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A FINITE ELEMENT ELASTICITY COMPLEX IN THREE

DIMENSIONS

LONG CHEN AND XUEHAI HUANG

Abstract. A finite element elasticity complex on tetrahedral meshes and the

corresponding commutative diagram are devised. The H1 conforming finite
element is the finite element developed by Neilan for the velocity field in a dis-

crete Stokes complex. The symmetric div-conforming finite element is the Hu-

Zhang element for stress tensors. The construction of an H(inc)-conforming
finite element of minimum polynomial degree 6 for symmetric tensors is the fo-

cus of this paper. Our construction appears to be the first H(inc)-conforming

finite elements on tetrahedral meshes without further splitting. The key tools
of the construction are the decomposition of polynomial tensor spaces and the

characterization of the trace of the inc operator. The polynomial elasticity

complex and Koszul elasticity complex are created to derive the decomposi-
tion. The trace of the inc operator is induced from a Green’s identity. Trace

complexes and bubble complexes are also derived to facilitate the construction.
Two-dimensional smooth finite element Hessian complex and div div complex

are constructed.

1. Introduction

A Hilbert complex is a sequence of Hilbert spaces connected by a sequence of lin-
ear operators satisfying the property: the composition of two consecutive operators
vanishes. Let Ω be a bounded domain in R3. The elasticity complex

(1) RM
⊂−→H1(Ω;R3)

def−−→H(inc,Ω;S)
inc−−−→H(div,Ω;S)

div−−−→ L2(Ω;R3)→ 0

plays an important role in both theoretical and numerical study of linear elas-
ticity, where RM is the space of the linearized rigid body motion, def is the
symmetric gradient operator, H(inc,Ω; S) is the space of symmetric tensor τ s.t.
inc τ := − curl(curl τ )ᵀ ∈ L2(Ω;M), and H(div,Ω;S) is the space for the sym-
metric stress tensor σ with divσ ∈ L2(Ω;R3). We shall present a finite element
elasticity complex

(2) RM
⊂−→ V h

def−−→ Σinc
h

inc−−−→ Σdiv
h

div−−−→ Qh → 0

on a tetrahedral mesh Th of Ω. In the complex (2), the H1-conforming finite element
is the finite element V h developed by Neilan for the velocity field in a finite element
Stokes complex [34]. TheH(div;S)-conforming finite element Σdiv

h is the Hu-Zhang
element for the symmetric stress tensor [28, 31]. The space Qh for L2(Ω;R3) is
simply the discontinuous piecewise polynomial space. Some degrees of freedom of
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2 LONG CHEN AND XUEHAI HUANG

Neilan element and Hu-Zhang element are modified for the consideration of the
commutative digram. The missing component is an H(inc;S)-conforming finite

element Σinc
h which is the focus of this work.

In the solid mechanics application, the most important component in the complex
(2) is the finite element Σdiv

h for stress tensors. Construction of finite elements
for stress tensors can benefit from the structure of the complex. For example,
the bubble polynomial elasticity complex is built and used in [5] to construct a
finite element for symmetric stress tensors. Here the bubble polynomial spaces are
referred to polynomials with vanished traces on the boundary of each tetrahedron.
In [28, 31, 17], a precise characterization of H(div;S) bubble polynomial space is
given which leads to a stable Pk(S) − Pk−1(Rd) stress-displacement finite element

pair in arbitrary dimension. Identification of its preceding space Σinc
h will be helpful

for the design of fast solvers and a posteriori error analysis [12] for the mixed
formulation of linear elasticity problems. It may also find applications in other
fields such as continuum modeling of defects [2] and relativity [19].

Elasticity complex (1) and many more complexes can be derived from the com-
position of de Rham complexes in the so-called Bernstein-Gelfand-Gelfand (BGG)
construction [7]. Finite element complexes for the de Rham complex are well un-
derstood and can be derived systematically in the framework of Finite Element
Exterior Calculus [4, 6]. It is natural to ask if a finite element elasticity complex
can be derived by the BGG construction. One key in the BGG construction is the
existence of smooth finite element de Rham complexes. With nodal finite element
de Rham complexes, a two-dimensional finite element elasticity complex has been
constructed in [21] using the BGG construction which generalizes the first finite
element elasticity complex of Arnold and Winther [8].

In three dimensions, however, smooth discrete de Rham complexes are not easy
due to the super-smoothness of multivariate splines [25] (cf. superspline in [24, 33]).
To relax the super-smoothness, the element can be further split so that inside one
element the shape function is not C∞ smooth. Such approach leads to the so-called
macro elements. In particular, a two-dimensional elasticity strain complex has
been constructed on the Clough-Tocher split of a triangle [22], and more recently
a finite element elasticity complex has been constructed on the Alfeld split of a
tetrahedron [20] based on the smooth finite element de Rham complex [26] on such
split.

We shall construct a finite element elasticity complex on a tetrahedral mesh
and the corresponding commutative diagram without further splitting. Let K be
a polyhedron. We first give a polynomial elasticity complex and a Koszul type
complex, which can be summarized as one double-directional complex below:

RM
⊂ // Pk+1(K;R3)

def //
πRM

oo Pk(K;S)
inc //

τ ·x
oo Pk−2(K;S)

div //
x×τ×x
oo Pk−3(K;R3) //

sym(vxᵀ)
oo 0

⊃
oo .

Several decompositions of polynomial tensor spaces, especially for Pk(K;S), can be
obtained consequently. We then study trace operators for the inc operator since
the traces on face and edges are crucial to ensure the H(inc)-conformity. To do so,
we use a symmetric notation inc τ = ∇ × τ × ∇ (see Section 2 for notation) and
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derive the following symmetric Green’s identity:

(∇× σ ×∇, τ )K − (σ,∇× τ ×∇)K = (tr1(σ), tr2(τ ))∂K − (tr2(σ), tr1(τ ))∂K

+
∑

F∈F(K)

∑
e∈E(F )

(n · σ × n, tF,e · τ )e

−
∑

F∈F(K)

∑
e∈E(F )

(tF,e · σ,n · τ × n)e,

where, with ΠF denoting the projection operator to face F ,

tr1(τ ) := n× τ × n,
tr2(τ ) := ΠF (τ ×∇)× n+∇F (n · τ ΠF ).

We show tr1(τ ) ∈ H(divF divF , F ;S) and tr2(τ ) ∈ H(rotF , F ;S), and reveal
boundary complexes induced by trace operators; see Section 4.2 for details. Then
the edge traces of the face traces tr1(τ ) and tr2(τ ) imply the continuity of τ |e and
(∇ × τ ) · te. Further edge degrees of freedom will be derived from the require-
ment inc τ is in the Hu-Zhang finite element space. The face degree of freedom
will be based on the decomposition of polynomial tensors of H(divF divF , F ;S)
and H(rotF , F ;S). The volume degree of freedom is from the decomposition of
Pk(K;S) based on the polynomial elasticity complex.

Recently there has been a lot of progress in the construction of finite elements
for tensors [11, 21, 22, 14, 18, 16, 29, 20]. Our construction appears to be the
first H(inc)-conforming finite elements for symmetric tensors on tetrahedral meshes
without further splitting. Our finite element spaces are constructed for tetrahedrons
but some results, e.g., traces and Green’s formulae etc, hold for general polyhedrons.
Our approach of constructing finite element for tensors, through decomposition of
polynomial space and characterization of trace operators, seems simpler and more
straightforward than the BGG construction through smooth finite element de Rham
complexes. For example, although macro finite elements are adopted, the finite
element elasticity complex in [20] is still smoother than complex (2) in the sense

that the space V h in [20] is H2-conforming, and Σinc
h is H1-conforming. Ours is

more natural: V h is H1-conforming, and Σinc
h is H(inc)-conforming.

Notation on meshes. Let {Th}h>0 be a regular family of polyhedral meshes of
Ω. For each element K ∈ Th, denote by nK the unit outward normal vector to ∂K.
In most places, it will be abbreviated as n for simplicity. Denote by F(K), E(K)
and V(K) the set of all faces, edges and vertices of K, respectively. Similarly let
E(F ) be the set of all edges of face F . For F ∈ F(K), its orientation is given by the
outwards normal direction n∂K which also induces a consistent orientation of edge
e ∈ E(F ). Namely the edge vectors tF,e and outwards normal vector n∂K follows
the right hand rule. Then define nF,e = tF,e ×n∂K as the outwards normal vector
of e on the face F .

Let Fh, Eh and Vh be the union of all faces, edges and vertices of the partition
Th, respectively. For any F ∈ Fh, fix a unit normal vector nF and two unit tangent
vectors tF,1 and tF,2, which will be abbreviated as t1 and t2 without causing any
confusions. For any e ∈ Eh, fix a unit tangent vector te and two unit normal
vectors ne,1 and ne,2, which will be abbreviated as n1 and n2 without causing any
confusions. Those notation are illustrated in Fig. 1. We emphasize that nF , te,ne,1,
and ne,2 are globally defined not depending on the elements.
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F
te

tF,1

tF,2

nF
ne,1

ne,2

nF,e

tF,e

Figure 1. Tangent vectors and normal vectors of edges and faces.

The rest of this paper is organized as follows. In Section 2, we present a notation
system on the vector and tensor operations. We construct polynomial complexes
and derive decompositions of polynomial tensors spaces related to the elasticity
complex in Section 3. In Section 4, we discuss traces for the inc operator based
on the Green’s identity, and present corresponding trace complexes and bubble
complexes. Two smooth finite element complexes in two dimensions are devised
in Section 5. In Section 6, we construct an H(inc)-conforming finite element and
a finite element elasticity complex in three dimensions. Finally, a commutative
diagram for the finite element elasticity complex is developed in Section 7.

2. Vector and tensor operations

One complication on the construction of finite elements for tensors is the notation
system for tensor operations. In this section, we adapt the notation system used in
solid mechanics [32]. In particular, we separate the row and column operations to
the right and left sides of the matrix, respectively.

2.1. Tensor calculus. Define the dot product and the cross product from the left

b ·A, b×A,

which is applied column-wise to the matrix A. When the vector is on the right of
the matrix

A · b, A× b,
the operation is defined row-wise. Here for cleaner notation, when the vector b is
on the right, it is treated as a row-vector bᵀ while when on the left, it is a column
vector.

The ordering of performing the row and column products does not matter which
leads to the associative rule of the triple products

b×A× c := (b×A)× c = b× (A× c).

Similar rules hold for b · A · c and b · A × c and thus parentheses can be safely
skipped. Another benefit is the transpose of products. For the transpose of product
of two objects, we take transpose of each one, switch their order, and add a negative
sign if it is the cross product.

For two column vectors u,v, the tensor product u ⊗ v := uvᵀ is a matrix
which is also known as the dyadic product uv := uvᵀ with cleaner notation (one
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ᵀ is skipped). The row-wise product and column-wise product of uv with another
vector x will be applied to the neighboring vector:

x · (uv) = (x · u)vᵀ, (uv) · x = u(v · x),

x× (uv) = (x× u)v, (uv)× x = u(v × x).

We treat the Hamilton operator ∇ = (∂1, ∂2, ∂3)ᵀ as a column vector. For a
vector function u = (u1, u2, u3)ᵀ, curlu = ∇× u, and divu = ∇ · u are standard
differential operations. Define ∇u = ∇uᵀ = (∂iuj) which can be understood as the
dyadic product of Hamilton operator ∇ and column vector u.

