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Abstract

Optogenetic stimulation, and control or promotion of epileptiform activity, in a mean field model
of the human cortex

by

Prashanth Selvaraj

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Andrew J. Szeri, Chair

Epilepsy is a neural network disorder that manifests when certain elements (neuron types, sub-
networks) malfunction or fail. Epileptiform activity, in turn, is characterized by the excessive
synchronous firing of populations of neurons. In this dissertation, we present a mathematical
model of the human cortex based on the activity of populations of neurons best captured at the
meso-scale to study epileptic seizure dynamics. We then investigate further developments of the
use of a spatially, temporally and cell type specific stimulation technique called optogenetics to
trigger or to inhibit epileptiform activity in the cortical model.

Optogenetics involves the genetic modification of a host neuron to express light activated ion
channels. To incorporate this method of stimulation into the meso-scale cortical model, we first
develop a scale free mathematical model of optogenetic channel dynamics, which enables study of
micro-scale level optogenetic activity at the meso-scale. We then integrate the optogenetic model
into the meso-scale cortical model to study the combined dynamics of cortico-optogenetic activity
in time and two spatial dimensions. Through this combined model, we explore the efficacy of op-
togenetic stimulation in an open loop configuration to inhibit epileptic seizures. Next, we close the
loop using techniques of classical control theory, and investigate the controllability of seizures in
two parameter spaces that correspond well with patient seizure data. By basing our control effort
on measurements of cortical activity that are clinically relevant, we aim to provide a physiolog-
ically safe and efficient way of seizure inhibition. We also study the dynamics of the combined
cortico-optogenetic model using bifurcation analysis. We then explore the use of optogenetic stim-
ulation as an excitatory technique to drive seizure like activity in a normally functioning cortical
model. All of this makes a strong case for the consideration of optogenetics as a highly specific
cortical stimulation modality in seizure research.

Finally, we present preliminary results from work that describes the link between cortical
metabolic demands and cortical activity. A quantitative definition of this link will aid in recon-
ciling the different temporal scales of electrode measurements and imaging techniques like func-
tional magnetic resonance imaging, while also providing a clearer picture of the role of glucose
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and oxygen metabolism in multiple states of cortical activity, such as normal sleep, awake, and
seizure states.
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Chapter 1

Introduction

1.1 Epilepsy and seizures
Epilepsy is a chronic, non-communicable disorder that manifests as seizures, which are charac-
terized by abnormal or excessive synchronous neuronal activity in the brain. It is a condition that
will affect about 1 in 100 people worldwide, and about 1 in 10 people will suffer a seizure in their
lifetime [100]. While epilepsy can arise in any person at any age, it more commonly occurs in the
elderly and children with causes that include but are not limited to genetic conditions, head injuries
and brain tumors [101].

Under the most recent International League Against Epilepsy (ILAE) revised terminology of
classification of seizures and epilepsies developed between 2011 and 2014, epileptic seizures can
be broadly classified as either focal, generalized or unknown seizures [41]. Focal seizures are ic-
tal (relating to seizures) events originating in neural networks limited to one cerebral hemisphere.
Focal seizures are characterized according to one or more features that fall under the categories of
aura, motor, autonomic, and dyscognitive [41]. On the other hand, generalized seizures simulta-
neously originate within, and rapidly engage, bilaterally distributed networks, and can be further
classified as tonic-clonic, absence, clonic, tonic, atonic, and myoclinic generalized seizures [41].
Finally, unknown seizures are seizures that cannot be categorized as either focal, generalized or
both for lack of sufficient evidence. Epileptic spasms are an example of unknown seizures [41].

In this work, we will be looking at focal seizures that generalize at the network level. However,
the defining feature of focal seizures is that they originate at a focus in a small group of neurons
[43], and so it is important to understand epileptic neural activity at the level of single neurons or
small groups of neurons first. Here, we present a concise description of how seizures develop at
the level of single neurons, but a more detailed description can be found in the book by Kandel et
al. [43].

Neurons are electrically and chemically excitable cells with a voltage gradient maintained
across their cellular membrane (called membrane potential) because of differences in extracellular
and intracellular ion concentration. Neurons are said to be in a state of rest when not transmit-
ting signals, and have a negative membrane potential in the resting state. A neuron is said to be
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hyperpolarized when the membrane potential is further decreased by the influx of anions or the
efflux of cations, and is said to be depolarized if the ion flux is reversed. Sufficient depolarization
results in an action potential, which results in a discharge of ions (transmittance of an electrical
signal). Now neurons located in the seizure focus exhibit a synchronized electrical response called
the paroxysmal depolarizing shift (PDS), which consists of a sudden, large (20-40 mV ) and long-
lasting (50-200 ms) depolarization that triggers a train of action potentials at the peak of the PDS
[43]. The PDS is followed by an afterhyperpolarization (AHP), which limits the duration of the
PDS. While the PDS is primarily dependent on excitatory inputs, the AHP is primarily dependent
on inhibitory inputs from surrounding interneurons. Focal seizures develop when the PDS is able
to gradually overcome the surrounding inhibition, eliminate the AHP, and spread past the original
focus.

There are many factors occurring at different scales that lead to excessive excitation of cells
or the decrease in surrounding inhibition, and the different etiologies of seizures make diagnosis
and treatment of this disorder complicated tasks. Physical trauma, stroke and tumors are exam-
ples of causes that may be more easily identifiable than those responsible for idiopathic (unknown
cause) seizures. About 70% of people suffering from epileptic seizures can be treated with anti-
epileptic drugs (AEDs) [101]. For the remaining 30% with medically refractory, more commonly
focal-onset epilepsy, surgical removal of the epileptogenic zone is a treatment option [12], as are
implanted neurostimulators such as the vagus nerve stimulator [84]. Options on the horizon in-
clude closed-loop devices that sense the onset of a seizure and deliver local therapy to interrupt the
seizure’s spread and/or to reduce its intensity. For example, the firing pattern of neurons near the
epileptogenic zone can be altered by the application of an external electric field. In vitro experi-
ments on rat cortex [78] showed it is possible to modulate the behavior of seizure like waves, while
in vivo experiments on rats [30] showed that stimulation using proportional feedback temporarily
inhibited seizure waves. Electrical cortical stimulation was modeled in silica [48] using various
methods of feedback control, and charge balanced control was ensured in subsequent work [58].
However, while brain electrical stimulation (BES) offers an alternative, vagus nerve stimulation
using electrical pulses is the only FDA approved BES technique, and these methods only have a
success rate comparable to medication at best. Also, the physiological methods by which seizures
are prevented or reduced with current BES techniques are unknown, leading to concerns over long
term use. Finally, the cortex contains both excitatory and inhibitory cells, but BES techniques
target only a small fraction of excitatory cells, suggesting significant untapped potential. Further,
drug delivery cannot be isolated to localized regions of the brain.

To address these limitations, we explore the idea of a new, targeted treatment modality focused
on using light activated ion channels to inhibit epileptiform activity.

1.2 Optogenetics
In 1979, Sir Francis Crick stressed the importance of independently stimulating the different cell
types that form the complex architecture of the mammalian brain to provide insight into the rela-
tionship between specific neural activity and abstract brain functions such as cognition, memory



CHAPTER 1. INTRODUCTION 3

and emotions. Twenty years later, he suggested using light as a modality for such precise and
accurate neural stimulation. It took a few more years for his ideas to develop into a technology
called optogenetics, which uses genetically induced light-sensitive ion channels to control neu-
rons. Since then the field of optogenetics has come a long way, being named ’Method of the year’
in 2010 [24], and today, optogenetics is one of the most valuable research tools in neuroscience,
offering unparalleled specificity in the stimulation of individual neurons and neural circuits.

The key to the specificity of optogenetics is the genetic modification of a cell type to render
it sensitive to light. The first step is the identification of an opsin, a protein that forms the visual
pigment rhodopsin that converts light of a particular wavelength into an electrochemical signal.
Opsins have different ion conductance properties and can have reaction rates ranging from mil-
liseconds to minutes [65]. Certain rhodopsins like channelrhodopsin-2 (ChR2), which is sensitive
to blue light, pump cations into neurons [66], depolarizing them (excitation), while natronomonas
pharaonis halorhodopsin (NpHR) is sensitive to yellow light, and works as an anion pump that hy-
perpolarizes neurons (inhibition) [106]. The next step is to deliver a gene that encodes these opsins
to a host cell. Examples of delivery methods include the use of benign viruses to carry the opsin
gene to cells (viral vectoring), and the use of transgenic animals that express these opsins from
birth. These methods safely render a neuron light sensitive without changing its overall function.

Selective opsin expression, selective ion conductivity [81] and a rapid response time ensure
that optogenetics also offers unparalleled temporal and spatial specificity in the targeted stimula-
tion of distinct neurons and neuron networks in a particular brain region [105]. Other methods,
such as lesioning and electrical stimulation offer good temporal resolution, but are invasive, and
collectively influence all cell types within the stimulated region - thus blurring individual neuron
contributions to specific brain functions. Similarly, pharmacological methods can target specific
families of neurons, but they lack the temporal sensitivity that other stimulation methods offer.
Additionally, recent innovations like injectable, wireless, cellular-scale optoelectronics [47] pro-
vide a minimally invasive method of delivering light to the brain. In this way, optogenetics offers
recourse to the shortcomings of other stimulation methods, and in the future, has the potential to
be an extremely effective therapeutic tool to treat neurological diseases in human beings.

However, the technique is already proving to be invaluable, even without use in humans. Re-
search with optogenetics in animal models has already advanced understanding of various psy-
chiatric and neurological disorders. Ahmari et al. [3] triggered obsessive compulsive disorder
(OCD) behavior in mice by selectively stimulating certain neurons using optogenetics. Chen et al.
[14] used optogenetic stimulation in rats to show how particular neurons controlled drugseeking
behaviors. Kravitz et al. [50] regulated motor symptoms of Parkinson’s disease in mice using opto-
genetic control of basal ganglia circuitry. Beyond these examples, optogenetics has also been used
to deconstruct sleep-wake circuitry [2], to research the cortical balance of inhibition and excitation
and its effect on social behavior [105], in psychiatric studies of the anti-depressant effect of cortical
stimulation [21], and in the treatment of schizophrenia [73]. Hence, although this method is not yet
used experimentally or therapeutically in human beings, it is already enhancing understanding of
neural activity in animal models, which greatly facilitates comprehension of human brain function.
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1.2.1 Optogenetics and epilepsy
Optogenetics offers another modality of seizure control, albeit with higher spatial, temporal and
cell type specificity than any other method of stimulation [105]. The control of seizures using
closed loop optogenetic control has been demonstrated in rats [102; 72] and in mice [51], where
hyperpolarising excitatory neurons or depolarising inhibitory neurons in the hippocampus or the
thalamus leads to the suppression of seizure waves. Previous work has shown how seizure control
in a mathematical model of the human cortex can be achieved by inhibiting the excitatory pop-
ulation in [58], albeit with an electric field and not optogenetic stimulation. Here, we present a
method of seizure suppression where we depolarize the inhibitory cells in a model of the human
cortex using ChR2 channels. The firing of the inhibitory cells suppresses the firing of excitatory
cells, and this subsequently leads to the disruption of pathological synchronous firing of cortical
neurons.

We specifically look at targeting the inhibitory population for two reasons. One, inhibitory
neuron types and neural circuits might be responsible for certain types of cortical disorders and
function. For example, GABAergic inhibition is decreased in some types of epilepsy [20; 19].
Depolarising inhibitory neurons more frequently via optogenetic stimulation is one possible way
to address this decrease in inhibition. In this work, we use a mathematical model of the human
cortex with averaged inhibition that does not take into account specific subtypes of inhibitory
neurons, but it does allow us to explore the efficacy of optogenetic depolarisation of the inhibitory
neuron population.

Two, recent advances in delivering light to deeper cortical layers aids in the targeting of cells
that do not synapse at the surface of the cortex. The distribution of inhibitory neurons in mam-
malian cortices is non-uniform, with the majority of inhibitory neurons embedded well below the
cortical surface [45]. If light could only be delivered to the surface of the cortex, the obvious
choice to suppress seizures would be to target pyramidal (excitatory) neurons using optogenetics.
However, recent work [11] and [16] has shown light can penetrate at least 1 mm or more beneath
the cortical surface giving access to a number of other neuron types that can be found in larger
numbers in layers 2-6 of the cortex.

1.3 Applied control theory
Control theory involves the study of dynamical systems with the aim of making these systems
behave a certain way, i.e. control them. Control is achieved through a controller, which monitors
the output of the system (measured signal), and compares the measured signal with a desired
output signal. The error arising from the difference between the measured and desired signals is
applied as feedback to the input of the system, with the goal of reducing the error in the output. If
the system is based on a linear relationship between the input and the output, control is achieved
easily. However, most systems are non-linear and require an iterative process of measuring the
error and correcting the input signal until the desired output is achieved. We now present terms
and ideas from control theory related to this dissertation, however, there are numerous books on
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control theory that offer more in depth insight into the subject, e.g. the books by Franklin et al.
[29] and Doyle et al. [26].

In some applications, like laundry dryers that work on timers, feedback is not necessary to
apply control to the system. This type of control, where the control effort is predetermined and
fixed throughout the operation of the system, is called open loop control. However, if the same
dryer were to measure the degree of dampness of the laundry in it, and adjust the temperature
and duration of a drying cycle based on the dampness, it would now be using closed loop control.
In this case, the control effort is calculated using a ‘control law’, which determines the adjusted
input in terms of the measured output. Some of the most widely used control laws are based
on the proportional, integral and differential (PID) calculation of control effort from the error in
the measured signal, and variations of the PID system like proportional integral (PI), proportional
differential (PD), and proportional (P) control.

Figure 1.1: Block diagram showing proportional, integral and differential (PID) control applied to
a dynamical system.

The working of a PID controller is shown in figure 1.1. The error e(t) between the output
of the system y(t) and the reference/desired signal r(t) is calculated and input to the controller,
where the control effort u(t) is obtained by summing up the proportional, integral and differential
components as shown in equation 1.1.

u(t) = Kpe(t)+KI

∫
e(t)+KD

de(t)
dt

(1.1)

Using these principles of classical control theory, we explore the use of optogenetic stimulation
in both the open and closed loop formats to inhibit seizure waves in the model cortex. In the open
loop configuration, a predetermined intensity of light is used to illuminate the neurons in a seizing
model human cortex. This allows us to study and determine the efficacy of optogenetics as a
seizure inhibition strategy. In the closed loop configuration we use the proportional integral (PI)
mode of control (the differential term is set to zero). By basing our control strategy on electrode
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like measurements of the same spatial and temporal scales as the cortical model, we propose a
method of seizure inhibition that is biologically relevant and efficient in the use of energy required
to effect control - criteria that have to be satisfied for the use of any control strategy in humans over
long periods of time.

