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Abstract: The field of structural health monitoring (SHM) faces a fundamental challenge related to
accessibility. While analytical and empirical models and laboratory tests can provide engineers with
an estimate of a structure’s expected behavior under various loads, measurements of actual buildings
require the installation and maintenance of sensors to collect observations. This is costly in terms
of power and resources. MyShake, the free seismology smartphone app, aims to advance SHM by
leveraging the presence of accelerometers in all smartphones and the wide usage of smartphones
globally. MyShake records acceleration waveforms during earthquakes. Because phones are most
typically located in buildings, a waveform recorded by MyShake contains response information from
the structure in which the phone is located. This represents a free, potentially ubiquitous method
of conducting critical structural measurements. In this work, we present preliminary findings that
demonstrate the efficacy of smartphones for extracting the fundamental frequency of buildings,
benchmarked against traditional accelerometers in a shake table test. Additionally, we present
seven proof-of-concept examples of data collected by anonymous and privately owned smartphones
running the MyShake app in real buildings, and assess the fundamental frequencies we measure. In
all cases, the measured fundamental frequency is found to be reasonable and within an expected
range in comparison with several commonly used empirical equations. For one irregularly shaped
building, three separate measurements made over the course of four months fall within 7% of each
other, validating the accuracy of MyShake measurements and illustrating how repeat observations
can improve the robustness of the structural health catalog we aim to build.

Keywords: smartphones; structural health monitoring; fundamental frequency; MyShake;
seismology; shake table

1. Introduction

Structural health monitoring (SHM) performed via the vibration response of built
structures is a well-developed field [1–3]. Nonetheless, the ’barrier to entry’ associated
with the instrumentation of buildings and infrastructure presents a significant challenge to
actually monitoring structures around the world. Traditional monitoring projects require
permits, the installation of specialized sensors, and ongoing maintenance, all of which are
costly in terms of time, human power, and resources [4]. Consequently, only a minuscule
fraction of all buildings is actually instrumented. For example, there are only ∼340 instru-
mented buildings in California for which records are available in the Center for Engineering
Strong Motion Data (CESMD) database [5].

The use of personal smartphones as vibrational sensors represents a novel solution [6–8]
as smartphone ownership is becoming increasingly globally ubiquitous [9]. With an es-
timated 6.6 billion smartphone subscriptions globally in 2022 [10], smartphones are in-
creasingly likely to be found in most buildings, particularly in urban areas. Previous work
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evaluating smartphones for SHM has used dedicated phones fixed in specific locations [8,11],
leveraged the phone camera for visual damage inspection [12], used the onboard GPS to de-
tect large ground motions [13], enabled individual researchers to view vibrational frequency
content [7,14,15], or experimentally estimated smartphone performance using a mechanical
shaking apparatus [8,16–18]. The MyShake project seeks to capitalize on the ubiquity of
personal smartphones by employing their in-built accelerometers to crowd-source data
related to the frequency response of real buildings during earthquakes. Data collection using
citizen science holds major potential to exponentially increase the number of instrumented
buildings.

MyShake is a free app that has been available publicly and globally on Android phones
since 2016 and on iPhones since 2019. As of August 2023, MyShake has been downloaded
over 2.7 million times by mobile users (Figure 1). While other SHM and earthquake smart-
phone apps have been launched or are under development (e.g., [7,12,14,15,19]), MyShake
is distinct in two ways. First, it employs an auto-collection strategy (described below) that
captures the vibrational data without requiring user intervention. Second, MyShake offers
additional user-centered features beyond its citizen science functions to encourage broad
usership beyond users/researchers specifically motivated to participate in seismology or
SHM efforts. Users can access real-time earthquake information, submit and view commu-
nity damage reports, and obtain safety and preparedness information [20,21]. The app has
gained significant traction in the US states of California, Oregon, and Washington, where
it delivers ShakeAlert earthquake early warnings [22]. These features not only facilitate
the app’s continued growth but also portend a scalable global SHM system that can be
implemented at the cost of only app development and server maintenance.

Figure 1. A global map of the distribution of MyShake downloads, marked in cyan points, since the
app’s initial release in February of 2016, current as of June 2023.

Initial observations of MyShake’s potential for SHM are detailed in Kong et al., 2018 [16],
in which phones were set to record vibration continuously at a fixed location on the top
floor of a building equipped with a rooftop mechanical shaker. In the present paper, we
further validate MyShake’s capabilities in a series of shake table tests, and demonstrate
the app’s operation in field conditions. In field conditions, smartphones belonging to
private users are placed arbitrarily within a building and spontaneously triggered to record
an accelerometer waveform. The uploaded waveform data are then used to extract the
structure’s fundamental frequency. Our results, therefore, represent a proof of concept for
MyShake’s capability to be leveraged for large-scale near-real-time SHM.

In Section 2 of this paper, we describe the sensor capability of MyShake smartphones
and our methodology for collecting and analyzing the frequency content of MyShake’s
seismic data. In Section 3, we present the results of a validation experiment performed at
a shake table facility. In Section 4, we present real data collected on user smartphones. A
discussion of our results and a summary of our conclusions occur in Sections 3.3, 4.3 and 5.
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2. MyShake Smartphones as Sensors
2.1. Sampling Rate

MyShake leverages the triaxial MEMS accelerometer built into smartphones to record
vibrations. Capabilities and limitations inherent to this hardware relative to a traditional
higher quality seismic sensor have been explored previously [23–25]. Specifications vary
by manufacturer and phone model but, in general, have improved in quality over time. For
example, the average sampling rate in accelerometer recordings MyShake made between
2016 and 2018 was 25 Hz. More recent recordings average 50 samples per second. As a
result, the Nyquist frequency used to limit phone waveform analysis in this paper will vary
based on sample rate (12.5 for the 25 Hz records and 25 for the 50 Hz records). Since we
expect the majority of buildings to have a fundamental frequency of about 10 Hz or less,
smartphones are quite capable of capturing the information required for characterizing a
building’s dynamic characteristics [26]. We can also compare the signal captured at this
lower rate to that recorded by a better-quality reference accelerometer—in this case, a TE
Connectivity Model 3022 accelerometer—which has a sampling rate of 200 Hz [27]. The
lower sampling rate of phones does cause small differences in the observed peak amplitude
values, but overall, we find very good agreement between the waveforms (Figure 2).

Figure 2. Horizontal component waveforms snippets recorded by phones at 50 Hz compared to those
recorded by a co-located high-quality reference sensor (a TE Connectivity brand MEMS accelerometer)
at 200 Hz during simulated earthquake motions on a shake table. Phone data have been demeaned
and resampled.

