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ABSTRACT OF THE DISSERTATION 

Computationally guided engineering of 

cell-selective cytokines 

by 

Brian Thomas Orcutt-Jahns 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2024 

Professor Aaron S. Meyer, Chair 

Cytokine signaling a core mechanism by which immune activity is regulated in both health and 

disease. Cytokine-mediated signaling regulates the proliferation, differentiation, and activity of 

cells in both the innate and adaptive immune systems. Due to their powerful regulatory capacity, 

cytokines have been leveraged as immunotherapies in a wide range of disease indications; for 

example, interleukin-2 (IL-2) has been explored as a potential immunostimulant for the treatment 

for cancer, as well as an immunosuppressant for the treatment of autoimmune diseases. However, 

in many such cases, the pleiotropic nature of cytokine signaling has stymied the development of 

efficacious and safe therapies due to the induction of signaling in off-target populations. To 

overcome this limitation and bias cytokines towards signaling in target populations, engineered 

cytokines with a variety of alterations, such as mutations affecting their binding interactions with 

their cognate receptors, fusion to antibody fragments, or co-formulation with antibodies to that 

cytokine have been developed. However, without a quantitative model of signaling the effects of 

such mutations and alterations are often difficult to anticipate, leading to inefficient cytokine 
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engineering efforts. To address this lack of quantitative understanding, we conducted a battery of 

computational studies. First, using a mechanistic binding model, we developed a general, 

quantitative understanding of the landscape of cell-selective cytokine signaling, and found that 

affinity, valency, and multi-specificity must be simultaneously optimized to engineer optimally 

selective cytokines. We then specifically studied the IL-2 signaling pathway, and used both 

ordinary differential equation models and our mechanistic binding model to study the signaling 

characteristics of wild-type and engineered IL-2 mutants. Leveraging our newfound quantitative 

of how affinity and valency interact to determine a cytokine’s selectivity profile both generally 

and in the specific context of IL-2, we developed affinity-optimized tetravalent IL-2 mutants with 

superior regulatory cell selectivity. Using these models of IL-2 signaling, we also elucidated the 

mechanism by which engineered antibody-IL-2 fusions induced regulatory cell-selective signaling 

and conferred protection against autoimmunity. In total, this body of work demonstrates the critical 

role that computational modeling plays in potentiating the engineering of superior cytokine-based 

immunotherapies. 
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Abstract
A critical property of many therapies is their selective binding to target populations. Exceptional specificity can arise from high-
affinity binding to surface targets expressed exclusively on target cell types. In many cases, however, therapeutic targets are only
expressed at subtly different levels relative to off-target cells. More complex binding strategies have been developed to overcome this
limitation, including multi-specific and multivalent molecules, creating a combinatorial explosion of design possibilities. Guiding
strategies for developing cell-specific binding are critical to employ these tools. Here, we employ a uniquely general multivalent
binding model to dissect multi-ligand and multi-receptor interactions. This model allows us to analyze and explore a series of
mechanisms to engineer cell selectivity, including mixtures of molecules, affinity adjustments, valency changes, multi-specific
molecules and ligand competition. Each of these strategies can optimize selectivity in distinct cases, leading to enhanced selectivity
when employed together. The proposed model, therefore, provides a comprehensive toolkit for the model-driven design of selectively
binding therapies.

Insight Window

Selective binding to specific target cells is a critical property of many therapies. To enhance selectivity, a series of strategies have
been proposed in the drug development literature, including affinity, valency, multi-specificity and other alterations to target cell
binding. We employ a simple yet general multivalent ligand–receptor binding model that can help to direct therapeutic engineering.
Using this model, we provide generalized and quantitative analyses of the effectiveness and limitations of each strategy. We also
demonstrate that combining strategies can offer enhanced selectivity. This work therefore provides guidance for future therapeutic
development.

INTRODUCTION
The intricacies of both inter-population expression dif-
ferences and intrapopulation expression heterogeneity
present significant challenges that limit the selectivity of
therapies within the body. Many drugs both derive their
therapeutic benefit and avoid toxicity through selective
binding to specific cells within the body. Often, target
cells differ from off-target populations only subtly in
surface receptor expression, making selective binding
to or activation of target cells difficult to achieve. This
can result in reduced effectiveness and increased toxi-
city. Even with a drug of very specific molecular bind-
ing, genetic and non-genetic heterogeneity can create
a wide distribution of cell responses. For example, in
cancer, resistance to anti-tumor antibodies [1], targeted
inhibitors [2], chemotherapies [3] and chimeric antigen
receptor T cells [4, 5] all can arise through the selection of

poorly targeted cells among heterogeneous cell popula-
tions.

Numerous engineering efforts have tried to develop
new selective targeting strategies. Engineering therapies
to have high-affinity, monomeric binding to antigens
uniquely expressed on target cell populations has been
used extensively, but only works to the degree that the
surface marker is uniquely expressed [6]. More com-
monly, target and off-target cells express the same col-
lection of receptors and differ only in their magnitude
of receptor expression. In such situations, developing
selectivity is an area of ongoing research and has inspired
a myriad of drug designs [7–9]. There are also extensive
efforts to program complex logic into cellular thera-
pies to recognize target cells more specifically, but they
suffer from shortcomings in drug access, manufacture
and reliability [10–13]. Many cell selectivity engineering
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strategies have been proposed. A remaining challenge,
however, is to consolidate these scattered efforts into
a holistic picture. A quantitative, unified cell targeting
framework would not only elucidate how each strategy
achieves better cell type-selectivity, but also guide the
discovery of new strategies and their synergistic combi-
nation.

Here, we systematically enumerate a suite of molecu-
lar approaches for engineering binding to specific cells
and analyze their quantitative characteristics using a
multivalent, multi-receptor, multi-ligand binding model.
The generality of this model enables a unified approach
toward exploration of many different therapeutic for-
mats. We show that strategies including affinity, valency,
binding competition, ligand mixtures and hetero-valent
complexes provide improvements in cell-specific target-
ing in distinct situations and through unique mecha-
nisms. We then demonstrate how these strategies can
be used in combination to enhance target cell binding
specificity. In summary, our work demonstrates that sim-
ple, passive binding-based therapies can usually offer
selective targeting without the need to engineer complex
cellular therapies, and that their design can be guided
using a unified computational framework.

RESULTS
A model system to explore the factors
contributing to cell selectivity
Virtually any therapy can be thought of as a ligand for
cognate receptors expressed on target cells. To investi-
gate ligand binding quantitatively, we employed a gen-
eral multivalent, multi-ligand equilibrium binding model
[14]. This model can accurately account for the interac-
tions between a mixture of multivalent ligands and cells
expressing various types of receptors. The amount of
binding is predicted given the monomer binding affinities
and cell receptor expression (see Materials and Meth-
ods). Monovalent binding interactions are simple and
governed by both the affinity with which the ligand binds
to surface receptor and the abundance of those recep-
tors. Behavior is more complicated when the ligands
are multivalent complexes consisting of multiple units,
each of which can bind to a receptor (Fig. 1a). To model
this behavior, we assume that the complex’s first recep-
tor–ligand interaction proceeds according to the same
dynamics that govern monovalent binding during initial
association. Subsequent binding events exhibit different
behavior, however, due to the increased local concen-
tration of the complex and steric effects. We assume
that the effective association constant for the subse-
quent binding is proportional to that of the free binding,
scaled by a crosslinking constant, K∗

x. The mathematical
details and accompanying assumptions of the model are
described in previous work [14]. In comparison to pre-
vious models, the current formulation is distinguished
in its ability to predict the binding of multiple ligand,

multiple receptor interactions with higher valency effi-
ciently (Table 1). The assumptions of this model have
been successfully applied to a variety of signaling path-
ways where multivalent interactions play a key role,
such as the interaction between T cell receptors and
oligomeric major histocompatibility complexes or the
interaction between Fcγ receptors and IgG antibodies [15,
16]. In this work, we define cell population selectivity as
the ratio of the number of ligands bound to target cell
populations divided by the average number of ligands
bound to off-target cell populations. We will use the
quantitative binding estimation for each cell population
to examine each selectivity strategy.

As a simplification, we will consider theoretical cell
populations that express only two receptors capable of
binding ligand, uniformly distributed across the cell sur-
face (Fig. 1b), ranging in abundance from 100 to 1 000 000
per cell. Figure 1c shows the log-scaled predicted amount
of binding of a monovalent ligand (L0, 1 nM) given the
abundance of two receptors with dissociation constants
of 10 µM and 100 nM, respectively. Because all axes are
log-scaled, the contour lines intuitively indicate the ratio
of ligand binding between populations. For instance, in
Figure 1c, cell populations at points 1 and 2 are on the
same contour line and thus have the same amount of
ligand bound; the cell populations at points 1 and 3 are
separated by multiple contour lines, indicating that cells
at point 3 bind more ligand. (In fact, the ratio can be
read as the exponent of the contour line difference. For
point 3 to point 1, the ratio is e9.4−4.6 ≈ 121.5.) Alter-
natively, moving from one point to another represents
a change in a cell population’s expression profile. This
situation might correspond to a cue inducing expression
of a receptor, such as interferon-induced upregulation of
MHC or the interleukin-induced upregulation of IL-2Rα in
helper T cell populations [17]. If the amount of receptor
1 (R1) increased (moving rightward, e.g. from 1 to 2), the
amount of binding would not increase significantly. In
contrast, increased expression of R2 (moving upward, e.g.
from 1 to 3) would lead to significantly more binding.
These trends are governed by the ligand’s high affinity for
R2 and relatively low affinity for R1 which leads to binding
varying more strongly with changes to R2 expression than
R1.

To analyze more general cases, we arbitrarily defined
eight theoretical cell populations according to their
expression of two receptor types (R1 and R2 plotted on
x and y axes). As shown in Figure 1d, they either have
high (106), medium (104) or low (102) expression of R1

and R2. We chose to exclude Rlo
1 Rmed

2 from our analysis to
introduce asymmetry between R1 and R2; however, any
finding pertaining to Rmed

1 Rlo
2 can also be generalized to

Rlo
1 Rmed

2 by swapping R1 and R2. The receptor expression
profile within each cell population can also vary widely.
To represent cell-to-cell heterogeneity, we arbitrarily
defined intrapopulation variability for each population
and computationally accounted for this heterogeneity
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Figure 1. A model system for exploring the factors contributing to cell selectivity. (a) A simplified schematic of the binding model. In this example,
there are two types of receptors and two types of ligand monomers that form a tetravalent complex. The two ligands (represented by red squares and
green circles), initially interact with the surface receptors (blue and orange) with various association constants (Ka,1, Ka,2, Ka,3 and Ka,4). (b) A cartoon
for four-cell populations expressing two different receptors at low or high amounts. (c) A sample heat/contour map for the model-predicted log ligand
bound given the expression of two types of receptors. (d) Eight arbitrary theoretical cell populations with various receptor expression profiles.

Table 1. Comparison of selected modeling approaches and their capacity in cell-selective binding analysis

Model Multiple receptors Multiple ligands Valency Flexibility Scalability Dynamics

Context-specific ODE model Possible Possible Possible No No Yes
[49] No No Yes Yes Yes No
Rule-based [50] Yes Yes Yes Yes No Yes
[51] Yes Yes Yes No No Yes
Our model [14] Yes Yes Yes Yes Yes No

[18]. For instance, the expression profile of Rmed
1 Rmed

2 has a
wider range. We will use this binding model to examine
how engineering a ligand using various strategies can
improve cell-specific targeting. Although we will only
consider two receptor and ligand subunit types, the
principles we present can generalize to more complex
cases.

Quantitative model grants insights to existing
selectivity engineering strategies
To demonstrate that our model provides a unified but
flexible platform to examine selectivity strategies, we
first applied it to some more commonly explored ligand-
engineering techniques, including affinity modification,
multivalency and ligand mixtures (Fig. 2a). While these
strategies have been investigated experimentally or mod-
eled separately, here we propose that our model provides
a unified framework to examine each of these strategies
simultaneously. This not only allows us to quantitatively
match known trends but also provide novel insight to
how they each impart specificity when combined.

We first altered the receptor-binding affinity of a
monovalent ligand as a cell population targeting strategy
(Fig. S1). Affinity modulation is the most intuitive
strategy to change the binding profile of a ligand: by
enhancing a ligand’s affinity to the receptors target
cells express, the ligand will bind more tightly and in
higher number to them. Heat/contour maps predicted
by the model clearly illustrate this effect (Fig. S1a). To
explain how affinity modulation can enhance selectivity,
we created four cases of target vs. off-target population
pairs (Fig. S1b–e). Unsurprisingly, we found that when a
target cell population expresses a receptor not expressed
by off-target cell populations, enhancing the affinity to
this receptor is a clear and effective strategy to increase
selective binding to this population. For example, when
Rhi

1 Rlo
2 only significantly expresses R1, whereas Rlo

1 Rhi
2

only significantly expresses R2, enhancing the affinity
to R1 and reducing the affinity to R2 is a strategy to
increase Rhi

1 Rlo
2 selectivity (Fig. S1b). However, the benefit

of this strategy is reduced when both on- and off-target
cell populations express the same set of receptors and
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Figure 2. Our model recapitulates known engineering strategies. (a) Schematics of cell selective engineering strategies. (b) The ligand binding ratio
between Rhi

1 Rlo
2 and Rmed

1 Rlo
2 for ligands of valency ranging from 1 to 8. The shaded areas indicate the variance of binding ratios caused by the

intrapopulation heterogeneity. (c, d) Number of ligands bound to each possible number of receptors for cells exposed to octavalent ligand complexes
composed of subunits with dissociation constants of 1000, 100 or 10 nM for receptor 1. Number of octavalent complexes bound at each degree for a
cell with 104 receptors (c) or 103 receptors (d).

differ only in their magnitude of expression, such as
the selective binding to Rmed

1 Rhi
2 over Rhi

1 Rmed
2 and Rhi

1 Rlo
2

over Rmed
1 Rlo

2 (Fig. S1c and d). The model also showed that
affinity tuning fails when both receptors have identical
relative abundance in target and off-target populations,
such as when comparing Rhi

1 Rhi
2 to Rmed

1 Rmed
2 (Fig. S1e).

These results thus mirror previous findings and intuition
about ligand affinity engineering in a mathematically
rigorous fashion.

Next, we sought to recapitulate the effect of mul-
tivalency within our model (Fig. S2). Multivalent lig-
and binds differently than monovalent ligand due
to its nonlinear relationship with receptor density,
allowing targeting based on receptor abundance [19].
This effect of valency engineering has been well cor-
roborated [20–22]. Our analysis scheme can intu-
itively illustrate this relationship: in the heat/contour
plot, there are roughly the same amount of contour
lines between Rlo

1 Rlo
2 and Rmed

1 Rlo
2 as there are between

Rmed
1 Rlo

2 and Rhi
1 Rlo

2 in the monovalent case, whereas in
the tetravalent case, there are comparatively more
contour lines between Rmed

1 Rlo
2 and Rhi

1 Rlo
2 (Fig. S2a).

Moreover, the model confirmed that multivalency-
derived selectivity to high receptor expression popu-
lation requires coordinate changes in lower affinity,
as many previous studies suggest [20–23]. It shows
that the binding ratio between Rhi

1 Rlo
2 and Rmed

1 Rlo
2 is

maximized by low-affinity ligands but requires greater
valency to achieve peak binding selectivity (Fig. 2b).

Similar effects were seen in other population pairs
(Fig. S2b and c).

We used the model to explore the underlying mecha-
nism of this ‘high-valency, low-affinity’ selectivity effect.
We examined the distribution of binding degrees, defined
as the number of receptors bound to each complex,
achieved by octavalent ligands of differing affinities on
cells with differing receptor abundances. Cells express-
ing 104 receptors displayed similar amounts of binding
at each binding degree for ligands with high and low
affinities (Fig. 2c). However, cells expressing 103 receptors
exhibit extremely low amounts of higher-degree binding
with low binding affinity (Fig. 2d). This finding illustrates
the ‘Velcro’-like binding behavior of multivalent ligands.
Cells with higher receptor abundances can form stable,
high-degree binding due to the proximity of receptors
upon initial binding. They accumulate multivalent
binding as the forward rate of secondary binding events
is greater than that of receptor–ligand disassociation
(Fig. S2d). This effect becomes particularly apparent
when the affinity is low and cells must compensate
with higher receptor availability to maintain stable
interactions, where cells with lower receptor abundances
cannot. Therefore, multivalent low-affinity ligands can
selectively target cells with high receptor abundances.
The model is thus able to recapitulate the known effects
and benefits of valency, its dependence on affinity and
elucidate the mechanism by which that relationship is
governed.
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Table 2. Summary of engineering strategies examined in this work

Strategy Examples Characteristics

Affinity IL-2 Muteins [10, 35, 36]
IgG Muteins [43, 44]

Ligands with strong affinities for a particular receptor selectively bind to
cells expressing that receptor uniquely when compared with off-target
populations.

Valency Multivalent fibronectin nanorings [22]
Anti-Gal small molecules [9]
Antimicrobial peptides [45]

Ligands in higher valency formats can preferentially bind populations with
higher receptor abundances. Requires coordinated change in affinity to
achieve optimum (high-valency, low-affinity effect).

Mixture MET targeted antibodies [26]
IFN-α/IFN-γ co-formulations [27]
Bronchodilator co-formulations [46]

Mixtures of monovalent ligands may enhance selectivity slightly when
considering two or more off-target cell populations. Most therapeutic
benefits come from complementary signaling responses.

Hetero-specificity Bispecific antibodies [47]
Angiogenesis inhibitors [48]

Multispecific complexes can provide unique benefits to selectivity only
when simultaneous binding of multiple units is required for therapeutic
efficacy.

Monovalent agonist with
multivalent antagonist

None Mixtures of monovalent receptor agonists and multivalent receptor
antagonists allow agonists to bind preferentially to cells expressing fewer
receptors than off-target populations.

Finally, we explored the effects of ligand mixture
engineering (Fig. S3). Mixtures may enhance selectivity
through synergistic combinations of actions [24]; there-
fore, many co-formulations of monoclonal antibodies or
cytokine cocktails are undergoing development and clin-
ical trials for efficacy in the treatment of solid tumors,
blood disease and immunodeficiencies, among others
[25–27]. Here, we specifically evaluated model-predicted
binding while varying the composition between two
distinct monovalent ligands, each exhibiting preferential
binding to either R1 or R2 (Fig. S3a). Selectivity varies
monotonically with composition, such that any mixture
combination is no better than simply using the more
specific ligand (Fig. S3b). Our model did show that
when considering multiple populations and defining
selectivity as the amount of ligand bound by target
cells divided by the amount of ligand bound by the
off-target cell with the greatest amount of binding,
there are unique situations where mixtures provide
enhanced selectivity, but only modestly (Fig. S3c). While
our model confirms that mixtures can rarely enact
selectivity through simple binding, ligands can have
non-overlapping signaling effects even with identical
amounts of binding where the effect of combinations can
be distinct from either individual ligand, and therapeutic
advantages are conferred by signaling or therapeutic
synergy [16, 28].

In total, we showed that our model can accurately
model previously studied strategies for selective binding.
While previous models have been used to individually
identify and characterize these strategies (Table 2), our
modeling approach allows us to flexibly explore these
trends within a unified framework.

Heterovalent bispecific ligands exhibit unique
characteristics when activity is tied to dual
receptor engagement
Constructing multispecific drugs has become a promis-
ing new strategy for finer target cell specificity with

the advancement of expanded protein engineering
techniques [29]. The number of possible configurations of
multispecific drugs is combinatorially large and impos-
sible to enumerate, however, creating a challenge when
optimizing drug design. Therefore, a computational
approach is needed to explore the general principles of
multispecificity-induced cell specificity and identify the
most effective constructions. We use bivalent bispecific
ligands as examples to explore the unique benefit of
multispecificity distinct from the previous strategies. We
compared a bispecific ligand with a 50–50% mixture
of two monovalent ligands and a 50–50% mixture of
two different homogeneous bivalent ligands (Fig. 3a).
These two strategies both have some similarities to
bispecific therapeutics. First, they contain two different
ligand monomers with equal proportion. By comparing
a bispecific with a 50–50% mixture of monovalent
ligands we can determine the benefit of tethering these
two monomers into one complex. Second, bispecific
molecules are also naturally bivalent; by comparing
them to homogeneous bivalent drugs, we see how having
two different subunits in the same complex modify the
behavior of a drug. By examining any unique behavior
exhibited by bispecific ligands when compared with
these two basic cases, we sought to explore the potential
therapeutic benefits conferred by multispecificity.

We first applied the binding model to predict the
amount of ligand bound in bispecific drugs (Fig. 3b), a
50–50% mixture of two monomers (Fig. 3c), and a 50–
50% mixture of two different homogeneous bivalents
(Fig. 3d), with the same set of parameters in ligand
concentration and affinities. Surprisingly, the patterns
of ligand binding in these three cases are almost
identical, and bispecificity appeared to offer no unique
properties. However, many bispecifics only impart their
therapeutic action when both of their subunits bind to
the target population [30]. For example, in the design of
bispecific antibodies, it is common to require binding
from both subunits for the desired effect [31, 32]. We
therefore investigated whether bispecific ligands that
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Figure 3. Bispecific ligands exhibit unique selectivity when their effect requires both subunits bound. (a) Schematic of bispecific ligands and fully
bound ligand. (b–d) Comparing the total bispecific ligand binding (b) with the amount of binding achieved by a 50–50% mixture of monovalent ligands
(c) or a 50–50% mixture of bivalent ligands (d). Total bound ligand is dominated by monovalently bound ligands and so the bispecific ligand lacks
unique advantages. Here, the ligand concentration (L0) was set to 10 nM; binding affinities Kd11, Kd22, Kd12 and Kd21 were 100 nM, 1 µM, 10 µM and 10
µM, respectively. (e–g) The amount of fully bound bispecific ligand depends on the tendency for multimerization, encapsulated by K∗

x. Crosslinking
constants (K∗

x) were set to 10−10 cell· M (e), 10−12 cell· M (f) and 10−14 cell· M (g), respectively. (h, i) Comparing bispecific with mixture selectivity, varying
K∗

x, the crosslinking constant. When the ratios are larger, bispecific ligands bind to target populations more specifically. (h) Bispecific divided by
monovalent 50–50% mixture selectivity. (i) Bispecific divided by a 50–50% homogeneous bivalent mixture selectivity.

must be doubly bound display any special cell population
selectivity characteristics.