Applying these matrix-vector operations to the Hamilton operator ∇, we get
column-wise differentiations∇·A,∇×A, and row-wise differentiationsA·∇,A×∇.
Conventionally, the differentiation is applied to the function after the ∇ symbol.
So a more conventional notation is

A · ∇ := (∇ ·Aᵀ)ᵀ, A×∇ := −(∇×Aᵀ)ᵀ.

By moving the differential operator to the right, the notation is simplified and the
transpose rule for matrix-vector products can be formally used. Again the right
most column vector is treated as a row vector to make the notation cleaner. We
introduce the double differential operators as

incA := ∇×A×∇, div divA := ∇ ·A · ∇.

As the column and row operations are independent, and no product rule of differ-
entials is needed, the ordering of operations is not important and parentheses is
skipped. Parentheses will be added when it is necessary.

In the literature, differential operators for matrices are usually applied row-wise
to tensors. To distinguish with ∇ notation, we define operators in letters as

gradu := u∇ᵀ = (∂jui) = (∇u)ᵀ,

curlA := −A×∇ = (∇×Aᵀ)ᵀ,

divA := A · ∇ = (∇ ·Aᵀ)ᵀ.

Note that the transpose operator ᵀ is involved for tensors and in particular gradu 6=
∇u, curlA 6= ∇×A, curlA 6= A×∇ and divA 6= ∇ ·A. For symmetric tensors,
divA = (∇ ·A)ᵀ, curlA = (∇×A)ᵀ.

Integration by parts can be applied to row-wise differentiations as well as column-
wise ones. For example, we shall frequently use

(∇× τ ,σ)K = (τ ,∇× σ)K + (n× τ ,σ)∂K ,

(τ ×∇,σ)K = (τ ,σ ×∇)K + (τ × n,σ)∂K .

Similar formulae hold for grad, curl,div operators. Be careful on the possible sign
change and the transpose operator when letter differential operators and ∇ opera-
tors are mixed together. Chain rules and product rules are also better used in the
same category of differential operations (row-wise, column-wise or letter operators).

Denote the space of all 3 × 3 matrices by M, all symmetric 3 × 3 matrices by
S, and all skew-symmetric 3 × 3 matrices by K. For any matrix B ∈ M, we can
decompose it into symmetric and skew-symmetric parts as

B = sym(B) + skw(B) :=
1

2
(B +Bᵀ) +

1

2
(B −Bᵀ).
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The symmetric gradient of a vector function u is defined as

def u := sym∇u =
1

2
(∇u+ (∇u)ᵀ) =

1

2
(u∇+∇u).

In the last identity, the dyadic product is used to emphasize the symmetry in
notation. In the context of elasticity, def u is commonly denoted by ε(u).

We define an isomorphism from R3 to the space of skew-symmetric matrices K
as follows: for a vector ω = (ω1, ω2, ω3)ᵀ ∈ R3,

mskwω :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

Obviously mskw : R3 → K is a bijection. We define vskw : M → R3 by vskw :=
mskw−1 ◦ skw. Using these notation, we have the decomposition

(3) gradv = def v +
1

2
mskw(∇× v).

2.2. Identities on tensors. We shall present identities based on diagram (4) and
refer to [7] for a unified proof. Let Sτ = τᵀ − tr(τ )I and ι : R→M by ιv = vI.

(4)

C∞(R) C∞(R3) C∞(R3) C∞(R)

C∞(R3) C∞(M) C∞(M) C∞(R3)

C∞(R3) C∞(M) C∞(M) C∞(R3)

C∞(R) C∞(R3) C∞(R3) C∞(R).

∇ ∇× ∇·

·x

∇

id ·x·x

∇×

2 vskw ·x

∇·

tr ·x

×x

∇

−mskw
×x

∇×

S ×x

∇·

2 vskw ×x

x

∇

ι
x

∇×

−mskw
x

∇·

id
x

The north-east diagonal operator is the Poisson bracket [ d, κ] = d((·)κ)−( d(·))κ
for d = ∇,∇×,∇· being applied from the left and the Koszul operator κ = x,×x, ·x
applied from the right. For example, we have

∇× (τ · x)− (∇× τ ) · x = 2 vskw τ , block (1, 2),(5)

∇(u× x)− (∇u)× x = −mskwu, block (2, 1).

The parallelogram formed by the north-east diagonal and the horizontal operators
is anticomutative. For example, we will use the following identities:

tr(∇× τ ) = −∇ · 2 vskw(τ ), block (1, 2),(6)

2vskw∇u = −∇× u,
∇× u = ∇ ·mskw(u).

Taking transpose, we can get similar formulae for row-wise differential operators.
By replacing ∂i by xi, we can get the anticomutativity of the parallelograms formed
by the vertical and the north-east diagonal operators. For example, (6) becomes

(7) tr(τ × x) = −2 vskw(τ ) · x.



A FINITE ELEMENT ELASTICITY COMPLEX IN THREE DIMENSIONS 7

2.3. Tensors on surfaces. Given a plane F with normal vector n, for a vector
v ∈ R3, we define its projection to plane F

ΠFv := (n× v)× n = n× (v × n) = −n× (n× v) = (I − nnᵀ)v,

which is called the tangential component of v. The vector

Π⊥Fv := n× v = (n×ΠF )v

is called the tangential trace of v, which is a rotation of ΠFv on F (90◦ counter-
clockwise with respect to n). Note that ΠF = I − nnᵀ is a 3 × 3 symmetric
matrix. With a slight abuse of notation, we use ΠF to denote the piecewise defined
projection to the boundary of K.

We treat the Hamilton operator ∇ = (∂1, ∂2, ∂3)ᵀ as a column vector and define

∇F := ΠF∇, ∇⊥F := Π⊥F∇.

We have the decomposition

∇ = ∇F + n ∂n.

For a scalar function v,

∇F v = ΠF (∇v) = −n× (n×∇v),

∇⊥F v = n×∇v = n×∇F v,

are the surface gradient of v and surface curl, respectively. For a vector function v,
∇F · v is the surface divergence:

divF v := ∇F · v = ∇F · (ΠFv).

By the cyclic invariance of the mix product and the fact n is constant, the surface
rot operator is

(8) rotFv := ∇⊥F · v = (n×∇) · v = n · (∇× v),

which is the normal component of ∇× v. The tangential trace of ∇× v is

(9) n× (∇× v) = ∇(n · v)− ∂nv = ∇F (n · v)− ∂n(ΠFv).

By definition, for a vector function v,

rotFv = ∇⊥F · v = −∇F · (n× v), divF v = ∇F · v = ∇⊥F · (n× v).

We define, for a vector function v,

∇Fv := ∇Fvᵀ = ΠF∇vᵀ, gradF v = v∇F = (∇Fv)ᵀ,

∇⊥Fv := ∇⊥Fvᵀ = n× (∇vᵀ), curlF v := v∇⊥F = (∇⊥Fv)ᵀ,

defF v := sym(∇Fv), sym curlF v := sym(curlF v).

For a tensor function τ ,

divF τ := τ · ∇F = (∇F · τᵀ)ᵀ, divF divF τ := ∇F · τ · ∇F ,

rotF τ := τ · (n×∇) = (∇⊥F · τᵀ)ᵀ, rotF rotF τ := ∇⊥F · τ · ∇⊥F .

Although we define the surface differentiation through the projection, it can be
verified that the definition is intrinsic in the sense that it depends only on the func-
tion value on the surface F . Namely ∇F v = ∇F (v|F ),∇F · v = ∇F · ΠFv,∇Fv =
∇F (v|F ) and thus ΠF is sometimes skipped after ∇F .
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3. Polynomial Complexes

In this section we consider polynomial elasticity complexes on a bounded and
topologically trivial domain D ⊂ R3. Without loss of generality, we assume 0 =
(0, 0, 0) ∈ D which can be easily satisfied by changing of variable x − xc with an
arbitrary xc ∈ D.

Given a non-negative integer k, let Pk(D) stand for the set of all polynomials
in D with the total degree no more than k, and Pk(D;X) denote the tensor or
vector version for X = S,K,M, or R3. Similar notation will be applied to a two-
dimensional face F and one-dimensional edge e. Let QkD be the L2-orthogonal
projection operator onto Pk(D;X). Let Hk(D;X) := Pk(D;X)\Pk−1(D;X) be the
space of homogeneous polynomials of degree k.

Recall that dimPk(D) =
(
k+d
d

)
for a d-dimensional domainD, dimM = 9,dimS =

6, and dimK = 3. We list a useful result in [16]

(10) Pk(D) ∩ ker(`I + x · ∇) = 0

for any positive number `, where I is the identity operator.

3.1. Polynomial elasticity complex. The polynomial de Rham complex is

(11) R ⊂−→ Pk+1(D)
∇−→ Pk(D;R3)

∇×−−→ Pk−1(D;R3)
∇·−→ Pk−2(D) −→ 0.

As D is topologically trivial, complex (11) is also exact, which means the range of
each map is the kernel of the succeeding map.

For later use, recall the following polynomial elasticity complex in [5, (2.6)]

(12) RM
⊂−→ Pk+1(D;R3)

def−−→ Pk(D;S)
inc−−→ Pk−2(D;S)

div−−→ Pk−3(D;R3) −→ 0,

where the linearized rigid body motion

(13) RM = {a× x+ b : a, b ∈ R3} = {Nx+ b : N ∈ K, b ∈ R3}.

Complex (12) is an exact sequence for a topologically trivial domain D. In the
following, we give a more precise characterization of the div operator.

Lemma 3.1. div : sym(xPk−3(D;R3))→ Pk−3(D;R3) is bijective.

Proof. As div(sym(xPk−3(D;R3))) ⊆ Pk−3(D;R3) and dim sym(xPk−3(D;R3)) =
dimPk−3(D;R3), it is sufficient to prove sym(xPk−3(D;R3))∩ker(div) = {0}. That
is: for any q ∈ Pk−3(D;R3) satisfying div sym(xqᵀ) = 0, we are going to prove
q = 0.

By a direct computation,

div(qxᵀ) = (qxᵀ) · ∇ = q(x · ∇) + (q∇) · x = 3q + (grad q) · x,
div(xqᵀ) = (xqᵀ) · ∇ = x(q · ∇) + (x∇) · q = (div q)x+ q,

2 div sym(xqᵀ) = 4q + (grad q) · x+ (div q)x.

It follows from div sym(xq) = 0 that

(14) 4q + (grad q) · x = −(div q)x.

Since div((grad q) · x) = (I + x · grad) div q, applying the divergence operator on
both side of (14) yields

(5I + x · grad) div q = −(3I + x · grad) div q.
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Hence we acquire from (10) that div q = 0, and (14) reduces to

4q + (grad q) · x = 0 ∀ x ∈ D.

Applying (10) again gives q = 0. �

3.2. Koszul elasticity complex. Recall the Koszul complex

(15) 0→ Pk−2(D)
φx−−→ Pk−1(D;R3)

u×x−−−→ Pk(D;R3)
v·x−−→ Pk+1(D)→ 0,

which is also an exact sequence.
Define operator πRM : C1(D;R3)→ RM as

πRMv := v(0) +
1

2
(curlv)(0)× x.

