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ABSTRACT OF THE DISSERTATION

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks

by

Yi Huang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2010

Professor Yingbo Hua, Chairperson

This thesis addresses a transmission energy problem for wireless sensor networks.

There are two types of wireless sensor networks. One is single-hop sensor network where

data from each sensor is directly transmitted to a fusion center, and the other is multihop

sensor network where data is relayed through adjacent sensors. In the absence of a moving

agent for data collection, multihop sensor network is typically much more energy efficient

than single-hop sensor network since the former avoids long distance data transmission.

Progressive data fusion is a distributed fusion method that fuses data as they hop through

sensors, which is effective to further reduce the energy cost. With the knowledge of a

routing tree and all channel state information, the transmission energy allocated for each

sensor can be pre-determined to even further reduce the energy cost while satisfying a pre-

determined performance. In this thesis, we develop several energy planning algorithms for

the above purpose. Specifically we designed two energy planning algorithms for progressive

estimation with digital transmissions between sensors and one energy planning algorithm for

progressive estimation with analog transmission. We also show that digital transmission is
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more efficient in transmission energy than analog transmission if the available transmission

time-bandwidth product for each link and each observation sample is not too limited.

We also study energy cost for consensus estimation which is a distributed fusion

method for peer-to-peer multihop sensor networks. The impact of fusion weights and en-

ergy allocation for each sensor is also investigated. We demonstrate that to achieve an

approximately same performance, the total energy cost for consensus estimation can be

much higher than that for progressive estimation, but the peak energy for the former is less

than that for the latter.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Recent advances in micro-electronic and mechanical technologies have enabled us

to incorporate the operational units of sensing, data processing, and wireless communication

into a small size device. Such a device can be called a sensor for convenience. The sensing

unit collects information from the surrounding environment. The processing unit performs

some local information processing, such as quantization and compression. The wireless

communications unit allows every sensor to share information with each other for better

data fusion intelligence.

A wireless sensor network may consist of hundreds, or even thousands of such

inexpensive sensors spread across a geographical area. When properly configured and de-

ployed, such networked sensors can collaborate to accomplish a wide range of tasks such as

battlefield surveillance, homeland security, environmental monitoring, emergency response,
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traffic control, healthcare, and home automation, just to name a few.

For example, in homeland security, solar powered bio-sensors can be deployed along

national borders to detect the smuggling of bio-weapons by terrorists, and networked video,

acoustic, or other types of sensors can be used to track suspected targets. In environmental

monitoring, sensor networks can be deployed to monitor the natural environment and wild

animals’ activities. In emergency response, a large number of sensors can be dropped in to

assist rescue operations by locating survivors or identifying risky areas. Image sensors and

other types of sensors have been used at roadway intersections to monitor traffic conditions

or identify vehicles. In the healthcare industry, the use of body-area sensor networks is

useful for monitoring the vital signs of patients. Interested readers can refer to [1] for more

potential applications.

1.2 Distributed Data Fusion

Data fusion is the fundamental to support the aforementioned applications in

sensor networks. Data fusion in sensor networks is generally defined as combining noise

corrupted data from multiple sensors to acquire the desired information at a fusion center.

In other words, data are observed at sensors, and then transported to and fused at the

fusion center.

Since data collected by sensors are distributed at different geographical locations,

data fusion using a wireless sensor network requires not only local information processing but

also inter-sensor communication. The latter adds wireless communication and networking

into the problem that is absent from the traditional centralized data fusion where all data
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are available at the fusion center. Specifically, there are three challenges with distributed

data fusion in wireless sensor networks, which are listed below.

1) Energy Consumption: Energy consumption is a major concern of wireless sensor

networks, since sensors are only equipped with limited batteries. Furthermore, the replace-

ment of batteries can be costly, even impossible for some applications. Therefore, sensor

network operations must be developed in an energy-efficient manner for network lifetime

maximization and performance stability. One major objective of this research is to invent

new energy planning schemes for data fusion in wireless sensor networks.

2) Large Network Size: A wireless sensor network has a large number (could be

thousands) of cheap and low-power sensors deployed in a certain geographic area. On one

hand, this has a great potential to improve the fusion precision and network robustness.

But on the other hand, this creates problems for sensor collaboration and networking, which

require distributed and scalable solutions for data fusion.

3) Self-Configuration: In a large sensor network, there could be little or no pre-

established infrastructure. Furthermore, the network topology may change dynamically

because the nodes may sleep, fail, or move. Wireless sensor networks are required to have

the capability of self-configuration. This includes, for example, sensor self-localization,

coverage control, and adaptation to communication failure in a harsh wireless environment.

1.3 Energy Planning

As we discussed in Section (1.2), energy is a big concern for data fusion in sensor

networks. Various energy-efficient algorithms have been proposed for network coverage [2],
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data gathering [3], and protocols of medium access control [4] and routing [5].

This thesis will focus on designing energy planning algorithms to achieve energy

efficient data fusion in wireless sensor networks. By definition, energy planning is to use the

least amount of energy to perform data fusion in the sensor network, while still guarantee

the data fusion performance.

There are two parts of energy consumption in sensor networks. One is for observa-

tion and on-chip signal processing, which is basically the energy used on circuit board inside

each sensor. With the advances of circuit technology, this part of energy can be decreased

gradually. The more dominating part of energy consumption is actually on wireless commu-

nications between sensors for information sharing. This energy is basically governed by the

physical laws, which are consistent over time. If not carefully planned, this part of energy

would be overwhelming and drain the batteries quickly. For convenience, hereafter in this

paper, we use energy to refer communication energy. Observation and signal processing

energy planning is out of the scope of this thesis.

Several other assumptions need to be made for the (communication) energy plan-

ning problem in sensor networks. First, we assume a central planner has all the knowledge

of the network including the network topology, wireless channel state information between

any two nodes, and a pre-given data fusion target performance. Based on these knowledge,

the planner will design the best energy planning for the the network to use least amount

of energy to achieve the target performance. After the energy planning is designed, it will

be applied to the network and distributed data fusion will be conducted over the network

according to the planning. Second, the network is also assumed to be stationary during the
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running period of a designed energy planning. Once the network conditions are changed,

say new sensors joining in the network, existing sensors failure, or wireless channel varies

among sensor, the energy planning need to be re-designed to adapt to those changes.

1.4 Multihop versus single-hop

A sensor network can be a single-hop sensor network or a multihop sensor network.

There also appear three basic architectures for wireless sensor networks: single-hop network

with fusion center, multihop network with fusion center, and peer-to-peer multihop network.

Clearly, many other architectures can be formed by combinations of the three.

A single-hop network with fusion center is a conventional sensor network and,

if affordable, is often the most effective for the fusion performance. An example of such

a network comprises sensors on the ground and a flying-over vehicle collecting data from

each sensor, where a sensor transmits data only when the vehicle becomes close enough.

For reducing the energy cost in single-hop sensor networks, there have been many research

activities as reported in [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],

[20], [21], [22] and the references therein. However, for typical flat networks in outdoor

environment or 3-D networks inside large buildings, direct communications between each

sensor and a fixed fusion center would make the network very inefficient in energy cost

because of transmission path losses.

A multihop network with fusion center is suitable for the above mentioned situation

where data packets hop from one sensor to another until they reach the fusion center.

However, if the data packets are not compressed as they hop towards the fusion center,
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the sensors near the fusion center can be over burdened - a bottleneck effect. To solve this

problem, progressive estimation [8, 23] is a useful idea where data are fused together as they

hop from one sensor to another along a routing path. To further reduce the energy cost at

all sensors, the design of the number of bits for quantization at each sensor is also useful as

shown in [24, 25].

A peer-to-peer multihop network is useful for situations where there is no central-

ized control or the network is too dynamic to be regulated centrally. There are numerous

articles in this area. A major approach for distributed fusion in peer-to-peer multihop net-

work is known as consensus estimation [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],

[36], [37], [38], [39], [40], [41], [42], [43], [44], [45] where sensors exchange information with

their neighbors and iteratively update their own information. Although consensus estima-

tion does not require centralized control, their convergence to a desired result still depends

on the network topology. Without the knowledge of the network topology, a node in the

network may not even know when and how an updated information is reliable enough.

1.5 Thesis Overview

In this dissertation, we examine the distributed data fusion problem in multihop

wireless sensor networks in which the main design goal are energy efficiency. Specifically,

the dissertation is organized as follows.

Chapter 2 introduces three main categories of distributed data fusion frameworks

in sensor networks. Namely, they are progressive data fusion, consensus data fusion and

single-hop data fusion. Progressive data fusion is the original contribution of this disserta-
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tion, while the other two are pre-existing in the literature. In Section 2.1.1, we present the

progressive estimation algorithms based on BLUE and LMMSE, where an interesting sim-

ilarity will be observed. In Section 2.1.2, we present the progressive detection algorithms

using either estimation propagation or decision propagation, the latter of which further

reduces the communication burden.

Chapter 3 focuses on energy planning for progressive data fusion. We first describe

the model of the data observed by each sensor, the communication channel model and the

energy model for data transmission among sensors, and a probabilistic uniform quantization

scheme. We then compares the errors caused by analog and digital communications. Section

3.5 presents several progressive estimation algorithms with digital transmissions. These

algorithms are based on the best linear unbiased estimation (BLUE), quasi BLUE and a

simple averaging. The recursive inequality of the covariance matrices based on the averaging

algorithm is used for the design of the digital transmission energy planning to be shown

in section 3.6. We present two algorithms for energy planning with digital transmissions.

In section 3.7, progressive estimation for multihop networks with analog transmissions are

proposed, which are based on BLUE and another simple averaging. The analog transmission

energy planning is designed in section 3.8. The simulation examples are given in section

3.9.

Chapter 4 focuses on energy planning for consensus data fusion. we first propose

the system model and the communication protocol for consensus estimation. Many funda-

mental issues such as transmission energy, number of quantization bits, and the condition

for successful packet reception are considered. We then present a realistic media access
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control (MAC) protocol called distributed array method (D-SAM) to avoid packet collision

for communications with this consensus data fusion. We then consider applying three dif-

ferent fusion algorithms for the consensus estimation. To achieve a better understanding of

the energy cost for consensus estimation, we also present an energy planning algorithm for

consensus estimation. Fianlly, we present simulation examples to compare the performance

of the new energy planning algorithm for progressive estimation with those of several other

alternatives. We illustrate the effects of several fusion weight choices, quantization bits al-

location, and energy allocation for each sensor on the performance of consensus estimation

in the presence of quantization errors. We also compare the minimized energy for consensus

estimation with that for progressive estimation.

Chapter 5 describe two realistic applications of progressive estimation using wire-

less sensor networks. One application is to use a camera network to track the movement of

the players simultaneously in a field game. Another application is to use a sensor network

to monitor and track multiple aircrafts in region of interest.

Chapter 6 concludes the main original contributions of this dissertation.
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Chapter 2

Data Fusion Frameworks

2.1 Progressive Data Fusion

2.1.1 Progressive Estimation

Consider the following model for the data observed at sensor k:

xk = Gkθ + nk (2.1)

where xk is the observation data vector, nk is the observation noise vector of zero mean,

Gk is the observation matrix of full column rank, and θ is an unknown vector parameter

invariant to the space (or sensor) index k. The observation matrix Gk depends on the

characteristics of sensor k and its location with respect to the unknown vector θ. Since Gk

is arbitrary, a simple normalization of (2.1) can ensure that the covariance matrix of each

noise vector is the identify matrix I.

We next show two algorithms for progressive estimation: one is based on the best

(minimum variance) linear unbiased estimation (BLUE) and the other is based on the linear

9



minimum mean square error (LMMSE) estimation.

BLUE

We denote an unbiased estimator of θ at sensor k by θ̂k and its covariance matrix

by Ck. We let sensor k − 1 be the upper stream sensor to sensor k as illustrated in Figure

2.1. We assume that sensor k − 1 transmits θ̂k−1 and Ck−1 to sensor k before sensor k

computes θ̂k and Ck.

 

Sensor k Sensor k-1 

Figure 2.1: Portion of a routing path where each sensor has only one upper stream sensor.

Assume that sensor 1 does not have any upper stream sensor, then the BLUE

estimate of θ at sensor 1 is given by

θ̂1 =
(
GH

1 G1

)−1
GH

1 x1 (2.2)

and its covariance matrix is

C1 =
(
GH

1 G1

)−1
(2.3)

Provided that xk and θ̂k−1 are uncorrelated (which is guaranteed if the noises nk

and nl are uncorrelated for k 6= l), the BLUE estimate of θ at sensor k based on xk and

θ̂k−1 is given by

θ̂k =
(
C−1
k−1 + GH

k Gk

)−1
(
C−1
k−1θ̂k−1 + GH

k xk

)
(2.4)

and the inverse of its covariance matrix is

C−1
k = C−1

k−1 + GH
k Gk (2.5)
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We see that C−1
k is monotonically increasing with k and hence Ck is monotonically de-

creasing to zero as k increases. We also see that the update of C−1
k is much simpler than

the update of Ck, which suggests that sensor k−1 should transmit C−1
k−1 (instead of Ck−1)

to sensor k. More importantly, the covariance matrix of the progressive estimation error at

each sensor k is the same as that if sensor k performs the centralized estimation using all

observations from its upper stream sensors. For sensor k to collect all observations {xk}

from sensors 1 to k − 1, there need to be
∑k−1

i=1 = k(k−1)
2 = O(k2) transmissions in the

network, which is in contrast to O(k) transmissions required by the progressive estimation.

Furthermore, the centralized estimator also needs to know all the associated observation

matrices {Gk}. Clearly, if a large number of sensors is needed to meet a required estima-

tion accuracy, the progressive estimation is more desirable than the centralized estimation.

It should be noted that at each hop of the progressive estimation, either Ck−1 or C−1
k−1

needs to be transmitted along with a local estimate θ̂k−1 of the unknown vector θ. If the

dimension of the unknown vector θ ∈ CN×1 is so large that N2 is comparable to K2 where

K is the “last” sensor, the advantage of the progressive estimation may not be realized.

  Sensor k-1,2 

Sensor k Sensor k-1,1 

Figure 2.2: Portion of a routing path where each sensor may have more than one upper
stream sensors.

More generally, as illustrated in Figure 2.2, if sensor k receives from its upper
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stream sensors more than one uncorrelated estimates of θ, denoted by θ̂k−1,i with the

corresponding covariance matrices Ck−1,i where i = 1, ..., Ik , then the BLUE estimate of θ

at sensor k is given by

θ̂k =

(
Ik∑

i=1

C−1
k−1,i + GH

k Gk

)−1( Ik∑

i=1

C−1
k−1,iθ̂k−1,i + GH

k xk

)
(2.6)

and the corresponding covariance matrix is

Ck =

(
Ik∑

i=1

C−1
k−1,i + GH

k Gk

)−1

(2.7)

The above progressive estimation algorithm is distributed. Each sensor uses its lo-

cally available information. When the estimation accuracy at a sensor meets a pre-specified

requirement, e.g., tr(Ck) becomes small enough, this sensor can stop the process of the

progressive estimation and possibly send a message to trigger a network-wide operation.

LMMSE

The previous BLUE estimation treats θ as an unknown deterministic vector. For

the LMMSE estimation, we will treat θ as an unknown random vector with zero mean and a

known covariance matrix. Since Gk is arbitrary, a simple normalization of (2.1) can ensure

that the covariance matrix of θ and the covariance matrix of the noise nk are both equal

to the identity matrix I.

At sensor 1, the LMMSE estimate of θ is given by

θ̃1 = GH
1

(
G1G

H
1 + I

)−1
x1 (2.8)

and its mean square error (MSE) matrix is

M1 = I − GH
1

(
G1G

H
1 + I

)−1
G1 (2.9)
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Assume that sensor k receives the LMMSE estimate θ̃k−1 and the MSE matrix

Mk−1 from sensor k − 1. Then, the LMMSE estimate of θ at sensor k based on θ̃k−1 and

xk is given by

θ̃k = Cu,ykC
−1
yk,yk

yk (2.10)

and its MSE matrix is

Mk = I − Cu,ykC
−1
yk,yk

CH
u,yk

(2.11)

where

yk = [ θ̃
T
k−1 xTk

]T (2.12)

Cu,yk = [ I − M k−1 GH
k

] (2.13)

Cyk,yk =




I − Mk−1 (I − Mk−1)G
H
k

Gk(I − M k−1) GkG
H
k + I


 (2.14)

We see that like the BLUE estimation, the LMMSE estimation can also be formu-

lated into a progressive form. Furthermore, one can verify by using (2.11) that

M−1
k = I + Cu,yk

(
Cyk,yk − CH

u,yk
Cu,yk

)−1
CH
u,yk

(2.15)

and by using (2.9), (2.13) and (2.14) that

M−1
1 = I + GH

k Gk (2.16)

M−1
k = M−1

k−1 + GH
k Gk (2.17)

It is useful to notice the similarity between (2.17) and (2.5).
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If the covariance matrix Cu,u of θ is arbitrary but nonsingular, we can show that

(2.17) still holds but (2.16) needs to be replaced by

M−1
1 = C−1

u,u + GH
k Gk (2.18)

In general, we have that Mk < Ck for all finite k, and Mk → Ck as k becomes large.

But if Cu,u is so large that C−1
u,u becomes negligible from (2.18), then Mk = Ck for all k,

i.e., the performance of BLUE becomes identical to that of LMMSE. In other words, an

unknown deterministic vector is equivalent to a random vector of a covariance matrix with

all eigenvalues infinitely large.

However, if sensor k receives multiple LMMSE estimates θ̃k−1,i and multiple MSE

matrices M k−1,i where i = 1, ..., Ik from its upper stream sensors (see Figure 2.2), it does

not appear possible in general to obtain the LMMSE estimate of θ from xk, Gk, θ̃k−1,i and

Mk−1,i, i = 1, ..., Ik . The problem lies with the fact that sensor k does not have sufficient

information to compute such a cross-correlation matrix C ũk−1,i,ũk−1,j
for i 6= j. This is a

disadvantage of the LMMSE estimation.