We used the model to calculate the amount of ligand
fully bound (Fig. 3a). With the same set of parameters, the
predictions made for bispecific fully bound show a very
distinct pattern from general ligand bound (Fig. 3f). The
contour plot of fully bound bispecific ligands has more

convex contour lines: Rhi
1 Rhi

2 has about the same level of
general ligand bound as Rhi

1 Rmed
2 (Fig. 3b), but it has signifi-

cantly more ligands fully bound than Rhi
1 Rmed

2 (Fig. 3f). This
convexity of contour lines indicates that for bispecific
complexes, double-positive cells bind more ligands fully.

The specific amount of fully bound ligand is dependent
on the ligand’s propensity for crosslinking captured
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by the constant K∗
x (Fig. 3a). Less steric hindrance among

the subunits of a multivalent drug molecule (e.g.,
longer/more flexible tether and smaller subunit size) or
local receptor clustering on the target cell corresponds to
greater secondary binding and a larger K∗

x [33]. We plotted
the pattern of bispecific fully bound with K∗

x = 10−10,
10−12 and 10−14 cell· M (Fig. 3e–g). In general, when
K∗

x was larger, there were more fully bound units. To
demonstrate how this characteristic of fully bound
bispecific ligand imparts cell population specificity,
we compared the selectivity conferred by bispecific
ligands via fully bound interactions to the selectivity
conferred by other ligand mixtures for two chosen target
and off-target cell population pairs drug given a range
of K∗

x (Fig. 3h and i). These plotted numbers are the
selectivity imparted by a bispecific drug divided by the
selectivity from a drug mixture of either monovalent
(Fig. 3h) or homogeneous bivalent (Fig. 3i). When these
quotients are larger, it implies that bispecific ligands
with both subunits bound have a greater selectivity
advantage than its counterpart. Figure 3h compares
the selectivity under bispecific ligands with a 50–50%
mixture of monovalent ligands. The results show that
a fully bound bispecific can grant enhanced binding
selectivity when K∗

x is small enough. This fits with the
expectation that when K∗

x is small and cross-linking is
rarer, most ligands will bind monovalently and fully
bound bispecifics will especially favor cell populations
with higher dual receptor expression. However, when
we compared fully bound bispecific to fully bound
homogeneous bivalent mixtures (Fig. 3i), the advantage
of bispecific drugs does not increase monotonically with
smaller K∗

x except for Rmed
1 Rhi

2 to Rhi
1 Rmed

2 selectivity. In
cases where the target populations always have equal
or more receptor abundance in every type than the
off-target ones, such as Rhi

1 Rlo
2 to Rmed

1 Rlo
2 , or Rhi

1 Rhi
2 to

Rmed
1 Rmed

2 , an optimal K∗
x exists. This indicates that in these

situations, the linker optimization may be an important
consideration. Together, we show that bispecific ligands
only exhibit unique advantages in inducing selective
binding when they are only active upon binding of both
subunits and highlight the role of crosslinking in their
design.

Using binding competition to invert receptor
targeting
While the strategies above provided selectivity in many
cases, we recognized that they are all limited to a positive
relationship between receptor abundance and binding.
Therefore, we wondered if binding competition with a sig-
naling/effect deficient multivalent receptor antagonist
could invert this relationship and explored its effect with
the model.

To investigate the effect of ligand competition with
an antagonist, we modeled mixtures of ligands but only
quantified the amount of binding for the active ligand
(the agonist). We chose to start by only considering
a monovalent agonist and tetravalent antagonist for

simplicity’s sake (Fig. 4a). We found that combinations
of monovalent agonistic ligands and multivalent antag-
onistic ligands were able to uniquely target populations
expressing small or intermediate amounts of receptors,
which is demonstrated by comparing ligand binding
ratios between Rmed

1 Rlo
2 to Rhi

1 Rlo
2 (Fig. 4b). Here, nearly

16-fold more monovalent agonist can be bound to the
target population than the off-target population when
combined with a tetravalent antagonist (Fig. 4c). This
is striking as Rmed

1 Rlo
2 expresses either equal or lesser

abundances of either receptors when compared with
Rhi

1 Rlo
2 . This phenomenon, which could not be achieved

without multivalent antagonists (Fig. 4e), occurs due to
the preferential binding of multivalent antagonist to
populations expressing more R1 (Figs 2b and 4d). Thus,
in cases where previously discussed ligand engineering
strategies and approaches fail to achieve selective
binding to cells expressing smaller or similar amounts
of receptors to off-target populations, combinations of
agonistic and antagonistic ligands may provide unique
benefits.

We next explored whether the potential selectivity
benefits derived from using mixtures of multivalent
antagonists with monovalent agonists could be further
enhanced by changing the antagonist valency (Fig. 4f).
Here, we again optimized the amount of agonist binding
to Rmed

1 Rlo
2 when compared with Rhi

1 Rlo
2 and allowed the

affinity of both agonist and antagonist ligands to vary.
We found that antagonists of greater valency could
confer even greater selectivity. For example, an optimized
octavalent antagonist could allow 25 times more agonist
binding to Rmed

1 Rlo
2 when compared with Rhi

1 Rlo
2 . These

selectivity increases required coordinate changes in
affinity of the antagonist: when the valency of the
antagonist is higher, its affinity to both receptors should
be reduced to achieve optimal selectivity (Fig. 4g). Here,
preferential binding of low-affinity, high-valency antag-
onists to off-target populations with greater abundances
of receptors allows for agonists to achieve selective
binding to target cells with lower receptor abundances.
The optimal agonist affinity does not change with
antagonist valency and achieved optimal selectivity via
weak interaction with the off-target population, in this
case weak binding to R1 and strong binding to R2 (Fig. 4g).

Finally, we wondered whether modulating the amount
of agonist and antagonist in a therapeutic cocktail could
increase selectivity (Fig. 4h). Here, we kept the concen-
tration of agonist at 1 nM and varied the concentra-
tion of antagonist ligand, which effectively changed the
mixture profile of the combination. We optimized the
affinity of a tetravalent antagonist-monovalent agonist
pair in each case. This analysis found that selectivity
was only weakly dependent on concentration (Fig. 4h).
Unlike when changing valency, optimal agonist affini-
ties to R2 vary with different mixtures (Fig. 4i). However,
the optimal agonists maintain weak interaction with
the target population with a low R1 affinity, and the
antagonist still binds to both receptors with intermediate
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Figure 4. Mixtures of receptor agonists and antagonists allow for unique population targeting activity. Ligand concentration (L0) was set to 1 nM. (a)
Schematics of the binding activity of monovalent agonist and multivalent antagonist mixtures. (b) Selectivity for Rmed

1 Rlo
2 against Rhi

1 Rlo
2 when exposed

to a tetravalent antagonist with varying affinities for receptors 1 and 2, and a monovalent therapeutic receptor agonist with affinities optimized for
selectivity. Only the amount of agonist bound is considered in determination of the optimal selectivity. (c–d) Heatmap of agonist (c) and antagonist (d)
ligand bound for antagonist and agonist ligand combination shown to impart greatest selectivity improvement in (b). (e) Heatmap of agonist bound
with the same parameters when no antagonist is present. (f) Optimal selectivity for Rmed

1 Rlo
2 against Rhi

1 Rlo
2 achieved when using antagonists of varying

valency with an equal concentration of agonist ligand. The affinity (Kd) for receptors 1 and 2 for both the agonist and antagonist ligand were allowed
to vary between 0.1 nM and 10 mM in addition to K∗

x. (g) Affinities at which optimal selectivity was achieved for agonist and antagonist ligand for each
antagonist valency. (h) Optimal selectivity for Rmed

1 Rlo
2 against Rhi

1 Rlo
2 achieved using combining concentration of a tetravalent antagonist ligand with

1 nM monovalent agonist. Agonist and antagonist affinities for receptors 1 and 2 were allowed to vary as above along with K∗
x. (i) Affinities at which

optimal selectivity was achieved for agonist and antagonist ligand for each agonist/antagonist mixture.

or high affinities. Together, these results suggest that
high valency antagonists may offer unique benefits for
increasing ligand selectivity in cases where off-target
populations express more receptors than target popula-
tion. For optimal effect, high valency of the antagonist is
critical.

While previous work has explored multivalent antag-
onists to decrease pathway activation [34], the benefit
of combining multivalent antagonists and monovalent
agonists to enhance cell type-selective binding has yet

to be explored. Our model outlines the potential of this
novel approach, which further demonstrates how a uni-
fied model can facilitate the discovery of new selectivity
strategies.

Combining strategies for superior selectivity
Each strategy described above provided selectivity ben-
efits in distinct situations, suggesting that they might
synergistically improve selectivity when combined. With
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Figure 5. Combinations of strategies provide superior selectivity. Optimization was performed to target Rlo
1 Rhi

2 (a–f), Rhi
1 Rhi

2 (g–l) and Rmed
1 Rmed

2 (m–r). (a, g,
m) Optimal selectivity levels (ligand bound on target population divided by average ligand bound by all other populations) achieved using various
ligand engineering techniques. Ligand concentration (L0) was set to 1 nM. ‘Unoptimized’ ligands are monovalent ligands with affinities of 1 µM for both
receptor 1 and 2. The dissociation constant was allowed to vary between 10 mM and 0.1 nM for both receptors using the ‘affinity’ approach. Valency
was allowed to vary from 1 to 16 for the ‘valency’ approach in addition to affinities varying. Mixtures were assumed to be composed of two monovalent
ligands, and affinities were allowed to vary in the ‘mixture’ approach. The combined ‘all’ approach allowed all these quantities to vary simultaneously.
The cross-linking constant K∗

x was allowed to vary between 10−15 cell· M and 10−9 cell· M for all approaches. (b–f, h–l, n–f) Heatmap of magnitude of
ligand bound for ligand with optimized characteristics according to various ligand engineering strategies. The target population is shown in red.

binding affinities, valency, mixture and subunit compo-
sition all considered as variables, the search space is
enormous, and experimentally examining the selectivity
of every possible ligand is unrealistic. Some theoretical
guidance on the most promising direction can greatly
reduce the workload. Here, we explored mathematical
optimization to determine the ligand design that pro-
vided optimal selectivity for one of our theoretical cell
populations when combining strategies. We started with
an ‘unoptimized’ ligand, a monovalent ligand with plau-
sible initial affinities, prior to selectivity engineering.
Then, we elected one population as the target while con-
sidering all others to be off-target. The optimization algo-
rithm allowed ligand characteristics to vary within bio-
logically plausible bounds (see Materials and Methods).
We examined optimizing affinity alone (‘affinity’), mix-
ture along with affinity (‘mixture + affinity’) and valency
along with affinity (‘valency + affinity’) and finally com-
bined all three strategies (‘all’) (Fig. 5). We elected to
simultaneously vary valency and mixture effects with
affinity due to affinity’s critical role in modulating the
effects that valency and mixture engineering have in
determining binding selectivity. It should be noted that
the parameter space is not convex, and initial parameters
were selected manually for strategies where valency and
affinity were allowed to vary simultaneously to locate the
global maximum selectivity. To examine the efficacy and
benefits of each approach, we compared the results of
these strategies with the selectivity of an ‘unoptimized’
monovalent ligand. The heatmaps and contour lines here
are normalized by the amount of ligand bound to the tar-
get population to compare target and off-target binding
activity more effectively (Fig. 5).

Optimizing a ligand for selectivity to Rlo
1 Rhi

2 highlights
a situation in which affinity imparts greater specificity,
and optimal selectivity is achieved by combining affinity
and valency modulation (Fig. 5a–f). Here selectivity is
optimized by ligands with selective binding to receptor 2
and higher valency, which allow the ligands to selectively
bind to cells with more abundant receptor. One case
contradictory to this trend is shown during the optimiza-
tion for selectivity toward the Rhi

1 Rhi
2 population (Fig. 5g–l).

Affinity engineering is unable to impart selectivity and
significant improvement is only achieved when using
valency modulation. A more difficult design problem is
featured in the optimization of Rmed

1 Rmed
2 (Fig. 5m–r). Since

it lies amid the other populations in receptor expression
space, any modulation of affinity, valency or combin-
ing it with mixture-based strategies seems ineffective.
Engineering the mixture composition was ineffective at
imparting selectivity in all cases when the ligand’s design
specifications were flexible and is likely only efficacious
when using ligands with static properties and consider-
ing multiple off-target populations.

Our results highlight that both in singular and com-
bined strategies for therapeutic manipulation, the target
and off-target populations dictate the optimal approach.
It is also clear that combined approaches do offer
context-dependent synergies that can be harnessed.

DISCUSSION
In this work, we analyzed a suite of ligand engineer-
ing strategies for population-selective binding with a
multivalent, multi-ligand, multi-receptor binding model
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(Fig. 1). Using a representative set of theoretical cell pop-
ulations defined by their distinct expression of two recep-
tors, we examined the efficacy of several potential lig-
and engineering strategies, including changes to affin-
ity, ligand valency, mixtures of species, multi-specificity,
antagonist competition and these in combination. Most
importantly, this framework provides a unified approach
for analyzing all selectivity strategies.

The computational model reveals the general patterns
of each strategy’s contribution (Table 2). We found that
affinity changes were most effective when the target and
off-target populations expressed distinct combinations
of receptors (Fig. S1). When target and off-target pop-
ulations expressed the same pattern of receptors and
only differed in receptor abundances, modulations in
valency, but not affinity, were effective (Figs 2 and S2). A
key determinant of valency’s effectiveness was the sec-
ondary binding and unbinding rate, which is dependent
on both the kinetics of the receptor–ligand interaction
and receptor abundance. Ligand mixtures were mostly
ineffective for imparting binding selectivity, and only had
modest benefits when considering two or more off-target
populations (Fig. S3). Heterovalent bispecific ligands only
showed unique advantages over mixtures of monovalent
ligands or bivalent ligands if activity required dual recep-
tor binding (Fig. 3). These ligands exhibit preferential
binding to target populations that have high expression
of both receptors over those with high expression of
only a single receptor, with the propensity for secondary
binding acting as a key determinant for selectivity. Using
this model, we also found that combinations of mono-
valent therapeutic ligands with multivalent antagonis-
tic ligands uniquely allow for the selection of target
populations expressing relatively fewer receptors than
off-target populations (Fig. 4). We investigated how the
antagonist effect can be maximally harnessed by opti-
mizing valency, affinity and mixture composition. Finally,
we found that, while a single ligand engineering strategy
dominated in its contributions to cell type selectivity,
synergies between these strategies existed in some cases
to derive even greater specificity (Fig. 5).

While the multivalent binding model we applied in this
work provides both generality and computational effi-
ciency, it relies on several assumptions. For example, it
assumes that receptors are uniformly distributed on the
surface of the cell and that no pre-association or colocal-
ization of receptors occurs. While the effects of receptor
colocalization may be captured to some degree by the K∗

x
parameter in the model, it is not explicitly accounted for
by our approach. The model also assumes that an equi-
librium ligand concentration is roughly known. These
details and possible adjustment for alternative assump-
tions are discussed in our previous work [14]. However, for
any exception, the absolute and relative abundances of
available receptors still play a governing role in determin-
ing cell type selectivity of ligand binding; thus, we believe
our model’s findings remain pertinent in most selectivity
engineering efforts.

While our multivalent binding model identified strate-
gies for selective targeting in many cases, it also iden-
tified situations for which selective binding is challeng-
ing. For example, selectively targeting populations based
on their absence of receptor expression remains elu-
sive. While we computationally show the potential of
using multivalent antagonists with monovalent agonists
to selectively target such populations, implementing this
may be challenging in practice. In cases where a target
population expresses fewer receptors of any kind than
an off-target population, our analysis suggests that tar-
geting other receptors should be considered. However,
in cases where target populations express more of any
type of receptor than an off-target population, we show
that one or more of our formulated ligand engineering
strategies can be employed to improve binding selectivity.
While we expect the same patterns to apply with greater
than two receptors, still other emergent behaviors may
exist with trispecific and more complex ligand binding.

A few of the strategies that we explored have been uti-
lized in existing engineered therapies. For example, affin-
ity changes to the cytokine IL-2 have been used to bias its
effects toward either effector or regulatory immune pop-
ulations [35, 36]. Varying the valency of tumor-targeted
antibodies leads to selective cell clearance based upon
the levels of expressed antigen [23]. Manipulating of
the affinities of the fibronectin domains on octavalent
nanorings was shown to enhance the selectivity of bind-
ing to cancerous cells displaying relatively higher densi-
ties of fibronectin receptors compared with native tissue
[22]. The tendency of low-affinity, multivalent interac-
tions to target cells expressing high receptor abundances
was also described in a study describing the selectivity
of multivalent antibody binding to tumor cells bound
by a bispecific therapeutic ligand [13]. These examples
lend support to the accuracy and translational value of
our model. At the same time, recognizing these previ-
ously described ligand engineering approaches as sep-
arable strategies provides clearer guidance for future
engineering.

Some of the optimization strategies described here
have not been exploited in part due to the complex-
ity of real biological applications. It may be difficult
to achieve the precise affinity indicated by the model.
This problem may be exacerbated in cases where speci-
ficity is derived through binding to multiple receptors
as binding reagents must be designed for each. Potential
dynamic changes in the receptor expression profile of a
target population also complicate the matter. It is well
documented that cancer cells can escape therapeutic
targeting by upregulating [37, 38] or downregulating [39]
the expression of certain receptors. In this case, both
the current and potential abundance of each receptor
must be considered. While this work does not address
these issues, we propose that using a computational
binding model can analyze these strategies quantita-
tively and collectively from a mechanistic perspective.
Even when the absolute mathematically optimal ligand
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characteristics cannot be achieved biochemically, the
model can provide guidance within the bounds of what is
attainable and how to approach the optimum, account-
ing for implementation feasibility and facilitating the
implementation of strategy combinations.

In many therapeutic applications where selective
engagement of target cell populations is an important
performance metric, such as the treatment of cancer,
cellular therapies are becoming increasingly popular [40].
Human engineered chimeric antigen receptor (CAR) T
cells have enhanced the potential to selectively recognize
and attack malignant tissues [41]. These technologies
bypass ligand–receptor binding restrictions by allowing
recognition in signaling response. However, we have
shown here that high selectivity can often be attained
with relatively simple therapeutic ligands. This study
lays a general framework for how ligand engineering
can be directed using computational modeling. It should
be noted that the application of this logic is reliant on
knowledge of the target and off-target cell population
receptor expression levels. Future application of the lig-
and binding logic described in this study could be guided
using high-throughput single-cell profiling techniques,
such as RNA-seq or high-parameter flow cytometry. A
computational tool that could directly translate such
datasets into ligand design criteria, selecting among
potential receptor targets, may represent a potential
avenue for the translation of our analyses into a more
broadly applicable ligand engineering tool.

MATERIALS AND METHODS
Data and software availability
All analysis was implemented in Python v3.9 and can
be found at https://github.com/meyer-lab/cell-selective-
ligands.

Generalized multi-ligand, multi-receptor
multivalent binding model
To model multivalent ligand complexes, we employed a
binding model we previously developed to account the
multi-ligand case [14]. In this model, we define NL as
the number of distinct monomer ligands and NR the
number of distinct receptors. For the binding between
monomer ligand i and receptor j, their affinity can be
described by the association constant, Ka,ij, or its recip-
rocal, the dissociation constant Kd,ij. During initial asso-
ciation, we assume that the linker portion of the com-
plex does not sterically inhibit binding, and thus, the
first subunit on a ligand complex binds according to
the same dynamics that govern monovalent binding. For
subsequent binding events, we assume that the effec-
tive association constant for the subsequent bindings is
proportional to that of the free binding, but scaled by
a crosslinking constant, K∗

x, which describes how easily
a multivalent ligand bound to a cell monovalently can
attain secondary binding. Therefore, multivalent binding

interactions after the initial interaction have an associa-
tion constant of K∗

xKa,ij. The concentration of complexes
at equilibrium is L0, and the complexes consist of random
ligand monomer assortments according to their relative
proportion. For exogenously administered drugs and in
vitro experiments, usually the number of ligand com-
plexes in the solution is much greater than that of the
receptors, so it is reasonable to assume binding does
not deplete the ligand concentration significantly, and
we can use the initial concentration as L0. Otherwise,
we need to estimate L0 from the initial concentration
(see section 4.3 in our previous work [14] for details).
The model implicitly assumes that all receptors are uni-
formly mixed on the cell surface. Should different recep-
tors be organized in discrete domains, the model would
have to be updated to account for different K∗

x values
for crosslinking within and among various domains. The
proportion of ligand i in all monomers is Ci. By this setup,
we know

∑NL
i=1 Ci = 1. Rtot,i is the total number of receptors

i expressed on the cell surface, and Req,i the number of
unbound receptors i on a cell at the equilibrium state
during the ligand complex–receptor interaction.

The binding configuration at the equilibrium state
between an individual complex and a cell expressing
various receptors can be described as a vector q =
(q10, q11, . . . , q1NR , q20, . . . , q2NR , q30, . . . , qNLNR) of length
NL(NR + 1), where qij is the number of ligand i bound
to receptor j, and qi,0 is the number of unbound ligand
i on that complex in this configuration. The sum of
elements in q is equal to f , the effective avidity. For
all i in {1, 2, . . . , NL}, let ϕij = Req,jKa,ijK∗

xCi when j is
in {1, 2, . . . , NR}, and ϕi0 = Ci. The relative number
of complexes in the configuration described by q at
equilibrium is

vq,eq =
(

f
q

)
L0

K∗
x

i = NL

j = NR∏

i = 1
j = 0

ϕ
qij
ij ,

with
(

f
q

)
being the multinomial coefficient. Then, the

total relative amount of bound receptor type n at equi-
librium is

Rbound,n = L0f
K∗

x

NL∑

m=0

ϕmn

⎛

⎜⎜⎜⎜⎜⎜⎝

i = NL

j = NR∑

i = 1
j = 0

ϕ
qij
ij

⎞

⎟⎟⎟⎟⎟⎟⎠

f−1

.

By conservation of mass, we know that Rtot,n = Req,n +
Rbound,n for each receptor type n, whereas Rbound,n is a
function of Req,n. Therefore, each Req,n can be solved
numerically using Rtot,n. Similarly, the total relative num-
ber of complexes bound to at least one receptor on the
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cell is

Lbound = L0

K∗
x

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎜⎝

i = NL

j = NR∑

i = 1
j = 0

ϕ
qij
ij

⎞

⎟⎟⎟⎟⎟⎟⎠

f

− 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Generalized multivalent binding model with
defined complexes
When complexes are engineered and ligands are not
randomly sorted into multivalent complexes, such as
with the Fabs of bispecific antibodies, the proportions of
each kind of complex become exogenous variables and
are no longer decided by the monomer composition Ci’s.
The monomer composition of a ligand complex can be
represented by a vector θ = (θ1, θ2, . . . , θNL), where each θi

is the number of monomer ligand type i on that complex.
Let Cθ be the proportion of the θ complexes in all ligand
complexes, and Θ be the set of all possible θ’s. By this
definition

∑
θ∈Θ Cθ = 1.

