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Abstract

Objective: The goal of predictive analytics monitoring is the early detection of patients at high 

risk of subacute potentially catastrophic illnesses. An excellent example of a targeted illness is 

respiratory failure leading to urgent unplanned intubation, where early detection might lead to 

interventions that improve patient outcomes. Previously, we identified signatures of this illness in 

the continuous cardiorespiratory monitoring data of intensive care unit (ICU) patients and devised 

algorithms to identify patients at rising risk. Here, we externally validated three logistic regression 

models to estimate the risk of emergency intubation developed in Medical and Surgical ICUs at 

the University of Virginia.

Approach: We calculated the model outputs for more than 8000 patients in the University of 

California—San Francisco ICUs, 240 of whom underwent emergency intubation as determined by 

individual chart review.
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Main results: We found that the AUC of the models exceeded 0.75 in this external population, 

and that the risk rose appreciably over the 12 h before the event.

Significance: We conclude that there are generalizable physiological signatures of impending 

respiratory failure in the continuous cardiorespiratory monitoring data.
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Introduction

Patients in the intensive care unit (ICU) that experience respiratory failure leading 

to emergent intubation have significantly longer hospital length-of-stay and higher in-

hospital mortality (Politano et al 2013, Kim et al 2014, Moss et al 2016). Early 

identification of patients requiring intubation may allow earlier intervention to reduce 

morbidity and mortality. Patients in the early stages of respiratory failure might be given 

corticosteroids, bronchodilators, supplemental oxygen, or placed on noninvasive positive-

pressure ventilation (Nagata et al 2015). Patients for whom noninvasive positive-pressure 

ventilation is insufficient, or recently extubated patients that require re-intubation, might 

be intubated electively rather than emergently (Keim-Malpass et al 2018b, Liu et al 2018). 

Timely intervention aimed at better preparation for intubation, team coordination, proper 

intubation medication selection, and avoidance of peri-intubation hypotension improve 

outcomes of patients requiring emergent intubation. These observations have never been 

more true than they are now, during the COVID-19 pandemic when emergency intubation 

endangers the providers as well as the patients (Alhazzani et al 2020).

Predictive analytics monitoring strives to identify high-risk patients earlier by providing 

continuous risk estimates to clinical personnel in real-time. These early warning signals 

can allow intervention to alter the patient’s trajectory in a more favorable direction. In a 

prospective study using analogous predictive analytics for sepsis displayed at the bedside of 

preterm infants, mortality was reduced by more than 20% (Moorman et al 2011, Schelonka 

et al 2020). Similarly, in adults, predictive analytics for sepsis may reduce rates of septic 

shock and associated mortality by up to 50% (Shimabukuro et al 2017, Ruminski et al 

2019).

Candidate risk marker models for subacute potentially catastrophic illnesses like respiratory 

failure leading to urgent unplanned intubation (Ramachandran et al 2011, Kim et al 2014) 

are usually based only on static demographics and comorbidities, and intermittent vital signs 

and laboratory tests (Davis et al 2020). As a result, these models may reflect the decisions 

of clinicians more so than changes in patient physiology (Beaulieu-Jones et al 2021). That 

is, if the electronic health record shows that a clinician ordered a stat blood gas and chest 

x-ray, is it really a prediction to say that respiratory failure is imminent? If the physician 

thought of it first, do these analytics represent the leading indicators of a patient’s illness or 

are they just the lagging indicators of clinicians’ actions? On the other hand, models based 

on continuous cardiorespiratory dynamics from bedside physiological monitors have the 
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advantage of directly reporting on the patient’s condition. Clinician-initiated interventions 

do not directly influence them.

Before using a predictive analytical model for prospective clinical practice, it is vital to 

validate that model externally across different patient populations and institutions (Moons 

et al 2012, Collins et al 2014). Different care units and institutions may have substantially 

different distributions of demographics, socio-economic groups, admitting practices, and 

care patterns, all of which may degrade the calibration and discriminatory performance of 

a model. This study tested the hypothesis that predictive dynamic analytical models for 

respiratory failure leading to urgent unplanned intubation using continuously available data 

from ubiquitous physiologic monitors are well-suited for application at an external center.