2.1.2 Progressive Detection

At each sensor, the estimate of θ obtained by progressive estimation can be used for

progressive detection if multiple hypotheses are associated with different regions of θ. The

BLUE estimation does not need any prior knowledge about θ while the LMMSE estimation

needs to know the covariance matrix of θ.

To understand the performance of the progressive detection, we now consider a
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real-valued scalar data model for the observation at each sensor:

xk = gkθ + nk (2.19)

which is simply a scalar version of (2.1) and the noise nk is Gausssian with zero mean and

unit variance. Furthermore, we treat a binary hypothesis problem where

θ =





0 H0

a H1

(2.20)

and Pr(H0) = Pr(H1) = 0.5.

Using estimation propagation

If the BLUE estimator θ̂k with the variance ck is used at sensor k for detection, the

detector with the minimum probability of error is: Decide H1 if θ̂k > a/2, or H0 otherwise.

The corresponding probability of error at sensor k is

pe,k = Q

(
a

2
√
ck

)
(2.21)

where Q(x) =
∫∞
x

1√
2π

exp
(
−x2

2

)
dx.

If the LMMSE estimator ũk with the MSE mk is used at sensor k for detection,

the decision rule is the same: Decide H1 if ũk > a/2, or H0 otherwise. The detection error

probability is given by (2.21) with ck replaced by mk. Note that for u defined in (2.20), the

variance of u is a2

2 .

Using decision propagation

For both BLUE and LMMSE shown above, sensor k needs to receive two real

numbers from sensor k− 1. To reduce the communication burden, let us consider “decision
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propagation” where sensor k receives the decision dk−1 (a binary number) and the corre-

sponding probability of error pe,k−1 (a real number) from sensor k − 1. The detection at

sensor k is solely based on dk−1, pe,k−1, xk and gk. Define

λk =
P (dk−1|H1)f(xk|H1)

P (dk−1|H0)f(xk|H0)
(2.22)

where P (·|·) denotes conditional probability and f(·|·) denotes conditional probability den-

sity function. The optimal decision rule is: Decide H1 if λk > 1, or H0 otherwise.

The above decision rule can be simplified into:

• Decide H1 if dk−1 = 1 and xk >
a
2 − δk or if dk−1 = 0 and xk >

a
2 + δk;

• Decide H0 if dk−1 = 1 and xk <
a
2 − δk or if dk−1 = 0 and xk <

a
2 + δk.

Here, the offset δk is given by

δk =
1

a
ln

(
1 − pe,k−1

pe,k−1

)
(2.23)

which is positive as long as pe,k−1 < 0.5. A quick observation from the above rule is that a

higher hurdle is required if the decision at sensor k differs from that at sensor k − 1, and a

lower hurdle is required if the decision at sensor k coincides with that at sensor k− 1. This

extra hurdle is determined by δk.

The corresponding probability of error at sensor k is

pe,k = Q
(a

2
− δk

)
pe,k−1 +Q

(a
2

+ δk

)
(1 − pe,k−1) (2.24)

It is not yet proven that pe,k converges to zero as k increases. But numerical examples

suggest that such a convergence property holds, which is illustrated later. Intuitively, we
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see that when pe,k−1 becomes smaller and hence δk becomes larger, pe,k is dominated by

the first term in (2.24) and the ratio of pe,k over pe,k−1 is dominated by Q
(
a
2 − δk

)
which

becomes closer to one.

A further reduction of the communication burden is possible if we use a finite

number B of bits to quantize pe,k−1 nonlinearly for each k. Specifically, we use p∗e to denote

a desired value of the probability of error, and ǫ for a small number such that pe,1 < 0.5− ǫ.

We then choose ∆ such that ∆2B = log10(0.5 − ǫ) − log10 p
∗
e. In other words, the number

of bits required in terms of p∗e is given by

B = log2

(
1

∆
log10

0.5 − ǫ

p∗e

)
(2.25)

If the conventional linear quantization is used for pe,k−1 for each k, the number of bits re-

quired would be log2

(
1
p∗e

)
. At sensor k−1, an integer lk−1 is chosen such that log10 pe,k−1 ≤

∆lk−1 + log10 p
∗
e
.
= log10 p̂e,k−1. Sensor k only receives dk−1 and lk−1 from sensor k− 1, and

reconstructs p̂e,k−1 from the above formula.

In order for the above strategy to work, we need to show that with p̂e,k−1, sensor

k is able to compute an upper bound p̂′e,k on pe,k and hence lk such that log10 pe,k ≤

log10 p̂
′
e,k ≤ log10 p̂e,k = ∆lk + log10 p

∗
e. Fortunately, such a p̂′e,k is given by

p̂′e,k = Q
(a

2
− δ̂k

)
p̂e,k−1 +Q

(a
2

+ δ̂k

)
(1 − p̂e,k−1) (2.26)

where

δ̂k =
1

a
ln

(
1 − p̂e,k−1

p̂e,k−1

)
(2.27)

In fact, since the detection at sensor k is optimal given dk−1, pe,k−1, xk and gk, the prob-

ability error pe,k as given in (2.24) must be non-decreasing function of pe,k−1 as long as
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pe,k−1 < 0.5. This fundamental property implies that p̂′e,k given in (2.26) must be no less

than pe,k given in (2.24) when pe,k−1 ≤ p̂e,k−1 < 0.5.

Performance Illustration

For performance illustration, we use (2.19) and (2.20) and further assume that

gk = 1 and a = 1. The probability of detection error pe,k versus the sensor index k is

illustrated in Figure 2.3.

For the case of “estimation propagation”, we used the BLUE estimation where

the real-valued estimate ûk−1 and its real-valued variance ck−1 are transported from sensor

k − 1 to sensor k. As expected, pe,k converges to zero rapidly.

For the case of “decision propagation - a”, the binary decision variable dk−1 and

the real-valued probability of detection error pe,k−1 are transported from sensor k − 1 to

sensor k. It should be noted that pe,k apparently converges to zero when k is very large.

(We omitted the portion for k > 200.) But a mathematical proof of this property is not yet

available.

For the case of “decision propagation - b”, four curves are illustrated in this figure.

The best (lowest) of the four corresponds to B = 10 bits used for quantization of each

pe,k−1 before the bits are transported from sensor k− 1 to sensor k. The other three curves

correspond to B = 8, B = 6 and B = 4 bits, respectively. We see that the performance of

“decision propagation - b” has a nonzero floor when k is beyond a threshold.
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Figure 2.3: The probability of the progressive detection error pe,k versus the sensor index
k. The numbers of bits for quantization shown in this plot are used to quantize pe,k−1 at
sensor k− 1 nonlinearly. The other parameters used for the quantization are p∗e = 0.04 and
ǫ = 0.19.

2.2 Consensus Data Fusion

In previous section, we have described the progressive (multihop) data fusion

framework for sensor networks. As we know, there is another type multihop estimation

in literature, which is also referred as the consensus data fusion, see [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45] and more ref-

erences therein. The consensus data fusion is a iterative approach. The concept of consensus

data fusion is that each individual sensor refines its local data fusion result by utilizing new
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information received from its neighbors. In each round of iteration, each sensor finishes

three tasks. Firstly, each sensor, say k-th sensor, listens to its neighbors data transmission

and attempts to acquire some innovative information on the desired data. Secondly, each

sensor will conduct a local fusion to update its local data fusion result based on its pervi-

ous round fusion result and received information innovation from its one hop neighboring

sensors. Thirdly, sensor k shares the updated local estimate with its neighbors via wireless

communications. The three-step iterative process continues until a consensus of data fusion

is reached over the whole network. Here, consensus means that all sensors in the network

give the same data fusion result.

Later, we use an example to further illustrate the idea of consensus data fusion.

Suppose each sensor i holds an initial scalar value xi(0). We can think of xi(0) is the initial

estimation of a desired parameter. We apply the consensus data fusion to compute the

average of the initial values 1
N

∑N
i=1 xi(0) where N is the total number of sensors in the

network. In each iteration t + 1, as shown in Fig. 2.4, through the listening phase, sensor

k obtained the values of xj(t) from neighboring sensor j = j1, j2, · · · , j5. Let us denote the

neighbors set of sensor k as Nk. Obviously, Nk = {j1, j2, · · · , j5} in this case. Then sensor

k conduct a local fusion as below

xk(t+ 1) = Wk,kxk(t) +
∑

j∈Nk
Wk,jxj(t), k = 1, 2, · · · , N (2.28)

where Wk,j is the weight on mj . Wk,k is referred as the self-weight. After the local fusion,

xkt+ 1 is transmitted to neighbors of sensor k and it will be utilized in the next round local

fusion at those neighbors.
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We then write the iterative fusion (2.29) into a compact vector form as

x(t+ 1) = Wx(t) (2.29)

where x(t) = (x1(t), · · · , xk(t), · · · , xN (t))T and the (i, j)-th entry of W is Wi,j. It has

been shown in [28] that as long as W satisfy three conditions, the above consensus data

fusion can lead to limt→∞ xk(t) = 1
N

∑N
i=1 xi(0) for all k. In other words, the data fusion

results at all sensors converge to a desired common value. The three conditions are listed

as follows

1TW = 1T (2.30)

W1 = 1 (2.31)

ρ(W − 11T /N) < 1 (2.32)

where ρ(·) denotes the spectral radius of a matrix.

k

j3

j2 j4

j1 j5Wk,j1

Wk,j2

Wk,j3

Wk,j4

Wk,j5

Wk,k

Figure 2.4: The demonstration of the local fusion rule for the consensus based estimation.
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2.3 Single-hop Data Fusion

Data fusion based on single hop network structure has been studied extensively by

researchers for many years. Here in the section, we brief introduce its principle and review

the existing work in this area.

With the single hop data fusion whose system model is shown in Fig. 2.3, the

sensor network has a fusion center and each sensor tries to delivery local observations

(maybe after local data processing) to the fusion center and the fusion center conducts

the final data fusion after gathering sufficient information from sensors. Examples of early

work in this category include [6], [7], [9], and references therein. However, most of these

works assume 1) the joint distribution of sensor observations is known; 2) the real values

of the observations can be transmitted from sensors to a fusion center perfectly without

any distortion; 3) The transmission power consumption for sensors is not a big issue worth

consideration.

However in practice, the joint distribution of sensor observation noises is very dif-

ficult to characterize especially for large scale sensor networks. A class of universal single

hop decentralized estimation schemes are then proposed to remove the requirement of the

knowledge of joint distribution among sensors [11], [12]. In [11], a universal scheme is pro-

posed to estimate a unknown parameter. The scheme does not need the joint probability

distribution of the sensor measurements. The only information it requires is the range of

the parameter. By applying this scheme, each sensor transmits a one bit message to a

fusion center and the fusion center uses the collected messages to conduct the final estima-

tion. In [12], the universal scheme is extended to the situation where one message could
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Figure 2.5: The single hop data fusion system model with distributed data observation and
processing for a wireless sensor networks. Each circle ’S’ stands for one sensor and the box
’P’ is the local data processor.

contain multiple bits and the measurement noises is inhomogeneous over sensors. A parallel

work on this topic is done in [14] and [15]. A class of ML estimator is studied when only

quantized versions (could down to one bit) of the original observations are available under

different scenarios from Gaussian noises, to Non-Gaussian noises, and finally to completely

unknown noises. In [16], P. Venkitasubramaniam et. al. presented an optimal quantizer

design to maximize the minimum asymptotic relative efficiency between the quantized and

unquantized maximum likelihood (ML) estimators in wireless sensor networks.

The above schemes take care of the situation of without joint probability distribu-

tion information of sensor observations, and also consider the quantization of the original

values of observations. However, These works still assume that the wireless links between

sensors and the fusion center are perfect. Hence transmissions of observation are also as-

sumed perfect from sensors to the fusion center. But due to the power limit of sensors
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and the fading of wireless channels, these assumptions of idea channel and perfect data

transmission are unrealistic in practice. To combat with wireless channel fading and noise,

we need to incorporate practical data communication methods and consider transmission

energy planning with them.

In recent papers of [13], [17], [18], and [19], the single hop distributed estimation

with realistic data transmission and energy planning are considered. There are two data

transmission approaches we could consider, namely, the analog transmission and the digital

transmission. The analog transmission amplifies the local observations at each sensor then

transmit them via analog modulation to the fusion center, which we refer to as the amplify-

and-forward approach. The purpose of the signal amplifying is to combat against the

additive noise and wireless channel fading as well. [19] has studied the method of using

this amplify-and-forward approach to estimate an unknown scalar parameter, based on

the transmission energy minimization criteria. [17] and [18] then extend the amplify-and-

forward approach into the context of vector estimation. On the other hand, the digital

transmission is to quantize the observations into bits (possibly down to only one bit) and

then transmits those bits to the fusion center using digital communication technologies [13].

We name this approach as quantize-then-transmit, in contrast to the amplify-and-forward

approach. The optimal quantization bits allocation is proposed in [13] to minimize the total

transmission energy, while guarantee the estimation MSE at the fusion center at the same

time.
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2.4 Summary

In this chapter, we have introduced the concepts of progressive data fusion, con-

sensus data fusion, and single-hop data fusion. Progressive data fusion framework is the

original contribution of this dissertation. The classical estimation principles: BLUE and

LMMSE, have been shown to be naturally embeddable into progressive data fusion. The

progressive detection based on estimation propagation appears promising in both theory

and practice.
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Chapter 3

Energy Planning for Progressive

Data Fusion

3.1 System Model

In this section, we consider a wireless sensor network where each sensor can sense,

compute, transmit and receive. The data collected by each sensor x
(n)
k can be of any

dimension and any statistical properties. But we assume that each sensor (sensor k) is

able to use its collected data to obtain an estimate θ
(n)
k ∈ RM×1 of a desired unknown

deterministic vector denoted by θ(n) ∈ RM×1, where n denotes the sampling time. We

assume that θ
(n)
k is unbiased and has a bounded covariance matrix, i.e., E{θ(n)

k } = θ(n) and

E{θ(n)
k θ

(n)
k

T
} ≤ Cθ,k. And furthermore, E{θ(n)

k θ
(l)
i

T
} = 0 ∀ k 6= i. We assume that the

estimation of θ(n) is done independently of that of θ(l) for l 6= n. And all data observation,

computations, and communications required for estimating θ(n) are performed within the
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time window from the sampling time n to the sampling time n+ 1. Because of this reason,

we will drop the index n in x
(n)
k and θ(n) for convenience if no confusion will be caused.

The estimation of the unknown parameter vector θ is done in the progressive

fashion as described in chapter 2. We assume that there is a routing tree from all sensors

towards a destination node as illustrated in Figure 3.1. There are many ways to establish

a routing tree. One example is the technique for finding Steiner tree or the minimum

distance tree [46]. But the minimum distance tree may not be optimal for the purpose of

distributed estimation. Finding the best tree for distributed data fusion still remains a open

problem for research in this area. The destination node in the routing tree may also act as a

scheduler which knows the observation matrices of all sensors, plans the transmission energy

to be consumed by each sensor, and broadcasts all essential information to all sensors. The

purpose of the transmission energy planning is to ensure a desired estimation performance

at the destination node while keeping the total energy cost as low as possible. The process

of routing tree establishment, transmission energy planning and decision broadcast are all

done at a startup of the network or when the network topology changes. With the decision

from the scheduler, each sensor in the network performs an estimation of θ using both its

own observation xk and the estimates obtained by its upper stream sensors.

We assume that the time interval between x
(n)
k and x

(n+1)
k is sufficiently long so

that during this time interval all communications between sensors and all computations

at each sensor can be completed for the estimation of θ(n) at the destination node. We

assume that orthogonal or approximately orthogonal scheduling is made for all links in the

network. Since only neighboring nodes are communicating with each other, there can be
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concurrent and co-channel transmissions without major interferences to each other. We also

assume that the network (including network topology and all channel state information) is

sufficiently stationary so that each energy planning cycle can span a time window of at least

many time instants of θ(n) and hence the overhead of the energy planning is acceptable.

Figure 3.1: The snapshot of a network tree applying the progressive estimation. The solid
biggest node in the middle is the destination node.

3.2 Communication Channel Model

Both analog communication and digital communication have been considered in

the literature on sensor network signal processing. In this section, we will provide a com-
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parison of energy consumption between the two. In order to do so, we need to first establish

the energy model for each communication mode as follows.

We denote by T and W respectively the total time and bandwidth available for

communication for each link and each observation sample (i.e., for each k and n in xk(n)).

We assume that the radio frequency (RF) channels between neighboring sensors have con-

stant channel gains within the bandwidth W and a whole cycle of transmission energy

planning. For a RF channel of single-sided bandwidth W, there is an equivalent complex

baseband channel of the double-sided bandwidth W, which corresponds to a pair of in-phase

and quadrature channels.

We let h be the complex baseband channel gain from a sensor to its downstream

sensor. The channel noise is assumed to be Gaussian with the power spectral density N0

within the baseband [−W/2,W/2].

To transmit a complex symbol s from one sensor to another in the analog mode, we

need to use s to modulate (via amplitude, phase, frequency, pulse width, pulse position, etc.)

a waveform c(t) which has a time duration effectively no larger than T and a bandwidth

effectively no larger than W. Here, we use the word “effectively” because if zero error is

tolerated, then the time duration of any waveform must be infinite if the bandwidth is finite

and vice versa. A fundamental constraint on T and W is T W ≥ 1. At the output of the

baseband channel, a demodulation is performed to obtain an estimate ŝ of s. The signal to

noise ratio (SNR) of the estimated symbol at the channel output is

SNR =
|s|2

E{|ŝ − s|2} = µ|h|2E/N0 (3.1)

where E denotes expectation, E is the total transmitted energy and µ (µ > 0) is a parameter
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depending on the modulation method. As shown in Appendix 3.11.1, if the pulse amplitude

modulation and the matched filtering demodulation are used, then µ = 1 and E = |s|2Ec

where Ec is the energy of the waveform c(t).