1.4 2D cortical model
Despite the differences in etiologies and physiologies, all epileptic seizures are characterized by
the excessive synchronous firing of a large number of neurons [27]. This activity is captured well
at the mesoscale, which involves the averaged activity of millions of neurons. Electrocorticogram
(ECoG) readings, and especially much easier to administer electroencephalogram (EEG), provide
the most helpful tests to identify idiopathic seizures [68]. These two techniques are used to observe
cortical activity at the mesoscale.

To simulate electrical activity in the human cortex ideally, one would have to model the connec-
tions between individual neurons taking into account the characteristics of each neuron (location,
connections to other neurons, pyramidal or stellate etc.). However, given the limits of computing
capacity, and variation between individuals, it would be extremely difficult to model a network
consisting of all of these neurons even if the complicated physiology were well defined. In light of
this, Liley at el. [55] proposed a mathematical model of the cortex based on the columnar arrange-
ment of cortical neurons, which was first discovered by Santiago Ramón y Cajal towards the end
of the 19th century. A detailed description of the model can be found in [55], however, we present
the basic ideas underlying the model in what follows.

The mathematical model simulates the variation of the averaged soma potentials of excitatory
and inhibitory, he and hi, respectively, by heuristically averaging neural activity at the microscopic
level over columnar volumes with diameters just under the spatial scales of EEG and ECoG read-
ings. The result of this spatial averaging is the fundamental unit of the model - an averaged neuron,
which includes both neuronal and non-neuronal (e.g. neuroglia) components. Motivated by corti-
cal phsyiology, the mathematical model also incorporates interaction between neural populations
via action potentials. These interactions include two types of connections: (1) local feedback and
feedforward connections within and between excitatory and inhibitory populations, and (2) long
range excitatory connections that synapse on both the excitatory and inhibitory populations. The
long range connections are assumed to be isotropic and homogeneous, and decrease exponentially
with distance. These assumptions were made for lack of experimental data and to simplify the
model. The model also takes into account subcortical inputs (e.g. inputs from the hippocampus
and thalamus) that can be both excitatory or inhibitory in nature, and act on both populations.

Since this formulation was originally presented by Liley et al., the mesoscale model of the
cortex has been shown to model the mesoscopic electrical behavior recorded from the human cortex
during sleep [59; 22], anesthesia [35; 10] and seizures [48; 23]. Various methods of feedback
control were demonstrated to suppress seizures simulated using the cortical model [49], which
resulted in a biologically relevant method of closed loop control [58] to treat medically refractory
epilepsy.
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In its full form, the meso-scale mathematical model of the human cortex is characterized by a
set of 8 non-linear stochastic partial differential equations (SPDEs), and is written in the following
way:

∂ h̃e

∂ t̃
= 1− h̃e +Γe(h0

e− h̃e)Ĩee +Γi(h0
i − h̃e)Ĩie (1.2)
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Here, all variables have been non dimensionalized and are functions of time t̃, and the two spa-
tial dimensions x̃ and ỹ. Throughout this dissertation, tildes are used to denote non-dimensionalized
variables in the meso-scale cortical model. Also, ‘mean’ values of any variable denote spatial
averages unless otherwise specified. The subscripts e and i represent excitatory and inhibitory
populations respectively, and variables with two subscripts represent the transfer of an electrical
signal from one population to another. The mean soma potential for a neuronal population is rep-
resented by the h̃ state variable, Ĩ represents the postsynaptic activation due to local, long-range,
and subcortical inputs. φ̃ represents long range (corticocortical) inputs.

The firing rate of each neuron population is given by the sigmoid function S̃e,i, and is assumed
to be dependent on the mean soma potential of the population, h̃e,i, the inflection point of the
sigmoid function, θ̃e,i, and the slope at the inflection point of the sigmoid function, g̃e,i.

S̃e,i =
1

1+ exp[−g̃e,i(h̃e,i− θ̃e,i)]
(1.10)

The stochastic subcortical inputs are defined as,
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Γ̃1 = αee
√

Peeξ1[x̃, t̃] (1.11)

Γ̃2 = αei
√

Peiξ2[x̃, t̃] (1.12)

Γ̃3 = αie
√

Pieξ3[x̃, t̃] (1.13)

Γ̃4 = αii
√

Piiξ4[x̃, t̃] (1.14)
(1.15)

Here, we set αee = αei = αie = αii = α as in the stochastic simulations of spatioadiabatic one-
dimensional cortex [97]. Additionally, α is the amplitude of the Gaussian white noise sources
with mean zero and δ -function correlations denoted by ξk. While physiologically shaped brown
noise is more appropriate [10], it is typical to assume Gaussian white noise [95; 97]. Values and
explanations for all other parameters and variables can be obtained in table 1.1.

1.5 Seizure like activity in the model cortex
In prior work, our group has shown this model and EEG or ECoG data from a patient undergoing
seizure are in good agreement on the average frequency of maximum power and the speed of
spatial propagation of voltage peaks [49]. Also, the variables of the mean field model are spatially
averaged properties of neuron populations, and can be related to EEG and ECoG measurements
which represent the spatially averaged extracellular local field potential (LFP). The sign reversed
LFP, in turn, is proportional to the spatially averaged excitatory soma membrane potential, he,
which is one of the variables used in the SPDEs. It has been shown that increasing the subcortical
input results in he mimicking ECoG data obtained from a seizing cortex [49]. In this dissertation,
we look at tonic-clonic seizures characterized by runaway excitation, and this makes the meso
scale model ideal for this study.

The evolution and propagation of seizure waves in a one dimensional cortical model has been
shown in previous work [58] and [49]. The 1D model has been extended to a 2D model by using the
two dimensional Laplacian (∂ 2/∂x2 +∂ 2/∂y2) instead of just one second order spatial derivative,
leading to the long range connections scaled by a spatial decay in two dimensions. Fig. 1.2
depicts an example, showing the propagation of seizure waves in a two dimensional cortex of size
1400 mm× 1400 mm.1 Seizure waves originate at a focus in response to stochastic fluctuations
and propagate outwards in spiral waves. This is in good agreement with the results for the multi
neuron integrate and fire network model in [103]. Fig. 1.3a shows the variation of the mean soma
potential of the excitatory cell population at a point in the cortex. The cortex starts exhibiting
synchronous behavior at around 0.2s. Fig. 1.3b shows travelling seizure waves in a 1D slice of the
2D model cortex.

1The average human cortex has dimensions of 500×500 mm2 if it were laid open like a sheet. However, the spiral
seizure waves have a radius of curvature that is too large to be appreciated within a domain of the size of an average
human cortex, and because cortical dynamics is scale-free, we have used a larger cortical domain to illustrate them.
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Symbol Definition Description Typical value

h̃e,i he,i/hrest Spatially averaged soma potential of neuron populations -

h0
e,i hrev

e,i /hrest Reversal potential -

Ĩee,ei
Iee,ei∗γe

Geexp(1)Smax Post-synaptic activation due to excitatory inputs -0.643, 1.29

Ĩie,ii
Iie,ii∗γi

Giexp(1)Smax Post-synaptic activation due to inhibitory inputs -

φ̃e,i φe,i/Smax Long range (corticocortical) input to e and i populations -

Γ̃e,i
Ge,iexp(1)Smax

γe,i|hrev
e,i −hrest | Dimensionless space -

Te,i τγe,i Neurotransmitter rate constant 12.0, 2.6

λe,i τυΛee,ei Inverse length scale for corticocortical connections 11.2, 18.2

Pee,ei pee,ei/Smax Excitatory subcortical inputs to the e and i populations 11.0, 16.0

Pie,ii pie,ii/Smax Inhibitory subcortical inputs to the e and i populations 16.0, 11.0

Nα
e,i -

Number of distant (corticocortical) connections from 4000, 2000

excitatory population to e and i populations

Nβ

e,i - Number of local connections from e and i populations 3034, 536

g̃e,i ge,ihrest Slope at inflection point of sigmoid function S̃e -19.6, -9.8

θ̃e,i θe,i/hrest Inflection point for sigmoid function S̃e 0.857, 0.857

t̃ t/τ Dimensionless time -

x̃ x/(τυ) Dimensionless space -

Table 1.1: Dimensionless variables and parameters of the SPDE meso-scale cortcial model used
throughout this dissertation, and taken from [49]. For the dimensional form of the model, and
accompanying descriptions and values of parameters, please see [96].
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Figure 1.2: Propagation of seizure waves in a 2D model of cortex which measure 1400×1400 mm2.
Snapshots taken from time t = 0.5s to t = 1s. The spiral waves are tracking the values of the mean
soma potential of the excitatory population (he) in mV . Stochastic fluctuating inputs readily trigger
a seizure wave when the model cortex is put in a state susceptible to seizures, which is characterized
here by the baseline parameters of [49] for normal cortical function, except for Pee = 548.0 and
Γe = 0.8×10−3.

1.6 Layout of this dissertation
In this chapter, we have presented the development of a meso scale mathematical model of the
human cortex, and how it may be used to model the origin and propagation of seizure waves. This
model provides the basis for studying seizure initiation and propagation, and the testing of various
seizure control strategies. Next, in chapter 2, we adapt to the meso scale a model of the dynam-
ics of ChR2 channels in the cortex, and their behavior when illuminated with either constant or
pulsed light is studied. In chapter 3, we explore the efficacy of closed loop optogenetic control in
inhibiting seizures in two parameter spaces of the mathematical model that have been shown to
correspond well with seizures observed in patients [23]. We analyse the effect of open and closed
loop optogenetic stimulation on the dynamics of the mathematical model of the human cortex us-
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Figure 1.3: Seizure wave propagation in a two dimensional meso scale model of the human cortex,
with Pee = 548.0, Γe = 0.66×10−3 and α = 1. The model cortex measures 700×700 mm2. Figure
1.3a shows the variation of the mean soma potential of the excitatory population at a point in the
cortex, while figure 1.3b illustrates travelling waves in time and space in a one dimensional slice
of the 2D cortical model. The color bar in fig. 1.3b shows mean soma potential values in mV .

ing bifurcation analysis in chapter 4. In chapter 5, we further exploit the specificity of optogenetic
stimulation to depolarize the excitatory population, which induces seizures in a normally func-
tioning model cortex, and lays the groundwork for studying the etiology of the seizure state using
optogenetics. In chapter 6, we present a quantitative method of calculating the metabolic demands
of the human cortex, which will help in understanding the role of cortical metabolic dynamics in
disorders like seizures. We conclude by summarising the contributions of this dissertation, and by
offering insights into future work in chapter 7.
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Chapter 2

Open loop optogenetic control of seizure
like activity in the model cortex

In this chapter, we present a model that describes the activity of channelrhodopsin-2 (ChR2), a
protein that functions as a light activated ion channel when expressed by neurons, at the meso
scale. By expressing the dynamics of ChR2 at the meso scale, we are able to study the plausibility
of using ChR2 ion channels as a means to control seizure like activity in the model cortex described
in chapter 1. We explore the robustness of this method of stimulation, and its efficacy as a seizure
control method while being physiologically safe when used in an open loop configuration. Much
of this material was previously published in [85].

2.1 Meso scale optogenetics model
The meso scale optogenetics model described here is based on the four state model of Channelrhodopsin-
2 (ChR2) cells first proposed by [66]. This model was able to reproduce qualitatively the ChR2
photocurrents obtained from experimental measurements. It takes into account the fact that the
recovery rates under constant illumination and in the dark are different, and is thus able to simulate
the characteristic peak-plateau behavior and degraded transient response for subsequent stimulus.
Building on this and a ChR1 model [34], a 4 state model for ChR2 channels was proposed and the
effect of the change in conductance on a neuron described by a cable model, which contains active
Hodgkin−Huxley type elements, was studied [31].

The 4 state model has two open states (O1 and O2) and two closed states (C1 and C2). These
states do not actually represent the physical energy levels of ChR2, but instead describe a functional
model that is a good representation of the behavior of ChR2 ion channels when illuminated with
light. The conductivity in the O1 state is more than in the O2 state, but the O2 state has a longer
life time. Conversion from one state to the other can be achieved through both light and thermal
excitation. Figure 2.1 illustrates the possible transitions from one state to another. The equations
describing the 4 state model are based on those of [31].
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Figure 2.1: Transition from one optogenetic state to another in the 4 state model for ChR2 channels.

dNO1

dt
= Ka1.NC1− (Kd1 + e12).NO1 + e21.NO2 (2.1)

dNO2

dt
= Ka2.NC2 + e12.NO1 +(Kd2 + e21).NO2 (2.2)

dNC2

dt
= Kd2.NO2− (Ka2 +Kr).NC2, (2.3)

Equations 2.1-2.3 describe the number of channels in each open and closed state, represented
by NOi and NCi respectively. Kai are the rates of transition from the closed states, C1 and C2, to the
open states O1 and O2 respectively. Conversely, Kdi are the closing rates from the open states to
the closed states. Kr is the thermal recovery rate from C2 to C1. e12 and e21 are the transition rates
from O1 to O2 and vice versa. The values for all rate constants can be found in table 2.1.

Table 2.1: Rate constant values for the meso scale optogenetic model of ChR2 embedded in the
cell membrane [31].

Rate constant Transition from Value (×103s−1)

Ka1,Ka2 C1 to O1, C2 to O2 0.5Φ, 0.12Φ

Kd1,Kd2 O1 to C1, O2 to C2 0.1, 0.05
e12,e21 O1 to O2, O2 to O1 .011+ .005log(Φ/0.024), 0.008+0.004log(Φ/0.024)
Kr C2 to C1 1/3000

Φ(t) is the photon flux per ChR2. Kai is given by the quantum efficiency
times the photon flux, εi.Φ(t).
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Figure 2.2: Illumination profiles for light intensity of 1 mW/mm2. The light is turned on and off
for 0.01s until 0.1s in the pulsed illumination profile shown in fig. 2.2b

Fig. 2.2 shows the two kinds of illumination profiles we use for optogenetic actuation, and fig.
2.3 depicts the corresponding optogenetic conductance for a given illumination using a constant
cell membrane voltage of −70 mV . For both constant and pulsed illumination, light intensities of
1 mW/mm2, 0.1 mW/mm2 and 0.01 mW/mm2 have been used. The pulsing of light has a markedly
different effect on a cortical model without a voltage clamp, and this is demonstrated in the next
section. Here, we use a fourth order Runge Kutta method to solve equations 2.1-2.3.
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Figure 2.3: Semi-log plot showing variation of conductance with constant and pulsed light intensity
for an ion channel density of 109ChR2’s/m2. 4− - 1 mW/mm2, − - 0.100 mW/mm2, •− -
0.01 mW/mm2. If the conductance were multiplied by the clamped voltage value of -70 mV, it
would reproduce the plot of current vs. time in [31].
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Fig. 2.3a shows the difference between the conductance of optogenetic channels illuminated
by 1 mW/mm2, 0.1 mW/mm2 and 0.01 mW/mm2 light intensities. The peak to plateau ratio of the
conductance is decreased as intensity decreases. Also, the peak and plateau values decrease as the
intensity is decreased. Similar behavior is observed in the case with pulsed illumination. Fig. 2.3b
shows the conductance has sharper spikes when a lower intensity is used. However, with a higher
intensity, the peak conductance value decreases less rapidly at the highest point before dropping
off again when the light is turned off. Both constant and pulsed illumination profiles produce a
sharp rise in conductance value before it reaches a steady state after about 50 ms.