Methods

Study design

We retrospectively studied a cohort of patients admitted to an ICU at the University 

of California San Francisco Medical Center (UCSF). We studied admissions to the two 

mixed medical/surgical ICUs, two neurological ICUs (NICUs), and coronary care (CCU) 

ICUs. Each ICU has continuous physiological monitoring archived by BedMaster (Hillrom, 

Chicago IL). The primary outcome was respiratory failure leading to urgent unplanned 

intubation.

Study population and primary outcome

We studied consecutive ICU admissions from 1 May, 2013, through 30 April, 2015, and 

selected patients intubated in the ICU. We excluded intubation events before ICU admission 

(e.g. in the operating room or emergency department (ED)) and patients with ‘Do Not 

Resuscitate’ or ‘Do Not Intubate’ orders (DNR/DNI). We classified events as planned 

(elective) or unplanned (emergent). Planned intubations included those done for procedures 

(such as endoscopy, interventional radiology procedures, or preceding elective operations) 

and others documented to be elective. We considered all others to be unplanned. We 

examined the procedure notes and the physician notes in individual medical records to 

determine the reason for intubation. We extracted the timing of intubation from the nursing 

and respiratory therapist’s documentation. Two independent practitioners independently 

reviewed each potential case of emergent intubation.

Identification of mechanically ventilated patients

We excluded data for patients during epochs when they were already mechanically 

ventilated. Thus, it was necessary to know the time of all intubations and extubations (not 

only the emergent intubations). While we knew the times of emergent intubations, other 

intubation and extubation times were not available. We instead used ventilator respiratory 

rate flowsheet entries from respiratory therapists (RT) as a surrogate to identify periods of 

mechanical ventilation, merging the results with known times of emergent intubations. We 

reasoned that this parameter, which specifies that the respiratory rate was measured from the 

ventilator, was a sufficiently reliable indicator of the presence of mechanical ventilation.
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We extracted the total ventilator respiratory rate flowsheet entry documented by RTs. 

Figure 1 (left) shows the probability density of time between RT documentation: most RT 

documentation of the ventilator respiratory rate occurred more frequently than every 6 h, 

consistent with clinical practice and affirming the utility of defining mechanical ventilation 

this way. Mechanical ventilation was defined as starting at the first recording of ventilator 

respiratory rate and ending at the last ventilator respiratory rate; see figure 1 (right) example 

patient 1. We split the period of mechanical ventilation when the time between consecutive 

measurements from a patient was larger than 16 h and identified the patient as not ventilated 

in the interim; see figure 1 (right) example patient 2. Isolated measurements (i.e. those 

without another measurement within 16 h) were used to define the start of a ventilation 

epoch with a duration of 1 h; see figure 1 (right) example patient 3. For emergently 

intubated patients, we verified that the epochs of mechanical ventilation started at the time of 

intubation. When emergent intubation occurred in the middle of an automatically determined 

ventilation epoch, we split the mechanical ventilation epoch defining the time of extubation 

as the time of the preceding ventilator respiratory rate and the time of intubation as the time 

of emergent intubation.

Predictors of emergent intubation

We calculated three risk estimates for emergent intubation (Politano et al 2013, Moss 

et al 2016). The models were developed on data from SICU and MICU patients at the 

University of Virginia (UVa) Health System and use only continuous cardiorespiratory 

dynamics calculated from the bedside physiological monitors. From Politano et al (2013) 

we used the vital signs only model. This model was developed on a subset of surgical ICU 

patients, excluding those on ancillary services. We also used the SICU and MICU models 

of Moss et al (2016). We previously validated the model of Politano at UVa for predicting 

upgrade from surgical intermediate care unit (IMU) to ICU, with and without intubation 

(Blackburn et al 2017). The SICU model of Moss was also validated at the same institution 

as part of a model for identifying low-risk patients at the time of surgical IMU and ICU 

discharge (Blackburn et al 2018).

