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o Introduction

This,. paper has a number of goals, It wiil give a high
level, Ggscriptive tutorial 6f those areas of Al thch might
have an impact on command and control - operations, This
outline will «describe the state=oft=-the=art technology, the
difficulties, the problems being. attacked, and their
relationship to Cde. It will also maké-recommendations on
how the Navy might stfmulate effort in areas most needed by
a (2 system, The areas in Al are covered with respect to
their importance to (2, as opposed to their -importance to

Al.

lnére are a number of relevant concerns which this
paper will not regard. For éxamp]e; assume, for the mpment,
that all the necesSary'AI techniques for C2 are available,
There woulq still remain the problems of incorporating such’
a system into the social and.organizational structures that
exist. Maintenance and: enhancehent wbuld be é greater
problem than with hore conventional software sih;e few
people are knowledoeahle in Al technologye. Nothing will be
said of potential failures due to‘~power surgesy, cold
temperature, faulty machines,'sabotagé. or a host of other
calamities, - all of whose eventualities should be

contemplatey and prepared for,

These gqloomy possibilities are only mentionned to

indicate that the transference of a "yorking" Al system into

'

a operational environment will take a great deal of effort
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ang forethought. This paper only deals with the immediate
goal of building an Al system to assist in Command and

Control,

The views presented in this péper are my own, A less
biased and possibly m§re accurate appraisél of the
relationship pbetween Al and C2 would require taking e survey
of Al researchers. Such an approach would require a great

deal more man=power, time, and. money.
The paper is organized into the following subsections:?
l. Rule pased system, a general discussion,

2. SI1AMMER, a particular rule bhased system illustrating
some of the disadVantages and aagvantages in wusing Al

technology tfor (2.

3. Problem Solving and Planning, a generalization of rule

based system necesSsary when rules do not suffice,

4. Natural Language Processing, discussed with -a view

towards establishing a comfortable user interface.

5. Games, results on game playing are outlined to show how
planning is done in a microcosm and to give some nperspective
on the complexity of the planning process and the degree of

sophistication and naivete of current Al technoloay,
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&6, Learning, highlighting those aspects that could  assist
in automatically updating the knowledge representations

applicable to Ce.

7. Knowledge Representation, outlining some of the myriad

of problems andg their current status,

8. Conclusions, giving general  recommendations on what

areas of Al the hNavy should support,

- Each subsection ends with a statement of' the  specific
relationship of that area of Al to (2.

kule Hased Sxstens

The first Al system to demonstrate that a computer
program could geasep at a level comparable to that of
trainea people was the MYCINIIJ program., This system which
did medical diagnosis of bloqd'diseases was based on a rule
based architecture, also called a production sstem[E'BJ.
There are a variety of views of wﬁat constitutes a
production system. tacﬁ author prefers his own definition.
Alhis lack of uniformity and agreement is common in any newly
developing sdfehce. For the neophyte, this disagreement and
confusion is disquieting, for the Al community, research is
not strait-jacketed by inappropriate - definitions and

formalisms,

A rule baseg system consists of three partss 3
collection of rules, a data bhase to which the rules are

applied, and a recipe or algorithm for applying the rules to
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the data base, In the most generé\ view, each rule consists'
of a lefthandside (1hs), which is a list of/conditions: and
a righthanaside (rhs), which ié a list éf actions,. In the
most restrictive view, each lhs consist of a string of
symbols, while the rnhs cohsiéts of a replacement string bf

symbols, Some examples of rules together with the ftragment

of knowledge to which the rule corresponds, are given below.

kule knowledge
X+0=>X , 0 is the aaditive identity
xch=>%xches words ending in ch form their

plurals by adding es

(storm X) A ship in a storm is hot

(in Y‘X)=>not (merchant X) likely to be a merchante.
Each of the rules above capture Some piece of knowledge,
The level of detail of a rulev is called the grapulacity.
Defininglthe appropriate level of grénularity is a diffiqulf

task.,

The second constituent of a rule pased system is the
data base. 1he three rules listed above would apply to
different data bases and would be helpful in solving
different implicit goals, In particular, they woulé apply

to:

vata Hase Goal




algebraic expression simplification

text ‘pluralization
relations message monitoring

In fact, data bases mighf be parse trees, machine code,
. english Sen{ences. molecujar structures, chemical reactions;‘
list of relationss, or any other éomewhat formally defined
structure, The rules corfespond to possible legal