The binding between a ligand complex and a cell
expressing several types of receptors can still be repre-
sented by a series of qij. The relationship between qij’s
and θi is given by θi = qi0 + qi1 + · · · + qiNR . Let the
vector qi = (qi0, qi1, . . . , qiNR), and the corresponding θ of a
binding configuration q be θ(q). For all i in {1, 2, . . . , NL},
we define ψij = Req,jKa,ijK∗

x where j = {1, 2, . . . , NR} and
ψi0 = 1. The relative number of complexes bound to a
cell with configuration q at equilibrium is

vq,eq =
L0Cθ(q)

K∗
x

i = NL

j = NR∏

i = 1
j = 0

ψ
qij
ij

NL∏

i=1

(
θi

qi

)
.

Then, we can calculate the relative amount of bound
receptor n as

Rbound,n = L0

K∗
x

∑

θ∈Θ

Cθ

⎡

⎣
NL∑

i=1

ψinθi
∑NR

j=0 ψij

⎤

⎦
NL∏

i=1

⎛

⎝
NR∑

j=0

ψij

⎞

⎠
θi

.

By Rtot,n = Req,n+Rbound,n, we can solve Req,n numerically
for each type of receptor. The total relative amount of
ligand binding at equilibrium is

Lbound = L0

K∗
x

∑

θ∈Θ

Cθ

⎡

⎣
NL∏

i=1

⎛

⎝
NR∑

j=0

ψij

⎞

⎠
θi

− 1

⎤

⎦ .

Mathematical optimization
We used the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm as implemented in SciPy to perform
selectivity optimization combining several strategies
[42]. Unless specified otherwise, the initial values
for optimization were 10−12 cell· M for crosslinking
coefficient K∗

x, 1 for valency f , 100% ligand 1 for mixture
composition and 1 µM for the affinity dissociation
constants, K∗

x. A previous study of IgG–Fc receptor
interactions used a reduced form of this binding model
and fit it to in vitro immune complex binding measure-
ments, deriving a similar value for K∗

x [17]. To optimize
ligand characteristics for cell type specificity, we defined
different ligand engineering strategies and allowed
various ligand characteristics to vary accordingly. For
all optimization strategies, K∗

x was allowed to vary 1000-
fold from 10−12 cell· M, thus 10−15 to 10−9 cell· M. In the
‘affinity’ approach, we allowed the dissociation constant
for ligands to vary between 10 mM and 0.1 nM for
both receptors. We then allowed the valency of the
ligand to vary between 1 and 16 when considering
the ‘valency + affinity’ engineering approach. In the
‘affinity + mixture’ approach, the content of a mixture
of two ligands was allowed to vary between 100% of each
ligand, and the receptor affinities of both ligands were
allowed to vary as previously described. Finally, all ligand
characteristics were allowed to vary simultaneously to
model the ‘all’ approach. Local optimal selectivity was
reliant on the initial point as the optimization space was
non-convex. Initialization points were manually selected
based on their propensity to result in large improvements
during optimization. A variety of starting points were
tried within the bounds.

Sigma point filter
To consider the intrapopulation variance of a cell pop-
ulation in the optimization, we implemented the sigma
point filter [18], a computationally efficient method to
approximate the variance propagated through models. It
should be noted that while we found that modulating the
magnitude or shape of intrapopulation heterogeneity did
affect the inter-population variabilities predicted by our
model, it only marginally changed the mean selectivity
and did not reverse or alter the qualitative trends that
any ligand engineering strategy would have on cell type
selectivity.

Author contributions statement
A.S.M. conceived of the work. All authors implemented
the analysis and wrote the paper.

Supplementary data
Supplementary data are available at INTBIO Journal
online.
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Figure 1: Affinity provides selectivity to cell populations with divergent receptor 
expression. a) Heat/contour maps of monovalent ligand binding to cell populations given the 
surface abundance of two receptors. Ligand dissociation constants to these receptors range from 
10μM ∼ 100nM. Ligand concentration L0 = 1nM. b-e) Heatmap of binding ratio of cell 
populations exposed to a monovalent ligand with dissociation constants to receptor 1 and 2 
ranging from 104 ∼ 102nM, at a concentration L0 = 1nM. Ligand bound ratio of (b) R1hi R2lo  to  
R1lo R2hi, (c) R1med R2hi  to R1hi R2med, (d) R1hi R2lo  to R1med R2hi, and (e) R1hi R2hi  to R1med R2med.  
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Figure S2: Valency provides selectivity based on receptor expression levels. a) Heat/contour 
maps of multivalent ligands bound to cell populations given their expression profiles of two 
receptors. Multivalent ligand subunits bind to only R1 with an dissociation constant of 100 nM, 
and do not bind to R2. Complexes vary in valency from 1 to 16. Ligand concentration L0 = 1 nM; 
crosslinking constant Kx* = 10-10. b-d) Ligand binding ratio between various cell populations for 
ligands of valency ranging from 1 to 16. The shaded areas indicate the variance of binding ratios 
caused by the intrapopulation heterogeneity and estimated by sigma point filters. b) Ligand 
bound ratio R1hi R2lo  to R1med R2lo, and (c) R1hi R2hi  to R1med R2med. d) Ratio of forward to reverse 
binding rate for secondary binding events for multivalent ligands to cells expressing variable 
amounts of receptors. 
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Figure S3: Ligand mixtures with non-overlapping responses can enhance selectivity. a) 
Heat/contour maps of multivalent ligands bound to cell populations given their expression 
profiles of two receptors. A mixture of monovalent ligands is used, with ligand 1 binding to 
receptor 1 and 2 with dissociation constants of 1 μM and 10 μM respectively, and ligand 2 
binding to receptors 1 and 2 with dissociation constants of 10 μM and 1 μM respectively. Ligand 
concentration L0 = 1 nM; crosslinking constant KX*=10-10. b,c) Ratio of ligand bound to cell 
populations exposed to monovalent mixtures of ligand 1 and 2. The ratio of the target population 
to the single off target population with the greatest ligand bound is plotted. The shaded areas 
indicate the variance caused by intrapopulation heterogeneity, of R1hi R2lo  to R1med R2lo, and c) 
R1hi R2hi  to R1hi R2lo and R1lo R2hi. 
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SUMMARY

The g-chain receptor dimerizes with complexes of the cytokines interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and
IL-21 and their corresponding ‘‘private’’ receptors. These cytokines have existing uses and future potential as
immune therapies because of their ability to regulate the abundance and function of specific immune cell
populations. Here, we build a binding reaction model for the ligand-receptor interactions of common g-chain
cytokines, which includes receptor trafficking dynamics, enabling quantitative predictions of cell-type-spe-
cific response to natural and engineered cytokines. We then show that tensor factorization is a powerful tool
to visualize changes in the input-output behavior of the family across time, cell types, ligands, and concen-
trations. These results present amore accuratemodel of ligand response validated across a panel of immune
cell types as well as a general approach for generating interpretable guidelines for manipulation of cell-type-
specific targeting of engineered ligands.

INTRODUCTION

Cytokines are cell signaling proteins responsible for cellular
communicationwithin the immune system. The common g-chain
(gc) receptor cytokines, including interleukin-2 (IL-2), IL-4, IL-7,
IL-9, IL-15, and IL-21, are integral for modulating innate and
adaptive immune responses. Therefore, they have existing
uses and future potential as immune therapies (Leonard et al.,
2019; Rochman et al., 2009). Each ligand binds to its specific pri-
vate receptors before interacting with the common gc receptor to
induce signaling (Walsh, 2010). gc receptor signaling induces
lymphoproliferation, offering a mechanism for selectively ex-
panding or repressing immune cell types (Amorosi et al., 2009;
Vigliano et al., 2012). Consequently, loss-of-function or
reduced-activity mutations in the gc receptor can cause severe
combined immunodeficiency (SCID) because of insufficient T
and natural killer (NK) cell maturation (Wang et al., 2011). Dele-
tion or inactivating mutations in IL-2 or its private receptors leads
to more selective effects, including diminished regulatory T cell
(Treg) proliferation and loss of self-tolerance (Horak, 1995; Sharfe
et al., 1997; Sharma et al., 2007). Deficiency in the IL-2 receptor
IL-2Ra also causes hyperproliferation in CD8+ T cells but a
diminished antigen response (Goudy et al., 2013). These exam-
ples show how gc receptor cytokines coordinate a dynamic bal-
ance of immune cell abundance and function.
The gc cytokines’ ability to regulate lymphocytes can affect

solid and hematological tumors (Pulliam et al., 2016). IL-2 is an

approved, effective therapy for metastatic melanoma, and the
antitumor effects of IL-2 and IL-15 have been explored in combi-
nation with other treatments (Bentebibel et al., 2019; Zhu et al.,
2015). Nonetheless, understanding these cytokines’ regulation
is stymied by their complex binding and activation mechanism
(Walsh, 2010). Any intervention imparts effects across multiple
distinct cell populations, with each population having a unique
response defined by its receptor expression (Cotari et al.,
2013; Ring et al., 2012). These cytokines’ potency is largely
limited by severe toxicity, such as deadly vascular leakage
with IL-2 (Krieg et al., 2010). Finally, IL-2 and IL-15 are cleared
rapidly renally and by receptor-mediated endocytosis, limiting
their half-life in vivo (Bernett et al., 2017; Donohue and Rosen-
berg, 1983; Konrad et al., 1990).
To address the limitations of natural ligands, engineered pro-

teins with potentially beneficial properties have been produced
(Leonard et al., 2019). The most common approach has been
to develop mutant ligands by modulating the binding kinetics
of specific receptors (Berndt et al., 1994; Collins et al., 1988).
For example, mutant IL-2 forms with a higher binding affinity
for IL-2Rb or reduced binding to IL-2Ra and induces greater
cytotoxic T cell proliferation, antitumor responses, and propor-
tionally less Treg expansion (Bentebibel et al., 2019; Levin et al.,
2012). This behavior can be understood through IL-2’s typical
mode of action, in which Treg cells are sensitized to IL-2 by
expression of IL-2Ra (Ring et al., 2012). Bypassing this sensitiza-
tion mechanism shifts cell specificity (Levin et al., 2012).
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Conversely, mutants skewed toward IL-2Ra over IL-2Rb binding
selectively expand Treg cell populations over cytotoxic T cells
and NK cells compared with native IL-2 (Bell et al., 2015; Peter-
son et al., 2018).

The therapeutic potential and complexity of this family make
computational models especially valuable for rational engineer-
ing. Early attempts tomathematicallymodel the synergy between
IL-2 and IL-4 in B and T cells successfully identified a phenome-
nological model that could capture the synergy between the two
cytokines (Burke et al., 1997). A cell population model has ex-
plained how Treg cell IL-2 consumption suppresses effector
T cell signaling (Feinerman et al., 2010). However, any model
needs to incorporate the key regulatory features of a pathway
to accurately predict cell response. With structural information
that clarified the mechanism of cytokine binding, for example, a
model of IL-4, IL-7, and IL-21 binding revealed pathway crosstalk
depending on the relative gc receptor affinities (Gonnord et al.,
2018). Nevertheless, thesemodels have not accounted for endo-
somal trafficking and have not been constructed to model multi-
ple immune cell types. The crucial role receptor-mediated endo-
cytosis has been shown to play in signaling and drug delivery
processes has led to development ofmanymathematicalmodels
incorporating its effects (Lao et al., 2007; Byun and Jung, 2020).
IL-2 induces rapid endocytosis-mediated IL-2Ra and IL-2Rb
downregulation (Duprez et al., 1988; Ring et al., 2012), and traf-
ficking is known to be a potent regulatory mechanism for all
members of the gc family (Lamaze et al., 2001). Indeed, recent
IL-15 engineering observed that attenuated cytokine potency
can lead to a greater therapeutic effect via reduced receptor-
mediated clearance (Bernett et al., 2017). Non-intuitive proper-
ties such as this can be better understood and optimized through
models incorporating trafficking.

Here we assemble a predictive model and tools to visualize gc
cytokine family regulation. We first built a family-widemathemat-
ical model that incorporates binding and trafficking kinetics. This
more comprehensive model allows us to investigate emergent
behavior, such as competition between cytokines. This cytokine
family is inherently highly dimensional, with multiple ligands,
cognate receptors, and cells with distinct expression. Therefore,
we use tensor factorization to visualize the family-wide regula-
tion. This map helps us to identify how native or engineered li-
gands are targeted to specific immune cell populations based
on their receptor expression levels. The methods used here
can be used similarly in experimental and computational efforts
of decoding other complex signaling pathways, such as Wnt,
Hedgehog, Notch, and bone morphogenic protein (BMP)/trans-
forming growth factor b (TGF-b) (Antebi et al., 2017a, 2017b; Eu-
belen et al., 2018; Li et al., 2018).

RESULTS

A model including trafficking captures IL-2 and IL-15
dose response and the effect of IL-2Ra expression
To model how individual binding events give rise to cell
response, we built a differential equation model representing
the relevant binding and regulatory mechanisms in the gc recep-
tor cytokine family (Figure 1A). The differential equations and
corresponding rate parameters that define our model are

described in the STAR Methods (Table 1). Binding interactions
were modeled based on their known structural components
and led to formation of receptor complexes capable of Janus ki-
nase (JAK)/signal transducer and activator of transcription
(STAT) signaling (Rochman et al., 2009). Endocytic trafficking
of cell surface receptors is a critical mechanism of regulatory
feedback (Basquin et al., 2013; Fallon and Lauffenburger,
2000; Fallon et al., 2000; Volkó et al., 2019). Therefore, we
extended earlier modeling efforts by including trafficking of re-
ceptors and their complexes (Feinerman et al., 2010; Ring
et al., 2012).We assumed that species trafficked into an endoso-
mal compartment while continuing to produce JAK/STAT
signaling and participating in binding events.
Rate parameters for IL-2 and IL-15 binding events were

parameterized by previous experimental measurements and
detailed balance or estimated by model fitting to existing exper-
imental measurements (Figures 1B–1E). Fittingwas performed to
measurements of STAT5 phosphorylation and surface IL-2Rb/
gc, upon IL-2 or IL-15 stimulation, in wild-type YT-1 human NK
cells or YT-1 cells selected for expression of IL-2Ra. The exper-
imental data were collected from previous studies (Mitra et al.,
2015; Ring et al., 2012). The posterior parameter distributions
from these fits (Figure 1F–1I) were plugged back into our model
and showed quantitative agreement with the data, including dif-
ferential sensitivity with IL-2Ra expression (Figures 1B–1E; Mitra
et al., 2015; Ring et al., 2012). To evaluate the effect of including
trafficking, we fit a version of the model without trafficking to the
same pSTAT5 measurements. Surprisingly, the model without
trafficking was able to fit the data equally well with small changes
to some inferred rate constants (Figure S1). Although the model
with trafficking inferred cell receptor expression of !1 receptor/
cell/min, corresponding to 500–5,000 receptors/cell, the model
without trafficking inferred that YT-1 cells have receptor abun-
dances of 1–10/cell. We elected to use the model including traf-
ficking for the duration of the study because gc receptors have
known trafficking regulation. We also show that endocytic
signaling can uniquely affect the cell-type-specific response to
gc cytokines (Figure 6C) and that trafficking improves model cor-
respondence to our validation measurements (Figures S5 and
S6). Depletion of surface IL-2Rb and gc occurs through rapid
endocytosis of active complexes, and indeed, depletion
occurred faster at higher cytokine doses (Figures 1C–1E). Corre-
spondingly, active complex internalization was inferred to be
!103 greater than that for inactive species (Figure 1G). These
data suggest that trafficking and binding can be integrated in a
model of IL-2 and IL-15 signaling response.
Because IL-2 and IL-15 drive formation of analogous active

complexes with IL-2Rb, gc, and a signaling-deficient high-affin-
ity receptor (IL-2Ra/IL-15Ra), comparing their inferred binding
rates gave insight into how IL-2 and IL-15 differ from one
another (Figure 1I). The two ligands have nearly the same direct
binding affinity to IL-2Rb; however, IL-15 has a higher affinity
than IL-2 for its a chain. Consequently, IL-15’s complexes
were inferred to more readily dimerize with a free a chain than
IL-2’s complexes. The other dimerization affinities were gener-
ally similar between IL-2 and IL-15. The unbinding rate con-
stants were consistent with the literature indicating that IL-2
has a higher affinity for IL-2Rb when bound to its a chain
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(Spangler et al., 2015). A model of IL-2 and IL-15 incorporating
trafficking is consistent with known biophysical and cell
response measurements.

The family model correctly captures IL-4/IL-7 dose
response and cross-inhibition
To further test our model incorporating trafficking, we evaluated
its performance in a series of experiments involving IL-4 and IL-7.

IL-2 and IL-15 involve the same signaling-competent receptors,
and so the signaling activity of each cytokine cannot be distin-
guished. IL-4 and IL-7 activity, in contrast, can be distinguished
when both cytokines are co-administered to cells by measuring
STAT6 and STAT5 phosphorylation, respectively (Leonard et al.,
2019). Using this phenomenon, we explored previously pub-
lished cross-inhibition data where IL-4 and IL-7 doses were
administered to human peripheral blood mononuclear cell

Figure 1. Unifying receptor binding and trafficking provides an accurate model of IL-2 and IL-15 response
Experimental data were collected in previous studies (Mitra et al., 2015; Ring et al., 2012).

(A) Schematic of all receptor (boxes)-ligand (circles) complexes and binding events. Active (pSTAT signaling; containing two signaling-competent receptors)

complexes are outlined in red. Rate constants obtained from the literature, detailed balance, and fitting are denoted by diamonds, octagons, and octagons with a

double outline, respectively. Rate constants that were measured experimentally relative to other rates are denoted by triangles. A scalar factor scales active

receptor complexes to pSTAT predictions. See STAR Methods for full model equations.

(B–E) Model fit to experimental results, represented by shaded regions and shapes respectively, for (B) pSTAT5 in YT-1 cells under various concentrations of

ligand stimulation for 500min and (C–E) the percent of initial IL-2Rb (C andD) and gc (E) on the cell surface for various ligand stimulation concentrations. The 25%–

75% and 10%–90% confidence intervals of the model’s fit are shaded dark and light, respectively. Note that only the 25%–75% interval is visible.

(F–H) Posterior distributions after data fitting. The forward receptor dimerization rate kfwd has units of cell3#"13min"1, and the sorting fraction (fsort) is unitless.

(I) Posterior distributions for the analogous association constants of IL-2 and IL-15. Association constants measured in the literature are represented by dots.

Association constants are shown for species in parentheses complexing with the following species. Kas for (2)$2Ra, (15)$15Ra, (2)$2Rb, and (15)$2Rb have

nanomolar units; all other Kas have units of #3cell"1.

See also Figures S1 and S2.
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(PBMC)-derived CD4+TCR+CCR7high T cells individually and
together (Gonnord et al., 2018).

Using surface abundance measurements of IL-4Ra, IL-7Ra,
and gc, we applied a steady-state assumption in the absence
of ligand to solve each receptor expression rate (Gonnord et al.,
2018). Our model fit single and dual cytokine dose-response
data with reasonable accuracy. Fits to the IL-4 and IL-7 dose
response had systematic deviation toward higher half maximal
effective concentration (EC50) values (Figure 2B), but the model
captured the difference in response between IL-4 and IL-7 as
well as the effects of cross-inhibition (Figures 2B–2C). Some sys-
tematic error in themodel canbe expected, givenour focuson re-
ceptor binding features and subsequent choice to not model the
JAK-STAT pathway in total. The fitting process identifiably con-
strained the reaction rates and trafficking parameters (Fig-
ure 2F–2I). Although surface abundancewas constrained, the re-
ceptor expression rates still formed distributions dependent on
trafficking parameters (Figures 2G–2I).

The experimental data and model fits showed that IL-7 in-
hibited IL-4 signaling response more than vice versa (Figure 2C;
Gonnord et al., 2018). Consistent with the experimentally derived
mechanism (Gonnord et al., 2018), this inhibitory behavior was
explained by the competition of ligand$a chain complexes for
the common gc. The inferred association constant (Ka) value of
this dimerization process for IL-7 was larger than the Ka value
for IL-4, indicating that there was tighter dimerization of IL-
7$IL-7Ra to gc than of IL-4$IL-4Ra to gc (Figure 2F). The compe-
tition for gc was determined to play a larger role in signaling inhi-
bition than receptor internalization because our model showed
that the same inhibitory relationships hold when active com-
plexes were set to internalize at the same rate as other species
(Figure 2D). Internalization was also dismissed because much
of the gc remained on the cell surface after ligand stimulation in
model simulations and experimental measurements (Figure 2E;
Gonnord et al., 2018).

Tensor factorization maps the gc family response space
Because response to ligand ismostly defined by receptor expres-
sion, we quantitatively profiled the abundance of each IL-2, IL-15,
and IL-7 receptor across 10 PBMC subpopulations (Figure 3A).
PBMCs gathered from a single donor were stained using recep-
tor-specific fluorescent antibodies and analyzed by flow cytome-
try; their subpopulations were separated using canonical markers
(Figure S3; Table S1). These data recapitulated known variation in
these receptors, including high IL-7Ra or IL-2Ra expression in
helper and Treg cells, respectively (Hassan and Reen, 1998; Roch-
man et al., 2009). Principal-component analysis (PCA) helped to
further visualize variation in these receptor abundance data. The
10PBMCcell typesweremapped in the scoresplot (Figure3B) us-
ing two principal components, each of which was defined by a
linear combination of the cell’s receptor expression abundance,
as described in the loadings plot (Figure 3C). Principal component
1, which explained 50% of the receptor expression data’s vari-
ance, most prominently separated NK cells from all others
because of their distinct receptor expression, featuring high levels
of IL-2Rb and relatively lower levels of gc comparedwith other cell
types, which are strongly correlated positively and negatively with
principal component1, respectively.Principal component2,which
explained 36% of the receptor expression data’s variance, then
separated effector and Treg cell populations based on their high
IL-7Ra or IL-2Ra abundance, respectively. PCA also helped to
highlight the subtly higher gc levels in Treg cells and the slightly
more Treg cell-like profile of memory CD8+ cells.
Even with an accurate model, exploring how dynamic re-

sponses vary across responding cell types and ligand treat-
ments remains challenging. Considering only a single time point,
cell type, or ligand concentration provides only a slice of the pic-
ture. Therefore, we sought to apply factorization as a method to
globally visualize ligand response.
To build a tensor of model predictions, we assembled simula-

tion predictions across cell types, ligand conditions, and time.