2.2 Open loop control
In [85], we presented a strategy for integrating the preceding model into the meso-scale cortical
dynamics. The computational domain for our meso scale cortical model is broken up into 100×
100 cells which corresponds to a total area of 700×700 mm2. To adapt the optogenetic model to
the meso scale, the values of NOi and NCi have been normalized with the total number of ChR2
channels per representative neuron, and now represent the fraction of channels in each state per
representative neuron. The sum of these fractions equals unity, and is described in eq.2.4.

NO1 +NO2 +NC1 +NC2 = 1. (2.4)

By multiplying these fractions with the expression density (ion channels per unit area of cell
membrane) and the area of each representative neuron, we obtain the total number of ion channels
per representative neuron, and consequently, the total conductance of all the ion channels per
representative neuron. It should be noted that while we are dealing with chemical dynamics at
the molecular scale to describe the state of optogenetic channels, it is reasonable to scale the idea
up to the meso scale that describes the cortex because the cortical model represents a population
of spatially averaged neurons. In this study, we have not taken into account the light cone [11]
emitted by each light source and the variation in illumination intensity they produce over a given
area. Instead, we model the average intensity throughout a representative neuron with no overlap
between two light cones.

We now introduce open loop control using optogenetic ion channels.

∂ h̃i

∂ t̃
= 1− h̃i +Γe(h0

e− h̃i)Ĩei +Γi(h0
i − h̃i)Ĩii−u, (2.5)

Eqn. 2.5 is a modification of eqn. 1.3 that includes the control term u. ChR2 channels are cation
pumps that conduct Na+, Ca2+ , H+ and K+ ions. The control term is defined as

u = hi.GChR2.Rm. (2.6)
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This formulation is dependent on the mean soma potential of the inhibitory population, and
the mean membrane resistance of these cells represented by Rm is obtained from voltage clamp
experiments and has a value of 7.1GΩ [97]. The conductance of ChR2 channels is given by,

GChR2 = Gmax.gChR2.
(1− exp(−hi/U0))

hi/U1
.NChR2, (2.7)

where hi is the membrane potential for the inhibitory population, Gmax is the maximum conduc-
tance of optogenetic channels in the O1 state, gChR2 is the total conductance of the optogenetic
channels in the O1 and O2 states defined by (gO1.NO1 + gO2.NO2). U0 and U1 are empirical con-
stants with values of 40mV and 15mV respectively. NChR2 is the number of ChR2 channels per
cortical macrocolumn.

2.2.1 Constant illumination
In what follows, the use of optogenetic channels to inhibit seizure waves is illustrated. In figures
2.4 and 2.6, control is actuated at 0.5s by illuminating the cortex with light of 470 nm. From eq. 2.7
it can be seen that the net conductance produced for a given light intensity is directly proportional
to the number of ChR2 channels expressed. Here, we have used a channel expression density
(number of ChR2 channels per unit area) of ∼109/m2 in order to use illumination intensities that
correspond to experiments [11]. Fig. 2.4 uses a constant light intensity source of 20 mW/mm2 to
illuminate the cortex.

The time scale at which the dynamics of the meso scale cortex occurs is slower than the time
scale of the optogenetic channel dynamics. We used a two step predictor corrector numerical
method to solve the set of SPDEs, and a first order forward Euler method to solve the optogenetic
ODEs at each point in the domain1.

The mechanism for seizure control using this approach is as follows. When ChR2 expressed
by the inhibitory cell population is activated with light, cations are pumped from the extra-cellular
space into the inhibitory cells, which depolarizes them. This changes the mean soma potential
and the firing rate of the inhibitory population, which in turn changes the mean soma potential of
the excitatory population through the influence of the postsynaptic activation due to the inhibitory
population (Ĩie). The firing rate of a representative neuron is determined by its mean soma potential,
so by changing the mean soma potential, the firing rate can be changed as well. The seizures
discussed here are caused by runaway excitation, so by increasing the firing rate of the inhibitory
population the firing rate of excitatory cells, which fire synchronously during epileptic seizures,
can be inhibited, breaking the synchronicity and inhibiting seizure waves.

1The fourth order solver is more accurate in producing results that match experimental observations of conduc-
tance, but the first order method takes less computation time to solve the equations. Because the optogenetic channels
function at a faster time scale, and because we are only interested in time scales of the cortical model, the use of the
simpler first order method is justified.



CHAPTER 2. OPEN LOOP OPTOGENETIC CONTROL 17

0 0.5 1
−100

−80

−60

−40

Time (s)

h
e
 (

m
V

)

(a) Mean soma potential at a point in the model cortex

h
e
 (mV)

Space [mm]

T
im

e
 [
s
]

 

 

0 200 400 600

0.2

0.4

0.6

0.8

1

−80

−70

−60

−50

−40

(b) 1D slice of the 2D model cortex

Figure 2.4: Optogenetic seizure control using constant illumination of intensity 20 mW/mm2. The
model cortex measures 700× 700 mm2, with Pee = 548.0, Γe = 0.66× 10−3 and α = 1.15. Fig.
2.4a shows the variation of mean soma potential of the excitatory population, while the arrow
indicates control being turned on at 0.5s. The color bar in fig. 2.4b shows mean soma potential
values in mV .
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Figure 2.5: Firing rates for the excitatory and inhibitory population with optogenetic control ap-
plied at 0.5s

Fig. 2.5, shows how the baseline value of firing rate for the inhibitory population is higher than
that of the excitatory population after optogenetic control is applied at 0.5s. It should be noted here
that Fig. 2.5 depicts the firing rate of a representative neuron in the mean field model, and not the
spiking of an individual neuron.
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2.2.2 Pulsed Illumination
Optogenetic control using pulsed illumination depends on the intensity and the pulsing profile.
Figure 2.6 uses a pulsed light source of 40 mW/mm2 with pulses that are switched on and off for
0.005s. This leads to a successful breakdown of all synchronous behavior, as in fig. 2.6. With the
shorter pulses the dark periods (0.005s) are not long enough for most of the optogenetic channels
to close, and this results in behavior similar to constant illumination where the majority of the
channels are open.
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(b) 1D slice of the 2D model cortex

Figure 2.6: Optogenetic seizure control using pulsed illumination of intensity 40 mW/mm2 with
pulses that are switched on and off for 0.005s. The model cortex measures 700× 700 mm2, with
Pee = 548.0, Γe = 0.66×10−3 and α = 1.15. Fig. 2.6a shows the variation of mean soma potential
of the excitatory population, and the arrow in the figure indicates control is turned on at 0.5s. The
color bar in fig. 2.6b shows mean soma potential values in mV .

In figures 2.7 and 2.8 we use two different pulsing profiles with the same peak intensity
(40 mW/mm2) used to generate fig. 2.6, where 0.005s pulses were used.

Fig. 2.7 was generated using light pulses that are turned on and off for 0.05s. While the
amplitude of the seizure waves is decreased considerably, it is seen that synchronous behavior
persists despite control being applied at 0.5s. This is because the dark regions of the pulsing
profile, where the ion channels tend to close, is long enough to reduce control to a low value where
it does not have a considerable effect on the seizing cortex. However, the frequency of the pulsing
still ensures the oscillations are not fully developed because control does not go to zero during the
dark regions on account of the gradual decay of channel conductivity.

Figure 2.8 was generated using light pulses that are turned on for 0.08s and turned off for the
same duration. In this case, seizure waves have not been inhibited, but the frequency has been
reduced. This can be accounted for by the duration of the dark periods of pulsing (0.08s), which is
long enough to close the ion channels completely leading to zero control. During the dark periods,
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(b) 1D slice of the 2D model cortex

Figure 2.7: Optogenetic control applied at 0.5s using 0.05s pulsed illumination. Synchronous
behavior persists even after control is applied, but the amplitude of seizure waves is decreased.
Parameters: Pee = 548.0, Γe = 0.00066, α = 1.15, expression density = 104 ChR2s/m2, Intensity
= 40 mW/mm2.
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(b) 1D slice of the 2D model cortex

Figure 2.8: Pulsed optogenetic control using 0.08s pulses applied at 0.5s. Frequency of seizure
waves has decreased, but amplitude of oscillations is invariant. Parameters: Pee = 548.0, Γe =
0.00066, α = 1.15, expression density = 104 ChR2s/m2, Intensity = 40 mW/mm2 - pulsed illumi-
nation with 0.08 s pulses.

the cortex starts seizing again, but the seizures are inhibited completely during the illuminated
periods of pulsing.
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2.3 Robustness of open loop optogenetic stimulation
In this section we explore the robustness of the control approach to changes in different aspects of
the model. The parameters for the meso scale model are varied within ranges provided in [10] and
[55].

2.3.1 Stochastic inputs
The subcortical input contributes to the postsynaptic activation through constant Pi j and stochastic
inputs defined by

Γ̃ = α
√

Pi jξ [x̃, t̃]

where α is a scaling parameter for the stochastic inputs and ξ is zero mean, Gaussian white noise
in time and space.
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Figure 2.9: More uniform seizures produced with low noise. Control switched on at 0.5s suc-
cessfully inhibiting seizures. Parameters: α = 0.05, Γe = 0.0008, Pee = 548.0, expression density
= 104 ChR2s/m2, Intensity = 40 mW/mm2 - constant illumination.

Figures 2.4, 2.9 and 2.10 demonstrate the efficacy of the optogenetic control method for dif-
ferent stochastic inputs over two orders of magnitude of noise. Seizure waves are successfully
inhibited for α values of 0.05, 1.15 and 5, using the same expression density and constant illumi-
nation for all three cases.

2.3.2 Seizure hotspot
While the cortex has been laid out like a flat sheet in the figures presented here, it is made up of a
number of folds in reality. The crests of these folds are called gyri (s. gyrus), while the intervening
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Figure 2.10: Higher α causes noisier oscillations, however, control is still successful in diminish-
ing synchronous activity when applied at 0.5s. Parameters: α = 5, Γe = 0.00066, Pee = 548.0,
expression density = 109 ChR2s/m2, Intensity = 60 mW/mm2 - constant illumination.

Figure 2.11: Gaussian distribution of Pee (seizure hotspot) with a gyri to sulci area ratio of 1:2.
Red lines running across the model cortex represent gyri populated with optogenetic channels.

grooves are called fissures or sulci (s. sulcus) [43]. When optogenetic channels are expressed in
the cortex, the ones on the gyri have a better chance of being illuminated.

In order to account for this reduction in the number of channels being illuminated, fig. 2.12 only
has channels expressed in a third of the cortical surface area. The sites of optogenetic expression
are in strips running across the cortex (representing gyri) separated by strips of zero optogenetic
channel expression (representing sulci). We have also included a seizure hotspot by using a Gaus-
sian distribution for Pee with a maximum value of 548.0. Seizure waves arise where the value of
Pee is high enough and travel outward until the level of excitation is too low to support them. It
should also be noted that the channel expression only covers the hotspot area of the model cortex
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as shown in fig. 2.11.
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Figure 2.12: Seizure hotspot with maximum Pee at the center of the model cortex. with a gyri
to sulci ratio of 1:2. Parameters: Pee = 548.0, Γe = 0.001, α = 1.6, expression density = 2×
109 ChR2s/m2, Intensity = 20 mW/mm2 - constant illumination.

Fig. 2.12 shows the application of optogenetic control at 0.5s to a cortex that has a gyri to
sulci ratio of 1:2. The expression density has been increased by a factor of 2, but the control is
successful in inhibiting seizures. As a first attempt to account for the geometry of the cortex and
the ability to illuminate it, fig. 2.12 demonstrates the efficacy of using optogenetics as a control
method.

2.3.3 Changes in cortical model parameters
The parameters of the meso scale model are taken to remain constant during our simulations.
However, the cortex is more plastic. To account for this plasticity, parameters like the number
of long range connections between cell populations and the neurotransmitter rate constants were
changed within their physiological bounds [55], and the effect of optogenetic control on the model
seizing cortex was studied.

The long range connections are critical to a seizing cortex [72]. In fig. 2.13 the number of long
range connections from the excitatory cells to other excitatory or inhibitory cells was changed from
the normative values of Nα

e = 4000 and Nα
i = 2000 [49], where e and i represent the excitatory and

inhibitory populations respectively, to the extrema of their ranges [55]. It is seen that the model
cortex can be driven to seizures only if both Nα

e and Nα
i are increased because it results in a model

cortex predisposed to higher long range excitatory inputs. To this end, we used Nα
e = 5000 and

Nα
i = 3000 connections for our simulations, and the seizing cortex was successfully brought under

control using a constant illumination intensity of 60 mW/mm2.
In figures 2.14 and 2.15 the neurotransimtter rate constants Te and Ti are changed to 20 and 4

respectively from the normative values of 12 and 2.6. These rate constants incorporate the effects
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(b) 1D slice of the 2D model cortex

Figure 2.13: Change in the long range connectivity Nα
j to demonstrate efficacy of the controller

when the connectivity is changed . Parameters: Pee = 548.0, Γe = 0.00066, α = 1.15, expression
density = 109 ChR2s/m2, Intensity = 60 mW/mm2 - constant illumination, Nα

e = 5000, Nα
i =

3000.
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Figure 2.14: Change in the neurotransmitter rate constant Te to demonstrate efficacy of the con-
troller when the connectivity is changed . Parameters: Pee = 548.0, Γe = 0.00066, α = 1.15,
expression density = 109 ChR2s/m2, Intensity = 60 mW/mm2 - constant illumination, Te = 20,
Ti = 2.6.

of passive dendritic cable delays and neurotransmitter kinetics on the time course of somatically
recorded postsynaptic spike activity in a neuron [55]. Again, seizures are produced in the cortical
model, but they are successfully inhibited when optogenetic control is applied at 0.5s.
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Figure 2.15: Change in the neurotransmitter rate constant Ti to demonstrate efficacy of the con-
troller when the connectivity is changed . Parameters: Pee = 548.0, Γe = 0.00066, α = 1.15,
expression density = 109 ChR2s/m2, Intensity = 60 mW/mm2 - constant illumination, Te = 12.0,
Ti = 4.0.

2.4 Summary of original contributions
In this chapter, we presented a scale free model for the dynamics of Channelrhodopsin-2 (ChR2),
which is an optogenetic channel that pumps cations into the host neuron when illuminated with blue
light of wavelength 470 nm. The scale free ChR2 model facilitates integration of channel dynamics,
which takes place physiologically at the micro-scale, into network models like the meso-scale
human cortical model used in this dissertation. We showed how higher light intensities result in
higher channel conductances, and demonstrated the capacity of open loop optogenetic stimulation
to suppress seizures that manifest in the model human cortex from different pathways.

