a low-CHO, low calorie diet to a low-CHO, 

low calorie, soy-containing diet, reported that individuals eating 

the soy-containing diet had significantly greater improvements in 

liver tests and serum insulin levels.124

While RCT data is sparse, research suggests that the Mediterra-

nean diet (rich in plant-based foods, legumes and unsaturated 

fats) should prove ideal for patients with NAFLD as a result of its 

effectiveness as a form of primary prevention for components of 

the metabolic syndrome, and ability to reduce insulin resistance, 

liver fat and inflammation.125 An ad libitum Mediterranean diet 

Table 3. Suggested research priorities

Nutrient of interest Research question

Protein 1. Does plant-based protein offer any benefit over lean animal protein (i.e., chicken/fish) in the prevention of NAFLD, 
cirrhosis, HCC, or liver-related mortality?

2. What is the impact of red and processed meat, lean meat, and plant protein on the histologic features of NASH? 

Carbohydrate 1. Does a diet high in whole grains offer any protection against NAFLD and progression to cirrhosis, HCC, or liver-related 
mortality? 

2. What is the impact of refined versus unrefined carbohydrates on the histologic features of NASH? 
3. What is the impact of a diet low in free sugars on the histologic features of NASH?

Fiber 1. Are high fiber diets protective from developing NAFLD, cirrhosis, HCC, or liver-related mortality? 
2. Can increasing fiber in the diet reduce hepatic steatosis and improve histologic features of NASH, with or without 

weight loss? 
3. Is there a difference in the impact of insoluble and soluble fiber on reversing NAFLD?

Fat 1. Can diets high in unsaturated fat prevent fibrosis progression or even reverse fibrosis? 
2. What is the impact of saturated versus unsaturated fat on the histologic features of NASH?

Diets 1. Can a plant-based diet reverse histologic features of NASH without weight loss? 
2. Can any of these diets lead to fibrosis reversal without weight loss? 
3. Are these diets sustainable in this population long term? 

NAFLD, nonalcoholic fatty liver disease; HCC, hepatocellular carcinoma; NASH, nonalcoholic steatohepatitis.



393

Theresa J. Hydes, et al. 
Evidence-based nutritional advice for NAFLD 

http://www.e-cmh.org https://doi.org/10.3350/cmh.2020.0067

compared to a low-fat diet showed similar reductions in hepatic 

steatosis over 12 weeks with similar weight loss in both groups. 

The Mediterranean group alone, however, saw improvements in 

cholesterol, triglycerides and hemoglobin A1C.126 Furthermore, 

obese individuals with diabetes asked to follow a modified Medi-

terranean diet for 12 months were found to display lower levels of 

ALT compared to participants allocated to the American Diabetes 

Association diet and a low glycaemic index diet.127 The Mediterra-

nean diet is now recommended by EASL for the management of 

NAFLD.14 

Clinical advice

For patients with NAFLD we recommend diets high in whole, 

unprocessed foods, fiber, and unsaturated fats, with limited quan-

tities of red and processed meats, refined CHOs and saturated fat. 

Example diets include the Mediterranean diet, DASH diet, and 

other plant-based diets. 

