
UCLA
UCLA Previously Published Works

Title
Design of controllers with distributed central pattern generator architecture for adaptive 
oscillations

Permalink
https://escholarship.org/uc/item/16j328zj

Journal
International Journal of Robust and Nonlinear Control, 31(2)

ISSN
1049-8923

Authors
Wu, Andy
Iwasaki, Tetsuya

Publication Date
2021-01-25

DOI
10.1002/rnc.5307

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/16j328zj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Design of controllers with distributed central pattern generator
architecture for adaptive oscillations

Andy Wu | Tetsuya Iwasaki

Department of Mechanical and Aerospace
Engineering, University of California, Los
Angeles, CA, USA

Correspondence
Andy Wu, Department of Mechanical and
Aerospace Engineering, University of
California, Los Angeles, CA, USA.
Email: anwu@ucla.edu

Present Address
Andy Wu, Department of Mechanical and
Aerospace Engineering, University of
California, Los Angeles, CA, USA

Funding Information
This research was supported by the National
Science Foundation, grants No.1068997 and
No.1427313.

Abstract

This paper introduces a systematic method for designing a distributed nonlinear
controller to achieve multiple distinct gaits, each of which is characterized by a pre-
scribed oscillation profile and velocity, for a class of locomotion systems. We base
the controller on the central pattern generator (CPG), a neural circuit which governs
repetitive motions, such as walking and swimming, in most animals. First, we estab-
lish a general method for designing a nonlinear CPG-inspired controller to assign
a single gait for a linear plant; we show that this problem reduces to an eigen-
structure assignment problem for which a solution has recently become available.
We then extend the design to an adaptive, structured controller that can adjust the
gait in response to variations in the environment. The essential problem becomes a
controller design to satisfy different eigenstructure conditions for different plants; a
computationally tractable formulation is provided for this problem. We provide two
numerical examples using a link-chain model as a plant representative of animals
that move through undulatory motions, such as leeches or eels, to demonstrate the
efficacy of this theory. In the first example, we employ an analytical condition for
eigenstructure assignment to design an unstructured controller that assigns a single
gait for the link-chain model. The second example searches for a structured controller
to assign two different gaits that can be switched using a higher level command.

KEYWORDS:
Eigenstructure Assignment; Central Pattern Generator; Nonlinear Control; Coordinated Control; Oscilla-
tion Control

1 INTRODUCTION

The analysis and design of feedback controllers for locomotion systems are active fields of research seeking to bridge the gap
between biology and robotics. Many of the existing controllers for engineering applications are inspired by the central pattern
generator (CPG)1,2, a biological neural circuit responsible for controlling rhythmic body motions, such as walking, flying, and
swimming, in various animals3,4,5,6,7,8,9. As a biological circuit, the isolated CPG displays coordinated oscillations that resemble
the body movements in terms of the phase pattern and cycle period10,11,12,13. While a CPG acts as a reference command gen-
erator for muscle contraction, it also modifies and regulates the oscillation pattern through sensory feedback of proprioceptive
information14,15. These autonomous, coordinated oscillations are realized as orbitally stable limit cycles embedded in the non-
linear dynamics of neuronal circuits interacting with the body biomechanics as well as the environment. It has been observed
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that the biological CPG has the capability of generating oscillations that can adapt to different environments2,8,12,14,15, which
would be extremely beneficial for robotic locomotion. Aside from the adaptive limit cycle behavior, CPGs generally have a dis-
tributed structure1,2,14,15, which may provide additional benefits, such as reduction in complexity over centralized controllers1
and robustness against neuromechanical failures16. Due to these features, the dynamical architecture of CPGs provides a viable
basis for feedback control design that aims for adaptive oscillations in robotic and other applications.
Many of the CPG-based controllers in bio-inspired robotics have been developed for specific body configurations, including

bipeds17, quadrupeds18,19,20, hexapods21, and a hybrid walker/swimmer22,23. The network topology of the CPG is typically
set a priori from the given body configuration in a distributed manner; for instance, a half-center model24 is placed for each
limb with additional coupling for coordination17. Such CPG architectures often possess symmetry, which analytically implies
possible gaits25,26 and makes manual parameter tuning tractable with some heuristic design rules19. The symmetry and basic
building blocks have also been useful in developing models of biological CPGs with overwhelming complexity27. In fact,
it is possible to design a coupled oscillator network with arbitrary (connected) topology to achieve any desired oscillation
pattern with a theoretical guarantee for orbital stability28,29,30. However, all these developments (except for17) are focused on
the design/modeling of the CPG as a reference generator without the plant dynamics (body and environment) in the feedback
loop. To exploit the full potential of CPGs for adaptive oscillations, it is essential to design a CPG-based controller with sensory
feedback so that a desired oscillation is achieved as a stable limit cycle for the closed-loop system.
A classical, seminal work on the CPG-based feedback control dates back to 199117, where coupled half-center oscillators are

mutually entrained with a bipedal walker to achieve a stable gait. This approach was used with additional reflex loops and applied
to quadruped walking, with experimentally demonstrated potential for adaptivity to irregular terrain31. While these results
require manual tuning of design parameters, analytical conditions have also been derived for half-center CPGs to entrain to a
selected mode of mechanical resonance32,33. A more explicit approach to resonance entrainment was proposed using adaptive
frequency Hopf oscillators with sensory feedback34,35, which has been extended with a rigorous proof of stability36. Without
restrictions to resonance, an arbitrary oscillation pattern can also be achieved with stability for mechanical systems using Hopf
oscillators37,38 or circulant CPGs39. However, these methods make the closed-loop system an oscillator through reflex loops
and are different from neural control mechanisms where the CPG and plant dynamics are coupled, and hence it is not clear if
biological adaptivity can be realized in this way. To date, it still remains open to develop a general theory for designing CPG-
inspired controllers that are distributed, can achieve specified body oscillations and velocities under closed-loop with plant
dynamics, and have the ability to change gaits to adapt to different environments.
In this paper, we present a solution to the problem of designing a nonlinear feedback controller inspired by the CPG to achieve

a specified gait, described by the coordinated oscillations of state variables of a plant to be controlled (e.g. mechanical body
subject to environmental dynamics). The design is based on a linear time-invariant model that approximates the plant, but will
be effective for the original nonlinear plant dynamics due to structural stability as demonstrated later. We represent the controller
as the interconnection of identical neurons with dynamics described by a threshold nonlinearity in series with a first-order low
pass filter. In our analysis, the threshold nonlinearity is quasi-linearized using a describing function and the governing equations
are developed using the multivariable harmonic balance (MHB) method40. The problem is then reduced to the design of a quasi-
linear controller such that the closed-loop system is marginally stable with the pair of conjugate eigenvalues representing the
frequency of the desired oscillation and corresponding eigenvectors specified by the desired phase and amplitude. The design
can then be performed using an existing solution to the eigenstructure assignment problem in41.
As an extension to the single gait design, we further consider the design of a single structured CPG-inspired controller that

can adapt its gait to its environment. This problem is conceived as an eigenstructure assignment in which a single controller,
parameterized by an adaptation parameter �, is designed to assign multiple eigenstructures to multiple plants, depending on the
value of �. In a typical application scenario, each of the multiple plants is composed of the same robotic locomotion system with
different environmental dynamics. In this case, the controller will be able to achieve gait transition by adjusting � in accordance
with the changing environment. We will reduce the control design to a cone complementarity problem — minimization of
tr(PR) subject to linear matrix inequality constraints on symmetric matrices P andR. The problem is nonconvex and is difficult
to solve with a theoretical guarantee for global optimality. However, there are computational algorithms that are applicable to
this class of problems with practical reliability42,43,44; the linearization algorithm43 in particular will be shown to be effective
for our design.
The proposed design methods are based on a linear plant with harmonic approximations and do not rigorously guarantee