Table 1. Cytokine reverse binding constants

Rate/Role Description IL-2 IL-15 IL-4 IL-7

a receptor IL-2Ra IL-15Ra – –

b receptor IL-2Rb IL-2Rb IL-4Ra IL-7Ra

Rate of ligand dissociation from a receptor k1;rev k13;rev k32;rev k25;rev

Rate of ligand dissociation from b receptor k2;rev k14;rev – –

Rate of gc dissociation from ligand$ a$ gc
complex

k4;rev k16;rev k33;rev k27;rev

Rate of gc dissociation from ligand$ b$ gc
complex

k5;rev k17;rev – –

Rate of a dissociation from ligand$ a$ b$ gc
complex

k8;rev k20;rev – –

Rate of b dissociation from ligand$ a$ b$ gc
complex

k9;rev k21;rev – –

Rate of gc dissociation from ligand$ a$ b$ gc
complex

k10;rev k22;rev – –

Rate of b dissociation from ligand$ a$ b

complex

k11;rev k23;rev – –

Rate of a dissociation from ligand$ a$ b

complex

k12;rev k24;rev – –
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This three-dimensional (time, cell type, and ligand) tensor was
then decomposed with non-negative canonical polyadic (CP)
decomposition (Figure 3D). We selected three components dur-
ing decomposition because this number captured 95% of the
variance in our original data tensor (Figure 3E). To show the rela-
tionships among the tensor’s three dimensions, the component
plots of each dimension were plotted alongside each other.

CP decomposition can be interpreted by matching a single
component’s effects across factor plots for each dimension,
allowing us to interpret its relationship to time, to a profile of
cell responses, and a pattern of stimulation conditions (Figures
3F–3I). For example, component 2 is greatest at roughly
50min (Figure 3F) for helper andCD8+ T cells (Figure 3G) and oc-
curs almost exclusively with IL-7 stimulation (Figure 3I). This

A B C
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G H I

Figure 2. A reaction model captures cytokine-cytokine interactions
Experimental data were collected in previous studies (Gonnord et al., 2018).

(A) Schematic of IL-4 and IL-7 receptor complexes competing for gc and generating distinct pSTAT signals.

(B and C) Model fits to experimental data. Experimental measurements are denoted by triangles. Shaded areas represent the 25%–75% and 10%–90% con-

fidence intervals of the model fit. pSTAT5 and pSTAT6 were measured for IL-7 and IL-4 experiments, respectively.

(B) Single-cytokine pSTAT dose-response measurements for 10 min of exposure to IL-4 and IL-7. The experiment was performed in duplicate (n = 2).

(C) Percent inhibition of the second cytokine’s pSTAT response in a dual-cytokine dose-response experiment. Human PBMC-derived T cells

(CD4+TCR+CCR7high) were pretreatedwith various concentrations of one cytokine for 10min before being stimulated with a fixed concentration (2 pM IL-7 or 6.25

pM IL-4) of the other cytokine for an additional 10 min.

(D) Model inference for percent inhibition of the second cytokine’s pSTAT response in a dual-cytokine dose-response experiment after setting active species to

be endocytosed at the same rate as inactive species.

(C and D) Experiments were performed in triplicate (n = 3).

(E) Model predictions for the percentage of gc on the cell surface when exposed to 100 pg/mL of IL-7 or IL-4 for 20 min.

(F) Violin plot of Ka values (units of #3cell"1) for complexes with gc obtained via the posterior distribution of the forward and reverse binding rate parameters.

(G–I) Posterior parameter distributions from fitting to data. The forward dimerization rate kfwd has units of cell3#"13min"1.
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indicates that this variation in the data occurs with IL-7 stimula-
tion, leads to a response in helper andCD8+ T cells, and peaks at
50 min. In this way, different contributory factors in cell response
are separated.

All components showed similar variation with time, peaking
quickly and then decreasing after roughly 50 min (Figure 3F).
This can be understood as two phases: one dominated by recep-
tor activation and a second with trafficking-mediated downregu-
lation of the receptors (Figure 1). Comparing the cells and ligand
decomposition plots showed the expected effects. IL-7
response was separated by component 2, which showed a
dose-dependent increase, and correlated with IL-7Ra expres-

sion levels (Figures 3A, 3G, and 3I). Interestingly, IL-2/15
response separated by concentration rather than ligand
(Figure 3I). Low concentrations of IL-2 were represented by
component 3, and preferentially activated Treg over effector
T cells (Figures 3H and 3I). High concentrations of IL-2/15 were
represented by component 1 and similarly activated effector
and Treg cells (Figures 3G and 3I). This known dichotomy occurs
through higher IL-2Ra expression in Treg cells (Figure 3A). Impor-
tantly, although PCA can help to distinguish cells based on
distinct receptor expression profiles, cells separated differently
based on their predicted ligand stimulation response (Figures
3B, 3G, and 3H). This demonstrates the unique benefit of

A B C

D
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F G H I

Figure 3. Tensor factorization map model-predicted cytokine responses
(A) Measured receptor abundance for 10 PBMC-derived subpopulations gathered from a single donor, measured by flow cytometry. Points and error bars show

geometric mean and standard error, respectively (n = 4). Error bars for some points are too small to display.

(B and C) PCA scores (B) and loading (C) of receptor abundance. Axis label percentages indicate percent variance explained.

(D) Schematic representation of CP decomposition. Model predictions are arranged in a cube depending on the time, ligand treatment, and cell type being

modeled. CP decomposition then helps to visualize this space.

(E) Percent variance reconstructed (R2X) versus the number of components used in non-negative CP decomposition.

(F–I) Component values versus time (F), cell type (G and H), and ligand stimulation (I). The variation explained by each component is the product of the com-

ponent’s time, ligand, and cell type factorization. Ligand components with only negligible values (<15% max) are not shown.

See also Figures S3 and S4.
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tensor- andmodel-based factorization to distinguish cells based
on their predicted response profiles.
Other tensor decomposition methods exist and can be

applied similarly to visualize response. For example, non-nega-
tive Tucker decomposition relaxes CP decomposition by em-
ploying a core tensor that provides interaction terms between
components (Figure S4; Tucker, 1966). However, this flexibility
comes at the cost of interpretability because visualizing
the core tensor’s effect is challenging. In total, factorization
methods are effective means of visualizing the high-
dimensional regulation of complex receptor families and sepa-
rating the influence of time, ligand stimulation, and receptor
expression.

An accurately predicted response across a panel of
PBMC-derived cell types
We evaluated whether our model accurately predicts cell-type-
specific differences in ligand response by comparing its
predictions for IL-2/15 responses across a panel of 10 PBMC-
derived cell populations. We measured and used our model to
predict PBMC response to cytokine stimulation at 12 concentra-
tions (0.5 pM–84 nM) and 4 time points (30 min, 1 h, 2 h, and 4 h).
Individual cell types displayed reproducible responses to IL-2/15
treatment (Figure 4A). Overall, our model predictions of ligand
pSTAT5 response closely matched experimental measurements
(Figure 4; Figure S5). The differences between cell types largely
matched known differences in cytokine response. For example,

A B C

D E F

G H I

Figure 4. The model accurately predicts cell-type-specific response across a panel of PBMC-derived cell types
(A) Comparison of two experimental replicates measuring the pSTAT5 response of PBMC-derived cells to cytokine stimulation. Points represent flow cytometry

measurements from each cell type to a dose response of IL-2 or IL-15 at multiple time points and have units of median fluorescence intensity.

(B) Experimentally derived and model-predicted EC50 values of dose response across IL-2/15 and all 10 cell types. EC50 values are shown for the 1-h time point.

(C) Pearson correlation coefficients between model prediction and experimental measurements for all 10 cell populations (full data are shown in Figure S5).

(D–I) pSTAT5 response to IL-2 (D–F) and IL-15 (G–I) dose responses in NK, CD8+, and Treg cells. Experiments were performed in duplicate (n = 2).

See also Figure S5.
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Treg cells weremarkedly sensitive to IL-2 (Figures 4B and 4F), but
not IL-15 (Figures 4B and 4I), at low concentrations of the cyto-
kine (Bell et al., 2015; Peterson et al., 2018). Small amounts of IL-
2Ra in helper T cells (Figure 3A) partially sensitized them to IL-2
(Figure 4B; Figures S5H–S5J). The model was also able to partly
predict downregulation of pSTAT response at 2 and 4 h by
including receptor trafficking (Figure S5). Although our model
was slightly less accurate in predicting T helper response to
cytokine stimulation, it was able to broadly and accurately cap-
ture differences in sensitivity and response across all the cell
populations (Figure 4C).

To further evaluate the importance of receptor trafficking, we
also predicted PBMC response using our model without
trafficking included (Figure S1). This model completely failed to
predict PBMC cytokine responses across all populations (Fig-
ure S6). We expect this arose from the large difference in inferred
receptor abundance when fitting the two models. The model
without trafficking required very small amounts of receptor abun-
dance to fit the YT-1 responses and therefore failed with the
PBMC case, where we experimentally measured the receptor
amounts. This difference in performance clearly demonstrates
that incorporating trafficking is necessary to develop a model
that generalizes to new contexts.

Although the model accurately predicted experimentally
measured responses overall, we noticed some larger discrep-
ancies specifically at high ligand concentrations and after 2 h
in specific cell populations (Figure 4; Figure S5). For example,
although CD8+ cells almost exactly matched model predictions
at 1 h, by 4 h we experimentally observed a biphasic response
with respect to IL-2 concentration and a plateau with IL-15 that
decreased over time. This decrease in signaling was most pro-
nouncedwith CD8+ cells but could be observed to lesser extents
in some other cell populations such as NK cells (Figure S5). We
hypothesize two possible explanations for this discrepancy.
First, CD8+ populations are known to proteolytically shed IL-
2Ra in an activity-responsive manner (Junghans andWaldmann,
1996). Second, our model does not encompass the JAK-STAT
pathway, whose components surely influence dynamic
response (Kuwabara et al., 2016). Our model also had a quanti-
tative difference from experimental results for the pSTAT5 EC50

variation between effector and regulatory cells (Figures 4B, 4D,
and 4E). However, overall, the model presented here remains
useful for exploring the determinants of cell-type-specific
response, which originate at the receptor expression profile on
the cell surface. The broad experimental profiling here will also
enable future model refinement.

Tensor factorization of experimental measurements
distinguishes the cell-type-specific response
Given that tensor factorization helped to visualize model predic-
tions of IL-2, IL-7, and IL-15 response, we wished to evaluate
whether it could similarly help visualize experimental measure-
ments. We structured our experimental pSTAT5 measurements
in an identical format as the model simulation tensor (Figure 3).
Two components explained roughly 90% of the variance in the
original data (Figure 5A), which we then interpreted using similar
factor plots (Figures 5B–5D).
Interestingly, as seen with the model prediction factorization,

factors were distinguished by their concentrationmore than being
tied to a specific ligand (Figure 5D). Component 2 increases with
low concentrations of IL-2, whereas component 1 only increases
at high concentrations of either ligand. As expected, effector and
Treg cells are most strongly associated with components 1 and 2,
respectively, matching their known dose-response profiles (Fig-
ure 4). However, component 2 is also distinct from component 1
in its sustained signaling (Figure 5B; Figure S5). This can be ex-
pected from rapid endocytosis-mediated downregulation of IL-
2Rb at high IL-2/-15 concentrations (Figure 1). Thus, tensor factor-
ization helps to separate these differences in dose- and cell-type-
specific responses.Furthermore, therewasclear, quantitativecor-
respondence between the model and experimental factorization.
For example, both components from the experimental measure-
ment factorization (Figure 5C) correlated strongly in their cell
typeweightingwith their analogouspairs in themodel factorization
(cosine similarity of 0.98 and 0.89; Figure 3H).

The model accurately captures the cell-type-specific
response to IL-2 muteins
Using the model, we sought to identify strategies for selectively
targeting Treg cells. To quantify the effectiveness of selectively

A B C D

Figure 5. Non-negative CP decomposition applied to experimental pSTAT5 measurements
(A) R2X of non-negative CP decomposition versus number of components used.

(B–D) Decomposition plots with respect to time (B), cell type (C), or ligand treatment (D).

See also Figure S4.

8 Cell Reports 35, 109044, April 27, 2021

Article
ll

OPEN ACCESS

29



activating Treg cells, we defined a specificity metric as the
normalized pSTAT5 response of Treg cells divided by the pSTAT5
response of T helper or NK cells. As expected, the model predic-
tion and experimental values of this specificity increased with
lower concentrations of IL-2 and had a lesser concentration-
dependent relationship with IL-15 (Figures 6A and 6B). Our
model was unable to quantitatively predict the specificity of
Treg cell signaling with respect to T helper cells, particularly for

IL-15 stimulation. However, it was able to recapitulate the rela-
tionship of the quantity with IL-2 stimulation. With this quantity,
we then examined the sensitivity of the specificity metric with
respect to surface and endosomal binding. Increasing the disso-
ciation rate of IL-2 from IL-2Rb/gc, particularly in the endosome,
provided the largest and most consistent specificity increase
(Figure 6C). Changes in endosomal binding rates have been
shown to have important effects on a protein therapy’s half-life

off-target cell

surface endosome

A

E F G H

I J K L

C DB

Figure 6. Model and tensor factorization predicts and decodes cell-type-specific responses to IL-2 muteins
(A and B) Predicted andmeasured Treg cell signaling specificity comparedwith NK (A) and T helper (B) cells at 1 h. Specificity is defined here as the ratio of two cell

types’ pSTAT5. Experimental measures are average of two flow cytometry replicates (n = 2).

(C) Partial derivatives of Treg cell signaling specificity compared with NK and T helper cells with respect to each surface and endosomal reverse binding rate

constant.

(D) Treg signaling specificity with respect to NK and T helper cells as a function of IL-2Rb/gc binding affinity for ligands with wild-type and reduced IL-2Ra affinity.

(C and D) Specificity values are shown for cells exposed to 38 pM of cytokine for 1 h.

(E) IL-2Ra and IL-2Rb/gc dissociation constants for our panel of IL-2 muteins, determined using bio-layer interferometry.

(F–H) Predicted versus experimental immune cell responses to IL-2muteins for Treg cells (F), NK cells (G), and T-helper cells (H) for 1-h stimulation. Dots represent

experimental flow cytometry measurements, and shaded regions represent the 10%–90% confidence interval for model predictions. Mutein stimulants are

denoted by color.

(I–L) Tensor factorization of experimentally measured cellular signaling values for IL-2 muteins. Shown are component values versus ligand (I), cell type (J), time

(K), and cytokine concentration (L).

See also Figures S7 and S8.
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(Sarkar et al., 2002). To the extent this binding can be manipu-
lated separately, the model indicates that it might help to
improve specificity as well. Although IL-2Rb/gc affinity was iden-
tified as most sensitive, the model predicted that ligands with
reduced IL-2Ra affinity had decreased Treg cell specificity
regardless of their IL-2Rb/gc affinity (Figure 6D). Therefore,
reducing IL-2Rb/gc affinity can help modulate the potency of
these cytokines, but maintaining IL-2Ra affinity is still critical.
These results demonstrate this model’s ability to predict immune
cell response to wild-type or engineered cytokines, particularly
for engineering cell-specific responses.

To evaluate these predictions, we measured the PBMC
response to several Fc-fused IL-2 monomers. Wild-type and
mutant forms of IL-2 were produced as fusions with a mono-
meric human antibody Fc domain. Targeted mutations were
introduced to IL-2 in regions known to be instrumental for IL-
2Ra or IL-2Rb/gc binding. In particular, mutations at V91 and
N88 are present in molecules being developed to treat autoim-
mune disease through selective IL-2 signaling in Treg cells (Peter-
son et al., 2018, Ghelani et al., 2020, Gavin et al., 2017).

Cytokines are often Fc fused to increase the drug’s in vivo half-
life and can be placed in either orientation. We quantified the
effect of our engineered mutations and Fc fusion on IL-2Ra
and IL-2Rb/gc binding kinetics using bio-layer inferometry (Fig-
ure S7). Surprisingly, we found that Fc fusion to the N terminus
selectively lowered IL-2Rb/gc affinity, whereas fusion to the C
terminus selectively lowered IL-2Ra affinity (Data S1; Figure 6E).
Therefore, Fc fusion can have either complementary or counter-
productive effects on mutation-mediated changes in receptor
affinity, and affinity must be assessed in a clinical format. The
observed changes in receptor-ligand kinetics caused by Fc-
fusion were assessed for ligands fused using a 20-amino-acid
linker; linkers of different lengths or flexibility likely also affect
cytokine binding kinetics.

Using these altered affinities, we were able to accurately pre-
dict the cell-type-specific pSTAT5 response to our modified li-
gands (Figure S8; Figures 6F–6H). The model widely captured
the cell-type-specific response to the muteins and especially
the signaling response in the first 2 h. However, accuracy varied
according to ligand and cell type and was noticeably reduced for
NK cells and Treg cell variants at higher concentrations and in
predicting most responses to N88D. The model’s inaccuracy in
predicting the N88D response is potentially to be expected
because the N88D affinity for IL-2Ra and IL-2Rb/gc is among
the most drastically divergent from the wild-type IL-2 and IL-15
responses to which the model was fit (Figure 6E). Ligands with
decreased IL-2Ra or IL-2Rb/gc affinity had a decreased Treg or
T helper cell pSTAT5 response, respectively, as expected. As
before, visualizing the effect of altered binding kinetics on cellular
response is complicated by the contributions of cell type, con-
centration, and time (Figure 3). To visualize our results, we per-
formed tensor factorization using the experimentally determined
pSTAT5 response of PBMCs exposed to wild-type and modified
IL-2 ligands (Figures 6I–6L). Two components explained 80% of
the variance in the new combined data tensor. The two compo-
nents matched those patterns from the model (Figures 3F–3I)
and wild-type cytokines (Figure 5), with separation by cell type
(Figure 6J) and concentration (Figure 6L) rather than ligand iden-

tity (Figure 6I) and a more sustained response by the Treg cell-
specific component (Figure 6K). Among the ligands, wild-type
N-terminally conjugated IL-2 was the most potent inducer of
Treg cell response, as shown by its strong component 2 weight-
ing (Figures 6I and 6J). The difference in signaling with Fc fusion
orientation is likely due to the opposing effects on the cytokine’s
IL-2Ra affinity (Figure 6I) because these different responses
were matched by the model (Figure 6F).

DISCUSSION

Here we built a mass action kinetic binding model for the com-
mon gc receptor family and used factorization methods to
explore its cell-type-dependent behavior. This approach pro-
vided insights into its high-dimensional regulation. Our binding
reaction model combined the structure of ligand interaction
with endosomal trafficking, which allowed us to accurately
model response (Figure 1). After fitting our model to previously
published cytokine response data, we were able to predict IL-
2, IL-2 mutein, and IL-15 response across a wide panel of
PBMC-derived cell types (Figure 4; Figure S5). Mass action
models can help to explain counterintuitive features of ligand
response and identify specific strategies for optimizing thera-
peutically desired properties (Haugh, 2004; Meyer et al., 2015).
In the case of the gc receptor cytokines, a therapeutic goal has
been to specifically modulate subpopulations of cells based on
their unique receptor expression profiles (Bell et al., 2015; Ben-
tebibel et al., 2019; Levin et al., 2012; Peterson et al., 2018). To
visualize these possibilities, we employed tensor factorization
to map the signaling response space. This map provided a
clearer picture of differential responsiveness between ligands,
with selective and increased signaling for certain cells and li-
gands (Figures 5 and 6). For example, we could clearly identify
the selectivity of IL-7 for T helper cells and low concentrations
of IL-2 for Treg cells (Figure 3).
The model described here serves as an effective tool for cell-

type-selective rational cytokine design. In addition to the natural
ligands, many cytokine muteins have been designed with altered
binding affinities for specific receptors (Berndt et al., 1994;
Collins et al., 1988). Our model serves as a computational tool
for comparing these muteins as immunotherapeutic drugs that
selectively activate certain cell populations. For example, our
model helped to identify that high IL-2Ra affinity is essential to
preserve Treg cell specificity regardless of the affinity for IL-
2Rb/gc (Figure 6). The orientation of Fc fusion can significantly in-
fluence receptor affinity (including reducing IL-2Ra affinity), and
so this step of drug design needs to be incorporated into ligand
optimization (Figure 6E). Incorporating trafficking with the bind-
ing events of the cytokines allowed us to distinguish surface
and endosomal binding, which is an unexplored axis for further
engineering cell-specific responses. Indeed, endosomal IL-2Ra
affinity is predicted to be more critical for Treg cell specificity
than binding on the surface, which agrees with the distinct tem-
poral profiles of ligand response between cell types on the time-
scale of trafficking (Figures 6C and 6K).
Models incorporating the full panel of responding cell popula-

tions will enable further refinement of these engineered ligands
(León et al., 2013). IL-2 and IL-15 have extremely short half-lives
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in vivo, in part because of endocytosis-mediated clearance (Ber-
nett et al., 2017; Konrad et al., 1990). Including endocytic traf-
ficking of ligands will enable future work modeling ligand clear-
ance in vitro and in vivo. Changes in receptor binding may
therefore be selected based on optimized selectivity and phar-
macokinetic properties. Although cell types were defined here
by their average receptor expression, cell-to-cell variability
within these populations leads to variation in stimulus response
(Cotari et al., 2013). Incorporating single-cell variation will pro-
vide a more complete picture of population response and may
help to further refine cell type selectivity.
Although the model was able to capture many of the overall dif-

ferences and dynamics in cytokine response between cell popu-
lations and engineered ligands, we noted some systematic errors.
In particular, predictions were generally worse for helper T cells
(Figure 4C), longer and higher-concentration treatments (Fig-
ure S5), and engineered muteins with the largest changes in their
receptor binding kinetics (Figure S8; N88D). We expect that there
are three explanations for these errors that provide opportunities
for further model refinement. First, we set a high bar for perfor-
mance of the model by only fitting to cell line measurements
and then trying to predict PBMC response as our validation. Any
systematic differences between the YT-1 cell line and primary cul-
tures would show up as an error in our model, and directly training
the model on PBMC responses would reveal these. Second, we
treat populations as overall averages, when cell-to-cell variation
certainly exists (Cotari et al., 2013). As described above,modeling
the variation in these populations could help correct for skewed
responses that arise because of this heterogeneity. Finally, we
elected to only model receptor-level regulatory events because
these are most available for therapeutic engineering. However,
the JAK-STAT pathway is dynamically regulated and certainly
contributes to our measured responses (Kuwabara et al., 2016).
Incorporating this pathway is sure to further improve our model’s
correspondence to the data. Each of these improvements will, in
turn, reveal other useful points to engineer this pathway.
Receptor families with many receptors and ligands are often

madeupof adensewebofconnections,making the roleof individ-
ual components non-intuitive (Antebi et al., 2017b; Eubelen et al.,
2018). Interconnected, cross-reactive components may have
evolved as a tradeoff between transmitting ligand-mediated infor-
mation and expanding the repertoire of cell-surface proteins (Ko-
morowski and Tawfik, 2019). The methods detailed in this paper
can be applied tomany signaling systems characterized by pleiot-
ropy and high dimensionality. The combination of dynamic,mech-
anistic models and statistical exploration methods is particularly
powerful to provide actionable directions for how to optimize ther-
apeutic response. Detailed biophysical and structural character-
ization, animal diseasemodels, and evidence fromhuman genetic
studies make this engineering possible for therapeutically target-
ing other complex signaling pathways, including FcgR, Wnt,
Hedgehog, Notch, and BMP/TGF-b (Antebi et al., 2017a, 2017b;
Eubelen et al., 2018; Li et al., 2018; Robinett et al., 2018).
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Mortier, E., Quéméner, A., Vusio, P., Lorenzen, I., Boublik, Y., Grötzinger, J.,

Plet, A., and Jacques, Y. (2006). Soluble interleukin-15 receptor a (IL-15R a)-

sushi as a selective and potent agonist of IL-15 action through IL-15R b/g. Hy-

peragonist IL-15 x IL-15R a fusion proteins. J. Biol. Chem. 281, 1612–1619.