However, while open loop optogenetic stimulation demonstrates how cortical seizures can be
successfully inhibited if a high enough illumination intensity is used, it does not use light energy
optimally, which is a necessary condition for the efficient and cost-effective use of optogenetics as
a seizure control strategy. Additionally, prolonged exposure to high intensities of light has been
shown to cause irreversible tissue damage in animal models [11], so we have to minimize the time
the cortex is illuminated with high intensities to ensure tissue safety. In light of this, we propose a
method of feedback control that satisfies these requirements.
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Chapter 3

Closed loop optogenetic control of seizure
like activity in the model cortex

In the previous chapter, we demonstrated the use of optogenetics as an effective control modality
for cortical seizures in the context of the meso-scale cortical model. The ion conductance of ChR2
is dependent on the intensity of light used, and the membrane potential of the cell population ex-
pressing these channels as demonstrated by equations 2.1-2.7. This results in intricate dynamics
between the effects of optogenetic stimulation on the cortex, and vice versa. Higher intensities
yield higher conductances as shown in fig. 2.3, while higher membrane potentials reduce con-
ductivity of these ion channels (eq. 2.7). Channel conductivity is greatly reduced as the reversal
potential of the neuron is approached because of its dependence on membrane potential. External
modulation of the conductance of these channels is thus only possible via the intensity of light
illuminating the channels. Taking these characteristics of channel dynamics into consideration,
we present a method of closed loop feedback optogenetic control of seizures in the model human
cortex.

3.1 Development of the control law
To design a feedback loop that provides optimal optogenetic stimulation, the light intensity has to
be based on a measured variable in the combined cortical-optogenetic model. We have chosen to
use the signal sensed at the surface of the cortex by an electrode, h̃m [58], for two reasons. Firstly,
the length scales involved in the meso-scale model of the cortex used here are similar to the sizes
of commercial electrode arrays. Secondly, it is a mean-field model, which means all variables in
the model are spatially averaged properties of neuron populations. EEG/ECoG measurements are
based on the ensemble behavior of many neurons, and the mesoscale model is suited to capturing
such behavior.

The measured signal from the surface of the cortical model, h̃m, is a function of the extracellular
currents in the tissue, and not of the intracellular soma potential [69]. Taking this into account,
Lopour & Szeri [58] defined h̃m using the following two equations:
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h̃m = (he
0− h̃e)Ĩm (3.1)

(
1

Tm

∂

∂ t̃
+1
)2

Ĩm = F(−0.413×Nβ
e S̃e−0.092×Nβ

i S̃i

−0.458× φ̃e +0.034× (Pee + Γ̃1)−0.004× (Pie + Γ̃3))

(3.2)

where h̃m is the potential measured by a cortical surface electrode, Ĩm is the current measured at
the cortical surface, he

0 is the reversal potential of the excitatory population, Nβ

e,i are the number
of synaptic connections from the excitatory and inhibitory populations, respectively, S̃e,i are the
firing rates of the excitatory and inhibitory populations, respectively, Pee and Pie are the subcortical
inputs from the excitatory and inhibitory populations to the excitatory population, and φ̃e is the long
range corticocortical input from the excitatory population. Please see chapter 1 for the full set of
equations that describe the dynamics of the meso-scale cortical model and associated parameters.
F is a positive gain parameter that helps convert the right side of equation 3.2, which is based on
voltages, to currents, which is the basis of the left side of the equation. It also scales the magnitude
of the synaptic inputs to ensure an appropriate amount of influence over the electrode measurement
Ĩm. In equation 3.2, we use F = 10−3. Additionally, we include the mean offset of the measured
signal, which gives us a net positive signal. This is in contrast to EEG readings, for example, where
the mean offset is subtracted to obtain a signal with mean zero. The theory behind the measured
signal, mean offset, equations 3.1 and 3.2, and the constants, coefficients and parameters used in
these equations is explained in detail in [58].

To calculate intensity, E, that should enable successful control - i.e. the ‘control law’ - we use
the concept of proportional and integral (PI) control. As we are dealing with a highly non-linear
and stochastic system, PI control offers a simple, but effective way to calculate the control effort
based on the measured potential h̃m:

E = KPh̃m +KI

∫ t

t−τ

h̃mdt (3.3)

The first term of eq. 3.3 represents proportional control, where KP is proportional gain. This
component of the control effort calculates a contribution to the intensity of light to be used based
on the current value of measured potential. Spikes in intensity with highs past the physiological
limit, and lows tending to zero, will lead to unsafe and ineffective control. To avoid this, we lower
KP to ensure peak values of intensity are safe for cortical tissue, and add a second term based on
the integral of h̃m over a short duration of time, τ . Throughout this chapter, we use τ = 0.2s. This
contribution is modulated by KI , which is the integral gain term in eq. 3.3, and addresses shortfalls
in intensity, and synaptic delays between cell populations that lead to continued seizure activity.

It should be noted that equation 3.3 is slightly different from the traditional form of PI control,
where the control effort is based on minimizing the error in the measured signal. Error would
be calculated based on the difference between amplitude of the expected (or desired) signal and
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the measured signal. However, the mathematical model of the human cortex consists of a highly
stochastic, non-linear system of PDEs, and in the example simulations we present in this work, the
values of parameters associated with the model change over time - e.g. Pee varies with time. This
leads to a non-stationary expected value of h̃m. However, the expected value of h̃m in a normally
functioning cortex is much smaller numerically than peak h̃m values observed during the seizure
state. We can thus neglect the estimated value and calculate control effort based directly on the
measured variable h̃m.

The entire spatial domain of the model cortex is discretized with a Cartesian mesh to perform
numerical simulations. The measured potential and intensity are calculated as piecewise constant
approximations at every grid point, and we do not account for the electrodes’ spatial profiles, or
the spatial variation of illumination in this first study of the efficacy of the control law and the
dynamics of the combined cortico-optogenetic model during closed loop stimulation.

3.1.1 Triggering and deploying control
In the previous chapter, the model cortex was hyperexcited by increasing the excitatory subcortical
inputs to a magnitude 50 times higher than during normal function. This led to travelling seizure
waves that were suppressed by open loop optogenetic control, which was applied by depolarising
inhibitory neurons that express ChR2 channels to increase inhibition. However, the measured po-
tential, h̃m, is related to the mean soma potential of the excitatory population, h̃e, because surface
electrode measurements are averaged readings from apical dendrites of pyramidal neurons, which
are excitatory in nature. This means the light intensity required to illuminate the inhibitory pop-
ulation is also most closely related to h̃e. In essence, to apply control, we measure the activity
of the excitatory population, calculate intensity based on this measurement, which is then used to
stimulate the inhibitory population. The effect of control is then measured again via the excitatory
population and adjustments to the illumination intensity are made until seizures are suppressed.

Numerous methods of seizure detection using EEG/ECoG signals have been proposed over
the last few years. Orosco et al. [70] used energy thresholds of instantaneous frequency data
to detect seizures with around 60% accuracy. Spike features such as amplitude, width, rate and
regularity, and changes in energy within specific frequency bands were taken into account while
developing a seizure detection algorithm by Krook-Magnusson et al. [51]. Neural networks [67],
entropy estimators [44], and a combination of neural networks and an entropy estimator [52] have
been trained to detect seizures with more than 90% accuracy. The different methods currently
available for seizure detection, and the pathway from acquiring data to closed loop applications
can be found in [42]. Seizure prediction, on the other hand, has proven to be a more complicated
task. Dynamical entrainment [37], accumulated signal energy [56] and phase synchronisation
[64] are only a few examples of features of EEG data that were used in seizure prediction, but
a fully satisfactory approach remains elusive. Realistically, given the wide variation in seizure
pathologies and seizure types, a more subjective approach to detection [76] is required. This may
entail a combination of detection methods including, but not limited to, electrode measurements,
accelerometers, electrodermal activity and so on.
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The aim of this work is to demonstrate the ability to calculate illumination intensity for opto-
genetic control directly from electrode measurements of cortical activity. The detection method
merely serves as a trigger to turn on the controller, and does not play a role in the ‘control law’
itself. Therefore, we use a very straightforward trigger for seizure control based on the amplitude
and rate of change of the measured potential, h̃m, which has a mean value close to 0 during normal
function, with fluctuations in amplitude that are much less than 0.1 in magnitude. Seizure activity
is characterized by high amplitude oscillatory changes in the mean soma potential of neuron popu-
lations, and by extension, in h̃m as well. The amplitude and rate of change of amplitude thresholds
that have to be surpassed for control to be triggered are based on the sensitivity of the controller,
which in turn can be tuned differently for different paths to seizures. Again, this method of detec-
tion works well for the model seizures that we investigate in this work, but one can substitute any
other detection method in its place to trigger the controller.

When control is triggered, the intensity of illumination is calculated based on the control law
described in eq. 3.3. The proportional component contributes to changes in illumination intensity
based on instantaneous changes in h̃m, while the integral component is calculated over the past τ

seconds and changes more gradually. The integral part of the control provides an offset for the
proportional component resulting in the optimal amount of light intensity being used to inhibit
seizures.

We have also included an off switch for the controller, which is based on the illumination
intensity E and the amplitude of the measured potential hm. This is a straightforward switch similar
to the trigger used to turn on the controller, and facilitates studying the efficacy of the controller.
One could substitute other switches in its place, which would work just as well with the controller.

3.1.2 Tuning the controller
In the next two sections, we demonstrate the efficacy of the PI controller for seizures in two dif-
ferent parameter spaces. The first space is associated with subcortical inputs from the excitatory
populations (Pee) and the influence of excitatory synaptic inputs on the mean soma potential (Γe).
The second space is defined by the slope at the inflection point of the mean firing rate (g̃e) and the
influence of inhibitory synaptic inputs on the mean soma potential (Γi). Please see chapter 1 for
the full set of equations that describe the dynamics of the meso-scale cortical model. In separate
work, these parameter spaces were identified as being the most probable regions in which seizures
produced using the mesoscale model have been shown to be directly, and quantifiably, compared
with electrocorticogram (ECoG) readings of seizures from a human subject [23].

In both parameter spaces, seizures are induced in a normally functioning model cortex by
gradually varying one of the parameters with time. In both parameter spaces, the model cortex
produces the most robust seizures at the peak value of these parameters. The gains of the PI
controller and the intensity for a comparable open loop controller, in turn, are tuned to suppress
seizures induced at these peak values of the parameters.

Given the stochastic nature of the model cortex, we use numerical optimization to obtain the
most optimal values of proportional and integral gains that successfully suppress seizures. We use
the illumination intensity to define a cost function,
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Cost =
∫ to f f

ton

Edt (3.4)

where E is the illumination intensity, ton is the time at which control is switched on, and to f f is
the time at which control is switched off. The cost, in terms of J/mm2 is calculated for a range
of proportional and integral gain terms. The response diagram for each pair of proportional and
integral gains is examined for oscillations, and the pair which minimizes the total energy calculated
by equation 3.4 while successfully suppressing seizures is chosen to calculate the control effort.

3.2 Seizures in the Pee-Γe space
Seizures in this parameter space are simulated by increasing subcortical inputs that will lead to
a hyperexcited model cortex, while simultaneously reducing the influence of excitatory synaptic
input on the mean soma potential. We will explore seizures caused by a decrease in inhibition in
section 3.3. An increase in subcortical inputs from the excitatory population, Pee, leads to an in-
crease in the post synaptic activation due to excitatory inputs (Ĩee), which in turn increases the mean
soma potential of both the excitatory (h̃e) and inhibitory (h̃i) cells that leads to higher firing rates
in both populations. The post-synaptic activation due to the excitatory population in the seizing
model cortex is lowered, while the post-synaptic activation due to the inhibitory population is held
constant. This causes a net decrease in the post-synaptic influence of the excitatory population on
itself and the inhibitory population. In addition, there are fewer inhibitory synapses than excitatory
ones, leading to a net increase in excitation due to the hyper-excitatory subcortical inputs, that
results in seizures in the model cortex. A more detailed analysis of the feedback and reciprocal
synaptic connections in the model cortex that lead to seizures due to an increase in sub-cortical
excitation can be found in [49].

When results from simulating cortical activity using the mesoscale model were compared with
patient data [48], the magnitude of Pee required to produce seizure like activity in the model cortex
was almost 50 times the value of Pee required for normal function. Here, we present two cases
of epileptic seizures caused by excessive excitation with different values of Γe, the influence of
the excitatory post-synaptic potential on the mean soma potential of a neuron population, and α ,
the amplitude of noise in the stochastic subcortical inputs1. The first case uses Γe = 0.00066 and
α = 1.15, while the second case uses Γe = 0.0008 and α = 1.6. The excitatory inputs in the second
case are higher and produces more robust seizures that require greater increases in inhibition to
suppress seizures. These parameter values are within the physiologically acceptable range of Γe
and α values that cause seizures for the range of Pee used here.

3.2.1 Seizures with Γe = 0.00066 and α = 1.15

A temporal distribution of Pee with a maximum value of 548.0 as shown in fig. 3.1c ensures
a gradual increase in the mean soma potentials of both neuron populations until the cortex is

1Please refer to chapter 1 for details about the noise in the stochastic inputs
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tipped into a state of seizures. Figure 3.1a depicts the variation of the mean soma potential of the
excitatory population with time at a point in the model cortex, and figure 3.1b represents a one
dimensional slice of the two dimensional domain illustrating travelling waves when seizure like
activity is observed for the range of Pee shown in fig. 3.1c. It should be noted here that the seizure
waves may appear to be almost stationary in a 1D slice of the two dimensional cortex. These are,
in fact, spiral waves with large radii of curvature as illustrated in chapter 1. The smaller cortex
used in this work has dimensions of the order of a human cortex, making it difficult to appreciate
the curvature of the travelling waves, which have radii of curvature of the order of the dimensions
of the model human cortex. Interestingly, while high values of Pee are required to initiate seizures,
lower values of Pee are able to sustain seizure like activity as seen in fig. 3.1. Oscillatory activity
seizes when the magnitude of Pee falls well below 450.0 despite starting only after Pee has risen
past a value of around 520, as shown in fig. 3.1a.
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Figure 3.1: Seizures in the Pee-Γe space. Pee is gradually increased then decreased in time with a
maximum value of 548.0 as shown in fig. 3.1c. Γe is held constant at 0.00066 with α = 1.15. All
other parameters are similar to baseline parameters in [49].