convergence to the target limit cycle oscillations. However, we demonstrate the efficacy of the designmethods with two examples
utilizing a nonlinear link-chainmodel for undulatory swimming provided by45,46 and experimentally observed leech gaits from15.
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In the first example, we design an unstructured controller to achieve a gait mimicking that of a leech in water. In the second
example, we design a single structured controller parameterized by neural time constant � to achieve the observed leech gaits
for fast and slow swimming in two different fluid environments (water and high viscosity methyl cellulose). The adjustment
of the parameter � empirically captures the descending drive from the brainstem to the CPG that regulates the frequency of
oscillation47,27. This type of mechanism has been used for gait transition in the open-loop setting23. We will propose a simple
adaptation mechanism to adjust � based on the swim speed v in real time, and further demonstrate the ability to autonomously
switch gaits when the fluid environment changes.
Preliminary versions of this paper have been presented at conferences48 and49, where some basic ideas for the CPG-based

control design are laid out. The present paper formalizes the ideas and provides systematic design procedures, with a major
extension to allow for embedding multiple stable limit cycles using a distributed CPG architecture. The design examples are
completely new.

Notation: Let ℝ and In denote the sets of real numbers and integers {1,… , n}, respectively. For a matrixM , the notations
MT andM† denote the transpose and the Moore-Penrose inverse, respectively. The symbol diag(A1,… , An) denotes the block-
diagonal matrix with A1,… , An on the diagonal, and col(B1,… , Bn) denotes the matrix obtained by stacking B1,… , Bn in a
column. The real and imaginary parts of a vector are denoted byℜ(⋅) and ℑ(⋅), respectively.

2 PROBLEM FORMULATION AND APPROACH

2.1 Problem Statement
Let a linear time-invariant plant be given by a state-space realization

ẋ = Ax + Bu, y = Cx (1)

where x(t) ∈ ℝn is the state, u(t) ∈ ℝm is the control input, and y(t) ∈ ℝp is the measured output. Throughout the paper,
we assume that (A,B, C) is stabilizable and detectable. The problem of designing a controller to achieve oscillations can be
described as follows.

Problem 1. Let a desired oscillation profile be defined by the frequency !, amplitude ai, and phase bi for i ∈ In. Suppose ! > 0
and at least one of parameters ai is nonzero. Given a linear plant (1), find a nonlinear dynamic output-feedback controller such
that the closed-loop system has an orbitally stable limit cycle on which xi(t) ≅ ai sin(!t+ bi) holds approximately for all i ∈ In.

Orbital stability is a property of a periodic solution of the closed-loop system. In particular, let q(t) be the controller state
vector and denote the closed-loop state by x ∶= col(x, q). A periodic solution x(t) is said to be orbitally stable if all trajectories
converge to the periodic orbit

O ∶= { x(t) ∈ ℝn ∶ t ∈ ℝ },

whenever the initial conditions x(0) are sufficiently close to the orbit50.
Due to the linearity of the plant, a nonlinear controller is necessary for orbital stability as linear oscillations lack the structural

stability to reject perturbations to their trajectories. For the controller, we choose one with the CPG control architecture because
the CPG is a well-studied nonlinear oscillator that generates stable limit cycles when placed in a feedback loop with the body-
environment dynamics51,52,53,54,55,15. We will fix the architecture of the controller and reformulate the problem such that we can
search for the design parameters in a numerically tractable manner.

2.2 CPG Control Architecture
The CPG is a biological neuronal circuit existing in various animals that commands rhythmic muscle contractions which

result in repetitive motions such as walking, breathing, or chewing. When isolated, the CPG is a nonlinear oscillator that has a
profile similar to observed body motions. This oscillation results in a stable limit cycle that corresponds to a gait or repetitive
movement when placed in a closed loop with the body-environment dynamics.
Mathematically, the CPG is often expressed as a system of interconnected neurons which are individually defined as a static

nonlinearity in series with a linear filter. In the case of a set of nc interconnected neurons, the CPG can be given by the scalar
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equations

vi =  (qi), qi = f (s)wi, wi =
nc
∑

j=1
�ijvj

for i ∈ Inc , where  is a static nonlinearity which emulates the neural threshold property observed in biology47, f (s) is a linear
filter that captures the dynamical properties of neuronal cell membranes such as adaptation or time lag, �ij defines the synaptic
connection strength and type (excitatory or inhibitory) from neuron j to neuron i, and wi, qi, and vi represent the input from
presynaptic neurons, the cell membrane potential, and instantaneous spike frequency, respectively. Within the scope of this
paper, we define  and f (s) to be

 (x) = tanh(x), f (s) = 1
1 + �s

,

with each neuron having identical dynamics, f (s), defined by a neuronal information processing time constant �. It should be
noted that  and f (s) are not limited to the choices given above and alternative options exist. The equations defining the set of
nc neurons can be organized in more compact manner by stacking them in matrices:

q = F (s)MΨ(q), v = Ψ(q), w =Mv

where v(t), q(t), andw(t) are vectors of dimension nc ,M is the neuronal interconnectivity matrix with �ij as its (i, j)th entry, and

F (s) ∶= f (s)Inc , Ψ(q) ∶= col
(

 (q1),… ,  (qnc )
)

.

Extending the CPG model to be used as a controller, we feed back measurements from a plant and further define a control
output from the CPG controller. In particular, we define the CPG controller as

q = F (s)(MΨ(q) +Hy), u = GΨ(q) + Ly, (2)

where L, G, and H are constant matrices15. The sensory feedback signal y from the plant would typically be proprioceptive
information (e.g. joint angles) for biological CPGs, but it could be any sensor signals in our theoretical framework for the control
design. Figure 1 expresses the closed-loop system in terms of a block diagram, where the blue blocks represent parameters for
the CPG controller (2), and P (s) is the plant transfer function from u to y defined by (1). The closed-loop system of (1) and (2)
can be given as

[

ẋ
q̇

]

=
[

A 0
0 Af

] [

x
q

]

+
[

B 0
0 Bf

] [

L G
H M

] [

C 0
0 I

] [

x
Ψ(q)

]

(3)

where Af ∶= −I∕� and Bf ∶= I∕� give a minimal state space realization (Af , Bf , I) of F (s) with state vector q.

F(s) Ψ

MH

L

G

P(s)

q

CPG

y u

FIGURE 1 Closed-Loop System of CPG and Plant

The oscillation control problem can now be defined as a search for parameters L, G,H ,M , and � to satisfy the specifications
from Problem 1. Due to the inherent difficulties of solving nonlinear oscillation problems with guaranteed orbital stability, we
will approximate Problem 1 by a more tractable problem through the use of the MHB equation40.
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2.3 The Multivariable Harmonic Balance
This section describes an approximate condition for a generic system

ẋ = Ax + Bv, q = Cx, v = Ψ(q), (4)

to have a stable limit cycle that can be approximated as

xi(t) ≅ 
i sin(!t + �i). (5)

The result will be useful for the CPG control design since the closed-loop system in Fig. 1 is a Luré system, i.e. a nonlinear
system comprising a linear time-invariant system with a static nonlinearity, and hence (3) can be described in the form (4) with
appropriately defined matrices A, B, and C, where the closed-loop state is given by x ∶= col(x, q).
To facilitate the analysis of oscillations in (4), we reduce the nonlinear system to a quasi-linear form by approximating the

static nonlinearity with

 (qi) ≅ �(�i)qi for qi = �i sin(!t),

where �(�i) is the describing function defined such that �(�i)qi is equal to the first harmonic of  (qi). Substituting the
approximation

Ψ(q) ≅ Δ(�)q, Δ(�) ∶= diag(�(�1),… , �(�nc ), � ∶= col(�1,… , �nc )

into (4), we have the following quasi-linearized system

ẋ = Ax, A ∶= A + BΔ(�)C. (6)

Now, the harmonic oscillation in (5) can be described byℑ[x̂ej!t], where x̂ is the phasor vector specified by x̂i ∶= 
iej�i . From
the standard linear theory, x(t) = ℑ[x̂ej!t] is an exact solution of the quasi-linear system (6) if and only if the MHB equation

(j!I − A)x̂ = 0, x̂i ∶= 
iej�i ,

holds, where the phasor x̂ specifies the amplitude parameter � by

�i = |q̂i|, q̂ ∶= Cx̂.