BEVERAGES

Two large systematic reviews have shown that coffee leads to a 

relative risk reduction of cirrhosis and liver-related mortality sec-

ondary to all causes.128,129 In terms of NAFLD, two meta-analysis 

have demonstrated that coffee can reduce the incidence of 

NAFLD, in addition to decreasing the risk of liver fibrosis among 

patients with established NAFLD.130,131 A non-linearity curve rela-

tionship between coffee consumption and the development of 

NAFLD is described, with more than 3 cups per day reducing the 

incidence of NAFLD significantly.130 Several constituents found 

within coffee have been postulated as being mechanistic due to 

their favourable effects on glucose metabolism.132 For example, 

chlorogenic acid inhibits glucose-6-phosphate hydrolysis, leading 

to a reduction in gluconeogenesis and glycogenolysis, and can in-

hibit glucose absorption from the gut.133

Concomitant alcohol consumption is frequently encountered in 

patients with NAFLD. Previous meta-analyses have shown no as-

sociation between alcohol intake (up to 80 g/day) and hepatic 

steatosis,134 and a protective effect for individuals drinking up to 

40 g/day,135 however these studies were largely heterogenous, 

retrospective and subject to selection bias. A cross-sectional study 

concluded that steatosis is present in nearly 95% of obese per-

sons who drink more than 60 g of alcohol per day, however obe-

sity plays the over-arching role.136 There is, however, strong evi-

dence that patients drinking excessively (≥2 drinks/day for 

women and ≥3 drinks/day for men) with NAFLD are at signifi-

cantly increased risk of developing advanced liver fibrosis and this 

should therefore be discouraged.137 Even mild to moderate drink-

ing (<210 g/week) has been found to increase the risk of steato-

hepatitis, fibrosis, decompensated liver disease, mortality and liv-

er cancer among individuals with obesity and diabetes,138-144 

although there is some disagreement among studies.135,145,146 Ab-

stinence has been advocated for patients with NASH cirrhosis in 

order to reduce the risk for decompensation and hepatocellular 

carcinoma (HCC).147

Clinical advice 

Coffee consumption is protective against the development of 

NAFLD and disease progression. Moderate to heavy alcohol con-

sumption should be avoided in the presence of obesity, NAFLD, 

and other metabolic risk factors. Abstinence is advised for pa-

tients with advanced fibrosis. 

LIMITATIONS OF CURRENT DATA

One of the biggest challenges encountered when studying di-

etary determinants of diseases is the confounding effects of other 

dietary components and lifestyle factors. This may not be easily 

handled by multivariable analyses alone and can lead to errone-

ous conclusions. These issues were recently demonstrated in a se-

ries of meta-analyses which concluded that red or processed meat 

may only lead to small differences in the risk of all-cause mortali-

ty, cardiometabolic outcomes and cancer incidence;148-151 in con-

trast to the established medical opinion and public beliefs. Three 

of the reviews were reliant on observational studies for which 

many received low GRADE scores in terms of evidence quality. 

The authors identified fundamental issues inherent to the design 

of many nutritional studies including a lack of a clear hypothesis, 

selective reporting of results, reliance on self-reported food con-

sumption, lack of controls and failure to address confounders.152,153 

A review of RCT data comparing diets with differing amounts of 

red meat consumed for at least 6 months was similarly afflicted 

by poor quality evidence and discordant results.150 These results 

were used to inform guidelines published by the Nutritional Rec-

ommendations (NutriRECS) Consortium, which are the first to 

suggest there is no need for adults to reduce their consumption of 

red and processed meat,154 and have received widespread public 
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criticism. It is vital that we are able to provide the public with ac-

curate information about their dietary choices and maintain the 

integrity of evidence-based medicine. There therefore needs to be 

radical reform in terms of how these studies are undertaken. 

Small, poorly design observational studies are perhaps damaging 

to these field; instead investment is required in high quality large 

RCTs looking at long term outcomes, in addition to the collection 

of longitudinal data on markers of early disease. We have summa-

rized these research priorities in Table 3. 

CONCLUSION 

This review has highlighted a significant lack of high quality 

RCT data in this field, offering a number of research opportunities 

for the future. Although well intentioned, diets focusing specifi-

cally on reducing CHO or fat intake miss out on the benefits of 

whole grains, fiber, and unsaturated fats, which do not need to 

be minimized in the diet. These diets are also not sustainable. In-

stead, the focus should shift to a lifestyle that incorporates 

healthy CHOs and fats, which may be more sustainable long term. 

Overall the current data is supportive of diets low in SFAs, red and 

processed meats, and refined CHOs for NAFLD. Diets that incor-

porate these recommendations include plant-based diets such as 

the DASH, Mediterranean, vegetarian, and vegan diets. 
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