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Abstract

Time-Course Analysis and Clustering of Gene Expression Data

by

Stephanie DeGraaf

Doctor of Philosophy in Statistics

and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley

Associate Professor Elizabeth Purdom, Chair

High-throughput time-course studies collect measurements from samples across time. In
particular, longer-duration high-throughput time-course studies are becoming more com-
mon, such as in the case of 16S sequencing of bacterial communities or single-cell mRNA
sequencing of developmental lineages. A common focus of these studies is on significance
testing per gene. However, in many settings, particularly those studying developmental pro-
cesses, large numbers of genes show temporal changes, and the relevant question is instead
to classify genes into different types of temporal changes. We propose a mixture-model
clustering method that estimates a functional spline model for the mean of the cluster, in
order to cluster the temporal patterns of genes independent of scale. The model allows for
a wide range of likelihood models to suit a variety of data types. In addition, this clustering
strategy accounts for time-course data under different experimental conditions or develop-
mental lineages, and it provides a method for evaluating, per cluster, significant differences
in temporal patterns between conditions. This allows for an integrated analysis of differen-
tial expression analysis and clustering. We demonstrate the benefits of our method using
simulated data. In addition, we explore several real data sets to illustrate both the context
for and the application of the mixture model.
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Chapter 1

Introduction

Genomics experiments are a useful tool to investigate the biological behavior of organisms.
With such experiments, we can study the a wide range of phenomenons, such as the effects
of drought on plants, the response of mice to a stimulus, or the progression of disease in
humans. While many types of observable data may serve to aid our understanding, genomics
data in particular have the potential to illuminate the underlying genomic processes that
are associated with external observations. For instance, we might discover which genes are
crucial at specific times in a developmental process, or identify microbes that are essential
to a plant’s ability to survive under drought, or predict the success of a drug based on a
patient’s genetic profile. Such discoveries made by analyzing genomic processes could then
enable us to treat and respond to biological problems such as drought, injury, or disease in
a more effective manner.

Alongside this tantalizing potential lurk a variety challenges in analyzing genomics data
that must be overcome in order to identify the true biological behavior that the data have
captured. Failing to address these issues can lead to spurious conclusions and false detection
of discoveries, leading researchers astray and leaving us blind to the true story in the data.
Therefore, rigorous statistical methods must be employed in genomics analysis to facilitate
accurate conclusions and appropriate responses.

1.1 Time-course gene expression context

One particular context that presents unique challenges is research studying changes across
time, such as developmental patterns or changes in response to stimuli. Genomics data is a
valuable tool that can identify temporal patterns of interest as well as genomic features that
are particularly relevant from a biological standpoint.

The focus of this dissertation to analyze time-course gene expression data. Time course
gene expression data involves two elements that make this an interesting area of study: the
time-course nature of the data, and the high-dimensional nature of gene expression data.
Time can be considered in a chronological context, as in an experiment where samples have
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been collected across multiple time points, or in a developmental context, as in a single-cell
experiment. Gene expression data can be of any type of omics data; to name a few, we can
consider RNA-seq, ChIP-seq, 16S rRNA-seq, scRNA-seq, etc.

Time-course gene expression is an area of rich scientific interest that has long been ex-
plored in a variety of applications. Briefly, we note a few examples of time-course gene ex-
pression studies to demonstrate their wide breadth of applications. To study the regulation
of leukocyte activities in the human immune system, Calvano et al. [2005] used microarrays
to study gene expression in whole blood leukocytes at multiple time points before and after
administration of bacterial endotoxin to subjects. Rodwell et al. [2004] studied age-related
kidney degeneration by examining gene expression in the kidney cortex of human subjects
ranging in age from 27 to 92 years. In Shoemaker et al. [2015], the authors modeled the
gene expression dynamics of the mouse immune response to multiple influenza virus iso-
lates across 14 time points following infection. In the context of plants, Varoquaux et al.
[2019] conducted a field experiment of the sorghum crop, collecting transcriptomics data
from plants under multiple watering conditions across the time from seedling to maturity.
Each of these studies involve at least one type of high-dimensional genomics data collected
across a time-course of long duration.

If we take a less conventional definition of time, we can consider time-course studies
in the context of single cell data. The technological development of single cell assays has
enabled researchers to isolate the transcriptomic profile of individual cells, rather than pro-
files of bulk collections of cells as in RNA-Seq or microarrays. Single cell data therefore
provide the ability to distinguish between various cellular states, as well as to infer an or-
dered progression through those cell states. This kind of inference assumes that cells develop
along an underlying time variable, typically called pseudotime. The challenge of inferring
this developmental ordering is an interesting area of study, and several methods have been
proposed to reconstruct the pseudotime variable, such as Monocle in Trapnell et al. [2014],
or Slingshot in Street et al. [2018]. Typically the construction of the pseudotime variable
is done by ordering cells along a path through a reduced-dimension space. Once a develop-
mental ordering has been inferred by an appropriate method, the transcriptional changes of
genes can be analyzed along this pseudotemporal progression of cells. One such study that
analyzes scRNA-seq data in this way is Gadye et al. [2017], which investigated the transcrip-
tional processes of stem cell renewal and differentiation in the regenerating mouse olfactory
epithelium following injury. The authors in particular noted a handful of key genes that
showed dynamic patterns of gene expression along the inferred developmental trajectory.
As single-cell experiments continue to grow in popularity, it will be highly valuable to have
methods that can analyze patterns of expression along developmental trajectories for large
numbers of genes.

These examples serve to illustrate the broad range of interest in temporal and develop-
mental changes and the corresponding need for statistical methods that are widely applicable
to a variety of data types. The focus of this dissertation will be to provide a method to com-
prehensively analyze the temporal patterns observed in the data as well as identify the most
significant patterns and genomic features.
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1.2 Challenges with long time-course data

While time-course gene expression has long been an exciting area of study, many of the sta-
tistical methods have been developed for use in microarray experiments. As high-throughput
sequencing data becomes more available, more time-course studies are taking advantage of
the rich information provided by sequencing data in studying changes of gene expression
across time. However, the statistical methods needed to analyze the data coming from these
experiments of longer duration are underdeveloped. This is problematic because time-course
designs of longer duration, while filled with rich potential for discoveries, also come with
a number of statistical challenges that do not arise in the context of shorter time-course
studies.

Common statistical approaches to analyzing time-course genomics experiments have re-
lied on factorial models using packages like edgeR Robinson et al. [2010] or limma Smyth
[2005]. These methods are designed to treat a variable such as time as a factor variable,
creating a design where each time point has its own binary indicator variable. This type of
factorial model is appropriate and performs well for studies without a time-course design,
or those with a time-course of short duration, with only a few time points. However, with
longer time course studies, the simple factorial model becomes less appropriate, since the
factorial design essentially ignores the gradual progression of biological behavior across time.
In addition, the factorial model quickly grows in complexity with increasing numbers of time
points, especially if the model includes interaction terms. Therefore, a more advanced model
of the time variable is needed for these longer time-course studies.

Statistical modeling of time course data is a rich area of study and provides many options
for modeling time variables that can be applied to the genomics context. Indeed, some of
these time course methods have begun to be applied to genomics data. Early work in this
area was focused on microarray data, and a thorough review of many methods to identify
patterns, clusters, and gene-regulatory networks in time-course settings is given in Bar-
Joseph [2004]. Most of these methods are either exploratory in nature or rely on ANOVA
procedures to conduct any type of inference. A variety of model-based methods have also
been proposed, such as a polynomial model including full interaction terms for time and
experimental conditions in Conesa et al. [2006], a Bayesian auto-regressive hidden Markov
model in Leng et al. [2015], an analysis of the derivative Fourier coefficients in Kim [2011],
and wavelet-based functional clustering in Kim et al. [2010]. Again, most of these methods
are more appropriate for time courses of shorter duration and are not designed to handle
longer time course studies. Among the more relevant methods for time courses of a longer
duration in particular is a functional spline model described in Leek et al. [2006], which uses
Gaussian smoothing splines to conduct differential expression testing for microarray data.

While many of these methods provide interesting avenues of exploration, in our work we
explore a functional data analysis approach, as our focus is on longer time-course studies.
A functional data analysis strategy seems most promising for studies with time-courses of
long duration due to its flexible nature, which gives it the ability to model changes across
many time points Furthermore, modeling a time variable using a functional model allows
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us to perform our desired analyses of clustering and differential expression analysis with
simplicity and clarity.

1.3 Challenges with high-dimensional genomics data

To compound the problem of modeling time variables of long duration, genomics data involve
a number of challenges that require careful consideration. Among the most important is
the high-dimensional nature of genomics data, in which a typical genomics study collects
data for tens of thousands of genes. This can lead to an overwhelming set of results in
which it is difficult to discern the most important conclusions from among all genes. An
additional challenge with time course genomics studies is dealing with the characteristics
of genomics data analysis that have been so carefully addressed by the edgeR, limma, or
zinbwave models. In particular, two areas of consequence in analysis are selecting the
appropriate data distribution and applying a reasonable normalization technique.

The major challenge of analyzing genomics data in time-course studies is to make sense
of the vast numbers of changes observed in the data collected across time. In a genomics
experiment involving tens of thousands of genes, it is typical that extremely large numbers
of these genes will show differences across time. This is to be expected, since measuring
gene expression across time captures the developmental processes of genes, and each gene
will likely show activity at some point along a developmental process. Therefore, tradi-
tional methods of genomics analysis like differential expression analyses are not particularly
illuminating in this context, because these methods will identify nearly all genes as being
differentially expressed across time. While these conclusions are correct, they are also not
the most useful for further biological interpretation and study. In order to discern mean-
ingful conclusions from an excess of genes showing differential expression, the goal of our
analysis changes from identifying the particular genes that demonstrate interesting behavior
to identifying the typical patterns of behavior and then classifying genes into those groups
of similar expression across time. To this end, the method that we present will focus on
this broader question of pattern detection via clustering, as well as conducting differential
expression analysis at the cluster level rather than the gene level.

Besides this overarching challenge of high dimensionality, a key issue to address in any
model-based genomics analysis is to choose the data distribution that is most appropriate for
the data type. Gaussian models such as in the limma package from Smyth [2005] work well for
microarray data, since microarrays report a continuous measure of fluorescence intensity that
has been shown to be normally distributed. Sequencing data like RNA-seq data, however,
report integer count values that measure the discrete number of sequenced reads aligning to
a reference transcript. Hence, a count distribution is most appropriate to model sequencing
data. The negative binomial model is used effectively in the edgeR package from Robinson
et al. [2010] and the DESeq package from Love et al. [2014]; other models rely on the Poisson
distribution as in Witten et al. [2011] and Rau et al. [2015]. Furthermore, specific types
of sequencing data, such as 16S amplicon data, or single cell RNA-seq data, require an
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additional consideration for the high numbers of zero counts, due to technical dropouts or
rare presence of certain genes. The negative binomial model alone has been shown to be
insufficient to properly model the high frequency of zero counts arising in single-cell data,
and a zero-inflated negative binomial model was proposed to more effectively model zero-
inflated count data in Risso et al. [2018]; these concepts naturally extend to the context of
16S microbial data. These are just a few examples of selecting the appropriate distribution
for the data type, and other types of genomics data require equally careful consideration of
the appropriate distribution.

Furthermore, modeling genomics data requires a normalization step to account for global
sample-level differences. These are differences in the magnitude of counts or frequencies
between samples that arise from causes unrelated to a true biological signal. There are
many factors that can create unwanted global variation across samples; without normalizing,
true biological differences between samples are obscured or entirely masked. Typical sources
of sample-level variation can come from technical variation, such as library preparation in
sequencing experiments or probe effects in microarrays, as well as batch effects caused by
differences in the environment, day, or scientist during sample processing. Removing this
unwanted global variation consists of applying a normalizing correction to the data that
seeks to put all samples on a comparable scale. Typical ways to do this are normalizing each
sample by a function of library size or by the expression of control genes. The advantages of
various normalization techniques have been discussed in Bullard et al. [2010] for mRNA-seq,
in Lytal et al. [2020] for single-cell RNA-seq, and in Weiss et al. [2017] for microbial amplicon
16S data.

Failing to choose an appropriate distribution or normalization technique can lead to
serious errors in data analysis, such as a high number of false positives and false negatives,
as explored in Seyednasrollah et al. [2015] and Risso et al. [2018]. To avoid these errors,
the method that we have developed will incorporate the normalization and data-distribution
techniques used in the edgeR and zinbwave packages, both of which have a well-developed
framework to address these characteristics of genomics data.

1.4 Goals for analyzing time-course gene expression

data

Before presenting our method to analyze time-course gene expression data, it is important to
make explicit the purposes that such a model will serve. From a statistical perspective, the
main purpose of our method is to address the unique challenges that arise from a time course
of long duration and the high-dimensional nature of genomics data. More broadly, these
statistical concerns require first understanding the relevant biological questions of interest
as they relate to differential expression testing and clustering.

A general goal of genomics studies in contexts involving long time courses is to identify
typical patterns exhibited in the data, as well as to cluster features into groups represented by
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those patterns. These patterns may then be used to investigate various biological hypotheses
about developmental patterns of various genes. Furthermore, by clustering genes into shared
patterns, we can explore which genes are behaving in correlated and anti-correlated manners.
Our method relies on a mixture model clustering algorithm that will perform both functions
of identifying patterns and assigning features to groups simultaneously. In doing so, the
mixture model probabilistically fits a cluster mean to provide an accurate representation of
the cluster patterns, as well as a probabilistic assignment of each feature to each cluster.
The method relies on a functional model of temporal expression, making it particularly
appropriate for our context of time-course studies of long duration.

In addition, an overarching goal of many genomics studies is selecting the most interesting
features that perform a significant biological function. Typically, this is done by conducting
a differential expression analysis at the gene level, using statistical tests like t-tests and F-
tests for each gene to detect the most significant genes. As previously noted, this approach
to differential expression analysis in the context of longer developmental time course studies
is challenging, due to the high numbers of genes detected to be significant. Therefore, our
method provides a way to test for differential expression at a cluster level, identifying the
most interesting groups of genes, rather than attempting to select individually significant
genes. Moreover, within a relevant cluster, we also provide the ability to identify the genes
that most strongly match the cluster pattern, which are likely to be the most relevant genes
for further investigation of a particular cluster pattern.

The remainder of this dissertation is organized as follows. In Chapter 2, we will explore
a specific real data example of time-course genomics data analysis where our method could
be applied. We then present the mixture model method, focusing on the clustering analysis
in Chapter 3 and the differential expression analysis in Chapter 4. A concluding discussion
is given in Chapter 5.
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Chapter 2

Statistical analysis of genomic
datasets

2.1 Introduction

To illustrate the context for the methods we have developed, we will explore a genomics
dataset collected across a time course of long duration. This dataset comes from the EPICON
project, which studies the epigenetic control of the drought response in the sorghum plant.
Here, we briefly give a background to the EPICON project to provide context for the analysis
that follows.