manipulations of that structure,

The third cohstitqent of a rule based system is the
recipe used fo apply the rules, The code corresponding to
the particular recione is called the rule ipterpretec. in
the simp]est’syStem rules are kept in'a list and continually
applied to the 4Jdata base until no rule can fire (be
“applied). By choosing rules at random or accordina to some
probability functions, stochasié processes may be modelled,
In more sophisticated systemé. rules are applied according
to some dynamic priority scheme or according po,va- cost
§nalysis vestiMate. Despite this variety of choices, rule
inferpreters have two main varieties: forward chaining and

backward chaininge. ' '

" Kules may be used into two distinct ways, The rule for
torming plurals of woras endging in ch (xch=>*ches) can be
used to derive the plural of "watch"™ or to find the singular

of the work "matches", Wwnhen rules are applied in the
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.direction of the arrow, the rule interoreter is ot the
torward chaining variety, |If the rhs of the rule is matched
against a stated goal, fhen ‘the production system s
backward chaining, The MYLIN system is & backward chainina
system., It works by assuming fhe patieht could have each
disease of some 120 diseases ana then backward chains to
find supporting evidence.- Backward chailning systems are
usually more efficient, but they aepend on two additional
constraints. In @ backward chaining system one must know
the goal state, Conseyuently, one could not apply backward
chaining to algebraic simplification, Moreover, there must
be a way of matching the righthand sides of rules with
goals, Since righthand sides, the action part of a rule,
are oftén stated as procedures, this can be very difficult.
Forward chaining systems do not suffer ;from these
limitations, Forﬁarding chaining isA useful when all
conclusions are desired or when no particular goal is
soughte. Another minor type of production system is the
mixed or hybryd variety, in which both fofward and backward
chaining is done. Some resolution theoren prdvers have this
characteristic. The control over reasoning from the oOJata
(forward chaining) .or Eeasoninq from the goals (backward

chaining) is not well understood,

Froduction systems have been partially successful 1in
code optimizationidl, code synthesis[5], and stock analysis.

They have had uncontestable success 'in several medical
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domains, inciudina the domain of internal medicinel6l. In
the area of chemical identification from mass spectrometry
data, WENDRALL7) rivals post=doctoral chemists. Production
systems have not had success in the areas of theorem
provingy planning, game playing or scene analysis.
iheoretically any problem solvable by computer can be done
within the production systenm formalism, but there are
characteristics of a2 problem which make it more suitable for
a rule based systems, For a successful production system we

fing

1. & literature for the domain that organizes the

knowlegge in a rule=like form

e domain experts who can express how they process the

data

3, a clear definition of the problem or its solution.

ihe number of rules in production systems that perform at
human levels veries from several hundred to several
thousand. In some domains, people are unable to express
rules.  For example, if a clenched fist is quickly opened
and you then see 3 naper clip, by what process of thougnt
did this recognition happen? Rules are usually inc0mple§e
wﬁen first stated. Domain experts forget to make explicit
some “obvious" condition. As the systeh is used, and its
reasoning illustrated, errors are found, Since rules are

easy to modify, remove or add, this maintenance is not
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costly. A typical error of omission occurs when students
write down the rules to capture the legal manipulations of a
child’s blocks world. Student often will include 2 rule
which states that a block with a clear top can be moved to
another block with a clear tops and then the syétem may try
to move a block on top of itself., Properties of a domain

which makes it unsuitable for production systems include?

1. no person can do the task.

e the domain knowledge is voluminous, as- is

generation of art,
3, the knowledge 1is subconsciouse
4, knowledye 1s not local or rule=like, but is global.

5, routine repeated inferences are not present,

Production system have - twoO special propebt{es that
distinguish them form oata base management systems. Each
conclusion that the system reaches, either by backward oF
forward chainings can be justified by the system, The user
can make the entire reasoning process explicit, and in this
way, evaluate its results. Through this interaction the
user can also correct the system’s rules. Moreover the
system can assign a confidence to each conclusion and

explain the reasons for the particular confidence given,
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Althouah production systems have been used for nearly
two decades, they‘sgill tace a number of unsolved problems,
Most of these are fairly technical in nature, so they will
not be explained 1in detail., A primar? problem is thé
control over the number of rule applications. Without a
reduction in this number, a combinatorial explosion may
occur, Another severe problem 1is the evaluation of
anomalous or contradictory evidence. DoylelB] has recently
made a strong attack on this problem byAintroducing the idea
of dependency directed backtracking within a belief