Note that the combination of the waveform modulator, the continuous-time base-

band channel and the waveform demodulation (with sampling) constitute a discrete-time

analog channel, which is our model for analog communication of discrete-time symbols.

For background knowledge of modulation, demodulation and sampling, there are many

textbooks such as [47].

In order to transmit a complex symbol from one sensor to another in the digital

mode, we can use the above described discrete-time analog channel preceded by a digital

encoder and followed by a digital decoder [47]. Furthermore, if the time-bandwidth product

of the RF channel is such that T W ≥ L ≥ 1 where L is an integer, then we can partition

the original channel into L sub-channels (in frequency and/or time). If a MIMO channel is

used, the number of sub-channels is increased by a factor equal to the rank of the channel

matrix for the same time-bandwidth product. For each sub-channel, we can apply the above

mentioned modulation method to yield an discrete-time analog channel with an output

SNR which is proportional to the input energy of the sub-channel. In other words, with

T W ≥ L ≥ 1, we can construct L discrete-time analog sub-channels and the lth channel

has the output SNR: SNRl = µ|h|2E/(LN0) where E denotes the total transmission energy

over the L sub-channels. Then, the total number of bits that we can transmit digitally over
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the RF channel within the time T and bandwidth W (with negligible errors) is

B =
L∑

l=1

ψ log2(1 + φSNRl) = ψL log2

(
1 + φµ

|h|2E
LN0

)
(3.2)

where ψ (0 < ψ < 1) and φ (0 < φ < 1) are penalty factors depending on the coding method

[48] and packet overhead. This model is appropriate even if the coding is done within a

single observation time interval of each link. Alternatively, we can write the transmission

energy in terms of the number of bits as follows:

E =
LN0

φµ|h|2
(
2
B
ψL − 1

)
(3.3)

The model (3.3) will be used to design the transmission energy planning for digital

communication between sensors. The model (3.1) will be used for the analog case. The

energy planning problem will be formulated as minimization of the transmission energy

within the entire network subject to that the mean square error (MSE) of the estimate at

the destination node is no larger than a pre-specified value.

3.3 Probabilistic Uniform Quantization

The communication between adjacent sensors can be digital or analog in principle.

When the digital communication is applied, we assume that each sensor quantizes its local

estimate using a uniform quantization method. For example, if θ̂ is a local estimate of a

scalar parameter θ and is bounded between [W,−W ], the quantization of θ̂ is uniform and

probabilistic as follows. Let B be the number of bits used to quantize θ̂ within [W,−W ],

and ∆ = 2W
2B−1

be the quantization interval. If −W + i∆ ≤ θ̂ ≤ −W + (i + 1)∆ and

θ̂ + W − i∆ = r∆, then θ̂ is quantized to −W + i∆ with the probability 1 − r and to
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−W + (i+ 1)∆ with the probability r. As shown in [12], it is easy to verify that the error

of this quantization method has zero mean and the variance σ2
q bounded as follows:

σ2
q ≤ max

r
r(1 − r)∆2 =

∆2

4
≤ 4W 2

22B
(3.4)

where the last inequality holds under B ≥ 1. Note that if θ̂ is uniformly distributed within

[W,−W ], then σ2
q =

∫ 1
0 r(1 − r)∆2dr = ∆2

6 .

We will not consider more advanced quantization methods such as vector quan-

tization, or quantization based on a statistical knowledge of the random variables. The

variance expression of a practical vector quantizer is generally difficult to get. Even for a

single Gaussian random variable, the variance expression of the optimal quantization errors

is not expressive enough for our purpose, e.g., see [49]. The simple distortion-rate expres-

sion in [50] requires an ideal vector quantizer of many observation samples, which is hard

to implement. A recent work on source quantization in the context of sensor networks with

structured trees is available in [51] where the knowledge of the joint statistical distribution

of the source and the side data is required.

3.4 Analog Transmission versus Digital Transmission

Digital communication has many advantages over analog communication, which

includes modularity and robustness. These two advantages appear very important for large-

scale multihop wireless networks. But from the pure transmission energy point of view, the

conclusion is not always in favor of one over the other, which depends on the available

time-bandwidth product.
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Transmitting a complex symbol s from one sensor to another by the analog mode

introduces an additional noise term whose variance is inversely proportional to the trans-

mission energy E according to (3.1). More specifically, the variance of the additional noise

caused by the analog communication is

σ2
analog =

|s|2
SNR

=
|s|2N0

µ|h|2E (3.5)

We now consider transmitting the same complex symbol s from one sensor to an-

other by the digital mode using the same amount of total energy E. For digital transmission,

there is an additional noise due to quantization. The variance of this quantization error

using total B bits for both real part and imaginary part (each bounded between [−W,W ])

is upper bounded as follows according to (3.4) and (3.2):

σ2
digital ≤

8W 2

2B
=

8W 2

(
1 + φµ |h|2E

LN0

)ψL (3.6)

We see that if ψL ≤ 1, the exact value of σ2
digital (which depends on the quantization method)

can be larger than σ2
analog even when the transmission energy E is large. But if ψL > 1,

the upper bound of σ2
digital decreases faster than σ2

analog as E increases. Furthermore, since

limm→∞(1 + 1/m)m = e, if L is large, we can write

σ2
digital ≤ 8W 2 exp

{
−ψφµ |h|

2E

N0

}
(3.7)

Here, we see that the variance of the quantization error decreases exponentially as the

transmission energy increases.

We conclude that as long as there is a sufficient transmission time-bandwidth

product for each link and each observation sample, the digital transmission is more efficient
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in transmission energy than the analog transmission. The above analysis also suggests that

otherwise the analog transmission can be more efficient than the digital transmission. It

should be useful to note that an advantage of analog transmission over digital transmission,

as advocated in [52] and [53], was based on a single-hop network, a fixed transmission time-

bandwidth and an increasing number of sensors. Their results and ours are complementary

to each other. The analog-digital comparison shown in [54] assumes the use of a single

channel for digital transmission, and the authors overlooked the importance of sub-division

of time-bandwidth product for digital transmission.

3.5 Progressive Estimation with Digital Transmission

We will let K be the total number of sensors in the network, Ik be the number

of the upper stream sensors of sensor k, and Sk be the set of the indices of the nodes that

are the upper stream sensors of sensor k. Each sensor is assumed to be connected to a

destination node via a routing tree, see Figure 3.1.

Since the estimation of the unknown vector θ(n) is done for each sampling time

instant n and its procedure is the same for all n, we will remove n for convenience. At each

sensor k, the estimation of the unknown vector θ is based on the local observation xk and

the quantized estimates mi, i ∈ Sk, from the upper stream sensors of sensor k.

3.5.1 BLUE

Suppose that θ is an unknown deterministic vector, and y = Mθ + n is the

available data vector, where M is a matrix of full column rank and n is a noise vec-
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tor of zero mean and the covariance matrix C. Then, the best linear unbiased estimate

(BLUE) or equivalently the minimum variance unbiased linear estimate of θ is known as

θ̂ =
(
MC−1M

)−1
MC−1y, and the covariance matrix of this estimate is

(
MC−1M

)−1
,

e.g., see [55].

We now let mk be an unbiased quantized BLUE estimate at sensor k and Ĉk be

the covariance matrix of mk. If mi and Ĉi for i ∈ Sk are available at sensor k, the BLUE

of θ at sensor k is given by

θ̂k =


GH

k Gk +
∑

i∈Sk
Ĉ

−1
i




−1
GH

k xk +
∑

i∈Sk
Ĉ

−1
i mi


 (3.8)

and its covariance matrix is E
{

(θ̂k − θ)(θ̂k − θ)H
}

=
(
GH
k Gk +

∑
i∈Sk Ĉ

−1
i

)−1
. Here, E

denotes expectation and the superscript H denotes complex conjugate transpose.

Assume that both the real and image part of the mth element of θ̂k is bounded

between [−Wm,Wm] and quantized using total Bk,m bits. (Note that it is meaningful to

have a different range for a different element of θ̂k. This range should be governed by the

prior knowledge of the physical nature and resolution requirement of each element of θk,

which could be temperature, wavelength, distance, etc.) Then the covariance matrix Ĉk of

the quantized BLUE estimate mk at sensor k is bounded as follows:

Ĉk ≤


GH

k Gk +
∑

i∈Sk
Ĉ

−1
i




−1

+ Cq,k (3.9)

where the mth diagonal element of Cq,k is denoted by σ̄2
q,k,m and given by σ̄2

q,k,m = 8W 2
m

2
Bk,m

.

However, except for the upper bound, the exact covariance matrix of the quantized estimate

at each sensor is difficult to keep track of. Hence, the exact BLUE is not feasible for our
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application. Nevertheless, the above discussion is an important part of our systematic

treatment.

3.5.2 Quasi BLUE

Since the exact Ĉi for i ∈ Sk are not available at sensor k, we now replace them

by their upper bounds C̄i for i ∈ Sk. Using these upper bounds, the following estimate will

be referred to as quasi BLUE at sensor k:

θ̄k =


GH

k Gk +
∑

i∈Sk
C̄

−1
i




−1
GH

k xk +
∑

i∈Sk
C̄

−1
i mi


 (3.10)

and the covariance matrix of this estimate is upper bounded by
(
GH
k Gk +

∑
i∈Sk C̄

−1
i

)−1
.

Consequently, we can compute the upper bound C̄k of the covariance matrix of the quan-

tized quasi-BLUE estimate mk by

C̄k =


GH

k Gk +
∑

i∈Sk
C̄

−1
i




−1

+ Cq,k (3.11)

Our goal is to determine Bk,m for all k and m such that the total transmission

energy can be significantly reduced subject to a MSE constraint at the destination node.

But according to the recursion of the covariance matrices (3.11) of the quasi-BLUE, the

MSE at the destination is a very complicated function of Bk,m. Unless the network is very

small, finding the optimal Bk,m for quasi-BLUE is not feasible.

3.5.3 Averaging

There is a simpler method for progressive estimation, i.e., taking a simple average

of the quantized estimates from upper stream sensors together with the BLUE estimate
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solely based on xk. This estimate at sensor k is given by:

θ̃k =
1

Ik + 1
(GH

k Gk)
−1GH

k xk +
1

Ik + 1

∑

i∈Sk
mi (3.12)

If the mth element of θ̃k is quantized with Bk,m bits and the upper bounds of the covariance

matrices of mi are denoted by C̃i, then the corresponding upper bound C̃k of the covariance

matrix of the quantized estimate mk at sensor k is given by

C̃k =
1

(Ik + 1)2
(GH

k Gk)
−1 +

1

(Ik + 1)2

∑

i∈Sk
C̃i + Cq,k (3.13)

Note that the estimate given by (3.12) does not need the covariance matrices of

the estimates from upper stream sensors. Also note that the recursion of the covariance

matrices given by (3.13) is much simpler than that in (3.11). It follows from the following

lemma that C̃k is simply an upper bound of C̄k, i.e., C̃k ≥ C̄k. But as implied by a

simulation example shown later, this upper bound is quite loose generally.

Lemma 1 Given n positive definite matrices Ak, k = 1, · · · , n, we have

(
n∑

k=1

A−1
k

)−1

≤ 1

n2

(
n∑

k=1

Ak

)
(3.14)

Proof. See Appendix 3.11.2.

3.6 Energy Planning with Digital Transmission

3.6.1 Algorithm 1

In this section, we design an algorithm for computing the bit allocations among

all sensors. To design such an algorithm, formulating a tractable optimization problem is

essential.
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The total number of bits used for the quantized estimate at sensor k is
∑M

m=1Bk,m,

where Bk,m is the number of bits for the mth element of the estimated vector at sensor k. In

algorithm 1, we do not consider adaptive allocation of quantization bits over sub-channels.

Therefore each sub-channel will need to transmit
∑M

m=1Bk,m/L number of bits. From the

energy model (3.3), the transmission energy to be consumed by sensor k is given by

Ek = ak

(
2

1

ψL

∑M
m=1

Bk,m − 1
)

(3.15)

where L = ⌊T W⌋ ≥ 1, ak =
∑L

l=1
N0

φµ|hk,l|2 , and |hk,l|2 is the squared channel gain for

sub-channel l from sensor k to its down stream sensor.

For any n positive real numbers bi, it is known that
∏n
i=1 bi ≤ ∑n

i=1 b
n
i /n. It

follows that

Ek < ak2
1

ψL

∑M
m=1

Bk,m ≤ ak
M

M∑

m=1

2
M
ψL

Bk,m =
M∑

m=1

Ēk,m (3.16)

where Ēk,m = ak
M 2

M
ψL

Bk,m , which can be viewed as the upper bound of the energy needed

to transmit the mth element of the quantized estimation. We now define the following cost

function:

Jp =

K−1∑

k=1

M∑

m=1

Ēpk,m =

K−1∑

k=1

M∑

m=1

(ak
M

)p
2
pM

ψL
Bk,m (3.17)

which is the pth power of the Lp norm of Ēk,m for all k and all m. Note that at the

destination node which is labelled as node K, there is no need for quantization. Clearly,

when p = 1, we have J1 =
∑K−1

k=1

∑M
m=1 Ēk,m, which is an upper bound on the total (sum)

transmission energy.

To formulate the MSE constraint at the destination node, we use the linear recur-
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sion (3.13) of the covariance matrices. It follows from (3.13) that

C̃K =

K∑

k=1

αk
(Ik + 1)2

(GH
k Gk)

−1 +

K−1∑

k=1

αkCq,k (3.18)

where αK = 1, and αi = αk
(Ik+1)2 for i ∈ Sk. Note that in order to compute αk for all k, one

should start with the sensors nearest to the destination node and then proceed outwards

recursively. The actual values of αk depend on the routing tree. Then, the MSE at the

destination node is given by

MSEK = tr(C̃K) = ξ +

K−1∑

k=1

M∑

m=1

αk
4W 2

m

2Bk,m
(3.19)

where ξ =
∑K

k=1
αk

(Ik+1)2
tr
(
(GH

k Gk)
−1
)

which is invariant to Bk,m. If MSE0 is the desired

MSE value at the destination node, it is meaningful to set up the following constraint

K−1∑

k=1

M∑

m=1

αk
W 2
m

2Bk,m
≤ η (3.20)

where η = 1
4 (MSE0 − ξ).

The problem now can be formulated as below

min
Bk,m

: Jp =

K−1∑

k=1

M∑

m=1

(ak
M

)p
2
pM

ψL
Bk,m (3.21)

subject to:
K−1∑

k=1

M∑

m=1

αk
W 2
m

2Bk,m
≤ η (3.22)

Bk,m ≥ 0 (3.23)

To solve this problem, we need the Hölder’s inequality: For xi > 0, yi > 0 where

i = 1, 2, · · · , n, if k > 1, and 1
k + 1

k′ = 1, then,

(
n∑

i=1

xki

) 1

k
(

n∑

i=1

yk
′

i

) 1

k′

≥
n∑

i=1

xiyi (3.24)
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where the equality holds if xk−1
i = λyi for some constant λ and all i. The equality condition

is easy to verify by recognizing (k − 1)k′ = k.

By defining Ak,m =
(
(ak/M)p2

Mp

ψL
Bk,m

) ψL

ψL+Mp

and Ck,m =
(
αkW

2
m

2
Bk,m

) Mp

ψL+Mp
, the

Hölder’s inequality implies

{
K−1∑

k=1

M∑

m=1

A
ψL+Mp

ψL

k,m

} ψL

ψL+Mp
{
K−1∑

k=1

M∑

m=1

C
ψL+Mp

Mp

k,m

} Mp

ψL+Mp

≥
K−1∑

k=1

M∑

m=1

Ak,mCk,m

=

K−1∑

k=1

M∑

m=1

(ak/M)
ψLp

ψL+Mp (αkW
2
m)

Mp

ψL+Mp

, γ (3.25)

where the equality holds when

A
Mp

ψL

k,m = λCk,m. (3.26)

It is important to note that γ is independent of Bk,m. The constraint (3.36) is equivalent

to
∑K−1

k=1

∑M
m=1 C

ψL+Mp

Mp

k,m ≤ η. Then, using (3.17), (3.36) and (3.25), we have

Jp =

{
K−1∑

k=1

M∑

m=1

A
ψL+Mp

ψL

k,m

}
≥ γ

ψL+Mp

ψL

η
Mp

ψL

(3.27)

The right hand side of (3.27) is independent of Bk,m and is also the minimum of Jp. This

minimum is achieved if (3.26) holds and the equality in (3.36) holds. But (3.26) along with

the constraint Bk,m ≥ 0 implies that

Bk,m =
ψL

MpψL+M2p2

(
(ψL+Mp) log2 λ+ 2Mp log2 (

√
αkWm) −Mp2 log2

ak
M

)+

(3.28)

where (x)+ = max(0, x). Using (3.28) in the equality of (3.36) yields

λ =
1

η
Mp

ψL




∑

(k,m)∈S+

(
√
αkWm)

2Mp

ψL+Mp

(ak
M

) pψL

ψL+Mp




Mp

ψL

(3.29)
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where S+ = {(k,m)|Bk,m > 0}. The two equations (3.28) and (3.29) need to be computed

iteratively until convergence. The iteration starts with the computation of λ from (3.29)

with a full set S+ where Bk,m > 0 for all k and m. After convergence, each Bk,m is rounded

up into an integer.

We now show that the number of iterations between (3.28) and (3.29) until con-

vergence is finite. For any given λ, the solution of Bk,m from (3.28) is unique. If none of

Bk,m is zero after the first iteration, the convergence is achieved. If one or more of Bk,m

become zero, the set S+ is reduced which in turn reduces λ via (3.29). From (3.28), we see

that Bk,m does not increase as λ decreases, which means that the previous zero Bk,m will

remain zero after another iteration. If there is no additional Bk,m becoming zero at the end

of an iteration, the size of S+ is not changed and hence the convergence is achieved. Since

the size of the initial S+ is finite, so is the number of iterations required for convergence.