2.2. Noise Floor

Smartphone accelerometers typically have a higher noise floor than dedicated seis-
mometers, which reduces sensitivity [7,23]. This was first quantified for MyShake in 2016
with typical smartphones released between 2010 and 2013 [23]. The average internal ma-
chine noise amplitude for those phones was around −40 decibels (dB). Here, we again
measure the noise floor with more recent phone models. We use 2 smartphones from
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2017 (Google Pixel 2 and Samsung Galaxy S8) and 4 from 2021 (Samsung Z Flip, Samsung
Galaxy s21, Google Pixel 6, and Motorola Moto G100). All 6 were set on an isolated concrete
pier adjacent to the traditional observatory quality seismic station BRK on UC Berkeley’s
campus, which is part of the Berkeley Digital Seismic Network (BDSN), and left to record in
quiet conditions for 1 h (Figure 3). In this test, we find a ∼35 dB reduction in noise relative
to the previous study, with an average amplitude around −75 dB. Smartphone noise from
different models has greater variability in low frequencies (about −50 to −80 dB) and less
(around −78 to −85 dB) in the high-frequency range.

Figure 3. A power spectral density plot that averages over 1 h recordings on three components for
several smartphones and the BKS seismic station. The seismic station noise for all components is
represented by the dashed and dotted purple lines. The green lines represent the high and low noise
model [28].

This noise floor improvement is especially dramatic when put into the context of the
dB scale, which expresses power spectral density (PSD) per Hz, relative to 1 (m/s/s)2

(e.g., a power unit). We assume the noise signals are random and uncorrelated. Decibels
(for power) is equal to 10log10(

power
powerre f

), and therefore the observed 35 dB reduction in the
new experiment equates to a ∼3200 times reduction in noise power. Noise reduction can
also be attained via signal stacking, with the amplitude change inversely proportional
to
√

N, where N is the number of time series. Put another way, the signal from 56 older
2010–2013 phones would need to be stacked in order to reduce the noise by 3200 times and
achieve the same noise level as a new model phone. As smartphone technology continues
to evolve, we anticipate further improvements to the accelerometer noise floor.

2.3. Timestamp

The waveforms collected by phones also depend on the internal clock of the phone to
label their timestamps. The MyShake app prompts phones approximately every hour to
compare their clocks to a network time protocol (NTP) server and report both the round-trip
time required to ping the NTP server and the offset between phone and server clock times.
MyShake is unable to change a phone’s clock. Instead, we can interpolate between NTP
reports to correct waveform timestamps before analysis. An initial analysis of 6 million
NTP reports in 2018 found that phone clocks varied from NTP server times by up to 1.4 s
75% of the time [25]. The difference in reported clock error from one NTP report to the next
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was within 0.132 s for 75% of samples. We consider this ‘offset change’ an upper boundary
on how accurate MyShake timestamps become when NTP reports are used to correct them.

We later updated our 2018 analysis using 14 million new NTP checks recorded on a
random selection of 26 days between February 2022 and February 2023. We find that 50%
of queries report an internal clock error better than 0.710 s, and 75% were better than 1.23 s.
While these absolute offsets are fairly consistent with the 2018 values, the distribution
of the errors is improved (Figure 4). In the new analysis, 50% of offsets changed by less
than 32 ms (very similar to the 27 ms median in 2018), but the tail is much shorter; 85%
of offsets change less than 111 ms, compared to 330 ms in 2018. The typical MyShake
waveform is 5 min long. With the target interval between NTP checks set at 1 h, a median
deviation of 32 ms spread over the course of 60 min is expected to exert negligible influence
on the sampling accuracy within a given waveform. Therefore, we expect no error to be
introduced by sampling accuracy to the frequency spectra and the corresponding natural
frequency identifications that we discuss in the following sections.

Figure 4. Accuracy of MyShake trigger and waveform timestamps, as represented by the change
in reported offsets from NTP server time. Data are extracted from 26 random days of NTP checks
between February 2022 and February 2023, resulting in 14 million data points from 58,000 phones.
The colored lines mark the 85th, 90th, 95th, and 99th percentiles. Shown is 99.8% of the range. Note
that the vertical axis is logarithmic and begins at 102.

2.4. Location

An experiment reported in the study of Kong et al., 2019 [25] referenced earlier found
75% of phone GPS location accuracy varied within 28.8 m horizontally and 11.4 m vertically
(3–4 stories in a typical building), based on a comparison of phone-reported locations and a
ground-truth location (Figure 5; [25]). Phones also self-report estimated accuracy (defined
by Android as the radius within which there is a 68% chance the phone is located [29]) with
their location data. This tends to be similar but not identical to our measured error; in the
same test, the 75th percentile of phone-reported horizontal accuracy was 20.8 m. For the
purpose of this study, we restrict our analysis to phones with a self-reported error of 30 m
or less, and use waveforms where a circle defined by the provided latitude and longitude
and error radius substantially encapsulates the footprint of a building, or if the circle only
meaningfully intersects with a single building (e.g., that building is surrounded by enough
empty space that phone is not likely to be located anywhere else).
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Figure 5. Accuracy of smartphone location using global positioning system (GPS) points reported
with MyShake triggers and seismic waveforms, both (a) horizontal and (b) vertical. Ten phones
were placed on a second-floor windowsill facing into a partially sheltered courtyard and periodically
prompted to collect a spontaneous trigger and record a waveform. The resulting 98 GPS points cluster
closely around the true location, both horizontally and vertically.

2.5. Recording Conditions

The MyShake app records vibrations only when the accelerometer is not already
in motion. When a phone is left stationary for 30 min, the app begins monitoring the
accelerometer while retaining a one-minute buffer window of data. Phones can both be
remotely and internally triggered to record a 5 min waveform (4 min after the trigger in
addition to the 1 min buffer) and upload these data to MyShake’s central server for analysis.
Internally, the app runs an onboard machine learning algorithm that can detect sudden
earthquake-like motion and trigger recording [23]. The MyShake backend server can also
trigger ‘ready’ phones to record. All ShakeAlert earthquake early warning alerts sent to
MyShake phones trigger recordings, in anticipation of the arrival of shaking. Recordings
can also be initiated manually, in anticipation of an event of interest. We utilize this
manual triggering function to collect the data described in the shake table test section below.
Importantly, MyShake is not currently utilized to make extended (>5 min) continuous
recordings out of concern for battery drainage and memory usage on user smartphones.

2.6. Fundamental Frequency

Some engineering parameters require the use of time series from sensors in multiple
locations within the same structure. One example is the interstory drift ratio, which
describes the relative displacement of two consecutive floors over the height between
them [19]. For such parameters, we must have high confidence in the accuracy of the
timestamps and the vertical location of phones. Because of the uncertainty in the accuracy
of absolute timestamps using phone clocks, especially for older records, and the absence of
a real-life example of multiple waveforms recorded in the same building during the same
event, we focus in this paper on a keystone SHM parameter that can be computed using
a single sensor and does not depend on multiphone clock synchronicity: fundamental
frequency. In the future, with the development and validation of a robust clock correction
method, increased location accuracy, and with a growing stock of MyShake waveforms, it
will be possible to explore new parameters.