Sorghum is a cereal crop native to Africa and is cultivated in many areas of the world
today with increasing popularity. Over the past 50 years, the area planted to sorghum
worldwide has increased by 66 percent, and sorghum yield has increased by 244 percent
Stroade [2020]. The grain is commonly used for food, liquors, animal feed, and ethanol, and
is of scientific interest for many reasons. Among the most important reasons, the sorghum
plant is very drought-tolerant. With drought causing annual losses of $2.9 billion, a more
thorough understanding of the biological mechanisms of drought tolerance is both highly
relevant and valuable (Pachauri et al. [2014]). In addition, sorghum is resistant to heat
stress, soil toxicity, and pests and pathogens; it is also a highly efficient crop in terms of
water and solar energy usage. Finally, sorghum is highly nutritious as food, making it an
ideal crop to help meet the increasing global food demand.

In light of these appealing characteristics of sorghum, the EPICON project was designed
to study the biological mechanisms of the sorghum plant that aid in its tolerance of drought.
Of particular interest are the transcriptomic, proteomic, metabolomic, and microbial re-
sponses to drought. To study these processes, EPICON conducted a field experiment of
sorghum grown under various watering conditions. Sorghum plants were grown at the Uni-
versity of California Kearney Agricultural Research and Extension Center, and plant samples
were collected on a weekly basis throughout the life of the plant. Two drought conditions
were imposed: a pre-flowering drought condition, where the drought took place before the
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Figure 2.1: Sampling plan for the EPICON project.

plant flowered, and a post-flowering drought condition, where the drought took place after
the plant flowered. In addition, two genotypes of sorghum were used that were hypothesized
to perform particularly well under each drought condition: the pre-flowering drought-tolerant
RTx430 and the post-flowering drought-tolerant BTx642. The experimental design is shown
in Figure 2.1, where at each week, three replicate samples of each of the two genotypes of
the sorghum plant were collected from each watering condition, and the flowering week is
marked at Week 9.

Many types of genomic datasets were collected and analyzed from each weekly sample,
including mRNA-Seq transcriptomics, small-Seq, 16S rRNA-Seq, ChIP-Seq histone data, BS-
Seq methylation data, proteomics, metabolomics, metagenomics and metatranscriptomics.
In general, the various datasets demonstrated rich and dynamic changes across time and
between conditions, as detailed in Varoquaux et al. [2019], Gao et al. [2019], and Xu et al.
[2018a]. To illustrate just one of these analyses, we will examine the 16S microbial dataset.

2.2 Development of the sorghum root microbiome

under drought

The plant microbiome is of interest because root microbes are known to provide multiple
benefits to the host plant. The root microbiome of a plant is composed of fungi, bacteria,
and archaea that colonize in the roots of plants and perform a variety of functions. While
some microbes are purely parasitic, feeding off the host plant’s carbon source while providing
no benefit tot he host, symbionts can increase the host plant’s access to nutrients, regulate
plant growth, boost immunity, and protect against environmental stress. Importantly, the
root microbiome can provide protection against drought stress. However, despite these great
benefits, little is known about the dynamics of the development of the plant microbiome,
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under either regular watering conditions or drought conditions.
To investigate the role of the microbiome in sorghum’s drought tolerance, the EPICON

project collected weekly samples from the soil, rhizosphere, and roots of the sorghum plants
and applied 16S rRNA amplicon sequencing to each sample. 16S amplicon sequencing is a
protocol pioneered by Carl Woese that is widely used to study the identities and relationships
of microbes present in a microbial sample. Briefly, the process for a given sample consists of
extraction and PCR amplification of the 16S genes, high-throughput sequencing of the 16S
gene, and clustering the resulting sequence reads by similarity into Operational Taxonomic
Units (OTUs), which are thought to roughly approximate bacteria species. After OTU
clustering, the number of sequences assigned to each OTU can be counted in each sample,
creating a data matrix of the read counts of each OTU in each sample.

This protocol for sequencing the 16S gene only provides useful information about a mi-
crobial community because of the strikingly convenient characteristics of the 16S gene. This
gene consists of both highly conserved and highly variable regions, providing rich information
about what kinds of bacteria are present in a microbial sample as well as their taxonomic
relationships. Specifically, the variable regions in the 16S gene allow for a phylogenetic struc-
ture to be established for each of the bacteria present in a microbial sample, so that each
bacteria is assigned a genus, family, order, class, and phylum in the taxonomic hierarchy ac-
cording to its genetic sequence. While 16S hypervariable regions are not able to differentiate
between bacteria at the most specific rank of the species level, the broader classifications
at higher levels still provide a wealth of useful information. This taxonomic information
can be used to discover which types of bacteria are most and least abundant in a microbial
community, and how their presence changes in response to time or experimental conditions.

2.2.1 Background analysis of microbiome dataset

The full 16S microbial dataset was analyzed in Xu et al. [2018a], where the authors found
many varied and dynamic responses to drought. We will note a few observations to provide
background context for the work that follows.

Bacterial community diversity is a common area of interest in microbiome studies. Shan-
non’s diversity is a statistic that is used to measure the amount of diversity within a microbial
sample, giving us an idea of the degree of variety of different kinds of microbes present in a
given sample. Measuring Shannon’s diversity for each time point’s samples in the EPICON
data revealed a period of rapid increase in community diversity following seedling emer-
gence, followed by a rapid decrease after this initial colonization period. Samples from the
soil demonstrated unchanged diversity throughout the development of the plant and under all
conditions. In contrast, samples from the rhizosphere and roots showed significant decreases
in diversity during both drought conditions. Bray-Curtis dissimilarity is another diversity
metric that measures the diversity between microbial samples, providing a measure of how
different the microbial communities are between two samples. Comparing the microbial com-
position of the soil, rhizosphere, and roots using Bray-Curtis dissimilarities indicated strong
differences in composition across all three sample types. Furthermore, bacterial communities
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showed high diversity across treatments and time points, although there was no observed
difference in composition according to the genotype of the plant. These observations lead
to the conclusion that microbial communities differ across the soil, rhizosphere, and root
locations, and furthermore, that they undergo significant changes in response to time and
watering condition.

A further investigation of the microbiome development across time revealed that drought
has a strong delaying effect on the progression of the root and rhizosphere microbiome. Sim-
ilar patterns of development were observed under both the pre-flowering drought condition
and the control watering condition, but with a brief two to three week delay in the drought
progression. Other than the delay in timing, however, the development of the microbiome un-
der drought generally follows a similar progression as under control. An additional significant
observation was made that during the period of delay in the pre-flowering drought condi-
tion, the root microbiome demonstrated a strong enrichment of bacteria primarily from the
Actinobacteria phylum. These observations suggest that the microbial communities change
in complex manners across time and between conditions, and in our analysis, we further
explored these dynamics.

2.2.2 Statistical analysis of dynamic lineages

To better understand the delayed progression that drought induces in the root microbiome,
we further investigated the temporal dynamics of the bacterial lineages that were most
dynamic across time and condition. To identify these OTUs of interest, we tested each
OTU for a significant difference in abundance across time between conditions by fitting a
smoothing spline model to each OTU.

Before fitting the model, we first conducted a normalization step to account for confound-
ing differences in the magnitude of counts between samples. As is a standard practice with
16S data, we simply normalized the data by relative abundance, dividing each sample by
its library size. In addition, we took the log of the counts of the OTUs so that a Gaussian
distribution would be an appropriate choice for the data distribution of the model.

We have many options when choosing a model for the abundance of each gene. The
simplest model choice would be to treat time as a factor variable and conduct group com-
parisons across time conditions; however, this ignores the temporal dependence between time
points that is at the heart of a time course study. Another option is to fit a simple linear
regression model to the data. The problem here is that doing so makes assumptions about
the data that in many cases can be unfounded. In particular, linear regression fundamentally
assumes that changes in responses are proportional to changes in the predictor, i.e., that the
change in abundance is the proportional to the change across time. However, this would
be a faulty assumption in our context because it is evident that OTU abundances change
at different rates across different prediction intervals. Splines are a promising method in
functional data analysis that can address these issues and provide unique advantages over
alternative modeling choices.
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Functional models provide a way to model OTU abundances in a flexible manner, by
considering the data as functional observations of an underlying trend. In this way, splines
provide the ability to model the data in a different way for different intervals of the predictor.
A spline is a piecewise function whose smoothness can be controlled by tuning a smoothness
parameter or by specifying a series of breakpoints where the function changes. It is crucial to
moderate how aggressively the splines fit the data, and a challenge with spline methods is to
find a function that models the underlying trend without modeling noise in the system. Spline
regression involves choosing a particular function to fit segments of our data. Functions are
created from a chosen set of basis functions (such as Fourier, wavelet, polynomial, B-splines,
etc.), and intervals are determined by a knot sequence, usually chosen so that more knots
are placed in areas of the data that require a closer fit and fewer knots in smooth areas of
the data. In terms of this representation, the balance between smoothness and model fit is
controlled by choosing the number and location of knots used to construct the spline.

2.2.3 Spline model and results

Smoothing splines provide an advantageous method to model the dynamics of OTU abun-
dance across time, and here we define the particular model applied to the microbial data
set. The log relative abundance yij of OTU i in condition j at time t is modeled as

yij = µij(tj) + εij(tj),

where µij is the population average time curve modeled by a p-dimensional basis of B-splines,

µi(t) = βi0 + βi1Ψ1(t) + · · ·+ βipΨp(t),

and εij are assumed to be independent errors from a Normal distribution. Here, we use a
B-spline basis defined by three knots at equally spaced quantiles along the time from weeks
one through 17.

This model was fit on a per-OTU basis. After the model was fit, significant OTUs were
detected by testing the significance of the interaction of time point and treatment. This was
done by using the likelihood ratio test comparing a model with an time-treatment interaction
term to a model without the interaction term. The likelihood ratio test produces a p-value for
each tested gene, and to control for multiple testing errors, the Benjamini-Hochberg multiple
testing correction was applied to the resulting p-values from the gene-wise likelihood ratio
tests. In total, this differential expression analysis identified 576 OTUs with significant
differences in temporal behavior between conditions.

Next, to better understand the behavior of these 576 significant OTUs, we sought to
identify their various patterns of temporal behavior between conditions. To do so, we per-
formed hierarchical clustering of the fitted splines of the 576 significant OTUs. Results are
shown in Figure 2.2, where for each of six clusters, the cluster mean under both the control
condition and pre-flowering drought condition is plotted across time.
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Figure 2.2: Cluster mean temporal expression and distribution of class membership of OTUs
in each of the six clusters identified by hierarchical clustering.

From these cluster patterns, we confirm the observation made earlier of the delaying
effect of drought on the progression of the microbiome, as the patterns that are identified
in clusters two through six exhibit a similar progression across time under both control and
drought conditions with a slight delay under the drought condition. Cluster One, on the
other hand, shows a unique pattern of strong enrichment under drought which does not
follow the typical delayed behavior demonstrated by the other clusters of OTUs.

For further exploration of Cluster One in particular, we investigated the distribution
of taxonomic class membership of the OTUs belonging to each cluster. Each OTU was
identified by its class assignment as either belonging to one of the top 11 most common
classes or an “Other” category with all of the remaining classes. By a visual assessment
of these distributions, we observe that most clusters are composed of a wide variety of
different classes, indicating that the behavior of most OTUs is unrelated their taxonomic
class assignment. However, Cluster One again stands out for being made up of almost
entirely Actinobacteria OTUs; furthermore, there are relatively few Actinobacteria OTUs
represented in other clusters. This again points to unique enrichment behavior by OTUs in
the Actinobacteria class, suggesting that Actinobacteria OTUs are performing some unique
function during a drought period.

2.2.4 Conclusions of microbiome analysis

The pattern of Actinobacteria enrichment shown in Figure 2.2 was noted in Xu et al. [2018a]
and further explored experimentally. The authors concluded that the defining characteristic
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of enrichment under drought by these OTUs was the structure of the bacteria’s cell wall.
Bacteria can be classified in terms of their cell wall structure as either monoderms, which
possess one cell membrane and a thick peptidoglycan cell wall, or diderms, which have two
cell membranes and a thin peptidoglycan layer. Interestingly, enriched bacteria under the
drought period were all classified as monoderms, while depleted bacteria were classified
as diderms. The few exceptions to this rule possessed cell wall structures with unique
characteristics, which were explored further in Xu et al. [2018a].

The observed enrichment of monoderms raises questions about the underlying cause of
this enrichment. A comparison with the metabolomics data from the EPICON project
proposes a possible explanation for the cause of this enrichment. Based on a differential
expression analysis of root metabolites, the most significantly enriched metabolite was found
to be glycerol-3-phosphate, which was 4.34 log10-fold more abundant in drought-treated
than control roots, and this enrichment was further shown to be host-generated. In addition,
G3P is known to be a precursor to peptidoglycan biosynthesis used by monoderm bacteria
in the development of their cell wall. Putting these observations together suggests that the
abundance of G3P may be positively selecting for monoderms, leading to their enrichment
under drought.

From a statistical perspective, we can conclude that our smoothing spline model produced
both accurate and meaningful results, as the model and clustering supported the conclusions
made by Xu et al. [2018a]. In addition, the spline model provides a helpful visualization of
the various temporal patterns exhibited by the various OTUs in the root microbiome.
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Chapter 3

A method to cluster time-course gene
expression data

This chapter focuses on work done jointly with Nelle Varoquaux.

3.1 Introduction

High-throughput time-course studies collect measurements from samples collected across
time via high-throughput experiments like mRNA-Seq or microarrays. Early microarray
technologies used time-course designs along with corresponding methods for their analysis.
Despite their long history, however, there has been relatively less attention on methods
for time-course expression studies as compared to the more frequently studied design of
group comparisons. Much of the analysis of time-course expression data comes from early
work in gene expression microarray studies and focused on using functional data analysis
techniques to estimate gene expression as a function of time and the resulting problems
in estimating these parameters simultaneously across thousands of genes. However, many
time-course expression studies are of relatively short duration (few time points) where a
simple factorial model comparing time points is appropriate, via packages like edgeR or
limma (Robinson et al. [2010], Smyth [2005]), rather than functional analysis techniques.
Longer high-throughput time-course studies are also commonly used in mRNA studies and
are becoming more widely used in the cases of 16S sequencing of bacterial communities, as
in Xu et al. [2018b], or single-cell mRNA sequencing (scSeq) of developmental lineages, as
in Gadye et al. [2017]. Due to these types of settings, there has been increased attention
recently on time-course studies and the adaptation of functional analysis techniques in the
presence of low sequencing counts and zero-inflation.

Much of this work has also been focused on the question of significance testing per gene
– either testing whether there is any change over time or comparing between groups over
time. There has been less attention to the common question of clustering of features from
time course experiments. This is particularly unfortunate, since many longer time-course
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studies result from developmental gene expression studies, where large numbers of genes
show temporal changes. In this setting, the relevant question is less the detection of any
genes with temporal effects but rather the classification of genes into different types of
temporal changes. Some techniques attempt this classification via hypothesis tests per gene
(Sander et al. [2017], Van den Berge et al. [2019]), but clustering is a more natural strategy
that does not require a priori definition of the types of temporal changes of interest.

In this chapter, we propose a mixture-model clustering method that estimates a functional
spline model for the mean of the cluster, in order to cluster the temporal patterns of features.
The mixture-model conducts this clustering of each feature independent of scale, enabling
the identification of genes with inverted patterns of expression. Furthermore, the mixture
model allows for a wide range of likelihood models, including the normal model, the negative
binomial model applicable for RNA-seq data, and the zero-inflated negative binomial model
relevant for both 16S sequencing and scRNA-Seq.