The harmonic balance analysis anticipates that the nonlinear system (4) has a periodic solution that is approximately given by
(5) if the MHB equation is satisfied. Moreover, the periodic solution is expected to be orbitally stable if the quasi-linear system
(6) is marginally stable with a conjugate pair of eigenvalues ±j! on the imaginary axis and the rest in the open left-half plane.
Note that the MHB equation takes the form of eigenvalue and eigenvector relationship with the eigenvalue, j!, specifying the

frequency of oscillation and the eigenvector, x̂, specifying the phases and amplitudes. The general idea of the quasi-linearization
and the MHB condition described here will be the basis for the control design in the next section.

3 CPG CONTROL DESIGN

3.1 Reduction to Eigenstructure Assignment
To obtain a tractable formulation for Problem 1, we will quasi-linearize the closed-loop system in (3) and derive the

design equations using the harmonic balance approach in the previous section. The process turns out to give an eigenstructure
assignment problem.
On the target limit cycle of the closed-loop system, the controller state q(t) shares the same period as the plant state x(t) and

oscillates with frequency !. We approximate this oscillation by

qi(t) ≅ �i sin(!t + �i)

with some amplitude �i and phase �i; let the phasor of qi be given by q̂i = �iej�i . Substituting the describing function, Δ(�)q, in
place of Ψ(q), the closed-loop system (3) can be quasi-linearized as

ẋ = Ax, A ∶= A +BKC, (7)
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where

x ∶=
[

x
q

]

,
A ∶= diag(A, 0),
B ∶= diag(B, I),
C ∶= diag(C, I),

(8)

K ∶=
[

0 0
0 Af

]

+
[

I 0
0 Bf

] [

L GΔ(�)
H MΔ(�)

]

. (9)

Note that the system (7) can be seen as the closed-loop system comprised of (1) and dynamic controller
[

u
q̇

]

= K

[

y
q

]

. (10)

Applying the MHB method to (7), the nonlinear closed-loop system, (3), is predicted to have a limit cycle with an oscillation
profile, xi(t) ≅ ai sin(!t + bi), if there exists a complex vector q̂ ∈ ℂnc such that

(j!I − A)x̂ = 0, x̂ ∶= col(x̂, q̂), (11)

hold for x̂i = aiejbi , i ∈ Inc , where matrix A is defined by (7) and (9) with �i ∶= |q̂i|. Moreover, the limit cycle is expected to be
orbitally stable if all the eigenvalues of A other than ±j! are in the open left-half plane. Defining

Λ ∶=
[

0 !
−! 0

]

,
X ∶=

[

ℜ(x̂) ℑ(x̂)
]

,
Q ∶=

[

ℜ(q̂) ℑ(q̂)
]

,
(12)

the MHB equation (11) can be expressed in terms of real matrices as

AV = VΛ, V ∶= col(X,Q). (13)

Thus the design problem is reduced to the search for real matrices (M,G,H,L) and Q satisfying (13) and the eigenvalue
(marginal stability) condition. Note that (9) defines a change of variables (M,G,H,L) ↔ K, where the mapping is invertible
because Bf and Δ(�) are square invertible. Hence, the essential problem is to find K and Q satisfying (13) and the marginal
stability requirement. Once K and Q are found, the CPG parameters (M,G,H,L) can be calculated by solving (9) with �i ∶=
|q̂i|. This leads to the following eigenstructure assignment problem.

Problem 2. Consider the plant in (1) and let a desired eigenstructure be specified byX ∈ ℝn×2 and Λ ∈ ℝ2×2, where Λ is of the
form in (12) with ! ≠ 0, and (X,Λ) is observable. Find a controller K (of an arbitrary order nc) in (10) and matrix Q ∈ ℝnc×2

such that the closed-loop system in (7) with (8) satisfies (13), matrix V has rank two, and the eigenvalues of A are all in the open
left half complex plane except for those shared by Λ.

The rank constraint on V is imposed because otherwise x̂ ∶= col(x̂, q̂) is a scalar multiple of a real vector, and (11) would
then imply x̂ = 0, which cannot be the case whenever the desired oscillation is nontrivial. Note thatX may not have full column
rank in such cases as synchronization xi(t) = xj(t) for i, j ∈ In. A factor that makes the problem difficult is the dependence of
(13) on the unknown design parameter Q. It turns out, however, that Q can be set, without loss of generality, to an arbitrary
matrix with full column rank.

Lemma 1. Consider Problem 2 and suppose it is feasible. Let Q ∈ ℝnc×2 be an arbitrary matrix such that it is of full column
rank and nc ≥ n + 2. Then there exists a controller K such that (K, Q) is a solution to Problem 2.

Proof. Suppose Problem 2 admits a solution and let Q be given as above. From Theorem 3 of41, a dynamic controller Ko of
order nc ≥ n + 2 solves Problem 2 with Qo ∶= col(I, 0) ∈ ℝnc×2. Let Tc be a square nonsingular matrix such that Q = TcQo.
Such Tc exists since Q and Qo are full column rank. Define

T ∶= diag(I, Tc), K ∶= TKoT −1,
Vo ∶= col(X,Qo), Ao ∶= A +BKoC,

Then direct calculations verify that

A = TAoT
−1, AV − VΛ = T (AoVo − VoΛ) = 0.

Thus we conclude the result.
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Based on Lemma 1, we can set Q to be an arbitrary full column-rank matrix when solving Problem 2. Equivalently, q̂, the
phasor of the CPG variable q(t), is set to an arbitrary complex vector that is not a scalar multiple of a real vector. This means that
at least one pair of the CPG variables qi(t) should oscillate with relative phase not equal to zero or �. The choice of q̂ does not
matter in Problem 2 because it just corresponds to the coordinate change in the controller state. However, the choice is important
and affects the oscillation property of the nonlinear closed-loop system. In particular, when the amplitude � ∶= |q̂| is large, the
nonlinearity Ψ(q) tends to saturate, making the approximation by the describing function Ψ(q) ≅ Δ(�)q less accurate. On the
other hand, the nonlinear effect is crucial for achieving orbital stability of the target limit cycle.
We propose to set q̂ using the concept of coupled segmental oscillators found in neuronal CPG circuits56,47. Adopting this

control architecture (a specific example will be given later in Fig. 2), each actuator is driven by a segmental oscillator — a set of
neurons that oscillate together with specific phase differences, and the controller is formed as coupled m segmental oscillators
where m is the number of control inputs. For example, each segmental oscillator may be formed by l neurons that oscillate with
the same amplitude with phases evenly distributed over 2�. The relative phases between segments may be set to match those
between actuation signals u(t) ∈ ℝm that generate the desired oscillations for x(t) ∈ ℝn. In this case, q̂ ∈ ℂnc is set to

q̂ ∶= col(p̂1,… , p̂m), p̂i ∶= 
rej�i ,
r ∶= col(ej', ej2',… , ejl'), ' ∶= 2�∕l, (14)
û ∶= B†(j!I − A)x̂, �i ∶= ∠ûi,

where the total number of neurons is nc ∶= ml, and 
 ∈ ℝ is the uniform amplitude of qi(t) for all i ∈ Inc .
The next section will describe a systematic method for solving Problem 2. The section that follows will address the structured

control design. In particular, Problem 2 is solved directly for the CPG parameter (M,G,H,L) instead of K with an additional
structural constraint on the design parameter. The whole design process will then be summarized.