By a direct calculation ∇ × (a × x) = 2a and the definition of RM , cf. (13), it
holds

(16) πRMv = v ∀ v ∈ RM .

Lemma 3.2. The following polynomial space sequence

(17) 0
⊂−→ Pk−3(D;R3)

sym(vx)−→ Pk−2(D;S)
x×τ×x−→ Pk(D;S)

τ ·x−→ Pk+1(D;R3)
πRM−→ RM −→ 0

is a complex and is exact.

Proof. We first verify (17) is a complex. For any v ∈ Pk−3(D;R3) and τ ∈
Pk−2(D;S), we have

x× sym(vx)× x =
1

2
x× (xv + vx)× x = 0,

(x× τ × x) · x = 0.

As τ ∈ Pk(D;S), (5) implies ∇ × (τ · x) = (∇ × τ ) · x, we get πRM (τ · x) = 0.
Thus (17) is a complex.

We now verify the exactness.

1. If x × τ × x = 0 and τ ∈ Pk−2(D;S), then τ = sym(vx) for some v ∈
Pk−3(D;R3).

For any τ ∈ Pk−2(D;S) satisfying x × (τ × x) = 0, by the exactness of Koszul
complex (15), there exists ṽ ∈ Pk−2(D;R3) such that τ × x = xṽ. By (7), as τ
is symmetric, τ × x is trace-free. Then it follows ṽ · x = tr(xṽ) = tr(τ × x) = 0.
Then there exists v1 ∈ Pk−3(D;R3) such that ṽ = v1 × x. As a result, we have

(τ − xv1)× x = τ × x− x(v1 × x) = τ × x− xṽ = 0.

Again there exists v2 ∈ Pk−3(D;R3) such that τ = xv1 + v2x. By the symmetry
of τ , it holds τ = sym(x(v1 + v2)).

2. If τ · x = 0 and τ ∈ Pk(D;S), then τ = x× σ × x for some σ ∈ Pk−2(D;S).
For any τ ∈ Pk(D;S) satisfying τ · x = 0, by the exactness of Koszul complex

(15), there exists τ 1 ∈ Pk−1(D;M) such that τ = τ 1 × x. By the symmetry of τ ,
it holds

(x · τ 1)× x = x · (τ 1 × x) = x · τ = (τ · x)ᵀ = 0.

Thus there exists q ∈ Pk−1(D) satisfying x · τ 1 = qx, i.e. x · (τ 1 − qI) = 0. Again
there exists τ 2 ∈ Pk−2(D;M) satisfying τ 1 = qI + x× τ 2. Hence

τ = qI × x+ x× τ 2 × x.
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It follows from the symmetry of τ that

τ = sym τ = sym(qI × x+ x× τ 2 × x) = sym(x× τ 2 × x) = x× sym τ 2 × x.

Here we use the fact that x× skw τ 2 × x ∈ Pk(D;K).

3. Pk(D;S) · x = Pk+1(D;R3) ∩ ker(πRM ).
As a result of step 1,

dim(x× Pk−2(D;S)× x) = dimPk−2(D;S)− dimPk−3(D;R3) =
1

2
k(k − 1)(k + 4).

Then we get from step 2 that

dim(Pk(D;S) · x) = dimPk(D;S)− dim(x× Pk−2(D;S)× x)

= (k + 3)(k + 2)(k + 1)− 1

2
k(k − 1)(k + 4)

=
1

2
(k + 4)(k + 3)(k + 2)− 6.(18)

It follows from (16) that πRMPk+1(D;R3) = RM , and by (18),

dim(Pk(D;S) · x) + dimRM = dimPk+1(D;R3).

Therefore the complex (17) is exact. �

Remark 3.3. Another Koszul elasticity complex

0
⊂−→ Hk−3(D;R3)

K3−→ Hk−2(D;S)
K2−→ Hk(D;S)

K1−→ Hk+1(D;R3) −→ RM −→ 0

has been constructed in [23, Section 3.2] by using different Koszul operators

K1τ =
1

k + 1
τ · x− 1

k(k + 1)
x× (∇× τ ) · x,

K2τ =
1

k(k + 1)
x× τ × x,

K3v =
1

k
sym(vx)− 1

k(k + 1)
sym((xvᵀ × x)×∇),

which satisfy homotopy identities

K1 def v = v ∀ v ∈ Hk+1(D;R3), k ≥ 1,

def K1τ +K2 inc τ = τ ∀ τ ∈ Hk(D;S),

incK2τ +K3 div τ = τ ∀ τ ∈ Hk−2(D;S),

divK3v = v ∀ v ∈ Hk−3(D;R3).

Ours are simpler but without homotopy identities.

3.3. Decomposition of polynomial tensor spaces. Combining the two com-
plexes (12) and (17) yields

(19) RM
⊂ // Pk+1(D;R3)

def //
πRM

oo Pk(D;S)
inc //

τ ·x
oo Pk−2(D;S)

div //
x×τ×x
oo Pk−3(D;R3) //

sym(vx)
oo 0

⊃
oo .

Although there are no homotopy identities, from (19), we can derive the following
space decompositions which play a vital role in the design of degrees of freedom.
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Lemma 3.4. We have the following space decompositions

Pk+1(D;R3) = (Pk(D;S) · x)⊕RM ,(20)

Pk(D;S) = def Pk+1(D;R3)⊕ (x× Pk−2(D;S)× x),(21)

Pk−2(D;S) = incPk(D;S)⊕ sym(Pk−3(D;R3)x).(22)

Proof. The decomposition (20) is trivial by the exactness of (17).
For any q ∈ Pk+1(D;R3) satisfying def q ∈ x× Pk−2(D;S)× x, we have

(∇q + (∇q)ᵀ) · x = 2(def q) · x = 0.

Since (∇q)x = ∇(xᵀq)− q, we get

(23) (∇q)ᵀ · x+∇(xᵀq) = q.

Noting that
x · (∇q)ᵀ · x = x · (def q) · x = 0,

we obtain from (23) that
(x · ∇)(xᵀq) = xᵀq.

Hence xᵀq is a linear function. In turn, it follows from (23) that q ∈ P1(D;R3),
which together with the fact xᵀq is linear implies q ∈ RM . Thus (21) follows from
the fact that the dimensions on two sides of (21) coincide.

By Lemma 3.1, the sum in (22) is a direct sum. Thus the decomposition (22)
follows. �

3.4. Polynomial complexes in two dimensions. We have similar polynomial
complexes in two dimensions. Here we collect some which will appear as the trace
complexes on face F of a polyhedron. Let n be a normal vector of F . For x ∈ F ,
denote by x⊥ = n× x. Set RT := P0(F ;R2) + xP0(F ). For a scalar function v,

π1v := v(0, 0) + x · ∇F v(0, 0).

Again, here without loss of generality, we assume (0, 0) ∈ F and in general the x
in the results presented below can be replaced by x−xc with an arbitrary xc ∈ F .

The following div div polynomial complexes has been established in [14]:

(24) RT
⊂ // Pk+1(F ;R2)

sym curlF//
x
oo Pk(F ;S)

divF divF//
τ ·x⊥
oo Pk−2(F ) //

vxxᵀ
oo 0

⊃
oo ,

which implies the following decomposition

• Pk+1(F ;R2) = (Pk(F ;S) · x⊥)⊕RT .
• Pk(F ;S) = sym curlF Pk+1(F ;R2)⊕ Pk−2(F )xxᵀ.

• divF divF : Pk−2(F )xxᵀ → Pk−2(F ) is a bijection.

The following two-dimensional Hessian polynomial complex and its Koszul complex
can be also found in [14, Section 3.1]

(25) P1(F )
⊂ // Pk+1(F )

∇2
F //

π1

oo Pk−1(F ;S)
rotF //

x·τ ·x
oo Pk−2(F ;R2) //

sym(x⊥v)

oo 0
⊃
oo .

The implied decompositions are

• Pk+1(F ) = (x · Pk−1(F ;S) · x)⊕ P1(F ).

• Pk−1(F ;S) = ∇2
F Pk+1(F )⊕ sym(x⊥Pk−2(F ;R2)).

• rotF : sym(x⊥Pk−2(F ;R2))→ Pk−2(F ;R2) is a bijection.
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4. Traces and Bubble Complexes

Besides the decomposition of polynomial spaces, another key of our construction
is the characterization of the trace operator. We first derive a symmetric form of
Green’s identity for the inc operator from which we define two traces. We show the
traces of spaces in the elasticity complex form two complexes on each face and will
call them trace complexes. On the other hand, the kernel of traces in the polynomial
space are called bubble polynomial function spaces, abbreviated as bubble spaces,
which also form a complex and is called the bubble complexes. We also present
several bubble complexes on each face.

When defining and studying the traces, we consider smooth enough functions
not in the most general Sobolev spaces setting. The precise Sobolev spaces for
the traces of the inc operator are not easy to identify and not necessary for our
purposes, as the shape function is a polynomial being smooth inside the element.

4.1. Green’s identity. Consider σ, τ ∈H2(K;S). By the symbolical symmetry,
we expect the following symmetric form of the Green’s identity

(∇× σ ×∇, τ )K − (∇× τ ×∇,σ)K = (tr1(σ), tr2(τ ))∂K − (tr1(τ ), tr2(σ))∂K ,

which belongs to a class of second Green’s identities. For the scalar Laplacian
operator, it reads as: for u, v ∈ H2(K),

−(∆u, v)K + (∆v, u)K = (tr1(u), tr2(v))∂K − (tr1(v), tr2(u))∂K .

where tr1(u) = u is the Dirichlet trace and tr2(v) = ∂nv is the Neumann trace. For
the double curl operator, we have a similar formula: for u,v ∈H2(K;R3),

(∇× (∇×u),v)K − (∇× (∇×v),u)K = −(tr1(u), tr2(v))∂K + (tr1(v), tr2(u))∂K .

where tr1(u) = (n× u)× n is the tangential component of u (Dirichlet type) and
tr2(u) = n× (∇× u) is the Neumann type trace.

As σ is symmetric, (∇ × σ)ᵀ = −σ × ∇. Therefore (∇ × (·), (·) × ∇) is a
symmetric bilinear form on H1(K,S), i.e.,

(∇× σ, τ ×∇)K = (∇× τ ,σ ×∇)K .

Applying integration by parts, we have

(∇× σ, τ ×∇)K = (∇× σ ×∇, τ )K + (∇× σ, τ × n)∂K ,(26)

(∇× τ ,σ ×∇)K = (∇× τ ×∇,σ)K + (∇× τ ,σ × n)∂K .(27)

The difference between (26) and (27) implies the following Green’s identity

(∇× σ ×∇, τ )K − (σ,∇× τ ×∇)K = (σ × n,∇× τ )∂K − (∇× σ, τ × n)∂K .