We also show how the results of our clustering allow for integration into important down-
stream analyses. The resulting centroids from the mixture model provide an accurate repre-
sentation of each cluster, allowing for a compact, visual understanding of the clustering. In
addition, within each cluster, our scale parameter provides the unique opportunity to identify
genes showing similar, but opposite patterns. This is useful from a biology perspective as a
way to find genes that behave in exactly inverted ways. Finally, the mixture model provides
probabilities that each gene belongs to its assigned cluster, measuring how well each gene
fits that spline centroid. These probabilities are useful both to filter out genes with poor fits
and to enhance downstream gene set enrichment analysis.

3.2 Existing clustering strategies

Our goal is essentially to cluster genes based on their temporal profiles. There are many avail-
able methods that can be used to cluster data, though none are particularly well-designed
for our context of a developmental gene expression study involving a time course of long
duration. Standard clustering procedures, while frequently used for time-course data, do
not take advantage of the time-dependent nature of the data. For example, K-means and
hierarchical clustering do not incorporate any available model information such as time or
condition. Model-based approaches are more relevant for this time-course context, although
existing strategies are again insufficient to handle our desired applications. In this section,
we will explore the advantages and disadvantages of each existing method, and later compare
the performance of our mixture model method to the following alternative cluster methods.

K-means is a highly popular clustering algorithm that clusters data by assigning each
observation to the cluster with the nearest mean in terms of Euclidean distance. To do so,
the algorithm minimizes within-cluster variances (squared Euclidean distances). K-means
is a very simple method, and it is by far the quickest method we explored. However, while
K-means is very quick and easy, it does have significant disadvantages. First, while K-means
does provide cluster centroids as representations of each cluster’s pattern, these centroids
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are computed by simply taking the average of the all data points that belong to each cluster.
This may not be the most accurate summary of a cluster’s pattern. Secondly, K-means is a
hard-clustering method, meaning that each gene is simply assigned a cluster label, with no
additional information about how well it fits that cluster relative to the other clusters. As a
third point of consideration, K-means relies on Euclidean distance, suggesting that it might
have poor performance on data that do not follow a Normal distribution. Finally, K-means
does not incorporate any available model information, such as time point or condition into
its algorithm.

To address these concerns and to apply K-means to our time-course gene expression data,
we can adapt K-means for our purposes in a variety of ways. The first method is the simplest,
where we just apply K-means to the original data with no modifications. Next, because K-
means relies on Euclidean distance as its metric, we apply K-means after first centering and
scaling the data per gene. Finally, one of the drawbacks of using K-means is that because it is
not a model-based algorithm, we cannot incorporate any of our available model information,
such as which time point or condition are associated with each of our samples. In order
to improve the performance of K-means, our third approach was to apply K-means to the
values obtained from fitting a spline model per gene under the Normal distribution. The
idea is that the fitted values provide a way to incorporate the model information in order
to help K-means cluster more accurately. We fit this K-means spline model per gene using
the edge package described in Leek et al. [2006], either on the original data for Normally
distributed data, or the log counts for count data. As a further modification to this third
option to specifically address zero-inflated data, we applied K-means to the values obtained
from fitting a spline model per gene under the ZINB distribution. We fit this model using
the zinbwave package described in Risso et al. [2018].

Hierarchical clustering is another popular clustering approach. This method clusters
observations by constructing a hierarchy of similarity between observations, either in an ag-
glomerative or divisive approach. In either approach, grouping the sets of observations is
based on a measure of dissimilarity between observations. This dissimilarity measure can be
any metric function; common measures used are Euclidean distance, Manhattan distance,
and Cosine distance. To adapt this clustering technique for RNA-seq data, Witten et al.
[2011] proposed a method to apply hierarchical clustering to count data by relying on the
Poisson likelihood to construct a measure of dissimilarity. We further extended this approach
by adapting this dissimilarity measure for zero-inflated data by using the ZINB likelihood
in the dissimilarity measure. In comparison to K-means, hierarchical clustering suffers from
many of the same disadvantages. Again, it cannot take into account the model information
of time or condition. It is also a hard-clustering method, providing no information about
how well an observation fits a given cluster. As it relies on a distance metric, careful consid-
eration must be taken in choosing the appropriate distance metric for a data type. Finally,
hierarchical clustering also does not provide any kind of cluster summary beyond the cluster
labels, such as cluster centroids.

Turning to model-based approaches, the mixture model framework has been used suc-
cessfully in a number of applications. In the context of count data, specifically RNA-seq
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data, Si et al. [2014] adapts the typical Gaussian mixture model framework to rely on a
negative binomial likelihood, providing a method suitable for clustering count data across
various experimental conditions. Similarly, Rau et al. [2015] described a finite mixture model
of Poisson log-linear models for the clustering of count-based gene expression profiles. Each
of these methods account for the nature of count data but are designed for experimental
settings of group comparisons and do not directly address the setting of time-course studies.
A model-based clustering method developed specifically for time-course data is described in
Ma et al. [2006], which uses a mixed-effect smoothing spline model in a Gaussian mixture
model. However, while useful for Gaussian data, this mixture model does not directly apply
to count settings. These model-based approaches show more promise than K-means and
hierarchical clustering because they provide a framework to include model information, yet
they are each lacking in their ability to apply to our time-course setting for a variety of
genomics data types.

Furthermore, the mixture model methods currently available are limited in the amount
of variation that is allowed among genes in a given cluster. The methods of Ma et al. [2006],
Si et al. [2014], and Rau et al. [2015] each include in their models a gene intercept parameter
to account for the overall mean expression level of a gene relative to the cluster mean.
Essentially, this estimates a vertical shift for each gene relative to the cluster mean. This is a
useful parametrization but limited in the sense that it assumes that each gene demonstrates
changes in expression on the same scale. That is, none of the models account for gene-
specific differences that vertically stretch or shrink the overall cluster mean. Ignoring these
gene-specific differences in scale may affect both the clustering and cluster mean estimation,
and one of the goals of our method is to incorporate a scale parameter to account for this
gene-wise variability.

While each of these clustering methods are popular and reasonable approaches to our
clustering problem, none of these methods are particularly well-suited for the context of
time-course gene expression or are limited in their functionality. Therefore, we would like
to propose a model-based framework that serves to address the needs and difficulties of
clustering time-course gene expression data.

3.3 Mixture model method

For simplicity in what follows, we will assume that the features from the high-throughput
experiment that we are clustering are genes, but the features could also be other features,
such as operational taxonomic units (OTUs) from 16S sequencing. Let yig be the observed
data for gene g and sample i at time ti. We can also optionally allow the data to be observed
across time under different conditions, which we notate as Ci. We assume that yig follows a
known distribution with density f . Then we use a mixture model to cluster the data, such
that
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P (yig) =
K∑
k=1

πkf(yig|µkig, si, θg) ,

where µkig is the mean of sample i in cluster k for gene g, πk are the mixing parameters, si is
a normalization factor for each sample (as in Robinson et al. [2010], Risso et al. [2018]), and
θg refers to other gene-specific parameters in the likelihood, such as the variance/dispersion.

We assume the mean µig consists of a shared temporal pattern for cluster k, appropriately
scaled and centered for each gene,

g(µig) = si + bg + agλ
Ci
k (t),

where g is the appropriate link function, such as log, commonly used for modeling count-
based sequencing data. We constrain λCk (t) to lie between 0 and 1 and let bg and ag be
gene-specific scalars that appropriately adjust the scale-free pattern λCk (t) to the scale of the
gene. We model the temporal pattern λCk (t) with a spline-basis function,

λCk (t) =
∑
l

βCklΦl(t)

where Φ(t) = [Φ1(t), . . . ,Φd(t)]
T is a pre-defined basis, and βCk = [βCk1, . . . , β

C
kd]

T is a d-
dimensional unknown vector.

This model extends the model of Ma et al. [2006] in several critical ways. The model of Ma
et al. [2006] is for the setting of normally-distributed microarray data, which is problematic
for count data. For mRNA-Seq data, taking the logarithm of the yig and filtering low-count
genes might suffice for clustering using a normal distribution, but in the context of scRNA-
Seq or 16S sequencing, such a strategy will not account for either the high preponderance
of low-count nor for the zero-inflation found in these data. Furthermore, the model of Ma
et al. [2006] also does not provide for the scaling parameter ag, meaning that they assume
the temporal patterns are on the same scale across genes within a cluster, but this has
the possibility of failing to find shared patterns of expression. Finally, since ag can take on
negative values in our model, our model seamlessly allows for the clustering together of genes
with exactly inverted patterns. This can be of great biological interest as these inversions
reveal anti-correlated behavior, indicating genes that behave in similar but opposite manners
across time. This could suggest biologically significant relationships between genes behaving
in such a manner. Within clusters containing anti-correlated genes, the sign of ag of each
gene can allow for further separation of genes between those that follow the pattern versus
its inversion.

3.3.1 Parameter estimation details

We use a standard EM algorithm for estimating the parameters involving the cluster mean
µkg(t) and the mixing parameters πk. The EM algorithm involves an iterative process of
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estimating cluster parameters and cluster memberships. Specifically, let Zgk = 1 if gene g
belongs to cluster k and Zgk = 0 otherwise. The cluster memberships

Z = {Zgk; g = 1, ...G; k = 1, ...K}

are treated as missing data, and the EM algorithm iteratively calculates the conditional
expectations of Z and updates the estimates of model parameters until convergence.

To initialize the EM algorithm, we are careful to use a good initialization point, since the
EM algorithm is known to be very dependent on its starting values. To find this initialization
point, we first apply K-means++ clustering on the matrix of fitted values obtained from fit-
ting a per-gene spline model to the original data in the Normal setting or the log-transformed
data in the case of count data. We repeat this K-means++ clustering multiple times and
identify the K-means++ clustering with the highest overall likelihood, indicating the best
starting position. This best clustering is used to obtain the cluster labels and associated
model parameters to initialize the mixture model.

For the E-step, calculate the conditional expectation of Zgk given parameters λ(m), π(m), a(m),

and b(m) estimated from the mth step. Let Ẑ
(m)
gk denote the conditional expectation

Ẑ
(m)
gk = E(Zgk|y, λ(m), π(m), a(m), b(m)).

This expectation Ẑ
(m)
gk is calculated by

Ẑ
(m)
gk =

π
(m)
k f(yg|a(m)

gk , b
(m)
gk , λ

(m)
k )∑

l π
(m)
l f(yg|a(m)

gl , b
(m)
gl , λ

(m)
l )

.

For the M-step, update the parameter estimates by

π
(m+1)
k =

1

G

∑
g

Ẑ
(m)
gk

λ
(m+1)
k = arg max

{0≤λki≤1}

∑
g

Ẑ
(m)
gk log f(yg|a(m)

gk , b
(m)
gk , λk)

(a
(m+1)
gk , b

(m+1)
gk ) = arg max

{agk,bgk}
f(yg|bgk, agk, λ(m+1)

k ).

The algorithm iterates between the E-step and M-step until the change in log likelihood
is less than a small number, indicating convergence. Upon convergence, cluster labels are
obtained by assigning gene g to cluster k, where k = arg maxl Ẑgl.

To estimate the parameters θg, we could estimate θg at each M-step along with the mean,
scale, and shift parameters, and in the case of a Gaussian likelihood, where θg corresponds
to the variance parameter, this is what we do. However, in the case of other distributions,
such as the negative binomial or zero-inflated negative-binomial, this greatly increases the
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computational overhead. Instead, we estimate the parameters θg initially using a per-gene
spline model. In the setting of the negative binomial distribution, we estimate sample nor-
malization factors and gene-specific dispersion parameters using the edgeR package from
Robinson et al. [2010]. For the zero-inflated negative binomial setting, we estimate sample
normalization factors, gene-specific dispersion parameters, and zero-inflation parameters us-
ing the zinbwave package from Risso et al. [2018]. We then assume these parameters to be
known in the EM algorithm.

While the EM algorithm is commonly applied in the context of normal mixture distri-
butions, it can also be applied in a count data setting, as described in McLachlan [1997].
Optimization of the parameter estimates at each step is achieved using the L-BFGS-B quasi-
Newton method for the count distributions, and the closed-form solutions for the Normal
model, described in detail in the next section.

3.4 Optimization details

At each M-step, the EM algorithm updates the estimates of the cluster centroids and gene
parameters by maximizing the likelihood. Optimization details for the M-step of the EM
algorithm are provided in this section.

3.4.1 NB and ZINB models

For the NB and ZINB likelihoods, there is not a closed-form solution for the maximum
likelihood estimates. Therefore, optimization of the parameter estimates at each step of the
EM algorithm is achieved using the L-BFGS-B quasi-Newton method. This method requires
computing the derivatives of the likelihood. These derivatives are computed with respect
to the mean µ, as well as the coefficients β and gene-specific parameters α and w, and are
calculated as follows.

Denote the probability mass function of the negative binomial distribution with mean µ
and inverse dispersion parameter θ as

fNB(y;µ, θ) =
Γ(y + θ)

Γ(y + 1)Γ(θ)

(
θ

θ + µ

)θ (
µ

µ+ θ

)y
, ∀y ∈ N.

The probability mass function of the ZINB distribution can be written as

fZINB(y;µ, θ, π) = πδ0(y) + (1− π)fNB(y;µ, θ), ∀y ∈ N,

where δ0(·) is the Dirac function.
For a particular gene g, the derivative of the negative binomial log likelihood with respect

to µ is computed by
∂

∂µ
log fNB(y;µ, θ) =

y

µ
− y + θ

µ+ θ
.
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We can then use this to obtain the derivative of the ZINB log likelihood with respect to µ
by first writing

∂

∂µ
log fZINB(y;µ, θ, π) =

(1− π)fNB(y;µ, θ) ∂
∂µ

log fNB(y;µ, θ)

fZINB(y;µ, θ, π)
.

Then for a single count y, if y > 0,

∂

∂µ
log fZINB(y;µ, θ, π) =

∂

∂µ
log fNB(y;µ, θ) =

y

µ
− y + θ

µ+ θ

and if y = 0,

∂

∂µ
log fZINB(0;µ, θ, π) =

−(1− π)
(

θ
µ+θ

)θ+1

π + (1− π)
(

θ
µ+θ

)θ .
Finally, to obtain derivatives with respect to β, a, and w, let L = log f(y;µ, θ, π), where

µ = b+ aXβ, and f follows either the NB or ZINB distribution. The chain rule implies

∂L

∂β
=
∂L

∂µ

∂µ

∂β
= XTµ

∂L

∂µ

∂L

∂a
=
∂L

∂µ

∂µ

∂a
= Xβ

∂L

∂µ

∂L

∂b
=
∂L

∂µ

∂µ

∂b
= 1

∂L

∂µ
.

With these derivatives and the given likelihood function, the L-BFGS-B optimizes the
model parameters β, α, and b at each iteration.

3.4.2 Normal model

Optimization of model parameters with the Normal distribution is much simpler. For the
Normal distribution, maximizing the likelihood is equivalent to minimizing the residual sums
of squares. For cluster k, parameter estimates in the M-step are updated by:

b
(m+1)
gk =

1

J

J∑
j=1

(ygj − a(m)
gk λ

(m+1)
kj )

a
(m+1)
gk =

∑J
j=1 λ

(m+1)
kj (ygj − b(m+1)

gk )∑J
j=1 λ

(m+1)
kj λ

(m+1)
kj

σ2
k

(m+1)
=

G∑
g=1

[(
pgk∑G
g=1 pgk

)
J∑
j=1

(ygj − b(m+1)
gk − a(m+1)

gk λ
(m+1)
jk )2

]
.
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Note that in the Normal model, we are additionally estimating the cluster variance, σ2
k.