It is obvious that the converged solution is invariant to the initial choices of Bk,m as long

as they are positive for all k and s.

It is also useful to note that (3.28) and (3.29) constitute a “water-filling” type

algorithm. In other words, (3.28) can be compressed into the form Bk,m = (l − sk,m)+

where l resembles a “water level” that is independent of the location parameters k and m

in a “water tank”, sk,m resembles the heights of the steps at the bottom of the water tank,

and Bk,m is the depth of the water at the location k and m.

The number L of the sub-channels is of great importance to the energy planning.

From (3.3) or (3.15), one can readily verify that the transmission energy E is a decreasing

function of L. However, the effect of increasing L on energy saving diminishes at large L.

41



Taking the limit L→ ∞, the energy model (3.15) becomes

Ek =
N0

φψµ|hk|2
ln 2

M∑

m=1

Bk,m (3.30)

which is invariant to L. Furthermore, as L → ∞, (3.28) and (3.29) can be rewritten as

follows:

Bk,m =

(
log2 λ

′ + 2 log2 (
√
αkWm) − p log2

a′k
M

)+

(3.31)

λ′ =
1

η

∑

(k,m)∈S+

(
a′k
M

)p
(3.32)

where a′k = N0

φψµ|hk|2 . Both (3.31) and (3.32) are independent of L. Therefore, the energy

planning is virtually invariant to L when L is large. The simulation results shown later

suggest that L ≥ 4M is large enough for the energy planning to become practically invariant

to L.

Another important factor is the norm p used to formulate the cost function (3.17).

Selecting p = 1 is to minimize the total energy of the network. Using a larger p implies

that we want to penalize the larger energy terms Ēk,m. In the extreme case where p = +∞,

we minimize the maximum value among Ēk,m. By taking p→ ∞, (3.28) and (3.29) can be

rewritten as follows:

Bk,m =

(
log2 λ

′′ − ψL

M
log2

ak
M

)+

(3.33)

λ′′ =
1

η

∑

(k,m)∈S+

αkW
2
m

(ak
M

)ψL
M

(3.34)

It then follows that unless Bk,m = 0 , Ēk,m = ak
M 2

M
ψL

Bk,m = (λ′′)
M
ψL which is independent of

k and m.
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3.6.2 Algorithm 2

In algorithm 2, again we assume that there are L communication sub-channels

from any sensor to its down-stream sensor within each time window. Unlike algorithm 1,

which utilizes even bits allocation over communication sub-channels, we consider optimal

bits distribution over sub-channels in addition to optimal quantization bits allocation at

each sensor k. Specifically, we let B′
k,l be the number of bits transmitted from sensor k to

its down-stream sensor in sub-channel l. It follows that
∑M

m=1Bk,m =
∑L

l=1B
′
k,l. Note that

while the final solution for Bk,m must be integer, the individual B′
k,l does not have to be

integer because the coding for the sub-channels can be done jointly.

Similarly as in algorithm 1, the energy cost for transmitting B′
k,l from sensor k to

its down-stream sensor in sub-channel l can be modelled as:

Ek,l = ak,l

(
2B

′

k,l
/ϕ − 1

)
(3.35)

where ak,l = N0

φµ|hk,l|2 , N0 is the noise spectral density of the RF communication channel,

hk,l is the gain of the lth sub-channel from sensor k, 0 < φ < 1 is a penalty factor due

to practical digital coding, µ > 0 is a factor due to analog waveform modulation, and

0 < ϕ < 1 is a penalty factor due to the headings of data packets. A special case of the

above energy model with ϕ = 1 is applied in [20], which studied the problem of minimizing

MSE subject to energy constraint for single-hop sensor networks.

Suppose that MSE0 is the desired MSE value at the destination node. Obviously,

we can set up the same MSE constraint as in Algorithm 1

K−1∑

k=1

M∑

m=1

αk
W 2
m

22Bk,m
≤ η (3.36)
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where η = 1
4 (MSE0 − ξ).

Given the above preparations, we can now formulate the following optimization

problem to determine Bk,m and B′
k,l for all k, m and l.

min
Bk,m,B

′

k,l

Jp =
K−1∑

k=1

L∑

l=1

apk,l

(
2B

′

k,l
/ϕ − 1

)p
(3.37)

subject to
K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
≤ η (3.38)

M∑

m=1

Bk,m =

L∑

l=1

B′
k,l for all k (3.39)

Bk,m ≥ 0, B′
k,l ≥ 0 for all k , m, and l (3.40)

where J
1/p
p is the pth norm (p ≥ 1) of all components of the energy cost in the network.

If we choose p = 1, the cost corresponds to the sum energy. If we choose a large p, the

cost corresponds approximately to the largest component of the energy cost. The problem

(3.37) is more general than that formulated in [25] where 2B
′

k,l
/ϕ − 1 was replaced by its

upper bound 2B
′

k,l
/ϕ, and B′

k,l was chosen to be invariant to the sub-channel index l.

One can verify that if Bk,m and B′
k,l are treated as real numbers, the above problem

is convex by checking the second order derivatives of objective function (3.37) and inequality

constraint (3.38) as below.

∂2Jp

∂B′
k,l

2 =





ak,l2
B′

k,l
/ϕ
(

ln 2
ϕ

)2
, p = 1

apk,lp
(
2B

′

k,l
/ϕ − 1

)p−2
2B

′

k,l
/ϕ
(

ln 2
ϕ

)2 (
p2B

′

k,l
/ϕ − 1

)
, p > 1

(3.41)
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The second order derivative of the left-side of inequality constraint (3.38), which

we denote as a function f(Bk,m) is given by

∂2f

∂B2
k,m

= 4αkW
2
m(ln 2)22−2Bk,m (3.42)

It is easy to see that
∂2Jp
∂B′

k,l
2 ≥ 0 and ∂2f

∂B2
k,m

≥ 0 for p ≥ 1, Bk,m ≥ 0 and B′
k,l ≥ 0.

The convex objective (3.37), convex inequality constraints (3.38) and (3.40), and the affine

equality constraint (3.39), can guarantee that this optimization problem is a convex problem.

Due to its convexity, the global optimal solution to the above problem can be found in

principal. However, using a general-purpose program such as in Matlab, the computational

speed is very slow. In the following, we present an efficient algorithm to solve this problem.

In this section, we develop an energy planning algorithm for progressive estimation

by solving (3.37). To distinguish this algorithm from the previous algorithm 1 in section

3.6.1, we call it algorithm 2. To solve the problem (3.37), we apply the KKT method [56].

The complete set of the KKT equations for (3.37) are given by

apk,lp
ln 2

ϕ
2B

′

k,l
/ϕ
(
2B

′

k,l
/ϕ − 1

)p−1
− νk,l + ξk = 0, for all k and l (3.43)

−2µαkW
2
m(ln 2)2−2Bk,m − λk,m − ξk = 0, for all k and m (3.44)

K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
− η ≤ 0 (3.45)

M∑

m=1

Bk,m =

L∑

l=1

B′
k,l for all k (3.46)

µ

(
K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
− η

)
= 0 (3.47)

λk,mBk,m = 0, for all k and m (3.48)
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νk,lB
′
k,l = 0, for all k and l (3.49)

where Bk,m ≥ 0, B′
k,l ≥ 0, µ ≥ 0, λk,m ≥ 0 and νk,l ≥ 0. It is easy to verify from the KKT

equations that λk,m = 0 for all k and m where Bk,m > 0, and νk,l = 0 for all k and l where

B′
k,l > 0. It is also easy to verify that µ > 0.

Finding the complete solution to the above nonlinear equations requires iterative

search. To derive our search algorithm, we first define

ηk
.
=

M∑

m=1

αkW
2
m

22Bk,m
(3.50)

From (3.44), we have that for Bk,m > 0,

αkW
2
m

22Bk,m
=

−ξk
2µ ln 2

(3.51)

Using (3.51) in (3.50) yields

ηk =
−ξk|M+

k |
2µ ln 2

+
∑

m/∈M+

k

αkW
2
m (3.52)

where M+
k = {m|Bk,m > 0} and |M+

k | is the size of the set M+
k . Substituting ξk

µ from

(3.52) into (3.51), we find

Bk,m =
1

2
log2

αkW
2
m|M+

k |
η′k

(3.53)

where m ∈ M+
k , and η′k = ηk −∑m/∈M+

k
αkW

2
m. A slightly more compact form of this

solution is

Bk,m =

(
1

2
log2

αkW
2
m|M+

k |
η′k

)+

(3.54)

where (x)+ = max(x, 0).

To compute the solution (3.54) with a given ηk, we initially assume that M+
k

contains all m = 1, · · · ,M . We then apply (3.54) to calculate Bk,m for all m. For those
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Bk,m = 0, we exclude the corresponding indexes m from the set M+
k . The new set M+

k is

then applied to calculate new Bk,m for all m via (3.54). This iterative procedure continues

until Bk,m > 0 for m ∈ M+
k and Bk,m = 0 for m /∈ M+

k . In the appendix, we prove that

the number of iterations in computing (3.54) is finite.

The first term in (3.43) is monotonically increasing function of B′
k,l > 0. So, for a

given B′
k,l > 0, there is an unique and distinct ξk. Similarly, for a given ξk, there is either

a unique B′
k,l > 0 or B′

k,l = 0. The computation of this one-to-one mapping can be easily

implemented via a bisection method. For convenience, we can write B′
k,l = f+

k,l(ξk) where

the function fk,l is the inverse function of the first term of (3.43). Note that we do not need

any more explicit expression of fk,l for the reason mentioned already. Because of (3.46), we

can find ξk by solving
L∑

l=1

f+
k,l(ξk) = Bk (3.55)

where Bk =
∑M

m=1Bk,m. The entire left-hand-side expression of (3.55) is a monotonically

increasing function of ξk. So, with a given Bk, it is easy to find the corresponding ξk and

hence the corresponding B′
k,l = f+

k,l(ξk) for all l.

Up to now, we have obtained the optimal solutions for Bk,m and B′
k,l for all k,

m and l provided that ηk for all k are given. To find the optimal ηk, we need a search

algorithm as developed next. Since µ > 0, the optimal ηk must be such that
∑K−1

k=1 ηk = η

due to (3.50) and (3.47). Using
∑K−1

k=1 ηk = η and (3.52), we can eliminate µ and obtain

ηk = η′
ξk|M+

k |∑K−1
j=1 ξj|M+

j |
+

∑

m/∈M+

k

αkW
2
m (3.56)

where η′ = η−∑K−1
j=1

∑
m/∈M+

j
αjW

2
m. Here ηk is expressed as a function of M+

j and ξj for
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all j. Note that M+
j is a by-product of Bj,m for all m, and ξj is a by-product of B′

j,l for all

l.

The above discussions show that the computation of ηk for all k and the compu-

tation of Bk,m and B′
k,l for all k, m and l can be done alternately until convergence. To

avoid divergence of the algorithm, we need to control the amount of changes in ηk for all k

at each iteration. To do that, at iteration s, we introduce

ηk(s+ 1) = βη̂k(s+ 1) + (1 − β)ηk(s) (3.57)

where 1 ≥ β > 0, and η̂k(s+ 1) is obtained from (3.56) at iteration s+ 1.

With the previous results, our algorithm for computing the solution to the problem

(3.37) can be summarized below:

1. Initialization: Choose M+
k = {1, 2, · · · ,M} for all k. Also set s = 0 and ηk(0) = η

K−1

for all k.

2. Step 1: Compute Bk,m and M+
k by (3.54).

3. Step 2: Compute B′
k,l and ξk by (3.55).

4. Step 3: Compute ηk(s+ 1) by (3.57).

5. Step 4: Set s := s+ 1, and go to Step 1 until convergence.

The simulations show that for p = 1, this algorithm converges for all β ∈ (0, 1], but for

p > 1, β < 1 is necessary for the algorithm to converge. In the simulation examples shown

later, we used β = 0.02 for all cases where p > 1. Note that for p = 1, the first term in
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(3.43) is nonzero even if B′
k,l = 0, but for p > 1, this term equals zero when B′

k,l = 0. Also

shown in simulation, all other random initializations of ηk converged to the same result.

After the solution converges, in practice, we round up the number of quantization

bits Bk,m to the nearest integer, i.e., B̄k,m = ⌈Bk,m⌉. Because coding can be done jointly

over multiple sub-channels, B′
k,l, the number of bits per symbol transmitted per channel,

could be real number in principle. We do not round up B′
k,l. But we need to apply (3.55)

one more time to calculate the final B′
k,l with Bk =

∑M
m=1⌈Bk,m⌉.

3.6.3 Linear Energy Model for Progressive Estimation

Suppose that there is a large number of sub-channels for each transmission and

the gains of the sub-channels are the same. Then, the optimal B′
k,l should be very small for

each k and l, and hence (3.35) becomes Ek,l = ak,l
ln 2
ϕ B′

k,l which is a linear energy model.

Under the linear model, if ak,l is not invariant to l, then the optimal B′
k,l would

be such that only the largest ak,l over all l is allocated with non-zero B′
k,l which could

violate the assumption that all B′
k,l are small subject to

∑L
l=1B

′
k,l =

∑M
m=1Bk,m = Bk.

However, if we simply force B′
k,l = Bk/L which is invariant to l, then the linear model

implies
∑L

l=1Ek,l = 1
L

(∑L
l=1 ak,l

ln 2
ϕ

)
Bk.

The linear energy model also applies to many existing communication devices

where the energy cost is simply proportional to the number of packets transmitted. There-

fore, there is a need to consider this special case. We will write

Ek = bkBk (3.58)

where Ek is the energy spent by sensor k to transmit Bk bits, and bk is a constant associated
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with sensor k. For comparison with the algorithm in Section 3.6.2, we will choose bk =

1
L

∑L
l=1 ak,l

ln 2
ϕ in the simulation section. To minimize the sum energy by forcing B′

k,l =

Bk/L under the linear energy model, we need to solve:

min
Bk,m

K−1∑

k=1

M∑

m=1

bkBk,m (3.59)

subject to
K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
≤ η (3.60)

Bk,m ≥ 0, for all k and m (3.61)

This problem could be reduced from (3.37) if p = 1, ak,l is invariant to l, and B′
k,l << 1.

However, this problem formulation stands on its own without the above conditions on

ak,l and B′
k,l. We also like to mention that for the linear energy model, the basic energy

component is Ek. It is hence tempting to minimize the more general cost
∑K−1

k=1 Epk with

any p ≥ 1. For large p, the cost automatically weighs more for sensors that consume more

energy. But unfortunately, the resulting optimization problem with respect to the variables

Bk,m is much more difficult, which will not be addressed in this thesis. Next, we present a

simple algorithm to solve (3.59).

The KKT conditions of this problem are given by

bk − 2(ln 2)µαkW
2
m2−2Bk,m − λk,m = 0, for all k and m (3.62)

K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
≤ η (3.63)

µ

(
K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
− η

)
= 0 (3.64)

λk,mBk,m = 0, for all k and m (3.65)
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where µ ≥ 0, λk,m ≥ 0 and Bk,m ≥ 0. We define the set KM+ containing the indices of

(k,m) where Bk,m > 0. For (k,m) /∈ KM+, Bk,m = 0. From (3.65), we can see λk,m = 0

where (k,m) ∈ KM+. Plugging this result into (3.62), we can see µ > 0. We then see from

(3.64) that
K−1∑

k=1

M∑

m=1

αkW
2
m

22Bk,m
= η (3.66)

For (k,m) ∈ KM+, we know that λk,m = 0 and hence from (3.62) that

Bk,m =

(
1

2
log

2(ln 2)µαkW
2
m

bk

)+

(3.67)

where the constant µ is chosen such that (3.66) holds.

3.7 Progressive Estimation with Analog Transmission

We now consider progressive estimation with analog transmissions between sensors.

Recall the analog transmission model discussed in Section 3.2 and Appendix 3.11.1. We

will assume M identical discrete-time analog sub-channels between each sensor and its

downstream sensor and the M sub-channels are used to transmit in parallel the M elements

of θ̂k from sensor k to its downstream sensor. Applying (3.91) and (3.92), we can formulate

an effective channel model for analog transmission between any two sensors as follows: the

received symbol at the downstream counterpart of sensor k in the mth sub-channel is

yk,m = hk,m

√
Eck,m
N0

θ̂k,m + νk,m (3.68)

where Eck,m is the energy of the waveform used in modulation for the mth element θ̂k,m of

the estimate θ̂k at sensor k, and the noise νk,m is a complex Gaussian random variable with
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zero mean and unit variance. The transmission energy for the mth element is |θ̂k,m|2Eck,m .

Then, by combining all M sub-channels, we have the vector channel model:

yk = HkAkθ̂k + νk (3.69)

where Ak = diag

[√
Eck,1
N0

,

√
Eck,2
N0

, · · · ,
√

Eck,M
N0

]
and Hk = diag[hk,1, hk,2, · · · , hk,M ]. For

the analog transmission, we allow the channel gains of the sub-channels to be possibly differ-

ent from each other. Denoted by Pk, the total transmission energy for transmitting θ̂k from

sensor k to its downstream sensor using the analog mode is now Pk = N0Tr{Akθ̂kθ̂
H

k Ak}.

The energy planning for analog transmission is about the design of Ak for all k.