Fundamental frequency (also called natural or modal frequency) is an essential dy-
namic characteristic of a building that can be used to qualitatively and quantitatively
characterize the response of a building to an earthquake ground motion or other dynamic
loading, to update numerical structural analysis models, and to facilitate determination of
the presence of damage due to material degradation, environmental conditions or extreme
events, such as earthquakes. Damage to a structure (i.e., due to heavy earthquake shaking)
generally results in a permanent stiffness reduction of the building and corresponding
reduction to the modal frequency [2,30].
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For identifying the fundamental frequency using MyShake waveforms, we use mul-
titaper spectral analysis, as developed by Prieto, 2022 [31]. This method is tailored for
geophysical data to suppress noise by applying orthogonal tapers to overlapping windows
of the time series before estimating the power spectral density.

In SHM, fundamental frequency is commonly measured by identifying the amplifi-
cation in the structure’s response for each frequency in the input forcing signal through
the use of a transfer function. Essentially, a division of a spectrum recorded higher up in
a structure by the spectrum of the motion input to the base, transfer functions require at
least two measurements to be made per structure. Because our ultimate goal is to measure
structural behavior using smartphones whose locations we cannot control, we focus on
methods that require only a single waveform measurement in any location in the building,
i.e., output-only methods [32].

In traditional SHM, baseline measurements of structural health can be made using
ambient noise. However, due to the intrinsic noise levels associated with smartphone
accelerometers, we rely on small input motions to excite the modal frequency to a level
we can measure. In this study, we focus on earthquake motions as the input excitation.
First is a controlled validation test, in which phones were co-located with higher quality
MEMS sensors on a steel structure built atop a mechanical shake table. Second are ‘real-
world’ examples using small earthquake motions recorded by user phones. Since some
transient effects can occur during a strong excitation, we particularly prioritize measuring
free vibrations that persist after the input motions cease.

3. Shake Table Test
3.1. Methods

A three-story steel frame with replaceable SMA (shape memory alloy) braces providing
self-centering and energy dissipation capabilities was tested on the Pacific Earthquake
Engineering Research Center (PEER) 6-DOF (degrees of freedom) shake table (Figure 6a).
To record the structural response, each floor of the structure was instrumented with TE
Connectivity 3022 MEMS accelerometers [27]. These sensors have a dynamic range of
±10 g and a sensitivity of 3–6 mV/g. We placed nine phones running the MyShake app
alongside, in the arrangement depicted in Figure 6b. Most phones were firmly attached
to the structure, in order to compare them directly with the conventional sensors. Two
were placed on the structure but not adhered, to simulate more ‘natural’ circumstances.
The unsecured phones were put in basic soft plastic cases, and a box was taped over
each such that they could slide within the box confines but not be flung off the structure
entirely. Previous shake table tests have demonstrated that phone sliding is recognizable
in waveforms by its resemblance to clipping [23], and can be visually identified during
processing. In the highest-amplitude motions applied in this test, the unsecured phone
on the structure’s top level appears to clip when subjected to greater than ∼0.5 g (5 m/s2)
motion (Figure 7). This threshold for sliding is somewhat higher than was observed in the
previous Kong et al., 2016 [23] study, potentially due to the friction provided by the soft
plastic cases. Notably, no observations of sliding appear to noticeably affect the captured
frequency of the motion; the phone slides during high acceleration, clipping the waveform,
and begins capturing motion faithfully again as soon as acceleration drops again.
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Figure 6. A 3-story test structure built upon the PEER shake table. (a) A photograph of the structure
and accompanying measurement equipment. The thin silver cross-braces that can be seen on the face
of the structure closest to the viewer are the SMA braces; motion was applied in their direction, as
indicated by the red arrow. (b) A layout, not to scale, of the structure to demonstrate where the sensors
were located. Violet squares represent mounted TE Connectivity accelerometers. Turquoise ovals
represent phones. ‘Secured’ means the phone was affixed directly to the structure, and ‘unsecured’
means the phone was placed on the structure with no adhesive. To keep unsecured phones from
flying off the structure, a cardboard box like the one seen in the photograph on Level 2 was secured
over it.

Figure 7. The waveform during which the unsecured phone at the test structure’s top level appears
to have slid during high-input accelerations (above a threshold of ∼5 m/s2), creating a clipping
effect in the record. The black line represents the unsecured phone, and the green is the same motion
captured by fixed traditional accelerometers. This waveform is the third in a set of three consecutive
applications of the 1999 Kocaeli earthquake in Türkiye; the timestamps are relative to the start of the
first motion.

The shake table that was used in the tests can produce motions in three translations
and three rotational degrees of freedom; however, because the main interest was to explore
the performance of the SMA braces, ground motion inputs were only applied in the
direction parallel to these braces (indicated by the double-headed arrows in Figure 6). As
such, the time series and frequency plots we show in this section are all based on this
single component of horizontal motion. It is noted that stiff braces (painted yellow) were
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placed in the orthogonal direction to completely separate the natural frequencies in the
two orthogonal directions.

A series of motions was applied to the test structure, including ground motions from
the 1999 Kocaeli/Izmit earthquake in Türkiye and the 2006 Kobe earthquake in Japan. In
some cases, the same motions were applied multiple times at increasing amplitude levels.

The conventional sensors had a 200 Hz sampling rate and the sensors located at the
second level and above recorded high-frequency vibrations during earthquake motions
that were not captured by phones with their average 50 Hz sample rate (Figure 8a). To
provide a more direct comparison between the behavior and record quality of the two
sensor types, the TE records were filtered before analysis with a 50 Hz low-pass filter
(Figure 8b). This filtering isolates the frequency band of interest (<25 Hz) as there are no
natural frequencies of the tested structure above 25 Hz that provide contributions to the
dynamic response of the structure. After this filtering, there is a good match between the
TE and the MyShake records.

Figure 8. MyShake acceleration recordings in orange overprinting TE Connectivity acceleration
recordings in blue, both from the roof of the test structure. (a) Unfiltered 200 Hz TE data displays a
high amplitude, high-frequency signal during the earthquake motions. (b) Once low-pass filtered
below 50 Hz, the TE and MyShake data resemble each other more closely.

Using multitaper spectrum analysis [31,33], we transform three Kocaeli runs, applied
consecutively and recorded by phones and the conventional sensors, into the power spectral
density (PSD) space. We use 20 s windows moving in 1 s increments, which provided good
resolution in multiple test cases. Based on the parameters used in our analysis, we can
reliably resolve modal frequencies with separation greater than about 0.4 Hz. To simulate
an equivalent to the motion experienced by the phone at the center of the structure, we
average the signals recorded by two conventional sensors installed on opposing corners of
the same level.