But in this form, the trace σ × n and ∇× σ are still linearly dependent.
We further expand the boundary term into tangential and normal parts

(σ × n,∇× τ )∂K = (n× σ × n,n× (∇× τ ))∂K + (n · σ × n,n · (∇× τ ))∂K .
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Recall that, on one face F ∈ F(K), n · (∇×τ ) = ∇⊥F ·ΠF τ = −∇F · (n×τ ). Then
we get from the integration by parts on face F that

(n · σ × n,∇F · (n× τ ))F = −(∇F (n · σ × n),n× τ )F

+
∑

e∈E(F )

(n · σ × n,nF,e · (n× τ ))e

= (∇F (n · σ ΠF ),n× τ × n)F

−
∑

e∈E(F )

(n · σ × n, tF,e · τ )e,

where recall that tF,e = n× nF,e. Therefore we can write the boundary term as

(σ × n,∇× τ )∂K = (n× σ × n,n× (∇× τ ))∂K

−
∑

F∈F(K)

(∇F (n · σ ΠF ),n× τ × n)F

+
∑

F∈F(K)

∑
e∈E(F )

(n · σ × n, tF,e · τ )e,

and by symmetry

(τ × n,∇× σ)∂K = (n× τ × n,n× (∇× σ))∂K

−
∑

F∈F(K)

(∇F (n · τ ΠF ),n× σ × n)F

+
∑

F∈F(K)

∑
e∈E(F )

(n · τ × n, tF,e · σ)e.

The difference of these two terms suggests us to define

tr1(τ ) := n× τ × n,

t̃r2(τ ) := n× (∇× τ )ΠF +∇F (n · τ ΠF ).

We can simplify the trace t̃r2(τ ) as follows. Apply ΠF (·)ΠF to the tangential trace
of ∇× τ , cf. (9), to get

(28) ΠF (n× (∇× τ ))ΠF = ∇F (n · τΠF )−ΠF∂nτΠF .

Because t̃r2(τ ) is integrated on the face with a tangential symmetric matrix n ×
σ × n, it can be further simplified to sym t̃r2(τ ). Therefore we define

(29) tr2(τ ) := sym t̃r2(τ ) = 2defF (n · τ ΠF )−ΠF∂n τ ΠF ,

which is a symmetric matrix on each face. Such trace has been identified in [5].
We present another form of tr2 which is obtained by taking the transpose of the

second term in t̃r2(τ ) and more useful than (29).

Lemma 4.1. For any sufficiently smooth and symmetric tensor τ , it holds

tr2(τ ) = n× (∇× τ )ΠF + (ΠF τ · n)∇F(30)

= ΠF (τ ×∇)× n+∇F (n · τ ΠF ).(31)

Proof. We take the transpose of (28) and use the symmetry of τ to get

(32) ΠF ((τ ×∇)× n)ΠF = (ΠF τ · n)∇F −ΠF∂nτΠF .
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The difference of (32) and (28) implies

ΠF (n× (∇× τ ))ΠF + (ΠF τ · n)∇F = ΠF ((τ ×∇)× n)ΠF +∇F (n · τΠF ).

As tr2(τ ) = sym t̃r2(τ ), we obtain (30). As τ is symmetric, taking transpose, we
obtain (31). �

We are in the position to summarize the symmetric form of Green’s identity.

Theorem 4.2 (Symmetric Green’s identity for the inc operator). Let K be a poly-
hedron, and let σ, τ ∈H2(K;S). Then we have

(∇× σ ×∇, τ )K − (σ,∇× τ ×∇)K = (tr1(σ), tr2(τ ))∂K − (tr2(σ), tr1(τ ))∂K

+
∑

F∈F(K)

∑
e∈E(F )

(n · σ × n, tF,e · τ )e

−
∑

F∈F(K)

∑
e∈E(F )

(tF,e · σ,n · τ × n)e.(33)

As both σ and τ are symmetric, by taking transpose of the boundary terms, we
can get another equivalent version of Green’s identity. For example, the edge term
can be −(n× σ · n, τ · tF,e)e.

When the domain Ω is decomposed into a polyhedral mesh, for piecewise smooth
function to be in H(inc,Ω;S), it suffices that the edge terms across different ele-
ments are canceled.

Lemma 4.3. Let τ ∈ L2(Ω;S) such that

(i) τ |K ∈H(inc,K;S) for each polyhedron K ∈ Th;

(ii) tr1(τ )|F ∈ L2(F ;S) is single-valued for each F ∈ F ih;

(iii) tr2(τ )|F ∈ L2(F ;S) is single-valued for each F ∈ F ih;

(iv) τ |e ∈ L2(e;S) is single-valued for each e ∈ E ih,

then τ ∈H(inc,Ω;S).

Proof. Take any σ ∈ C∞0 (Ω;S). Sum the Green’s identify (33) over K ∈ Th to get

(τ ,∇× σ ×∇)−
∑
K∈Th

(∇× τ ×∇,σ)K

=
∑
K∈Th

(tr1(σ), tr2(τ ))∂K −
∑
K∈Th

(tr2(σ), tr1(τ ))∂K

+
∑
K∈Th

∑
F∈F(K)

∑
e∈E(F )

(
(n · σ × n, tF,e · τ )e − (tF,e · σ,n · τ × n)e

)
.(34)

We note that tr1(τ ) is independent of the choice of the direction of normal vectors
but tr2(τ ) is an odd function of n in the sense that tr2(τ ;−n) = − tr2(τ ;n).
Therefore if tr1(τ ) and | tr2(τ )| are single-valued on face F , the face terms in (34)
will be canceled out when integrated over a mesh of the domain Ω.

The edge vector tF,e in (34) is the orientation of edge e induced by the outwards
normal vector n∂K of the face F with respect to K. Therefore, for an interior face
F = K ∩ K ′, tF (K),e = −tF (K′),e, where F (K) means F ∈ F(K) with normal
vector n∂K . Hence if τ is single-valued on edge e, the edge terms in (34) will be
canceled out when integrated over a mesh of the domain Ω.
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Then (34) reduces to

(τ ,∇× σ ×∇) =
∑
K∈Th

(∇× τ ×∇,σ)K ,

which implies the distribution ∇× τ ×∇ ∈ L2(Ω;S). So τ ∈H(inc,Ω;S). �

Remark 4.4. The continuity of τ |e, which implies τ (δ) is also continuous at
vertices, is a sufficient condition for the cancelation of edge terms but may not be
necessary.

Lemma 4.3 is implicitly contained in [5, Section 6] but the Green’s identity (33)
and the form of tr2(τ ), cf. (30), seem new. When the domain is smooth, the edge
jump can be replaced by a curvature term, cf. [1, Theorem 3.16], where a different
Green’s formula on smooth domains is derived.

4.2. Trace complexes. For a vector v ∈ R3, define the tangential trace and the
normal trace as

tr1(v) := v × n, tr2(v) := v · n.
For a smooth and symmetric tensor σ ∈ H(div,K;S), define the normal-normal
trace and the normal-tangential trace as

tr1(σ) := n · σ · n, tr2(σ) := n× σ · n.

Then we will have the following trace complexes

(35)

a× x+ b

tr1

��

⊂ // v

tr1

��

def // τ

tr1

��

inc // σ

tr1

��

div // p

aFxF + bF
⊂ // v × n

sym curlF// n× τ × ndivF divF// n · σ · n // 0

,

and

(36)

a× x+ b

tr2

��

⊂ // v

tr2

��

def // τ

tr2

��

inc // σ

tr2

��

div // p

aF · xF + bF
⊂ // v · n

∇2
F // tr2(τ )

∇⊥
F · // n · σ × n // 0

.

In (35) and (36), we present the concrete form instead of Sobolev spaces as we will
work mostly on polynomial functions which are smooth enough to define the trace
pointwise. In the next two lemmas we will verify the commutative diagrams (35)
and (36). Some results can be found in [5, Section 5].

Lemma 4.5. For any sufficiently smooth vector function v, we have

n× (def v)× n = sym curlF (v × n),(37)

tr2(def v) = ∇2
F (v · n).(38)

Proof. Using our notation, the first identity (37) is straightforward:

n× (∇v)× n = ∇⊥F (v × n) = (curlF (v × n))ᵀ.

Then apply the sym operator to get (37).
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Let τ = def v. Using (31), ∇×∇v = 0 and (9), it follows that

tr2(τ ) = ΠF (τ ×∇)× n+∇F (n · τ ΠF )

=
1

2
ΠF (∇v ×∇)× n+

1

2
∇F (∂n(ΠFv) +∇F (v · n))

=
1

2
∇F
(
∇F (v · n)− ∂nΠFv

)
+

1

2
∇F (∂n(ΠFv) +∇F (v · n))

= ∇2
F (v · n),

as required. �

We then verify the second block.

Lemma 4.6. For any sufficiently smooth and symmetric tensor τ , it holds that

n · (∇× τ ×∇) · n = divF divF (n× τ × n),(39)

n · (∇× τ ×∇)× n = ∇⊥F · tr2(τ ).(40)

Proof. The first identity is from a direct computation

n · (∇× τ ×∇) · n = ∇⊥F · ΠF τ ΠF · ∇⊥F = divF divF (n× τ × n).

To prove the second identity, we use the trace representation form (31) and the fact
∇⊥F · ∇F = 0 to get

n · (∇× τ ×∇)× n = ∇⊥F · (τ ×∇)× n = ∇⊥F · tr2(τ ).

�

4.3. Continuity on edges. In order to construct an H(inc)-conforming finite ele-
ment, the trace complexes inspire us to adopt H(divF divF , F ;S) conforming finite
element to discretize n × τ × n, and H(rotF , F ;S)-conforming finite element to
discretize tr2(τ ). The trace for vF ∈H(rotF , F ;S) is vF · t on ∂F . Two trace op-
erators for H(divF divF , F ;S) are identified in [14, Lemma 2.1] and will be recalled
below.

Lemma 4.7 (Green’s identity for the two-dimensional div div operator [14]). Let
F be a polygon, and let τ ∈ C2(F ;S) and v ∈ H2(F ). Then we have

(divF divF τ , v)K = (τ ,∇2
F v)K −

∑
e∈E(F )

∑
δ∈∂e

signe,δ(tF,e · τ · nF,e)(δ)v(δ)

−
∑

e∈E(F )

[
tre,1(τ ), ∂nF,e

v)e − (tre,2(τ ), v)e
]
,(41)

where

signe,δ :=

{
1, if δ is the end point of e,

−1, if δ is the start point of e,

tre,1(τ ) := nF,e · τ · nF,e,
tre,2(τ ) := ∂t(tF,e · τ · nF,e) + nF,e · divF τ .

The trace of τ ∈H(rotF , F ;S) is τ · t and denoted by tre,3(τ ) = τ · t.
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Lemma 4.8. Let F ∈ F(K), e ∈ E(F ), t be the unit tangential vector of e, and
nF,e := t × n. For any sufficiently smooth and symmetric tensor τ , we have on
edge e that

tre,1(tr1(τ )) = −t · τ · t,(42)

tre,2(tr1(τ )) = ∂t(nF,e · τ · t)− n · (∇× τ ) · t,(43)

tre,3(tr2(τ )) = n× (∇× τ ) · t+ ∂t(ΠF τ · n).(44)

Proof. Let us compute

(45) (τ × n) · nF,e = τ · (n× nF,e) = τ · t.