3.7.1 BLUE

Based on the local observation xk at sensor k and the data yl for l ∈ Sk received

by sensor k from its upstream sensors, the BLUE of θ at sensor k is

θ̂k =


GH

k Gk +
∑

l∈Sk
BH
l C−1

yl
Bl




−1
GH

k xk +
∑

l∈Sk
BH
l C−1

yl
yl


 (3.70)

where Bl = H lAl, Cyl
= BlC lB

H
l + I, and Cl is the covariance of θ̂l. The covariance

matrix of θ̂k is given by

Ck =


GH

k Gk +
∑

l∈Sk
BH
l

(
BlC lB

H
l + I

)−1
Bl




−1

(3.71)

Based on (3.71), the MSE at the destination node is a very complicated function of the

amplification matrices Ak, k = 1, · · · ,K. It is not feasible to use (3.71) to design energy

planning unless the network is very small.
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3.7.2 Averaging

Alternatively, at sensor k, we can obtain an estimate of θk by averaging the BLUEs

of θ based on yl for l ∈ Sk and xk individually, i.e.,

θ̃k =
1

Ik + 1

(
GH
k Gk

)−1
GH
k xk +

1

Ik + 1

∑

l∈Sk
B−1
l yl (3.72)

where Bl for l ∈ Sk are needed at sensor k. Denote the covariance matrix of θ̃k by C̃k.

Then, the covariance matrix of yl is BlC̃lB
H
l + I, and the covariance matrix of θ̃k is given

by

C̃k =
1

(1 + Ik)2


(GH

k Gk

)−1
+
∑

l∈Sk

(
BH
l Bl

)−1
+
∑

l∈Sk
C̃ l


 (3.73)

The recursion (3.73) is linear and much simpler than the recursion (3.71). We will

use (3.73) for energy planning. It follows from Lemma 1 that C̃k ≥ Ck.

3.8 Energy Planning with Analog Transmission

Using the recursion (3.73), the covariance matrix at the destination node, labelled

as node K, can be found as

C̃K =

K−1∑

k=1

αk
(
BH
k Bk

)−1
+

K∑

k=1

αk
(1 + Ik)2

(
GH
k Gk

)−1
(3.74)

where αK = 1 and αl = αk
(1+Ik)2

for l ∈ Sk. Then, the MSE at the destination node is

MSEK = Tr(C̃K) =
K−1∑

k=1

M∑

m=1

β2
k,m

a2
k,m

+ ǫ (3.75)

where ǫ = Tr
(∑K

k=1
αk

(1+Ik)2

(
GH
k Gk

)−1
)

and βk,m =
√
αk

|hk,m| . Here, hk,m is the mth diagonal

element of Hk, and ak,m =
√
Eck,m/N0 is the mth diagonal element of Ak. Then it follows
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that

Pk = N0Tr
(
Akθ̃kθ̃

H
k Ak

)
≤

M∑

m=1

N0a
2
k,m2W 2

m =
M∑

m=1

P̄k,m (3.76)

where P̄k,m = N0a
2
k,m2W 2

m, which can be viewed as the upper bound of the energy used to

transmit the mth element of θ̃k. The inequality comes with the assumption that both the

real and image part of θ̂k,m or θ̃k,m are bounded within [−Wm,Wm], which is consistent

with the digital transmission case.

Similar to the digital transmission energy planning, we define the following cost

function for the analog transmission energy planning:

Fp =
K−1∑

k=1

M∑

m=1

P̄ pk,m =
K−1∑

k=1

M∑

m=1

a2p
k,m(

√
2N0Wm)2p (3.77)

which is the pth power of the Lp norm of P̄k,m over all k andm. And the analog transmission

energy planning is formulated as follows:

min
ak,m

Fp (3.78)

subject to the MSE constraint at node K:

K−1∑

k=1

M∑

m=1

β2
k,m

a2
k,m

≤MSE0 − ǫ , η (3.79)

We now define Ak,m = (a2p
k,m(

√
2N0Wm)2p)1/(p+1) and Ck,m = (β2

k,m/a
2
k,m)p/(p+1).

Following the Hölder’s inequality, we have

(
K−1∑

k=1

M∑

m=1

A
(p+1)
k,m

)1/(p+1)(K−1∑

k=1

M∑

m=1

C
(p+1)/p
k,m

)p/(p+1)

≥

K−1∑

k=1

M∑

m=1

Ak,mCk,m = (
√

2N0Wm)2p/(p+1)β
2p/(p+1)
k,m , γ (3.80)
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where equality holds when there is a constant λ such that

Apk,m = λCk,m (3.81)

Combining (3.79) and (3.80), we have

Fp =

(
K−1∑

k=1

M∑

m=1

A
(p+1)
k,m

)
≥ γp+1

ηp
(3.82)

The right-hand-side of (3.82) is independent of ak,m and is the minimum of Fp. This

minimum is achieved if the equality in (3.79) is achieved and the equality (3.81) holds.

From (3.81), one can easily verify that

ak,m = λ
1

2pβ
1

p+1

k,m (
√

2N0Wm)
− p

p+1 (3.83)

Applying this to the equality in (3.79) yields

λ =



∑K−1

k=1

∑M
m=1(

√
2N0Wm)

2p

p+1β
2p

p+1

k,m

η




p

(3.84)

Combing (3.83) and (3.84), we finally get

ak,m =

(
β

1

p+1

k,m (
√

2N0Wm)−
p

p+1

)
√√√√
∑K−1

k=1

∑M
m=1(

√
2N0Wm)

2p

p+1β
2p

p+1

k,m

η
(3.85)

Similar to the digital case, the energy planning here is based on the Lp norm for

any p. If p→ ∞, (3.85) can be rewritten as follows:

ak,m = (
√

2N0Wm)−1
√
λ′′′ (3.86)

where λ′′′ =
∑K−1

k=1

∑M
m=1(

√
2N0Wm)2β2

k,m

η , and hence P̄k,m = N0a
2
k,m2W 2

m = λ′′′, which is

independent of k and m.
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3.9 Simulation Results

The simulation network we consider is shown in Fig. 3.2 where there are K =

400 nodes. The destination node is also referred to as fusion center. This network was

constructed in such a way that the distance between a sensor and its upper stream sensor

is Dδ where δ is uniformly distributed within the range [0.5, 1.5] and D is a normalizing

factor.

For the simulation, we assume that sensor k observes the data vector xk = Gkθ +

ωk, where Gk is the observation matrix associated with sensor k, which is assumed known

to sensor k, and ωk is white noise with the identity covariance matrix Cω = I. With this

observation model, an original local estimate of θ at sensor k can be obtained by the best

linear unbiased estimate: θk = (GT
kGk)

−1GT
k xk. We also have Cθ,k = (GT

kGk)
−1. We will

choose Gk for k = 1, 2, · · · ,K randomly. Each Gk is a N ×M real matrix with elements

randomly chosen from a Gaussian distribution with zero mean and standard deviation equals

to 10.

Each entry of θ is chosen randomly from [−1, 1]. The squared channel gain of

channel l from sensor k to its downstream sensor is |hk,l|2 = d−αk ρk,l, where dk is the

distance from sensor k to its down-stream sensor, α = 4 and ρk,l is randomly chosen from

an exponential distribution with mean equal to one. We also choose N = 20, M = 10,

µ = 1, φ = 1, N0 = 1, Wm = 1 for m = 1, 2, · · · ,M .

Before we show the energy cost of all energy planning algorithms, please recall that

for digital transmissions energy planning algorithm 1, the energy consumed by sensor k is

denoted by Ek in (3.15) and the p-norm cost function is denoted by Jp in (3.17). For digital
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transmissions energy planning algorithm 2, the energy consumed by sensor k is denoted by

Ek =
∑L

l=1Ek,l where Ek,l is given in (3.35) and the p-norm cost function is denoted by Jp

in (3.37). For analog transmissions, the energy consumed by sensor k is denoted by Pk in

(3.76) and the p-norm cost function is denoted by Fp in (3.77).

3.9.1 Analog Transmission Energy Planning

The energy planning algorithm present in section 3.8 for progressive estimation

with analog transmissions will be referred to as analog proposed progressive (PP) energy

planning algorithm for multihop sensor network with analog transmission. For comparison,

we also consider a uniform progressive (UP) energy planning algorithm for the same network.

For the UP algorithm, each sensor uses the same transmission matrix Ak = aI where a

is chosen to achieve the target MSE at the destination node, i.e., MSEK ≤ MSE0. In

simulations, once the transmission matrices Ak, k = 1, · · · ,K, are determined, we use the

second term in (3.76) to calculate the transmission energy at sensor k.

Using the cost F1, Fig. 3.3 illustrates the total transmission energy consumed by

the entire network (averaged over 100 realizations of θ) versus the target MSE denoted

by MSE0. We see that the PP algorithm consumes much less total energy than the UP

algorithm. We also see that for either the UP algorithm or the PP algorithm, the BLUE

estimation algorithm consumes less energy than the averaging estimation algorithm. To

illustrate the advantage of the multi-hop network over the single-hop network in terms of

the transmission energy consumption, Fig. 3.3 also shows a curve of the energy versus the

target MSE based on a single-hop tree for the same distribution of sensors shown in Fig. 3.2.
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We see an enormously large gap of energy between the single-hop tree and the multi-hop

tree. The path loss exponent is assumed to be four.

For MSE0 = 0.05, Fig. 3.4 illustrates the transmission energy consumed by each

sensor versus the normalized distance (i.e., the distance divided by D) of the sensor from

the destination node. A single random realization of θ is used. For this figure, the PP

algorithm uses F1, and the sensors close to the fusion center needs to transmit much more

energy than the sensors far away from the fusion center. But if we choose a large p (say,

p = 50) for Fp, the PP algorithm can yield a virtually constant energy distribution and

become virtually the same as the UP algorithm.

Fig. 3.5 shows the effect of p on the analog transmission energy planning. We can

see that as p in the cost Fp increases, the total transmission energy (corresponding to F1)

increases. We also see as expected that when p = ∞, the PP algorithm becomes identical

to the UP algorithm. See (3.86).

Fig. 3.6 illustrates the actual MSE MSEK (averaged over 100 realizations of

θ) at the destination node versus MSE0. For the PP algorithm (using F1), the averaging

algorithm always achieves the target MSE at the destination, but the BLUE algorithm yields

a much smaller MSE than the target MSE. This is because the covariance matrix of the

estimate by averaging is not a tight upper bound of the covariance matrix of the estimate by

the BLUE. In other words, the energy planning algorithm based on the averaging progressive

estimation is rather conservative for the BLUE progressive estimation.
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Figure 3.2: A 2-D multihop sensor network with a routing tree. The destination node (also
referred to as the fusion center) is marked by the circle in the center. Here, there are 400
sensors, each marked by ∗. This network is used for all simulation examples in this thesis.

59



0 0.05 0.1 0.15 0.2
10

4

10
6

10
8

10
10

10
12

MSE
0

T
ot

al
 tr

an
sm

is
si

on
 e

ne
rg

y

 

 
Single hop transmission
Analog UP algorithm (averaging)
Analog UP algorithm (BLUE)
Analog PP algorithm (averaging)
Analog PP algorithm (BLUE)

Figure 3.3: For the analog PP and UP algorithms, the transmission energy consumed by
the network versus the target MSE0. Note that the first curve on the top is based on
a single-hop tree for the same distribution of sensors shown in Fig. 3.2. The path loss
exponent is assumed to be four.
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Figure 3.4: For the analog PP and UP algorithms, the transmission energy consumed by
each sensor versus the normalized Euclidean distance between the sensor and the fusion
center. MSE0 = 0.05. The analog PP algorithm uses F1.
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Figure 3.5: Illustration of the effect of p in Fp for the analog PP algorithm.
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Figure 3.6: For the analog PP and UP algorithms, the actual MSE at the fusion center
versus the target MSE.
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3.9.2 Digital Transmission Energy Planning - Algorithm 1

We will compare the proposed progressive (PP) digital transmission energy plan-

ning algorithm 1 and a uniform progressive (UP) digital transmission energy planning

algorithm. The digital UP algorithm here is such that the number of bits allocated to

each element of the estimate by each sensor is a constant subject to the MSE constraint

MSEK ≤MSE0 at the destination node.

For L = M , Fig. 3.7 illustrates the total normalized transmission energy con-

sumed by the network, i.e., Enet =
∑K

k=1Ek/D
α, versus the target MSE. The energy Ek is

computed based on (3.15). We see that the PP algorithm with small p consumes much less

energy than the UP algorithm. But with a large p, the result of the PP algorithm becomes

similar to, but not exactly the same as, that of the UP algorithm.

Under MSE0 = 1.0× 10−3, L = M and J1, Fig. 3.8 illustrates the number of bits

per element for each sensor, i.e.,
∑M

m=1Bk,m/M , versus the Euclidean distance (divided by

D) from the sensor to the destination node. We see that under the PP algorithm with J1,

the number of bits allocated to each sensor generally decreases with the distance from the

sensor to the destination node.

Under the same condition as for Fig. 3.8, Fig. 3.9 shows the amount of the normal-

ized transmission energy Ek/D
r consumed by each sensor versus the distance (divided by

D) from the sensor to the destination node. Note that unlike the analog case, the transmis-

sion energy determined for each sensor for the digital case is not affected by the estimation

algorithm (quasi BLUE or averaging).

Under MSE0 = 1.0 × 10−3 and L = M , Fig. 3.10 shows the effect of a large
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p on the bit distribution of the digital PP algorithm. And Fig. 3.11 shows the effect of

a large p on the energy distribution of the digital PP algorithm. We see that the digital

PP algorithm with a large p is more effective than the digital UP algorithm to achieve a

constant energy distribution. The digital UP algorithm can not achieve a constant energy

distribution because of the varying channel gains from sensor to sensor.

We now evaluate the effect of the transmission time-bandwidth product L. Under

MSE0 = 1.0 × 10−3, Fig. 3.12 shows the total transmission energy of the network versus

the ratio L/M . We see that as L increases, less energy is consumed by any of the two

algorithms (PP or UP). This figure suggests that if the network has a large bandwidth, we

should use a large L to save transmission energy. However, we also see from this figure

that the required transmission energy has a nonzero lower bound as L becomes very large,

which is proved by (3.30). For the example shown in Fig. 3.12, L = 4M is practically large

enough to approach the bound.

Fig. 3.13 shows the actual MSE value at the destination node versus the target

MSE value at the destination node. Such a curve depends on both the energy planning

algorithm and the estimation algorithm. When the averaging algorithm is used, the actual

MSE is quite close to the target MSE, which is expected. However, when the quasi-BLUE

algorithm is used, the actual MSE is much smaller than the target MSE. One should recall

that the quasi-BLUE algorithm requires each sensor to know the upper bounds of the

covariance matrices of the quantized estimates from its upper stream sensors while the

averaging algorithm does not have this requirement. Yet, given the large gap of the MSE

between the two estimation algorithms as shown in this figure, developing a more efficient bit
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allocation algorithm for the quasi-BLUE estimation algorithm remains a useful challenge.

3.9.3 Digital Transmission Energy Planning - Algorithm 2

The results of the energy planning algorithm depend on the choice of p in (3.37).

However, regardless of the choice of p, the sum energy is given by

J1 =

K−1∑

k=1

L∑

l=1

ak,l

(
2B

′

k,l − 1
)

(3.87)

The sum of transmission energy to be illustrated is given by J1/D
α.

For convenience of reference, we will refer to the algorithm developed in Section

3.6.1 as the digital proposed progressive (PP) algorithm 1, the algorithm shown in Section

3.6.2 as the digital proposed progressive (PP) algorithm 2, and the algorithm under linear

energy model in Section 3.6.3 as the digital linear progressive (LP) algorithm. We also have

a digital “uniform” progressive (UP) algorithm for which the same number of quantization

bits is assigned to each element of the estimate at each sensor (i.e., Bk,m is independent of

k and m), the same number of transmission bits is assigned to each sub-channel (i.e., B′
k,l

is independent of k and l), and however
∑M

m=1Bk,m =
∑L

l=1B
′
k,l and the MSE constraint

(3.19) hold.

We like to note here that for K = 40, N = 4, M = 2, L = 2, p = 1, it took 2.3125

seconds on a computer (with Pentium (R) 4 CPU 3.00 GHz and 1G memory) for the digital

PP algorithm 2 to find the solution of (3.37). But with the Matlab nonlinear constrained

optimization routine fmincon, it took 219.56 seconds although the solution is the same. For

the following example where K = 400, N = 20, M = 10, L = 10, and p = 1, the Matlab

routine virtually froze up the computer.
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Figure 3.7: For the digital PP and UP algorithms, the transmission energy consumed by
the network versus the target MSE where p is as in Jp for the digital PP algorithm.
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Figure 3.8: The number of quantization bits allocated for each sensor per element of the
unknown vector versus the normalized Euclidean distance from the sensor to the destination
node. The target MSE at the destination node is MSE0 = 1.0 × 10−3. The digital PP
algorithm uses J1.
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Figure 3.9: Normalized digital transmission energy by each sensor versus the normalized
Euclidean distance from the sensor to the destination node. MSE0 = 1.0 × 10−3. The
digital PP algorithm uses J1.
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Figure 3.10: Same as Figure 3.8 except p = 50 for the digital PP algorithm.
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Figure 3.11: Same as Figure 3.9 except p = 50 for the digital PP algorithm.
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Figure 3.12: Total digital transmission energy consumed by the network versus L/M with
M = 10. MSE0 = 1.0 × 10−3.
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Comparison of sum energy

Fig. 3.14 compares several curves of the sum energy versus the target MSE. Each

of these curves (except one) is determined by one of the following energy planning algorithms

for progressive estimation: digital PP algorithm 1 and 2 with p = 1, p = 8 and p = 64, ,

the digital LP algorithm, and the digital UP algorithm.

We see that with increased p, the sum energy determined by the digital PP algo-

rithm 2 increases as expected. The same is true for the digital PP algorithm 1. However,

the sum energy by the digital PP algorithm 2 is always smaller than that by the digital PP

algorithm 1 for each given p. This is because algorithm 2 uses the exact energy model (as

opposed to its upper bound) and also exploits the variation of the sub-channel gains.