3.2 General Unstructured Control Design
This section considers Problem 2 with no constraints on the controller structure. In this case, a complete solution for the

eigenstructure assignment is given in41. The essential result summarized below will be useful for checking feasibility of the
desired oscillation and for developing a baseline design before proceeding to the design of a distributed controller to achieve
multiple oscillations as described in the next section.
Theorem 1. 41 The following statements are equivalent.

(i) Problem 2 admits a solution (K, Q).

(ii) There exists a matrix U such that

AX + BU = XΛ. (15)

In this case, the controller1
[

u
�̇

]

=
[

U
Λ

]

� + S(s)(y − CX� ). (16)

solves Problem 2 with Q = col(I, 0), where S(s) represents an arbitrary linear time invariant system that internally stabilizes
the augmented plant C(sI − A)−1B with B ∶=

[

B −X
]

.

Condition (15) is called the regulator equation and its solvability for U is necessary and sufficient for the existence of u(t) that
makes x(t) oscillate as x(t) = ℜ[x̂ej!t]. The regulator equation is linear and can readily be solved for U whenever a solution
exists. The control input is then given by u(t) = ℜ[ûej!t] with û ∶= Ucol(1, j). In fact, an explicit formula for û can be given as
in (14).
A state space realization of the controller in (16) gives a solution to Problem 2 as

[

u
q̇o

]

= Ko

[

y
qo

]

, qo ∶=
[

�
xs

]

1The notation such as S(s)y in a time-domain equation means the inverse Laplace transform of S(s)Y (s) where Y (s) is the Laplace transform of y(t).
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where

Ko ∶=
⎡

⎢

⎢

⎣

Ds1 U −Ds1CX Cs1
Ds2 Λ −Ds2CX Cs2
Bs −BsCX As

⎤

⎥

⎥

⎦

, (17)

with the partitions in accordance with the dimensions of (u, y, qo), and

S(s) ∶=
[

Cs1
Cs2

]

(sI − As)−1Bs +
[

Ds1
Ds2

]

is the transfer function of a controller with state vector xs that stabilizes the augmented plant (A,B, C). The controller Ko
achieves the desired oscillation of x(t) for the linear closed-loop system (7) with the particular eigenmatrixQo = col(I, 0). This
means that the state qo(t) of the controller Ko converges as

� (t)→
[

r sin(!t + �)
r cos(!t + �)

]

, xs(t)→ 0

in the steady state, where (r, �) are parameters that depend on the initial state x(0). The speed of convergence is dictated by the
eigenvalues of the closed-loop system of the augmented plant (A,B, C) and the stabilizing controller S(s).
Given a phasor q̂ ∈ ℂnc for the target oscillation of the controller state q(t)with an arbitrary dimension nc ≥ 2, the eigenmatrix

Q is set by (12), and the controllerK that assigns the eigenstructure col(X,Q) and solves Problem 2 with the givenQ is obtained
as follows. First, design a controllerKo of order nc that assigns col(X,Qo), using a stabilizing controller S(s) of order nc−2 as in
Theorem 1. This step requires nc ≥ 2, and is easily done if nc ≥ n+ 2 using an observer-based controller S(s). The eigenmatrix
Qo for the controller state can be transformed into any other full column-rank matrix of the same dimensions through a similarity
transformation on the controller. Thus the next step is to obtain K from Ko through a state coordinate transformation q = Tcqo.
In particular, the similarity transformation matrix takes the form Tc = [Q N], where N is an arbitrary matrix that makes Tc
square invertible. The transformed controller is then given as K = TKoT −1 with T ∶= diag(I, Tc).

3.3 Structured Control for Multiple Eigenstructures
In this section, we consider Problem 2 with a constraint on the controller structure. Specifically, controller matrix K sought

in Problem 2 is seen as a linear function (9) of the parameter � ∶= (M,G,H,L) which is required to lie in a given set S. In
our formulation described below, the set S can be an arbitrary finite dimensional convex set, but of particular interest is the
case where certain entries of matrices (M,G,H,L) are constrained to be zero, which is useful for distributed CPG design. Our
method naturally extends to the design of a single structured controller to assign multiple eigenstructures to multiple plants.
Such design is relevant for construction of an adaptive CPG controller to achieve multiple gaits under varying environment.
These applications will be illustrated later by design examples.
The eigenstructure assignment in Problem 2 requires that the spectrum of the closed-loop system matrix A contains the

eigenvalues of Λ and all the remaining eigenvalues of A have negative real parts. We will first isolate the eigenspaces associated
with these two groups of the eigenvalues. Let (N,U,W) be any matrix triple determined from V such that

[

UT

WT

]

[

V N
]

=
[

V N
]

[

UT

WT

]

= I. (18)

Then, by a similarity transformation, we have
[

UT

WT

]

A
[

V N
]

=
[

Λ UTAN

0 WTAN

]

(19)

where condition (13) is used. Hence, the eigenvalue requirement on A is satisfied when WTAN is Hurwitz. The basic problem
then is to find � ∈ S such that WTA(�)N is Hurwitz and (13) is satisfied, where the dependence of A on � is made explicit.
With givenX andQ, constraint (13) is linear in � and defines a convex set of parameters � (denote this set by E). Therefore, the
problem is a special case of the following general structured stabilization problem with variable �, feasible domain F ∶= S∩E,
and characteristic matrix(�) ∶=WA(�)N.

Problem 3. Let F be a finite dimensional convex set, and (�) be a square-matrix function that depends affinely on � ∈ F .
Find a parameter � ∈ F such that matrix(�) has eigenvalues in the open left half plane.



Wu and Iwasaki 9

The structured stabilization problem is known to be extremely difficult, and we will suggest a heuristic solution method here
and demonstrate its utility by a design example later. Recall that all the eigenvalues of(�) have negative real parts if and only
if there exist a (sufficiently small) scalar " > 0 and symmetric matrix P such that

(I + "(�))TP (I + "(�)) < P , P = P T > 0. (20)

This condition is actually necessary and sufficient for the eigenvalues of (�) to be inside the circle of radius 1∕" with center
at −1∕", and easily follows from standard results on eigenvalue characterizations (e.g.57). Using the Schur complement and the
idea in43, it can be verified that the search for � and P satisfying (20) with a fixed small " > 0 can be reduced to

min
P ,R,�∈F

tr(PR) (21)

subject to
[

P I
I R

]

≥ 0,
[

P I + "(�)T
I + "(�) R

]

> 0. (22)

In particular, (20) is feasible for P and � ∈ F if and only if the minimum of this optimization problem is attained at P = R−1. The
constraints are convex, but the objective function is nonconvex, which makes the problem difficult. However, the linearization
algorithm in43 has been proven, through numerical experiments, to work well in practice for solving this class of optimization
problems.
The above formulation trivially extends to Problem 3 with the simultaneous stabilization setting. Suppose we seek a single

parameter � ∈ F such thatk(�) are Hurwitz for k ∈ Iℎ, where ℎ is an arbitrary positive integer. Then the optimization problem
can be modified so that the variables are �, Pk and Rk for k ∈ Iℎ, the objective function is the sum of tr(PkRk) over k ∈ Iℎ, and
constraints (22) are repeated ℎ times by replacing P , R, and (�) with Pk, Rk, and k(�) for k ∈ Iℎ. Again, the linearization
algorithm practically works for this extended problem as well, subject to the limitation due to the computing power.
Finally, the design framework described above will be useful for the distributed CPG design for multiple oscillations under

various environmental conditions, i.e., the design of a single set of controller parameters � in (2) to assign different limit cycles
(Xk,Λk) for different plants (Ak, Bk, Ck) with k ∈ Iℎ. In this case, different neuronal dynamics �k and oscillation profiles
Qk would facilitate the CPG design and the mapping in (9) would result in different Kk(�). Thus, the general problem is
the simultaneous assignment of multiple eigenstructures by a single controller parameter: Find � such that Ak(�) ∶= Ak +
BkKk(�)Ck for k ∈ Iℎ satisfy Ak(�)Vk = VkΛk and the eigenvalues of Ak(�) other than those of Λk are in the open left half
plane. This problem reduces to the simultaneous stabilization of k(�) for k ∈ Iℎ by a structured controller parameter � ∈ F ,
and can be formulated as a trace minimization similar to the one described above.