Peterson, L.B., Bell, C.J.M., Howlett, S.K., Pekalski, M.L., Brady, K., Hinton,

H., Sauter, D., Todd, J.A., Umana, P., Ast, O., et al. (2018). A long-lived IL-2

mutein that selectively activates and expands regulatory T cells as a therapy

for autoimmune disease. J. Autoimmun. 95, 1–14.

Pulliam, S.R., Uzhachenko, R.V., Adunyah, S.E., and Shanker, A. (2016). Com-

mon gamma chain cytokines in combinatorial immune strategies against can-

cer. Immunol. Lett. 169, 61–72.

Renauld, J.C., Druez, C., Kermouni, A., Houssiau, F., Uyttenhove, C., Van

Roost, E., and Van Snick, J. (1992). Expression cloning of the murine and hu-

man interleukin 9 receptor cDNAs. Proc. Natl. Acad. Sci. USA 89, 5690–5694.

Rickert, M., Boulanger, M.J., Goriatcheva, N., and Garcia, K.C. (2004).

Compensatory energetic mechanisms mediating the assembly of signaling

complexes between interleukin-2 and its a, b, and g(c) receptors. J. Mol.

Biol. 339, 1115–1128.

Ring, A.M., Lin, J.-X., Feng, D., Mitra, S., Rickert, M., Bowman, G.R., Pande,

V.S., Li, P., Moraga, I., Spolski, R., et al. (2012). Mechanistic and structural

insight into the functional dichotomy between IL-2 and IL-15. Nat. Immunol.

13, 1187–1195.

Robinett, R.A., Guan, N., Lux, A., Biburger, M., Nimmerjahn, F., and Meyer,

A.S. (2018). Dissecting FcgR regulation through a multivalent binding model.

Cell Syst. 7, 41–48.e5.

Rochman, Y., Spolski, R., and Leonard, W.J. (2009). New insights into the

regulation of T cells by g(c) family cytokines. Nat. Rev. Immunol. 9, 480–490.

Salvatier, J., Wiecki, T.V., and Fonnesbeck, C. (2016). Probabilistic program-

ming in Python using PyMC3. PeerJ Comput. Sci. 2, e55.

Sarkar, C.A., Lowenhaupt, K., Horan, T., Boone, T.C., Tidor, B., and Lauffen-

burger, D.A. (2002). Rational cytokine design for increased lifetime and

enhanced potency using pH-activated ‘‘histidine switching’’. Nat. Biotechnol.

20, 908–913.

Sharfe, N., Dadi, H.K., Shahar, M., and Roifman, C.M. (1997). Human immune

disorder arising frommutation of the a chain of the interleukin-2 receptor. Proc.

Natl. Acad. Sci. USA 94, 3168–3171.

Sharma, R., Zheng, L., Deshmukh, U.S., Jarjour, W.N., Sung, S.S., Fu, S.M.,

and Ju, S.-T. (2007). A regulatory T cell-dependent novel function of CD25

(IL-2Ralpha) controlling memory CD8(+) T cell homeostasis. J. Immunol.

178, 1251–1255.

Spangler, J.B., Tomala, J., Luca, V.C., Jude, K.M., Dong, S., Ring, A.M., Vota-

vova, P., Pepper, M., Kovar, M., and Garcia, K.C. (2015). Antibodies to

interleukin-2 elicit selective T cell subset potentiation through distinct confor-

mational mechanisms. Immunity 42, 815–825.

Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis.

Psychometrika 31, 279–311.

Vigliano, I., Palamaro, L., Bianchino, G., Fusco, A., Vitiello, L., Grieco, V.,

Romano, R., Salvatore, M., and Pignata, C. (2012). Role of the common g chain

in cell cycle progression of human malignant cell lines. Int. Immunol. 24,

159–167.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aaron
Meyer (a@asmlab.org).

Materials availability
Materials generated in this study are available upon reasonable request from the lead contact.

Data and code availability
All datasets generated during and/or analyzed during the current study and all custom scripts and functions generated or used during
the current study are available from https://github.com/meyer-lab/gc-cytokines.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Cryopreserved PBMCs (ATCC, PCS-800-011, lot#81115172) were harvested from a single adult human subject.

METHOD DETAILS

Base model
Cytokine (IL-2,"4,"7,"9,"15, &"21) binding to receptors wasmodeled using ordinary differential equations (ODEs). IL-2 and"15
each had two private receptors, one being a signaling-deficient a chain (IL-2Ra & "15Ra) and the other being signaling-competent
IL-2Rb. The other four cytokines each had one signaling-competent private receptor (IL-7Ra, "9R, "4Ra, & "21Ra). JAK-STAT
signaling is initiated when JAK-binding motifs are brought together. JAK binding sites are found on the intracellular regions of the
gc, IL-2Rb, IL-4Ra, IL-7Ra, IL-9R, and IL-21Ra receptors; therefore, all complexes which contained two signaling-competent

Continued
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Quantum Simply Cellular anti-Mouse IgG Bangs Labs Cat #815

Quantum Simply Cellular anti-Rat IgG Bangs Labs Cat #817

MabSelect Resin GE Healthcare Cat #17519901

BirA enzyme BPS Biosciences Cat #70030

Interleukin-2 (IL-2) R&D Systems Cat #202-IL-010

Interleukin-15 (IL-15) R&D Systems Cat #247-ILB-025

Interleukin-2 muteins This Paper N/A

Critical commercial assays

Octet RED384 Biolayer Interferometer ForteBio N/A

Deposited data

All raw and processed cellular response

data

This paper; Gonnord et al., 2018; Ring et al.,

2012

https://github.com/meyer-lab/

gc-cytokines

Experimental models: Cell lines

Cryopreserved PBMCs ATCC Cat #PCS-800-011

Expi293F Cells ThermoFisher Scientific Cat #A14527

Software and algorithms

Python3 Python Software Foundation https://python.org/

C++ Standard C++ Foundation https://isocpp.org/

SUNDIALS Hindmarsh et al., 2005 https://computing.llnl.gov/projects/

sundials

PyMC3 Salvatier et al., 2016 https://docs.pymc.io/

Adept-2 Hogan, 2017 https://github.com/rjhogan/Adept-2

TensorLy Kossaifi et al., 2019 https://github.com/tensorly/tensorly

gc Mechanistic Binding Model This paper https://github.com/meyer-lab/

gc-cytokines
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receptors were deemed to be active species. Ligands were assumed to first bind a receptor other than gc and then can dimerize with
other receptors or gc thereafter. Direct binding of ligand to gc was not included due to its very weak or absent binding (Voss et al.,
1993). Our model’s output was defined by the number of active signaling complexes; experimental STAT phosphorylation measure-
ments were scaled to model predictions by use of a fit scalar factor.

In addition to binding interactions, our model incorporated receptor-ligand trafficking. Receptor synthesis was assumed to occur at a
constant rate. The endocytosis rate was defined separately for active (kendo,a) and inactive (kendo) receptors. fsort defined the fraction of
endosomal species that ultimately traffic to the lysosome; active species in the endosome had a sorting fraction of 1.0. All endosomal
species not sent to lysosomes were recycled back to the cell surface. The lysosomal degradation and recycling rate constants were
defined as kdeg and krec, respectively. We assumed no autocrine ligandwas produced by the cells.We assumed an endosomal volume
of 10 fL and endosomal surface area half that of the plasma membrane (Meyer et al., 2015). We assumed no fluid uptake of ligand and
calculated the rate of change in endosomal ligand was derived by a mass balance of endosomal reactions. Endosomal ligand was
assumed to completely sort into the lysosome from the endosome. All binding events were assumed to occur with 5-fold greater disas-
sociation rate in the endosome due to its acidic pH (Fallon and Lauffenburger, 2000). Trafficking was therefore accounted for as:

dE

dt
= " E3 kendo + krec 3 ð1" fsortÞ3 I34

dI

dt
=
E3 kendo

4
" krec 3 1" fsortð Þ3 I" kdeg 3 fsort 3 I

where E and I indicate the abundance of the intracellular and extracellular forms, respectively. 4 is the fractional membrane area of
the endosomal compartment scaled to that of the surface membrane, and was assumed to be 0.5.

Free receptors and complexes were measured in units of number per cell and soluble ligands were measured in units of concen-
tration (nM). Due to these unit choices for our species, the rate constants for ligand binding to free receptors had units of nM-1 min-1.
Rate constants for the forward dimerization of free receptor to complex had units of cell min-1 number-1. Dissociation rates had units
of min-1. All ligand-receptor binding processes had an assumed forward rate (kbnd) of 10

7 M-1 sec-1. All forward dimerization reaction
rates were assumed to be identical, represented by kfwd. Reverse reaction rates were unique. Experimentally-derived affinities of 1.0
(Gonnord et al., 2018), 59 (Walsh, 2012), 0.1 (Renauld et al., 1992), and 0.07 nM (Gonnord et al., 2018) were used for IL-4,"7,"9, and
"21 binding to their cognate private receptors, respectively. IL-2 and"15 were assumed to have affinities of 10 nM and 0.065 nM for
their respective a chains (Dubois et al., 2002; Mortier et al., 2006; Rickert et al., 2004), and affinities of 144 nM and 438 nM for their
respective b-chains (Rickert et al., 2004). Rates k5,rev, k10,rev, and k11,rev were set to their experimentally determined disassociation
constants of 1.5, 12, and 63min-1 (Rickert et al., 2004). Below are the ODEs pertaining to IL-2 binding and unbinding events, where L,
a, and b signify IL-2, IL-2Ra, IL-2Rb respectively:

da

dt
= " kfbnd a L+ k1;rev ½L $a&+ k8;rev ½L $a $ b $gc& " kfwd 3 ða ½L $b& + a ½L $ b $gc&Þ+ k12;rev ½L $a $ b&

db

dt
= " kfbnd b L+ k2;rev ½L $b&+ k9;rev ½L $a $ b $gc& " kfwd ðb ½L $a& + b ½L $a $gc&Þ+ k11;rev ½L $a $ b&

dgc

dt
= " kfwd ð½L $b& gc + ½L $a& gc + ½L $a $ b& gcÞ+ k5;rev ½L $b $gc&+ k4;rev ½L $a $gc&+ k10;rev ½L $a $b $gc&

d½L$a&
dt

= " kfwd ð½L $a& b + ½L $a& gcÞ+ k11;rev ½L $a $ b&+ k4;rev ½2 $a $gc&+ kfbnd L a" k1;rev ½L $a&

d½L$b&
dt

= " kfwd ð½L $ b& a + ½L $ b& gcÞ+ k12;rev ½L $a $ b&+ k5;rev ½L $ b $gc&+ kfbnd L b" k2;rev ½L $ b&

d½L$a$b&
dt

= kfwd ð½L $ b& a + ½L $a& b" ½L $a $ b& gcÞ+ k10;rev ½L $a $ b $gc& " k11;rev ½L $a $b& " k12;rev ½L $a $ b&
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d½L$a$gc&
dt

= " k9;rev ½L $a $b $gc&+ kfwd ð½L $a& gc " ½L $a $gc& bÞ " k4;rev ½L $a $gc&

d½L$b$gc&
dt

= k8;rev ½L $a $ b $gc&+ kfwd ð½L $b& gc " ½L $b $gc& aÞ " k5;rev ½L $b $gc&

d½L$a$b$gc&
dt

= kfwd ð½L $ b $gc& a + ½L $a $gc& b + ½L $a $b& gcÞ " ðk8;rev + k9;rev + k10;revÞ ½L $a $b $gc&

All above reactions also occur for IL-15, where L, a, and b signify IL-15, IL-2Ra, and IL-2Rb respectively, and reverse rate parameters
are substituted according to Table 1. The ODEs for IL-4 and IL-7 are derived by setting the abundance of a to 0, b representing the
private receptor, and L representing the ligand concentration. Table 1 again lists the corresponding rate constants.
Initial values were calculated by assuming steady state in the absence of ligand. Differential equation solving was performed using

the SUNDIALS solvers in C++, with a Python interface for all other code (Hindmarsh et al., 2005). Model sensitivities were calculated
using the adjoint solution (Cao et al., 2002). Calculating the adjoint requires the partial derivatives of the differential equations both
with respect to the species and unknown parameters. Constructing these can be tedious and error prone. Therefore, we calculated
these algorithmically using forward-pass autodifferentiation implemented in Adept-2 (Hogan, 2017). A model and sensitivities toler-
ance of 10"9 and 10"3, respectively, were used throughout. We used unit tests for conservation of mass, equilibrium, and detailed
balance to ensure model correctness.

Model fitting
We used Markov chain Monte Carlo to fit the unknown parameters in our model using previously published cytokine response data
(Gonnord et al., 2018; Ring et al., 2012). Experimental measurements include pSTAT activity under stimulation with varying concen-
trations of IL-2,"15,"4, and"7 aswell as time-coursemeasurements of surface IL-2Rb upon IL-2 and"15 stimulation. YT-1 human
NK cells were used for all datasets involving IL-2 and IL-15. Human PBMC-derived CD4+TCR+CCR7high cells were used for all IL-4
and"7 response data. All YT-1 cell experiments were performed both with the wild-type cell line, lacking IL-2Ra, and cells sorted for
expression of the receptor. Data from Ring et al. (2012) and Gonnord et al. (2018) can be found in Figure 5 and Figure S3 of each
paper, respectively. Measurements of receptor counts at steady state in Gonnord et al. (2018) were used to solve for IL-7Ra, IL-
4Ra, and gc expression rates in human PBMCs.
Fitting was performed with the Python package PyMC3 (Salvatier et al., 2016). All unknown rate parameters were assumed to have

a lognormal distribution with a standard deviation of 0.1; the only exception to these distributions was fsort which was assumed to
have a beta distribution with shape parameters of a = 20 and b = 40. Executing this fitting process yielded a distribution of each un-
known parameter and a sum of squared error between model prediction and experimental data. The Geweke criterion metric was
used to verify fitting convergence for all versions of the model (Figure S2; Geweke, 1992).

Tensor generation and factorization
To perform tensor factorization, we generated a three- (time points 3 cell types 3 ligand) or four-dimensional (time points 3 cell
types 3 concentration 3mutein) data tensor of predicted or measured ligand-induced signaling. Before decomposition, the tensor
was variance scaled across each cell population. Tensor decomposition was performed using the Python package TensorLy (Kos-
saifi et al., 2019). Except where indicated otherwise, tensor decomposition was performed using non-negative canonical polyadic
decomposition. Where indicated, non-negative Tucker decomposition was used.

Receptor abundance quantitation
Cryopreserved PBMCs (ATCC, PCS-800-011, Lot #81115172) were thawed to room temperature and slowly diluted with 9 mL pre-
warmed RPMI-1640 medium (GIBCO, 11875-093) supplemented with 10% fetal bovine serum (FBS, Seradigm, 1500-500, Lot
#322B15). Media was removed, and cells washed once more with 10 mL warm RPMI-1640 + 10% FBS. Cells were brought to
1.5x106 cells/mL, distributed at 250,000 cells per well in a 96-well V-bottom plate, and allowed to recover 2 hr at 37'C in an incubator
at 5%CO2. Cells were then washed twice with PBS + 0.1%BSA (PBSA, GIBCO, 15260-037, Lot #2000843) and suspended in 50 mL
PBSA + 10% FBS for 10 min on ice to reduce background binding to IgG.
Antibodies were diluted in PBSA + 10%FBS and cells were stained for 1 hr at 4'C in darkness with a gating panel (Panel 1, Panel 2,

Panel 3, or Panel 4) and one anti-receptor antibody, or an equal concentration of matched isotype/fluorochrome control antibody.
Stain for CD25 was included in Panel 1 when CD122, CD132, CD127, or CD215 was being measured (CD25 is used to separate Tregs
from other CD4+ T cells).
Compensation beads (Simply Cellular Compensation Standard, Bangs Labs, 550, Lot #12970) and quantitation standards (Quan-

tum Simply Cellular anti-Mouse IgG or anti-Rat IgG, Bangs Labs, 815, Lot #13895, 817, Lot #13294) were prepared for compensation
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and standard curve. One well was prepared for each fluorophore with 2 mL antibody in 50 mL PBSA and the corresponding beads.
Bead standards were incubated for 1 hr at room temperature in the dark.

Both beads and cells were washed twice with PBSA. Cells were suspended in 120 mL per well PBSA, and beads to 50 mL, and
analyzed using an IntelliCyt iQue Screener PLUS with VBR configuration (Sartorius) with a sip time of 35 and 30 s for cells and beads,
respectively. Antibody number was calculated from fluorescence intensity by subtracting isotype control values from matched re-
ceptor stains and calibrated using the two lowest binding quantitation standards. Treg cells could not be gated in the absence of
CD25, so CD4+ T cells were used as the isotype control to measure CD25 in Treg populations. Cells were gated (Figure S3), and
then measurements were performed using four independent staining procedures over two days. Separately, the analysis was per-
formed with anti-receptor antibodies at 3x normal concentration to verify that receptor binding was saturated. Replicates were sum-
marized by geometric mean.

pSTAT5 measurement in PBMCs
Human PBMCs were thawed, distributed across a 96-well plate, and allowed to recover as described above. IL-2 (R&D Systems,
202-IL-010), IL-2 muteins, or IL-15 (R&D Systems, 247-ILB-025) were diluted in RPMI-1640 without FBS and added to the indicated
concentrations. To measure pSTAT5, media was removed, and cells fixed in 100 mL of 10% formalin (Fisher Scientific, SF100-4) for
15 mins at room temperature. Formalin was removed, cells were placed on ice, and cells were gently suspended in 50 mL of cold
methanol ("30'C). Cells were stored overnight at "30'C. Cells were then washed twice with PBSA, split into two identical plates,
and stained 1 hr at room temperature in darkness using antibody panels 4 and 5 with 50 mL per well. Cells were suspended in
100 mL PBSA per well, and beads to 50 mL, and analyzed on an IntelliCyt iQue Screener PLUSwith VBR configuration (Sartorius) using
a sip time of 35 s and beads 30 s. Compensation was performed as above. Populations were gated (Figure S3), and the median
pSTAT5 level extracted for each population in each well.

Recombinant proteins
IL-2/Fc fusion proteins were expressed using the Expi293 expression system according to manufacturer instructions (Thermo Sci-
entific). Proteinswere constructed as human IgG1 Fc fusions at theN- or C terminus to human IL-2 through a (G4S)4 linker. C-terminal
fusions omitted the C-terminal lysine residue of human IgG1. The AviTag sequence GLNDIFEAQKIEWHEwas included on whichever
terminus did not contain IL-2. Fc mutations to prevent dimerization were introduced into the Fc sequence (Ishino et al., 2013). Pro-
teins were purified using MabSelect resin (GE Healthcare). Proteins were biotinylated using BirA enzyme (BPS Biosciences) accord-
ing to manufacturer instructions, and extensively buffer-exchanged into phosphate buffered saline (PBS) using Amicon 10 kDa spin
concentrators (EMD Millipore). The sequence of IL-2Rb/g Fc heterodimer was based on a reported active heterodimeric molecule
(patent application US20150218260A1), with the addition of (G4S)2 linker between the Fc and each receptor ectodomain. The protein
was expressed in the Expi293 system and purified on MabSelect resin as above. IL2-Ra ectodomain was produced with C-terminal
6xHis tag and purified on Nickel-NTA spin columns (QIAGEN) according to manufacturer instructions.

Octet binding assays
Binding affinity wasmeasured on an Octet RED384 (ForteBio). Briefly, biotinylated monomeric IL-2/Fc fusion proteins were uniformly
loaded to Streptavidin biosensors (ForteBio) at roughly 10% of saturation point and equilibrated for 10 mins in PBS + 0.1% bovine
serum albumin (BSA). Association time was up to 40 mins in IL-2Rb/g titrated in 2x steps from 400 nM to 6.25 nM, or IL-2Ra from
25 nM to 20 pM, followed by dissociation in PBS + 0.1% BSA. A zero-concentration control sensor was included in each measure-
ment and used as a reference signal. Assays were performed in quadruplicate across two days. Binding to IL-2Ra did not fit to a
simple binding model so equilibrium binding was used to determine the KD within each assay. Binding to IL-2Rb/g fit a 1:1 binding
model so on-rate (kon), off-rate (koff) and KD were determined by fitting to the entire binding curve. Kinetic parameters and KD were
calculated for each assay by averaging all concentrations with detectable binding signal (typically 12.5 nM and above).