maintenance system,

Command and Coptrgol The ramifications of the use of
production system for (2 are severai. Without ah explicif
knowledge of the rules governing ships at sea, there is no
hope fpr success. These rules shoﬁld be expressed at the
right level ot granularity for human comprehension, not at
the levél for system implementation. Consequently two
cooperating groups should be started, Jne group would

determine the rules while the otherougoup would implement a

rule interpreter ana rule Jlanguage powerful enough to

support the domain experts® rules. A testbed of example

data together with desired conclusions is needed to . develop .

and to evaluate the sysfem. Kule baseda éystem support
routinized cdecision makinyg, OUnly for those situations where
rulés have already been specified could the system possibly
succeed., 1In novel situations, a problem solving system 1is

needed. When a situation could not be handled by rules,'the
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problem solving system would be entered, If a solution is
found, & learning system could try to capture the solution

in the form of rules to be added to the rule based system,

SIAUMER

STAMMER [9] is a forward=chaining rule based system for
identifyinag objects detected by ‘'sensors on board naval
vessels and for interactively explaining the identification
process. The system operates in a continuing environmenf
where later data may supercede earlier data, lhe system 1is

expected to make and to justify conclusions based on partial
and perhaps erroneous information, with each conclusion,
the system associates a contidence, which may vary with

time,

At the conceptual level, the data base for STAMMER
consists of a set of relations. Unlike most production
systems, the problem of naval monitoring demands that the
data base be periodically updaterd by messages (decoded into
lists of assertijons or relations) from external sources.
The need to aeal continually with new information led to a
novel rule interpreter bpased on streams, This is an
"instance where the pecular nature of the C2 problem required

an extension of current Al technology. Through this
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technique all recomputations are avoided,

Another extension to existing Al technology was

'required to hangle rules of the form:

(friema x Y) ==> (friena Y X) (.9)
where the (.9) 1indicates the confidence factor associated
gith a rule. To allow rules of this form a new algorithm
for ‘combihing confidences was invented, | This algorithin
allows the evidence for a conclusion to form a graph.
Previous algorithms required that the structufe of the

evidence form a tree,

STAMMER also permits non=monotonic logicll0}, ~In
monotonic logice any conclusion reached cannot be

overturned, when the reasoning allows rules of the form

(unknown position X) => (not (instorm X))
then one needs to deal with non=monotonic Iogic; a topic
newly‘interes;ing to Al researchers. This was handled by
dynamically computing the confidence in an assertion, while

maintaining the evidence structure statically,

The evidence structure was also used by the éxplanation
system.  This subsystém waé. itselt written as a
min}-production éystem._ A form of English allowed was
highly restrictéd' by the system, With Some experience one
could tracé.ﬁne entire reasoning patﬁ that Jleo 'to any

concYusjonp even ones which no longer held to be true,
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Qﬁmmand and Control STAMMER proves that elementary platform
identification can be done by an Al system and that the
process of jdentification is sufficiently raticnal to ve
-believed by peopie. AEquisition of - rules was the most
critical problem, a problem which was .not satisfactorily
"resolved. A number of natural extensions to STAMMER can be
envisioned. In order to project the effect of hypothetical
actioﬁs 'or goals, an intelligent simulator is needed. Ihis
requires the representation of goals, spatial régions, and
temporal events, all of which are.understudy within the Al
community. Another extension woulri allow. the system to
infer goals from actions, This again requires basic work on
understanding goals as well as agomain specific work involvéd
in identify the goals of ships. Finally a.third extension
is needed to handle those situations for which rules are
insufficient. To explain the unexpected or anomalous or

contradictory events, a problem solving system is needed.

bProblem Solvipng and PRlapning

The first Al systems, Logic Theoristill]l anad GPSILZ2],
were general problem solving systems., These systemsg had
Ijmifed power due to the catastrophic ‘Search spaces they
generated, Later problem snlving systems, such as