Then identity (42) follows. The identity (43) follows from

∂t(t · (n× τ × n) · nF,e) = ∂t(nF,e · τ · t),

and

nF,e · divF (n× τ × n) = ∇F · (n× τ × n) · nF,e
=− n · ∇ × ((τ × n) · nF,e) = −n · (∇× τ ) · t,

which holds from (8) and (45). The identity (44) is a direct consequence of (30). �

Those formulae on the edge trace suggest the continuity of τ · t and (∇× τ ) · t
on edges. As we mentioned before, in view of conformity, it is sufficient to impose
the whole tensor τ is continuous on edges. The continuity of (∇ × τ ) · t is not
surprising as ∇×τ ×∇ ∈H(div;S) and thus the normal trace ((∇×τ )×∇) ·n =
(∇ × τ ) · ∇⊥F ∈ L

2(F ;R3). Namely ∇ × τ ∈ H(rotF , F ;R3×2), and the trace of
H(rotF , F ;R3×2) implies the continuity of (∇× τ ) · t on edges.

The following result on the vanishing edge trace is an easy consequence of for-
mulae (42)-(44).

Corollary 4.9. If τ |e = 0 and (∇×τ )·t|e = 0 for all e ∈ E(K), then tre,1(tr1(τ )) =
tre,2(tr1(τ )) = tre,3(tr2(τ )) = 0.

4.4. Bubble complexes. We give a characterization of bubble functions follow-
ing [5]. Let K be a tetrahedron with vertices x1, x2, x3 and x4. We label the
face opposite to xi as the i-th face Fi, and denote by ni the unit outwards normal
vector of face Fi. Set N i,j := sym(nkn

ᵀ
l ) = 1

2 (nkn
ᵀ
l + nln

ᵀ
k), where (ijkl) is a

permutation cycle of (1234). Then it is shown in [19, 10] that the 6 symmetric
tensors {N i,j , i, j = 1, 2, 3, 4, i < j} form a basis of S.

Define a tangential-tangential bubble function space of tensorial polynomials of
degree k as

Btr1
K,k := Pk(K;S) ∩ ker(tr1).

It is easy to verify tr1(λiλjN i,j) = 0, where λi is the barycentric coordinate of

x corresponding to vertex xi. Since the dimension of Btr1
K,k is k(k2 − 1) (cf. [5,

Lemma 6.1]), we have

Btr1
K,k = Pk−2(K)⊗ {λiλjN i,j} =

∑
1≤i<j≤4

Pk−2(K)λiλjN i,j .

Define an H(inc,K;S) bubble function space of polynomials of degree k as

Binc
K,k := Pk(K;S) ∩ ker(tr1) ∩ ker(tr2) = Btr1

K,k ∩ ker(tr2).
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According to Lemma 6.2 in [5], for any τ ∈ Binc
K,k, it holds τ |e= 0 for all e ∈ E(K).

Thus
τ ∈

∑
1≤i<j≤4

λiλj
(
λkPk−3(K) + λlPk−3(K)

)
N i,j .

Although there is no precise characterization of Binc
K,k, it is shown in [5] that the

dimension of Binc
K,k is k3 − 6k2 + 11k.

Furthermore the bubble polynomial elasticity complex with k ≥ 4 is established
in [5, Lemma 7.1] and [31, Lemma 3.2]

(46) 0
⊂−→ bKPk−3(K;R3)

def−−→ Binc
K,k

inc−−→ Bdiv
K,k−2

div−−→ Pk−3(K;R3)/RM → 0,

where bK = λ1λ2λ3λ4 is the volume bubble polynomial and Bdiv
K,k = Pk(K;S) ∩

H0(div,K;S) is the H(div;S) bubble function space and is characterized in [31]

(47) Bdiv
K,k =

∑
0≤i<j≤3

λiλjPk−2(K)T i,j , k ≥ 2

with T i,j := ti,jt
ᵀ
i,j and ti,j := xj − xi.

Similarly we also have two-dimensional bubble complexes on face F . The bubble
function space Bdiv div

F,k := Pk(F ;S) ∩H0(divF divF , F ;S) is

{τ ∈ Pk(F ;S) : tre,1(τ ) = tre,2(τ ) = 0,∀ e ∈ E(F ), τ (δ) = 0 ∀ δ ∈ V(F )}.

We present the results below and a proof of (48) can be found in [14].

(48) 0
⊂−→ bFPk−2(F ;R2)

sym curlF−−−−−−→ Bdiv div
F,k

divF divF−−−−−−→ Pk−2(F )/P1(F )→ 0.

For the two-dimensional Hessian polynomial complex, let Brot
F,k−1 := Pk−1(F ;S) ∩

H0(rotF , F ;S), we have

(49) 0
⊂−→ b2FPk−5(F )

∇2
F−−→ Brot

F,k−1
rotF−−−→ Pk−2(F ;R2)/RT → 0,

which is a rotation of the two-dimensional elasticity bubble complex established
in [8].

At the end of this section, we present two results on the characterization for the
dual spaces of bubble spaces. The first one is also included in [15].

Lemma 4.10. Assume finite-dimensional Hilbert spaces B1,B2, . . . ,Bn with the
inner product (·, ·) form an exact Hilbert complex

0
⊂−→ B1

d1−−→ . . .Bi
di−→ . . .Bn → 0,

where Bi ⊆ ker(tr( di)) for i = 1, 2, · · · , n − 1. Then the bubble space Bi, for
i = 1, . . . , n− 1, is uniquely determined by the DoFs

〈div, q〉 ∀ q ∈ ( diBi)′,(50)

(v, q) ∀ q ∈ Q ∼= ( di−1Bi−1)′,(51)

where 〈·, ·〉 is the duality pair and the isomorphism Q → ( di−1Bi−1)′ is given by
p→ (p, ·) for p ∈ Q.

Proof. By the splitting lemma in [27] (see also Theorem 2.2 in [13]),

(52) Bi = d∗i diBi ⊕ di−1Bi−1,
where d∗i is the adjoint of di with respect to the inner product (·, ·). Since d∗i
restricted to diBi is injective, the number of DoFs (50)-(51) is same as dimBi.
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Assume v ∈ Bi and all the DoFs (50)-(51) vanish. By the decomposition (52),
there exist v1 ∈ Bi and v2 ∈ Bi−1 such that v = d∗i div1 + di−1v2. The vanishing
(50) yields div = 0, that is di d∗i ( div1) = 0. Noting that di d∗i : diBi → diBi is
isomorphic, we get div1 = 0 and thus v = di−1v2. Now apply the vanishing (51)
to get v = 0. �

Corollary 4.11. Assume B = µP, where µ ≥ 0 and µ 6= 0, and d∗ : Q → P is
isomorphic. Then

(1) P ∼= B′: for v ∈ B, if (v, p) = 0 for all p ∈ P, then v = 0.
(2) Q ∼= ( dB)′: for v ∈ dB, if (v, q) = 0 for all q ∈ Q, then v = 0.

Proof. (1) By assumption v = µw for some w ∈ P. Then choose p = w to get
(µw,w) = 0 which implies w = 0.
(2) By assumption v = d(µw) ∈ dB with w ∈ P. Notice that (v, q) = 0 implies

(µw, d∗q) = 0 ∀ q ∈ Q.

As d∗ : Q → P is isomorphic, we can find q ∈ Q s.t. d∗q = w and (µw,w) = 0
which implies w = 0 and consequently v = 0. �

The Koszul complex will play a vital role to find the space Q. Hereafter let
{Th}h>0 be a regular family of simplical meshes of a two- or three-dimensional
domain Ω.

5. Finite Element Complexes in Two Dimensions

In this section we will construct a smooth finite element Hessian complex and a
smooth finite element div div complex in two dimensions and construct commutative
diagrams. Assume Ω ⊂ R2 in this section.

5.1. Smooth finite element Hessian complex in two dimensions. First we
construct a finite element Hessian complex in two dimensions, which is smoother
than a rotation of the elasticity complex established in [12, (2.3)]. For an integer
k ≥ 6, we shall also construct the following commutative diagram

(53)

P1(F )
⊂ // C∞(F )

Ihess
F

��

∇2
F // C∞(F ;S)

IrotF

��

rotF // C∞(F ;R2)

IgradF

��

// 0

P1(F )
⊂ // Pk+1(F )

∇2
F // Pk−1(F ;S)

rotF // Pk−2(F ;R2) // 0.

Recall the Argyris element in [3, 9]. Take Pk+1(F ) as the shape function space.
The degrees of freedom are given by

v(δ),∇F v(δ),∇2
F v(δ) ∀ δ ∈ V(F ),(54)

(v, q)e ∀ q ∈ Pk−5(e), e ∈ E(F ),(55)

(∂nv, q)e ∀ q ∈ Pk−4(e), e ∈ E(F ),(56)

(∇2
F v, q)F ∀ q ∈ xxᵀPk−5(F ).(57)

The last DoF (57) is based on (50), the characterization of ( dB)′ for d = ∇2
F and

B = b2FPk−5(F ), and the isomorphism divF divF : Pk−5(F )xxᵀ → Pk−5(F ), cf.
(24). One can also use P ∼= B′ to replace (57) by (v, q)F for all q ∈ Pk−5(F ). The
choice (57) is for the commutative diagram (53).
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Then consider anH(rot)-conforming element for symmetric tensors. Take Pk−1(F ;S)
as the shape function space. The degrees of freedom are given by

τ (δ), rotF τ (δ) ∀ δ ∈ V(F ),(58)

(τt, q)e ∀ q ∈ Pk−3(e;R2), e ∈ E(F ),(59)

(rotF τ , q)e ∀ q ∈ Pk−4(e;R2), e ∈ E(F ),(60)

(τ , q)F ∀ q ∈ xxᵀPk−5(F ),(61)

(rotF τ , q)F ∀ q ∈ Pk−6(F ;S) · x⊥ = Pk−5(F ;R2)\RT .(62)

Again (61) is based on (51) and the characterization of ( dB)′ for d = ∇2
F and

B = b2FPk−5(F ), and (62) is on (50). Note that due to (58) and (60), rotF τ is
continuous on ∂F and thus the last polynomial space Pk−2(F ;R2) in (53) is the
continuous Lagrange element not discontinuous one. This is smoother than the
rotation of the H(div)-conforming element for symmetric tensors in [28].

Lemma 5.1. The degrees of freedom (58)-(62) are uni-solvent for Pk−1(F ;S).

Proof. The number of degrees of freedom (58)-(62) is

15 + 6(2k − 5) +
3

2
(k − 3)(k − 4)− 3 =

3

2
k(k + 1),

which equals to dimPk−1(F ;S).
Take τ ∈ Pk−1(F ;S) and assume all the degrees of freedom (58)-(62) vanish.

The vanishing degrees of freedom (58)-(60) imply τt|∂F = 0 and (rotF τ )|∂F = 0.
Apply the integration by parts to get

(rotF τ , q)F = (τ , sym curlF q)F = 0 ∀ q ∈ RT .