Figure 3.2 shows the effect of closed loop optogenetic control on a seizing model cortex. Again,
we use a temporal distribution of Pee in time as shown in fig. 3.1c, and seizures are successfully
suppressed. Control is effected by depolarising the inhibitory neurons. The increased inhibition
suppresses the tendency of high subcortical inputs to hyperexcite the model cortex. Figure 3.2a
shows that the mean soma potential is maintained around the rest potential of the excitatory pop-
ulation for the given values of Γe and Pee. Figure 3.2b also shows the suppression of travelling
seizure waves demonstrating a breakdown of oscillatory behavior.

Figure 3.2c shows the illumination intensity responsible for the mean soma potential of the
excitatory population at the same point shown in fig. 3.2a. The intensity is calculated using eq.
3.3, and is triggered when h̃m surpasses a magnitude of 0.2, coupled with a 20 % change in h̃m
over 20 ms. The controller gains are tuned to suppress a fully formed seizure with parameter
values Pee = 548.0, Γe = 0.00066 and α = 1.15. The proportional and integral gain terms used in
equation 3.3 ensure an optimal amount of light intensity will be used to quickly suppress oscillatory
behavior. When the amplitude of measured potential h̃m and the intensity of light illuminating the
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Figure 3.2: Effect of closed loop optogenetic control on seizures in the Pee-Γe space using a tempo-
ral modulation of Pee in time shown in fig. 3.1c. Γe is held constant at 0.00066 with α = 1.15. All
other parameters are similar to baseline parameters in [49]. Figures 3.2a and 3.2c show the vari-
ation with time of he and intensity, respectively at the same point. The red dot-dash line in figure
3.2c indicates the open loop intensity required to suppress a fully formed seizures at Pee = 548.0.
Gains used: KP = 3.0 and KI = 0.12.

model cortex fall below 0.1 and 1 mw/mm2, respectively, control is switched off around 1.75s as
shown in fig. 3.2c.

In contrast, An open loop illumination intensity of 1.9 mW/mm2 will successfully suppress
a fully formed seizure with parameter values Pee = 548.0, Γe = 0.00066 and α = 1.15. The red
dot-dash line in fig. 3.2c shows the comparison between open loop and closed loop illumination
required to suppress seizures if the light were switched on and off at the same time. However, as
seen in figure 3.2c, lower intensities are required to maintain a state of normal function after an
initial burst of 2 mw/mm2, demonstrating the advantage of using a closed loop controller over an
open loop controller using a constant illumination intensity. In fig. 3.1a, before the cortex seizes
robustly with high amplitude changes in mean soma potential just before 1s, there are smaller
oscillations around 0.5s that trigger control. When illumination is switched on just before the
cortex starts seizing, the inhibitory population is depolarized. As stated earlier, this increases
inhibition, which simultaneously suppresses excitation and the seizure waves.

This seizure is less robust than the one studied in the next subsection, requiring low intensities
to successfully suppress oscillatory behavior. A high enough initial inhibitory stimulus is able to
decrease excitation to levels that can be maintained with lower intensities. This is achieved by
using a high proportional gain and a low integral gain. However, more robust seizures will require
a greater offset in the proportional term to suppress oscillatory behavior, and this is achieved by
using an integral term with a bigger contribution to the total calculated intensity.
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3.2.2 Seizures with Γe = 0.0008 and α = 1.6

Here we look at a more robust seizure with higher excitatory inputs. The seizure pathway is the
same as the seizure studied in the previous subsection, however, the influence of the excitatory
post synaptic potential (EPSP) denoted by Γe, and the amplitude of noise, α , in the stochastic
subcortical inputs are both increased. Figures 3.4a and 3.3b show the variation of mean soma
potential at a point and the travelling seizure waves in the model cortex, respectively. Again, the
subcortical inputs from the excitatory population to itself is varied with time as shown in fig. 3.3c.
As observed in fig. 3.1c, seizures start at a higher Pee but are sustained even after the subcortical
inputs have fallen below this initial value. However, we use a larger range of Pee values here and
this leads to two distinct differences with the seizures seen in section 3.2.1. One, for higher values
of Γe and α seizures arise at a much lower value of Pee. Two, we can clearly see the end of the
seizure state in figures 3.3a and 3.3b, with oscillatory activity being suppressed around the 1.8 s
mark.
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Figure 3.3: Seizures in the Pee-Γe space. Pee is gradually increased then decreased in time with a
maximum value of 548.0 as shown in fig. 3.3c. Γe is held constant at 0.0008 with α = 1.6. All
other parameters are similar to baseline parameters in [49].

Seizures arising with this set of parameters are successfully suppressed by using closed loop
optogenetic stimulation as shown in fig.3.4. The proportional and integral gains for the controller
are tuned to suppress a fully formed seizure at Pee = 548.00, Γe = 0.0008 and α = 1.6. An open
loop intensity of 34 mW/mm2 is required to control the same seizures. The red dot dash line in
figure 3.4c compares open and closed loop intensity required to suppress the same seizure if the
light were switched on and off at the same time. The on and off switch for the controller is based
on the amplitude and rate of change thresholds used to detect seizures in section 3.2.1. Again,
seizures are detected just as they begin to take shape, and control is triggered around 0.5s as seen
in fig. 3.4c. As the strength of subcortical inputs peaks around 1s, there is a slight increase in
the illumination intensity required to subdue oscillatory activity. Intensity continues to decrease
almost monotonically after this increase at 1s.

The seizure in fig. 3.4 is rather robust and requires higher intensities to suppress oscillatory
activity as compared to fig. 3.2. Furthermore, the proportional gain is lower in this case while
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Figure 3.4: Effect of closed loop optogenetic control on seizures in the Pee-Γe space using a tem-
poral modulation of Pee in time shown in fig. 3.3c. Γe is held constant at 0.0008 with α = 1.6. All
other parameters are similar to baseline parameters in [49]. Figures 3.4a and 3.4c show the vari-
ation with time of he and intensity, respectively at the same point. The red dot-dash line in figure
3.4c indicates the open loop intensity required to suppress a fully formed seizures at Pee = 548.0.
Gains used: KP = 0.4 and KI = 3.6.

the integral gain is much higher. This is because a high proportional gain will react more vigor-
ously to the robust changes in mean soma potential caused by the higher excitatory inputs, and
might synchronize the optogenetic and cortical dynamics leading to continued oscillatory activity.
Additionally, high proportional gains might lead to rapid increases in illumination intensities well
past physiologically safe values. The integral term provides the required offset to these drawbacks
of purely proportional control. Higher integral gains lead to higher overall intensities, which are
required to suppress robust oscillations in the model cortex.

3.2.3 Robust control
In each of the seizures presented above, the closed loop controller is tuned to suppress seizures
arising at the peak values of parameters in the Pee−Γe plane, making it robust to temporal varia-
tions in parameter values. The controller also outperforms the open loop controller in each of the
cases presented above using optimal intensity instead of a constant intensity to suppress seizures.

If the closed loop controller were tuned to suppress the most robust seizures, as seen in section
3.2.2, and were then used to suppress weaker seizures, as seen in section 3.2.1, it would easily out-
perform the open loop controller tuned under the same conditions. Fig. 3.5 clearly demonstrates
the advantages of having a controller that calculates intensity based on the measured signal, as op-
posed to using an open loop approach. The use of a higher integral gain term results in intensities
much higher than what would suffice to suppress a seizure of this nature, which results in ineffi-
cient use of illumination intensity. However, given the stochastic and dynamic nature of cortical
dynamics, the sensitivity of the controller will have to be tuned subjectively to achieve optimal
control.
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Figure 3.5: Effect of closed loop optogenetic control on seizures in the Pee-Γe space using a tem-
poral modulation of Pee in time shown in fig. 3.3c. Γe is held constant at 0.00066 with α = 1.15.
All other parameters are similar to baseline parameters in [49]. This seizure is similar to the one
presented in section 3.2.1. Figures 3.5a and 3.5c show the variation with time of he and intensity,
respectively at the same point. The red line in figure 3.5c indicates the open loop intensity re-
quired to suppress fully formed seizures presented in section 3.2.2. The red dot-dash line in figure
3.2c indicates the open loop intensity required to suppress a fully formed seizures at Pee = 548.0,
Γe = 0.0008, and α = 1.6. Gains used: KP = 0.4 and KI = 3.6, which are the same gains used to
suppress the robust seizure presented in section 3.2.2.

3.3 Seizures in the ge-Γi space
Another route to seizure using the meso scale cortical model is achieved by increasing the slope
at the inflection point of the sigmoid function that represents the mean firing rate of the excitatory
population, g̃e, as it depends upon the mean soma potential of the excitatory population, h̃e. This
parameter models the effects of variance of depolarisation within a population of neurons [61]. By
increasing g̃e, small changes in h̃e could result in large changes in the firing rate S̃e, a characteristic
of oscillatory behavior. When Γi, the influence of synaptic input on mean soma potential, is also
increased by a small amount, it leads to a small net increase in the rate of change of h̃e. This rise in
dh̃e/dt̃ coupled with the higher g̃e leads to an abrupt onset of oscillatory behavior as observed in
figure 3.6. We gradually increase, and then decrease, g̃e in time as shown in figure 3.6c, while Γi
is held at a slightly higher values than during normal function. The value of g̃e at its peak is -12.5,
which is within the physiological range of values for this parameter, but is much higher than its
value during normal function.

Figure 3.6b is a one dimensional slice of the 2D domain illustrating travelling waves. The
waves appear to be stationary because the radius of curvature of spiral waves produced is much
larger than the dimensions of the model. When seizures are induced by increasing subcortical
inputs and decreasing the influence of excitatory synapses on the mean soma potential, there is
first a gradual increase in the post synaptic activation, which results in an increase in the firing rate
that leads to highly oscillatory activity. However, when we change Γi and g̃e, we directly increase
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Figure 3.6: Seizures in the g̃e-Γi space using a variation of g̃e in time with a maximum value of
-12.5 as shown in figure 3.6c. Γi is held constant at 0.085. All other parameters are similar to
baseline parameters in [49].

the firing rate. This leads to a more abrupt onset seizure. Consequently, seizure like activity is
quickly suppressed when g̃e is reduced.
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Figure 3.7: Effect of closed loop optogenetic control on seizures in the g̃e-Γi space. g̃e is varied
in time with a maximum value of -12.5 as shown in figure 3.6c. Γi is held constant at 0.085 with
α = 1.6. All other parameters are similar to baseline parameters in [49]. Figures 3.7a and 3.7c
show the variation with time of h̃e and intensity, respectively at the same point. The red dot-dash
line in figure 3.7c indicates the open loop intensity required to suppress a fully formed seizures at
ge =−12.5. Gains used: KP = 1.0 and KI = 0.64.

To deal with the abruptness of seizure onset by quickly suppressing excessive excitatory activ-
ity, a strong initial control effort is required. This is achieved by using a relatively high proportional
gain, KP = 1.0, and a moderately high integral gain, KI = 0.64. A higher intensity leads to higher
optogenetic conductance, which in turn depolarizes inhibtory cells much faster. The gains are
tuned for a fully formed seizure with parameters g̃e = −12.5, Γi = 0.085 and α = 1.6. An open
loop intensity of 8 mW/mm2 is required to suppress an equivalent fully formed seizure. The red
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dot-dash lines in figure 3.7c shows the comparison of open and closed loop control to suppress the
same seizure if the light were turned on and off at the same time. The intensities used to suppress
seizures in this space are lower than intensities observed in 3.2.2 because unlike constant high
subcortical inputs, a high g̃e leads to rapid oscillations between high and low firing rates, which
translates to the amplitude of total excitatory inputs in the model cortex oscillating between highs
and lows. This gives the increased inhibition from optogenetic stimulation more opportunities for
seizure suppression using lower intensities when the firing rate is low.

The delays associated with synaptic transmission make the rapidity in depolarization crucial to
suppressing excessive excitatory activity before it reaches a state of synchronisation characteristic
of seizures. As g̃e rises until it peaks at 1s, the firing rate increases and decreases more rapidly, and
the controller accounts for these changes by adjusting the intensity of light as seen in figure 3.7c.
We have used the same amplitude and rate triggers as in the previous section. Figure 3.7a shows
how oscillations in he are suppressed, and figure 3.7b demonstrates the breakdown of travelling
seizure waves.

3.4 Summary of original contributions
In this chapter, we present an energy efficient and robust method to stimulate the human cortex,
which is the most accessible part of the brain. We define a closed loop control strategy for optoge-
netic control by basing the illumination intensity or ‘control effort’ on the measured signal, which
is similar to clinical electrode recordings. Further, we successfully demonstrated the efficacy of
our controller on two types of seizures that are found to be the most plausible when the meso-scale
cortical dynamics are compared to patient data using statistical techniques.

We now turn towards bifurcation theory to provide more detailed insight into the effects of
open and closed loop optogenetic control on the seizing model cortex. The combination of the
optogenetic and cortical models presented in chapters 1 and 2 results in a highly non-linear set of
stochastic partial differential equations with a rich structure of bifurcations and different states. By
performing a dynamical systems analysis on the combined cortico-optogenetic dynamical model,
we can qualitatively observe the effects of optogenetic stimulation on the seizing cortex in a manner
that is not possible if one only considers neurophysiology.
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Chapter 4

The combined cortico-optogenetic ODE
model

The combined cortico-optogenetic model consists of a complex system of stochastic, non-linear
equations that depend on a number of parameters. Dynamical systems analysis and bifurcation
theory provide a means to qualitatively study the behavior of the system of equations when these
parameters are changed. Depending on the values of those parameters, the behavior of the model
can vary greatly. These changes can be observed in phase space, which is a multi dimension space
that contains all possible states of the model, with each point in this space representing one possible
state. The evolution of the solutions of the model when a parameter is changed is traced (phase
space trajectory) through this multi dimension space. For example, changes in one parameter can
lead to a change in the number and/or stability of equilibria of the system at bifurcation points,
which are defined as the parameter values where there is a change in the trajectory of the solutions
of the model.

For the purposes of this chapter, we will only define a few terms related to bifurcation theory,
however, the reader is referred to the book by Hale and Koçak [33] for a mathematically rigorous
introduction to bifurcation theory, to the book by Strogatz [98] for an application based approach,
and to the book by Abraham and Shaw [1] for an excellent visual and geometric interpretation
of bifurcation theory. In this chapter, using numerical simulations that map out bifurcation points
at which the cortex goes from a state of normal function to a seizure state, we study the role
optogenetic control plays in moving the system away from these points. A dramatic or gradual
transition to synchronous activity in the cortex is determined by the presence of a limit cycle
arising from Hopf bifurcations. The Hopf bifurcation indicates the start or end of periodic solutions
(oscillations) or limit cycles surrounding an equilibrium point when a parameter associated with the
model is varied. There are two types of Hopf bifurcations, subcritical and supercritical. Subcritical
Hopf bifurcations occur when an unstable limit cycle arises from a stable equilibrium point, while
a supercritical Hopf bifurcation occurs when an unstable equilibrium point gives rise to a stable
limit cycle. Folds in the bifurcation diagram indicate the existence of multiple stable states of the
cortex for a given set of parameter values associated with the connectivity and functioning of the
cortex.
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Significantly, all of this connects back to the neurophysiology captured in the model, so knowl-
edge of these features and an understanding of the role of fluctuations on a bifurcating model will
help perfect closed loop feedback optogenetic control to make the abruptness of seizure onset more
manageable for patients.