3.2. Results

Sample frequency spectrum and associated PSD plots from the top of the structure,
where the dynamic response is greatest, are shown in Figure 9. For each of the three Kocaeli
motions, frequencies of the first three modes are identified before, during, and after the
motion (denoted as pre-event, co-event, and post-event, respectively) using PSD plots of the
MyShake and conventional accelerometer recordings. The segments were selected by visual
inspection. Note that there are still small vibrations of the shake table in the times between
the application of the ground motions due to the control dynamics of the table when the
actuators are still pressurized to keep the table at a constant position. The first and second
modes appear strongly for both the phone and TE sensors, and are consistent between them,
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especially pre- and post-seismic motions. Because the conventional data were not recorded
continuously, we selected the first and final windows to represent the pre- and post-seismic
PSDs. Across the three tests, the pre-earthquake baseline fundamental frequency varied
between 3.50 and 3.52 Hz (0.284–0.286 s period). The secondary baseline frequency varies
between 10.7 and 10.87 Hz (0.092–0.093 s period). The results were also consistent with the
baseline frequencies observed in the later Kobe tests, varying between 3.42 and 3.50 Hz
(0.286–0.292 s period) for the first mode and 9.00 and 10.97 Hz (0.091–0.111 s period) for
the second. A summary of results can be viewed in Table 1. The periods identified using
the TE and MyShake accelerometers are in general quite close to each other.

Figure 9. Measurements made over three runs of the 1999 Kocaeli earthquake on a shake table as
recorded by both a MyShake phone and a reference TE Connectivity Model 3022 MEMS sensor
on the top of a 3-story steel structure. (a) The MyShake waveform and corresponding frequency
spectrum. Three modes are clear throughout the time series, brightening and dipping somewhat
during the earthquake motions. The first three colored bands correspond to the windows in the time
series represented in (c). (b) The MEMS sensor filtered and averaged waveform and corresponding
frequency spectrum. The same modes present in the MyShake data are visible. (c) Pseudospectral
density (PSD) plots from windows of the MyShake accelerations recorded during the first earth-
quake run visible in the waveform. Blue lines represent the PSD of the structure excited by table
vibration before the earthquake. Red lines represent the strongest PSD observed during earthquake
shaking, and green lines represent the PSD after the earthquake is over. (d) Corresponding PSD
plots for the reference measurements, using the first and final windows for the pre- and post-seismic
measurements, respectively.
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Table 1. First three mode frequencies identified using MyShake and conventional accelerometer
measurements at the top of a three-story test structure tested on a shake table.

Pre-Event Co-Event Post-Event

MyShake TE 3022 MyShake TE 3022 MyShake TE 3022

Event Mode
No. Hz (s) Hz (s) Hz (s) Hz (s) Hz (s) Hz (s)

1 3.52 3.52 3.32 3.32 3.50 3.47
(0.284) (0.284) (0.301) (0.301) (0.286) (0.288)

Kocaeli 2 10.85 10.70 10.30 10.30 10.70 10.65
Run 1 (0.0933) (0.0920) (0.0969) (0.0971) (0.0930) (0.0939)

3 18.14 17.67 17.64 17.57 18.12 18.04
(0.0551) (0.0566) (0.0567) (0.0569) (0.0552) (0.0454)

1 3.52 3.52 2.77 3.45 3.50 3.32
(0.284) (0.284) (0.361) (0.290) (0.286) (0.301)

Kocaeli 2 10.70 10.87 9.50 10.52 10.72 10.67
Run 2 (0.0933) (0.0920) (0.1050) (0.0951) (0.0929) (0.0937)

3 18.09 18.72 17.62 17.84 17.94 18.14
(0.0553) (0.05340 (0.0567) (0.0561) (0.0557) (0.0551)

1 3.5 3.5 2.7 2.7 3.45 3.5
(0.286) (0.286) (0.370) (0.370) (0.290) (0.286)

Kocaeli 2 10.75 10.75 9.7 9.65 10.52 10.55
Run 3 (0.0930) (0.0930) (0.1031) (0.1036) (0.0951) (0.0948)

3 17.82 17.59 17.05 15.02 17.85 18.39
(0.0561) (0.0569) (0.0587) (0.0666) (0.0560) (0.0544)

1 3.47 3.45 3.20 3.20 3.45 3.47
(0.288) (0.290) (0.313) (0.313) (0.290) (0.288)

Kobe 2 10.97 9.07 9.37 10.10 10.80 9.02
Run 1 (0.0912) (0.1103) (0.1067) (0.0990) (0.0926) (0.1109)

3 17.72 17.79 15.94 17.27 18.19 18.29
(0.0564) (0.0562) (0.0627) (0.0579) (0.0550) (0.0547)

1 3.47 3.5 2.85 2.82 3.42 3.45
(0.288) (0.286) (0.351) (0.355) (0.292) (0.290)

Kobe 2 10.77 9.02 9.17 9.2 10.82 9
Run 2 (0.0929) (0.1109) (0.1091) (0.1087) (0.0924) (0.1111)

3 17.82 18.67 16.29 16.29 17.97 17.97
(0.0561) (0.0536) (0.0614) (0.0614) (0.0556) (0.556)

3.3. Discussion

The SMA braces utilized in this test provided restoring force capability only under
tensile forces and did not provide any stiffness or strength under compression. Although
some pre-stress is provided to maintain the tension forces, the braces were disengaged at
instances during the shaking in most of the tests, reducing the stiffness of the structure,
resulting in a modal frequency reduction by as much as 22%. In a typical structure without
similarly engineered components, the same signal would indicate that the structure has
lost stiffness by other means, e.g., damage [2,30]. When the earthquake motion ceased
during the test, the braces disengaged, returning the structure to its original stiffness. In
some cases, the bolts securing the rods loosened slightly, such that the stiffness did not
fully recover. An example can be seen in Figure 9d, where the pre-event modal frequency is
slightly higher than the post-event value. The failure of a structure to recover to its original
stiffness indicates inelastic deformation occurred. Because the rods employed in the shake
table test were experimental and their tensioning varied between tests, we cannot interpret
the frequency changes we observed beyond simply ‘indicated damage’. However, the clear
and repeated co-seismic deviation and post-seismic recovery (both partial and complete),
visible in phone and traditional records alike, marks a first-order validation that phones
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are capable of capturing subtle and important changes in modal frequencies and therefore
in structural health information.