Then it follows from the vanishing DoF (62) and the uni-solvence of Lagrange ele-
ment that rotF τ = 0. Thanks to the bubble complex (49), there exists v ∈ Pk−5(F )
such that τ = ∇2

F (b2F v). Finally τ = 0 follows from the vanishing DoF (61) and
the isomorphism divF divF : Pk−2(F )xxᵀ → Pk−2(F ). �

Let IhessF : C∞(F ) → Pk+1(F ) be the nodal interpolation operator based on the
degrees of freedom (54)-(57), IrotF : C∞(F ;S)→ Pk−1(F ;S) be the nodal interpola-

tion operator based on the degrees of freedom (58)-(62), and IgradF : C∞(F ;R2) →
Pk−2(F ;R2) be the canonical Lagrange interpolation operator based on the degrees
of freedom

v(δ) ∀ δ ∈ V(F ),

(v, q)e ∀ q ∈ Pk−4(e;R2), e ∈ E(F ),

(v, q)F ∀ q ∈ Pk−5(F ;R2).

Lemma 5.2. The diagram (53) is commutative.

Proof. Consider τ ∈ C∞(F ;S) and q ∈ Pk−5(F ;R2). For q ∈ Pk−5(F ;R2)\RT

(IgradF rotF τ − rotF (IrotF τ ), q)F = (rotF (τ − IrotF τ ), q)F = 0.

When q ∈ RT , then using integration by parts

(IgradF rotF τ − rotF (IrotF τ ), q)F = (τ − IrotF τ , sym curlF q)F = 0,
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as sym curlF q = 0 and ((τ − IrotF τ )t, q)e = 0 for q|e ∈ P1(e;R2) ⊂ Pk−4(e;R2). It

is easy to see that (IgradF rotF τ − rotF (IrotF τ ))|∂F = 0. So we have verified

(63) IgradF rotF τ = rotF (IrotF τ ) ∀ τ ∈ C∞(F ;S).

For v ∈ C∞(F ), apparently (∇2
F (IhessF v))(δ) = (IrotF (∇2

F v))(δ) = (∇2
F v)(δ) for

each δ ∈ V(F ), and by the integration by parts,

(t · ∇2
F (IhessF v), q)e = (t · ∇2

F v, q)e = (t · IrotF (∇2
F v), q)e ∀ q ∈ Pk−3(e;R2)

on each e ∈ E(F ). By (63),

rotF
(
IrotF (∇2

F v)−∇2
F (IhessF v)

)
= rotF

(
IrotF (∇2

F v)
)

= IgradF rotF (∇2
F v) = 0.

For q ∈ xxᵀPk−5(F ),(
IrotF (∇2

F v)−∇2
F (IhessF v), q

)
F

= (∇2
F (v − IhessF v), q

)
F

= 0.

Then by the unisolvence result, cf. Lemma 5.1,

(64) IrotF (∇2
F v) = ∇2

F (IhessF v) ∀ v ∈ C∞(F ).

Combining (63) and (64) yields the commutative diagram (53). �

Next we show the smooth finite element Hessian complex in two dimensions. For
an integer k ≥ 6, define global finite element spaces

V hess
h := {vh ∈ H2(Ω) :vh|F ∈ Pk+1(F ) for each F ∈ Fh, all the

degrees of freedom (54)-(56) are single-valued},
Σrot
h := {τh ∈H(rot,Ω;S) :τh|F ∈ Pk−1(F ;S) for each F ∈ Fh, all the

degrees of freedom (58)-(60) are single-valued},

V grad
h := {qh ∈H

1(Ω;R2) :qh|K ∈ Pk−2(F ;R2) for each F ∈ Fh}.

Note that rot Σrot
h ⊂H

1(Ω;R2).
Counting the dimensions of these spaces, we have

dimV hess
h = 6#Vh + (2k − 7)#Eh +

1

2
(k − 3)(k − 4)#Fh,

dim Σrot
h = 5#Vh + (4k − 10)#Eh +

3

2
(k − 3)(k − 4)#Fh − 3#Fh,

dimV grad
h = 2#Vh + (2k − 6)#Eh + (k − 3)(k − 4)#Fh.

Theorem 5.3. The finite element Hessian complex in two dimensions

(65) P1(Ω)
⊂−→ V hess

h
∇2

−−→ Σrot
h

rot−−→ V grad
h −→ 0

is exact.

Proof. The inclusion ∇2V hess
h ⊆ Σrot

h follows from (54) and (58), and rot Σrot
h ⊆

V grad
h holds from (58) and (60). Hence (65) is a complex.

For τh ∈ Σrot
h ∩ ker(rot), there exists vh ∈ H2(Ω) such that τh = ∇2vh and

vh|F ∈ Pk+1(F ) for each F ∈ Fh . Thanks to DoF (58), vh ∈ V hess
h . Thus

Σrot
h ∩ ker(rot) = ∇2V hess

h . Then by the Euler’s identity,

dim(rot Σrot
h ) = dim Σrot

h − dimV hess
h + 3

= −#Vh + (2k − 3)#Eh + (k − 3)(k − 4)#Fh − 3#Fh + 3

= 2#Vh + (2k − 6)#Eh + (k − 3)(k − 4)#Fh = dimV grad
h ,
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which implies rot Σrot
h = V grad

h . �

5.2. Smooth finite element div div complex in two dimensions. Next we
construct a finite element div div complex in two dimensions, which is smoother
than those in [14, 30]. We also have the following commutative diagram

(66)

RT
⊂ // C∞(F ;R2)

Isym curl
F

��

sym curlF // C∞(F ;S)

Idiv div
F

��

divF divF // C∞(F )

IgradF

��

// 0

RT
⊂ // Pk+1(F ;R2)

sym curlF // Pk(F ;S)
divF divF // Pk−2(F ) // 0.

We start from the Argyris element for smooth finite element div div complex in
two dimensions. Choose Pk+1(F ;R2) as the shape function space. The degrees of
freedom are given by

v(δ),∇Fv(δ),∇2
Fv(δ) ∀ δ ∈ V(F ),(67)

(v, q)e ∀ q ∈ Pk−5(e;R2), e ∈ E(F ),(68)

(∂nv, q)e ∀ q ∈ Pk−4(e;R2), e ∈ E(F ),(69)

(sym curlF v, q)F ∀ q ∈ sym(x⊥FPk−5(F ;R2)).(70)

In order to have the commutative diagram, the last DoF (70) is based on char-
acterization of ( dB)′ for d = sym curlF , B = b2FPk−5(F ;R2), and the bijection
rotF : sym(x⊥Pk−5(F ;R2))→ Pk−5(F ;R2).

Now we construct smooth div div element for symmetric tensors. Take Pk(F ;S)
as the space of shape functions. Choose the following degrees of freedom

τ (δ),∇F τ (δ), (divF divF τ )(δ) ∀ δ ∈ V(F ),(71)

(τ , q)e ∀ q ∈ Pk−4(e;S), e ∈ E(F ),(72)

(divF divF τ , q)e ∀ q ∈ Pk−4(e), e ∈ E(F ),(73)

(tre,2(τ ), q)e ∀ q ∈ Pk−3(e), e ∈ E(F ),(74)

(τ , q)F ∀ q ∈ sym(x⊥FPk−5(F ;R2)),(75)

(divF divF τ , q)F ∀ q ∈ Pk−5(F )\P1(F ).(76)

Lemma 5.4. The degrees of freedom (71)-(76) are uni-solvent for Pk(F ;S).

Proof. The number of degrees of freedom (71)-(76) is

30 + 12(k − 3) + 3(k − 2) +
3

2
(k − 3)(k − 4)− 3 =

3

2
(k + 1)(k + 2),

which equals to dimPk(F ;S).
Take τ ∈ Pk(F ;S) and assume all the degrees of freedom (71)-(76) vanish. The

vanishing degrees of freedom (71)-(74) imply τ |∂F = 0, (divF divF τ )|∂F = 0 and
tre,2(τ )|∂F = 0. We get from the Green’s identity (41) that

(divF divF τ , q)F = 0 ∀ q ∈ P1(F ),

which together with the vanishing (76) and the uni-solvence of the Lagrange el-
ement that divF divF τ = 0. By the bubble complex (48), there exists w ∈
Pk+1(F ;R2) such that τ = sym curlF w. By the homogeneous boundary condi-
tions, τ = sym curlF (b2Fv) with v ∈ Pk−5(F ;R2). Finally τ = 0 follows from the
vanishing (75) and the polynomial complex (25). �
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Let Isym curl
F : C∞(F ;R2) → Pk+1(F ;R2) be the nodal interpolation operator

based on the degrees of freedom (67)-(70), and Idiv div
F : C∞(F ;S) → Pk(F ;S) be

the nodal interpolation operator based on the degrees of freedom (71)-(76).

Lemma 5.5. The diagram (66) is commutative.

Proof. For τ ∈ C∞(F ;S), clearly we have(
IgradF (divF divF τ )− divF divF (Idiv div

F τ )
)
|∂F = 0.

Then by the Green’s identity (41), for q ∈ P1(F ) we have

(IgradF (divF divF τ )−divF divF (Idiv div
F τ ), q)F = (divF divF (τ −Idiv div

F τ ), q)F = 0.

For q ∈ Pk−5(F )\P1(F ),

(IgradF (divF divF τ )−divF divF (Idiv div
F τ ), q)F = (divF divF (τ −Idiv div

F τ ), q)F = 0.

Hence we get from the uni-solvence of the Lagrange element that

(77) divF divF (Idiv div
F τ ) = IgradF divF divF τ ∀ τ ∈ C∞(F ;S).

For v ∈ C∞(F ;R2), set τ 1 = sym curlF (Isym curl
F v) and τ 2 = Idiv div

F (sym curlF v)
for simplicity. Obviously

(τ 1 − τ 2)(δ) = 0, ∇(τ 1 − τ 2)(δ) = 0 ∀ δ ∈ V(F ).

For q ∈ Pk−4(e;S) and e ∈ E(F ),

(τ 1, q)e = (sym curlF v, q)e = (τ 2, q)e.

For q ∈ Pk−3(e),

(∂t(t
ᵀτ 1n) + nᵀ divF τ 1, q)e = (∂tt(I

sym curl
F v · t), q)e = (∂tt(v · t), q)e

= (∂t(t
ᵀτ 2n) + nᵀ divF τ 2, q)e.

And for q ∈ sym(x⊥F ⊗ Pk−5(F ;R2)),

(τ 1, q)F = (sym curlF v, q)F = (τ 2, q)F .

By (77),

divF divF (τ 2) = IgradF divF divF (sym curlF v) = 0 = divF divF τ 1.

Then by Lemma 5.4,

(78) sym curlF (Isym curl
F v) = Idiv div

F (sym curlF v) ∀ v ∈ C∞(F ;R2).

Combining (77) and (78) yields the commutative diagram (66). �

Next we show the smooth finite element div div complex in two dimensions.
Define global finite element spaces

V sym curl
h := {vh ∈H1(Ω;R2) :vh|F ∈ Pk+1(F ;R2) for each F ∈ Fh, all the

degrees of freedom (67)-(69) are single-valued},

Σdiv div
h := {τh ∈H(div div,Ω;S) :τh|F ∈ Pk(F ;S) for each F ∈ Fh, all the

degrees of freedom (71)-(74) are single-valued},

V grad
h := {qh ∈ H1(Ω) :qh|K ∈ Pk−2(F ) for each F ∈ Fh}.
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Counting the dimensions of these spaces, we have

dimV sym curl
h = 12#Vh + (4k − 14)#Eh + (k − 3)(k − 4)#Fh,

dim Σdiv div
h = 10#Vh + (5k − 14)#Eh +

3

2
(k − 3)(k − 4)#Fh − 3#Fh,

dimV grad
h = #Vh + (k − 3)#Eh +

1

2
(k − 3)(k − 4)#Fh.