4.1 The ODE model
The stochastic and spatial terms in the set of stochastic partial differential equations (SPDEs)
that describe the meso-scale cortical model make bifurcation analysis a challenging task. To gain
a preliminary insight into the rich dynamics of this system via bifurcation analysis, the stochastic
inputs and spatial terms from the SPDEs, which can be found in chapter 1, that describe the cortical
model are ignored, and a simpler ordinary differential equation (ODE) system is considered. The
combined optogenetic and cortical ODE system is stated here:

dh̃e

dt̃
= 1− h̃e +Γe(h0

e− h̃e)Ĩee +Γi(h0
i − h̃e)Ĩie (4.1)

dh̃i

dt̃
= 1− h̃i +Γe(h0

e− h̃i)Ĩei +Γi(h0
i − h̃i)Ĩii−u (4.2)(
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dNO1

dt̃
= Ka1.NC1− (Kd1 + e12).NO1 + e21.NO2 (4.9)

dNO2

dt̃
= Ka2.NC2 + e12.NO1 +(Kd2 + e21).NO2 (4.10)

dNC2

dt̃
= Kd2.NO2− (Ka2 +Kr).NC2, (4.11)

Eqs. 4.1-4.8 represent the cortical model and eqs. 4.9-4.11 describe the dynamics of popula-
tions of ChR2 optogenetic channels. This system has been recast in dimensionless variables and



CHAPTER 4. THE ODE MODEL 39

all variables are functions of dimensionless time t̃ only. The subscripts e and i represent excitatory
and inhibitory populations respectively, and variables with two subscripts in the cortical model
represent the transfer of energy from one population to another. The mean soma potential of each
population is denoted by h̃, post-synaptic connections by Ĩ, and long range connections by φ̃ . N
represents the fraction of ChR2 channels in each of the four states, while K is the rate of transition
from one state to another as described in chapter 2. Again, tildes represent non-dimensionalized
variables in the cortical model. The control term u is given by,

u = h̃i.GChR2.Rm. (4.12)

In equation 4.12, h̃i is the mean soma potential of the inhibitory population, GChR2 is the chan-
nel conductivity described in equation 5.3, and the membrane resistance Rm is obtained from volt-
age clamp experiments and has a value of 7.1GΩ [97]. The values of all constants connected to the
cortical model can be found in [49] and values of rate constants associated with the optogenetic
model can be referenced in chapter 2. We use AUTO [25], a software package for continuation
and bifurcation problems in ordinary differential equations, to study this system of equations and
to determine the associated fixed points, bifurcations, limit cycles and their stability type.

Figure 4.1a shows the comparison between the SPDE and ODE models for a hyperexcited
model cortex with subcortical input Pee = 548.0. Red represents the maximum and minimum
values of he over 2 seconds for a given Γe using the SPDE model while black represents the
bifurcation diagram of the ODE model. In figure 4.1a, the amplitude of noise from the stochastic
subcortical inputs, defined in chapter 1, is set at 0.1 to demonstrate the effect of the spatial terms
on the SPDE model, and how the dynamics compare to the ODE model. This is an order of
magnitude lower than the amplitude used in other simulations presented in this dissertation using
the SPDE model where α = 1.15 or 1.6. Apart from high amplitude oscillations occurring at a
lower Γe using the SPDE model, the dynamics of the SPDE model follow that of the ODE model
closely in stable regions (solid lines). This agreement between the SPDE and ODE models makes
it reasonable to use the simpler ODE model to perform a dynamical systems analysis on the cortical
model. Figure 4.1b shows the region of Pee-Γe space that leads to oscillatory behavior in the ODE
and SPDE models denoted by dark grey and light grey regions, respectively. In this figure, α = 1.6
is used to account for the full effect of noise in the SPDE model. Except at the boundaries, the
seizure causing region using the ODE model overlaps that of the SPDE model almost entirely. The
SPDE model has boundaries for the seizure regions that are slightly broader and less distinct than
the boundaries of the ODE model.

4.2 Bifurcations in the Pee-Γe space
In section 3.2, Pee was gradually varied until a high enough magnitude of excitatory subcortical
inputs induced seizures in the model cortex. Here, we study the response of the cortical model by
observing the features of the mean soma potential of the excitatory population when the magnitude



CHAPTER 4. THE ODE MODEL 40

0.0004 0.0008 0.0012
−100

−80

−60

−40

−20

Γ
e

h
e
 (

m
V

)

(a)

4 6 8 10 12 14

x 10
−4

100

200

300

400

500

600

Γ
e

P
e
e

(b)

Figure 4.1: Comparison between the full SPDE model and the simpler ODE model. Left: Re-
sponse diagram for the hyperexcited cortex with subcortical input Pee = 548.0. Amplitude of noise
from stochastic subcortical inputs was reduced by an order of magnitude to 0.1 to demonstrate
the effect of spatial terms on the dynamics of the model. The red jagged lines indicate maximum
and minimum values of he over 2 seconds for different Γe, which is the influence of the synaptic
input on the mean soma potential of the excitatory population, using the SPDE model. Black lines
indicate the bifurcation diagram for the ODE model. Dashed and solid lines indicate unstable and
stable fixed points, respectively. Maximum and minimum values of he during stable (dot-dashed)
and unstable (dashed) limit cycles arising from a subcritical Hopf bifurcation (asterisk) are also
shown. Right: Comparison of the SPDE and ODE models in parameter space, with grey regions
indicating seizure causing areas. As one might expect, the stochastic inputs in the SPDE model
enhance the seizure area (indistinct boundary marked in grey) in parameter space when compared
to the ODE model (darker region with sharp boundaries). Here, we use α = 1.6 which corresponds
to the amplitude of noise used with the SPDE model elsewhere in the manuscript.

of excitatory subcortical inputs is varied. Fig. 4.2a shows the response of the ODE model when no
optogenetic stimulation is applied at Γe = 0.00066 with all other parameters held at baseline values
[49]. Asterisks at Pee = 548.0015 and Pee = 1510.9635 indicate subcritical Hopf bifurcations that
give rise to unstable limit cycles, which stabilize at the turning points on the branch. Maximum and
minimum values of he achieved during stable and unstable limit cycles are indicated by dot-dashed
lines and dotted lines, respectively. We do not explore the dynamics past Pee = 2000.0, which
is well above the physiological limit of Pee. Stable oscillations (dot-dashed lines) occur between
Pee = 527.004 and Pee = 1829.712.

To evaluate the efficacy of open loop optogenetic control, we use an intensity of 1.9 mW/mm2,
which is the minimum intensity required to suppress successfully a fully formed seizure when
Γe = 0.00066, and Pee is within the physiologically acceptable range of values. When open
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Figure 4.2: Bifurcation analysis using an unstimulated cortex (figure 4.2a) and a cortex stimulated
with light of constant 10 mW/mm2 intensity in the open loop configuration (figure 4.2b). Asterisks
indicate subcritical Hopf bifurcations that lead to unstable limit cycles. Time integration of the
combined cortico optogenetic model with PI control to track the maximum and minimum values
of the excitatory mean soma potential is shown in figure 4.2c. The red triangle (Pee = 710), which is
shifted further away from the first blue Hopf bifurcation (Pee = 548.0015) in figure 4.2a, indicates
the start of oscillatory activity despite closed loop control being triggered. The dashed black lines
in fig. 4.2c indicate minimum and maximum values of h̃e during oscillatory activity arising despite
the use of closed loop control. Gains used KP = 3.0 and KI = 0.12.

loop optogenetic control is applied via the inhibitory population using an illumination intensity
of 1.9 mW/mm2 the first and second subcritical Hopf bifurcations, marked with green asterisks,
shift to higher values of Pee = 870.45 and Pee = 1749.0, respectively. These Hopf bifurcations also
lead to an unstable limit cycle, and demonstrate how even a low illumination intensity can delay
seizure activity until much higher excitatory inputs are available to elicit seizures.

In the case with triggered PI control, we cannot perform a bifurcation analysis because the
trigger renders the system discontinuous in time. Instead, we time integrate the ODE system to
obtain the maximum and minimum values of the mean soma potential for various values of Pee,
as shown in figure 4.2c. After control is triggered, we simulate cortical activity for a further 2
seconds. This is done to allow the system to reach a steady state, which in turn allows us to track
the maximum and minimum value of the mean soma potential for the excitatory population after the
control effort has attained maximum strength. The black solid line indicates no oscillatory activity
in the cortex when control is switched on (stable fixed points), while the black dot dashed lines
indicate oscillations in the mean soma potential of the excitatory population despite control being
turned on. The red triangle around Pee = 710.0 indicates the lowest value of subcortical excitatory
inputs that will produce dynamics approaching seizure but with a lower amplitude onset seizure
in the ODE model despite the use of closed loop optogenetic control. Here, we use KP = 3.0 and
KI = 0.12. In both the open and closed loop cases, we do not explore higher intensities or gains
because they successfully delay oscillatory activity well past the physiological range of parameters.
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4.2.1 Seizures in parameter space
To illustrate the effect of open loop and closed loop control on the entire Pee-Γe parameter space
we turn to figure 4.3.
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Figure 4.3: From left to right: Seizure prone areas in the Pee−Γe parameter space with no control,
using open loop control with an illumination of 1.9 mW/mm2, and PI control using KP = 3.0 and
KI = 0.12. Here, dark regions represent values of Pee and Γe which produce oscillations in the
mean soma potential he. These results were obtained using the dimensionless ODE system of
equations.

Figure 4.3a shows the values of Pee and Γe that lead to oscillatory behavior in the model cortex
when no control is applied. The seizure causing area is dramatically reduced when open loop con-
trol is applied via a constant illumination of 1.9 mW/mm2. In the case with closed loop control,
we use KP = 3.0 and KI = 0.12. The seizure area is not noticeably decreased, but it does push the
seizure causing areas to higher values of Pee and Γe. Again, we simulate the effects of open and
closed loop control using the lower values of intensities and gains used in section 3.2.1 because
higher values of these control parameters will successfully suppress seizures in the region of phys-
iologically acceptable values of Pee and Γe. The tendency of closed loop control merely to move
the seizure causing area and not reduce it is because of the use of high proportional control and
low integral control. The controller is able to respond to rapid increases in mean soma potential of
the excitatory population, but is not effective in suppressing oscillatory activity when more robust
excitatory inputs are involved. A higher contribution from the integral component will be able to
address this shortfall in control effort as shown in section 3.2.2.

4.3 Seizures in the ge-Γi space
Figure 4.4 illustrates the region of the g̃e-Γi space that leads to seizure like activity in the model
cortex. Open loop control via an 8 mW/mm2 illumination and closed loop PI control with KP = 1.0
and KI = 0.64 successfully suppress oscillatory activity throughout the entire range of values of g̃e
and Γi shown in figure 4.4, and so we have not shown this parameter space here with illumination
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turned on; the plot looks pure white. Again, the SPDE model will lead to less distinct boundaries
of the seizure area in parameter space.
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Figure 4.4: Seizure prone areas in the g̃e−Γi parameter space with no optogenetic stimulation.
Here, dark regions represent values of g̃e and Γi which produce oscillations in the mean soma
potential he. The grayscale shading indicates the variation in he during oscillatory behavior. These
results were obtained using the dimensionless ODE system of equations.

4.4 Summary
In this chapter, we reduced the combined cortico-optogenetic model from chapters 1 and 2 to a set
of ordinary differential equations (ODEs) by leaving out the stochastic and spatial terms from the
set of stochastic partial differential equations (SPDEs) that describe the model. This enables us to
use bifurcation theory to study the behavior of the combined cortico-optogenetic model during the
unstimulated and open loop stimulated states, and to compare these results to results from the time
integration of the discontinuous closed loop system. While the bifurcation and time integration
diagrams for the open and closed loop systems behave similarly by delaying the start of oscillations
in the model until stronger excitatory inputs are available, there is a stark contrast in how they affect
the areas of parameter space that cause seizures. The illumination intensity is decoupled from the
model in the open loop system, while it is entirely dependent on the output of the cortical model
in the closed loop case. This added coupling between optogenetic and cortical dynamics serves
only to move the seizure causing area to a different part of parameter space in the closed loop
case instead of reducing it as seen in the open loop case. More importantly, however, the seizure
causing area of parameter space is moved out of the range of physiologically relevant values with
closed loop stimulation.

Bifurcation analysis is a powerful technique that can be used to analyze and understand the
dynamics of a non-linear system of differential equations, and we employ it again in the next
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chapter, where we explore the use of optogenetic stimulation to induce seizures in a normally
functioning model cortex.
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Chapter 5

Stimulating seizures using optogenetics

In seizure research, cortical stimulation has been used as a means to study the pre-seizure state,
epileptogenesis, the epileptic state and seizure control. In vivo stimulation using radial electric
fields [79], and high frequency [99] and low frequency [40] in vitro electrical stimulation are some
of the methods that have been used to modulate epileptiform activity.

Optogenetics offers another modality of cortical stimulation with high spatial, temporal and
cell type specificity. In chapters 2 - 4, we demonstrated the use of optogenetics to inhibit epileptic
seizures in silico. In this chapter, we explore the use of optogenetics as a stimulation strategy to
hyper-excite a patch of otherwise normally functioning model cortex to produce travelling seizure
waves that cause the entire cortical model to seize. The intensity of light illuminating the cortical
model determines the opening and closing rates of the optogenetic channels, which in turn lead
to seizure waves of different frequencies. We use bifurcation analysis presented in chapter 4 to
analyze the relation between illumination intensity and seizure frequency. Much of this material
was previously published in [86].

5.1 Optogenetic stimulation of the excitatory population in a
normally functioning model cortex

To study the effects of optogenetic stimulation on the cortex, we use the four state model of
Channelrhodopsin-2 (ChR2) proposed in [31]. A meso-scale version of this model was combined
with the cortical model presented in chapter 1 by modifying the inhibitory cell population to ex-
press light sensitive ChR2 ion channels as seen in chapter 2. Here, the excitatory population of the
cortical model expresses ChR2 channels, which changes the equation describing the dynamics of
the mean soma potential of the excitatory population to:

∂ h̃e

∂ t̃
= 1− h̃e +Γe(h0

e− h̃e)Ĩee +Γi(h0
i − h̃e)Ĩie−u. (5.1)

The term u is the stimulation applied to the excitatory population, and is given by,
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u = h̃e.GChR2.Rm. (5.2)

h̃e is the membrane potential for the excitatory population, Rm is the membrane resistance of the
cells, and the conductance of ChR2 channels, GChR2, is defined as

GChR2 = Gmax.gChR2.
(1− exp(−he/U0))

he/U1
.NChR2, (5.3)

where gChR2 is the total conductance of the optogenetic channels in the O1 and O2 states. U0 and
U1 are empirical constants and NChR2 is the number of ChR2 channels per representative neuron.
The expression for gChR2, and values and explanations for all parameters can be found in [85].