3.4 CPG Design Procedure
The following summarizes the steps to design an unstructured CPG controller to assign a single gait.

Design Procedure for an Unstructured Controller to achieve a Single Gait for Plant (A,B, C)

1. Specify desired oscillations xi(t) = ai sin(!t + bi) for plant (1) and set (X,Λ) as in (12) with x̂i ∶= aiejbi .

2. Set a controller order nc and choose a phasor q̂ ∈ ℂnc for a desired oscillation of q(t) so thatQ in (12) has full column rank.

3. Choose � > 0 and set � ∶= |q̂|.

4. Solve Problem 2 withQ fixed and findK through an application of Theorem 1. In particular, solve (15) for U , design S(s)
of order nc − 2 that stabilizes the augmented plant (A,B, C), and determine Ko by (16), or equivalently by (17). Choose
a matrixN that makes Tc ∶= [ Q N ] square invertible, and set K ∶= TKoT −1 with T ∶= diag(I, Tc).

5. Solve (9) for � ∶= (M,G,H,L) and the CPG controller is given by (2).

The target oscillation specified in step 1 is achievable if and only if (15) admits a solution U , and the feasibility should be
checked before proceeding further. The controller order nc in step 2 may be chosen as nc = n + 2 so that an observer-based
controller of order n can be used for the design of S(s) in step 4 to stabilize the augmented plant. A model reduction may be
performed on such S(s) to reduce the controller complexity, in which case nc can be smaller than n + 2 (as illustrated by an
example later). The amplitude 
 for q(t) should be chosen relative to the threshold nonlinearity  (qi). For  (qi) = tanh(qi), a
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small value (e.g. 
 = 0.1) would make the approximation of  by its describing function fairly accurate but a larger value (e.g.

 = 2) would speed up the convergence to the desired amplitude of oscillation by the nonlinear effect. We suggest to choose the
parameter � in step 3 to reflect the time constant for neuronal processing, which is roughly comparable to (or slightly less than)
the cycle period of target body oscillation. The transfer function S(s) can affect the rate of convergence to the desired phase of
oscillation. The parameterN is related to the sensory feedback to the CPG sinceH = �(QDs2 +NBs), and influences how the
CPG reacts to perturbations from the target orbit.

The next procedure summarizes the steps to design a structured CPG controller capable of assigning multiple gaits to multi-
ple plants that share the same numbers of actuators and sensors.

Design Procedure for a Structured Controller to achieve ℎ Gaits for Plants (Ak, Bk, Ck) with k ∈ Iℎ
1. Specify desired oscillations xk,i(t) = ak,i sin(!kt + bk,i) for plants in (1) with (A,B, C) replaced by (Ak, Bk, Ck), and set
(Xk,Λk) as in (12) with x̂k,i ∶= ak,iejbk,i and k ∈ Iℎ.

2. Set a controller order nc and choose q̂k ∈ ℂnc for k ∈ Iℎ so that Qk formed as in (12) has full column rank. For instance,
q̂k with nc = ml can be specified as in (14) from x̂k by choosing scalars 
k > 0 and a common integer l > 0.

3. Choose �k > 0 and set �k ∶= |q̂k|.

4. Let (Ak,Bk,Ck) andKk(�) be defined as in (8) and (9) using the parameters for k ∈ Iℎ, and setAk(�) ∶= Ak+BkKk(�)Ck,
where � ∶= (M,G,H,L). Let Vk ∶= col(Xk, Qk), set (Uk,Wk,Nk) so that the condition corresponding to (18) holds,
and definek(�) ∶=WkAk(�)Nk.

5. Let S be a set of matrices with structural constraints that specify the topology of the neural interconnections. With opti-
mization variables Pk, Rk for k ∈ Iℎ and � ∈ S, minimize the sum of tr(PkRk) over k ∈ Iℎ subject to k(�)Vk = VkΛk
and (22), where P , R, and (�) are replaced with Pk, Rk, and k(�) for k ∈ Iℎ, and " > 0 is a small scalar. The CPG
controller is given by (2) using the optimal �.

When multiple oscillations are to be achieved, the CPG would have to be complex enough to embed multiple limit cycles.
Increasing the number of neurons in each segment, l, may help in this regard, at the expense of increased computational burden
for the design. The neuronal time constants �k may be chosen comparable with the cycle periods of target oscillations, and can be
useful as a switching parameter for mode transition (see the next section). The cone complementarity linearization algorithm43

can be used to search for the solution of the optimization problem in step 5. If the optimization turns out to be infeasible, it may
help to increase l or relax S to allow for more neurons and their connections.

4 DESIGN EXAMPLE: UNDULATORY LOCOMOTION

4.1 Link-chain Model
We consider a nonlinear robotic system inspired by undulatory locomotion observed in such animals as snakes, eels, and

leeches. A dynamical model of such systems with planar motion has been developed in58,45,46, and is used for our study here. This
nonlinear model will be linearized assuming small body curvature with a constant locomotion velocity so that the development
in the previous sections can be applied to design a CPG controller. The design will be evaluated by simulating the closed-loop
system with the original nonlinear plant model. This section provides a brief summary of the model.
The slender body is represented by a chain of identical n rigid links with flexible joints (Fig. 2, bottom). Each joint is actuated

by a torque input and each link is subject to the force from the environment that resists the motion. We consider locomotion
along a fixed direction, and take an inertial (x, y) frame so that the x-axis is aligned with the direction of travel. Let �(t) ∈ ℝn

be the link angles measured with respect to the x-axis, u(t) ∈ ℝn−1 be the joint torque inputs, and v(t) ∈ ℝ be the velocity
of the center of gravity (CG) of the whole body along the x-axis. With the assumption that link angles �i are small and the y
component of the CG velocity is negligible, the equations of motion can be expressed in the following form:

J�̈ +D�̇ + (vΛ + �I)� = u,
J'̈ +D'̇ + vT� = 0,
mv̇ + d(�,')v + (�̇TΛ + '̇T)� = 0,

(23)
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FIGURE 2 Link-Chain System Controlled by Distributed CPG

which are nonlinear, keeping up to the quadratic terms of the variables that are assumed small, where

d(�,') ∶= nct + nco(' − ℎT�)2 + co‖T�‖2,

and �(t) ∈ ℝn−1 and '(t) ∈ ℝ are the joint angles and body orientation defined by

� ∶= BT�, �o ∶= eT�∕n, ' ∶= �o + ℎT�.