We also see that the digital LP algorithm requires more sum energy than the

digital PP algorithm 1 with p = 1, which is expected. Note that although the energy model

used for developing the digital LP algorithm is linear, i.e., (3.58), the actual amount of

energy required by all algorithms (as shown in all figures) is computed by using the original

energy model (3.35) where for the digital LP algorithm we use B′
k,l = Bk/L. But when

the number of sub-channels L becomes large, the digital LP algorithm and the digital PP

algorithm 1 with p = 1 should require the same sum energy, which will be illustrated in the

next figure.

The digital UP algorithm is clearly a bad choice for progressive estimation in terms

of the sum energy cost.
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Effect of the number of sub-channels

Fig. 3.15 illustrates the sum energy versus the number L of sub-channels, where

the target MSE is 0.01. For all algorithms, the sum energy cost decreases as L increases,

and becomes less sensitive to L when L is large. An explanation of this is available in [25].

As expected, the sum energy required by the digital LP algorithm becomes the same as

that by the digital PP algorithm 1 when L is large. In this figure, the curves for the digital

PP algorithm 1 and the digital PP algorithm 2 appear overlapping in the region of small

L because of the large scale. In fact, the digital PP algorithm 2 is always better than the

digital PP algorithm 1.

Effect of p on energy distribution

Fig. 3.16 shows the effect of p used in the digital PP algorithm 2 for progressive

estimation on the peak energy consumed by individual sensors. We see that the peak energy

is reduced when p is increased.

3.9.4 Analog versus Digital transmissions

To compare the analog case with the digital case, we consider the same network

topology (Fig. 3.2), the same observation model (2.1) and the same RF channel with the

same W the same T . Fig. 3.17 compares the energy consumptions between the analog

PP algorithm and the digital PP algorithm. We see that when L = M , the analog trans-

missions (either with BLUE or averaging algorithm) consume less energy than the digital

transmissions. However, when L ≥ 2M , the digital transmissions consume less energy than
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Figure 3.13: For the digital PP and UP algorithms, the actual MSE value at the destination
node versus the target MSE MSE0.
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Figure 3.14: The sum energy required by different energy planning algorithms for progressive
estimation.
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the analog transmissions, which is essentially the same conclusion from Section 3.4 where

M = 1 was considered. The energy saving by increasing L becomes less significant when L

is large, which is consistent with Fig. 3.12.

3.9.5 Progressive versus Single-hop on Energy Cost

In this subsection, we compare the energy cost with progressive and single-hop es-

timation. By the way, the optimal digital energy planning algorithm for single-hop networks

is studied in [13]. Here we consider an example of scalar estimation in this simulation for

comparison because the algorithm derived in [13] is only for scalar estimation. We estimate

a scalar θ. Local observation model for each sensor k is

xk = θ + nk (3.88)

where θ is the desired parameter to be estimated. We assume its range is [−w,w] where

w = 1. nk is the measurement noise with zero mean and k-dependent variance σ2
nk

. We

assume σ2
nk

= 0.05 in this simulation. The wireless channel model is assumed same as before

except that there is only one sub-channel available between sensors.

Fig. 3.18 shows the total normalized transmission energy consumed by the network

versus the target MSE0. The highest curve is for the optimal digital energy planning

algorithm for single-hop networks presented in [13], which is referred as nonprogressive

(NP) algorithm. The NP algorithm is conducted over network of the same topology as

shown in 3.2. But with NP algorithm, each sensor communicates with the fusion center

directly without the assist of the routing tree. The middle curve is for the digital UP

algorithm, and the lowest curve is for the digital PP algorithm 1. The NP and UP curves
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cross each other at certain values of MSE0. We see that the PP algorithm 1 requires

the least amount of energy throughout the whole MSE0 region. At high MSE0, the PP

algorithm 1 and the NP algorithm consume approximately the same energy because almost

all bits are allocated to the sensors right next to the fusion center.

3.9.6 Robustness

We now consider a situation that after the energy planning is completed, some

nodes fail due to some reasons such as running out of battery. But the fusion center

is unaware of those failures due to feedback delay. Hence the energy planning will not be

updated and each node in the network still uses the originally determined energy to transmit

information. We assume that each node fails randomly with the probability pf . Fig. 3.19

shows the actual MSE at the destination node versus pf for the digital case, and 3.20 shows

the actual MSE at the destination node versus pf for the analog case. For both cases,

the target MSE is 0.002. We see that for both cases, the actual MSE at the destination

increases gracefully as pf increases.

3.10 Summary

In this chapter, we have developed two digital transmission energy planning algo-

rithms and an analog transmission energy planning algorithm for progressive estimation in

multihop sensor network with routing tree. The routing tree finding and the transmission

energy planning are conducted at the startup of the network or once the network condi-

tion changes. The network condition (such as topology and channel state information) is
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assumed to be constant during the time of interest for estimating and tracking spatially

invariant parameters. These transmission energy planning algorithms guarantee any pre-

specified estimation performance at the destination node. And at the same time, they sig-

nificantly reduce the required transmission energy for the entire network. Unlike many other

consensus-type estimation schemes, the proposed progressive estimation schemes along with

their energy planning algorithms yield any desired result within a finite time although they

require an operational overhead at the startup. The energy planing algorithms shown in

this paper provide an optimal energy planning for the proposed progressive estimation al-

gorithms based on averaging. For algorithms based on BLUE or quasi BLUE, the result

of our energy planning algorithms show a rather conservative gap. Whether or not this

gap can be narrowed by a more clever energy planning algorithm remains a future research

topic.

In practice, any sensor in the network can be a destination node, and there could

be multiple destination nodes in the network. The theory and technique shown in this paper

are applicable to any given destination node and its associated routing tree. We have seen

that most of the energy should be distributed relatively near the destination node (unless

a large p is used in the Lp norm). This fact should be taken into account when a routing

tree is searched for in a large network. Finally, we note that the proposed algorithms are

readily applicable to any single-hop network (as a special case) where each sensor transmits

data directly to the destination node. In this special case, no routing tree is needed.
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3.11 Appendix

3.11.1 Pulse Modulation

Assume a complex baseband channel between two sensors where the input x(t)

and the output y(t) are related as follows:

y(t) = hx(t) + v(t) (3.89)

where h is a complex channel coefficient, v(t) is complex Gaussian noise with the energy

spectral density function:

Sv(f) =





N0 |f | ≤ W/2

0 otherwise

(3.90)

To transmit a complex symbol s over this channel, we can use the pulse amplitude mod-

ulation x(t) = sc(t) where the waveform c(t) has the duration [0,T ] and the double-sided

bandwidth W. Then, the output of the channel is y(t) = hsc(t) + v(t). To obtain the max-

imum likelihood estimate of s based on y(t), we can first compute the sufficient statistics

ȳ =
∫ T
0 y(t)c(t)dt which is also known as matched filtering. It follows that

ȳ = hEcs+ v̄ (3.91)

where Ec is the energy of the waveform c(t) and v̄ =
∫ T
0 v(t)c(t)dt is a complex Gaussian

random variable with zero mean and the variance

σ2
v = E

{
|v̄|2
}

=

∫ T

0

∫ T

0
Rv(τ − t)c(τ)c(t)dτdt (3.92)
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where E denotes expectation, Rv(τ) is the autocorrelation function of v(t). Since Rv(τ) =

∫W/2
−W/2N0 exp{2πτf}df , it follows from (3.92) that

σ2
v = N0

∫ W/2

−W/2
|C(f)|2df = N0Ec (3.93)

where C(f) is the Fourier transform of c(t). Then, the maximum likelihood estimate of s

is ŝ = ȳ/(hEc) which has the signal to noise ratio:

SNR
.
=

|s|2
E{|ŝ − s|2} =

|s|2|h|2E2
c

σ2
v

=
|s|2|h|2Ec

N0
=

|h|2E
N0

(3.94)

where E = |s|2Ec is the total transmitted energy, i.e, the energy of x(t) within [0,T ].

3.11.2 Proof of Lemma 1

Proof. We first prove that

(
2∑

k=1

A−1
k

)−1

≤ 1

4

(
2∑

k=1

Ak

)
. (3.95)

Denote the eigenvalue decomposition A
H/2
1 A−1

2 A
1/2
1 = UΛUH . Then, (3.95) is equivalent

to each of the following inequalities:

A
−1/2
1 (A−1

1 + A−1
2 )−1A

−H/2
1 ≤ A

−1/2
1

(
A1 + A2

4

)
A

−H/2
1 (3.96)

(
I + A

H/2
1 A−1

2 A
1/2
1

)−1
≤ 1

4

(
I + A

−1/2
1 A2A

−H/2
1

)
(3.97)

U(I + Λ)−1UH ≤ 1

4
U(I + Λ−1)UH (3.98)

(I + Λ)−1 ≤ 1

4
(I + Λ−1) (3.99)

1

1 + λi
≤ 1

4
(1 +

1

λi
), ∀i (3.100)
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where λi > 0 is the ith element of the diagonal matrix Λ. It is easy to verify that (3.100)

is equivalent to (λi − 1)2 ≥ 0 which holds always.

We now assume that Lemma 1 holds for n = m ≥ 2, i.e.,

(
m∑

k=1

Ak

)(
m∑

k=1

A−1
k

)
≥ m2I (3.101)

Then, we can write

(
m∑

k=1

Ak + Am+1

)(
m∑

k=1

A−1
k + A−1

m+1

)

=

(
m∑

k=1

Ak

)(
m∑

k=1

A−1
k

)
+

(
m∑

k=1

Ak

)
A−1
m+1 + Am+1

(
m∑

k=1

A−1
k

)
+ I

≥ m2I + C + D + I (3.102)

where C = (
∑m

k=1 Ak)A−1
m+1 and D = Am+1

(∑m
k=1 A−1

k

)
. Then, it follows that

C + D + 2mI =

(
m∑

k=1

(
AkA

−1
m+1 + Am+1A

−1
k

)
)

+ 2mI

=
m∑

k=1

(
AkA

−1
m+1 + Am+1A

−1
k + 2I

)

=

m∑

k=1

(
AkA

−1
m+1 + Am+1A

−1
k + AkA

−1
k + Am+1A

−1
m+1

)

=
m∑

k=1

(Ak + Am+1)(A
−1
k + A−1

m+1)

≥ 4mI (3.103)

where the last inequality is due to (3.95). Using (3.103) in (3.102) yields

(
m∑

k=1

Ak + Am+1

)(
m∑

k=1

A−1
k + A−1

m+1

)
≥ (m+ 1)2I (3.104)

By the above induction, Lemma 1 is proven.
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Figure 3.15: The sum energy required by four different energy planning algorithms for
progressive estimation versus the time-bandwidth product L, where MSE0 = 0.01. For
digital PP algorithm 1 and 2, p = 1 was used.
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Figure 3.16: Amount of transmission energy consumed by an individual sensor versus the
sensor index for the digital PP algorithm 2 for progressive estimation, with p = 1, 8 and
64, where MSE0 = 0.001. The sensor index is sorted increasingly as the distance between
the sensor and the fusion center increases. For progressive estimation, sensor zero in this
and the following figures is the fusion center.
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Figure 3.17: Comparison between analog transmissions and digital transmissions: total
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Figure 3.18: Total amount of normalized transmission energy consumed by the network
versus MSE0. The network used is Fig. 3.2.
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Figure 3.19: Digital transmissions: Actual MSE versus node failure rate. The target MSE
is MSE0 = 0.002.
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Figure 3.20: Analog transmissions: Actual MSE versus node failure rate. The target MSE
is MSE0 = 0.002.
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Chapter 4

Energy Planning for Consensus

Data Fusion

4.1 System Model

In this chapter, we consider the same sensor network as in previous chapter. The

desired unknown deterministic vector is denoted by θ(n) ∈ RM×1, where n denotes the

sampling time. As in previous chapter, we assume that all data observation, computations,

and communications required for estimating θ(n) are performed within the time window

from the sampling time n to the sampling time n+ 1. Because of this reason, we will drop

the index n in θ(n) for convenience.

The data collected by each sensor xk can be of any dimension and any statistical

properties. But we assume that each sensor (sensor k) is able to use its collected data to

obtain an original estimate θk(0) ∈ RM×1. We assume that θk(0) is unbiased and has a
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bounded covariance matrix, i.e., E{θk(0)} = θ(n) and E{θk(0)θk(0)T } ≤ Cθ,k.

Consensus estimation essentially is a iterative in-network computation with infor-

mation sharing among neighboring sensors. At iteration time t, we denote the estimate at

the kth sensor of the unknown vector θ as θk(t). Denote the set of neighbors of sensor k

as Nk. θk(t) can be calculated at sensor k by using the estimates θi(t− 1) where i belongs

to the neighbor set of k, i.e., i ∈ Nk.

θk(t) = f(θk(t− 1), · · · ,θi(t− 1), · · · ), i ∈ Nk (4.1)

Here f is the fusion algorithm need to be designed, which fuses the multiple estimates in a

neighborhood to generate a better estimation of θ. The principle of the consensus estimation

is quite simple. In every iteration t, each node k first gathers estimates θi(t − 1) from its

neighborhood by wireless communication technique which will be discussed in details later,

and then runs the fusion algorithm to improve its local estimation. It has been proved

that as long as the network is fully connected and some other conditions are met, the local

estimates θk(t) will converge to a consensus when t is sufficiently large. (See [] and more

references therein for the conditions of convergence and characteristics of convergence.) In

other words, all sensors in the network will give same estimation result eventually, i.e.,

θk(∞) = θ∗. We treat θ∗ as our final estimation for θ with the consensus estimation

framework.

For the consensus estimation, it is important to note that the iteration time t is

different from the sampling time n. Typically, from the sampling time n to the sampling time

n+ 1, many iterations are required by a consensus algorithm. Like in the previous chapter

for progressive estimation, we consider computations within a single window between two
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adjacent sampling instants.

Essentially, consensus estimation is a combination problem of communication and

signal processing. The communication part includes the exchange of information between

neighboring sensors and the signal processing includes applying fusion algorithms to process

information locally at each individual sensor. We study the two aspects in details next.

4.2 Communication Protocol

Designing distributed communication protocols for consensus estimation over a set

of sensors by allowing information sharing between neighboring sensors has been studied

intensively recently [35], [36], [37], [38], [39]. A very good review of these protocols can

be found in [40]. The basic principle of those protocols in [35], [36], [37], [38], [39] is

to apply asynchronously distributed scheduling by randomize nodes’ transmission time to

allow nodes to exchange information with their one-hop neighbors with less or no collisions.

In this section, following this principle, a broadcasting type of protocol is applied to let

sensors communicate with each other. A similar broadcast gossip algorithms for consensus

estimation was proposed in [39]. However, comparing to the gossip algorithm and the other

protocols in the literature, this broadcasting protocol design includes more fundamental and

practical issues such as transmission energy, number of quantization bits, and condition of

success packet reception, which have been overlooked before.

For each iteration t, we denote θk(t) to be the estimation of θ at sensor k. Assum-

ing that the mth entry of θk(t) is quantized into Bm bits using the probabilistic uniform

quantization as described in previous chapter, the quantized version of θk(t) can be written
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as

mk(t) = θk(t) + nk(t), (4.2)

where nk(t) is the quantization error vector with zero mean and a diagonal covariance

matrix Cq,k. As discussed before, the m-th diagonal element of Cq,k is upper bounded by

4W 2
m

22Bm
.

After the above quantization, sensor k broadcasts mk(t) to its neighboring sensors.

We denote set N r
k as the set containing all neighboring sensors received mk(t) successfully.

One should notice that, in this consensus estimation application, broadcasting is more

energy efficient to sharing information among neighbors than peer-to-peer transmission,

because only one transmission is enough to send the mk(t) to all sensors in N r
k , while |N r

k |

transmissions are needed if peer-to-peer transmission is applied. Of course, in practice, there

can be an additional amount of energy required to avoid collisions between broadcasted

packets from different sensors. This additional energy can be kept small especially if an

additional bandwidth is available for sensors to self-coordinate their broadcasts. We will

ignore this overhead.

As we discussed above, at each iteration t, each sensor k broadcasts a data packet

containing
∑M

m=1Bm bits. Assuming L sub-channels for each pair of transmitting and

receiving sensors, sensor j can successfully receive the data packets broadcasted from sensor

k if the following holds:

L∑

l=1

ψlog2

(
1 + φµ

Ek|hj,k,l|2
LN0

)
≥

M∑

m=1

Bm (4.3)

where hj,k,l is the fading factor of the sub-channel l from sensor k to sensor j. Ek is the
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transmission energy for broadcasting at sensor k. The other parameters are the same as

those described for (3.35).

One should notice that Ek and Bm are the two key parameters to govern the

neighborhood range of sensor k, i.e., N r
k . Generally speaking, increasing Ek will increase

the neighborhood range of k and increase Bm will decrease the range. The neighborhood

range of every sensor actually determines the network connectivity or in other words the

graph of the network. We will show later that by adjusting Ek and Bm, we actually consider

consensus estimation over optimized network graph, which is a contribution of this thesis

beyond the papers in the literature [26]-[45].

If the sensor distributions are statistically uniform, it is reasonable for each sensor

to use the same amount of energy E0 for each broadcast. If the sensor distributions are

highly non-unform, it may be a good idea for each sensor to use a different amount of

energy in order to reach a certain number of neighbors. Clearly, depending on the sensor

distributions, different sensors may need to consume different amounts of energy. But for

convenience, we will assume that each sensor uses the same amount of energy E0 for each

broadcast.

The total energy consumed by the network can be written as Etotal = TKE0

where K is the total number of sensors in the network and T is the number of iterations

required until the required performance is achieved. If we increase Ek, then the size of the

neighborhood of each sensor increases and hence T is expected to decrease. One extreme

case is to set E0 very high such that all sensors can hear from each other. Hence only

one round of broadcasting from each sensor is enough to achieve consensus among sensors,
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i.e. T = 1. Likewise, if we decrease E0, T is expected to increase due to the shrinking of

neighborhood in each iteration. To minimize Etotal, there is an optimal choice of E0.

4.3 Collision Avoidance

To avoid the collision and strong co-channel interference between the broadcast-

ing for different sensors, we propose a distributed scheduling method called distributed

synchronized array method (D-SAM).