5.2 Constant illumination
Here, we apply optogenetic stimulation of a portion of model cortex of dimensions 1400×1400 mm2,
which is divided into 100×100 cells or representative neurons.1 We stimulate an area of model cor-
tex of the order of spatial scales of clinical recordings. In figure 1.2, a square region in the middle
of the cortex of approximate dimensions 280×280 mm2 (1/25 the total area of the cortex) is mod-
ified to express ChR2 ion channels in the excitatory population, and this region is illuminated with
blue light of wavelength 470 nm with a constant intensity of 50 mW/mm2 starting at 0.5s. An ion
channel density of 109ChR2’s/m2 is used to keep illumination intensities within physiologically
permissible values and still ensure optimal stimulation of the cortex.

Fig. 5.1 depicts the birth of a seizure like wave within the square patch of stimulated cortex.
Neighboring regions are then excited by the outward propagation of travelling seizure waves, and
the effects of the stimulation spread to the entire cortical area. Hyper-excitation in chapters 2 and
3 was achieved by increasing subcortical inputs to the excitatory population throughout the model
cortex. This meant the entire cortex was on the verge of seizing, and a small increase in subcortical
inputs to a column could cause a region of cortex to seize. These seizures originated from a cortical
column, and propagated outwards in spiral waves. Here, spatially uniform travelling waves are
formed by the equal hyper-excitation of cortical macrocolumns within a patch of cortex using
optogenetic channels, and subcortical inputs do not play as important a role in starting seizures as
illumination intensity increases.

It should be noted here that the entire model cortex is functioning normally, with inhibitory and
excitatory inputs of comparable magnitudes balancing each other out. However, when adequate
optogenetic stimulation is applied to the excitatory population, it depolarizes these cells, increasing

1The average human cortex has dimensions of 500×500 mm2 if it were laid open like a sheet. However, to remain
consistent with previous work, and because dynamics in this model of undifferentiated cortex are scale-free, we have
used a larger cortical domain to illustrate seizure waves.
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Figure 5.1: Propagation of seizure waves in a 2D model of a normally functioning human cortex
when optogenetic stimulation is applied to a 280× 280 mm2 patch in the centre of the cortex.
Snapshots are taken from time t = 0.5s to t = 1s. The traveling waves are tracking the values
of the mean soma potential of the excitatory population (he) in mV . Normal cortical function is
characterized here by the baseline parameters of [49] with Pee = 11.0 and Γe = 0.0012. The model
cortex is stimulated with a constant light intensity of 50 mW/mm2 at 0.5s.

their mean soma potential, which immediately increases their firing rate. The local excitatory and
long range contributions to post synaptic activation are increased because of the higher firing rate,
producing a further rise in the mean soma potential of both populations, which ultimately leads to
even higher firing rates in both excitatory and inhibitory cells. Increases in inhibitory firing rates
trail excitatory ones within a macrocolumn by 1-2 ms because stimulation is applied directly to
the excitatory population, and because of the time delays associated with synaptic transmission.
Spatial connectivity between columns transfers synchronous activity to neighboring columns of
neurons outside the stimulated cortical patch, exciting them into synchronous states facilitating
propagation of seizure activity. Again, only neurons within the stimulated area are hyperexcited
while the rest of the cortex is functioning normally. This constrains the minimum area of stimulated
region in our model that will excite the rest of the cortex into an epileptic state to about 1/25 the
total area of the cortex. Smaller stimulated regions are not able to support seizure activity for
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cortical and optogenetic parameters mentioned above.
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Figure 5.2: Optogenetic stimulation of a normally functioning cortex with an illumination source
of constant intensity. Figures 5.2a - 5.2c are for a stimulation intensity of 30 mW/mm2 and figures
5.2d - 5.2f are for a stimulation intensity of 60 mW/mm2.

In fig. 5.2, we look at the variation of mean soma potential of the excitatory population at
a point within the stimulated patch of cortex, and take a one dimensional cross section of the
two dimensional spatial domain to study how different illumination intensities and illumination
profiles lead to travelling seizure waves of varying frequencies. For both illumination profiles
presented in fig. 5.2, stimulation is turned on at t = 0s. Figures 5.2a and 5.2d show the variation of
mean soma potential with time when the cortical patch is constantly illuminated with intensities of
30 mW/mm2 and 60 mW/mm2, respectively. Figures 5.2b and 5.2e depict travelling waves in a one
dimensional slice of the two dimensional domain, and comprises both stimulated cortex between
560 mm and 840 mm, and normally functioning cortex. Higher illumination intensities result in
higher conductances, as shown in figures 5.2c and 5.2f, resulting in cells being depolarized more
quickly. Counter-intuitively, though, while a higher intensity depolarizes cells more quickly, it
reduces the frequency of seizure waves as seen by comparing figures 5.2a and 5.2d. One possible
explanation is that the rate of change of mean soma potential given in eq. 5.1 is lower for higher
intensities because the stimulation term, u, is always positive on account of using ChR2, a cation
pump. A higher rate of change decreases the time required to change from a lower to a higher
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firing rate and back. In other words, the rate of change of firing rate increases, which results in
higher frequency oscillations.

5.3 Pulsed illumination
The frequency of travelling waves induced by optogenetic stimulation can also be influenced by
the illumination protocol used as shown in figure 5.3 where a different pulsing profile is used in
each row. Figures 5.3a - 5.3c depict a 200 ms on 100 ms off pulsed illumination of 50 mW/mm2

intensity, the mean soma potential at a point in the stimulated patch of cortex and travelling waves
in a 1D cross section of the 2D domain, respectively. Figures 5.3d - 5.3f depict a 200 ms on 200 ms
off pulsed illumination of 60 mW/mm2 intensity, the mean soma potential at a point in the stim-
ulated patch of cortex and travelling waves in a 1D cross section of the 2D domain, respectively.
Figures 5.3c and 5.3f comprise both stimulated cortex between 560 mm and 840 mm, and normally
functioning cortex.
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Figure 5.3: Optogenetic stimulation of a normally functioning cortex with an illumination source
of constant intensity. Figures 5.3a - 5.3c are for a stimulation intensity of 50 mW/mm2 and figures
5.3d - 5.3f are for a stimulation intensity of 60 mW/mm2.

By using a higher intensity in figures 5.3b and 5.3c, synchronous behavior with a frequency
comparable to the 30 mW/mm2 constant illumination case can be achieved. However, by using
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a higher intensity, synchronous behavior is induced more quickly. Figures 5.3e and 5.3f show
how the frequency of the travelling wave can be further reduced by using a pulsed profile of
60 mW/mm2 intensity because of the periods when illumination is turned off and the cortex goes
back to functioning normally. For a given illumination intensity, pulsed light can reduce the fre-
quency of seizure waves because the stimulatory input rapidly drops to zero when light is turned
off, sending the cortex back to a normally functioning state. So increasing the time of no illumi-
nation when using a pulsed light source decreases seizure frequency. This difference can be seen
between fig. 5.2d, where constant illumination is used, and fig. 5.3e, where pulsed illumination is
used.

5.4 Seizure stimulation in parameter space using the ODE
model

We turn to bifurcation analysis to give us a picture of what happens in the cortex when illumina-
tion of a certain intensity is used. To perform a bifurcation analysis, as in chapter 4, we turn off
the stochastic and spatial terms in the cortical model to obtain an underlying set of determinis-
tic ordinary differential equations (ODEs), which helps us gain insight into the complete system
of stochastic partial differential equations (SPDEs) that describe the mesoscale cortical model in
a simpler way. It has been shown that Hopf bifurcations in the dimensionless ODEs can corre-
spond to travelling waves in the SPDE system [49]. Here, we combine this ODE system with the
optogenetic model to study the dynamics of the combined system.

Figure 5.4a shows the values of Γe and Pee that cause oscillatory behavior in the ODE model
when not stimulated (black) and when stimulated (grey) by optogenetic channels using an illumi-
nation intensity of 60 mW/mm2. The red dot in the figure is located at Γe = 0.0012 and Pee = 11.0,
which are used in the full SPDE system simulations shown in figures 5.1 - 5.3. These values lie
well outside the region of epilepsy in the unstimulated cortex. The seizure prone area in parameter
space is vastly increased when optogenetic stimulation is applied. It has been observed, but not
shown here, that this area is slightly larger with less distinct boundaries (as expected) for the SPDE
system owing to stochasticity.

A bifurcation analysis of the ODE system yields a bifurcation diagram depicting the salient
features for the mean soma potential of the excitatory population, he, for different illumination
intensities as shown in fig. 5.4b. Again, we use Pee = 11.0 and Γe = 0.0012 for this analysis.
Solid lines indicate stable fixed points, while dashed lines represent unstable ones. Dot-dashed
lines and dotted lines indicate maximum and minimum values of he achieved during stable and
unstable limit cycles, respectively. The asterisk represents a subcritical Hopf bifurcation at 5.1352
mW/mm2, which gives rise to an unstable limit cycle. At 4.7908 mW/mm2 the limit cycle sta-

bilizes after going through a saddle node bifurcation, and becomes unstable again after going
through another saddle node bifurcation at 33.8682 mW/mm2. While fig. 5.4b is truncated at 40
mW/mm2, the limit cycle remains unstable and does not terminate well beyond 100 mW/mm2,
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Figure 5.4: Top left: effect of optogenetic stimulation on oscillatory behavior in the Γe - Pee pa-
rameter space, using a 60 mW/mm2 illumination intensity (grey) and in an unstimulated cortex
(black). The red dot indicates Γe = 0.0012 and Pee = 11.0, which are used in the full SPDE system
simulations shown in figures 5.1 - 5.3. Top right: Bifurcation diagram for the underlying deter-
ministic ODE system showing the variation of he for different illumination intensities. Dashed and
solid lines indicate unstable and stable fixed points, respectively. Maximum and minimum values
of he during stable (dot-dashed) and unstable (dashed) limit cycles arising from a subcritical Hopf
bifurcation (asterisk) are also shown. Bottom: Frequency of seizure waves for a given illumination
intensity.

which is around the limit of physiologically acceptable illumination intensities2. This suggests the
combined cortical-optogenetic model is unable to support stable oscillations past 34 mW/mm2,
and so for higher intensities we might be observing a succession of independent columnar spiking
events and not entrained spiking seen during stable oscillatory behavior. In the case of an indi-

2Prolonged exposure (> 0.5s) at an intensity of 100 mW/mm2 caused significant tissue damage in animal models
[11].
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vidual spike in mean soma potential, a cortical column relaxes to its resting potential before firing
again. This takes longer to produce a spike than the case with continuous oscillatory behavior,
where a column can be excited to spike again before reaching resting state. This explains why
lower frequency seizure waves are observed when higher illumination intensities are used, a trend
which is shown in fig. 5.4c after averaging frequency over multiple simulations of the full SPDE
system. For lower intensities, subcortical inputs may aid in exciting or suppressing the system, so
the probability of producing seizures decreases for intensities lower than 25 mW/mm2. For higher
intensities, the system will almost always produce seizures, but the frequency of seizure waves is
dependent on the magnitude of subcortical and long range inputs. Overall, however, a tendency to
produce lower seizure wave frequencies for higher illumination intensities is seen.

5.5 Summary of original contributions
Epilepsy is a network disorder, and the ability to stimulate individual network elements to de-
termine their role in the function and malfunction of networks would be invaluable to seizure
research. Optogenetics offers unparalleled specificity in targeting individual neuron types with
high spatial and temporal resolution. In this chapter, we present a way of specifically depolarising
the excitatory population in a patch of normally functioning model cortex to produce seizures that
generalize. With the help of bifurcation theory, we clearly outline stimulation parameters like illu-
mination intensity that will lead to seizures of a particular frequency and strength. Eventually, this
method holds the promise of identifying specific seizure pathways in individuals suffering from
epilepsy.

We now provide preliminary insights into the link between metabolic demand and cortical
activity. This link will help quantitatively define the relationship between fast time scale neural ac-
tivity measured by electrodes, and slow time scale, high spatial resolution measurement techniques
like positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In
terms of seizure research, this link will be invaluable in understanding the role of cortical energy
demands in epileptogenesis, and in maintaining the seizure state.
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Chapter 6

Cortical metabolic demands

Among mammalian brains, the human brain stands out in terms of metabolic demand. It consumes
the highest share of the body’s total energy demands at 20%, despite contributing only about 2%
to the total mass of the body [46; 80; 91]. Studies have shown a strong correlation between blood
flow and metabolic demand of the brain [74; 75], and consequently, the effect of blood flow on
neural activity has also been a topic of intense research [5; 57; 89; 104]. Glucose is the primary
source of energy, and is metabolized both oxidatively [46; 89] and non-oxidatively [28], producing
ATP, the basic currency of energy in metabolic processes.

The calculation of ATP consumption rates is one way to estimate the total energy demands
of the brain, and understand the underlying mechanisms coupling blood flow, metabolic rate and
neural activity. Bottom-up approaches, where the energy consumption of individual neurons is
calculated by summing up ATP use per neuronal or glial electrical or neurostransmission process,
have been presented in [6; 54]. A top-down approach [36] demonstrated that cortical energy de-
mands of mammalian brains is conserved across species and activity levels.

Knowledge of the ATP consumption rate aids in the estimation of the amount of glucose con-
sumed in the cortex, which has been the basis of numerous studies on brain metabolic demands
using nuclear magnetic resonance imaging (NMR) [15; 32; 62] and positron emission tomography
(PET) [77] in humans. In terms of research on epilepsy, the ketogenic diet has been proposed
as a method to stem the effects of epilepsy [8; 94]. A link between a glycolysis model and the
meso scale model will facilitate testing this method of seizure suppression, and the role of cor-
tical metabolic dynamics in determining the seizure state. However, to gain further insight into
how neural activity levels influence oxidative and non-oxidative consumption of glucose, a mea-
surement of blood oxygen levels, and the cerebral blood flow are also necessary. A mathematical
model, based on oxygen phosphorescence quenching readings from rats [4], mimicked the the link
between oxygen consumption and blood flow. In humans, models based on PET imaging results
[38; 87], and using near-infrared spectroscopy [9] have also tried to simulate the same link. Mod-
els connecting the cerebral metabolic rates of oxygen and glucose to cerebral blood flow have also
been proposed [53; 88]. In the hyper-excited state associated with diseases like epilepsy and Park-
isnon’s, studies have tried to understand the role of blood flow [7; 39], and energy metabolism
[17; 63; 83; 92].
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Here, we aim to estimate the energy demands in terms of ATP and glucose consumption rates in
a meso scale mathematical model of the human cortex. For example, in terms of seizure research,
the use of a high fat, low carbohydrate diet in epileptic patients where the dietary sources of glucose
is restricted, has been shown to be an effective and non-pharmacological treatment modality [93;
90]. This study will help improve the accuracy of cortical models in simulating measured cortical
activity, and also help to understand the dynamics and metabolic demands of the cortex during
various activity levels.