We now have all the elements needed to write down the likelihood of the model.

L(y, π, µ) =
∏
i

(∑
k

πk
∏
j

N
(
yij|ai

∑
d

βkdφd(tj) + bi, σ
2
k

))

=
∏
i

(∑
k

πk
1√

2πσ2
k

exp

(
−1

2σ2
k

∑
j

(
ai
∑
d

βkdφd(tj) + bi − yij
)2
))

.

Now taking the log likelihood does not simplify nicely (as always for Gaussian mixture
models):

`(y, π, µ) = logL(y, π, µ)

=
∑
i

log

(∑
k

πk
1√

2πσ2
k

exp

(
−1

2σ2
k

∑
j

(∑
d

βkdφd(tj)− yij
)2
))

On the other hand, we now have a log likelihood of (almost) the same form as a multi-
variate Gaussian mixture model with a diagonal covariance matrix. We can apply the same
strategy as on a standard Gaussian mixture model, with a slight variation in the mean fit
by computing

∂`

∂µl
(y, π, µ) =

∑
i

πl
1√
2πσ2

l

exp
(
−1
2σ2

l

∑
j

(
µl(tj)− yij

)2
)

∑
k πk

1√
2πσ2

k

exp
(
−1
2σ2

k

∑
j

(
µk(tj)− yij

)2
) −1

2σ2
k

∑
j

∂

∂µk(tj)

(
µk(tj)− yij

)2

To simplify notation, denote the probability of gene i belonging to cluster k as τik, i.e.,

τik =
πl

1√
2πσ2

l

exp
(
−1
2σ2

l

∑
j

(
µl(tj)− yij

)2
)

∑
k πk

1√
2πσ2

k

exp
(
−1
2σ2

k

∑
j

(
µk(tj)− yij

)2
) .

Then we can write

∂`

∂µl
(y, π, µ) =

∑
i

τik
−1

2σ2
k

∑
j

∂

∂µk(tj)

(
µk(tj)− yij

)2

Finally, we proceed similarly to estimate the variance, and obtain a closed form solution:

σ2
l =

∑
i τil
∑

j

(
µl(tj)− yij

)2

∑
i τil

.
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3.5 Implementation details

The mixture model is implemented in an R package, which allows a user to input a dataset,
specify the desired number of clusters and model formula, as well as to choose the appropriate
data distribution. For the normal model, the data is assumed to be normalized before
applying the clustering function. For the count models, the user can either input sample
normalization factors or allow the mixture model function to compute these parameters as
part of the model. The method returns the clustering results in the form of cluster labels,
cluster centroids, and gene-cluster membership probabilities, as well as the gene-specific
parameters. An additional option to test cluster means for differential expression described
in the next chapter is also available a function that uses the results of running the mixture
model clustering. Pseudo-code describing the complete mixture model clustering procedure
is given in Algorithm 1.

Algorithm 1: Mixture model clustering algorithm

Data: Gene expression data matrix y
Result: Optimized parameters: centroids µ, shifts b, scalings a, cluster probabilities

t, and cluster labels
if y is count data then

Compute fixed parameters:
s← sample normalization factors;
θ ← dispersion estimates;
π ← zero-inflation factors;
return Ψ = {s, θ, π};

;

Initialize data:
apply K-means to data;
µ0 ← K-means centroids;
(a0, b0)← arg max

{a,b}
f(y|a, b, µ = µ0,Ψ);

t0 ← E(Z|y, µ0, a0, b0,Ψ) ;
return µ0, a0, b0, t0;

;
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for m← 0 to max iterations do
E-step Update(t(m)):

t(m+1) ← E(Z|y, µ(m), a(m), b(m),Ψ) ;

return t(m+1);

;

M-step Update(µ(m), a(m), b(m)):
for k ← 1 to K do

µ
(m+1)
k ← arg max

∑
g Ẑ

(m)
gk log f(yg|a(m)

gk , b
(m)
gk , µ

(m)
k ,Ψ);

(a(m+1), b(m+1))← arg max
{ak,bk}

f(y|bk, ak, µk = µ
(m+1)
k ,Ψ);

Rescale parameters Rescale(µ
(m+1)
k , a

(m+1)
k , b

(m+1)
k ):

b
(m+1)
k ← b

(m+1)
k + a

(m+1)
k ∗minµk ;

a
(m+1)
k ← a

(m+1)
k ∗ (maxµk −minµk) ;

µ
(m+1)
k ← (µk−minµk)

(maxµk−minµk)
;

return µ
(m+1)
k , a

(m+1)
k , b

(m+1)
k ;

;

return µ(m+1), a(m+1), b(m+1);

;

change← L(y;µ(m+1), a(m+1), b(m+1), t(m+1),Ψ)− L(y;µ(m), a(m), b(m), t(m+1),Ψ) ;
if change < ε then

end;

Assign cluster labels Classify(t(m)):
for g ← 1 to G do

labelsg ← arg max
{1≤k≤K}

t
(m+1)
gk ;

return labels ;

;

return µ(m+1), a(m+1), b(m+1), t(m+1), labels;

3.6 Simulation results

To assess the performance of the mixture model, we ran many simulations of the mixture
model under various settings. The primary focus of the simulations was to compare the
clustering performance of the mixture model against the alternative clustering methods dis-
cussed earlier. In addition, we investigated the advantages of the various model specifications
unique to our mixture model framework. Finally, the estimated times required to run each
method were compared.
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Figure 3.1: Visualization of the 15 simulated cluster patterns.

3.6.1 Simulated data description

In order to simulate realistic genomic data, simulated data sets were generated based on 15
patterns observed in the EPICON 16S microbial data set discussed in the previous chapters.
The cluster patterns vary across 12 time points under two different conditions, and Figure 3.1
provides a visualization of these 15 dynamic cluster patterns. The first five patterns are each
distinct patterns observed in the microbial data set. Patterns six through ten are the flipped
images of the first five patterns and represent clusters that should be combined with patterns
one through five with a scaling factor of the opposite sign. For example, cluster one and
cluster six should be combined into one cluster in our mixture model framework, with the
genes in cluster one receiving scaling parameters that are the negative of the gene scaling
factors assigned to genes in cluster six. Patterns 11 through 15 are shifted versions of the
first five patterns, shifted three time points to the right, in order to observe how accurately
the mixture model can distinguish similar but different patterns. Finally, a 16th cluster of
random noise was also included. These 16 patterns formed the centroids of 16 clusters, and
gene expression datasets were simulated according to a Normal, NB, or ZINB distribution
based on these cluster means.

Within each cluster, 100 genes were simulated with a noisy version of the cluster mean
according to the cluster patterns shown in Figure 3.1, and each gene was further modified by
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a gene-specific overall mean expression level and a gene-specific scaling factor. Each gene’s
mean followed the same pattern as its assigned cluster mean but with a small amount of
gene-specific variation around this pattern, which was simulated by adding small amounts
of noise to the coefficients of the cluster spline parameters. Gene-specific mean expression
levels were generated from a Normal(12, 1) distribution. Gene-specific scaling parameters
were generated from a Uniform(1, 5) distribution. Gene-specific dispersion parameters for
the count models were generated from a Gamma distribution with shape according to the
gene-specific mean and scale equal to 1/2. In addition, sample-specific library sizes were
generated according to a Normal(90000, 1000) distribution.

Once the gene specific versions of the cluster mean, the scaling parameters, and the shift
parameters were generated, the gene expression values were simulated by random draws
from one of the three distributions of interest, the Normal, NB, or ZINB distributions. To
simulate the setting of zero inflated data, datasets were simulated with probabilities of zero
ranging from 0 to 0.8, where the setting of a zero inflated level of 0 represents the purely
NB case. For each level of zero-inflation, where the proportion of zeros ranged from 0 to 0.8,
20 datasets were simulated. Clustering performance was based on the mean Adjusted Rand
Index across these 20 replications at each level of zero-inflation.

3.6.2 Clustering performance

In order to compare the performance of the various clustering methods and investigations of
model parameters, we ran each method on simulated datasets and computed the Adjusted
Rand Index to measure the agreement between the observed clustering and the true cluster
labels. The Adjusted Rand Index (ARI), proposed by Hubert and Arabie [1985], is a measure
of agreement between two clusterings corrected for the random chance of agreement. The
measure is based on the number of overlaps between any clusters. To be precise, suppose
we have two clusterings X = {X1, X2, ..., Xr} and Y = {Y1, Y2, ..., Ys}. Their overlap can be
summarized in a table with entries counting the size of the overlap, nij = |Xi

⋂
Yj|. Such a

table appears below.

Y1 Y2 . . . Ys Sums
X1 n11 n12 . . . n1s a1

X2 n21 n22 . . . n2s a2
...

...
...

. . .
...

...
Xr nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs

From this table of overlaps, the Adjusted Rand Index is computed as

ARI =

∑
ij

(
nij

2

)
− [
∑

i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

)
1
2
[
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(
bj
2

)
]/
(
n
2

) .
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Here, the numerator represents the total number of overlaps, adjusted for random chance.
The denominator represents the maximum possible number of overlaps, corrected for random
chance. The Adjusted Rand Index can be negative but is bounded above by 1, where an
ARI of 0 indicates an agreement no better than random change, and higher ARIs indicate
greater agreement between clusterings. Hence, using this measure of cluster agreement gives
us a way to determine how successfully a clustering method performs, by comparing the
observed cluster labels to the true, known cluster labels.

In order to compare the clustering results of our mixture model to other available clus-
tering methods, we have to first make a consideration of how to treat the flipped clusters. As
described earlier, the intent in designing our simulated clusters was for the first five cluster
patterns to be clustered together with the second five cluster patterns. However, as our
mixture model framework is the only available method with the capability to cluster flipped
patterns together, we need a way to enable a direct comparison with those methods that
do not combine the flipped patterns. This is a simple process, where for the mixture model
clusters that contain genes with both positive and negative scaling factors, we separate these
clusters into two clusters based on the sign of each gene’s scale parameter. This essentially
creates a new, larger set of clusters, where the anti-correlated clusters have been divided into
two clusters of only correlated genes. This provides a reasonable set of clusters that can be
compared to the clusters achieved by alternative clustering methods.

Comparison of clustering performance between methods

First, we consider simulations from Normally distributed data, and we compare our Normal
mixture model to three versions of K-means discussed previously. These K-means methods
are to run K-means on the spline fitted values, K-means on the centered and scaled data,
and K-means on the original unscaled data. The results of 50 simulations are shown in
Figure 3.2a, where the distribution of the Adjusted Rand Index has been plotted for each of
the four methods. From these results, it is clear that the Normal mixture model consistently
achieves the highest Adjusted Rand Index, indicating the greatest level of agreement with
the true cluster labels. Among the three K-means options, we observe that scaling the data
is an essential step to perform before clustering, as this greatly increases the resulting ARIs.
In addition, applying K-means to the spline fitted values yields higher ARIs over the other
K-means options. This indicates that incorporating the time course model information is
beneficial to the clustering procedure. The full Normal mixture model is then able to provide
an additional advantage, indicating that the mixture model provides further advantages
beyond the use of the spline model.

Next, we compare the methods designed for a zero-inflated negative binomial setting.
Here, we have simulated data at various levels of zero-inflation, and the average ARI at each
level is shown in Figure 3.2b. The ZINB mixture model has comparable or higher ARIs than
the other methods at all levels of zero-inflation, and in particular has significantly higher
ARIs at the higher levels of zero-inflation, indicating that accounting for zero-inflation is
more necessary as the proportion of zeros increases. Each of the K-means options have
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(a) Distribution of ARI for each method on Nor-
mal data.

(b) Mean ARI for each method on ZINB data
across varying levels of zero inflation.

Figure 3.2: Comparison of clustering methods. The distribution of the Adjusted Rand Index
across 50 simulations is plotted for each method of comparison. On the normal data, the
methods are the Normal mixture model, K-means on spline fitted values, K-means on the
centered and scaled data, and K-means on the original (unscaled) data. On the ZINB data,
the methods are the ZINB mixture model, the hierarchical clustering ZINB distance method,
K-means on ZINB spline fitted values, K-means on Normal spline fitted values, and K-means
on centered and scaled data.

high ARI performance in the setting with low zero-inflation, but as the proportion of zeros
increases, the K-means options that do not incorporate zero-inflation struggle to cluster well
and their ARIs drop rapidly. Among the K-means options, there is an increase in ARI when
fitting a spline model or ZINB spline model before applying K-means, again supporting our
hypothesis that a spline model is beneficial to a clustering procedure. Finally, all methods
outperform the hierarchical clustering method that uses the zero-inflated distance measure.
Although this method accounts for the excess zero-inflation, it does not take into account
the model information of time or condition, which likely explains its low ARIs across all
levels of zero-inflation.
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Figure 3.3: Comparison of distribution choices. The mean Adjusted Rand Index across
20 simulations is plotted for the results of running the mixture model with each of the
three distribution choices: ZINB, NB, and Normal. The simulated data is from the ZINB
distribution.

Effect of distribution choices

The mixture model provides the option to use the normal, negative binomial, or zero-inflated
negative binomial distribution. To examine the effect of distribution choice on clustering
performance, we simulated data under the ZINB distribution with varying proportions of zero
inflation and ran the mixture model under each of the three distribution choices. As shown
in Figure 3.3, the choice of distribution has a significant effect on clustering performance. As
expected, since the simulated data are counts, the normal model does not perform well at any
level of zero-inflation except the setting with no zeros. However, in the setting with no zeros,
the normal model does perform remarkably well. In this kind of setting such as with bulk
mRNA data, the negative binomial model may not provide a significant advantage. Since
the negative binomial model is a much more computationally expensive option, the normal
model could provide a preferable option in such cases. The negative binomial and zero-
inflated negative binomial perform similarly at low levels of zero-inflation; as the proportion
of zeros in the data increases, the ZINB distribution provides a greater advantage over the
negative binomial.
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(a) Advantage of including gene-specific shift
and scale parameters with Normal data.

(b) Advantage of including gene-specific shift
and scale parameters with ZINB data.

Figure 3.4: Advantage of model parameters. The mean Adjusted Rand Index across simula-
tions is plotted for each of three model options: first, the model including both gene-specific
parameters, second, the model with just a shift parameter, and third, the model with neither
parameter.

Advantage of gene-specific parameters

To assess the effects of including the gene-specific shift and scale parameters, we compared
the clustering performance under three different versions of the mixture model: one that
included both the shift and scale parameters, one with just a shift parameter, and one with
neither parameter. As shown in Figure 3.4, including both the shift and scale parameters
provides an increase in clustering performance over the options that do not include the gene-
specific parameters, both in the Normal setting as well as in the ZINB setting at all levels
of zero-inflation.

Advantage of splines for time variable

Finally, to determine whether the spline model is useful to represent the time variable, we
compared the performance of the mixture model using a spline model to represent the time
variable against the mixture model using as a factor variable to model the time variable. As
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(a) Distribution of the ARI for each model of
the time variable on Normal data.

(b) Mean ARI across varying levels of zero in-
flation for each time model on ZINB data.