All three models are binary logistic regression. The Politano model uses linear relationships 

between predictors and the response, while the Moss models include cubic splines to 

allow for non-linear relationships. The Politano model was built with a forward stepwise 

procedure, while the Moss models use a pre-specified feature set based on prior clinical 

knowledge. The output of each model is the estimated probability of emergent intubation, 

though with different time horizons: 24 h for the Politano model, 4 h for the Moss MICU 

model, and 6 h for the Moss SICU model.

Model inputs are were calculated in 30 min windows with 50% overlap: means and 

standard deviations of, and cross-correlations between, vital signs (heart rate, respiratory 

rate, peripheral oxygen saturation, and blood pressure), as well as statistical measures 

of cardiac dynamics (slope of log RR interval variance versus log scale for detrended 

fluctuation analysis (Peng et al 1994), coefficient of sample entropy (Lake and Moorman 

2011), and the standard deviation of RR intervals).
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Missing data were imputed with the median values from the UVa development cohort. We 

divided the estimated probability by the average probability of emergent intubation in the 

training set to yield the fold-increase in the probability of the event, which we label relative 

risk. Features and models were calculated using CoMET® (AMP3D, Charlottesville, VA). 

No features or models were available to the care team, and all patients received standard of 

care. The UCSF Institutional Review Board approved this study with a waiver of consent.

Statistical analysis

We evaluated the performance of the UVa urgent intubation risk models for identifying 

UCSF patients before emergent intubation. We used the continuous risk estimates from the 

three models and, where appropriate, a binary response variable. The response was defined 

as ‘1’ for event patients during the time window immediately preceding the emergent 

intubation (the event population). The response was defined as ‘0’ for those patients that 

were never emergently intubated (control patients) as well as for event patients far from the 

time of emergent intubation.

We analyzed the dynamic changes of each model near the time of emergent intubation. We 

aligned the every-15 min risk estimates relative to the time of emergent intubation (defined 

as time zero). For each model, at each 15 min epoch, we calculated the average predicted 

risk for all event patients with data and plotted the average time series relative to the time 

of emergent intubation. We used the Wilcoxon sign rank test every 15 min to test the null 

hypothesis that risk estimates were equal to risk estimates for the same patient 12 h prior. At 

time points where we rejected the null hypothesis at 0.05 significance level, we interpreted 

this as a significant change in estimated risk that may have provided an early warning.

We evaluated the discriminatory value of each model using the area under the receiver 

operating characteristic (AUC), also known as the C-statistic. We evaluated the performance 

of risk estimates for varying event time window definitions: window start times ranged 

from 4 to 24 h before emergent intubation. The window ended at the time of emergent 

intubation. Confidence intervals were determined by 200 bootstrap runs, resampled by 

hospital admission.

Finally, we evaluated the calibration of each model. For each model, we calculated the 

deciles of predicted relative risk. We calculated the observed risk in each decile as the 

proportion of measurements that corresponded to times within 12 h of emergent intubation 

and divided by the average risk from the training set. We then plotted the observed versus 

predicted relative risk: perfectly calibrated models fall on the line of identity.

Results

We studied 9828 admissions for 8434 patients to UCSF. There were 240 episodes of 

emergent intubation in 238 hospital admissions. There was continuous monitoring data 

before 225 (93%) of events. Table 1 shows the characteristics of the study population. 

Patients with emergent intubation were less likely to be white, more likely to be Asian, had 

3-fold higher mortality, and stayed 19 d longer in hospital. We calculated 105.5 patient-years 

of risk estimates: the three risk estimates were calculated for 3.7 million 15 min epochs. We 
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censored 32.3% of measurements for patients who were already mechanically ventilated or 

patients following DNI orders. The incidence of emergent intubation was 0.9 per 100 ICU 

d, significantly lower than in the Moss (Moss et al 2016) and Politano (Politano et al 2013) 

development cohorts (2.1 and 2.8 per 100 ICU d, respectively).