QUANTIFICATION AND STATISTICAL ANALYSIS

For each figure, descriptions of pertinent statistical analyses ormetrics used, the number of replicates of experiments performed, and
the values of confidence intervals can be found in its corresponding figure caption. n indicates the number of times a particular exper-
iment was performed (duplicate, triplicate, etc.) within each figure. All experiments performed using either YT-1 NK cells or hPBMCs
were conducted using entirely separate experimental replicates gathered from a single cell line or donor, respectively.

The confidence intervals of model predictions were generated by using 100 draws from the Markov chain generated during the
model fitting process to make 100 corresponding dose response predictions. The 10%–90% confidence interval indicates the range
from the 10th to 90th percentile of the predicted signaling response magnitude.

For all quantification of cellular species abundances, whether pSTAT5 or receptor amounts, themean fluorescent intensity (MFI) of
flow cytometry data was calculated to determine population-level species abundance.

Experimental and predicted EC50s were estimated by fitting a standard Hill function to the dose-response curves using unbounded
non-linear least-squares (Figure 4).
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Supplement

Table S1: Antibodies used to quantify receptors and cell types. Related to Figure 3. Panel 0:
Antibodies for IL-2, IL-15, and IL-7 receptor analysis; Panel 1: Antibodies to gate Naïve and Memory T-
regulatory and T-helper cells; Panel 2: Antibodies to gate NK and CD56bright NK cells; Panel 3: Antibodies
to gate Naïve and Memory Cytotoxic T cells; Panel 4: Antibodies to gate Naïve and Memory T-regulatory,
T helper, and Cytotoxic cells, and NK cells for CD127 (IL-7) Quantitation; Panel 5: Antibodies to gate
Memory and Naïve T-regulatory cells, Memory and Naïve T-helper cells; Panel 6: Antibodies to gate NK
cells, CD56bright NK cells, and Cytotoxic T cells. CST: Cell Signaling Technology.

Antibody (clone) Dilution Fluorophore Vendor (CAT#) Panel
CD25 (M-A251) 1:120 Brilliant Violet 421 BioLegend (356114) 0
CD122 (TU27) 1:120 PE/Cy7 BioLegend (339014) 0
CD132 (TUGh4) 1:120 APC BioLegend (3386) 0
CD215 1st mAb (JM7A4) 1:120 APC BioLegend (330210) 0
CD215 2nd mAb (151303) 3:100 APC R&D Systems (FAB1471A) 0
CD127 (A019D5) 1:120 Alexa Fluor 488 BioLegend (351313) 0
Ms IgG1κ (MOPC-21) 1:240 Brilliant Violet 421 BioLegend (400158) 0
Md IgG1κ (MOPC-21) 1:240 PE/Cy7 BioLegend (400126) 0
Rat IgG2Bκ (RTK4530) 1:60 APC BioLegend (400612) 0
Ms IgG2Bκ (MPC-11) 1:120 APC BioLegend (400320) 0
Ms IgG2B (133303) 3:100 APC R&D Systems (IC0041A) 0
Ms IgG1κ (MOPC-21) 1:120 Alexa Fluor 488 BioLegend (400129) 0
CD3 (UCHT1) 1:120 Brilliant Violet 605 BioLegend (300460) 1
CD4 (RPA-T4) 1:120 Brilliant Violet 785 BioLegend (300554) 1
CD127 (A019D5) 1:120 Alexa Fluor 488 BioLegend (351313) 1
CD45RA (HI100) 1:120 PE/Dazzle 594 BioLegend (304146) 1
CD3 (UCHT1) 1:120 Brilliant Violet 605 BioLegend (300460) 2
CD56 (5.1H11) 1:120 PE/Dazzle 594 BioLegend (362544) 2
CD3 (UCHT1) 1:120 Brilliant Violet 605 BioLegend (300460) 3
CD8 (RPA-T8) 1:120 Brilliant Violet 785 BioLegend (301046) 3
CD45RA (HI100) 1:120 PE/Dazzle 594 BioLegend (304146) 3
CD25 (M-A251) 1:120 Brilliant Violet 421 BioLegend (356114) 4
CD3 (UCHT1) 1:120 Brilliant Violet 605 BioLegend (300460) 4
CD4 (RPA-T4) 1:120 Brilliant Violet 785 BioLegend (300554) 4
CD127 (A019D5) 1:120 Alexa Fluor 488 BioLegend (351313) 4
CD45RA (HI100) 1:120 PE/Dazzle 594 BioLegend (304146) 4
CD56 (5.1H11) 1:120 PE/Cy7 BioLegend (362510) 4
CD8 (RPA-T8) 1:120 Alexa Fluor 647 BioLegend (301062) 4
Foxp3 (259D) 1:50 Alexa Fluor 488 BioLegend (320212) 5
CD25 (M-A251) 1:120 Brilliant Violet 421 BioLegend (356114) 5
CD4 (SK3) 1:120 Brilliant Violet 605 BioLegend (344646) 5
CD45RA (HI100) 1:120 PE/Dazzle 594 BioLegend (304146) 5
pSTAT5 (C71E5) 1:120 Alexa Fluor 647 CST (9365) 5
CD3 (UCHT1) 1:120 Brilliant Violet 605 BioLegend (300460) 6
CD8 (RPA-T8) 1:120 Alexa Fluor 647 BioLegend (301062) 6
CD56 (5.1H11) 1:120 Alexa Fluor 488 BioLegend (362518) 6
pSTAT5 (D4737) 1:120 PE CST (14603) 6

41



Table S2: Modified IL-2 ligands and their respective mutations, and Fc conjugations. Related
to Figure 6.

Ligand Fc Conjugation Specificity Mutation Other Mutations
F42Q N-Term N-Terminus F42Q V69A/Q74P/C125S
N88D C-term C-Terminus N88D C125A
R38Q N-term N-Terminus R38Q V69A/Q74P/C125S
V91K C-term C-Terminus V91K C125A
WT C-term C-Terminus Wild-type C125A
WT N-term N-Terminus Wild-type V69A/Q74P/C125S
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Figure S1: Model without trafficking fitted to IL-2/-15 dose response. Related to Figure 1.
A) Model without trafficking fit to IL-2 and IL-15 pSTAT5 dose response data (Ring et al., 2012). This
model was not fit to the surface IL-2Rβ measurements since no receptors were allowed to internalize
from the cell surface (Fig. 1B-D). B) Posterior distributions for the analogous association constants of IL-2
and IL-15. Association constants measured in literature are represented by dots. Association constants
are shown for species in parentheses complexing with following species. Kas for (2)·2Rα, (15)·15Rα,
(2)·2Rβ, and (15)·2Rβ have units of nM, all other Kas have units of #× cell−1. C) Posterior distributions
for receptor surface abundance in no-trafficking model. D) Posterior distributions after data fitting for
no-trafficking model. C5, which is a constant in the sigmoidal relationship our model uses to translate
active signaling complexes to pSTAT levels, has units of #× cell−1, Complex Formation Rate (kfwd) has
units of cell×#−1 ×min−1.
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Figure S2: Geweke criterion scores for model fitting with and without trafficking. Related to
Figure 1, 2, 4, and 6. Geweke criterion z-scores in all subplots were calculated using 20 intervals in
the first 10% and last 50% of MCMC chain. Scores of |z| < 1 imply fitting convergence. A-B) IL-2/-15 with
and without trafficking. C) IL-4/-7 with trafficking (Fig. S1).
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Figure S3: Receptor quantification and gating of PBMC-derived immune cell types. Related to
Figure 3. A) Preliminary gating for single lyphocytes. B) Example staining for CD122 (red), the corre-
sponding isotype control (blue), and unstained cells (black). C) Gating for live T helper and T regulatory
cells during receptor quantification. D) Live cell NK cell gating. E) Live cell CD8+ T cell gating. F) Gating
for fixed T helper and T regulatory cells during pSTAT5 quantification. G) Fixed CD8+ T cell and NK cell
gating.
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Figure S4: Tucker factorization of predicted immune cell type responses. Related to Figure 5.
A) Timepoint decomposition plot showing factorization component values against time after decomposing
the tensor’s first dimension into 2 components. B) Decomposition plot along the second (cell) dimension
after decomposing it to 2 components showing the ten cell type values along each component. C) Ligand
decomposition plot along the tensor’s third dimension after decomposing it into 3 components. D–E)
Slices of the Tucker core tensor corresponding to time component 1 (D) and 2 (E).
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Figure S5: Full panel of predicted versus actual immune cell type responses. Related to Figure
4. Dots represent flow cytometry measurements and shaded regions represent 10-90% confidence inter-
val for model predictions. Time of pSTAT5 activity measurement is denoted by color. All cell populations
were stimulated with either IL-2 (A-J) or IL-15 (K-T). Experiments were performed in duplicate (N = 2).
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Figure S6: Model without trafficking is unable to accurately predict PBMC signaling response.
Related to Figure 4. A) Both experimentally-derived and model without trafficking-predicted EC50s of
dose response across IL-2/-15 and all 10 cell types. EC50s are shown for 1 hr time point. B) Pearson
correlation coefficients between model without trafficking prediction and experimental measurements
for all 10 cell populations. C–H) pSTAT5 response to IL-2 (C–E) or IL-15 (F–H) dose responses in NK, CD8+,
and Treg cells. Predictions were made using model without trafficking. Experiments were performed in
duplicate (N = 2).

48



-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0 WT N-term
WT C-term
R38Q N-term
F42Q N-term
N88D C-term
V91K C-term

CD25 (IL-2Rα) [nM]

R
U

Figure S7: Cytokine affinity measurements to IL-2Rα. Related to Figure 6. Binding is quantified
in relative units using biolayer interferometry.
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Figure S8: Full panel of predicted versus actual immune cell type responses to IL-2 muteins.
Related to Figure 6. Dots represent flow cytometry measurements and shaded regions represent
10-90% confidence interval for model predictions. Time of pSTAT5 activity measurement is denoted by
color. Cell populations were stimulated with IL-2 muteins of varying IL-2Rα and IL-2Rβ/γc binding affinities.
Experiments were performed once (N = 1).
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IMMUNOLOGY

Multivalent, asymmetric IL-2–Fc fusions show enhanced
selectivity for regulatory T cells
Brian T. Orcutt-Jahns1, Peter C. Emmel1, Eli M. Snyder1, Scott D. Taylor1, Aaron S. Meyer1,2,3*

The cytokine interleukin-2 (IL-2) has the potential to treat autoimmune disease but is limited by its modest
specificity toward immunosuppressive regulatory T (Treg) cells. IL-2 receptors consist of combinations of α, β,
and γ chains of variable affinity and cell specificity. Engineering IL-2 to treat autoimmunity has primarily
focused on retaining binding to the relatively Treg-selective, high-affinity receptor while reducing binding to
the less selective, low-affinity receptor. However, we found that refining the designs to focus on targeting
the high-affinity receptor through avidity effects is key to optimizing Treg selectivity. We profiled the dynamics
and dose dependency of signaling responses in primary human immune cells induced by engineered fusions
composed of either wild-type IL-2 or mutant forms with altered affinity, valency, and fusion to the antibody Fc
region for stability. Treg selectivity and signaling response variations were explained by a model of multivalent
binding and dimer-enhanced avidity—a combined measure of the strength, number, and conformation of in-
teraction sites—from which we designed tetravalent IL-2–Fc fusions that had greater Treg selectivity in culture
than do current designs. Biasing avidity toward IL2Rαwith an asymmetrical multivalent design consisting of one
α/β chain–binding and one α chain–binding mutant further enhanced Treg selectivity. Comparative analysis re-
vealed that IL2Rα was the optimal cell surface target for Treg selectivity, indicating that avidity for IL2Rαmay be
the optimal route to producing IL-2 variants that selectively target Tregs.

Copyright © 2023 The
Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original U.S.
Government Works

INTRODUCTION
Cytokines that bind to the common γ-chain (γc) receptor, interleu-
kins 2, 4, 7, 9, 15, and 21 (IL-2, IL-4, and so on), are a critical hub in
modulating both innate and adaptive immune responses (1). Each
cytokine in this family binds to the common γc receptor alongside a
private receptor that is specific for each ligand to induce signaling.
These cytokines control the activity of both effector and suppressor
immune cell populations. For example, IL-2 can increase the effec-
tor functions of CD8+ T cells through the induction of cytotoxic
protein expression, as well as promote the suppressive capacity of
regulatory T (Treg) cells by inducing the expression of suppressive
cytokines and checkpoint proteins (2–4). Signaling through γc
family receptors also commonly results in the proliferation of
both suppressor and effector cell types; consequently, the γc cyto-
kines are an important endogenous and exogenous mechanism
for altering the balance of immune cell populations. The impor-
tance of these cytokines is observed most extremely from loss-of-
function or reduced-activity mutations in γc, which subvert T and
natural killer (NK) cell maturation (5). Disruptive mutations in the
private receptors can lead to more selective reductions in cell types,
such as Tregs in the case of IL2Rα or T cells in that of IL7Rα (1).
Conversely, activating mutations in these receptors can promote
cancers such as B and T cell leukemias (6).

The γc cytokines have been explored as immunotherapies in a
diverse array of disease indications (7). The most studied member
of the family, IL-2, acts as both as an immunostimulant and immu-
nosuppressant and has been explored as a treatment for diseases

ranging from cancer to autoimmunity (8–11). Its ability to
expand Treg populations, particularly at low doses, has great
promise as an effective treatment for autoimmune diseases such
as graft-versus-host disease and hepatitis-induced vasculitis (12,
13). The efficacy of these IL-2 therapies has been hindered,
however, by IL-2’s activation of off-target immune populations,
which simultaneously reduce therapeutic efficacy and drive toxici-
ties (14). Enabling more selective activation of Tregs is desired to
reduce these detrimental effects. However, this goal has remained
elusive; effector and suppressor immune populations have only
subtly differing abundances of each IL-2 receptor subunit, and no
truly Treg-specific marker has been discovered for targeting purpos-
es (15). Reducing IL-2’s affinity for IL2Rβmoderately increases Treg
selectivity by increasing IL-2’s reliance on IL2Rα, which is found in
greater abundance on Tregs (15, 16). However, this increase in selec-
tivity comes at the cost of potency, because IL2Rβ is necessary for
signal transduction (17). Thus, when targeting Tregs, IL-2 therapies
have faced a persistent tradeoff between selectivity and potency (18).

The challenges involved in engineering cell-selective forms of
IL-2 have inspired varied therapeutic designs. As mentioned, the
most common approach has been to alter the receptor affinities of
IL-2 to weaken its interaction with IL2Rα, IL2Rβ, or both receptors
(19–23). In most cases, the wild-type (WT) cytokine or mutein is
fused to an immunoglobulin G (IgG) Fc to take advantage of
FcRn-mediated recycling to extend drug half-life. Fc fusion has
taken many forms, such as fusion to the cytokine at the N or C ter-
minus, including one or two cytokines per IgG and including or
excluding Fc effector functions (15). Also used have been so-
called immunocytokines that bind to IL-2 and block certain recep-
tor interactions to bias signaling responses (18). Cis-targeted IL-2
fusions, such as bispecific antibodies in which a nonfused Fab
binds to CD8, have been designed to deliver cytokines to cytotoxic
T cells (24). However, it is unclear whether this approach can be
applied to targeting Tregs. Other, more diverse IL-2 engineering

1Department of Bioengineering, University of California, Los Angeles, Los Angeles,
CA 90095, USA. 2Jonsson Comprehensive Cancer Center, University of California,
Los Angeles, Los Angeles, CA 90095, USA. 3Eli and Edythe Broad Center of Regen-
erative Medicine and Stem Cell Research, University of California, Los Angeles, Los
Angeles, CA 90095, USA.
*Corresponding author. Email: ameyer@asmlab.org
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has also been explored: “Orthogonal” IL-2, which only signals
through a synthetic receptor, has shown promise for stimulating
ex vivo engineered Tregs (25); a signaling-deficient IL-2 with high
specificity for IL2Rβ that attenuates graft-versus-host disease by in-
hibiting effector cells’ IL-2 signaling has been developed (26); and
last, mRNA delivery of a Treg-selective IL-2 mutein has been shown
to provide better pharmacokinetics by sustaining low amounts of
the cytokine (27). These varied approaches demonstrate the
complex nature of cytokine engineering necessitating systematic
design principles.

Here, we systematically profiled the signaling specificity effects
of engineered cytokine alterations, including affinity-altering muta-
tions and Fc-fusion formats, to map the current landscape of cell-
selective IL-2 designs. Through this systematic evaluation, we iden-
tified Fc fusion valency to be an important factor in cell type selec-
tivity. The signaling specificity of all muteins and Fc formats
quantitatively matches a multivalent binding model, both between
cell types and across cell-to-cell variation within a cell type, indicat-
ing that the effect of cytokine multivalency is derived from altered
surface receptor binding avidity. Using this model, we then identi-
fied that cytokines engineered in higher valency formats are predict-
ed to confer greater specificity toward a variety of immune cell
types. These insights were experimentally validated by designing
and testing two novel tetravalent IL-2 muteins in both symmetric
and asymmetric forms that displayed superior Treg signaling selec-
tivity. The performance of asymmetric, tetravalent IL-2 fusion pro-
teins also demonstrates how bitargeting and asymmetry can
decouple targeting from signaling, enabling new therapeutic oppor-
tunities. In total, our analysis and experimental findings demon-
strate that cytokine valency is an unexplored direction for further
enhancing selective signaling responses and that many opportuni-
ties for leveraging multivalency engineering exist within the γc cy-
tokine family and beyond.

RESULTS
Systematic IL-2 variant profiling reveals multiple
determinants of response
To explore how IL-2 mutations affect signaling across immune pop-
ulations, we stimulated peripheral blood mononuclear cells
(PBMCs), collected from a single donor, with 13 IL-2 muteins
(Fig. 1, A and B, and table S1). Our panel included several IL-2
muteins previously developed to confer enhanced Treg-selective sig-
naling (15, 22, 23). In addition to changes in receptor affinities, the
muteins included some variation in structural features: Fc fusion at
either the C or N terminus, which has been shown to alter receptor
interaction kinetics (15), and fusion to Fc in both monomeric and
dimeric formats. We previously profiled 6 of the 11 IL-2 muteins
(15); however, we both expanded this previous panel while also
adding dimeric Fc fusions, thus greatly expanding the scope of
IL-2 engineering approaches surveyed. Our panel includes several
muteins previously published or clinically developed for their Treg
selectivity—monomeric N88D and dimeric R38Q/H16N were pre-
viously developed by Amgen and Otsuka Pharmaceuticals, respec-
tively (22). Our panel was also designed to feature IL-2 variants
whose affinities for IL2Rα and IL2Rβ span the range of currently
available Treg-selective affinity mutants (Fig. 1B).

The panel of IL-2 variants was used to stimulate cells from a
single donor at four time points using 12 treatment concentrations.

The PBMCs were then stained for canonical cell type markers and
phosphorylated signal transducers and activators of transcription 5
(pSTAT5), a commonly used read-out of IL-2 signaling response,
allowing us to separate signaling response by cell type. Five different
cell types—Treg, helper T (Thelper), CD8+, NK, and NK CD56bright
(NKbright) cells—were gated and quantified (fig. S1, A to D). Treg
and Thelper cells were further dissected into low, average, and high
IL2Rα abundance by isolating subpopulations using three logarith-
mically spaced bins (fig. S1J). For a surface-level visualization of the
effects of time, cell type, receptor abundance, ligand format, ligand
affinity, and concentration, we organized our signaling data into a
heatmap (Fig. 1C). The complexity of the data demanded closer
examination.

We selectively highlighted several dose-response curves to dem-
onstrate the importance of our comprehensive characterization
(Fig. 1, D to O). First, as expected, we found that the affinity with
which each IL-2 interacted with receptors divided responses (Fig. 1,
D to G); for example, WT IL-2 most potently activated all cell types,
as expected given that it bound to IL2Rβ with the greatest affinity
(Fig. 1, B and D to G). Valency also had a prominent effect on sig-
naling response; the bivalent Fc fusion form increased sensitivity
and potency of response across all cell types.

Temporal dynamics also affected response characteristics (Fig. 1,
H to K). For example, we found that C or N terminus Fc-fused IL-2
demonstrated distinct responses in Tregs at 1 hour of treatment but
shared responses after 4 hours of treatment (Fig. 1, H to K). Tem-
poral effects are likely influenced by receptor-mediated endocytosis
of IL-2 receptor subunits and transcriptional changes arising from
IL-2 signaling (28, 29).

Last, we found that receptor abundance interacted with cell iden-
tity to alter response (Fig. 1, L to O). Treg populations with high
amounts of IL2Rα strongly responded to monovalent H16N N ter-
minus, and the bivalent form moderately enhanced this response.
However, in the IL2Rαlo Tregs, the effect of bivalency was even
greater; only bivalent H16N induced a substantial response.
IL2Rαhigh Thelper cells also showed a moderate increase in potency
with bivalency, like the IL2Rαhigh Tregs, but the IL2Rαlo population
showed no distinction between the monovalent and bivalent
fusions. Thus, immune populations are further subdivided by re-
ceptor abundance into subpopulations with distinct cellular
responses.

In total, the dynamics of response, cell type, concentration,
ligand affinity, Fc fusion valency, and Fc fusion orientation all
play roles in determining cellular response. These determinants in-
teract in unique and often counterintuitive ways and thus require a
more comprehensive accounting of their effects.