4. Citizen Science Measurements

Having demonstrated that we can use waveform data recorded by the MyShake app
to measure the modal frequencies (and changes to them) of a building, in the context of a
shake table experiment, we now look to measure the modal frequencies using MyShake
data from real buildings as provided by the crowd-sourced MyShake data. This brings
additional challenges. First, we have only the reported GPS location and barometric altitude
to locate the phones. As previously discussed, this is accurate enough to locate the phone
inside a building, but not accurate enough to locate the phone in a specific location within
that building. The exception is when the structure is very tall, in which case the altitude
could be used to make generalized statements like ‘bottom’, ‘middle’, or ‘top’. Similarly,
we do not know the orientation of the phone relative to the axes of the structure.

4.1. Methods

For a first-order validation experiment, we begin with multistory buildings with a
simple rectangular footprint. We expect the first mode to be most strongly expressed in
the direction of one of the building’s axes and seek to rotate the waveforms into alignment.
First, all three orthogonal components are rotated to bring the mean of two components
(which we name X and Y) as close as possible to 0, such that the Z component is in the
direction of gravity. Second, the newly identified horizontals are incrementally rotated,
and the coda (the free vibration part of the motion) is transformed to find the orientation in
which the lowest frequency peak is at its strongest, which implies it is aligned with one of
the horizontal axes of the building. It is noted that it is not possible to identify for certain
which horizontal axis it is, although general rules of thumb and engineering judgment
can be used to make an educated guess. An example of how rotations affect the resultant
frequency spectra is in Figure 10.

Figure 10. An example of waveform rotations in 30° increments in the horizontal plane, demon-
strating the effects of changing orientations in both the time and frequency domain. The phone
recording was located in an 8-story hotel in Northern California, and located 16 km from a Mw 4.4
earthquake. The spectra are computed from the free vibration portion of the waveform, as highlighted
in cyan. The maximum spectral peak corresponding to a frequency of 2.08 Hz is found at 67° from the
phone’s y-axis, and a smaller secondary frequency of ∼4.7 Hz is found in the perpendicular direction,
potentially corresponding to the building’s second axis.

While earthquake shaking results in the motion of a building predominantly at its
natural frequency, the frequency spectrum of a co-seismic waveform will also include the
frequency content of the source. Lacking an input ground motion record that could be used
to calculate a transfer function, we instead must measure the fundamental frequency of the
building using the free vibration, which occurs after the strong motion is over and which is
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dominated by the building’s dynamic characteristics. This transition is easily identifiable
when the waveform and the power spectrum are viewed in parallel.

4.2. Results

We present six real-world examples of MyShake recordings from user phones in
earthquakes from California and Japan (Table 2, Figures 11–16). Each is a rectangular
structure varying between 3 and 18 stories tall. Images of each building are sourced
from Google Street View and Google Earth 3D buildings. Additionally, we present the
example of an irregularly shaped five-story building, whose response was captured in three
different earthquakes (Figure 17). While a single-response spectrum from this building
can be interpreted with some ambiguity, repeat measurements across earthquake sources
of varying magnitudes (M 3.6, 4.3, 5.1) and varying path effects (a 150 deg spread in
backazimuths) can be used to confirm that the approach of using the free vibration response
is effective in capturing the building periods.

Table 2. A summary of analyzed structures for which MyShake phones recorded a waveform during
earthquake shaking and the identified modal frequencies. Results are ordered in the sequence that
their corresponding figures appear in the paper.

Event Magnitude, Identified Identified Potential
Building Location, and Epicentral Natural Natural Second

No. Stories, Use Type UTC Datetime Distance Frequency Period Mode

8-story hotel
Mw 4.4

16 km 2.08 Hz 0.481 sBerkeley, CA, USA 6.57 Hz
4 January 2018 10:39:37 (0.152 s)

14-story condo complex
Mw 4.28

24 km 1.42 Hz 0.704 sCarson, CA, USA 9.91 Hz
18 September 2021 02:58:34 (0.101 s)

18-story apartment building
Mw 5.37

212 km 0.82 Hz 1.22 sSearles Valley, CA, USA 2.9 Hz
5 July 2019 11:07:53 (0.345 s)

3-story apartment building
Mw 4.28

25 km 2.71 Hz 0.339 sCarson, CA, USA 8.95 Hz
18 September 2021 02:58:34 (0.112 s)

5-story apartment building
Mwr 4.7

73 km 3.05 Hz 0.328 sTsukuba, Japan —
7 September 2016 04:28:49

3-story hotel
Mw 6.4

117 km 4.26 Hz 0.235 sFerndale, CA, USA —
20 December 2022 10:34:24

5-story apartment complex

Ml 4.29
80 km 4.85 Hz 0.206 sSanta Rosa, CA, USA 11.54 Hz

14 September 2022 01:40:20 (0.0867 s)
Mw 5.06

85 km 4.62 Hz 0.216 sAlum Rock, CA, USA 13.33 Hz
25 October 2022 18:42:02 (0.0750 s)

Mw 3.57
17 km 4.50 Hz 0.222 sEl Cerrito, CA, USA 11.04 Hz

17 December 2022 11:39:42 (0.0910 s)

For each structure, a sample window of the body of the earthquake and a window
dominated by free vibration are highlighted, demonstrating the time-based spectral vari-
ation and identifying the frequency peaks of each. Window size and number of tapers
(and the corresponding selection of a time-bandwidth product) used in the multitaper
analysis scale are based on earthquake duration [33]. For each record, we identify the
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lowest frequency of the strong peaks as the likely natural resonance of the structure. These
values are evaluated in the Discussion section ( Section 4.3).

4.2.1. Taller Structures

Observations made in an 8-story hotel during the Mw 4.4 Berkeley earthquake and in
a 14-story condominium complex during the Mw 4.3 Carson earthquake both provide good
examples of buildings first experiencing forced vibrations from an earthquake, followed
by a period of free vibration where the motion is dominated by the free oscillation of the
building (Figures 11 and 12). This transition is visible in both the waveforms and the
time–frequency plots. For the eight-story hotel, a frequency of 6.57 Hz (0.152 s period)
dominates during the main earthquake shaking. When the longer period oscillations start,
the dominant frequency is 2.08 Hz (0.481 s period), which is approximately consistent with
the natural frequency expected for a structure this size. Being approximately three times
the fundamental frequency, it is possible that the 6.57 Hz peak represents the building’s sec-
ondary mode. We hypothesize that the higher frequency mode during the earthquake could
be a result of the ground motion exciting the building’s second mode, but the free vibration
more strongly excited the fundamental mode, as expected for a medium-rise building.

For the 14-story condominium complex, the strongest frequency excited by the earth-
quake’s initial motion is 9.91 Hz (0.101 s). Following the main pulse of earthquake energy,
a longer period oscillation (1.42 Hz or 0.704 s period) begins. As 9.91 Hz is so much higher
than the lowest frequency peak of 1.42 Hz, it is possible it represents the third, not second,
mode of the structure.