STRIPS 13}, ABSTRIPS, WARPLAN(14), and NUAH[15], cut down on
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the search space, hut the success, at this point, is still

minimal,

A problem solving system is given an initial state:_ a
desired goa] state, and a set of operators or prodﬁétions as
input and tries to find a sequenée of operators that will
transform the start state into the woal state., Conseguently
a problem solving system can be implemented as a béckward
chaiﬁing production system. There is a cleaf'distinction
betweenbproduction.fsystems and problem solving ‘syétems.
when a production system fires a ruie, the conclusion may be
unneeded and the effort wasted, Conclusiohs from frivolous
rule firings are left 1in the data bhase. VWhen a problem
solving system fires a rule, it moves to a néw state. If
this state is not on the ~path to a solution, then

backtracking occurs and previous changes are undone,

Problem solving systems were first intendeo as
intelligent planning guides .for robots. This problem was
idealized to the Monkey and Bananas problem. Given a room,
a. box, bananas hung »from the ceiling, possible some
oobstacles, and a monkey, problem sblving systems triéd to
formulate a plan So that the monkey coulad reach the bananas.
By 1aealizing the problem researchers concerned w{th
different task domains could communfcate and méasure fheir
methods. Tﬁis ‘problem' was sufficiently simple so all
systems could solve the problem; The slightiy more

complicated domain of mcving blocks from one state to
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another was a focal point of research in the seventies,

The first techniques to be tried were those involving
search. A number of search alagorithms were invented, the
major ones being depth first, breadth, graphical, and
heuristic or best first, UUf these methods only breadth
first is guaranteed to succeed, but the computational
requirements make this approach unsatisfactory is most
cases. Searcning will not solve blocks world problem 1in
reasonable times. Minskyl(l16) proposed that problem solvers
should apply “"planning islands” to réduce the search space,
A version of these planning islands was used in the ABSTRIPS
system, with some success, More work on abstraction spaces

is needed,

Jwo other approaches to the vlocks world problem bhave
been suggested, Sacerdoti constructs a "procedural net"
which carries information about how to order actions, His
system succeeds in many cases, but Sacerdoti himself doubts
that it will solve all blocks worlds problems. As was soon
discovered, goals often consist of achieving a conjunction
of predicates, ail at the same time, rather than one after
another., Warren and late have a different approach, roughly
corresponding to the idea of interlacing plans for solvinag
each Sseparate subgoal. This methoo 1is computationally
expensive. Warren claims that his method is complete, 1.e.
will solve - any solvable blocks world problem, but his

implementation, he acdmits, does not support this assertion.
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-Although this work seemé (o be of the toy wvariety, in
fact it 1is completely general, Wwarren exemplifjes this by
using his planning system, with difterent sets of data and
rules, to 'solve 1) the monkey and bananas problem, ii)
machine code qenération and ii11) robot- movement problems,
In each case the state and goal state consists of a list of
relations, Ea¢h operators adds and deletes relation
provided that the preconditions (another lfst'of relations)
are satisfied, This framework 1is extremely general, but
more knowledge is needed to adequatgly control the choice of

operators,

At thnis time 1 will only mention .another appfoach to
problem solving, that founded upon predicate calculus, " In
this view the initial state and goal state are defined by a
set of predicates. The particular way in which state
changes are made is hased on thei principle of
cesalutionll7,18]) . The large search space problem is severé
in this formalism, Nearly a dozen strategies for lessening
the search have - been investigated, but ﬁone ﬁas been

successful,

Problem solving system have not worried about the
problem of explainina the choices. In some sense, the ends
justify the means. The systems all involve some aspect of
blind sgarching. Currently the Elocks world is the limit of

their capability,

‘Command and Lontral Unlike production systems, no problem
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solving sysfem‘s ability i1s near thét of any human, Their
are a numpber of ways problem solvers might extend their
power= by learning, by abstraction, bv' modeling, by
generalization, and by analogy. Problem solving s
necessary whenever the unusual or unexpgcted happeﬁé. This
is precisely the time when humans need assistance. This
assistance must be supported by reason and explanation.
Another area of research to be supported should be problem
solving éxplanation systems, | |

Natural Language Brogcessing

The study of natural language processing began with the
attehpt to translate automatically from one language to
another, The difficulty with natufal lanyuage understanding
~was not appreciated at that time. What would a system fha;
understood natural language have to do? would it Dbe
sufficient to parse the sentence, i.e. identify the words

of the sentence with various parts of speech?
Consider the following common sentences:

1. John gave Mary a headache, (Could she give it

pack?)
2. John gave Mary a book,

3, John gave Mary an engagement ring,
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a4, John'gave Mary a bloody nose, (Could John give

just a nose?)