Figure 2 shows the length of time patients were in the ICU and not mechanically ventilated 

before emergent intubation: about 120 patients were in the ICU and not mechanically 

ventilated at least 24 h before the event. The figure also shows the number of events with 

continuous monitoring data available for modeling. Figure 3 shows the time course of risk 

estimates for UCSF patients using the three UVa models for urgent unplanned intubation 

during the 48 h preceding emergent intubation. Risk estimates doubled over the 12–24 

h before emergent intubation, from 1.5 to more than 3. At each time, we performed a 

signed-rank test with the null hypothesis that risk estimates are equal to risk estimates 

from the same patient 12 h prior. White points identify times when we rejected the null 

hypothesis. Risk estimates were significantly higher beginning about 5 h before emergent 

intubation.

Figure 4 shows the performance of the three models as a function of the time window 

before emergent intubation. All the data from patients without emergent intubation served 

as ‘control.’ Thus, for a 24 h detection window, the data for event patients within 24 h of 

emergent intubation were identified as ‘event,’ and the data from event patients far from the 

event were ‘control.’ The AUC rose from about 0.75 to about 0.78 for event windows 24 to 4 

h, respectively. The MICU model from Moss had slightly better performance than the SICU 

models from Moss or Politano.

Figure 5 shows the calibration of the three models using a 12 h detection window. Well-

calibrated models have predicted risk equal to observed risk (dashed line). The SICU 

models from Moss and Politano exhibited excellent calibration in all but the highest risk 

patients, where they overestimated the risk. The MICU intubation model from Moss also 

overestimated risk for high-risk patients and deviated from the line of identity in the two 

lowest deciles of predicted risk.

Discussion

This study evaluated the performance of 3 predictive analytical models for early detection 

of respiratory failure leading to emergent intubation at an external center. These models 

are based solely upon analyses of continuous cardiorespiratory monitoring data to detect 

physiologic signatures of illness. The existing models were initially developed to predict 

emergent intubation in the UVa SICU (two models) and MICU (one model). This study 

sought to externally validate the performance using an independent cohort of patients from 

all ICUs University of California San Francisco. The major findings were that the models 

accurately identified patients at risk for emergent intubation (AUC > 0.75 starting at 12 h 

pre-intubation), risk estimates continued to rise until the time of emergent intubation, and 

these predictive models were well-calibrated.
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Whereas elective intubation in the operating room is a highly safe procedure, emergent 

intubation outside the operating room is commonly associated with complications (Rochlen 

et al 2017, Wardi et al 2017, Arya et al 2019). These complications include hemodynamic 

compromise or severe hypoxemia leading to cardiac arrest, esophageal intubation, 

aspiration, and pneumothorax (Heffner et al 2013, Wardi et al 2017). Cardiac arrest 

attributable to intubation complications occurs in 2%–4% of emergent intubations, and few 

of these patients survive to hospital discharge even when initially resuscitated (Mort 2004, 

Heffner et al 2013, Rochlen et al 2017). Identifying patients earlier who are at risk of 

needing emergent intubation maybe vital in avoiding these poor outcomes (Rochlen et al 

2017, Keim-Malpass et al 2018a).

Recent studies link poor outcomes to potentially mitigatable factors that are time-dependent. 

These include a worse outcome for patients intubated around the change of nursing shift 

(Wardi et al 2017). Wardi et al proposed that this finding resulted from potential staff 

fatigue, hand-off errors, and lack of familiarity with a patient, which led to overlooking 

subtle but important changes in patient condition (Wardi et al 2017). For each of these 

potential explanations, predictive algorithms such as those validated in this current study 

might overcome these challenges at vulnerable moments for our critically ill patients. 