Ligand valency and affinity interact to formunique cell type
selectivity profiles
Given the coordinated importance of time, ligand valency, ligand
affinity, cell type, and receptor expression, we next sought to
focus on how ligand format affected Treg selectivity. The selectivity
of IL-2 for specific cell types corresponds closely to its therapeutic
potency and potential toxicities (19, 21, 22, 30). Therefore, we
sought to better understand the relationship between Treg selectivity
and ligand properties (Fig. 2, A to I). First, we plotted the ratio of
STAT5 phosphorylation (fit by a Hill curve) in Tregs to that of off-
target cells for each ligand across our concentration range and saw
that the shape of each selectivity curve varied substantially for each
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ligand and off-target cell type that was considered (Fig. 2, A, B, D, F,
and H). Treg selectivity quantified against CD8+, NK, or NKbright

cells most prominently separated bivalent from monovalent
ligands, with bivalent muteins being most selective for Tregs at
lower concentrations. The selectivity demonstrated by bivalent
muteins at lower doses can also be quantified by observing their
lower Treg activation median effective concentration (EC50) values
and relatively unchanged off-target EC50 values (table S2). Because
IL2Rα affinity varied widely between our IL-2 mutants and is a

known Treg selectivity regulator, we sought to understand how af-
finity differences contribute to Treg selectivity. We plotted IL2Rα af-
finity against the peak Treg selectivity observed across
concentrations (Fig. 2, C, E, G, and I). Because of the high abun-
dance of IL2Rα displayed by Tregs (fig. S1I), we expected to see a
positive correlation between IL2Rα affinity and peak Treg selectivity.
However, we saw that this relationship varied in a cell type– and
valency-dependent manner. When considering either CD8+ or
NK cells, decreasing IL2Rα affinity led to not only decreases in

Fig. 1. Systematically profiling IL-2muteins reveals determinants of response. (A) Schematic of affinity and structural mutants explored. (B) IL2Rα and IL2Rβ affinities
of each IL-2 variant. For affinity assays, two technical replicates were conducted (N = 2). (C) Heatmap of phosphorylated STAT5 measurements for each cell type, time
point, ligand, and concentration. pSTAT5 measurements were normalized to the maximum pSTAT5 observed in response to WT IL-2 for each cell type. (D to O) STAT5
phosphorylation response curves for immune cells stimulated with select IL-2 muteins. Time points and cell types are indicated in subplot titles. For all signaling assays,
PBMCs were collected from one donor, and three technical replicates—meaning independent batches of cells from the single donor—were conducted on independent
days (N = 3).
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the peak Treg selectivity of monovalent muteins but also, somewhat
unexpectedly, little relationship with the bivalent selectivity peaks
(Fig. 2, C, E, and F). When considering Thelper populations, which
have greater amounts of IL2Rα than CD8+ and NK cells, we ob-
served that decreases in IL2Rα affinity led to increases in
maximum selectivity for both monovalent and bivalent muteins
(Fig. 2I). Expectedly, the mutein concentration at which the
maximum Treg selectivity occurred was higher for ligands with

weaker IL2Rα affinity across all cell types (fig. S2, A to D). In
total, affinity and valency affected the selectivity profiles across
ligand doses in distinct yet intertwined manners. To understand
these relationships, a method mapping each of these factors simul-
taneously is needed.

Fig. 2. IL-2 muteins display structural- and affinity-dependent Treg selectivity that cannot be overcome with cis-targeting strategies. (A) Schematic describing
ratio of activation between target and off-target immune populations. (B and C) Ratio of Treg-to-CD8

+ T cell pSTAT5 dose-response curve at 4 hours (B) and the maximum
ratio of signaling (pSTAT5) in Tregs to off-target cell type versus IL2Rα affinity (C). (D and E) As described in (B) and (C), respectively, of Tregs to NK cells (D and E), NKbright cells
(F and G), and Thelper cells (H and I). The ratio was defined as the ratio of Hill curves fit to experimental data for target and off-target populations shown in Fig. 1. Lines of
best fit were separately fit to monovalent (thin) and bivalent (thick). Signaling data in (B) to (I) were gathered from PBMCs harvested from a single donor, and three
technical replicates were conducted (N = 3). (J) Schematic depicting how useful markers for conferring selectivity are selected. (K toN) Top sortedWasserstein distances (K
and M) and Kullback-Leibler (KL) divergences (L and N) of surface markers (K and L) and RNA data (M and N) in Tregs in the CITE-seq dataset (GSE164378) (31).

S C I ENCE S IGNAL ING | R E S EARCH ART I C L E

Orcutt-Jahns et al., Sci. Signal. 16, eadg0699 (2023) 17 October 2023 4 of 15

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia Los A
ngeles on M

arch 20, 2024

55



Tregs have limited opportunities for cis-targeting
Whereas IL2Rα is more abundant in Tregs, the difference is subtle
compared with that of some off-target cells, making selectively tar-
geted activation more challenging (15, 18). Consequently, we won-
dered whether a cis-targeting strategy—in which IL-2 is fused to a
domain binding some other Treg-specific surface marker—would
provide even greater selectivity. To explore this possibility, we
used a cellular indexing of transcriptomes and epitopes by sequenc-
ing (CITE-seq) dataset in which >211,000 human PBMCs were si-
multaneously analyzed for 228 surface markers coupled with single-
cell RNA sequencing (GSE164378) (31). Our previous work shows
that specificity is conferred by markers expressed at a high ratio
between target and off-target cells (Fig. 2J) (32). As measures of dif-
ference, we calculated the Wasserstein distance and Kullback-
Leibler divergence of each surface marker abundance and expres-
sion between Treg populations and all off-target PBMCs. These
complimentary distancemetrics were chosen to reflect two different
measures of difference: The Wasserstein distance that is maximized
when transforming one distribution to another would require
changing the cells to a large degree, whereas the Kullback-Leibler
distance is maximized when the overlap between two distributions
is minimized. We were surprised to find that IL2Rα was the most
differentiating and unique marker on Tregs by both proteomic and
transcriptomic analyses (Fig. 2, K to N). These results were rein-
forced by using both a linear and nonlinear classifier to identify
which surface markers and transcripts were most informative for
Treg classification; this analysis again found that IL2Rα was
optimal (fig. S3, A to D). Consequently, we reasoned that binding
alternative surface markers would not improve IL-2 Treg selectivity.

Bivalent Fc-cytokine fusions have distinct cell specificity
but shared dynamics
Understanding that selectivity for Tregs must be derived through en-
gineering binding to the IL-2 receptors, we sought to develop a
more complete view of the various structural choices for IL-2
fusion design. Exploring variation in response across cell types
and ligand treatments is challenging because of its multidimension-
al nature. Restricting one’s view to a single time point, cell type, or
ligand concentration provides only a slice of the picture (Figs. 1 and
2) (15, 33). Dimensionality reduction is a generally effective tool for
exploring multidimensional data. However, flattening our signaling
data to two dimensions and using principal components analysis
failed to help isolate the effects of concentration, ligand properties,
time, and cell type (Fig. 3A). Therefore, to better resolve our data,
we organized our profiling experiments into a four-dimensional
tensor organized according to the ligand used, concentration, treat-
ment duration, and cell type in the profiling. We then factored these
data using nonnegative canonical polyadic (CP) decomposition, a
technique that represents n-dimensional tensors as additively sepa-
rable patterns, themselves approximated by the outer product of di-
mension-specific vectors (34). We used CP decomposition to derive
factors summarizing the influence of each dimension (Fig. 3B).
Three components explained roughly 90% of the variance within
the dataset (Fig. 3C).

Factorization separated distinct response profiles into separate
components and the effect of each dimension (such as time or con-
centration) into separate factors. For instance, component 1 almost
exclusively represented responses to WT cytokines (Fig. 3D), the
only ligands that were not Fc-fused, showing a distinct response

primarily at high concentrations (Fig. 3E), with broad specificity
(Fig. 3F) and a signaling profile peaking at 30 min and then more
rapidly decreasing (Fig. 3G). An alternative way to interpret the fac-
torization results is to compare profiles within a single factor. For
example, component 1 led to a less sustained profile of signaling
response as compared with the other signaling patterns (Fig. 3G).

Components 2 and a combination of components 1 and 3
cleanly separated ligands conjugated in bivalent or monovalent
forms, respectively (Fig. 3, D and H). Ligand valency was represent-
ed more prominently than differences in receptor affinity between
muteins. Component 2 had uniquely high Treg specificity (Fig. 3F)
most represented at intermediate concentrations (Fig. 3E). Compo-
nent 2 was also highly correlated with IL2Rα abundance in subsets
of Treg and Thelper cells, suggesting that the bivalent molecules’ spe-
cificity for Tregs is mediated by their higher abundance of IL2Rα.
Component 3 had a broader cell response (Fig. 3F) and increased
monotonically with concentration (Fig. 3E). Despite these strong
differences in specificities, both components had nearly identical
time dynamics (Fig. 3G). Whereas other ligand variation influenced
the potency and selectivity of each ligand, only the bivalent Fc
fusions, regardless of their receptor affinities, more highly weighted
the Treg-selective component 2 over components 1 and 3, which
represented effector cell response (Fig. 3H). In total, these results
indicated thatmono- andmultivalent cytokines shared identical dy-
namics and that, although Fc fusion and affinity modulation affect
response, ligand valency was a critical and prominent determinant
of specificity.

Variation in IL-2 responses is explained by a simple
multivalent binding model
Having observed that Treg selectivity is prominently enhanced by
multivalency, we sought to determine whether cell surface
binding on its own could explain these selectivity differences. To
do so, we applied a two-step, equilibrium, multivalent binding
model to predict IL-2 response, assuming that signaling response
was proportional to the amount of active receptor-ligand complexes
(Fig. 4A) (35). Within the model, ligand binding first occurs with
kinetics equivalent to the single binding site, and then subsequent
interactions occur proportionally to affinity, adjusted byK⇤x, a cross-
linking constant that corrects for differences between monovalent
and multivalent interactions. We fit this model to our signaling ex-
periments and evaluated its concordance with the data. The model
is very simple, with the cross-linking parameter being the only non-
scaling fit parameter; this parameter had an optimum at 1.2 × 10−11

per cell, consistent with that seen for other receptor families (36–
38). Overall, we observed remarkable consistency between predicted
and observed responses (R2 = 0.85; fig. S4), and accuracy was main-
tained when examining data subsets, including individual cell types
and ligands (Fig. 4, B and C).

To ensure that our model was not simply capturing a trend
toward higher signaling with increasing concentration, we exam-
ined our model’s accuracy within each concentration (Fig. 4D).
Our model did not predict a response at the lowest concentrations
because there was little to no response in the data itself but increased
in accuracy at concentrations where responses were observed. Last,
we examined how the model’s accuracy varied within each time
point (Fig. 4E); each was predicted with consistent accuracy.
Some decrease in model accuracy would be expected, given that
longer treatments likely involve various compensatorymechanisms,
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such as the degradation or increased transcription of IL-2 receptor
subunits (29, 39). In total, multivalent cell surface binding showed
quantitative agreement with the pattern of cell type–specific re-
sponses to IL-2 muteins, supporting that the specificity enhance-
ment of bivalency is derived from receptor avidity effects and is
explained by a simple model of cell surface binding.

Upon finding that our model was broadly predictive of cell type–
specific signaling responses, we sought to use our model to under-
stand and visualize how valency and affinity interact to determine
Treg selectivity. Here, our model showed that Treg response is
strongly governed by IL2Rα affinities and that these effects have
an exceptionally strong relationship with valency, particularly at in-
termediate cytokine doses, whereas NK signaling barely varied
across ligands of varying affinities (Fig. 4, F and G). We then used
the model to explore how receptor abundance affects multivalent
ligand binding (Fig. 4, H and I). Here, theoretical cell populations
expressing 104 IL2Rα and 103 IL2Rβ molecules varied widely in
their response to multivalent IL-2 muteins (Fig. 4H), whereas

cells expressing very few IL2Rα receptors and the same abundance
of IL2Rβ barely varied in their response (Fig. 4I). Therefore, we con-
cluded that multivalent cytokines with high IL2Rα affinities unique-
ly and selectively target Tregs through IL2Rα-mediated
avidity effects.

Multivalency provides a general strategy for enhanced
signaling selectivity and guides the development of
superior IL-2 muteins
Given that a simple binding model accurately predicted cell type–
specific responses to IL-2 and that bivalent, Fc-fused IL-2 muteins
have favorable specificity properties, we computationally explored
to what extent multivalency might be a generally useful strategy. Al-
though monovalent ligand binding scales linearly with receptor
abundance, multivalent ligands bind nonlinearly depending on re-
ceptor abundance (40). Thus, multivalent ligands should be able to
selectively target cells with uniquely high expression of certain γc
family receptors.

Fig. 3. Tensor-based decomposition reveals unique selectivity defined by fusion valency. (A) Principal components analysis scores (left) and loadings (right) of
pSTAT5 signaling data. Signaling data were gathered from PBMCs harvested from a single donor, and three technical replicates were conducted (N = 3). Principal com-
ponent (PC) decomposition was performed on signaling data arranged in matrix form, where each dose and ligand combination is included as a row and each cell and
time combination is included as a column. (B) Schematic representation of nonnegative canonical polyadic (CP) decomposition. Experimental pSTAT5 measurements are
arranged in a tensor according to the duration of treatment, ligand used, cytokine concentration, and cell type. CP decomposition then helps to identify and visualize
patterns across these dimensions. (C) Percent variance reconstructed (R2X) of the signaling dataset versus the number of components used during CP decomposition. (D)
Component weights for each IL-2 mutant resulting from CP decomposition of the signaling dataset. (E) Component weights representing the effect of IL-2 concentration
resulting from CP decomposition of the signaling dataset. (F) Component weights representing cell type specificity resulting from CP decomposition of the signaling
dataset. (G) Component weights for the effect of treatment duration resulting from CP decomposition of the signaling dataset. (H) Sum of component 1 and 3 weights
(off-target signaling) versus component 2 (Treg signaling) weight for each monovalent and bivalent ligand. The thin line is included for visualization purposes only.
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Valency enhancements are only apparent with coordinated
changes in receptor-ligand binding affinities (32). Therefore, we op-
timized the receptor affinities of simulated ligands while varying
valency. We first designed IL-2 muteins of varying valency to
obtain optimal Treg specificity (Fig. 5A). As expected, ligand
valency increased achievable selectivity past that possible using a
monovalent cytokine format at any receptor affinities. Muteins of
higher valency required reduced IL2Rα affinity to achieve optimal
Treg selectivity (Fig. 5B). We then explored whether IL-2 muteins
lacking IL2Rα binding could selectively target NK cells, on the
basis of their uniquely high expression of IL2Rβ15, with similar
results; IL-2 muteins of higher valency were predicted to be increas-
ingly selective for activation of NK cells, so long as IL2Rβ/γc affinity
was coordinately decreased (Fig. 5, C and D). Last, we explored
whether multivalent IL-7 could be used to target Thelpers, because
they express high amounts of IL7Rα (fig. S1I). We again found
that ligands of higher valency should achieve higher selectivity for
these cells but that the benefits of valency were less than the target-
ing of Tregs or NK cells using IL-2 mutants because CD8+ T cells
have similar IL7Rα amounts (Fig. 5E). These benefits were again
contingent on decreasing IL7Rα affinity at higher valency (Fig. 5F).

To experimentally validate that muteins of higher valency could
be engineered to increase Treg selectivity, we expressed and purified
Fc fusions of R38Q/H16N IL-2 in monovalent, bivalent, and tetra-
valent formats (fig. S6). PBMCs from five donors were used to
account for patient-to-patient variability. Tetravalent IL-2 was de-
signed by Fc-fusing IL-2 muteins at both the C and N termini and
allowing the Fc to dimerize (Fig. 5G). The harvested cells were stim-
ulated for 30 min and stained for cell type markers as well as

pSTAT5. R38Q/H16N was selected as the mutant closest to
optimal binding affinities in tetravalent form, although further op-
timization is possible (Figs. 1B and 5B). As predicted, valency in-
creased the responsiveness of both Tregs and off-target immune
cells at each concentration (fig. S7, A to E). However, the Treg re-
sponse increase far exceeded that of off-target cells; consequently,
tetravalent R38Q/H16Nwas able to achieve much greater Treg selec-
tivity than bivalent andmonovalent formats—two IL-2 fusions with
near-optimal selectivity in our initial panel (Fig. 5, H to K).

In total, these results show that valency beyond bivalency has un-
explored potential for engineered cytokines with enhanced thera-
peutic potency and reduced toxicity. Critically, our tetravalent
R38Q/H16N far outperformed its lower valency counterparts that
already represented state-of-the-art selectivity. These results dem-
onstrate that multivalent complexes can achieve selective cytokine
signaling in Tregs beyond what is achievable with only changes to
receptor affinity. They also show the benefit of mechanistic model-
ing to guide ligand design, particularly when ligand affinity must be
considered together with other parameters such as valency.

Bitargeted IL-2–Fc fusions demonstrate even greater Treg
selectivity
Through the CITE-seq data analysis, we found that IL2Rα was the
optimal surface target for Treg selectivity (Fig. 2, I to M). This result
was further strengthened when we integrated these data with our
binding model and ligand optimization approach. We used the
model to consider whether WT IL-2 fused to a selective binder
for any surface markers could increase Treg selectivity. WT IL-2
fusion to an IL2Rα binder was predicted to enhance Treg selectivity

Fig. 4. Responses are predicted by a simple multivalent binding model. (A) Schematic of the model. Initial association of multivalent ligands proceeds according to
monovalent affinity, and subsequent binding events proceed with that affinity scaled by the K⇤x parameter. Model was fit to the signaling data gathered from PBMCs
harvested from a single donor, and three technical replicates were conducted (N = 3). Receptor counts used in model simulations for each cell population were measured
in PBMCs gathered from a single donor, and four technical replicates were performed (N = 4). (B and C) Model’s accuracy subset by cell type (B) and ligand (C) for all
monovalent and bivalent IL-2 muteins. (D and E) Model’s accuracy subset by concentration (D) for all ligands and time (E) for all ligands, concentrations, and cell types. All
accuracies (B to E) are calculated as a Pearson’s correlation R2 score for experimental cytokine responses at 30min and 1 hour. (F andG) Model-predicted pSTAT for Tregs (F)
and NK cells (G) in response to mono- and bivalent IL-2 ligands with 10 nM IL2Rβ KD. MFI, mean fluorescent intensity. (H and I) Predicted number of active signaling
complexes (proportional to predicted pSTAT5) formed on cells with 1000 IL2Rβ receptors and varying numbers of IL2Rα for ligands with affinities of 10 nM KD for IL2Rβ
and either 1 nM (F) or 10 nM (I) KD for IL2Rα.
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over off-target immune cells (Fig. 6, A and B). This was initially un-
expected because IL-2 itself binds IL2Rα but indicated to us that
multivalent complexes provide the potential opportunity to decou-
ple Treg selectivity (by binding IL2Rα) from cytokine potency.

To decouple cell-selective binding from signaling response, we
expressed an asymmetric Fc fusion including both a signaling-com-
petent R38Q/H16N IL-2 and signaling-deficient V91K/D20A/
M104V IL-2 with only IL2Rα binding (Fig. 6C and fig. S6).
V91K/D20A/M104V IL-2 is reported to effectively eliminate
IL2Rβ binding while maintaining IL2Rα interaction (23). We
henceforth refer to this asymmetric construct as “bitargeted” IL-2
to reflect the inclusion of two IL-2 muteins with separate signaling
and targeting roles. To ensure consistent stoichiometry between sig-
naling and non-signaling IL-2, bivalent bitargeted ligand was de-
signed by introducing Fc mutations preventing Fc dimerization
(Fig. 6C). Tetravalent bitargeted constructs were predicted to have

greater Treg specificity than their non-bitargeted counterparts for
any IL2Rβ affinity, using either the IL2Rα affinity of WT or
R38Q/H16N (Fig. 6D). We tested our bivalent and tetravalent bitar-
geted constructs by again stimulating PBMCs gathered from five
donors and quantifying their pSTAT5 responses. Both bivalent
and tetravalent bitargeted ligands increased or maintained high
potency in Tregs (fig. S8, A to E). This potency translated to
greater Treg selectivity for both bivalent and tetravalent bitargeted
forms, both of which outperformed any previously characterized
monovalent and bivalent IL-2 fusions and modestly outperformed
tetravalent R38Q/H16N (Fig. 6, E to H).

Although both our tetravalent R38Q/H16Nmolecules and bitar-
geted constructs were able to target Tregs with superior selectivity
with respect to Thelper, NK, NKbright, and CD8+ cells, principally
through the targeting of IL2Rα, we considered whether our mole-
cule could also select for Tregs with respect to type 2 innate lymphoid

Fig. 5. Multivalency enhances the selectivity of cytokine fusion proteins. (A and B) Predicted signaling response of Tregs in response to a ligand of optimal selectivity
at different valencies (A) and optimal receptor-ligand dissociation constants for ligand optimized for selectivity (B). Response predictions were normalized to each pop-
ulation’s response for the monovalent case. (C and D) As described in (A) and (B), respectively, of NK cells (C and D). (E and F) As described in (A) and (B), respectively, of
Thelper cells (E and F). Selectivity for Treg and NK cells was derived from IL-2 muteins, and selectivity for Thelpers was calculated using IL-7 muteins. During affinity opti-
mization (B, D, and F), mutein affinity for IL2Rα and IL2Rβ/γc was allowed to vary for IL-2 muteins, and affinity for IL7Rαwas allowed to vary for IL-7 muteins. Affinities were
allowed to vary across KDs of 10 pM to 1 μM, whereas K⇤x was fixed at its fitting optimum. All optimizations were performed using a concentration of 1 nM. Selectivity was
calculated as the ratio of predicted pSTAT5 in target cells to the mean pSTAT5 predicted in off-target cells. Receptor counts used in model simulations for each cell
population were measured in PBMCs gathered from a single donor, and four technical replicates were performed (N = 4). (G) Schematic of multivalent IL-2 mutant
design. (H to K) Ratio of STAT5 phosphorylation in Tregs to Thelper (H), NK (I), NKbright (J), and CD8+ (K) cells at varying dosages for R38Q/H16N in various valency
formats. Dots are representative of the mean of biological replicates. Responses in PBMCs from five donors were included, and two experimental replicates were con-
ducted for each donor (N = 5). Statistical significance was determined by comparing the ratios achieved by tetravalent R38Q/H16N to bivalent R38Q/H16N using a
Student’s t test. Here, "*" signifies P values < 0.05, "**" signifies P values < 0.005, and "***" signifies P values < 0.0005. Full ratio plots including experimental error are
shown in fig. S7.
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cells (ILC2s). ILC2s are able to secrete large quantities of inflamma-
tory cytokines such as IL-5 and IL-13, are known to respond to IL-2
through expression of IL2Rα, and have been implicated as a poten-
tial source of eosinophilia in low-dose IL-2 therapy. We quantified
the abundance of IL2Rα on ILC2s and Tregs from four donors and
found that both populations expressed nearly identical levels of the
receptor (fig. S9H). Thus, neither our nor any other existing ap-
proach for targeting Tregs through the IL-2 receptors themselves
offers superior selectivity against ILC2s.