Figure 3.5: Advantage of spline model. The Adjusted Rand Index across simulations is
plotted for each model option: first, the model using a spline model to represent the time
variable, and second, the model using a factor variable to represent the time variable.

shown in Figure 3.5, the model that uses splines consistently outperforms the model that
treats time as a categorical variable, under both the Normal distribution setting as well as
the ZINB distribution setting at all levels of zero inflation.

3.6.3 Timing performance

Aside from clustering performance, a serious consideration to be made when choosing a
clustering method is the amount of time needed to run the clustering method. This is a
complicated question to answer, since the amount of time needed for the mixture model
to converge depends on the number of genes, the number of clusters, and the choice of
distribution.

To explore how the number of genes affects clustering times, datasets were simulated
with genes ranging from 320 genes to 20,000 genes. The clustering time was collected for
the various clustering methods, clustering with a fixed number of 16 clusters. To explore
how the number of clusters affects clustering times, one dataset was simulated with 2000
genes and the timings of the various clustering methods were collected for varying numbers
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(a) Average time to run clustering for various
numbers of clusters.

(b) Average time to run clustering for various
numbers of genes.

Figure 3.6: Average run time of various clustering methods on Normal data.

of clusters ranging from 2 to 32 clusters. In each case, simulated datasets were generated
both from a Normal distribution and a ZINB distribution. Between the two distributions,
the Normal mixture model runs much faster than the ZINB model, since the Normal model
can take advantage of closed-form solutions at each iteration of the EM algorithm.

Figure 3.6 shows the average time to run each clustering method using data simulated
from a Normal distribution as the number of genes increases and the number of clusters
increases. The timing for the Normal mixture model is compared to the timing for K-means
on the original data and the timing for K-means on fitted splines. The Normal mixture model
takes significantly longer than the alternative methods, with larger differences as the number
of clusters and genes increase, although the demonstrably improved clustering performance
by the mixture model likely makes the slight increase in time a worthwhile investment.

Figure 3.7 shows the timing results from clustering on data simulated from a ZINB
distribution. The methods compared on the ZINB datasets are our ZINB mixture model,
K-means on the scaled log-counts, K-means on the fitted splines of the log-counts, K-means
on the fitted ZINB splines, and the ZINB distance method adapted from Witten et al. [2011].
The mixture model using the ZINB model suffers from increasingly long clustering times.
However, the ZINB distance method suffers the most from an increase in the number of
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(a) Average time to run clustering for various
numbers of clusters.

(b) Average time to run clustering for various
numbers of genes.

Figure 3.7: Average run time of various clustering methods on ZINB data.

genes, due to the fact that a likelihood must be computed for each gene at each sample in
the dataset; on the other hand, since it relies on hierarchical clustering once the dissimilarity
matrix is computed, increasing the number of clusters does not increase its time at all.
These results demonstrate the major disadvantage of using the ZINB mixture model, which
is simply unavoidable due to the time needed to optimize the model parameters under the
ZINB distribution at each step in the EM algorithm. However, since the implementation of
the mixture model takes advantage of parallelization in its optimization steps, running the
mixture model on multiple cores can vastly improve clustering speed, making the cost of
time significantly less prohibitive.

3.7 Real data results

To demonstrate the application of this method to real data, the mixture model was fit to
two real data sets, both coming from the EPICON project described in Chapter 2. First,
the model was applied to the 16S microbial dataset analyzed earlier, which provided an
opportunity to apply the count-specific option using the ZINB model. Second, the model
was applied to an mRNA transcriptomic dataset, where the Normal model has been applied.
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Figure 3.8: Cluster centroids obtained from running the mixture model on the 16S microbial
data, ordered from largest cluster size to smallest. The centroid is plotted in black for the
control condition and in red for the pre-flowering drought condition.

3.7.1 16S microbial data

As discussed earlier, 16S sequencing data is count data and highly zero-inflated, so ZINB
option is the most appropriate model to be used in clustering. To apply the mixture model,
we are considering the data under both genotypes, under the Pre-flowering and Control
conditions, across Time points 3 through 17. After filtering out OTUs with the lowest
counts and highest numbers of zeros across all samples, the dataset contained 1100 OTUs
across 176 samples.

To explore the results, we look first at the cluster centroids shown in Figure 3.8, where
clusters are ordered by cluster size, from largest to smallest, and the cluster size in given
in the title of each centroid’s plot. The centroids confirm our previous observations of a
general pattern of similar but delayed progression across time under the drought condition.
In addition, we again observe a cluster demonstrating enrichment under drought. Thus,
these centroids appear to be reasonable, as they confirm our previous results; however, we
would like to ensure that the mixture model has clustered OTUs in a reasonable way by
looking at the OTUs assigned to each cluster.

By looking at the abundances of the OTUs assigned to each cluster, we can get an idea
of how accurately the changes in abundance of the clustered OTUs are represented by the
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overall cluster mean. Heatmaps of OTU abundance provide a simple way to assess this
question. Figure 3.9 provides heatmaps of the OTUs belonging to cluster 3 and cluster 2.
These clusters were chosen because they are the largest and smallest cluster, and provide a
good demonstration of the range of clustering behavior. Additional heatmaps from clusters
1 and 5 are provided and discussed later in Chapter 4. To read each heatmap, each row
represents one of the OTUs assigned to that cluster. Each column represents a sample. The
annotations to the left of the rows and above the columns provide further information about
the OTUs and samples. On the left hand side, there are two tracks of classification: an Alpha
variable, which represents the value of each OTU’s scaling factor, and a Prob variable, which
indicates the probability that each OTU belongs to this cluster. OTUs have been ordered
by the sign of their scaling factor, and then from highest to lowest probability. Hence with
this ordering, we can see two broad groups of OTUs demonstrating anti-correlated behavior.
In both heatmaps, the upper group of OTUs follows the inverted cluster pattern, which
the lower group of OTUs follow the cluster pattern shown in the Figure 3.8 centroids. The
annotations on the top of the heatmap represent the sample information, where samples
have been ordered according to their experimental condition and time point

The heatmaps from both clusters reveal the highly zero-inflated nature of microbial data;
especially in Cluster 3, the majority of OTUs show a high proportion of zero counts across
samples. Among the OTUs in Cluster 3, those with higher counts across more samples follow
the overall cluster pattern well, as hoped. Cluster 2 represents a much noisier cluster, where
the OTUs that follow the inverted cluster pattern (those OTUs with the negative scaling
factors) seem to fit the cluster pattern well; however, the OTUs with positive scaling factors
are much noisier and show less of a cohesive pattern. While the zero-inflated nature of the
data clearly raises the difficulty of clustering, these heatmaps do indicate that the mixture
model has found a reasonable clustering where the centroids are accurate representations of
the overall cluster behavior.

One of the advantages of the parametrization that we have chosen in our mixture model
is the inclusion of the gene-specific scaling factor. This allows us to identify, within each
cluster, those OTUs that demonstrate the same pattern across time but with inverted be-
havior. These scaling factors thus identify OTUs with anti-correlated behavior. From the
heatmaps in Figure 3.9, we can see two broad groups of OTUs showing anti-correlated be-
havior, which are identified by the Alpha annotation. These two anti-correlated groups have
potentially great biological significance, if we consider the patterns of early enrichment shown
by Actinobacteria discussed earlier. Cluster 3 contains these Actinobacteria OTUs showing
early enrichment, but it also contains OTUs showing the opposite pattern of early depletion
and later enrichment. From a biological perspective, this may suggest genuine biological
relationships between the OTUs making up these two different groups within Cluster 3.

To see how well this pattern of anti-correlation carries over into other clusters, it is
useful to look at the distribution of the scaling parameters of the genes assigned to each
cluster. Figure 3.10 shows a histogram for each of the six clusters of the distribution of
the gene-specific scaling parameter assigned to each of the genes belonging to that cluster.
From these distributions, we can see that most clusters have a bimodal distribution of the
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(a) Heatmap of OTUs in the largest cluster, with
a total of 467 OTUs.

(b) Heatmap of OTUs in the smallest cluster,
with a total of 40 OTUs.

Figure 3.9: Heatmaps of OTUs belonging to the smallest and largest cluster obtained from
fitting the mixture model to the microbial data.

scaling factor, indicating that these clusters contain OTUs showing anti-correlated behavior.
By clustering these OTUs in the same cluster, the mixture model provides a useful way
to associate OTUs with inverted patterns of expression while still providing the ability to
separate these anti-correlated groups for further comparison.

3.7.2 mRNA gene expression data

To consider a dataset with very different characteristics, we turn to the mRNA transcriptomic
data coming from the roots of the EPICON project. This dataset was analyzed thoroughly
in Varoquaux et al. [2019], and here, we apply our mixture model method to a subset of
the data in that paper, focusing just on the root data from the RTx430 genotype under the
pre-flowering drought and control conditions. This gene expression dataset is an mRNA-
seq dataset; thus, a natural choice of the mixture model would be to use the Negative
Binomial distribution. However, for convenience and speed, as well as to demonstrate the
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Figure 3.10: Cluster-specific histograms of the gene-specific scaling parameter estimated for
each of the genes assigned to the cluster in the microbial data.

flexibility of the method, we here apply the mixture model to the log counts with the Normal
distribution. The mRNA dataset is much larger than the microbial data: the original data
contained 34,211 total genes, and after filtering by expression and variance, we used 22,388
genes in the clustering model. We are considering the data only for the RTx430 genotype
under the pre-flowering drought and control conditions, across weeks 3 through 17, giving a
total of 74 samples.

When using the Normal model, it is important to provide normalized data to the mixture
model method, so we first applied to our data the normalization strategy implemented in
the EDASeq package from Risso et al. [2011], which performs global scaling between samples
using the upper-quartile. We then ran the mixture model on this normalized data. The
clustering results obtained by the mixture model are shown in Figure 3.11, where the twenty
clusters have been ordered from largest to smallest. For each cluster, the cluster centroid
has been plotted, with the red color indicating the centroid in the drought condition and the
black indicating the control condition. We observe a variety of different temporal patterns
with some notable differences between conditions.

As with the microbial data, it is useful to explore how well the cluster centroids represent
the behavior of the genes assigned to each cluster. Again, we consider heatmaps of the small-
est and largest clusters, shown in Figure 3.12, where the gene and sample annotations are
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Figure 3.11: All of the twenty cluster centroids obtained from running the mixture model on
the mRNA roots data, ordered from largest cluster size to smallest. The centroid is plotted
in black for the control condition and in red for the pre-flowering drought condition.

the same as described in the heatmaps of the microbial data. Compared to the zero-inflated
microbial data, it is much easier to see that the mRNA data within each cluster cleanly
follow their assigned cluster centroid. In the largest cluster, cluster 11, we observe that all of
the genes cleanly follow the pattern of the cluster centroid. Genes in the smallest cluster, on
the other hand, have noisier data, although we can still observe that they reasonably follow
their fitted cluster centroid. This indicates that the mixture model is producing reasonable
clustering results, and that the cluster centroids are providing an accurate portrayal of the
behavior of the clustered genes.

Both of these heatmaps reveal that their clusters contain two broad groups of genes
with anti-correlated expression across time, identified by the ag parameter, shown visually
in the Alpha annotation track. To investigate the cluster-specific distributions of the scaling
factors in the RNA data, consider the histograms in Figure 3.13. As in the microbial data,
many of the clusters contain a bimodal distribution of positive and negative scaling factors.
Again, this provides a convenient way to identify groups of anti-correlated genes that would
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(a) Heatmap of genes in the largest cluster, clus-
ter 11.

(b) Heatmap of genes in the smallest cluster,
cluster 17.

Figure 3.12: Heatmaps of genes from clusters assigned by the mixture model, from the largest
and smallest clusters.

have been missed by using traditional clustering methods. However, we also observe many
clusters without a strong bimodal distribution, such as clusters 6, 13, 19, and 20. This
indicates that the mixture model does not automatically force every cluster to contain both
positively and negatively correlated genes, but that the anti-correlations present in the other
clusters represent genuine anti-correlated behavior.

3.7.3 Downstream analysis

These examples serve to illustrate the application and results of running the mixture model
on a typical genomics time-course experiment. In practice, these results would then serve as a
launching point for further biological investigation. While not the focus of this dissertation,
one area of further study that is filled with exciting potential is to conduct a gene set
enrichment analysis on the resulting clusters obtained from the mixture model.
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Figure 3.13: Cluster-specific histograms of the gene-specific scaling parameter estimated for
each of the genes assigned to the cluster in the mRNA data.

A rich example of this kind of downstream analysis is in Varoquaux et al. [2019], which
studied the transcriptional responses to drought. The authors applied a K-means cluster-
ing strategy using fitted splines and were able to draw many varied conclusions about the
characteristics of genes assigned to the same cluster. After obtaining a set of clusters, the
biological function of genes assigned to each cluster were investigated by performing gene-
enrichment analysis to identify over-represented networks from Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) terms, and many interesting observations
were made from the pathways identified by this analysis. In addition to these kinds of gene
set enrichment analyses, our mixture model provides the unique potential for exciting dis-
coveries through the use of the scaling parameter. Within a particular cluster, the scaling
parameter can identify genes showing anti-correlated behavior, which could have potential
relevance for a variety of biological hypotheses. Taken all together, our mixture model clus-
tering method provides a wealth of tools for biologists to investigate statistically clustered
groups of genes for biological relevance.
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Chapter 4

Methods to test cluster means for
differential expression

4.1 Background

A common goal in gene expression analysis is to conduct differential expression testing to
determine which genes show significant changes, for example across time or between condi-
tions. Although longer time-course settings typically identify too many genes as differentially
expressed to be practically useful, the question can be adapted to identify which patterns in
the data, represented by the cluster means, show differential expression in terms of a relevant
hypothesis. The problem in this context is to test each cluster mean, rather than each gene,
for differential expression.

The differential expression test of interest is to detect differences in the shape of temporal
patterns between conditions. It may be obvious from the visual representation of cluster
centroids that some clusters have very different patterns, as in Clusters 1 and 20 from the
RNA clustering (shown in Figure 3.11). However, the assessment of differential expression
may be much less clear in other clusters. In the RNA data, Clusters 11 and 14, for instance,
show slightly different patterns of temporal change between conditions, but it is unclear if this
is a significant change. Thus, we would like to apply a method to identify which clusters show
statistically significant differences between conditions. Since our cluster centroids have been
obtained from a mixture model clustering, we would like to incorporate in our differential
expression test the variability of genes and their fit to the cluster. That is, we would like
to consider all of the genes belonging to a cluster to assess the overall level of differential
expression, as well as to use the probabilities of genes belonging to their assigned cluster in
our assessment of whether the cluster as a whole is differentially expressed.

The majority of any work on the problem of inference on cluster means is in the context
of Gaussian Mixture Models. Gaussian mixture models are a natural place to start to
answer this question due to their ease of use and convenient likelihood properties. Typically,
research has approached the problem of parameter inference in mixture models by seeking
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confidence intervals around parameter estimates. While this is useful to estimate standard
errors around model parameters, confidence intervals are not directly designed to answer our
problem of detecting differential expression. However, confidence intervals can be a helpful
starting point to build upon to more directly address the question of hypothesis testing.

Perhaps the simplest method to produce confidence intervals around cluster means in the
Gaussian setting is to use the covariance matrix of the maximum likelihood estimates. For
Gaussian models, the covariance matrix of the maximum likelihood estimate of a parameter,
such as each cluster mean, is approximated by the inverse of the information matrix,

Cov(θ̂) ≈ I−1(θ̂) :=

[
−E

(
∂2

∂θ2
log f(X; θ)|θ

)]−1

.