Here, the constant coefficient parameters are specified in terms of the joint stiffness �, the link mass mo and half length lo, and
tangential and normal drag coefficients cn and ct, as follows:

BT =
[

I o
]

−
[

o I
]

, AT =
[

I o
]

+
[

o I
]

,
J = mol2o(I∕3 + F

TF ), T = B(BTB)−1, F = TAT,
Λ = coloF T, co = cn − ct, ℎ = J12J−122 ,
[

J11 J12
J21 J22

]

∶=
[

T T

eT

]

J
[

T e
]

,

J = J11 − ℎJ21, D = (cn∕mo)J, = ΛT
21,

Λ = Λ11 − ℎΛ21, D ∶= (cn∕mo)J, J = J22,

where o ∈ ℝn−1 and e ∈ ℝn are vectors with all entries equal to zero and one, respectively, and Λij are defined in a manner
similar to Jij for i, j = 1, 2.
For the parameter values of the link-chain model, we use the typical properties of a leech46 with length l = 10 cm, width

d = 1 cm, and weight m = 1 g. Since each link is assumed to be identical, each individual link has half length lo = l∕(2n) and
mass mo = m∕n, where we assume n = 6 links. The stiffness for each joint is set to � = 4.26 (mN⋅cm)/rad, which was chosen
such that the flexible body would have a natural frequency at 3 Hz as roughly observed in leeches15. We consider two different
fluid environments for leech swimming: water and methyl cellulose, where the latter has viscosity 400 times higher than the
former. Using a simple model of hydrodynamic forces in46, the fluid drag coefficients are given by (cn, ct) = (8.08, 0.47) in water
and (cn, ct) = (1.56, 1.17) in methyl cellulose.

4.2 Target Oscillations and Control Framework
The leech swims by undulating its body, sending traveling waves from head to tail. The body shape change, or the gait, is

specified by the frequency !, amplitudes ai, and phases bi of the joint angles �i(t) ≅ ai sin(!t + bi) for i = 1,… , 5. We set the
desired oscillation profile for the control design based on observational data from real leeches swimming in water and methyl
cellulose15. A typical gait in water is given in Table 1, where the amplitude increases and the phase decreases toward tail (link
1 is tail and link 6 is head). Also indicated are the amplitudes and phases of the control input u(t) that generates the given target
gait �(t). The phasor û is estimated from (23) as

û = (−!2J + j!D + voΛ + �I)�̂, �̂i ∶= aiejbi ,

where vo is the average of the swim speed v(t) resulting from the gait �(t). Table 2 shows the data for a typical gait in methyl
cellulose, where the phase shift between joints is larger, indicating a smaller wavelength of the body curvature waves. With the
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slightly reduced undulation frequency, the resulting swim speed is much smaller than that in water due to the increased viscous
drag.

TABLE 1 Target Oscillation Profile in Water

�1 �2 �3 �4 �5
Amplitude [deg] 34.00 32.75 31.50 30.25 29.00
Phase [deg] 0 60.0 120.0 180.0 240.0

u1 u2 u3 u4 u5
Amplitude [mN⋅cm] 190 75 233 324 280

Phase [deg] -10.0 100.2 183.4 215.2 248.4
Frequency: ! = 3 Hz, Swim Speed: vo = 15.6 cm/s

TABLE 2 Target Oscillation Profile in Methyl Cellulose

�1 �2 �3 �4 �5
Amplitude [deg] 34.00 32.75 31.50 30.25 29.00
Phase [deg] 0 90.0 180.0 270.0 360.0

u1 u2 u3 u4 u5
Amplitude [mN⋅cm] 249 222 215 228 222

Phase [deg] -1.7 89.0 185.0 274.9 360.9
Frequency: ! = 2 Hz, Swim Speed: vo = 0.24 cm/s

We will design controllers for the leech model to achieve one or both of the target oscillations. The overall closed-loop
system is depicted in Fig. 3, where the local and global motion blocks represent the equations of motion for � and (', v) in
(23), respectively, and the CPG block represents the dynamics in (2) with sensory input of joint angles, y ∶= �, which may
correspond to proprioceptive feedback of muscle strain. When the body shape �(t) changes periodically, the locomotion velocity
v(t) will oscillate with a nonzero average value, vo, in general. The controller will be designed using the local motion model
(i.e. the first equation in (23)) with a constant velocity v(t) ≡ vo, which defines the linear time-invariant plant in (1) with state
x ∶= col(�, �̇). The phasor �̂ and frequency ! specified in each of Tables 1 and 2 define the target eigenstructure for the plant
(X,Λ) as in (12) with x̂ ∶= col(�̂, j!�̂). The methods for eigenstructure assignment described in the previous section are then
applied to obtain controllers. We will first design a centralized controller to achieve the nominal gait in Table 1, and then design
a distributed controller, of the structure shown in Fig. 2, that achieves either of the two gaits in Tables 1 and 2, depending on the
value of the time constant �. Finally, an adaptation mechanism for � will be added to the latter controller to allow for autonomous
gait transition in accordance with the changing environment, in which case, there will be an additional exteroceptive sensory
feedback of the locomotion speed v to the CPG block in Fig. 3. The designs will be evaluated by simulating the closed-loop
system with the entire nonlinear dynamics in (23) for the plant.

4.3 Centralized CPG for Nominal Gait in Water
In our first example, we utilize the Design Procedure for an Unstructured Controller described in Section 3.4 to obtain a

feasible controller that assigns the gait for the leech in water. More specifically, we design a feedback controller (2) such that the
profiles of the closed-loop oscillations for �(t) and u(t) are approximately given by the phasors �̂ and û in Table 1. We define the
dynamics of each neuron by a low-pass filter with time constant � = 0.2 s, which is typical for neuronal processes. We choose
the total number of controller states equal to the number of actuators, i.e., q(t) ∈ ℝ5. The target phasor for the controller state
q(t) is set to have uniform amplitude 
 = 1 and phases aligned with the target input u(t), that is, q̂i = 
ej∠ûi , which is a special
case of (14) with l = 1.
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FIGURE 3 Locomotion System with CPG Control

The controller is designed as follows. First, the desired eigenstructure (X,Q,Λ) is set as in (12) with x̂ ∶= col(�̂, j!�̂).
Second, an observer-based stabilizing controller S(s) in (16) is designed for the augmented plant (A,B, C). The stabilizing
controller S(s) is chosen to be the LQG controller with all the weights in the cost function and noise covariances equal to
identity matrices. The resulting controller S(s) turned out to be a stable 10th order system, and was transformed into the balanced
realization and then truncated to retain 3 states only so that the overall linear controller Ko in (17) has 5 states due to the
addition of the internal model dynamics involving Λ. A state coordinate transformation q = Tcqo is then performed on the
state qo ∶= col(�, xs) of Ko so that the target phasor q̂ is achieved for the state q of the resulting controller K. The similarity
transformation matrix is Tc = [Q %N], where N is chosen so that its columns form an orthonormal basis for the null space of
QT, and % = 100. Finally, the CPG parameters are found by solving (9) for (M,H,G,L) where � ∈ ℝ5 is the vector with all
entries equal to 
 = 1.
The closed-loop system of (23) and (2) is simulated to evaluate the control design. The initial condition is set so that the slender

body is straight at rest and aligned with the x-axis (�(0) = �̇(0) = 0 and '(0) = v(0) = 0), and the CPG states are all equal to
one (q(0) = col(1,… , 1)). The result for the first 3 seconds is plotted in Fig. 4. The oscillations converge within several cycles
and the velocity eventually converges to an average value of 14.7 cm/s. Although the controller design was performed using a
simplified linear time-invariant model that assumed a constant velocity v(t) ≡ vo, the nonlinear simulation which included the
entire nonlinear dynamics in (23) saw approximate entrainment to the desired velocity.
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FIGURE 4 Closed-Loop Simulation in Water Environment

The amplitudes, phases, and frequency of the first harmonic component of the oscillation profile obtained through Fourier
analysis are tabulated in Table 3. We see that the simulated steady state behavior of body shape �(t) is fairly close to the desired
values in Table 1 for each specification. The phases of the CPG states q(t) are roughly aligned with those of the control input u(t)
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as designed. Thus we conclude that the proposed CPG design method based on Theorem 1 is effective in achieving the desired
gait for the undulatory locomotion system.