Figure 11. (a) An 8-story hotel in the California Bay Area whose fundamental frequency was captured
by MyShake during the Mw 4.4 Berkeley earthquake originating 16 km away. (b) The waveform
collected by the phone. The blue and orange overprints represent the windows over which the power
spectral density (PSD) plots in (d) were computed. (c) The corresponding time–frequency spectrum
computed using multitaper analysis. Spectra are centered relative to their corresponding window
in the accelerogram. The fundamental frequency of 2.08 Hz is visible in the spectra for the entire
duration, including in the free vibration, though it is dwarfed in strength during the body of the
earthquake by a peak at 6.57 Hz, approximately 3× the fundamental and potentially representing the
building’s second mode. (d) Normalized PSDs for two of the 6 s windows identifying the dominant
frequencies in each.
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Figure 12. (a) A 14-story condominium complex in southern California, which recorded a waveform
of a Mw 4.3 earthquake 24 km away. The 3D rendering is sourced from GoogleEarth with a darkening
mask applied to highlight the building of interest. (b) The waveform collected by the phone. The blue
and orange overprints represent the 12 s windows whose PSDs are represented in (d). (c) Normalized
PSDs for two of the 12 s windows identifying the dominant frequencies in each. (d) The time–
frequency spectrum computed using multitaper analysis. Spectra are centered relative to their
corresponding window in the accelerogram. A peak at 9.91 Hz is visible during the initial body of
earthquake shaking, fading in strength later relative to a natural frequency peak at 1.42 Hz.

The tallest structure for which we have a good observation is an 18-story apartment
building in southern California, whose modal frequency was excited by a Mw 5.4 earth-
quake during the Ridgecrest earthquake sequence 212 km away (Figure 13). Although
the waveform signal is much diminished by attenuation, good-quality spectra can still be
obtained. In it, two dominant frequencies are visible: one at 2.9 Hz (0.345 s in period) and
another, persisting longer, at 0.82 Hz (1.22 s period). The lower frequency peak is roughly
consistent with what would be expected of a building this size. The higher frequency, being
three times the lower, potentially indicates a second mode that was excited during the
earthquake excitation.

Figure 13. (a) An 18-story apartment building in southern California, which recorded a waveform of
a Mw 5.4 earthquake 212 km away. (b) The waveform collected by the phone. The blue and orange
overprints represent the 20 s windows whose PSDs are represented in (d). (c) Normalized PSDs
for two of the 20 s windows identifying the dominant frequencies in each. (d) The time–frequency
spectrum computed using multitaper analysis. Spectra are centered relative to their corresponding
window in the accelerogram. A peak at 2.9 Hz is visible during the initial body of earthquake shaking,
fading in strength later relative to a natural frequency peak at 0.82 Hz. Being ∼3× the latter, it is
possible the 2.9 Hz peak is a secondary mode.
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4.2.2. Shorter Structures

The Mw 4.3 Carson earthquake was responsible for a second observation of a three-
story apartment building 25 km from the epicenter (Figure 14). This structure demonstrates
two, possibly three strong frequency peaks during the main earthquake shaking, with the
higher peaks (8.95 Hz and 15.24 Hz) subsiding and giving way to a single lower dominant
frequency (2.71 Hz, or 0.369 s period) in the coda of the waveform.

Figure 14. (a) A 3-story apartment building in southern California, which recorded a waveform of
a Mw 4.3 earthquake 25 km away. (b) The waveform collected by the phone. The blue and orange
overprints represent the 10 s windows whose PSDs are represented in (d). (c) The corresponding
time–frequency spectrum computed using multitaper analysis. Spectra are centered relative to their
corresponding window in the accelerogram. The strongest peak throughout occurs at 2.5–2.7 Hz
(0.37–0.4 s). During the body of the earthquake, there is a second peak at 8.95 Hz (0.112 s), which later
subsides. (d) Normalized PSDs for two of the 10 s windows identifying the dominant frequencies
in each.

In the case of observations made in a five-story apartment building in Japan, which
was shaken by a Mwr 4.7 earthquake 73 km away, and a three-story hotel in Northern
California, which was shaken by a Mw 6.4 earthquake 117 km away, a single dominant
frequency is present throughout the time series (Figures 15 and 16). In the apartment
building, the frequency is 3 Hz (0.33 s period), and in the hotel, it is 4.2–4.5 Hz (0.24–0.22 s).
Occurrence of the same frequency during earthquake shaking and the free vibration is
a strong indication that these frequencies are the fundamental natural frequencies of the
buildings, and during the earthquake shaking, the building response is directly governed
by the fundamental mode.
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Figure 15. (a) A 5-story apartment building in Japan, in which MyShake recorded the Mwr
4.7 Tsukuba earthquake originating 73 km away. (b) The waveform collected by the phone. The
p-wave arrives at ∼12 s. A dominant frequency becomes visible after the start of the s-wave and
persists for at least 50 s. The blue and orange overprints represent the windows over which the power
spectral density (PSD) plots in (d) were computed. (c) Normalized PSDs for two of the 20 s windows
identifying the dominant frequencies in each. (d) The time–frequency spectrum computed using
multitaper analysis. Spectra are centered relative to their corresponding window in the accelerogram.
A single frequency peak at ∼3 Hz is visible across the majority of the spectra.

Figure 16. (a) A 3-story hotel in Northern California in which a MyShake phone recorded the
Mw 6.4 Ferndale earthquake 117 km away. (b) The waveform collected by the phone. The blue and
orange overprints represent the 25 s windows over which the power spectral density (PSD) plots in
(d) were computed. (c) The corresponding time–frequency spectrum computed using multitaper
analysis. Spectra are centered relative to their corresponding window in the accelerogram. A
dominant frequency peak at 4.25–4.45 Hz is visible across the majority of the spectra. (d) Normalized
PSDs for two of the 25 s windows identifying the dominant frequencies in each.

4.2.3. Repeat Measurement

A MyShake waveform was collected in three earthquakes from the same L-shaped
five-story apartment building over the course of four months in 2022 (Figure 17a). Being
asymmetric in shape, it is more challenging to gauge the reasonableness of any given modal
frequency measurement. Repetition, therefore, can serve as a form of verification. In the
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first earthquake, an Ml 4.3 event in Santa Rosa 80 km from the building, two frequencies
peaked coseismically, and a third arose as shaking subsided. The lowest of these was
4.85 Hz (Figure 17b). In the Mw 5.1 Alum Rock earthquake 85 km away in the opposite
azimuthal direction, a single primary frequency between 4.6 and 4.75 Hz was excited
throughout the earthquake and coda (Figure 17c). The closer, smaller Mw 3.6 El Cerrito
earthquake (17 km away) excited two main frequencies coseismically. The primary peak
at 4.8 Hz decreased slightly into the coda, down to 4.5 Hz, while the second frequency
became more apparent during the coda at 16.19 Hz (Figure 17d). The variation in primary
frequency over the three earthquake codas is, therefore, 4.85–4.5 Hz (0.206–0.222 s period),
decreasing slightly with each successive earthquake.