6.1 Calculating energy demands of the model cortex
Meso-scale models of brain activity offer a practical way of simulating the collective dynamics
of millions of neurons without having to take into account the activity of, and the connections
between, individual neurons in a region of the brain. Here, we will be looking at the energy
demands of the model cortex in terms of ATP and glucose consumption via the cortical model
described in chapter 1,

6.1.1 Model for ATP consumption
The energy needed to support cellular metabolism in the mammalian cortex can be attributed to
either signaling events (Ps) like depolarisation, and non-signaling events (Pns) like ion movements.
The number of adenosine triphosphate (ATP) molecules produced during the oxidation of acetates
to generate energy, can be used as a measure of energy consumption in the cortex. From previous
bottom-up approaches [6; 54], the total energy (Etot), in units of units of ATP per unit cortical vol-
ume per unit time, was calculated by summing the energy demands of signaling and non-signaling
events:

Etot = Es +Ens (6.1)

Non-signaling energy consumption, which is attributed to ion movement associated with main-
taining the resting potentials of neuronal and glial cells is calculated using:

Ens = Pns,N×ηN +Pns,A×ηA, (6.2)

where N and A represent neurons and astrocytes, Pns,x is the number of ATP molecules consumed
per cell (neuron or astrocyte) per second during non-signaling events, and ηx is the concentration
of each cell type (neuron or astrocyte) in a given volume of cortex (number of cells/cm3).

Signaling events like depolarisation, axonal propagation, neurotransmitter cycling etc. con-
tribute to Es, the energy of signaling events in the cortex.

Es = Ps× f ×ηN (6.3)
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where Ps is the number of ATP molecules consumed per neuron per spike during signaling events,
f is the firing rate in units of spikes per second, and ηN is the concentration of neurons per unit
volume.

The top-down approach in [36] showed energy requirements per cell per signaling and non-
signaling event is independent of the state of neuronal activity (e.g., sensory activation, awake,
asleep, or anesthetized), and are conserved across species. That is, Ps (ATP/(neuron.spike)) and
Pns (ATP/(neuron.second) remain constant over a range of activity levels and species. Energy
consumption in terms of ATP/s per cm3 using this method is also estimated via equations 6.1-6.3.

6.1.2 Calculating glucose consumption (CMRglc) from calculated ATP
consumption

From the total energy consumed in terms of ATP/s per cm3, the cerebral metabolic rate (CMR) of
glucose oxidation can be calculated by,

calcCMRglc(ox) = kEtot , (6.4)

where k is given by

k =
CMRglc×107

NACMRO2ρ
=

107

NAOGIρ
, (6.5)

NA is the Avogadro constant and has a value of 6.023×1023/mole, ρ is the tissue density (1.05
g/mL), and OGI is the oxygen to glucose index, also defined as the ratio of cerebral metabolic rate
of oxygen CMRO2 to the cerebral metabolic rate of glucose CMRglc.

Under awake resting conditions, OGI in humans has been measured using PET imaging, and
found to be around 5.6 [89]. However, this value changes when the activity level of the cortex
changes. For example, during high activity levels associated with epileptic seizures, OGI drops,
indicating a higher non-oxidative use of glucose [88].

In [36] Ps and Pns were calculated by comparing calculated CMRglc with measured CMRglc
obtained from PET scans in humans, and 2-deoxyglucose (2DG) measurements in rats. It should
be noted that the differences in values of Ps and Pns in [6], [54] and [36] are due to the assumed
values of membrane rest potentials [36].

6.2 Preliminary results
The data used to arrive at the results presented in [36] were obtained from studies of rats and hu-
mans under normal awake resting conditions, or some form of an anesthetized state. Under these
conditions, there is an almost stoichiometric relation between the metabolic rates of glucose and
oxygen, suggesting that the ATP produced is mostly from the oxidative use of glucose. Stoichio-
metric conditions would give us an OGI of 6, while the measured OGI during the activity levels
discussed in [36] is around 5.6. To this end, we first calculate the use of ATP in the model cortex
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Figure 6.1: Mean soma potential of the excitatory population and energy consumption in terms of
number of ATP per second per unit volume in the model cortex during normal function. The mean
firing rate of the excitatory population is calculated using the mean soma potential via a sigmoid
function as described in [58]. The ATP consumption of signaling events, in turn, is directly calcu-
lated from the firing rate using equation 6.3. Non-signaling events have a total ATP consumption
rate of 2.9372×1016 per second per cm3 which remains constant. Total ATP consumption in fig-
ure 6.1b includes both signaling and non-signaling events. Parameters: Pee = 11.0, γe = 0.0012,
α = 1.15.

under normal function, which is presented in figure 6.1a in terms of the mean soma potential of the
excitatory population of neurons.

In figure 6.1b the total number of ATPs consumed per second per cm3 of cortex is presented as a
function of time at a point in the cortex. This is the total energy consumption rate of both signaling
and non-signaling events combined. The consumption rate is calculated at normal function, which
means OGI is around 5.6. The amount of glucose consumed oxidatively can be calculated using
equation 6.4.

The total (oxidative + non-oxidative) amount of glucose consumed can then be calculated by:

calcCMR =
calcCMRglc(ox)×6

OGI
(6.6)

Specific measurements of blood oxygen levels, and the cerebral blood flow at different activity
levels will aid in defining a quantitative relationship between firing rate and OGI.

While there is still a long way to go before a complete quantitative link between electrode
measurements and imaging techniques can be established, the meso-scale model offers an excel-
lent means to explore this relationship, and we have provided an outline of the steps involved in
achieving this goal. Additionally, this is also a first step in building a physiologically relevant
model of the cortex that takes into account both neural activity and its dependence on the cardio-
vascular supply system.
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Chapter 7

Conclusion

7.1 Summary
Optogenetics is a highly specific, targeted stimulation technique offering a unique way to study
brain function at levels ranging from individual neurons to complex neural circuits. With respect
to epilepsy, it has the potential to extend significantly the understanding of epileptogenesis (seizure
initiation), and has the potential to improve the specificity, safety, and efficacy of a novel treatment
modality for epilepsy that could pave the way to alleviating human suffering. While testing of
optogenetics for use in humans is still a few years away given the intricacies of the technology, we
are able to explore the effects of this cortical stimulation technique via a physiologically relevant,
meso-scale mathematical model of the human cortex. With the help of the model, we were able
to make novel contributions that demonstrate the efficacy of optogenetics as both a seizure control
and seizure stimulation technique.

First, we demonstrated the birth and propagation of seizure waves in a two dimensional model
of the human cortex when subject to hyperexcited subcortical inputs. We then expressed the es-
sentially single cell level dynamics of channelrhodopsin-2 (ChR2) ion channels at the meso-scale
using a probabilistic formulation. The probabilistic formulation is scale free, and facilitates simu-
lation of channel activity at any scale. By using these channels on the inhibitory population of the
meso-scale model, we were able to depolarize the inhibitory population at a higher rate, which sup-
pressed the excessive excitatory neural activity characteristic of seizures. This work demonstrated
the potential of optogenetics as a robust seizure control modality in an open loop configuration for
various parameter ranges that gave rise to weak and strong seizures in the meso-scale model.

Next, we developed a closed loop controller that uses the measured potential calculated from
the excitatory mean soma potential to determine the intensity of light required to optimally illu-
minate the ChR2 expressing inhibitory population. We successfully suppressed seizures in two
parameter spaces that were identified as being the most likely model parameter ranges that corre-
spond well with patient seizure data. In addition, comparisons with tuned open loop controllers
clearly showed the advantages and efficiency of our close loop strategy. The ability to optimally
calculate control effort from clinical recordings is of great importance if optogenetics is to be
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adopted as a strategy for seizure inhibition in patients.
Using a simpler ODE model obtained by discarding the spatial and stochastic terms from the

full SPDE cortical model, we performed a bifurcation analysis of the combined cortico-optogenetic
system under unstimulated, open loop, and closed loop stimulated conditions for two parameter
spaces. In the parameter space defined by the subcortical excitatory inputs Pee and the gain on the
excitatory post-synaptic potential Γe, both open and closed loop systems delayed the start of seizure
activity until much higher excitatory inputs were available, the closed loop method did so using
optimal effort. In the second parameter space defined by the gain on the inhibitory post-synaptic
potential Γi and the slope at the inflection point of the sigmoid function describing the excitatory
firing rate g̃e, seizure activity was successfully suppressed for the entire range of physiologically
relevant parameter values. This part of our work further demonstrates the efficacy of our closed
loop control strategy, and also highlights the potency of optogenetics as a spatially, temporally and
cell type specific seizure control strategy.

We demonstrated the use of optogenetics as a seizure stimulation mechanism by expressing the
ChR2 ion channels in the excitatory population. We depolarized the excitatory cells in a patch of
normally functioning model cortex, and were able to drive the entire model cortex into a seizure
state. Interestingly, we observed that higher intensities of illumination produced seizure waves
of lower frequency, and determined via bifurcation analysis that the stable limit cycle signifying
sustained synchronous oscillatory activity in the model cortex was rendered unstable at higher
illumination intensities. The spatial, temporal, and cell type specificity this stimulation technique
offers would be invaluable for use in epilepsy surgery to determine seizure causing areas, or to
study the origins and propagation of seizure waves in the human cortex.

Finally, we made a start in exploring the connection between cortical activity and metabolic de-
mand through a further development in the meso scale model. An understanding of this connection
would not only help us build more physiologically relevant models of brain activity, but also help
specify the link between fast temporal activity measured by electrodes and slow, spatially refined
measurements of brain activity obtained from imaging techniques like PET and fMRI. For seizure
research, this link will help tailor dietary based treatment strategies that would be invaluable in
cases of pharmacologically resistant epilepsy, or treating epileptogenic zones that are physically
hard to reach.

7.2 Future work
While this study suggests the use of optogenetics to inhibit seizure waves is possible, there are
a number of improvements that can be made. The light cone produced by a light source will
render variable illumination in the spatial domain [11]. This can be exploited for better spatial
and temporal control of the activation of optogenetic channels. We can also account for the spatial
electrode profile in our measurements to improve the accuracy of the measured potential, and also
account for spatial variations of the cortical model, for example the presence of gyri and sulci,
making only a region of model cortex easily accessible to optogenetic stimulation. In chapter 2 we
showed optogenetic control is still effective when only parts of the cortical model are illuminated.
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However, a limited region of stimulation might require higher illumination intensities, and a more
refined tuning of the gain terms.

Second, as stated in chapter 1, different types of inhibitory neurons could be responsible for
specific types of seizures. Previous work [85], has explored the consequences of stimulating only
a fraction of the neurons in the meso-scale model to inhibit seizure activity. Using constant illumi-
nation, control was achieved when only a third of the inhibitory population in the area of a seizure
hotspot was stimulated with higher illumination intensities. It would be interesting to investigate
how stimulation via different neuron subtypes influences the dynamics of seizures in the human
cortex. While we currently do not have sufficient data on different types of human interneurons to
include them in our model, in rats [45; 13] and in mice [82], inhibitory neurons can be divided into
three main subtypes, fast spiking, latent spiking and another group containing burst spiking and
regular spiking neurons. The meso-scale model offers a very suitable platform to incorporate the
dynamics of these neurons because the layout of the equations of the model facilitates the inclusion
of more sub-types of neurons.

Third, we have seen seizures can be more abrupt in the g̃e−Γi parameter space, which suggests
exploring control actuation via the excitatory population to mitigate the effect of synaptic delays by
suppressing excessive excitation at the source. One way of doing this is to use halorhodpsin, which
is an anion pump that is activated by light of wavelength around 570 nm [24], to hyperpolarize the
excitatory neurons. Apart from avoiding synaptic delays, another advantage of using this method
in conjunction with our current method of control is the option of selectively stimulating either in-
hibitory or excitatory neurons, or stimulating both together to provide more flexible control. In the
same vein, while chapter 5 only explores the use of cation pumps in the excitatory population of the
meso-scale cortical model, the wide variety of illumination options, light activated ion channels,
and their temporal and spatial specificity could provide more interesting insights into seizures and
cortical dynamics in general. Clearly, numerical simulations will provide a much less expensive
way to investigate these possibilities.

Fourth, it will be interesting to study the effects of optogenetic stimulation of subcortical brain
structures. Some seizures specifically arise because of the dynamic interplay between the cortex
and subcortical regions. For example, in [72], seizures arising from cortical injury, and maintained
by the interplay between the thalamus and cortical regions were identified in rats. Additionally,
in the same paper, thalamocortical neurons were stimulated via closed loop optogenetic control to
inhibit seizures caused by cortical injury. The meso-scale mathematical model of the cortex used
in this work does not yet include detailed equations describing the dynamic interplay between sub-
cortical and cortical regions, which may only be a feature in some seizures. Instead, we explore
whether seizures caused by higher excitatory subcortical inputs or changes in the inflection point of
the sigmoid function that describes the mean excitatory firing rate could be controlled with optoge-
netics in the cortex, which is a much more accessible part of the brain to stimulate than subcortical
regions. The control of specific seizures might entail other, more involved strategies. This first
attempt at exploring whether cortical feedback stimulation could work has proven successful even
when the precipitating cause is subcortical inputs. In the future, a complex mathematical model
of dynamic cortico-subcortical interactions, will aid in studying the effect of applying optogenetic
control to subcortical regions, and also provide insight into the effects of cortical stimulation when



CHAPTER 7. CONCLUSION 60

the pathway to seizures is the dynamic interplay between the cortex and subcortical regions.
Finally, a measure of the cerebral metabolic rate gives us another way of verifying the meso

scale model. First, model parameters can be obtained by the path tracing method described in
[22; 23] for various activity levels. Next, the cerebral metabolic rate of glucose can be calculated
using equations 6.1-6.4. Finally, we can compare calculated values of CMRglc with measured
values of CMRglc obtained from PET imaging, which gives us averaged consumption rates, or
NMR imaging for the instantaneous rate of use of glucose. Dynamic models of brain energy
metabolism have been presented in a number of articles, for example [71] and [18]. Models of the
cerebral metabolic rates of glucose, oxygen and blood flow are also available: cerebral blood flow
(CBF) & CMRO2 [87; 38; 9]; CMRO2 , CMRglc and CBF [53; 88]; only CMRglc [77; 15; 62; 60].
However, there is no direct link between the measurable variables of the meso-scale model (e.g.
measured potential hm [58]) and the cerebral metabolic rates for glucose and other metabolites. The
link might be via the mean firing rate of the meso-scale model, which would now be a function of
the mean soma potential and the available energy in terms of ATP.
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