In D-SAM, time is slotted into frames of equal duration as shown in Fig. 4.1.

Each frame is further divided into control subframe and data subframe. Assuming that the

data subframe is much longer than the control subframe, the network spectral efficiency is

dominated by the spectral efficiency in each data subframe. A control subframe is used for

each node to compete for data transmission opportunity in a data subframe. Each control

subframe consists of a group of M contention slots.

Control
Subframe

Data
Subframe

Control
Subframe

Data
Subframe

Frame n Frame n+1

Contention
Slot

Contention
Slot

…
Data
Slot

Data
Slot

…
Data
Slot

Initialization Initialization

Figure 4.1: Frame structure of the distributed SAM protocol, which resembles that of
MSH-DSCH in IEEE 802.16.

At the beginning of each frame, D-SAM allows each node to randomly initialize
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a choice for one of the M contention slots if the node has a packet to transmit to another

node. If the node has packets to be transmitted (separately) to multiple neighboring nodes,

the node chooses multiple contention slots - one slot for each receiver. During a chosen

contention slot, the node contends for the upcoming data subframe by starting a hand-

shaking process with its intended receiving node. The handshaking involves three packets:

RTS (request-to-sent), CTS (clear-to-sent), and ACK. If the handshaking is successful,

the upcoming data subframe is reserved for data transmission between the transmitter-

and-receiver pair. During each contention slot, the handshaking packets are received by

neighboring nodes so that these nodes are aware of the reservation status of the upcoming

data frame. For each frame and each neighborhood in a predetermined range, the data

subframe can only be reserved for one transmitter-and-receiver pair. This means that the

first contention slot has the highest priority, the second contention slot has the second pri-

ority, and so on. In the next frame, the contention process repeats without memory of the

previous contentions, which ensures fairness.

More details of D-SAM are as follows. We assume that each node k maintains a

neighborhood list Nk which contains the identifications of all its neighboring nodes inside

a cooperative range R. The range R is an important parameter for the performance of

D-SAM. The ith node in Nk is indexed by Nk(i). The neighborhood list at each node can

be established at the startup of the network. For networks of low mobility, this startup is

feasible. We assume that every node can be set to one of three states for the upcoming data

subframe: T , R and S. Here, T stands for transmitting, R for receiving, and S for standby.

We denote the state of node k as Sk and the state of Nk(i) as SNk(i).
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1. Initialization: At the beginning of each frame, set every node to state S, i.e., Sk = S

for all k. Then, we allow that every node k generates a “contention request vector”

vk that randomly maps each neighboring node in list Nk to one of M contention slots

if node k has a broadcast packet intended to those neighbors. Here, we assume M is

larger than the size of every neighbor list, i.e., M ≥ |Nk| for all k. The ratio of M

over |Nk| affects the probability of handshaking collisions. The larger is the ratio, the

lower is the probability of handshaking collisions. We denote the mth element of vk

as vk(m), which is

vk(m) =





j, if node k has traffic to node j, and j is mapped into contention slot m,

0, otherwise.

(4.4)

In other words, the value of vk(m) is the index of the receiving node for which the

transmitting node k wants to contend during the contention slot m for the upcoming

data subframe. If vk(m) = 0, it means that, in the mth contention slot, node k will

not contend for the upcoming data subframe.

2. In contention slot m: each node k will first check its contention request vector. If

vk(m) = 0, node k eavesdrops ongoing handshaking within the neighborhood of range

R. (Naturally, we assume that the eavesdropping range Re from each node is larger

than the cooperative range R. Furthermore, the carrier sense range Rc, although not

considered in this thesis, would be even larger than Re.) If node k hears any CTS

or ACK packet, it retrieves the information from the packet and resets the states of

the nodes in Nk accordingly. If vk(m) = j where j > 0, node k will try to finish the
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following three-way RTS-CTS-ACK handshaking with node j:

• RTS

Node k sends a RTS packet to node j which contains the identity of node k, if

the following conditions are satisfied:

(a) Sk = S.

(b) SNk(i) 6= R for all i.

• CTS

If node j has successfully received the RTS packet from node k and the following

conditions are satisfied:

(a) Sj = S

(b) SNj(i) = S for all i

(c) vj(m) = 0

then node j resets Sj = R and SNj(ik) = T where ik is the index for node k in

the table Nj , and sends a CTS packet back to node k.

• ACK

If node k has successfully received the CTS packet from node j, the node k resets

Sk = T and SNk(ij) = R where ij is the index of node j in the table Nk, and

sends back the ACK packet.

During any contention slot, if there is a collision of control packets within the

radius R, the operation in that slot is abandoned. But the collision of control packets at
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a receiver due to transmitters outside the radius R is assumed to be resolvable by using

coding with relatively high redundancy. If the ratio of M over the number of nodes within

the radius R is large, the probability of collision of control packets is small. As long as the

control packets are much smaller than the data packets (i.e., the control subframe is much

smaller than the data subframe), the energy efficiency is still high.

Fig. 4.2 illustrates a snapshot of the concurrent co-channel transmission pairs for

a square network, which was determined by D-SAM for data transmission. The radius

R = da was chosen, where da is the spacing between two nearest neighbors. The number of

contention slots was M = 8. To decrease the co-channel interference, once can just simply

increase R.
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Figure 4.2: A snapshot of concurrent co-channel transmissions determined by the D-SAM
protocol for a network in a regular square grid. R = da, M = 8, where da is the minimum
distance between two adjacent nodes. The black nodes are the receiving nodes, and the
grey nodes are the transmitting nodes.
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4.4 Fusion Algorithms

Fusion algorithm is the algorithm each sensor utilizes to update its local estimate

of θ by fusing the received information from neighbor sensors. A general fusion algorithm

is presented recently and the conditions for convergence to consensus is given in [40]. In the

paper, we apply fusion algorithms which perform constant weighting linear combination of

previous local estimate and received estimates from neighboring sensors. More importantly,

we study their energy planning performance instead of their convergence conditions and

rates.

The fusion algorithm (quantize-after-fusion) that we will first consider is:

θk(t+ 1) = Wk,kθk(t) +
∑

j∈Nk
Wk,jmj(t) (4.5)

where Nk is the set of the indices of the neighboring transmitting sensors from which sensor

k successfully receives a quantized vector, mj(t) is a quantized version of θj(t) from sensor

j, and Wk,j are scalar weights.

We can write (4.5) for all k in a vector form as

θ(t+ 1) = (W ⊗ I)θ(t) + (V ⊗ I)n(t) (4.6)

where I is the M × M identity matrix, ⊗ is the Kronecker product, (W )k,j = Wk,j,

V = W − WD, WD is a diagonal matrix with the same diagonal elements as W , θ(t) =

(θ1(t)
T , · · · ,θK(t)T )T , and n(t) = (n1(t)

T , · · · ,nK(t)T )T . One should notice that the

above fusion algorithm is different from the one applied in [42] where the perturbation term

at each fusion iteration is independent of the weighting matrix W . While the perturbation

term in algorithm 1 is (V ⊗ I)n(t), which depends on W .
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In the absence of the quantization noise, we want limt→∞ θi(t) = 1
K

∑K
k=1 θk(0)

for all k. As shown in [28], this is equivalent to limt→∞ W t = 11
T

K where 1 is a K × 1

vector consisting of all 1s. This is also equivalent to the following conditions: 1TW = 1T ,

W1 = 1, and ρ(W − 11
T

K ) < 1 where ρ(A) denotes the spectral radius of the matrix A.

We will assume that W always meets the above conditions.

With the above conditions, one can verify that the mean of θ(t) is given by

E{θ(t)} = 1⊗ θ, and the MSE of θ(t) is given by

MSE(t)
.
= Tr

(
E
{
(θ(t) − 1 ⊗ θ)(θ(t) − 1⊗ θ)T

})
(4.7)

≤ Tr
{
Dc(W

t)TW t
}

+

(
t−1∑

i=0

Tr
{
(W iV )(W iV )T

}
)(

M∑

m=1

4W 2
m

22Bm

)
.
= MSEU (t)

where Dc is a diagonal matrix whose (k, k)-th entry is Tr {Cθ,k}. Here, we have used

E{(θk(0)−θ)(θk(0)−θ)T } = Cθ,k, (A⊗B)(C ⊗D) = AC⊗BD, (A⊗B)T = AT ⊗BT ,

and Tr{A ⊗ B} = Tr{A}Tr{B}. MSEU (t) is an upper bound on MSE(t). Due to the

fact that quantization error is driven to zero as the consensus is achieved [41], this upper

bound becomes loose when t grows.

Besides the quantize-after-fusion algorithm, there are other fusion algorithms in

the literature. In [43], a “quantize-before-subtract” algorithm is presented and its vector

extension form can be written into

θk(t+ 1) = θk(t) +
∑

j∈Nk
Wk,j (mj(t) − mk(t)) (4.8)

In [41], a “quantize-before-fusion” algorithm is considered in the following form

θk(t+ 1) = Wk,kmk(t) +
∑

j∈Nk
Wk,jmj(t) (4.9)

92



After uniform probabilistic quantization, the local estimation is updated to

mk(t+ 1) = Wk,kmk(t) +
∑

j∈Nk
Wk,jmj(t) + nk(t+ 1) (4.10)

where nk(t+ 1) is the quantization noise for iteration n+ 1.

It has been proved in [41] that the quantize-before-fusion can converge to a con-

sensus at one of the quantization levels. With the quantize-after-fusion or the quantize-

before-subtract algorithms, one can easily check the quantization error at each iteration is

smaller than with the quantize-before-fusion algorithm. Therefore, when applying the same

probabilistic quantization, these two algorithms should also converge to consensus. Fur-

thermore, it is straightforward to see the quantization error with the quantize-after-fusion

algorithm is smaller than with the quantize-before-subtract algorithm. Therefore, we will

utilize the quantize-after-fusion algorithm as the fusion algorithm in the rest of this paper.

4.5 Energy Planning

4.5.1 Problem Formulation and Simplification

Parallel to the energy planning for progressive estimation, we study the energy

planning algorithm for consensus estimation in this section. The purpose of energy planning

to optimize E0, Bm, and W to minimize the broadcasting energy consumed by all sensors

until the mean square error of the estimation is smaller than a threshold MSE0.

Mathematically the energy planning problem for consensus estimation can be for-

mulated as follows

min
t,E0,Bm,W

: tKE0 (4.11)
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subject to:

MSEj(t,W , E0, Bm)/K ≤MSE0 (4.12)

1TW = 1T (4.13)

W1 = 1 (4.14)

ρ(W − 11T

K
) < 1 (4.15)

t ≥ 0 (4.16)

where j = 1, 2, or 3, which corresponding to different fusion algorithms presented in previous

section.

The above optimization problem in general is a very difficult one. We then attempt

to simplify the problem by choosing special Bm and W . We assume that Bm = B for all m.

We also select W following the principle of constant edge weights [28], i.e., W = I − γL,

where L is the Laplacian matrix of the network graph as defined below

(L)j,k =





−1, j ∈ Nk

|Nk|, k = j

0, otherwise

(4.17)

With this selection of W , it is easy to see (4.13) and (4.14) are automatically satisfied.

Condition (4.15) is equivalent to 0 < γ < 2
λ1(L) as shown in [28]. Here λ1(L) is the largest

eigenvalue of matrix L.

With the above simplifications, the total cost of energy can be minimized over the
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variables E0, B and γ. In other words, we need to solve the following problem:

min
t,E0,B,γ

: tKE0 (4.18)

s.t. MSEj(t, γ,E0, B)/K ≤MSE0 (4.19)

0 < γ <
2

λ1(L)
(4.20)

t ≥ 0 (4.21)

where MSE0 is the target MSE per sensor, and the solution of t here is the number of

iterations required. Note that MSE(t, E0, B, γ) also explicitly depends on E0 and B, which

determines the network Laplacian Matrix L.

We propose a two-loop search algorithm to this problem. In the inner loop, we

fix E0 and B, and look for the optimal γ and the associated t, which is to optimize the

local fusion algorithm at each sensor. In the outer loop, we search for the optimal E0 and

B, which is to optimize the network connectivity or the Laplacian Matrix L. For each

outer loop, there are only two variables, and the brute force search for E0 and B is feasible.

However, for the inner loop, a refined algorithm is shown next.

95



4.5.2 Optimal Selection of γ

With a given pair of E0 and B, Nk for all k are determined, and hence so is L.

The problem of the inner loop search can be formulated as:

min
γ,t

: t (4.22)

s.t. MSEU (t, γ)/K ≤MSE0 (4.23)

0 < γ <
2

λ1(L)
(4.24)

t ≥ 0 (4.25)

For the quantize-after-fusion algorithm, we can rewrite (4.7) as

MSEU (t, γ) = Tr
{
DcUΛ2tUT

}
+ γ2Tr

{
U

(
t−1∑

i=0

Λ2i

)
UT (L − LD)2

}(
M∑

m=1

4W 2
m

22Bm

)

(4.26)

where we have used the eigenvalue decomposition W = UΛUT , (Λ)l,l = λl(W ), and LD

is the diagonal part of L. Also recall that λ1(W ) = 1 and |λl(W )| < 1 for l ≥ 2. We can

then write

MSEU (t, γ) = Tr
{
DcUΛ2tUT

}
+ γ2Tr

{
UDUT (L − LD)2

}
(

M∑

m=1

4W 2
m

22Bm

)
(4.27)

where D is diagonal, (D)1,1 = t, and (D)l,l =
1−λ2t

l
(W)

1−λ2
l
(W)

for l ≥ 2.

With the above expressions, MSEU (t, γ) can be treated as a continuous func-

tion of t to simplify the problem. It is easy to check that MSEU (t) has two compo-

nents: O(t) = Tr
{
DcUΛ2tUT

}
is a decreasing function of t, and the second term Q(t) =

γ2Tr
{
UDUT (L − LD)2

}(∑M
m=1

4W 2
m

22Bm

)
is an increasing function of t. The behavior of

MSEU (t, γ) with respect to γ is not as clear. But knowing W = I−γL, we know that Λ is
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a linear function of γ and hence according to (4.27), MSEU (t, γ) is a polynomial function

of γ of degree 2t.

The Lagrangian function of this problem is written down as

L = t+ µ(MSEU (t, γ) −MSE0K) + ν1(−γ) + ν2(γ − 2

λ1(L)
) + ν3(−t) (4.28)

and the KKT conditions are

1 + µ
∂MSEU (t, γ)

∂t
− ν3 = 0 (4.29)

µ
∂MSEU (t, γ)

∂γ
− ν1 + ν2 = 0, (4.30)

MSEU (t, γ) −MSE0K ≤ 0 (4.31)

0 < γ <
2

λ1(L)
(4.32)

µ ≥ 0, ν1 ≥ 0, ν2 ≥ 0, ν3 ≥ 0 (4.33)

µ(MSEU (t, γ) −MSE0K) = 0 (4.34)

ν1(−γ) = 0, ν2(γ − 2

λ1(L)
) = 0, ν3(−t) = 0. (4.35)

This system seems complex. But it can be simplified as follows. If MSE(0) = Tr{Dc} ≤

MSE0K, then t = 0 is the solution to the original optimization, which is trivial. Otherwise

for t > 0, according to (4.35), we have ν3 = 0. From (4.29), we know µ 6= 0, which leads

to MSEU (t, γ) −MSE0K = 0 according to (4.31). From the constraint 0 < γ < 2
λ1(L) , we

know ν1 = 0 and ν2 = 0 as well. Finally, the KKT system is simplified to

∂MSEU (t, γ)

∂t
+

1

µ
= 0 (4.36)
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∂MSEU (t, γ)

∂γ
= 0 (4.37)

MSEU (t, γ) −MSE0K = 0 (4.38)

0 < γ <
2

λ1(L)
, µ > 0, t > 0. (4.39)

Although there are three unknowns t, γ and µ in (4.36)-(4.38), µ can be obtained readily

by plugging t and γ into (4.36). Now we only need to solve (4.37) and (4.38) for t and γ

with constraint in (4.39).

We can solve the nonlinear system (4.37) and (4.38) by minimizing the following

cost function with logarithmic barriers [56]:

J(t, γ) =

(
∂MSEU (t, γ)

∂γ

)2

+(MSEU (t, γ) −MSE0K)2−1

τ
ln t−1

τ
ln γ−1

τ
ln

(
2

λ1(L)
− γ

)

(4.40)

Using gradient descent and Armijo backtracking linear search [56], we can minimize J(t, γ)

for each choice of τ . Until convergence, the constant τ is increased after each gradient

search for t and γ.

After convergence, if MSE(⌊t⌋) ≤ MSE0, the solution is t⋆ = ⌊t⌋ ; else if

MSE(⌈t⌉) ≤MSE0, the solution is t⋆ = ⌈t⌉; otherwise, the solution t⋆ does not exist.

4.5.3 Other Selections of γ

The previous subsection has presented an optimization of γ with consideration of

quantization errors. We will refer to that γ as γ1. Prior literature has established other

choices of γ without any consideration of quantization errors. Two common choices are

γ2 =
2

λ1(L) + λK−1(L)
(4.41)
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γ3 =
1

dmax
(4.42)

where dmax = maxKk=1 |Nk|. The choice γ2 was established in [28] as optimal in the absence

of quantization errors. The choice γ3 was also used in [28] as a simpler option which does

not need any further knowledge of L.

With γ fixed to γ2 or γ3, the corresponding optimal t can be found by choosing

the smallest t to satisfy MSEj(t, γ)/K ≤ MSE0. The outer loop algorithm for E0 and B

remains the same.

4.6 Simulation Results

For the consensus estimation, the simulation network we consider is same as in

Fig. 3.2 in previous chapter for progressive estimation, except that there is no routing tree.