Essentially, these algorithms convert complex data that is difficult for a clinician to 

assimilate in real-time into risk estimates based on detecting illness-specific signatures. The 

result is an early warning signal displayed at the bedside that can draw attention to critical 

changes in the patient’s condition. Here, we found that the pathophysiological signature 

of respiratory failure in medical and surgical ICU training sets transferred well to identify 

emergent intubation in the medical, surgical, neurological, and coronary care ICU cohorts 

of the validation set. This finding comports with the results of Moss et al who found that 

respiratory failure had a similar signature of illness between surgical and medical ICU 

patients (Moss et al 2016).

Additionally, our data affirm that the clinical deterioration before respiratory failure 

leading to urgent unplanned intubation is often a slowly progressive process over many 

hours. This time frame creates an opportunity to perform interventions that would make 

emergent intubation safer and even possibly avoided. A pre-intubation checklist integrating 

interventions to treat hemodynamic instability led to fewer complications (Jaber et al 2010, 

Rochlen et al 2017, Wardi et al 2017). This is consistent with investigations that have 

correlated the worse outcomes in emergent intubation in the ED occurring in those that 

develop hemodynamic compromise following intubation (Heffner et al 2013, Trivedi et al 

2015).

Commonly, patients requiring emergent intubation are in shock, and an increased shock 

index highly correlates with intubation-associated cardiac arrest (Trivedi et al 2015, Wardi 

et al 2017). Volume depletion, vasodilation, acidosis, and reduced venous return resulting 

from increased positive pressure ventilation are all factors addressable in the lead time 

provided by an early warning signal. Trivedi et al argue that the shock index (the ratio of 

maximum heart rate to lowest systolic blood pressure) is a helpful adjunct to intervene in 

the immediate 60 min preceding intubation (Trivedi et al 2015). However, they acknowledge 

that addressing the ‘dynamic changes in patient status in the ICU…require continuous 
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monitoring and interpretation of data before the development of overt hypotension and 

cardiorespiratory collapse.’

We propose that implementing and integrating predictive analytics monitoring into clinical 

practice (Prudente Moorman) may provide an opportunity for timely clinical action, as 

the prediction of respiratory failure leading to urgent unplanned intubation can be present 

and growing for hours pre-intubation. We cannot definitively determine from this study 

if interventions during this window would avoid intubation, but it would likely make 

them safer. Both of these possibilities warrant further investigation in a prospective study. 

Any such prospective study should leverage processes for optimal integration of predictive 

analytics for evoking clinical action (Keim-Malpass et al 2018a).

This study was limited in several ways. We relied on surrogate data to initially identify 

patients who had mechanical ventilation initiated during their ICU stay. It is possible 

that due to documentation errors, the location of intubation initiation could have been 

misclassified. However, to avoid this, each potential case of ICU intubation was reviewed 

by two clinicians to verify the location of intubation, the reason for intubation, and the 

timing of intubation. Similarly, we attempted to identify tracheostomy patients that may go 

on and off mechanical ventilation and excluded those with mechanical ventilation initiation 

following tracheostomy. Finally, we did not exclude patients with more than one event of 

respiratory failure leading to urgent unplanned intubation; this happened, however, only in 

two of the 238 patients.

Our results show that all models are well-calibrated for the lowest 90% of predicted risk but 

overestimate the risk in the highest decile: patients in the highest decile have 3- to 4-fold 

higher risk of respiratory failure than average, but the estimated risk is 30- to 40-fold higher 

than average. Accurate calibration at low and moderate risks may allow these models to be 

used for accurate clinical assessment of patient status as well as response to interventions. 

Overestimation at higher risk may limit such uses at these levels but still may draw attention 

to high-risk patients as intended. It may be useful to cap predicted risk estimates for clinical 

implementation to mitigate this issue for practical purposes.

Determining the exact timing of emergent intubation was challenging in this study. 