Theorem 5.6. The finite element div div complex in two dimensions

(79) RT
⊂−→ V sym curl

h

sym curl−−−−−→ Σdiv div
h

div div−−−−→ V grad
h −→ 0

is exact.

Proof. The inclusion sym curlV sym curl
h ⊆ Σdiv div

h follows from (67)-(69) and (71)-

(72), and div div Σdiv div
h ⊆ V grad

h holds from (71) and (73). Hence (79) is a complex.

For τh ∈ Σdiv div
h ∩ ker(div div), there exists vh ∈ H1(Ω;R2) such that τh =

sym curlvh and vh|F ∈ Pk+1(F ;R2) for each F ∈ Fh. Thanks to DoFs (71)-(72),

vh ∈ V sym curl
h . Thus Σdiv div

h ∩ker(div div) = sym curlV sym curl
h . And by the Euler’s

identity,

dim(div div Σdiv div
h ) = dim Σdiv div

h − dimV sym curl
h + 3

= −2#Vh + k#Eh +
1

2
(k − 3)(k − 4)#Fh − 3#Fh + 3

= #Vh + (k − 3)#Eh +
1

2
(k − 3)(k − 4)#Fh = dimV grad

h ,

which implies div div Σdiv div
h = V grad

h . �

The finite element div div complex (79) is smoother than that in [14, 30] as

V grad
h ⊂ H1(Ω) and V sym curl

h ⊂H2(Ω;R2).

6. Finite Element Elasticity Complex

In this section we present a finite element elasticity complex. In the complex,
the H1-conforming finite element is a variant of the finite element developed by
Neilan for the Stokes complex [34] with modified DoFs. The H(div;S)-conforming
finite element is the Hu-Zhang element [28, 31] with modified DoFs. The missing
component is H(inc;S)-conforming finite element which is the focus of this section.

6.1. H1 conforming finite element for vectors. Recall the H1-conforming fi-
nite element for vectors by Neilan in [34]. The space of shape functions is chosen
as Pk+1(K;R3) for k + 1 ≥ 7. The degrees of freedom are

v(δ),∇v(δ),∇2v(δ) ∀ δ ∈ V(K),(80)

(v, q)e ∀ q ∈ Pk−5(e;R3), e ∈ E(K),(81)

(∂niv, q)e ∀ q ∈ Pk−4(e;R3), e ∈ E(K), i = 1, 2,(82)

(sym curlF (v × n), q)F ∀ q ∈ sym(x⊥FPk−5(F ;R2)), F ∈ F(K),(83)

(∇2
F (v · n), q)F ∀ q ∈ xxᵀPk−5(F ), F ∈ F(K),(84)

(def v, q)K ∀ q ∈ sym(Pk−3(K;R3)xᵀ).(85)

The face moments in the original Neilan’s element is (v, q)F , ∀ q ∈ Pk−5(F ;R3).
We split it into two ( dB)′ forms as v × n ∈ H(sym curlF , F ) and v · n ∈ H2(F )
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cf. the trace complexes (35) and (36) and DoFs (57) and (70). The unisovlence of
this variant is easy. The Neilan element has extra super-smoothness at vertices and
edges. Note that the normal derivative is only continuous on edges not on faces and
thus this element is only in H1 not H2. To construct an H2-conforming element on
tetrahedron, the degree of polynomial will be higher, i.e. k+ 1 ≥ 9; see Zhang [35].

6.2. H(div) conforming finite element for symmetric tensors. Recall the
H(div)-conforming finite element for symmetric tensors in [31]. The space of shape
functions is chosen as Pk−2(K;S) for k − 2 ≥ 4. The degrees of freedom are

τ (δ) ∀ δ ∈ V(K),(86)

(nᵀ
i τnj , q)e ∀ q ∈ Pk−4(e), e ∈ E(K), i, j = 1, 2,(87)

(nᵀ
i τt, q)e ∀ q ∈ Pk−4(e), e ∈ E(K), i = 1, 2,(88)

(τn, q)F ∀ q ∈ Pk−5(F ;R3), F ∈ F(K),(89)

(div τ , q)K ∀ q ∈ Pk−3(K;R3)\RM ,(90)

(τ , q)K ∀ q ∈ x× Pk−6(K;S)× x.(91)

The boundary degree of freedom (86)-(89) will determine the trace τn uniquely by
the unisolvence of the Lagrange elements. Due to the characterization ofH(div,K;S)
bubble function, cf. (47), Bdiv

K,k−2 is uniquely determined by DoF (τ , q)K for

q ∈ Pk−4(K;S), i.e. (Bdiv
K,k−2)′ ∼= Pk−4(K;S) . The unisovlence will be a con-

sequence of the characterization of the dual of Bdiv
K,k−2 based on Lemma 4.10.

Lemma 6.1. The bubble space Bdiv
K,k−2 is uniquely determined by DoFs (90)-(91)

and the subspace incBinc
K,k is determined by DoF (91).

Proof. By Lemma 4.10, we can determine Bdiv
K,k−2 by two parts: one part for

divBdiv
K,k−2 and the other part for incBinc

K,k. Thanks to the bubble complex (46),

divBdiv
K,k−2 = Pk−3(K;R3)\RM which motivates DoF (90).

For τ ∈ incBinc
K,k, τ ⊥ defH1(K;R3) through integration by parts. If (91)

vanishes for τ , from the space decomposition Pk−4(K;S) = def Pk−3(K;R3)⊕ (x×
Pk−6(K;S)× x) in (21), we conclude τ ⊥ Pk−4(K;S) and thus τ = 0. So we have
proved (incBinc

K,k)′ ∼= x× Pk−6(K;S)× x, which indicates DoF (91). �

6.3. H(inc) conforming finite element for symmetric tensors. With previous
preparations, we can construct an H(inc) conforming finite element now. Take
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Pk(K;S), k ≥ 6, as the space of shape functions. The degrees of freedom are

τ (δ),∇τ (δ) ∀ δ ∈ V(K),(92)

(∇× τ ×∇)(δ) ∀ δ ∈ V(K),(93)

(τ , q)e ∀ q ∈ Pk−4(e;S), e ∈ E(K),(94)

(∇× τ · t, q)e ∀ q ∈ Pk−3(e;R3), e ∈ E(K),(95)

(nᵀ
i (∇× τ ×∇)nj , q)e ∀ q ∈ Pk−4(e), e ∈ E(K), i, j = 1, 2,(96)

(nᵀ
i (∇× τ ×∇)t, q)e ∀ q ∈ Pk−4(e), e ∈ E(K), i = 1, 2,(97)

(divF divF tr1(τ ), q)F ∀ q ∈ Pk−5(F )\P1(F ), F ∈ F(K),(98)

(tr1(τ ), q)F ∀ q ∈ sym(x⊥Pk−5(F ;R2)), F ∈ F(K),(99)

(rotF tr2(τ ), q)F ∀ q ∈ Pk−6(F ;S) · x⊥, F ∈ F(K),(100)

(tr2(τ ), q)F ∀ q ∈ xxᵀPk−5(F ), F ∈ F(K),(101)

(inc τ , q)K ∀ q ∈ x× Pk−6(K;S)× x,(102)

(τ , q)K ∀ q ∈ sym(xPk−3(K;R3)).(103)

We first show the trace is uniquely determined by the degree of freedom (92)-
(101) on the boundary.

Lemma 6.2. Let F ∈ F(K) and τ ∈ Pk(K;S). If all the degrees of freedom
(92)-(101) on face F vanish, then tr1(τ ) = 0 and tr2(τ ) = 0 on face F .

Proof. We split our proof into several steps. For the ease of notation, denote
σ = ∇× τ ×∇ ∈ Pk−2(K;S).

Step 1. Traces on edges vanish. By the vanishing degrees of freedom (92), (94),
and (95), τ |e= 0 and (∇×τ · t) |e= 0 for any edge e ∈ E(F ). Then it follows from
Corollary 4.9, tre,1(tr1(τ )) = tre,2(tr1(τ )) = tre,3(tr2(τ )) = 0. Hence tr1(τ ) ∈
Bdiv div
F,k and tr2(τ ) ∈ Brot

F,k−1.

By the vanishing degree of freedom (93), (96), and (97) for σ, we know all
components of σ |e, except t · σ · t, are zero.

Step 2. tr1(τ ) vanishes. Using (39), divF divF (tr1(τ )) |∂F= n·σ·n |∂F= 0. Thanks
to Lemma 5.4, it follows from the vanishing (92), (98) and (99) that tr1(τ ) =
n× τ × n = 0.

Step 3. tr2(τ ) vanishes. Apply (40) to acquire rotF (tr2(τ )) |∂F= n ·σ×n |∂F= 0.
By Lemma 5.1, it follows from the vanishing (100) and (101) that tr2(τ ) = 0. �

Now we are in the position to present the unisolvence.

Theorem 6.3. The degrees of freedom (92)-(103) are unisolvent for Pk(K;S).
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Proof. We count the number of degrees of freedom (92)-(103) by the dimension of
the sub-simplex

4 vertices : 4× (6 + 3× 6 + 6) = 120;

6 edges : 6[6(k − 3) + 3(k − 2) + 3(k − 3) + 2(k − 3)] = 6[14(k − 3) + 3];

4 faces : 4
[(k − 3

2

)
− 3 + 2

(
k − 3

2

)
+ 2

(
k − 3

2

)
− 3 +

(
k − 3

2

)]
= 4
[
3(k − 3)(k − 4)− 6

]
;

1 volume : 6

(
k − 1

3

)
− 3

(
k

3

)
+ 6 + 3

(
k

3

)
= (k − 1)(k − 2)(k − 3) + 6

= k3 − 6k2 + 11k.

The total dimension is k3 + 6k2 + 11k + 6, which agrees with dimPk(K;S).
Take any τ ∈ Pk(K;S) and suppose all the degrees of freedom (92)-(103) vanish.

We are going to prove it is zero.
First of all, by Lemma 6.2, we conclude tr1(τ ) = 0 and tr2(τ ) = 0 and thus

τ ∈ H0(inc,K;S), which immediately induces inc τ ∈ incBinc
K,k. Then by Lemma

6.1, vanishing (102) implies inc τ = 0.
By the complex for bubble function spaces (46), there exists v ∈ Pk−3(K;R3)

such that τ = def(bKv). Lastly by the characterization of ( dB)′ for d = def,B =
bKPk−3(K;R3), and the isomorphism div : sym(xPk−3(K;R3))→ Pk−3(K;R3), cf.
Lemma 3.1, we conclude v = 0.

�

6.4. Finite element elasticity complex in three dimensions. For an integer
k ≥ 6, define global finite element spaces

V h := {vh ∈H1(Ω;R3) :vh|K ∈ Pk+1(K;R3) for each K ∈ Th, all the

degrees of freedom (80)-(84) are single-valued},

Σinc
h := {τh ∈ L2(Ω;S) :τh|K ∈ Pk(K;S) for each K ∈ Th, all the

degrees of freedom (92)-(101) are single-valued},

Σdiv
h := {τh ∈H(div,Ω;S) :τh|K ∈ Pk−2(K;S) for each K ∈ Th, all the

degrees of freedom (86)-(89) are single-valued},
Qh := {qh ∈ L

2(Ω;R3) :qh|K ∈ Pk−3(K;R3) for each K ∈ Th}.