This covariance matrix can be used to construct confidence intervals around parameter es-
timates. As a simple extension to hypothesis tests, this covariance matrix can also be used
to construct a test statistic such as the Wald statistic,

W =
(θ̂ − θ0)2

var(θ̂)
,

which under the null hypothesis follows an asymptotic χ2-distribution with one degree of
freedom, providing a simple way to conduct a test of significance for each cluster mean.
However, as noted in Basford et al. [1997], the assumption of asymptotic normality of the
maximum likelihood estimates requires a large sample size before the assumption can be
applied; furthermore, the resulting standard errors are very unstable unless the sample size
is large or the means are well-separated.

Another approach is to use likelihood profiles, as presented in Visser et al. [2000], where
this method was used to construct confidence intervals for hidden Markov model parameters.
The idea of a likelihood profile is to search for a value of the parameter of interest that
results in a significant change in the log-likelihood, treating other parameters as nuisance
parameters. For example, suppose that the mean parameter θ is of interest. Then, all other
parameters Ψ in the model are treated as nuisance parameters, and the likelihood profile
function is defined as

Lp(θ) = max
Ψ

L(θ,Ψ).

Let the maximum value of this function be θM ; then, search the space of θ by moving θ away
from its max to some θ0, and compute

Rp = −2 ln
Lp(θM)

Lp(θ0)
.

Continue searching until θ0 is found that produces Rp = 3.841, the threshold of the χ2-
distribution with one degree of freedom at the 0.05 quantile. This value represents one
side of the confidence interval, or the limit where the null model becomes significant over
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the optimal parameter. The process is repeated to find the other side of the confidence
interval. In this way, likelihood profiles can be used to generate confidence intervals for
any parameter of interest. However, as with the covariance matrix approach, this method
also relies on the asymptotic normality of the estimates. In addition, with complex models
such as a mixture model with multiple gene-specific parameters and cluster membership
probabilities, the likelihood profile optimization quickly becomes a computational challenge.
Thus, a more general approach is needed.

Since the assumption of normality is a major hindrance, a great deal of interest has
focused on using the nonparametric bootstrap to produce confidence intervals around mixture
model parameters. For instance, the popular mclust package provides the MclustBootstrap
function described in Scrucca et al. [2016], which applies the nonparametric bootstrap to
Gaussian mixture model parameters. The idea of the bootstrap is to construct an empirical
distribution representing the true population that generated the original data. This empirical
bootstrap distribution is generated by resampling the data observations to create many new
bootstrap datasets and then re-estimating the model parameter of interest on each new
dataset. To be specific, the data observations are sampled with replacement to create a
new dataset of the same dimension as the original, and the Gaussian Mixture Model is
fit to each bootstrapped dataset to obtain a bootstrap distribution of the parameter of
interest. This allows for a bootstrap estimate of the covariance matrix to be generated, which
can then be used to produce confidence intervals. Thus, the bootstrap method provides a
straightforward way to construct an estimate of standard errors without relying on any
distributional assumptions. However, the bootstrap method is not free from difficulties. A
thorough investigation of the use of the bootstrap method to obtain standard error estimates
is covered in O’Hagan et al. [2019], where the authors point out that small clusters are
not well represented by the traditional bootstrap method, and two alternatives using a
jackknife and weighted likelihood bootstrap are presented to attempt to remedy this issue.
Another evaluation of the bootstrap is given by Jaki et al. [2018], which addresses the concern
that influential individual observations have a high likelihood of being over-represented in
the bootstrap resamples. Similarly, Taushanov and Berchtold [2019] addresses the under-
representation of small clusters by suggesting two modifications of the bootstrap: a separate
bootstrap, which independently bootstraps the data within each cluster, and a stratified
bootstrap, which draws proportional samples with respect to the original clustering results.
These concerns are important to take into consideration, but a bootstrap approach seems to
be the most promising strategy to conduct inference on our mixture model parameters.

A bootstrap method with some modifications appears to have the greatest ability to ac-
curately provide confidence intervals around parameter estimates because it can conveniently
avoid any distributional assumptions. However, constructing confidence intervals yet does
not quite directly address our original question of differential expression testing. In this
chapter, we will focus specifically on this question of differential expression testing from a
hypothesis testing perspective.



CHAPTER 4. METHODS TO TEST CLUSTER MEANS FOR DIFFERENTIAL
EXPRESSION 44

4.2 Methods

The general strategy for all methods that follow is to use the clustering results given by the
mixture model to conduct a test of differential expression for each cluster, providing a user
with a statistical assessment of which clusters are most relevant. In this section, we will
explore five possible methods that can be used to test for differential expression. Combined
with the clustering method, these tests of differential expression allows us to integrate both
problems of clustering and differential expression testing into one framework.

4.2.1 Likelihood ratio test

A standard approach to testing differential expression on a per-gene basis is to use a likelihood
ratio test, and this method has had great success in the context of testing individual genes.
Thus, a natural approach is to consider the same procedure applied to the cluster means.

For this method, once the clustering has been completed, the cluster labels are treated
as known. That is, each cluster is treated as its own independent population to test each
cluster separately for differential expression. This is a strong assumption to make, as this
ignores the fact that these clusters are a result of a clustering algorithm. Hence, this test
for differential expression does not incorporate any of the variability that comes from the
clustering algorithm. Despite this strong assumption, however, the likelihood ratio test is a
simple and convenient approach that merits consideration.

To demonstrate the likelihood ratio method, assume the cluster labels are known, and
consider each cluster separately. For cluster k, of size nk, the clustering results provide the
fitted mean under the original hypothesis µk and gene-specific scale and shift parameters
{(αi, wi)}, i = 1, ..., nk.

To test a given null hypothesis, the data in cluster k are fit under the null hypothesis
to obtain a null mean µk0 and gene-specific null parameters {(α0i, w0i)}, i = 1, ..., nk. The
likelihood ratio statistic then computes the difference between the likelihood under the full
model and the likelihood under the null model. Specifically, for cluster k,

LRk = 2 ∗
nk∑
i=1

L(yi|µk, {(αi, wi)})− L(yi|µk0, {(α0i, w0i)}).

By Wilks’ Theorem, this statistic converges to a Chi-square distribution with p degrees
of freedom, where p is the difference in degrees of freedom between the two models. From the
Chi-square distribution, a p-value can be obtained to indicate the significance of differential
expression for each cluster. In the context of the full cluster with nk genes, it is unclear what
the correct degrees of freedom should be, and the more appropriate degrees of freedom for
the test statistic might be nk ∗ p, since each cluster contains multiple genes sharing the same
model.

In simulations, the likelihood ratio test did not perform well. While the method had
satisfactory power, it produced a very high false positive rate, and distribution of the null
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Figure 4.1: Per-cluster false positive rates of the Likelihood Ratio Test of differential expres-
sion conducted on data from a null setting under the normal model.

p-values was strongly non-uniform. Figure 4.1 shows the high false positive rates per cluster
obtained from running the normal mixture model on data under the null setting, with no
differential expression between conditions. The false positive rates vary significantly between
clusters. Some clusters perform well, but many clusters, particularly Clusters 2 and 3 show
an excessive amount of false positives. This poor performance is likely due to many con-
tributing factors including many violations of assumptions. Thus, to avoid the problem of
distributional assumptions, we turn to nonparametric methods.

4.2.2 Separate bootstrap

A simple approach to inference on cluster parameters from a mixture model is to apply the
bootstrap to each cluster separately, as described in Taushanov and Berchtold [2019]. Here,
the idea is to bootstrap the data within each cluster, again treating the cluster labels as
known. To describe this method in the context of a Gaussian Mixture Model, the authors
proposed resampling the observations. In the context of genomics data, the observations can
be considered as the samples or as the genes. Resampling the genes in a given cluster most
closely matches the approach of Taushanov and Berchtold [2019], but this is not a sensible
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approach, since bootstrapping the genes would in essence be attempting to model some
infinite population of genes. As this is not a realistic or desirable scenario, bootstrapping
the samples within each cluster seems to be more appropriate.

The bootstrap is designed to generate an empirical distribution of a model parameter
of interest, which in this case is the cluster mean. This empirical distribution mimics the
true population distribution of the model parameter and provides an avenue to compute
standard errors and confidence intervals around the model parameter of interest. The confi-
dence intervals around the cluster means will be around each time point of the cluster mean
per condition. These confidence intervals can then be used to conduct an overall test of
differential expression.

To describe the separate bootstrap method, once again the strong assumption is made
that once the clustering has been completed, the cluster labels are known. The method
then considers each cluster k, with fitted mean µk, as its own independence population.
Within each cluster k, the separate bootstrap method performs the following steps for each
of B iterations. First, a new bootstrap dataset is created by sampling with replacement the
cluster data’s samples. Then, using this new, resampled dataset, a bootstrap cluster mean
µbk is fit to the data. The results of the B bootstrap iterations provide B cluster means µbk
that can be used to generate standard errors and confidence intervals around the original
cluster mean µk at each time point This produces as many confidence intervals as we have
time points in each condition. This is useful to obtain an idea of the standard errors around
the cluster mean. However, to answer the original question of differential expression, one
more step is needed.

Under a setting with only one condition, the null hypothesis of no differential expression
at any time point can be tested with the hypothesis

H0 : µk(t) = 0, t = 1, ...T.

In a setting with two conditions A and B, the null hypothesis of no differential expression
between conditions at any time point can be tested with the hypothesis

H0 : µAk (t) = µBk (t), t = 1, ..., T.

This hypothesis can be written more clearly in terms of the differences between conditions
by letting dt = µAk (t)− µBk (t), so that the null hypothesis is

H0 : dk(t) = 0, t = 1, ..., T.

To test these hypotheses using the output from the bootstrap results, consider the con-
fidence intervals constructed around each time point For each time point j, a confidence
interval Cj constructed at significance level α will have P (d(j) /∈ Cj) ≤ α. In order to get
an overall assessment of significance across all time points, these confidence intervals can be
combined to test the hypothesis of no difference at any time point That is, the hypothesis
of interest is

H0 : dk(1) = · · · = dk(T ) = 0.
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To make this a statistically valid hypothesis test, we simply need to control the family-
wise error rate, which can be done by constructing each time point’s confidence interval Cj
at significance level 1− α/T . This then ensures that

P (d(j) /∈ Cj for some j) ≤
∑
j

P (d(j) /∈ Cj) ≤
∑
j

α

T
= α,

as desired.
Similar to the likelihood ratio test, the separate bootstrap method is simple and relatively

quick. In simulations, the separate bootstrap performs quickly and successfully, with power
to detect truly differentially expressed clusters while also demonstrating a low false positive
rate. However, this method is again not a completely satisfactory approach, because the
separate bootstrap also treats each cluster as its own separate population, ignoring the
variability due to clustering.

4.2.3 Full bootstrap

The bootstrap approach can be used more successfully by bootstrapping the full dataset
and re-running the clustering algorithm on each bootstrapped data set. While this is a
more computationally intensive approach, this method provides a distribution of the mean
in each cluster that now incorporates the variability that comes from the clustering. As in
the previous methods, various hypotheses can be tested per cluster.

Full bootstrap method

The process of the full bootstrap method is as follows.

1. Create a new bootstrap dataset by sampling with replacement the original dataset’s
samples.

2. Apply the mixture model clustering algorithm to the bootstrap dataset.

3. For each cluster k, compute the bootstrap statistic of interest. For the setting with
one condition, this is simply the cluster mean

µBk (t), t = 1, ..., T.

For the setting with two conditions, this is the difference between conditions per time
point,

dk(t) = µAk (t)− µBk (t), t = 1, ..., T.

4. Repeat steps 1-3 B times to obtain a distribution of µk or dk for each cluster k.
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Once the bootstrap distribution has been generated for each cluster, the process of testing
differential expression is identical to the process in the separate bootstrap. Within each clus-
ter, confidence intervals are constructed at level 1−α/T around either the cluster mean µk(t)
or difference between conditions dk(t), and the null hypothesis of no differential expression
at any time point is tested as before.

In simulations, the full bootstrap performed very well, albeit with a high computational
cost. Tests of differential expression were conducted using the confidence interval approach,
and simulations achieved good power and low false positive rates.

Bootstrap label-switching problem

Since the full bootstrap method relies on re-fitting the mixture model to each bootstrap
dataset, we are faced with a massive label-switching problem. Specifically, in step 2 of each
bootstrap iteration, the clustering algorithm produces a set of clusters that have similar
patterns to the original cluster results; however, although the clusters found by the algorithm
in each of the B bootstrap clustering results are similar in pattern, the cluster labels of each
bootstrap result are a random permutation of the original labels.

In order to obtain a distribution of the bootstrap statistics per cluster, the cluster la-
bels therefore must be aligned across bootstrap iterations. Multiple approaches have been
suggested to remedy the label-switching problem. The simplest approach is to impose iden-
tifiability constraints on the parameters, such as by ordering the cluster means smallest to
largest; however, this approach only works in the simplest settings, and there is not obvious
identifiability constraint that would apply to the spline curves of the cluster means in this
setting. Various re-labeling algorithms have been proposed in Stephens [2000] and Celeux
et al. [2000], but this would add an additional layer of computational complexity to an al-
ready computationally intensive bootstrap method. A more favorable approach discussed
in McLachlan and Peel [2004] is to set the Expectation-Maximization algorithm’s starting
values to the posterior values achieved by the original clustering. Although this strategy
sacrifices the random initialization of each bootstrap clustering, this is generally a success-
ful solution to the label-switching problem, since the EM algorithm is known to be very
dependent on starting values.

In our implementation of the full bootstrap, we addressed the label-switching problem
by using a fixed initialization point. Specifically, each bootstrap clustering was initialized
using the matrix of gene-cluster probabilities obtained from the original clustering result’s
posterior matrix. In practice, this method did not perform with perfect accuracy and some
cluster labels ended up being misaligned, but in general, the cluster labels were successfully
relabeled to the same order as the original clustering order.

Hypothesis testing with the bootstrap

The bootstrap method, therefore, is a very useful method to construct confidence intervals
around model parameters, and these confidence intervals can be used to test a limited set of
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hypotheses of differential expression. However, the confidence interval approach is limited
in that it lacks the flexibility to test more specific hypotheses, such as testing for only a
significant interaction of time point and condition, rather than any condition effect. To
conduct a more traditional hypothesis test using the bootstrap, several considerations need
to be made.

A hypothesis test requires a test statistic that can measure the amount of differential
expression in each cluster. In the setting of differences across time, the simplest statistic
is simply to take the sum of the absolute value differences between conditions at each time
point,

θk(F ) =
T∑
t=1

|dk(t)|.

A slightly more sophisticated version of this approach is the statistic

θk(F ) =

∫ T

t=1

∣∣fAk (t)− fBk (t)
∣∣ dt,

where fAk and fBk are the fitted functional curves across time within each condition. This
statistic measures the area between the two curves, where a greater area between the two
curves indicates greater differential expression between the two conditions.

Under the null hypothesis, θk(F ) = 0, since in the null setting the functional curves
between conditions are identical. The original clustering produces the observed test statistics
θk(F̂ ). The bootstrap samples produce an empirical distribution of the observed statistics
created from the statistics θk(F̂ ∗) produced by each bootstrap sample. From this distribution,
it might seem natural to construct a confidence interval or conduct a hypothesis test to test
for differential expression. However, neither of these approaches are valid in this setting.