Figure 17. (a) A 5-story apartment building in the California Bay Area in which MyShake recorded
a waveform in three earthquakes. The 3D aerial rendering is sourced from Google Earth, with a
darkening mask applied to highlight the building of interest. (b) The waveform and spectra collected
in the Ml 4.3 Santa Rosa earthquake 80 km away. The blue and orange waveform overprints represent
the 10 s windows over which the normalized PSDs in the bottom panel were computed. The time–
frequency spectrum in the center panel shows two dominant frequencies during the body of the
earthquake and a third gaining relative prominence as shaking subsides. (c) The waveform and
spectra collected in the Mw 5.1 Alum Rock earthquake 85 km away. Normalized PSDs are computed
using the highlighted 12 s windows. The time–frequency spectrum shows a single dominant and
persistent frequency peak excited for this event. (d) The waveform and spectra collected in the
Mw 3.6 El Cerrito event 17 km away. Both the highlighted windows and the time–frequency plot
as a whole show a main, slightly time-variant frequency at ∼4.65, and a few more mobile higher
frequency peaks.
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4.3. Discussion

We establish in a controlled shake table test that the modal frequencies identified
by MyShake and traditional MEMS accelerometers are quite similar before, during, and
after the ground motion shaking. With a sufficient signal-to-noise ratio, a clear frequency
spectrum can be derived even without a transfer function. With this in mind, we extract
modal frequencies from several buildings in which MyShake phones recorded a small or
distant earthquake. In some cases, we also observed frequency peaks at approximately
3 times the first. These we interpret as possible observations of secondary frequencies.

It is important to evaluate whether the modal frequencies we extracted from our
observations are reasonable for the structures in which they were recorded. For this
purpose, we make use of the standards set by the American Society for Civil Engineers
(ASCE). In ASCE 7-22 standards, two simple, empirically derived formulas are provided
for estimating a structure’s fundamental period when only a little information about the
structure is known. ASCE 7-22’s Eq 12.8-8, replicated here as Equation (1), is based on
structure height and framing type. The commentary states that this estimate is deliberately
conservative, and tends to underestimate the true period.

Ta = Cthx (1)

where Ta is the approximate fundamental period in seconds, and h is the height of the
building in feet. The coefficient Ct and exponent x are provided in Table 3. We add to the
ASCE values an additional option for wood frames from Camelo, 2003 [34], which was
derived from a series of shake table experiments and performed fairly well for a wider
range of building heights in Hafeez et al., 2019 [35]. Goel and Chopra, 1998 [36] also found
ASCE’s variables for ‘other’ to apply well to structures with concrete shear walls. Some
structures can also exhibit higher order modes at odd-integer multiples of the first.

Table 3. Variables for use in Equation (1).

Structural System Type Ct x

Steel moment-resisting frame 0.028 0.8
Reinforced concrete

moment-resisting frame 0.016 0.9

Eccentrically or
buckling-restrained braced

frame
0.030 0.75

Concrete shear wall 0.020 0.75
Wood buildings 0.032 0.55

Other 0.020 0.75

ASCE 7-22 Eq 12.8-9, replicated here as Equation (2), supplies a quick estimate for
steel or concrete moment frames and is also empirically derived. In this, n is the number of
floors and cannot be larger than 12. The fundamental frequency ωn (in Hz) is equal to 1/T.

Ta = 0.10n and ωn = 10/n for n ≤ 12 (2)

Using these estimates, we can then compare the frequency peaks derived from our
observations to computed estimates of what we might expect from a simple model of each
structure in Table 4. Our knowledge of the buildings is limited to what is logged in public
databases like OSM buildings (https://osmbuildings.org, accessed on 11 August 2023) and
what can be visually determined from Google Earth imagery. Therefore, in many cases, we
do not know the framing material with certainty, and instead compare our observations
with multiple possible estimates.

https://osmbuildings.org
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Table 4. A comparison of the observed natural frequencies compared to a range of model-based
options. Where appropriate, we use Equations (1) and (2) to compute expected values. Since framing
materials are not known for certain for most of the buildings we observe, we provide a range of likely
values. The ‘steel’ category uses the coefficient for moment-resisting frames. Other types of steel
construction would be associated with a natural period in between that of moment-resisting concrete
and the ‘other’ category. Concrete shear wall construction uses the same values as ‘other’. Building
heights were sourced from OSM Buildings and converted to feet for use in the ASCE standards.

10/n Ta = Ct hx Observation
Height Observed Frequency Frequency Difference

from OSM Frequency Estimate Framing Estimate from Equation (1)
Structure Buildings (Period) (Period) Types (Period) Estimate

1.25 Hz Concrete 0.948 Hz +119%(0.8 s) (1.055 s)

8-story hotel 32 m 2.08 Hz Other 1.524 Hz +36%(0.481 s) (0.656 s)

Wood 2.417 Hz −14%(0.414 s)

Steel 0.655 Hz +117%(1.528 s)
14-story 45.2 m 1.42 Hz n/a Concrete 0.695 Hz +104%condo complex (0.704 s) (1.439 s)

Other 1.177 Hz +21%(0.85 s)

Steel 0.591 Hz +39%(1.691 s)
18-story 51.3 m 0.82 Hz n/a Concrete 0.62 Hz +32%apartment building (1.22 s) (1.613 s)

Other 1.07 Hz −23%(0.935 s)

3.33 Hz Concrete 2.021 Hz +34%(0.3 s) (0.495 s)
3-story 13.8 m 2.71 Hz Other 2.865 Hz −5%apartment building (0.369 s) (0.349 s)

Wood 3.838 Hz −29%(0.261 s)

2.0 Hz Concrete 1.516 Hz +101%5-story 19 m 3.05 Hz (0.5 s) (0.66 s)
apartment building (0.328 s) Other 2.254 Hz +35%(0.444 s)

3-story hotel 12 m 4.26 Hz n/a Wood 4.145 +3%(0.235 s) (0.241 s)

4.85 Hz
(0.206 s) 2.0 Hz Concrete 1.684 Hz +167 to 188%(0.5 s) (0.594 s)

5-story 16.9 m 4.62 Hz Other 2.461 Hz +83 to 97%apartment complex (0.216 s) (0.406 s)

Wood 3.433 Hz +31 to 41%4.5 Hz (0.291 s)
(0.222 s)

All observation-based modal frequencies fall within 41% of at least one estimate. Most
observation values are higher than the estimates computed using Equation (1) and the
variables in Table 3. This is likely due, at least in part, to the presence of shear walls,
which Goel and Chopra, 1997 and 1998 [36,37] found contributed significantly to stiffness
for accelerations <0.15 g (1.47 m/s2). As visible in Figures 11–17, all accelerations used
in the analysis of real structures fall well below this threshold. The eight-story hotel
and three-story apartment building records give modal frequency measurements that are
somewhat lower than the Camelo, 2003 [34] based values for wood-framed buildings. The
closest match between observed and estimated (3% difference in frequency) occurs for the
three-story hotel, which is within the anticipated error range of the measurement.