By Lemma 6.2, τh |e is single-valued for e ∈ Eh and tr1(τh), tr2(τh) are single-

valued on each F ∈ Fh, therefore by Lemma 4.3, Σinc
h ⊂H(inc,Ω;S).
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Counting the dimensions of these spaces, we have

dimV h = 30#Vh + (9k − 30)#Eh +
3

2
(k − 3)(k − 4)#Fh +

1

2
k(k − 1)(k − 2)#Th,

dim Σinc
h = 30#Vh + (14k − 39)#Eh +

(
3k2 − 21k + 30

)
#Fh

+ (k3 − 6k2 + 11k)#Th,

dim Σdiv
h = 6#Vh + (5k − 15)#Eh +

3

2
(k − 3)(k − 4)#Fh

+ (k − 1)(k − 2)(k − 3)#Th,

dimQh =
1

2
k(k − 1)(k − 2)#Th.

Lemma 6.4. Let τ ∈ Σinc
h and inc τ = 0. Then there exists v ∈ V h satisfying

τ = def v.

Proof. By the polynomial elasticity complex (12) and the elasticity complex (1),
there exists v = (v1, v2, v3)ᵀ ∈ H1(Ω;R3) s.t. τ = def v and v|K ∈ Pk+1(K;R3)
for each K ∈ Th. We are going to show such v ∈ V h by verifying the continuity of
degrees of freedom (80)-(84). As an H1 function, v is continuous at vertices, edges
and faces. The focus is on the derivatives of v.

Due to the additional smoothness of Σinc
h , ∇(def v)(δ) is single-valued at each

vertex δ ∈ Vh, and (def v) |e and (∇× (def v) · t) |e are single-valued on each edge
e ∈ Eh. Next we show that ∇v is single-valued on each edge e ∈ Eh. By (3),

∂tv = (∇v)ᵀ · t = (def v) · t+
1

2
mskw(∇× v) · t = (def v) · t+

1

2
(∇× v)× t,

(104) ∇× (def v) · t =
1

2
∂t(∇× v)

on edge e with the unit tangential vector t. Hence (∇× v)× t and ∂t(∇× v) are
single-valued across e. Taking any face F ∈ F ih shared by K1,K2 ∈ Th, it follows
from the single-valued (∇ × v) × t|∂F that (∇ × v)|K1

and (∇ × v)|K2
coincide

with each other at the three vertices of F . Thus (∇×v)(δ) is single-valued at each
vertex δ ∈ Vh, which together with the single-valued ∂t(∇× v) on Eh implies that
∇× v is single-valued on each edge e ∈ Eh. Since (∇v)ᵀ = def v+ 1

2 mskw(∇× v),
∇v is single-valued on each edge e ∈ Eh.

By the identity

∂ijvk = ∂i((def v)jk) + ∂j((def v)ki)− ∂k((def v)ij) for i, j, k = 1, 2, 3,

the tensor ∇2v(δ) is single-valued at each vertex δ ∈ Vh as ∇(def v)(δ) is single-
valued. Therefore v ∈ V h. �

Theorem 6.5. The finite element elasticity complex

(105) RM
⊂−→ V h

def−−→ Σinc
h

inc−−→ Σdiv
h

div−−→ Qh −→ 0

is exact.

Proof. The inclusion def V h ⊆ Σinc
h follows from (104) and (37)-(38), and inc Σinc

h ⊆
Σdiv
h holds from (39)-(40) and Lemma 6.2. The proof of div Σdiv

h = Qh can be found
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in [28, 31]. Hence (105) is a complex. And

dim(Σdiv
h ∩ ker(div)) = dim Σdiv

h − dimQh

= 6#Vh + (5k − 15)#Eh +
3

2
(k − 3)(k − 4)#Fh

+
1

2
(k − 1)(k − 2)(k − 6)#Th.

It follows from Lemma 6.4 that def V h = Σinc
h ∩ ker(inc). Thus

dim(inc Σinc
h ) = dim Σinc

h − dim def V h = dim Σinc
h − dimV h + 6

= (5k − 9)#Eh +
3

2
(k2 − 7k + 8)#Fh

+
1

2
(k3 − 9k2 + 20k)#Th + 6.

Then we get from the Euler’s identity that

dim(Σdiv
h ∩ ker(div))− dim(inc Σinc

h ) = 6#Vh − 6#Eh + 6#Fh − 6#Th + 6 = 0.

Therefore Σdiv
h ∩ ker(div) = inc Σinc

h . �

Remark 6.6. The finite element elasticity complex in [20] holds for k ≥ 4, while in
complex (105) k ≥ 6 is required. The space V h in complex (105) is H1-conforming,

while the corresponding space in [20] is H2-conforming, and Σinc
h in [20] is H1-

conforming. Although macro finite elements are adopted, the finite element elastic-
ity complex in [20] is still smoother than complex (105).

7. Commutative Diagram

In this section, we will show the canonical interpolation operators based on
DoFs for the finite element elasticity complex (105) commutes with the differential
operators.

Let IdivK : C∞(K;S)→ Pk−2(K;S) be the nodal interpolation operator based on
DoFs (86)-(91), I incK : C∞(K;S) → Pk(K;S) be the nodal interpolation operator
based on DoFs (92)-(103), and IdefK : C∞(K;S)→ Pk+1(K;S) be the nodal interpo-

lation operator based on DoFs (80)-(85). Recall QK := Qk−3K is the L2-projection.
Here for the ease of notation, we skip the degree of polynomial which will be clear
in the context.

Lemma 7.1. It holds

(106) div(IdivK τ ) = QK div τ ∀ τ ∈ C∞(K;S).

Proof. For τ ∈ C∞(K;S) and q ∈ RM , employing the integration by parts,

(QK div τ − div(IdivK τ ), q)K = (div(τ − IdivK τ ), q)K = 0.

For q ∈ Pk−3(K;R3)\RM , by (90),

(QK div τ − div(IdivK τ ), q)K = (div(τ − IdivK τ ), q)K = 0.

Combining the last two identities gives (106). �

Note that the canonical interpolation for the original Hu-Zhang element using
(τ , q)K for q ∈ Pk−4(K;S) as interior DoFs will not satisfy the property (106).
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Lemma 7.2. It holds

(107) inc(I incK τ ) = IdivK (inc τ ) ∀ τ ∈ C∞(K;S).

Proof. For ease of presentation, set σ = IdivK (inc τ ) − inc(I incK τ ) ∈ Pk−2(K;S).
By (106), we get

divσ = div
(
IdivK (inc τ )

)
= QK div(inc τ ) = 0.

Thanks to DoFs (93) and (96)-(97), the DoFs (86)-(88) of σ vanish. Then apply
the integration by parts to get

(divF divF (n× (τ − I incK τ )× n), q)F = 0 ∀ q ∈ P1(F ),

(rotF (tr2(τ − I incK τ )), q)F = 0 ∀ q ∈ RT .
For q ∈ Pk−5(F ;R3) and F ∈ F(K), it follows from (39)-(40), and DoFs (98), (100)
that

(σn, q)F = ((IdivK (inc τ ))n, q)F − (inc(I incK τ )n, q)F = (inc(τ − I incK τ )n, q)F

= (n · inc(τ − I incK τ ) · n,n · q)F + (n× inc(τ − I incK τ ) · n,n× q)F

= (divF divF (n× (τ − I incK τ )× n),n · q)F

− (rotF (tr2(τ − I incK τ )),n× q)F = 0.

For q ∈ x× Pk−6(K;S)× x,

(σ, q)K = (inc τ − inc(I incK τ ), q)K = 0.

Therefore we conclude (107) from the uni-solvence of H(div)-conforming finite el-
ement for symmetric tensors. �

Lemma 7.3. It holds

(108) def(IdefK v) = I incK (def v) ∀ v ∈ C∞(K;R3).

Proof. For ease of presentation, set τ = I incK (def v)−def(IdefK v) ∈ Pk(K;S). By (107),
we get

inc τ = inc
(
I incK (def v)

)
= IdivK (inc(def v)) = 0.

Then DoF (102) vanishes. This also means DoFs (93) and (96)-(97) vanish. By the
definitions of I incK and IdefK , we have for δ ∈ V(K),

∇iτ (δ) = ∇i def(v − IdefK v) = 0, i = 0, 1,

and for e ∈ E(K),

(τ , q)e = (def(v − IdefK v), q)e = 0 ∀ q ∈ Pk−4(e;S).

For q ∈ Pk−3(e;R3) and e ∈ E(K), it follows

(∇× τ · t, q)e = (∇× def(v − IdefK v) · t, q)e = −1

2
(∇× (v − IdefK v), ∂tq)e = 0.

Hence DoFs (92) and (94)-(95) vanish.
Employing (37), it holds tr1(def(v− IdefK v)) = sym curlF ((v− IdefK v)×n). Then

for q ∈ Pk−5(F )\P1(F ) and F ∈ F(K),

(divF divF tr1(τ ), q)F = (divF divF tr1(def(v − IdefK v)), q)F

= (divF divF sym curlF ((v − IdefK v)× n), q)F = 0.
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We get for q ∈ sym(x⊥Pk−5(F ;R2)) that

(tr1(τ ), q)F = (tr1(def(v − IdefK v)), q)F = (sym curlF ((v − IdefK v)× n), q)F = 0.

Employing (38), it holds tr2(def(v − IdefK v)) = ∇2
F ((v − IdefK v) · n). Then for

q ∈ Pk−6(F ;S) · x⊥,

(rotF tr2(τ ), q)F = (rotF tr2(def(v − IdefK v)), q)F

= (rotF ∇2
F ((v − IdefK v) · n), q)F = 0.

We obtain for q ∈ xxᵀPk−5(F ) that

(tr2(τ ), q)F = (tr2(def(v − IdefK v)), q)F = (∇2
F ((v − IdefK v) · n), q)F = 0.

Thus DoFs (98)-(101) vanish.
For q ∈ sym(xPk−3(K;R3)), it follows

(τ , q)K = (def v − def(IdefK v), q)K = 0.

Finally we conclude (108) from the uni-solvence of H(inc)-conforming finite el-
ement for symmetric tensors, i.e. Theorem 6.3. �

Define global commutative projection operators Idefh : C∞(Ω;R3) → V h, I inch :

C∞(Ω; S) → Σinc
h , Idivh : C∞(Ω;S) → Σdiv

h and Qh : C∞(Ω;R3) → Qh as follows:
for each K ∈ Th,

(Idefh v)|K := IdefK (v|K), (I inch τ )|K := I incK (τ |K),

(Idivh τ )|K := IdivK (τ |K), (Qhv)|K := QK(v|K).

Then combining (106), (107) and (108) implies the following commutative diagram

RM
⊂ // C∞(Ω;R3)

Idef
h

��

def // C∞(Ω;S)

Iinch

��

inc // C∞(Ω;S)

Idivh

��

div // C∞(Ω;R3)

Qh

��

// 0

RM
⊂ // V h

def // Σinc
h

inc // Σdiv
h

div // Qh // 0.
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