TABLE 3 Oscillation Profile in Water with Controller (16)

�1 �2 �3 �4 �5
Amplitude [deg] 32.13 30.29 28.43 27.50 26.86
Phase [deg] 0 58.3 119.3 180.7 241.3

q1 q2 q3 q4 q5
Amplitude 0.91 0.92 0.89 0.88 0.92
Phase [deg] -10.4 101.0 187.1 214.3 249.5

u1 u2 u3 u4 u5
Amplitude [mN⋅cm] 176 70 216 302 261

Phase [deg] -8.8 101.3 184.7 216.6 249.7
Frequency: ! = 3.12 Hz, Swim Speed: vo = 14.7 cm/s

4.4 Distributed CPG for Adaptive Gaits
For this design example, we apply the Design Procedure for a Structured Controller described in Section 3.4 to obtain a

feasible controller to assign the oscillation profiles for the link-chain model in both water and the methyl cellulose as specified
in Tables 1 and 2. If we interpret each assigned eigenstructure as a different gait for a mechanical system and different plants
as variations in the environment, then the design of a single controller that can achieve different limit cycles for different plants
would imply an adaptation property embedded in the controller.
In the design, we constrain the controller to have a distributed architecture as shown in Fig. 2. A segmental oscillator (green

circle) consisting of four neurons (yellow circles) is placed for each joint, directly communicating with its immediate and second
neighbors (red arrows). The chain of oscillators, with 20 neurons all together, forms a CPG with state vector q(t) ∈ ℝ20. Each
segmental oscillator collects sensing information (�i) from, and sends actuation signals (ui) to, its neighboring joints (black
lines). The controller is thus described by (2) with the added condition that the matrix parameters (L,G,H,M) all have a block
penta-diagonal structure. For example, the neuronal connectivity matrix,M , is constrained to have the following structure,

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M11 M12 M13 0 0
M21 M22 M23 M24 0
M31 M32 M33 M34 M35
0 M42 M43 M44 M45
0 0 M53 M54 M55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

whereMii specifies the interconnections of the neurons within one segmental oscillator andMij for i ≠ j specifies the intercon-
nection between the segmental oscillators; the structures of L, G, andH are defined similarly, except that Lij ∈ ℝ, Gij ∈ ℝ1×4,
andHij ∈ ℝ4×1, whileMij ∈ ℝ4×4. This defines the structured set S introduced in Section 3.3.
The target phasor for the controller state q̂ ∈ ℂ20 is specified as described in (14), where the number of segmental oscillators

is m = 5, and the number of neurons within each segment is l = 4. The phases within each segmental oscillator are equally
spaced over 2�, while the intersegmental phase shifts are aligned with the control input u(t) ∈ ℝ5. For the two gaits in water
and methyl cellulose, two target phasors q̂ are obtained using the û described in Tables 1 and 2. The oscillation amplitude for
the target q(t) is set to 
 = 1.5 for both cases in order to obtain a fair approximation of the desired oscillation while remaining
in the nonlinear zone of the describing function.
The two sets of eigenstructures Vk ∶= (Xk, Qk) and Λk are thus specified for the target gaits in water (k = 1) and methyl

cellulose (k = 2). Since the undulation frequencies of the target gaits are different, we will set different time constants � for the
CPG controller, allowing for gait transition by simply switching the value of � in accordance with the given fluid environment.
Specifically, we use � = 0.2 s in water and � = 0.3 s in methyl cellulose. The different � values give different mappingKk(�) in
(9). The closed-loop matrices Ak(�) for k = 1, 2 are defined as in (7), together with the plant models (Ak, Bk, Ck) obtained from
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the first equation in (23) with the two sets of values for (cn, ct) and v(t) ≡ vo. A controller is then designed by numerically solving
the trace optimization as described in Section 3.3. In the example that follows, we perform the controller search with " = 0.01.

4.4.1 Steady-State Oscillation Profiles
To first test whether the designed controller achieves convergence to each of the target oscillation profiles, we simulate the

nonlinear closed-loop system of (23) and (2) to start from initial conditions with zero plant states (�, �̇, ', '̇, v) and random
controller states q. Simulations are run in water and methyl cellulose environments, where the plant and controller model param-
eters are identical for both cases except that the values of (cn, ct, �) are (8.08, 0.47, 0.2) in water and (1.56, 1.17, 0.3) in methyl
cellulose.
Figure 5 (top) gives the steady state oscillations of the joint angles �i(t) in a water environment. The amplitudes, phases, and

frequency of the first harmonic component of �(t) obtained through Fourier analysis are shown below in Table 4. While the
oscillation profile does not match exactly with respect to amplitude, the frequency of oscillation and phases match very closely
to the desired profile. Even in the case of amplitude, all the amplitudes are within 20% of desired and share a similar pattern of
increasing amplitudes from head to tail. Also shown in Fig. 5 are some of the controller states qi(t). The amplitudes are roughly
uniform with magnitude approximately equal to 
 = 1.5 as designed. The middle plot indicates the controller states for the first
neuron of every segmental oscillator. The phase shifts between segments are close to those of û in Table 1. The bottom plot shows
the controller states within the first segmental oscillator, where the phases are equally spaced over 2�, confirming effectiveness
of the design method. The nominal velocity obtained through simulation is lower than the desired nominal velocity of 15.6 cm/s
by roughly 10% at 13.93 cm/s. Thus, the controller designed roughly approximates the desired specifications for the link-chain
system in water.
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FIGURE 5 Simulated �(t) and q(t) in Water Environment

TABLE 4 Oscillation Profile inside Water Environment using Multi-gait Structured Controller

�1 �2 �3 �4 �5
Amplitude [deg] 29.67 27.85 25.46 24.29 24.49
Phase [deg] 0 59.56 118.4 179.0 235.3
Frequency: ! = 3.13 Hz, Swim Speed: vo = 13.9 cm/s

The same controller with the adjusted � value functions even better in meeting the specification for the case where the link-
chain system is placed in methyl cellulose as evidenced in Fig.6. With the change in the plant to replicate a different fluid
environment, the oscillation profile changes to match the one prescribed for methyl cellulose. Table 5 gives specific numbers
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regarding the simulated oscillation profile of the link-chain model in the high-viscosity environment. A comparison with Table 2
reveals that the controller achieves the prescribed oscillation better in methyl cellulose than in water. Every amplitude is within
5% of the desired value with the phases and frequency of oscillation following a similar trend. Because the oscillation profile of
the nonlinear simulation so closely matches that of the designed profile, the simulated velocity also closely matches that of the
desired, deviating by under 10% at 0.223 cm/s.