First, to illuminate the problem with constructing confidence intervals around our pro-
posed statistics θk, a quick observation of the definition of the statistic θk will immediately
reveal that this statistic is strictly positive. Therefore, all of the bootstrap statistics will
always be greater than zero. To test for differential expression using a confidence interval
around this statistic, a hypothesis test would need to test that the confidence interval around
the observed statistic covers zero. However, it is impossible for this to happen with a strictly
positive bootstrap statistic, since none of the bootstrap statistics can possibly be less than
zero. Hence, such a test of differential expression would have perfect power, but no control
over the false positive rate.

Secondly, to consider hypothesis testing, there are again difficulties in comparing our
observed test statistics θ̂k(F ) to the bootstrap distribution. The problem with hypothesis
testing using the bootstrap is that by its construction, the empirical distribution is close
to the true population distribution, which may or may not follow the null distribution. To
conduct a hypothesis test, a distribution satisfying the null hypothesis is required with which
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to compare our test statistic. It might be tempting to calculate a bootstrap p-value as

p∗(θ̂) =
1

B

B∑
b=1

I(θ∗b > θ̂).

However, this p-value is useless as a hypothesis test because it lacks any power. By construc-
tion of the empirical distribution, this p-value will reject the null hypothesis with probability
α regardless of how far the observed population distribution is from a true null distribution.

Therefore, to do a valid hypothesis test, an accurate null distribution must be estimated.
The remaining two methods provide approaches that can construct such an empirical null
distribution.

4.2.4 Permutation test

One approach to generating a null distribution is to use a permutation approach. This
method generates a null distribution by shuffling the condition labels of each replicate. The
process is similar to the bootstrap, except that for each iteration, instead of resampling the
dataset’s samples, the condition labels of all the samples are permuted. Generating a large
number of datasets with permuted condition labels mimics a set of datasets coming from the
null distribution that has no condition effect.

However, in practice, immediately the major hindrance of this permutation method ap-
pears, which is that in settings with few replicates as in most genomics studies, there are a
very limited number of possible permutations of condition labels. For example, with a study
of two conditions with three replicates, there are only

(
6
3

)
= 20 total possible permutations.

This severely limits the power of any hypothesis test. As a result, the permutation test is
unlikely to be useful in a typical genomics setting.

4.2.5 Residual bootstrap

A more successful approach to generating a null distribution is to use the residual bootstrap
method. To apply this method, a test statistic is needed to measure of the amount of
differential expression in each cluster. For cluster k, consider the test statistic proposed
earlier,

θk(F ) =

∫ T

t=1

∣∣fAk (t)− fBk (t)
∣∣ dt,

where fAk and fBk are the fitted functional curves across time within each condition. This
statistic measures the area between the two curves, where a greater area between the two
curves indicates greater differential expression between the two conditions.

Under the null hypothesis, θk(F ) = 0 for all clusters, since the functional curves under
each condition will be identical. From the mixture model clustering of a dataset, the observed
statistics θk(F̂ ) can be computed for each cluster. To test the significance of these observed
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test statistics, a residual bootstrap method can be applied. This method constructs an
empirical null distribution with which to compare the observed test statistics.

Unlike the traditional bootstrap, which generates an empirical distribution of the true
population distribution, the residual bootstrap attempts to generate an empirical null distri-
bution. The basic idea is to generate new null datasets by randomly creating new realizations
of each gene according to the null hypothesis. This is done by resampling the observed resid-
uals and adding them onto a null model fit. This simulates a population with no differential
expression. The observed residuals are used in the resampling step because these residuals
are an approximation of the true distribution of residuals regardless of whether the true
population follows the null hypothesis or alternative hypothesis.

Residuals for count distributions

In the normal model, residuals conveniently have i.i.d. behavior, making them perfectly
suited for a residual bootstrap resampling method. With non-normal distributions, however,
residuals no longer have such nice behavior, so it is necessary to consider modifications to
the basic residual. There are many ways to define residuals in the context of non-normal
distributions, including standardized residuals, Pearson residuals, and deviance residuals.

Deviance residuals, defined as

ε̂Dij = Sign(yij − ŷij) ∗
√

2(yij log(yij/ŷij)− yij + ŷij),

are particularly appealing in the setting of count distributions, because the non-normal mod-
els are fit by deviance optimization, which has a nice correspondence with the RSS in the
normal setting. Moreover, the deviance residuals more closely follow an i.i.d. distribution,
making them a natural choice for a resampling procedure. For this reason, Hartl [2010]
devised a method to bootstrap deviance residuals in the context of developmental triangles
in stochastic reserving. However, as noted by the authors, the major difficulty with working
with these deviance residuals is that there does not exist a closed-form expression for the
functional inverse of the deviance residuals. Thus, the process of mapping resampled resid-
uals to responses in order to generate bootstrap null data is a computational challenge. As
a result, the authors of Hartl [2010] made several simplifying assumptions in order to map
the residuals to responses for their bootstrap method. In a separate context, deviance resid-
uals were also proposed for Poisson generalized linear models in Renshaw and Haberman
[2008]; however, the strategy for mapping the deviance residuals to the responses is again a
problematic computational hindrance. The authors also consider the Pearson residuals as a
simpler alternative option.

Although the deviance residuals are perhaps the most natural choice to use in generating
null datasets in the context of generalized linear models, Pearson residuals present a favorable
alternative, since the Pearson residual is much easier to invert. For this reason, England and
Verrall [1999] used Pearson residuals in a bootstrap method for a Poisson regression in the
context of computing an IBNR-forecast in claims reserving. The Pearson residual is defined
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as

ε̂Pij =
yij − ŷij√
V (ŷij)

,

where V (ŷij) is the variance of y. For a Poisson model as in England and Verrall [1999], the
variance is simply V (ŷij) = ŷij. The negative binomial model, on the other hand, requires
an additional term to account for the over-dispersion and is defined as

V (ŷij) = ŷij + d(ŷ2
ij)

for dispersion parameter d. Generating a new null dataset with the Pearson residual is
therefore a simple step of inversion, where the new data y∗ is created by

y∗ij = ŷ0
ij + ε̂P∗i

√
ŷ0
ij + d(ŷ0

ij)
2
,

where ε̂P∗i has been sampled with replacement from ε̂Pij for fixed i. The Pearson residual is
therefore a suitable option for the residual bootstrap. Moreover, since the Pearson residuals
and deviance residuals are generally quite close in value, the computational simplicity of the
Pearson residual makes them a highly preferable option for the residual bootstrap method.

For computational simplicity, therefore, the residual bootstrap method that follows uses
the Pearson residuals for the NB and ZINB settings. The Normal setting relies on the basic
residuals

ε̂ij = yij − ŷ1
ij.

Residual bootstrap method

The basic framework of the residual bootstrap method is similar to that in Leek et al. [2006],
and is as follows.

1. Fit the mixture model to the full model, to obtain ŷ1, and compute the test statistics
of interest, θ̂k, k = 1, ..., K.

2. Fit the mixture model to the null model, to obtain ŷ0. The desired null model can be
one of two options, depending on the question of interest. One option is a null model
that includes a condition shift effect, meaning that the residual bootstrap will test
only for significant difference between conditions in the shapes of the centroids. The
alternative option is a model with no condition effect at all, which tests for significant
differences in either a shift or the shape between conditions.

3. Use the full model fitted values ŷ1 to compute residuals ε̂ij. For the normal model, the
residuals are computed as

ε̂ij = yij − ŷ1
ij.

If the data distribution is either the NB or ZINB, the Pearson residuals are used, which
are computed by

ε̂ij =
yij − ŷij√
V (ŷij)

.
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4. Generate new null data y∗ by resampling the residuals ε̂ij. Once the appropriate
residuals have been computed, the new null data is created for the Normal setting by

y∗ij = ŷ0
ij + ε∗i ,

and for the NB and ZINB setting by

y∗ij = ŷ0
ij + ε̂∗i

√
ŷ0
ij + d(ŷ0

ij)
2
,

where ε∗i is sampled with replacement among ε̂ij for fixed i. For the count distributions,
the generated values are then rounded to integer counts with minimum count 0.

5. Fit the mixture model with y∗ under the full model.

6. Repeat steps (3-4) B times to get K∗B bootstrap statistics θ∗bk , for clusters k = 1, ..., K
and b = 1, ..., B.

7. Compute a p-value for cluster k by

pk =
B∑
b=1

#{j : θ∗bj ≥ θk, j = 1, ..., K}
K ·B

.

Here, the p-value per cluster is the proportion of null clusters that have a statistic as
extreme or more extreme than the observed cluster statistic. By computing the p-value this
way, the observed statistic is compared to all possible null clusters.

A more conservative approach would be to only consider the null statistics for that cluster,
i.e.,

pk =
#{b : θ∗bk ≥ θk, b = 1, ..., B}

B
.

However, this requires aligning the clusters from each bootstrap sample to the original clus-
tering. This is not unreasonable in the case where the true data is similar to the null data.
However, when the null population is very different from the true population, the clustering
on the real data has no relationship to the clusterings on the bootstrap null data. Thus,
there is no obvious way to align the cluster labels across bootstrap iterations.

The residual bootstrap provides a flexible approach to differential expression testing, with
the advantage of being able to test any null hypothesis of interest. The method demonstrated
high levels of power and low false positive rates based on simulated datasets in both a Normal
and ZINB setting. In addition, the method was used successfully to identify appropriately
differentially expressed clusters in a real data setting.
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4.3 Evaluating Performance

Among the five methods proposed in the previous section, the residual bootstrap suggests
the most promise. To evaluate the success of this method from a statistical perspective, the
residual bootstrap was tested on a variety of simulated data sets. However, the process of
consolidating the results across simulations presents a number of challenges resulting from
the clustering context.

Briefly, the process of evaluating the performance of simulations is as follows. First, many
simulated datasets are generated from a set of clusters that follow either the null hypothesis
or the differentially expressed hypothesis. Next, the mixture model is fit to each simulated
dataset, and the residual bootstrap method is applied to the clustering results. In order
to assess the per-cluster performance of the tests of differential expression, the clusters are
aligned across simulations to provide distributions of p-values for each cluster. Once these
cluster p-value distributions are obtained, assessments of the power and false positive rate
can be investigated within each cluster.

However, just as was observed in the full bootstrap method, each simulation ends up
having its own permutation of cluster labels, meaning that the conclusions of the test of
differential expression for each cluster will not align with the true original cluster labels.
Therefore, the cluster labels must first be aligned across simulations.

4.3.1 Aligning clusters across simulations

In order to compare cluster mean differential expression detection performance across simu-
lations, we need a way to align the clusters between simulations. Specifically, in the context
of simulations, where the true cluster labels are known, we would like to align each of the
assigned cluster labels to the true cluster labels.

To explore this problem, represent the true cluster labels as {k : 1, ..., K} and the observed
labels obtained from the clustering as {j : 1, ..., J}. Here, K = J , although this is not
necessary in general.

We are seeking an alignment of the two clusterings. Consider the two mappings

σ : {k : 1, ..., K} → {j : 1, ..., J}
τ : {j : 1, ..., J} → {k : 1, ..., K}

The goal is to understand the distribution of a test statistic evaluated on the estimated
parameters obtained from a clustering of data. The process can be represented by

Fθ → X → µ̂
σ−→ θ̂ → t(θ̂),

or
Fθ → X → µ̂

τ−→ ω̂ → t(ω̂),
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where Fθ represents the underlying population from which data X has been collected, µ̂
represents the unaligned cluster parameters, and θ̂ and ω̂ represent the aligned cluster pa-
rameters, using the σ or τ alignments. That is,

θ̂ =

 µ̂σ(1)
...

µ̂σ(K)

 , and ω̂ =

µ̂τ(1)
...

µ̂τ(J)

 .
We are then interested in the distribution of the test statistic, such as the area between

the curves for the residual bootstrap method, evaluated on the aligned parameter estimates.
Upon closer inspection, the two label mappings σ and τ have several interesting prop-

erties. First, note that the mappings σ and τ are defined by the same function f ; in this
case,

f(k) =
{
j : |{zki |zki = j}| ≥ |{zki |zki = l}|,∀ l ∈ {1, ..., J}

}
,

where zki ∈ {1, ..., J} is the assigned label of data point i in cluster k. Next, σ and τ are
random, non-invertible mappings. Furthermore, σ and τ are not unique mappings, i.e.,

|σ(1), ..., σ(K)| < K, and |τ(1), ..., τ(J)| < J.

Finally, each true cluster maps to one observed cluster under σ, while each true cluster can
align to multiple observed clusters under τ :

|{µ̂j : µ̂j = µ̂τ(1)}| 6= 1, but |{µ̂j : µ̂j = µ̂σ(1)}| = 1.

These properties present several challenges with cluster alignment. Importantly, the σ
mapping loses the observed clusters that are small in size or that are noisy in the sense that
they contain genes belonging to a large number of true clusters. This is because larger clusters
will preferentially be mapped to the true clusters, since they contain a higher number of the
true genes. The obvious consequence of this is that larger clusters will be over-represented
in the cluster alignment. This suggests a potential for overly optimistic representation of
per-cluster differential expression results, since noisier clusters that could hurt the success
of the method are eliminated in this step.

Distribution of t(µ̂j)

Setting aside these concerns for the present and returning to the original goal, we would
like to generate a distribution of t(µ̂j) for each cluster j across many simulations. From
simulations, it is not possible to do this precisely; instead, simulations can only provide
distributions of

t(µ̂τ(1)|τ(1) = 1)

or
t(µ̂σ(1)|σ(1) = 1).
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The full distribution of t(µ̂j) can be specified as the sum of two terms:

L(t(µj)) =L(t(µj)|j ∈ {σ(1), ..., σ(K)})L(j ∈ {σ(1), ..., σ(K)})
+ L(t(µj)|j /∈ {σ(1), ..., σ(K)})L(j /∈ {σ(1), ..., σ(K)})

The first term can be estimated by simulations by using the σ alignment. The second
term is missing, as this term represents the observed clusters where the true cluster did not
match to an observed cluster. If we assume a best-case scenario where there is a perfect
clustering alignment, the second term is zero and able to be ignored.

To further decompose the first term, L(t(µj)|j ∈ {σ(1), ..., σ(K)}) can be estimated by
the distributions of t(µj) obtained from simulations. However, L(j ∈ {σ(1), ..., σ(K)}) is
not possible to estimate, because the cluster labels j are different in each simulation, there
is no way to model this probability.

In light of these difficulties, the most practical approach to align clusters to assess the
performance of our methods is to use the σ mapping. However, this has the effect of ignoring
small and noisy clusters found by various simulations.

An alternative to the process of aligning clusters is to consider the distribution of t(µj)
across all clusters, without separating the distributions by cluster. This ensures that every
observed cluster is represented, giving a more accurate picture of the overall performance of
the test for differential expression.

4.3.2 Performance measurement

To measure the success of each method to test differential expression, simulations were
run under two settings: a null setting, and a differentially expressed setting. Datasets
were simulated as described previously for the clustering assessment, under both the normal
distribution and the ZINB distribution. The null setting had 15 clusters with changes across
time, but no difference between conditions. The differentially expressed setting also had 15
clusters with changes across time, but with a difference between conditions. Both settings
had an additional cluster of random noise, to give a total of 16 clusters.