For the simulation, we assume that sensor k observes the data vector xk = Gkθ +

ωk, where Gk is the observation matrix associated with sensor k, which is assumed known

to sensor k, and ωk is white noise with the identity covariance matrix Cω = I. With this

observation model, an original local estimate of θ at sensor k can be obtained by the best

linear unbiased estimate: θk(0) = (GT
kGk)

−1GT
k xk. We also have Cθ,k = (GT

kGk)
−1. We

will choose Gk for k = 1, 2, · · · ,K randomly. Each Gk is a N×M real matrix with elements

randomly chosen from a Gaussian distribution with zero mean and standard deviation equals

to 10.

Each entry of θ is chosen randomly from [−1, 1]. The squared channel gain of

channel l from sensor k to its neighboring sensor j is |hk,j,l|2 = d−αk,j ρk,j,l, where dk,j is the
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distance from sensor k to sensor j, α = 4 and ρk,j,l is randomly chosen from an exponential

distribution with mean equal to one. We also choose N = 20, M = 10, µ = 1, φ = 1,

N0 = 1, Wm = 1 for m = 1, 2, · · · ,M .

4.6.1 Effect of γ selection

Fig. 4.3 illustrates the effects of γ on MSE1(t, γ) versus t, where γ1 = 0.0771,

γ2 = 0.2163 and γ3 = 0.1429. Here, we assumed E0 = 1280 and B = 7 to compute

L. Recall that γ3 = 1/dmax where dmax represents a small amount of information from

L, γ2 = 2
λ1(L)+λK−1(L) which depends much more strongly on L, and γ1 is optimized to

minimize t to meet a target MSE where we used MSE0 = 0.001. We have found that t = 15

with γ1. However, with γ2 and γ3, the target MSE MSE0 = 0.001 is not achievable with

any t.

4.6.2 Effect of E0 and B

The optimization of E0 and B corresponds to the outer-loop of the energy planning

algorithm for consensus estimation. For each given pair of E0 and B, the total energy is

minimized by the inner-loop of the algorithm. Table 4.1 and Fig. 4.4 illustrate the total

energy cost as function of E0 and B. If E0 becomes too small, the network loses connectivity

between nodes. If B becomes too small, the quantization errors dominate. In either case,

the target MSE may become un-achievable even after infinite number of iterations, which

corresponds to the case Etotal = ∞.

Corresponding to the curve for consensus estimation in Fig. 3.14 , Fig. 4.5 shows
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the optimized B, E0 and t versus the target MSE.
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Figure 4.3: MSE1(t, γ)/K of consensus estimation under (4.5) versus the iteration index
t, with different γ values: γ1 = 0.0771 (optimized with quantization errors), γ2 = 0.2163
(optimized without quantization errors) and γ3 = 0.1429 (using maximum degree of con-
nectivity), where E0 = 1280, B = 7, MSE0 = 0.001.

4.6.3 Consensus versus Progressive on Energy Cost

Fig. 4.6 shows the summation of transmission energy over all sensors with consen-

sus and progressive estimation. The network we consider for both estimation frameworks

are the same as in Fig. 3.2 except that there is no routing tree for consensus estimation.

Also note that the target MSE for progressive estimation is achieved at the fusion center,

but the target MSE for consensus estimation is achieved “on average” at each sensor.

We see that with p = 1, progressive estimation with the digital PP algorithm 2

consumes much less sum energy than consensus estimation especially when the target MSE

is small. However, with larger p, this energy saving becomes less significant.

Comparing consensus with progressive estimation with the digital PP algorithm 1,
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Figure 4.4: The contour of the sum energy required by consensus estimation under (4.5) in
terms of E0 and B. The target MSE is set at MSE0 = 0.001.

we can see at low MSE region, progressive estimation consumes less energy than consensus

estimation. However, at high MSE region, progressive estimation can perform worse than

the consensus estimation. This actually illustrates that progressive estimation consumes

less sum energy than consensus estimation only when a proper energy planning algorithm

is applied for progressive estimation.

In Fig. 4.7, we plot the energy of each sensor versus sensor distance to the fusion

center. Here, we already order the sensor such that the sensor with smaller index is close to

the fusion center. We can easily see that with consensus estimation, the energy distribution

is flat over the network. This is conceivable because consensus estimation is a “flat” esti-

mation framework which makes every sensor equally important in the network. However,

with progressive estimation, the energy distribution is quite dynamic over the networks.

Basically the sensors closer to the fusion center consume more energy than sensors further

away to fusion center. This is also intuitively true because progressive estimation is obvious
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Figure 4.5: The optimal B, E0 and t required by consensus estimation versus MSE0.

unequal framework. Those sensors close to the fusion need to refer bits for those far away

sensors. Therefore they need more energy to transmit more bits. Moreover, as shown in

Fig. 4.7, the peak energy required by progressive estimation (which always occurs near the

fusion center) is generally larger than that by consensus estimation.

Fig. 4.8 shows the average number of quantization bits Bk/M allocated for each

element at individual sensors. We see that the distribution of Bk/M is almost invariant to

the choice of p, and the sensors near the fusion center always uses larger Bk/M . Different

from this property, the distribution of the quantization bits generated by the digital PP

algorithm 1 shown in previous chapter depends significantly on p, and becomes more uniform

when p becomes large.
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Figure 4.6: Sum energy cost for consensus and progressive estimation.
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Etotal B = 6 B = 7 B = 8 B = 9 B = 10 B = 11

E0 = 640 ∞ ∞ ∞ ∞ ∞ ∞
E0 = 1.28 × 103 ∞ 7.68 × 106 2.25 × 107 ∞ ∞ ∞
E0 = 2.56 × 103 ∞ 5.12 × 106 6.14 × 106 1.54 × 107 ∞ ∞
E0 = 5.12 × 103 ∞ 6.14 × 106 1.02 × 107 2.66 × 107 2.87 × 107 ∞
E0 = 1.024 × 104 ∞ 8.19 × 106 2.05 × 107 4.51 × 107 5.32 × 107 5.32 × 107

E0 = 2.048 × 104 ∞ 1.02 × 107 4.1 × 107 8.19 × 107 9.83 × 107 1.06 × 108

Table 4.1: Total transmission energy consumed by the network under different choices of
E0 and B. The MSE target is set MSE0 = 0.001.

4.7 Summary

This chapter is a comprehensive study of the energy cost on consensus estimation

for peer-to-peep multihop sensor networks by jointly taking into account communication

and data fusion. Many fundamental communication issues such as transmission energy,

quantization bits allocation, and condition for successful packet reception are investigated

and incorporated into the design of the consensus estimation. While most previous research

works in this area overlook the communication issues and assume data transmission between

sensors can be done perfectly. Thus they can focus on studying the convergence conditions

and characteristics of data fusion algorithms. Furthermore, we have developed an energy

planning algorithm for consensus estimation and illustrated the effects of fusion weights

and number of quantization bits, and energy allocation for each sensor on the performance

of consensus estimation. The sum energy needed by consensus estimation is shown to be

higher than that by progressive estimation with the generalized energy planning algorithm.

But the peak energy needed by the former is less than that by the latter.
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Chapter 5

Application Examples

5.1 Camera Network Assisted Football Player Movement Track-

ing

In this section, we consider an application of progressive estimation, which is

using a camera network to track the movement of the players simultaneously in a field

game. The game could be a football, basket ball, base ball, hockey, soccer, just to name

a few. Hereafter, we consider the football game as an example. As shown in Fig. 5.1, we

deploy cameras along the boundary of the football filed. We place a camera every 10 feet.

Therefore, we have 36 cameras along the long side, and 16 cameras along the short side. In

total, we deployed 104 cameras. Cameras are mounted at certain height such that each of

them can cover the whole field. A fusion center, which could be a computer workstation in

this application, is deployed at the corner of the field. A two branches routing tree is set

up to connect cameras to the fusion center in a multihop fashion. The connections between
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cameras are denotes by dashed lines.
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Figure 5.1: The cameras deployment diagram for the football field. The blank little circles
are cameras, and the solid big circles denotes the fusion center.

A 3D point in the region of interest is denoted by x = [x, y, z]T . A 2D point on the

camera image is denoted by y = (u, v). A camera can usually be modeled by the pinhole,

i.e., the relationship between a 3D point and its projection onto the 2D image is given by

y = Px (5.1)

where P is a 2 × 3 projection matrix, which including the effect of rotation, translation,

and effect of camera’s intrinsic matrix. In principle, with sufficient control/training points,

the projection matrix P can be obtained via the standard least square method. In practice,

the problem is called camera calibration. There are already many mature techniques in the

literature available to obtain the matrix P , see [57] and the references therein.

In this football players tracking problem, we could further simplify the projection

model, because all players move on the same ground plain. Without loss of generality, we

can choose z = 0.
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We denote the coordinates of the jth target at time t on the 2D ground as xj(t) =

[xj(t), yj(t)]
T . Based on the above model, the projection of xj(t) onto the kth camera’s

image plane is given by

yk,j = P kxj(t) + ωk (5.2)

where P k is now a 2 × 2 matrix, which is pre-calibrated thus known to the fusion center.

ωk is the observation noise vector due to the calibration error of camera k. We assume the

noise has zero mean. We also assume we know its covariance matrix Ck, which is feasible

to get during the calibration process. By left-multiplying C
−1/2
k on both sides of the above

equation, we can whiten the noise. Therefore, without loss of generality, we could assume

the noise ωk is white with zero mean and unit variance.

With the above linear data model, together with the generalized progressive esti-

mation we developed, we could estimate the unknown vectors xj(t). Repeating the process

for each snap shot t, we can track the trajectory of each single player.

In the simulation, we select the error margin MSE0 = 0.001 square feet for the

tracking performance requirement. We choose J = 23, i.e., we track 22 players on both sides

and the movement of the ball simultaneously. While, for convenience of plot of movement

trajectories, we only plot the movements of the offense team in total of 11 players in Fig. 5.2.

The Fig. shows that the estimated trajectories are very close to the actual movements of the

players. To show the performance more clearly, we choose two players and enlarge the plot of

their actual and estimated movements. The small plot at the upper left corner of the figure

shows the estimated and actual movements of a wide receiver in one offense possession.

The small plot at the lower right corner shows the estimated and actual movements of
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the quarter back, whose actual trajectory is models as a Brownian motion. One should

notice that even the randomness of the brownian motion will not degrade the estimation

performance.
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Figure 5.2: The actual and tracked offense players movements in one possession.

5.2 Sensor Network Assisted Targets Tracking

In this section, we consider another application of progressive estimation, which

is to use a sensor network for target tracking in the region of interest. For example, we

want to monitor the movement of several unidentified aircrafts in a homeland security event.

Traditionally, radar signal processing techniques are adopted for this application. We intend

to replace the expensive radar stations by some inexpensive networked sensors, while still

guarantee the tracking performance.

We deploy in total K sensors and a fusion center in the region of interest, with a

routing tree from sensors to the fusion center pre-established. We assume sensors’ positions

111



(xk, yk, zk) are all fixed, and known to the fusion center. Through detection techniques, we

know there are in total J targets moving in the region of interest. The task now is to track

the trajectories of those moving targets in the region. We denote the coordinates of the

jth target at time t as [x0,j(t), y0,j(t), z0,j(t)]
T . We assume, weather actively or passively, a

signal at one certain frequency is periodically emitted from these targets. This signal is then

received by each sensor individually. The received signal strength embeds the information of

targets locations. By utilizing received signals of all sensors collaboratively, the estimation

of the targets locations at each time t can be obtained at the fusion center. By repeating

the process at each time slot t, we could obtain the trajectories of all the moving targets.

For the signal power attenuation in wireless environment, we introduce the follow-

ing isotropic signal attenuation model. The received signal power at a receiver with distance

d to the transmitter is given by

P = GP0

(
d

d0

)−α
(5.3)

where G is the processing gain of the receiver. dk(t) is the Euclidean distance between the

transmitter and the receiver. P0 is the emitted power of the target measured at a reference

distance d0, and α is the signal power attenuation component, which both can be found

via experimental data. Normally, for free space, we know α = 2. However, in an wireless

environment with intensive reflections and diffusions, α can be 5 or even larger.

We denote the measured signal power at sensor k at time t as sk(t). We assume

sk(t) is corrupted by a measurement noise nk(t), i.e.,

sk(t) = GkP0d
α
0

J∑

j=1

d−αk,j (t) + nk(t) (5.4)
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Here, dk,j(t) =
√

(xk − x0,j(t))2 + (yk − y0,j(t))2 + (zk − z0,j(t))2, which is the distance

from the jth target to sensor k at time t. We assume the noise is stationary with zero

mean and constant variance σ2
k. Otherwise, we do not assume any further knowledge about

the noise distribution.

The above data model is a nonlinear model. We linearize it based on the Taylors

expansion as below

sk(t) ≈
J∑

j=1

GkP0d
α
0

dαk,j(t− 1)
+

J∑

j=1

∂sk(t)

∂x0,j
|x0,j(t−1) (x0,j(t) − x0,j(t− 1)) (5.5)

+

J∑

j=1

∂sk(t)

∂y0,j
|y0,j(t−1) (y0,j(t) − y0,j(t− 1)) +

J∑

j=1

∂sk(t)

∂z0,j
|z0,j(t−1) (z0,j(t) − z0,j(t− 1))

It is easy to verify that

∂sk(t)

∂x0,j
|x0,j(t−1) = αGkP0d

α
0 dk(t− 1)−α−2 (xk − x0,j(t− 1)) , (5.6)

∂sk(t)

∂y0,j
|y0,j(t−1) = αGkP0d

α
0 dk(t− 1)−α−2 (yk − y0,j(t− 1)) , (5.7)

and

∂sk(t)

∂z0,j
|z0,j(t−1) = αGkP0d

α
0 dk(t− 1)−α−2 (zk − z0,j(t− 1)) . (5.8)

In summary, an approximated linear data model can be established as follows:

s̄k(t) = gk(t)l(t) + ω̄k (5.9)

Here, the essential observation sample s̄k(t) is given by s̄k(t) = 1
σk

(
sk(t) −

∑J
j=1

GkP0dα0
dα
k,j

(t−1)

)
+

gk(t)l(t − 1). l(t) is the vector contains all parameters of target locations, i.e., l(t) =

[· · · , x0,j(t), y0,j(t), z0,j(t), · · · ]T . ω̄k is the normalized noise with zero mean and unit vari-

ance. gk(t) is a 1×3J observation vector [· · · , 1
σk

∂sk(t)
∂x0,j

|x0,j(t−1),
1
σk

∂sk(t)
∂y0,j

|y0,j(t−1),
∂sk(t)
∂z0,j

|z0,j(t−1), · · · ].
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With the above linear model, together with the generalized progressive estimation

we developed, we could estimate the unknown vector lt repeatedly for each time t. We

consider the region of interest to be a cubic area of 20D × 20D × 20D, where D is the

pre-specified distance normalizing factor. The sensors are deployed on the x − y plane as

plotted in Fig. 3.2. We plan to utilize the 2-d deployed sensors to track a moving target in

the 3-d region of interest.

In simulation, we select the error margin MSE0 = 0.01 for the tracking perfor-

mance requirement. Without loss of generality, we assume the reference distance d0 = D

for the wireless signal attenuation model (5.3). We assume α = 4, and GkP0d
α
0 = 1000.

We assume the sensor observation noise variance σ2 = 10−6 homogeneously for all sensors.

Fig. 5.3 demonstrate that the estimated target trajectory are very close to the actual target

movement trajectory.
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Figure 5.3: The actual target trajectory and the estimated trajectory.
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Chapter 6

Conclusion

The first contribution of this thesis is the progressive data fusion framework, which

is very different to the traditional single-hop and consensus data fusion framework. Progres-

sive data fusion extend single-hop data fusion to multi-hop data fusion where information

transmission only taking place between adjacent neighboring sensors such that significant

energy saving can be achieved, especially in large scale sensor networks. Unlike the consen-

sus data fusion whose convergence is asymptotic due to its iterative nature, the performance

of progressive data fusion can be guaranteed in a predetermined time window. Also, in terms

of sum of energy consumed over all sensors, progressive data fusion is the best among the

three.

The contributions in Chapter 3 on the topic of energy planning for progressive

data fusion include: 1) a comparison of digital communication and analog communication

in terms of transmission energy and transmission errors; 2) an energy planning algorithm

for progressive estimation in multihop networks using digital communication; 3) an energy
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planning algorithm for progressive estimation in multihop networks using analog communi-

cation; 4) the use of Lp norm for both energy planning algorithms (with L1 norm measuring

the sum energy and L∞ norm measuring the peak energy); 5) We show that digital com-

munication is more efficient in transmission energy than analog communication unless the

available transmission time-bandwidth product (i.e., T W or its integer part L) for each

link and each observation sample is very limited. This fundamental observation provides a

useful perspective of the prior works shown in [18] and [19] where analog communication is

assumed between sensors and the fusion center; 6) With the time-bandwidth product L for

transmission of a message, one can use L parallel sub-channels for digital transmission of

the same message, the importance of which has been somehow overlooked in the literature

on the modelling and analysis of sensor network problems; 7) Our proposed digital trans-

mission energy planning algorithm 1 and algorithm 2 are applicable to any L (but no less

than one). This is another useful extension from [13] and [24] where the freedom of L is

not utilized.

The contributions in Chapter 4 on the topic of energy planning for consensus

data fusion include: 1) We study the consensus estimation for sensor networks by taking

into account many fundamental wireless communication issues such as transmission energy

optimization, quantization bits allocation, condition of successful packet reception. In the

literature [26]-[45], wireless communications are assumed to be done perfectly and those

issues are overlooked. 2) In this paper, we focus on minimizing the energy cost for the

whole network to achieve a pre-given MSE threshold, while most previous papers in this

area study the convergence conditions and characteristics of different estimation schemes. 3)
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We also compare the energy cost of consensus estimation with that of progressive estimation

under the same sensor constellation and the same target performance. Consensus estimation

is shown to consume more sum energy than progressive estimation although the peak energy

for individual sensors by the former is less than that by the latter.
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