5. John gave a qood performance,

IThese sentences have very distinct meanings. The
uhderstandinq of a sentence requifes more . than just a
| syntactic labelling of the words and phrases, (ne needs to
} know a large body of world knowledge, includfng such
‘ cdncepts as qoals, éausality. temporal >relations} social
relations, work_ ethics, ad iﬁfihitum. For many of these
concepts, no satisfactory representation scheme exists, The

area is still younhg and progress is being made,

Uperatiqna]ly a system understands a sentence or

paragraph it it can:
) baraohrase the statement
2. summarijze the st?tement
3. expound (fill in defai]s) on the statement‘
4, answer questions about the sentence
5. make inferences from the sentence.

The depth of uqderstanding can be measured by the nature of

inferences the system makes,
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The meaning of a sentence is dependent on world
knowledge ana the current local contexf. work in natural
language processing can be divided intb two major areas.
Une area s concerhed with the répresentation of that body
of kndwledge which is necessary for language understandinge.
Inis area’ overlaps with the study of knowlédge
representation in general, The other aréa is concerned with
providing a natyral language intérface to soﬁe existing data
base., In this case. the meaning of a sentence (ranslates-
into some query or update of the dgta base, This is a much
simpler probiem than understanding natural léngdage in
‘general contexts. Husty Bébrow has a parser which he
be\ieveé can effectively intertfaced to different domaihs
within a three month period (he has done this sevefal
times). This system is not small and would reguire an

additional 100k ot storage,

Canmand and Lontrol

The most comfortable interface to a system. éspecially
for naive users, would be English., The costs, applying the
RUS parser, would be several man=months plus an enlarged
system. When the Enaglish front=end is absolutely needed,
and the cdsf‘can'Oe afforded, at that time 'if should be
imported, Naturél languaqe processfng for (2 poses no
special problems., (I am not referring to processing codéd
messages,y, but to aécessing a data base.) There is no‘heed

. for the Navy to support or direct work in natural language
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processing, Research in this area 1is needed and will
continue,

Ganpes

Game playing programs have always held a fascination
tfor Al researchers, Games provide a microcosm to test
ideas. The measure of performance is clear and the results
easily understood, Chess (19} was tﬁe first game studied,
and for two decades the variety of techniques yieldéd only
very poor play. During this period a number of different
search strategies were studied, including depthetirst,
breadth, alpha=heta, best=first, graphs and progressive
deepening, The clearest result | defines when search

techniques will work,

The complexity of various games can be measured by the
average number of legal moves one has per turn. For chess
this number is about 35. For other games, such as checkers,
backgammon and go, the average number of moves is 15, 800,
and 200 respectively, One 1important measure for search
algorithms, is the number of nodes generated in order to
lookahead k moves (actually half=moves, called ply, is the
usual parameter). The alpha=beta search will effectively
search to depth -k ply by considering only
kxexp(2*rsquare~root <) moves, where d ié the average number
of legal moves, Consequently searching technigues are
successful in both chess and checkers, Currently

chess=playing programs play at the level of state champions
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and in blitz chess, will give grand=masters a battle.
Checker playing programsl(20] are at the world champion

level.,

The high number of legal moves in vackgammon and Qo
prevents the search approach from working. Nonethefess,
" Hans Berliner has written o very successful backgammon
program baseg oh a smooth polynomial evaluation function,.
This program beat the current world ‘champion in a match
where the computer had all the luck, In this method each
legal move is evaluated by twehty or thirty features and
that move with the greatest weighted sum is chbosen. A
.number of approaches have‘been tried for the aqame of go,
including searchy polynomial évaluation, rule~based, and
pattefn-based. All - of these techniques have been
unsuccessful.  Indeed, the best programs can only beat
players who have played fewer than two gémes. ‘Twenty vyears
of research has not produced a competent 9o playing program.
Inis is set forth as a warning‘to those who - might blithely
believe that programs can be easily written to perform at

human levels of intelligence.