On each simulated dataset, the mixture model clustering was performed, clusters were
re-labeled to align with the true cluster labels, and then one of the tests of differential
expression conducted. False positive rates and power were tested in various ways depending
on the method. As indicated in the previous discussions, the results for the likelihood ratio
test were not promising, and the separate bootstrap, full bootstrap, and permutation test
were eliminated from further assessment for methodological reasons. Therefore, for the sake
of brevity, we will focus on results obtained to evaluate the performance of the residual
bootstrap method.
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4.4 Residual bootstrap performance results

To demonstrate the effectiveness of the residual bootstrap for detecting differentially ex-
pressed clusters, we applied the residual bootstrap method to simulated datasets and a real
data set. In both cases, the results indicate that the model performs in both an accurate
and meaningful way.

4.4.1 Simulation results

Simulations of the residual bootstrap method were run under both the Normal model and
the ZINB model. Datasets were simulated as described previously according to the Normal
and ZINB distributions. The mixture model was then fit to each of 20 simulated data sets,
and the residual bootstrap method was applied to each set of results, using 100 bootstrap
repetitions to generate the p-values. Under the null setting of no differential expression, all
clusters were simulated to have no differential expression between conditions. Under the
DE setting, all clusters were simulated to be differentially expressed between conditions. In
each case, the residual bootstrap was testing the null hypothesis of no difference between
conditions across time.

The proportions of false and true discoveries according to increasing values of significance
levels are shown in Figure 4.2. These proportions were computed by the number of clusters
that received a p-value less than or equal to the given cutoff along the x-axis. The diagonal
x = y line demonstrates the expected behavior under a null settings where the p-values should
follow a uniform distribution. From these plots, we can observe that the residual bootstrap
method performs very well in both the Normal and ZINB settings. The false positive rate
is low or lower than expected for the null clusters, and the true positive rate is very high
for the differentially expressed clusters. These plots indicate that the residual bootstrap is
a statistically reasonable method to detect differential expression. Furthermore, from these
successful simulations, we can conclude that the residual bootstrap method has the power
to detect truly differentially expressed clusters without an excess of false discoveries.

4.4.2 Real data results

To explore the performance of the residual bootstrap on real data, we consider again the
two EPICON datasets introduced and analyzed in Chapter 3. The 16S microbial dataset
provides an interesting opportunity to apply the residual bootstrap to a count dataset, taking
advantage of the Pearson residual option. To demonstrate the use of the residual bootstrap
on Normal data, we also present the results of running the residual bootstrap on the log
counts of the mRNA data.
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(a) False positive rate and true positive rate of residual bootstrap on Normal data.

(b) False positive rate and true positive rate of residual bootstrap on ZINB data.

Figure 4.2: False positive rates and true positive rates for residual bootstrap, run on Normally
distributed data using normal residuals, and ZINB distributed data using Pearson residuals.
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Figure 4.3: Cluster centroids obtained from running the mixture model on the 16S microbial
data, ordered from smallest p-value to largest. The centroid is plotted in black for the control
condition and in red for the pre-flowering drought condition.

16S microbial data

First, consider again the 16S microbial dataset. For each of the six clusters, we tested the
hypothesis of a Condition effect in terms of an overall shift or shape difference between the
two conditions. The residual bootstrap detected three of the six clusters as being differen-
tially expressed. The results of the residual bootstrap can be explored visually by looking
at the cluster centroids with their assigned p-values. The centroids are plotted in Figure 4.3
along with their p-value computed by the residual bootstrap. At a significance level of 0.05,
the first three clusters shown in Figure 4.3 are declared significantly differentially expressed,
while the remaining three are not. While these results may seem conservative, they do con-
firm our previous conclusion that many of the microbial OTUs display the same behavior
under both conditions, but with a minor delay in progression.

Clusters 2 and 3 were explored in depth in Chapter 3, and their heatmaps from Figure 3.9
lend support to the conclusion that these clusters are not demonstrating significantly different
behavior between conditions. To more closely examine clusters that have been declared
differentially expressed between conditions, we consider heatmaps of the OTUs belonging to
clusters 1 and 5, shown in Figure 4.4. The patterns of abundance shown by the OTUs in
cluster 1 clearly show different temporal behavior between conditions: OTUs with a positive
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(a) Heatmap of OTUs in cluster 1. (b) Heatmap of OTUs in cluster 5.

Figure 4.4: Heatmaps of OTUs belonging to clusters detected to be differentially expressed
between conditions according to the residual bootstrap test of their cluster means.

scaling factor display rapid increases in abundance starting at time point 6 under the control
condition, while the increase in abundance under the drought condition is delayed until after
time point 12. The opposite phenomenon can be seen in the OTUs with negative scaling
factors, although this behavior is noisier. Likewise, the OTUs from cluster 5 display clearly
different patterns of abundance between conditions, where a peak in abundance is observed
at time point 4 under the control condition but does not appear until time point 9 under
the drought condition. Each of these heatmaps support the overall conclusion of differential
expression detected by the residual bootstrap.

mRNA gene expression data

The residual bootstrap method was also applied to the mRNA gene expression dataset com-
ing from the EPICON project analyzed in Chapter 3. This dataset contains the root gene
expression data from three replicate samples at each week for weeks 3 through 17, under
the Control and Pre-flowering drought conditions, from the RTx430 genotype. The Normal
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Figure 4.5: Residual bootstrap results of the Pre-flowering drought versus Control condition
test of differential expression.

mixture model was applied to the log counts of the mRNA, and the residual bootstrap was
then applied to test the cluster means. First, the difference between watering conditions was
tested on this dataset from just the RTx430 genotype. In addition, for a further demonstra-
tion of the residual bootstrap method, we also consider separately the data coming from both
the RTx430 and BTx642 genotypes under the control condition, where again the data has
been clustered on the log counts with the Normal mixture model and the residual bootstrap
method applied to detect differentially expressed clusters. In both cases, the mixture model
was fit to the data for 20 clusters.

Test of condition difference For a first exploration, the residual bootstrap was used to
test for a difference in the shape of temporal pattern between the Pre-flowering drought and
Control conditions. The resulting cluster centroids and residual bootstrap p-values for the
20 clusters are shown in Figure 4.5. Clusters have been ordered from smallest p-value to
largest, so that the most significant clusters appear first. The p-values have been corrected
for multiple testing with the Bonferroni multiple testing correction.
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From these results, we can observe that the residual bootstrap produces reasonable re-
sults. All of the centroids display a visual difference in temporal pattern between conditions;
however, some differences are stronger than others. The clusters with lowest p-values are
those with the strongest visual differences between conditions; conversely, those with the
highest p-values do not appear to be strikingly different between conditions. Some of these
p-values seem anti-conservative, and so the results should be checked with the behavior of
the genes within each cluster to ensure that the residual bootstrap p-values are reasonable.

To confirm that the residual bootstrap is producing meaningful results, we explore the
behavior of genes in clusters declared differentially expressed or not. Two representative
heatmaps of such cases are shown in Figure 4.6. The genes in cluster 1, which has one of
the lowest p-values, exhibit remarkably different patterns of temporal expression between
conditions. On the other hand, cluster 14, which has one of the highest p-values, contains
genes that demonstrate generally similar patterns of temporal expression between conditions.
While there is a slight noticeable difference in the temporal patterns, the difference is not
significant. This visualization confirms that the residual bootstrap is detecting differentially
expressed clusters without obvious false discoveries. The seemingly anti-conservative p-values
may be a result of small differences at certain time points that result in a centroid that
appears to have more of a difference between conditions than there actually is. Therefore, it
is important to investigate the behavior of genes within each cluster to confirm the results
of the residual bootstrap test.

Test of genotype difference As a second test, we applied the residual bootstrap method
to the slightly more challenging setting of the difference between genotypes. Because fewer
differences between genotypes were observed from the per-gene differential expression anal-
ysis in Varoquaux et al. [2019], we would expect to discover fewer differentially expressed
clusters. This is therefore a good test of the false positive behavior of the residual boot-
strap. The cluster centroids visually indicate that there are very few differences in temporal
patterns between genotypes. Furthermore, the residual bootstrap method reports p-values
that are appropriately high in this non-differentially expressed setting. Figure 4.7 shows
the cluster centroids with their associated p-values for the 20 clusters, ordered from most
significant to least significant. As compared to the test of differential expression between
conditions, the test of differences in genotype finds far fewer differentially expressed clusters,
which is an encouragement that the residual bootstrap is not excessively anti-conservative.

Clusters 15 and 2, the only clusters declared significantly different between genotypes
in their temporal expression deserve closer consideration. Since the residual bootstrap is
testing for only a difference in the shapes of the cluster centroids between genotypes, the
centroids that are plotted in Figure 4.7 have been scaled so that the centroid in each genotype
ranges from zero to one. However, a quick look at the original fitted centroids reveals that the
original centroids produced by the mixture model from clusters 15 and 2, shown in Figure 4.8
reveal nothing more than a strong overall shift between genotypes at all conditions. The
small variations in temporal pattern within each genotype are magnified when rescaling
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(a) Heatmap of genes in cluster 1, which was
declared differentially expressed.

(b) Heatmap of genes in cluster 14, which was
not declared differentially expressed.

Figure 4.6: Heatmaps of genes from clusters either detected to be differentially expressed
between conditions or not, according to the residual bootstrap test of their cluster means.

within each genotype, thus producing the low p-values. This suggests that the residual
bootstrap method is likely to be anti-conservative to detect a difference in condition shape
when there is in reality only a difference in the overall shift between two conditions.

To further confirm the results of the residual bootstrap method applied to the genotype
difference, consider the two heatmaps shown in Figure 4.9. Cluster 18 is a typical example
of the behavior of genes from all of the clusters with high p-values: the genes in this cluster
demonstrate changes across time but there is no difference in this pattern between the two
genotypes. This behavior by the genes confirms what the cluster centroid indicates, which is
no difference between the two genotypes; the remaining clusters not provided show the same
results of no difference in temporal behavior between conditions, as suggested by their cluster
centroids. Cluster 2 provides a further confirmation of what was observed earlier, that this
cluster, while detected to have a significant difference in temporal shape between genotypes,
only exhibits a difference of an overall shift in expression. There is no visual evidence of the
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Figure 4.7: Residual bootstrap results of the Genotype differences test of differential expres-
sion.

Figure 4.8: Original cluster centroids of the two clusters detected to have differentially
expressed shapes of temporal pattern between genotypes.
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(a) Heatmap of genes in cluster 18, which was not
declared differentially expressed between geno-
types.

(b) Heatmap of genes in cluster 2, which was
declared differentially expressed, due to the large
overall shift in expression.

Figure 4.9: Heatmaps of genes from clusters either detected to be differentially expressed
between genotypes or not, according to the residual bootstrap test of their cluster means.

genes in this cluster demonstrating the behavior shown by the rescaled centroids, suggesting
that the rescaling of these centroids is magnifying small differences that do not represent a
genuine difference in temporal pattern between genotypes.

From this example of genotype comparisons, we have seen that the residual bootstrap is
not too anti-conservative with its detection of differential expression, with the small caveat
of its error in conflating the difference in condition shift with the difference in condition
shape. However, in general, the residual bootstrap produces p-values that are appropriately
high in settings where there is obviously not a difference between conditions. Considering to-
gether the results from the treatment comparison and the genotype comparison, we conclude
that the residual bootstrap has the power to appropriately to detect differentially expressed
clusters in a real data setting without an obvious overabundance of false positive results.
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Chapter 5

Conclusions

Time course genomics experiments provide a wealth of data, with the potential to uncover
rich discoveries related to developmental processes and temporal responses. As sequencing
technologies advance and studies of longer duration grow more common, it is necessary
to meet the exciting possibilities with careful and rigorous statistical techniques of data
analysis. Time-course studies of long duration present unique challenges related to modeling
the time-course nature of the data and dealing with the overwhelming number of significant
changes shown by genes along a developmental process. To meet these challenges, we have
presented in this work a comprehensive method of analyzing time course genomics data that
relies spline-based clustering to make sense of the vast number of changes associated with
developmental processes.

The general question of clustering similar features has been adapted for a time-course
setting that can be applied to a wide variety of data types. By using a mixture model
framework, this method takes advantage of probabilistic assumptions to assign each genomic
feature a probability of belonging to a cluster, giving a user more information than simply a
label assignment as in more basic clustering methods. These probabilities can also be used to
filter out less relevant features, allowing a user to narrow the focus to only the most interesting
features. In addition, relying on probability distributions has the advantage of making this
method widely applicable to a variety of genomics datasets, from microarrays to single cell
datasets. Importantly, each cluster is assigned a centroid that provides a simple and accurate
representation of the mean temporal pattern within each cluster. These cluster centroids
take advantage of a functional spline model to smooth the changes in expression across time,
making this method especially useful and relevant to time-course studies of long duration.
Additionally, the mixture model incorporates gene-specific parameters, allowing for a greater
range of flexibility within each cluster, and leading to better clustering performance. The
gene-specific scale parameter in particular provides the unique potential to identify patterns
of anti-correlation among clustered genes.

We have built upon these clustering results obtained from the mixture model by devel-
oping a test of differential expression that can be applied to each cluster mean. Multiple
strategies can be adopted to answer the question of differential expression testing, but we
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have argued that the residual bootstrap method does this the most effectively. The residual
bootstrap method provides a flexible way to test a variety of relevant biological hypotheses,
and the method performs with statistically sound behavior. Careful consideration of the
derivation of the residuals used in this method make this a method applicable to a variety of
data types and distribution choices. This is a particularly valuable feature, as the majority of
alternative approaches to conducting inference on cluster means are limited by assumptions
of normality. The residual bootstrap method is therefore a valuable tool for time-course
studies. By testing each cluster for significant differences in a relevant hypothesis, a user can
statistically identify which clusters are the most relevant and worthy of further exploration.

Finally, we have demonstrated the success and value of these methods by applying the
mixture model and differential expression analysis to many simulations and real datasets.
Through a variety of simulations, we have shown that the mixture model outperforms alterna-
tive clustering methods and provides additional advantages beyond other methods. Applying
these methods to real datasets confirmed previously known biological results, indicating the
accuracy of the clustering method; the method also uncovered new patterns and discoveries
in real datasets, demonstrating the value of this new method. Furthermore, we have shown
how the results of the mixture model can be used to assist in downstream analysis including
gene set enrichment analysis and the interpretations of the biological significance of clusters
produced by the mixture model.

While these methods are interesting simply from an intellectual point of view, it is equally
important to develop the practical tools that enable researchers to apply these methods to
their own datasets. Therefore, we have developed a comprehensive R package that will fit
the mixture model and test clusters for differential expression analysis. The functions do
not require any filtering or normalization to be performed on the data beforehand, allowing
a researcher to quickly apply this method to a dataset by simply inputting the data and
relevant preferences. The package has been optimized for time and memory usage, and is
freely available to use.

As time course gene expression studies continue to garner fresh interest in biological re-
search areas, the clustering and differential expression testing methods presented in this work
will provide convenient and useful tools to discover fresh biological insights with statistical
validity.
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Zhivko Taushanov and André Berchtold. Bootstrap validation of the estimated parameters
in mixture models used for clustering. Journal de la Société Française de Statistique, 160
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