4 4.2 4.4 4.6 4.8 5
−50

0

50

4 4.2 4.4 4.6 4.8 5
−2

0

2

4 4.2 4.4 4.6 4.8 5
−2

0

2

φ(t)
[deg]

qi(t)
i=1,5,
9,13,17

qi(t)
i=1,
2,3,4

Time [s]

FIGURE 6 Simulated �(t) and q(t) in High-Viscosity Environment

TABLE 5 Oscillation Profile inside Methyl Cellulose using Multi-gait Structured Controller

�1 �2 �3 �4 �5
Amplitude [deg] 34.67 32.63 31.34 29.07 29.24
Phase [deg] 0 92.76 180.3 276.2 362.9
Frequency: ! = 1.97 Hz, Swim Speed: vo = 0.223 cm/s

Snapshots for the body shape of each of these gaits over one period is given in Fig. 7, where the time elapses from top to
bottom. The horizontal shift of the body location indicates progression due to swimming to the right, which is visible in water
but invisibly small in methyl cellulose due to high viscosity. The wavelength of the body undulation is roughly equal to the body
length in water, but it is reduced in the high viscosity fluid. It should be noted that these snapshots of the closed-loop link-chain
model, obtained through designing a single structured controller to assign two different gaits, very closely match the observed
gaits of biological leeches in water and methyl cellulose15, the data of which is used to set the target gaits.
In biology, the neuronal CPG circuits are nonlinear oscillators by themselves when isolated from the body dynamics, exhibit-

ing patterned oscillations resembling observed kinematics15. In our control design, we specified the oscillation profile of the
closed-loop system, but did not explicitly require the controller (i.e. CPG) by itself to be an oscillator. However, when the
designed CPG controller with � = 0.2 s is simulated without sensory feedback (H = 0, L = 0) with a nonzero initial state, the
state q(t) was found to converge to a stable limit cycle, and the resulting control input u(t) oscillates as shown in Fig. 8. Thus,
the controller alone is an oscillator with a specific phase/amplitude property, justifying that it can indeed be called a CPG. The
oscillation profile of u(t) is similar to but different from that of the closed-loop simulation. In particular, the phase lag from head
(purple) to tail (blue) is much larger with sensory feedback (note the spread of the peak locations), which is consistent with
observations from the intact and isolated nerve cords of leeches59,47,15. Thus, the proposed design method yielded the biological
control architecture of a nonlinear oscillator (CPG) placed in a feedback loop, with some similarity in the phase property. We
also found that, if the open-loop CPG control is applied, the resulting body undulation becomes almost standing waves in both
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FIGURE 7 Snapshots of One Cycle of the Simulated Leech Gait in Water (left) and Methyl Cellulose (right)

water and methyl cellulose, with much larger body curvature in the latter fluid. Thus, the gait can change due to the environ-
mental factor alone, but the particular gaits observed in biology appear to be a result of intricate mutual entrainment of the CPG
and the surrounding physical dynamics where sensory feedback plays a crucial role. However, details of the neural control (e.g.
the number of neurons, network topology, synaptic weights, afferent signals) are not captured by our controller, and biological
implications of our design method need more careful investigation.

FIGURE 8 CPG Control Input u(t) with (top) and without (bottom) Sensory Feedback

4.4.2 Gait Transition
The previous section showed that the structured controller entrains to both designed oscillation profiles in the steady state.

This section tests whether the CPG-based controller exhibits adaptive behaviors similar to that observed in biological CPGs,
namely, the ability to change gaits when exposed to different environments. To enable autonomous gait transition, we need an
adaptation mechanism to adjust the time constant � in the CPG controller in accordance with the environment. Such mechanism
may be implemented in various ways depending on the available sensing information. While full exploration of possible options
is out of the scope of this paper, here we assume availability of a swim velocity measurement. The time constant � in the CPG
controller is adjusted in real time by

� = 0.25 − 0.05 tanh(v − 3).

This mechanism allows for autonomous transition of � between 0.2 s at high speed and 0.3 s at low speed where the threshold
velocity is v = 3 cm/s. The idea is to use the nominal gait (Fig.7, left) when swimming near the nominal velocity v = 13.9
cm/s, and transition to the other gait (Fig.7, right) when the nominal gait results in a swim speed lower than the threshold due
to the change of the environment. The steady state speed achieved by the controller with � = 0.3 in water is about v = 5.7 cm/s,
and the speed with � = 0.2 in methyl cellulose is about v = 1.0 cm/s. The threshold v = 3 cm/s is chosen to be a value in the
interval 1.0 < v < 5.7.
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FIGURE 9 Closed-Loop Simulation for Gait Switching

We simulated the controller with the � adaptation mechanism applied to the link-chain system in water and then, after the
profile reached near the steady-state orbit we switched the plant model to the one representing the link-chain system in methyl
cellulose to emulate a change in environment. The results of this simulation are given in Fig. 9, where the switching of the
environment occurs at t = 2 s. The automatic adaptation of � is also indicated by the red curve in the bottom plot where
100(� − 0.2) is shown to fit the curve on the same scale. Starting with v = 0 in water, the controller with � ≅ 0.3 accelerates
the body to go beyond the velocity threshold and smoothly transitions to the mode with � ≅ 0.2, resulting in the nominal gait in
water. When the body enters the high viscosity environment at t = 2, it decelerates down below the velocity threshold due to the
large drag. As a result, the controller transitions back to the mode with � ≅ 0.3, and the oscillation converges to the target gait
in methyl cellulose within several cycles. If the adaptation mechanism is removed and the controller is fixed with time constant
� = 0.2, then the swimming body struggles with a large undulation (max�i(t) ≅ 55o) using a large control input (max ui(t) ≅ 39
mN⋅mm) in the steady state. Thus, the autonomous gait transition is effective for keeping the control effort at a reasonable level.
From this example, it is clear that the proposed eigenstructure assignment method can be applied, with an additional parameter

adaptation mechanism, to the design of a single distributed controller that can change gaits depending on the plant. More-
over, since a variation in the plant can represent a change in the environment, the design capability allows for the controller
to autonomously change gaits depending on variations in environments. Although the proposed design method for multi-gait
eigenstructure assignment relies on the trace minimization for which global convergence is not guaranteed, the example provided
above shows that the problem is certainly feasible and the method can be practically useful.

5 CONCLUSION

In this paper, we considered the design of a controller to replicate the functionality of the central pattern generator, a collec-
tion of neurons responsible for animal locomotion. This problem was formulated as the design of a nonlinear controller for a
linear plant to assign a stable limit cycle to the closed-loop system. This was approximately reduced to the search for a linear
controller to assign a pair of eigenvalues and corresponding eigenvectors to achieve coordinated oscillations. We have shown
how an eigenstructure assignment theory from the literature can be applied to the design of feedback controllers with the CPG
architecture. An example was given to demonstrate the efficacy of the proposed method by designing a CPG-based controller
for a link-chain model in order to replicate the observed gait of biological leeches in water.
The method for designing a CPG-based controller was further expanded to encompass the assignment of multiple gaits by

a single controller of a prescribed distributed structure, to cope with varying dynamics in the environment. This problem was
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reduced, essentially, to the search of a single structured controller to simultaneously assign multiple eigenstructures for multiple
plants. We provided an example in which a single structured CPG-based controller was designed to assign the observed gaits
of biological leeches in water and high-viscosity fluid (methyl cellulose). The simultaneous eigenstructure assignment with
an additional adjustment of the neural time constant yielded a closed-loop system that exhibited adaptive behavior similar to
that observed in biological CPGs. Specifically, numerical simulations confirmed that the CPG-based controller was capable of
switching between the two designed gaits when the plant was changed to reflect a change between the two fluids.
While we demonstrated that eigenstructure assignment can be used for effective design of CPG-based controllers, more

research must be performed to expand on this result. In particular, we do not provide a rigorous theoretical guarantee for exis-
tence and stability of the limit cycles in the closed-loop system. The method of harmonic balance is approximate and could fail
to produce stable oscillations. Furthermore, the proposed method for multi-eigenstructure assignment is based on a numerical
optimization, which is computationally demanding and may not be practical for high-complexity problems with large numbers
of neurons, plant state variables, and target limit cycles. Future research efforts should address these issues.
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