Search techniaues do not afford a very deep explanation
for any decision. A move is selected because it is best
after considering millions of possible eventﬁalities. 'The
studies of ‘geGroot ingicate that in the game of chess,
:masters consider about 50 positions. Wwilkins .recently

.constructed a rule=-base program' which plays tactﬁcal
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mid=game situations and generates only a few dozen
positions, 1o do this a great deal of knowledge is applied

and the explanations of the choice of moves are more

comprehensipble. The success of search in game=playing has
been a disadvantage to the gevelopment of more
comprehensible methods. The performance measure of "good

play" is too restrictive. A program that plays well without
the ability to explain its decisions has the characteristics
of an idiote=savant. Approaches along the lines of Wilkins
thesis will eventually lead to a better understanding of how

people reason,

Commapnd and Coptral To put command and control into &
game=playing methordology requires a model which has legal
board together with legal moves.' The games that have been
studied have perfect information (complete knowledge of your
own forces.as well as the opponents). The gqame of bridge
atfords a more realistic model , On defense one has a
partial knowledge of your own’ forces. and the opponent’s
forces. While the highest level ' goal .is evident, the
particular subgoals required to achieve tHOSe goals are
manifolda. Ueception is an ever-present part of the game,
To model this requires the ability to imagine bhow the
opponents are viewing tHe situation, Une need to draw
inferences from what is not done as weli as from what s
done, As a profession, law}ers make the best bridge

players, The game demands consistent reasoning. The

post-hortem requires Jlogical explanations. The persistent
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presentation of reasoﬁs for bids aﬁd pfavs makes this game
an ideal candidate for a prototype problem solving system
" with explanation. The novelty of situations demands more
than a rule-based ;ystem and the unknbw nature of the
undisclosed hands prevents a search fechnique _frOm
succeeding. .

Leacping

When the sthy of AI first began, hopes ran unbridled,
The agitficulties of programming could be overcome by simply
having programs which learned, THe process of Jlearning
itself could be the subject of learning. Programs would not
bnly get smarter, but they would Jearn at an constantly
accelerating rate. Measured against these hopes, Al
learning programs have been a dismal failure. However, let
‘us examine the progress that has beeh'made, measured‘against

more realistic standards,

Samuel’s checker playing program was the first
successful Jleaprning program. It had two different learning
components, Une component sdjusted the coefficients of its
polynomial evaluation function in light of past experience.
The other component acted as a rote memorizer to avoid
previously done computation, With these technigues his

proygram auickly learned to play very competent checkers.

His methogs tell us how to tune 2 syétem.
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buchanan, Mitchell and  Feigenbaum developed
META=DENDKAL [21,22]) . This proygram inferred rules of
chemical fragmentation énd mfgration from input/output mass
spectrometry data, IThe inferred rules were interesting
enough to be published in Chemical Journals. META=DENDRAL
is the only program to synthesis new knowledge. Other

learning programs attempt to reinvent earlier discoveries.

Lenaf’s program AM{23] discovers relationships among
natural numhers and conjectures properties of numbers, This
system was a3 rule=based system where the rules were those
that embodied some of the heuristics governing mathematical
discovery., Through experimentation AM made more than 100

conjectures, including:

i. 1) each number can be written uniquely as a product

of primes

2. .ii1) each even can be written as the sum of two

primes

3 11i) the sum of two even numbers is even,

Part of the process of discovery included discovering that
the concepts of primeness, evenness, sum, and product would
be usaful, This program did not verify any conjecture nor
did it discover any new fact about numbers. Rules capturing

some aspects of aesthetics were part of the control of " the

system.
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Recently Langley(24) has reported on a progyram, BACON,
which infers physical laws from empirical, numeric data.
BACON is a production system which has inferred such laws as
Keplar®s third law, 1inverse sauare Jlaw, Coulomb®s law,
Snell’s law and others. Part of the discovery of a law 1is
guessing that thefe is a relationship among the appropriate
parameters. I[his is done by the human., The system tries to
find a relationship among hand=picked data. No new 1aw has

been discovered, but unexplained data is being sought after.