While most of our real-structure analysis focused on simple, rectangular framed
buildings, we showed an example of an L-shaped three-story apartment building, for
which we obtained three measurements in three different earthquakes over the course
of 4 months. These observation-based modal frequencies match best with the wood-
based estimate. Additionally, it matches well with similarly shaped and sized wooden
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structures observed in the study of Hafeez et al., 2019 [35]. This suggests that in addition to
repeated measurements, future observation-based values in regular and irregular structures
could also be validated against existing measurements in published compilations, like
the instrumented buildings in the CESMD (Center for Engineering Strong Motion Data)
database, and targeted campaigns, such as described by Hafeez et al. [35] in their study of
41 wood-framed structures in Canada.

Furthermore, the relative consistency of the three measurements, despite differences in
source and path effects of the input motion, validates the accuracy of phone-based measure-
ments. In addition to any residual contributions from the different input ground motions,
the observed 7% decrease in the frequency over four months (from 4.85 to 4.5 Hz) at low
levels of shaking can be due to several reasons, including material cracking, disengagement
of nonstructural elements, such as partition walls that can provide minor contributions to
stiffness, foundation rocking, etc. Temperature can also affect a building’s response [38].
However, because temperatures were largely stable in this building’s area (in the San Fran-
cisco region) over the sampled time period, we do not expect a strong temperature influence
in this case [39]. The observed level of change in the natural frequencies under low levels
of shaking has also been documented in buildings instrumented with conventional sensors
(e.g., the California Strong Motion Instrumentation Program, CSMIP).

Kohler et al., 2005 [40] monitored a well-instrumented 17-story steel-frame building in
Los Angeles and observed that forced vibration measurements resulted in lower fundamen-
tal frequency results than ambient noise vibrations, even when the forced vibrations were
small. This is attributed to soil–structure softening interactions, which resolved elastically
in the hours after the forcing (wind or earthquake) was over. This suggests that the measure-
ments made with MyShake, which are labeled as the response of a structure at full stiffness,
may be underestimating the modal frequency as compared to the frequency in ambient
conditions. However, because the MyShake catalog will be forced-vibration-based, the bias
will be systematic unless the phone noise drops so low that we can begin incorporating
ambient observations. Furthermore, as the small-motion deviations are elastic, MyShake’s
observations are still appropriate to use as a ‘healthy’ benchmark against which observa-
tions made after potentially damaging shaking can be compared. The deviations between
fully ambient and light-force motion observations are small, on the order of 0.01–0.1 Hz
in the study of Kohler et al. [40], in comparison to much larger changes in the natural
frequency that would be indicative of structural damage.

5. Conclusions

The ultimate goal of the MyShake SHM project is to increase the number of instru-
mented buildings significantly by making use of smartphone sensors already present in
almost all buildings. We begin here with a proof-of-concept study to demonstrate the
feasibility and reliability of using citizen science smartphone seismic data for this purpose.
Taking the characteristics and current limitations of our smartphone network into account,
we determine fundamental frequency to be the appropriate entry point into SHM. Due
to the higher noise floor inherent to phones, we established that a small impulse would
be required to excite a structure’s fundamental frequency enough to be measured. We
therefore make measurements while buildings are vibrated by a shake table and in the coda
of low-intensity earthquake shaking (when damage is not expected).

In a controlled shake table test, we compared the results recorded by phones running
MyShake and traditional high-quality MEMS accelerometers and found good agreement
between them, suggesting that smartphones are suitable for making these observations. In
a set of seven real-world buildings for which MyShake collected a waveform, the extracted
modal frequency fell within 40% of the model-based estimate for the structure based on
ASCE standards (Table 4). These modeled estimates were necessarily simple due to the
limited structural information known about the buildings, and perfect matches were not
expected. Instead, we use this comparison to confirm our measurements are reasonable.
Over time, an accumulation of measurements for a given building can be used to establish
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a more robust baseline for its structural health. As an example of this, we present one five-
story structure for which three measurements were made in the coda of three earthquakes
over the course of four months (Figure 17). The modal frequency measured in each varies
within 7% of the first, decreasing from 4.85 to 4.5 Hz over time. All fit fairly well with a
similarly shaped structure assessed using traditional methods by Hafeez et al., 2019 [35].
This example begins to set expectations for the accuracy of our measurements, inclusive of
the slight structural softening that can sometimes accompany even low-intensity shaking.

Over time, an accumulation of ‘healthy baseline’ response information will assist in
setting reasonable thresholds for how much a measurement must deviate from baseline
before we should consider that a smartphone modal frequency observation indicates
structural damage. Traditional structural health monitoring, based on fixed high-quality
sensors, looks for the natural period of a building to permanently change by a factor of at
least 1.5 times to correspond with significant structural weakening [41–45]. Based on the
preliminary observations presented here, MyShake smartphones should be able to observe
a change of this magnitude if there is a baseline observation on the natural period of a
building before a quake, and then a second observation after the quake or from the coda of
the quake. Furthermore, an extended aftershock sequence could be used to study possible
long-term nonlinear elasticity, such as from slow-recovering soil–structure dynamics [46].

Beyond the main contributions of this project, there are still limitations, such as the use
of one sensor at each building without knowing its exact elevation, and the lower sampling
rate and higher noise floor of MyShake sensors compared to conventional sensors. Future
studies will be planned to overcome some of these limitations, while others will be handled
by the inherent advances in related technologies.

In the long term, we envision developing a database of structural information for
buildings, based on ‘healthy’ behavior observed during smaller vibrations. When a se-
vere event occurs, MyShake observations from the tail of the earthquake or successive
aftershocks could be used to compute comparative values for the same structures. This
rapidly available, remote diagnostic could then be distributed to local engineering first
responders to assist in prioritizing inspections of buildings to those with suspected damage.
As the app continues to proliferate (motivated along the US West Coast by earthquake
early warning adoption) and smartphone technology continues to improve, we also en-
vision being able to improve on our current limitations in future research. This could
include recording a building’s response on multiple devices at once and resolving better
where they are located within that building, which could in turn enable the resolution
of additional structural health parameters. Structural health monitoring and emergency
response are life-critical, but resource-limited endeavors. We are hopeful that the MyShake
SHM project can contribute to a solution by providing low-cost, low-maintenance remote
sensing observations.
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