Physician documentation through intubation procedure notes was not a reliable source of 

the timing as it was apparent in chart review that this documentation is often delayed. This is 

understandable as the physician’s attention around the event is focused on providing bedside 

care. To address this, we confirmed the intubation time with the first nursing documentation 

of administered intubation-related medications cross-referenced with the RT documentation 

of initial ventilator settings. In all cases, these times were within 5 min of each other. A more 

accurate evaluation of the lead time of the prediction would be to use the exact moment that 

the clinical decision was made to intubate. We do not know this, of course, but we know 

from the clinical review of the records that the actual intubation came only a short time 

later. We note that any delay makes the predictive model look better because the worsening 

derangements of the patient status make for higher risk estimates. We defend the practice 

as the best available and superior to a standard method of using the highest model estimate 
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observed during the hospitalization, even if the model estimate took place weeks before the 

event.

In addition, we did not quantify the performance of predictive models in the context of 

known risk factors: diagnoses, demographics, or severity of illness (Ramachandran et al 

2011, Kim et al 2014). We note, however, that these known risk factors are static indicators; 

though they may identify high-risk patients, they do not rise leading up to the time of 

lung failure. Finally, we did not evaluate other predictors of emergent intubation, such as 

shock index from vital signs and laboratory measurements. Adding independent streams of 

information improves performance (Moss et al 2017), though we found that plug-and-play 

models with bedside physiological monitors have excellent performance.

Conclusion

Earlier identification of signatures of illness using continuous cardiorespiratory monitoring 

that arise from subtle changes in physiologic deterioration may provide a valuable adjunct to 

clinicians to mitigate the need for emergent intubation.
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Figure 1. 
(left) Probability density of the time between consecutive ventilator respiratory rate 

entries for all patients. (right) Simplified examples showing the aggregation of flowsheet 

ventilator respiratory rate (points) into epochs of mechanical ventilation (shaded rectangles). 

All measurements within 6 h are combined into a single epoch (patient 1), whereas 

measurements separated by more than 16 h are split into multiple epochs (patient 2), 

and isolated measurements are defined as 1 h epochs (patient 3). Note that patient 2 was 

intubated twice, but only two patients had two respiratory failure events leading to urgent 

unplanned intubation.
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Figure 2. 
Number of events with continuous monitoring data as a function of time leading up to 

emergent intubation.
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Figure 3. 
Average time course of risk estimates over the 48 h leading up to the time of emergent 

intubation. Relative risk is the fold-increase in the probability of an event with respect to 

average. The gray ribbon is the 95% confidence interval around the mean. White points 

indicate that the risk estimates at that time are significantly higher (p < 0.05) than risk 

estimates 12 h prior.
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Figure 4. 
Area under the receiver operating characteristic as a function of the window size before 

emergent intubation defined as the event, from 4 to 24 h. The 95% confidence interval is 

indicated by error bars and was determined by 200 bootstrap runs resampled by admission.
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Figure 5. 
Calibration curves for the three models for emergent intubation. The observed relative risk 

is plotted as a function of the predicted risk. Each point represents 10% of the data, and the 

line of identity (perfect calibration) is shown as a dashed line.
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Table 1.

Characteristics of the study population.

Total Event p-value

Count 9828 240 (2.4%)

Female 4583 (46.6%) 107 (44.6%) 0.5296

Age 61.0 (48.0–70.0) 61.5 (51.8–68.2) 0.7583

Days hospital stay 7.0 (4.0–12.0) 26.0 (15.0–41.2) <0.0001

Mortality 1394 (14.2%) 105 (43.8%) <0.0001

Race

White 5644 (57.4%) 115 (47.9%) 0.0026

Black 782 (8.0%) 24 (10.0%) 0.2364

Asian 1387 (14.1%) 45 (18.8%) 0.0367

Other 2015 (20.5%) 56 (23.3%) 0.2715

Ethnicity

Hispanic 1351 (13.7%) 32 (13.3%) 0.8507

Non-Hispanic 8104(82.5%) 197 (82.1%) 0.8771

Unknown 373 (3.8%) 11 (4.6%) 0.5177

*
Values are shown as mean (standard deviation) or count (percentile).
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