Command and Cantral From the work that has taken place, an
Al system to adjust coefficient or fo build its own rules
can be given a good chance of success. To infer rules,
appropriate data must be generated, either by humans, as 1in
BACON, or by experimentation, as in AM., The C2 context uses
rules as part of a problem solving system., There are two
possible avenues of research here. Une would be to build a
problem solving system together with a rule inference
system., Rules could be inferred from traces of solutions of
problems, Alternatively, given the input and desire output,
rules could be generated following the methodology 1in
META=DENURAL .,

knowledge Eepresentation

The concerns of knowledge representation will be
introduced by analoay. Suppose we had a program which kept

information on all the employees of some firm, We would

want to able to add and delete information about employees,
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Depending on the type of 1information kept, e€.Q. salary,
address, health records, peer reviewsr etc, we would
require different data storing techniques. If we wanted to
ask who made what salary as opposed to or in addition to
what salary an individual mades this too  would require a
different data structure, This problem is not hard because
we know what information shoula be stored and the techniques

for updating and accessing the information,

Knowledge representation is the study of methods for
storing that information necessary for human-like reasoning
and inferencing, The updating of a knowledge representation
is called knowledge acquisition. Knowledge application is
the methods by which the knowledqe representation is wused,
All of this topics fail under the heading of knowledge
engineering, The three major knowledge representation
schemes are rules, predicate calculus (or first order
logic), and semantic nets, Much of the work 1in knowledge
representation has been stimﬁlated by natural language
processing, for, as we have seeny 1nferencing is a necessary

part of natural language understanding.

A recent SIGARTIZ25] (Special Interest Group on
Artificial Intelligence) was entirely devoted to Knowledge
Representation, This article surveyed ‘seveéal hundred Al
workers and obtained a consensﬁs on the sixty topics asked

about. Knowledge Representation 1i1s concerned with the

computer representation of: goals, plans, causality, space,
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time, pProcess, contexts, abstrationy aeneralization,
specialization, plurality, gquantification, prototypes,
structure objects, individuals, attributes, ambiquity,
descriptions, references, denotations, connotations,

analogy, evalutation, simplificiation, induction, deduction,
chunking, partial matching, beliefs, bhypotheses, models,
certainty, primitives, contradictions, qonsistencyp
completeness, adequacy, and a host ot other topics. OUf all
the topics surveyed, only those agealing with the
representation of logical issues, such as quantification,
negation, conjunction, and disjunction were generally
thought to be understood.A Some areas, like the
representation of spatiél and temporal knowledge wefe
thought to be understood by no one. Uf course one could
represent this information by means of coordinates, but s
cleariy not how humans do it, and does not provide any
insight into how one would use the information to reason.
Thié particulér ignorance touches on .the Irame problem.
which 1s the problem of representing information in such a
way that only relevant updates are done, e.d. consider the
amount of wupdating necessary to represent the changing
perspective of a person walking through a room, Somehow
people cope with this without becoming computationally

swamped.

Caommapd and Lgopntral A number of areas of knowledge
representation are of particular concern to C2. These

include the representation of goals, plans, space, time,
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contexts, beliefs, and certainty. In this infancy period ot
Knowledge tngfneering: two separa;e problems are often
contfused, (ne problem is the general problem of how to
represent some quality or facet of knowledge thle the other
problem is the sﬂecific Oroblém of representing the
particular facet of knowledge for some domain, For example
in tnhe understanding of goals, knowledge representation
techniques are needed to handle the general problems of
competitive goals, of cooperative goals, of subsumption
goals and the like. Also, for the application of these
technidues, s specific domain analysis is reqgquired to
identify the goals in a (2 environment, OUomain analysis is
not a simple task. Many people have tried to make explicit
the rules for playing good chess without success. Recéntlv
Ailkins (26] has had some success at this domain analysis
~task. A necessary condition for successful domain analysis

is a competent knowledge of the domain.

Lonclusions

Specjfic recommendations for developing ana wusing Al
technology have been made throughout this paper. In general
the Navy shpuld proceed along two lines, By supporting
basic resaafch within the Al commupity in areas which are of
particular value to C2, the Navy can attract the 1interest
and labors of a areater number of people than those whom
they support directly., As developeo in this oaper; areas
requiring additional research are planning; representing,

applying and identifying goals; and problem solving, These
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areas can developed by allowing researchers to work in toy
domains, domains which will have the same essential
difficulties as (2, but which avoid the specific domain

knowledqge,

The second line should be the continuing development of
a prototyﬁe system, i(ine form of benchmark could be
scenarios illustrating desired pbehavior. Another form would
be a family of questions and question types which the system
should be capable of answering. A third, and most
desirable, form of benchmark would be the use of such a

system in standard war games., [Ihe development of such a

system hinges upon readily available data.
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