We again applied nonnegative CP decomposition of the R38Q/
H16N and bitargeted ligand signaling responses to summarize our
ligand engineering efforts (Fig. 6, I to L). Three components cap-
tured >90% of the variation in the data. Here, Treg responses were

primarily represented by component 2, T effector cells (Teffs) cell
responses by component 1, and NK cell responses by component
3 (Fig. 6J). Valency again determined ligand component 2 weight
most potently, with both tetravalent constructs, bitargeted or
R38Q/H16N, demonstrating highest component 2 weight.
However, whereas the bivalent bitargeted construct demonstrated
no NK cell activity (component 3), both tetravalent constructs
had some NK activity (Fig. 6K). Thus, our experimental results
demonstrate that tradeoffs still exist between Treg potency and selec-
tivity. As before, Treg selectivity was maximized at low and interme-
diate dosages (Fig. 6L). Despite these tradeoffs, the selectivity
demonstrated by both model-guided “cis”-targeting or higher

Fig. 6. Asymmetric IL-2 mutants display even greater Treg selectivity. (A and B) Predicted enhancements to Treg selectivity for IL-2 muteins including a separate
targeting domain as calculated using CITE-seq surface marker data (A) or surface-expressed RNA transcripts (B). Selectivity was calculated for Tregs against all other
PBMC cells as the increase in average Treg to off-target cell binding against WT IL-2 at a simulated concentration of 0.1 nM. Model predicted signaling was predicted
on a single-cell basis for cells within the CITE-seq dataset. (C) Schematic of asymmetric IL-2 mutant design. (D) Predicted normalized Treg selectivity displayed by bivalent
WT IL-2, IL2Rα-biased IL-2 (IL2Rα affinity of R38Q/H16N), and bitargeted IL-2 across IL2Rβ affinities. (E to G) Ratio of STAT5 phosphorylation in Tregs to Thelper (E), NK (F),
NKbright (G), and CD8+ (H) cells at varying concentrations for R38Q/H16N in various valency formats. Dots are representative of mean of experimental replicates. Responses
in PBMCs from five donors were included, and two experimental replicates were conducted for each donor. Statistical significance was determined by comparing the
ratios achieved by bivalent bitargeted with bivalent R38Q/H16N using a Student’s t test. Here, "*" signifies P values < 0.05, "**" signifies P values < 0.005, and "***" signifies
P values < 0.0005. Full ratio plots including experimental error are shown in fig. S8. (I to L) Tensor factorization of the signaling responses to R38Q/H16N and bitargeted
variants. Experimental pSTAT5 measurements are arranged in a tensor according to the duration of treatment, ligand used, cytokine concentration, and cell type. The
results of decomposition of this tensor are shown as percent variance reconstructed (R2X) versus the number of components used (I), component values representing cell
type specificity (J), component values for each IL-2 mutant (K), and component values representing the effect of concentration (L).
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valency fusion formats greatly improved on the selectivity possible
with existing approaches.

DISCUSSION
Here, we systematically explored how ligand properties determine
signaling response and specificity across 13 engineered IL-2 variants
(Figs. 1 and 2). Our study included clinically relevant muteins
alongside variation in Fc fusion format. Dimensionality reduction
in tensor form identified how ligand properties alter response, re-
vealing that multivalent cytokines have unique specificity advantag-
es (Fig. 3). Using a multivalent binding model, we uncovered that
this unique specificity arises from surface binding avidity effects.
Both our analysis using this model and experimental validation in-
dicated that modulating the valency of cytokines may offer Treg se-
lectivity far beyond that achievable through affinity modulation
alone (Figs. 4 and 5), and we demonstrated this strategy experimen-
tally by expressing tetravalent IL-2 fusions with greater Treg selectiv-
ity than current state-of-the-art monovalent or bivalent affinity
muteins. Last, we uncovered that IL2Rα itself is the optimal target
for designing Treg-selective binding and that cis-targeting can be de-
signed intomultivalent IL-2 fusions through asymmetric tetravalent
IL-2 fusions, again improving on signaling selectivity (Fig. 6). In
total, our results show that not only do multivalency and cis-target-
ing of IL2Rα improve Treg selectivity but that these paired strategies
represent the only known method for overcoming the selectivity-
potency tradeoff faced by Treg-selective muteins (18).

Our results have implications for the design of Treg-directed IL-2
therapies, an area of enormous interest for the treatment and man-
agement of autoimmune diseases (22, 41). We showed computa-
tionally and experimentally that multivalency and bitargeting can
enhance IL-2 Treg selectivity for potential use in clinical settings,
where IL-2–based therapies have traditionally struggled (42). Engi-
neering valency requires precise compensatory adjustments in the
ligand affinity; given that we limited our experiments to preexisting
muteins, we expect that our selectivity gains might be improved
even further by identifying muteins with optimal affinities.
Various Treg-selective affinity mutants continue to be published,
and many previously developed affinity mutants were not included
in our analysis—as we have shown, paired affinity and valency en-
gineering confer selectivity beyond what is achievable in monova-
lent formats of any affinity; we believe that the approach here will
synergize with the continued development of affinity variants (20,
27). Our multivalent and bitargeted designs will additionally need
to be tested in vivo to see whether these selectivity gains translate to
the in vivo setting (23). In the majority of previous studies, the se-
lectivity with which pSTAT5 activity is induced in Tregs has consis-
tently translated to selective expansion of Tregs in vivo, and thus, we
are confident that our mutein’s heightened selectivity will translate
to such settings (18, 21, 23, 27, 43). Treg selectivity is central to the
mechanism of action for these therapies, and so we expect that these
benefits to selectivity will improve therapeutic properties in several
ways: more potent activation of signaling in Tregs without off-target
effects may improve the potency of these therapies and the breadth
of applications (18, 25, 44); reduced toxicity may allow for more
routine use with minimal patient monitoring (14). The superior se-
lectivity offered by engineered multivalent ligands will likely further
increase their in vivo pharmacokinetic lifetimes, in turn requiring
less frequent dosing, because most drug clearance occurs via

receptor-mediated endocytosis in off-target populations (21, 27,
45, 46). However, known differences exist in IL-2 receptor expres-
sion between humans and mice, so we do not expect that results
from murine models would be a reliable indication for the compar-
ative advantages of these molecules (15, 16), and primate studies are
outside the scope of the present work.

Heterospecificity, in our case exploited through bitargeting,
opens awhole range of new possibilities through its ability to decou-
ple the targeting and signaling properties of cytokine therapy and/
or combine synergistic signals. This capability has been demonstrat-
ed through bispecific antibodies previously and through the design
of cis-targeted cytokine-antibody fusions. However, we showed
that, unlike other immune cells, Tregs do not express any surface
marker more selective than IL2Rα (Fig. 2, I to L). Consequently,
there are no alternative targeting options to our approach of using
the IL-2 receptors themselves (Fig. 6). Beyond our results, hetero-
specificity creates opportunities for synergistic receptor agonism.
For example, programmed cell death protein 1 (PD-1) cis-targeting
with IL-2 increases the stemness of CD8+ T cells and consequently
their tumor killing capacity (47, 48). Although IL-2 has been used as
a therapy because of its relative Treg selectivity, there is no reason to
believe that the cytokine’s signaling effects are optimal for enhanc-
ing Tregs’ suppressive activities. With cell therapies where selectivity
is not a concern and non-natural cytokine receptors can be intro-
duced, other cytokine signaling such as IL-9 is qualitatively more
effective than IL-2 at promoting cytotoxic T cell function (49, 50).
Thus, one possibility enabled by bitargeting is potentially plug-and-
play combinations of one or more cytokines that are more capable
than IL-2 of driving desirable Treg properties and that are made
Treg-selective through their fusion to multivalent IL2Rα-targeting
complexes (51–53). More system-level research into the signaling
regulation of Treg proliferation and suppressive activities, and com-
parisons with other cytokines beyond IL-2, is needed to develop
these possibilities. Such studies, which will be used to not only iden-
tify the optimal signal using functional suppressive assays but also
to further improve the selectivity with which that signal is delivered,
will justify the translation of such fusion proteins into in vivo
disease model studies.

Most generally, our results demonstrate the value of computa-
tionally directed biologics design, particularly for fusion constructs
incorporating more than one binding moiety. The design of these
modular ligands leads to a combinatorial explosion of ligand con-
figurations (54). Furthermore, multivalent ligands have several doc-
umented effects, including altered signal transduction (55, 56),
binding avidity, pharmacokinetics (57), and intracellular trafficking
(58). Although valency has been extensively applied as a means to
introduce binding selectivity based on receptor density (59, 60),
multiple receptors, ligand subunits with varied targeting, and differ-
ences in signaling effects lead to additional complexity. For in-
stance, whereas we found that the contribution of multivalency
was explained primarily through avidity effects, bitargeting as a
strategy arises through differences in the signaling capacity of
IL2Rα versus IL2Rβ. The approach here—computationally de-
signed, multivalent, bitargeted ligands for enhanced therapeutic se-
lectivity—has widespread application to other receptor-ligand
pathways, including IL-4/IL-13, bone morphogenic proteins, and
the tumor necrosis factor cytokines (54, 61, 62). There are likely
still other design strategies to be found across these many signaling
pathway structures.
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MATERIALS AND METHODS
Experimental methods
Receptor abundance quantitation, octet binding assays, expression
of recombinant bivalent andmonovalent IL-2muteins (Figs. 1 to 4),
and measurement of those muteins’ signaling in PBMCs were per-
formed as described in (15).

Receptor abundance quantitation
Receptor quantitation data were gathered as described previously in
(15); the preprocessing of fluorescence measurements, population
gating, and receptor abundance calculations were performed
using these data. To quantify the number of antibodies bound to
cells and to standard beads, the fluorescence intensity of isotype
controls was subtracted from the signal from matched receptor
stains and then calibrated using the two lowest quantitation stan-
dards. Cell gating was conducted as shown in fig. S1 (A to H).
The geometric means of replicates were calculated to summarize
the results.

pSTAT5-based measurement of IL-2 and IL-15 signaling
in PBMCs
Cryopreserved PBMCs (American Type Culture Collection, PCS-
800-011, lot #81115172) were thawed to room temperature and
slowly diluted with 9 ml of prewarmed RPMI 1640 (Corning,
10040CV) supplemented with 10% fetal bovine serum (FBS;
VWR, 97068-091, lot# 029K20) and penicillin/streptomycin
(Gibco, 15140122). Media were removed, and cells were brought
to 3 × 106 cells/ml, distributed at 300,000 cells per well in a 96-
well V-bottom plate, and allowed to recover 2 hours at 37°C in an
incubator at 5% CO2. IL-2 (R&D Systems, 202-IL-010) or IL-15
(R&D Systems, 247-ILB-025) were diluted in RPMI 1640 in the
absence of FBS. These dilutions were then added to the concentra-
tions indicated. To quantify STAT5 phosphorylation, the media
were taken away, and cells were fixed using 100 μl of 10% formalin
(Thermo Fisher Scientific, SF100-4) for 15 min at room tempera-
ture. Formalin was removed from the cells, and the PBMCs were
placed on ice. They were then suspended in 50 μl of cold methanol
(−30°C). PBMCs were then kept at −30°C overnight. 0.1% bovine
serum albumin (BSA; Sigma-Aldrich, B4287-25G) in PBS (PBSA)
was used to wash the cells twice. The cells were then split into
two identical plates and stained with fluorescent antibodies for 1
hour at room temperature in darkness using 50 μl of antibody
panels 4 and 5 per well. Cells were suspended in 100 μl of PBSA
per well and beads to 50 μl and analyzed on an IntelliCyt iQue
Screener PLUS with VBR configuration (Sartorius) using a sip
time of 35 s and beads 30 s. Compensation of measured fluorescent
values was calculated as detailed above. Gating of cell populations
was performed as shown in fig. S1, and the median pSTAT5 level
was calculated for each population in each well.

Recombinant proteins
The Expi293 expression system was used to express IL-2/Fc fusion
proteins. Expression was conducted as prescribed by the manufac-
turer’s instructions (Thermo Fisher Scientific). Proteins were for-
mulated as the Fc of human IgG1 fused at its N or C terminus to
human IL-2 using a (G4S)4 linker. C-terminal lysine residues of
human IgG1 were not included in C-terminal fusions. The
AviTag sequence GLNDIFEAQKIEWHE was added to the Fc

terminus, which did not contain IL-2. Fc mutations that prevented
dimerization were introduced into the Fc sequence for monovalent
muteins (63). MabSelect resin (GE Healthcare) was used to purify
protein. Biotinylation of proteins was conducted using BirA enzyme
(BPS Biosciences) according to manufacturer’s instructions. Exten-
sive buffer exchanging into phosphate-buffered saline (PBS) was
conducted using Amicon 10-kDa spin concentrators (EMD Milli-
pore). The sequence that was used to express the IL2Rβ/γ Fc heter-
odimer was the same as that of a reported, active heterodimeric
molecule (patent application US20150218260A1); a (G4S)2 linker
was added between the Fc portion and each receptor ectodomain.
The Expi293 system was used to express the protein, which was sub-
sequently purified on MabSelect resin as above. The IL2Rα ectodo-
main was generated to include a C-terminal 6× His tag and then
purified on nickel–nitrilotriacetic acid spin columns (Qiagen) ac-
cording to manufacturer’s instructions.
pSTAT5-based measurement of tetravalent IL-2 signaling
in PBMCs
Cryopreserved PBMCs (UCLA Virology Core, sex of donors
unknown) were thawed to room temperature and slowly diluted
with 9 ml of prewarmed RPMI 1640 (Corning, 10040CV) supple-
mented with 10% FBS (VWR, 97068-091, lot #029 K20) and peni-
cillin/streptomycin (Gibco, 15140122). Media were removed, and
cells were brought to 3 × 106 cells/ml, distributed at 300,000 cells
per well in a 96-well V-bottom plate, and allowed to recover 2
hours at 37°C in an incubator at 5% CO2. IL-2 (Peprotech, 200-
02-50 μg) and tetravalent IL-2 (expressed and purified as described
below) were diluted in RPMI 1640 without FBS and added to the
indicated concentrations. Cells were stained with antibodies from
panel 1 described below. To measure pSTAT5, media was
removed, and cells were fixed in 100 μl of 4% paraformaldehyde
(PFA; Election Microscopy Sciences, 15714) diluted in PBS for 15
min at room temperature.

PFA was removed, and cells were gently suspended in 100 μl of
cold methanol (−30°C). Cells were stored overnight at −30°C, then
washed twice with PBSA, and stained for 1 hour at room tempera-
ture in darkness using antibody panel X with 40 μl per well. Cells
were then washed twice with 0.1% PBSA and resuspended in 150 μl
of PBSA per well. Cells were analyzed on a BD FACSCelesta flow
cytometer. Populations were gated (as shown in fig. S1, A to H),
and the median pSTAT5 level was extracted for each population
in each well. Wells with fewer than 1000 cells were excluded from
analysis (resulted in removal of six wells over five experimental
replicates).

Tetravalent IL-2 expression
Proteins were expressed as human IgG1 Fc-fused at the N or C ter-
minus to mutant human IL-2 through a flexible (G4S)4 linker. C-
terminal fusions omitted the C-terminal lysine residue of human
IgG1. In monovalent R38Q/H16N variants, Fc mutations to
prevent dimerization were introduced into the Fc sequence. In
R38Q/H16N variants, each IL-2 fused via the 20–amino acid–long
linker to the Fc domain contained R38Q and H16N mutations to
reduce the IL-2’s affinity with which it binds IL2Rβ. In bitargeted
variants, one IL-2 included R38Q/H16N mutations, and the other
IL-2 fused to the Fc domain included V91K/D20A/M104V muta-
tions to ablate binding to IL2Rβ. In bivalent bitargeted IL-2, Fc mu-
tations were included to prevent Fc dimerization. Plasmid DNA
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prepared by maxi-prep (Qiagen, 12162) was transfected into adher-
ent human embryonic kidney 293 cells using Lipofectamine 3000
(Thermo Fisher Scientific, L3000008) in 15-cm dishes in Dulbecco’s
modified Eagle’s medium (DMEM; Corning, 15017CV) supple-
mented with GlutaMax (Gibco, 35050061) and 10% FBS. Media
were exchanged after 24 hours with fresh DMEM supplemented
with GlutaMax and 5% ultra-low IgG FBS (Thermo Fisher Scien-
tific, A3381901). Media were harvested after an additional 72
hours. Media was incubated in the presence of Protein A/G Plus
Agarose resin (Santa Cruz Biotechnology, sc-2003) overnight. The
following day, the media-resin mixture was centrifuged, and the su-
pernatant was discarded. Resin was washed with PBS five times or
until protein was no longer detected in supernatant by ultraviolet-
vis using a NanoDrop One Spectrophotometer (Thermo Fisher Sci-
entific, ND-ONE-W). IL-2 was eluted from resin using 0.1 M
glycine (pH 2.3) into 2 M tris-HCl (pH 8). IL-2 was then buffer-ex-
changed into PBS for storage at −80°C. Concentration was deter-
mined by BCA assay and confirmed using an IgG1 enzyme-
linked immunosorbent assay.

Octet binding assays
An Octet RED384 (ForteBio) was used to measure the binding af-
finity of each IL-2 mutein. Monomeric, biotintylated IL-2/Fc fusion
proteins were loaded to streptavidin biosensors (ForteBio) at
roughly 10% of saturation point and allowed to equilibrate for 10
min in PBS + 0.1% BSA. Up to 40 min of association time in
IL2Rβ/γ titrated in 2× steps from 400 to 6.25 nM or IL2Rα from
25 nM to 20 pM, which was followed by dissociation in PBS +
0.1% BSA. A zero-concentration sample was included in each mea-
surement and served as a negative control/reference signal. The af-
finity quantification experiments were performed in quadruplicate
across 2 days. Binding of IL-2 to IL2Rα on its own did not fit to a
simple bindingmodel; the dissociation constant (KD) was calculated
using equilibrium binding within each assay for this case. IL2Rβ/γ
binding data fit a 1:1 binding model; thus, in these cases, on-rate
(kon), off-rate (koff ), and KD were determined by fitting to the
entire binding curve. The average of each kinetic parameter across
all concentrations with detectable binding (typically 12.5 nM and
above) was used to calculate KD.

CD25 measurement in Tregs and ILC2s
Cryopreserved PBMCs (UCLA Virology Core, sex of donors
unknown) from each donor were thawed to room temperature
and slowly diluted with 9 ml of prewarmed RPMI 1640 (Corning,
10040CV) supplemented with 10% FBS (VWR, 97068-091, lot #029
K20) and penicillin/streptomycin (Gibco, 15140122). Media were
then removed, and PBMCs were washed with ice-cold 1% BSA
(Sigma-Aldrich, B4287-25G) in PBS (PBSA). PBMCs were then
stained for 1 hour at 4°C in a cocktail of anti-lineage fluorescein iso-
thiocyanate (FITC; Invitrogen, 22-7778-72), anti-FcεR1 FITC (Bi-
oLegend, 334608), anti-CD25 APC/Fire 810 (BioLegend, 356150),
anti-CD127 Brilliant Violet 421 (BioLegend, 351310), and anti-
CRTH2 Brilliant Violet 605 (BioLegend, 350122) (panel 2 below),
all at a dilution of 1:20 in PBSA except for the anti-lineage antibody,
which was diluted 1:10. Cells were then washed once with cold
PBSA and once with cold PBS and then fixed in 2% PFA at room
temperature for 15min. PFA (ElectionMicroscopy Sciences, 15714)
was diluted in PBS for 15 min at room temperature. PFA was then
removed, and cells were washed once with PBS. Cells were then

resuspended in ice-cold methanol and incubated on ice for 30
min. Cells were then washed with PBS and resuspended in anti-
Foxp3 Alexa Fluor 647 (BioLegend, 320114) diluted 1:20 in PBSA
for 1 hour. Cells were then washed twice with PBSA before being
resuspended in PBSA for analysis on a BD FACSCelesta flow cytom-
eter. Populations were gated as shown in supplementary figures, and
the median IL2Rα abundance was extracted for each population.

Statistical analysis
The number of replicates performed for each experimental mea-
surement and the values of confidence intervals are described in
corresponding figure captions. N is used to describe the number
of times a particular experiment was performed. Flow cytometry ex-
periments performed using the initial panel of monovalent and bi-
valent cytokines (Figs. 1 to 4) were performed on human peripheral
blood mononuclear cells (hPBMCs) and were conducted using sep-
arate experimental replicates on cells gathered from a single donor.
Each replicate of the flow cytometry signaling experiments in Figs. 5
and 6 was conducted using hPBMCs from different donors. To
quantify population-level flow cytometry measurements for both
signaling and receptor quantitation experiments, the mean fluores-
cent intensity of a gated population was measured. Compensation
to remove fluorescent spectral overlap was performed for each ex-
perimental measurement. Subtraction of either negative controls or
cells treated with isotype antibodies was performed on signaling and
receptor quantitation data, respectively, to remove background
signal. Cells that were measured to display fluorescent intensities
above 1,000,000 were excluded from analysis during signaling ex-
periments. Pearson correlation coefficients (R2) values were used
to describe model accuracy when predicting signaling response to
IL-2 and IL-2 muteins. The Kx

* parameter was fit with least-squares
fitting using the Broyden-Fletcher-Goldfarb-Shanno minimization
algorithm as implemented in SciPy.

Antibodies
Antibodies (listed in table S4) used to quantify receptor abundanc-
es, as well as to perform initial pSTAT5 response quantification in
PBMCs, can be found in (15).

Newly created materials
All novel IL-2 muteins were synthesized as described above and
contained the mutations as described above. No restrictions on
access to these materials are noted.

Binding model
Themodel was formulated as described in (35). Themonomer com-
position of a ligand complex was represented by a vector θ = (θ1, θ2,
…, θNL

), where each θiwas the fraction of monomer ligand type i out
of all monomers on that complex. Let Cθ be the proportion of the θ
complexes in all ligand complexes and Θ be the set of all possible
θ’s.Pθ[Θ Cθ à 1.

The binding between a ligand complex and a cell expressing
several types of receptors can be represented by a series of qij. The
relationship between qij’s and θi is given by θi = qi0 + qi1 + … + qiNR

.
Let the vector qi = (qi0, qi1, …, qiNR

) and the corresponding θ of a
binding configuration q be θ(q). For all i in {1,2, …, NL}, we
define ψij à Req;jKa;ijK⇤x where j = {1,2, …, NR} and ψi0 = 1. The rel-
ative number of complexes bound to a cell with configuration q at
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equilibrium is

vq;eq à
L0CθÖqÜ
K⇤x

Y
i à NL
j à NR

i à 1
j à 0

ψqij
ij
YNL

ià1

θi
qi

✓ ◆

Then we can calculate the relative amount of bound receptor n as

Rbound;n à
L0
K⇤x

X

θ[Θ
Cθ

XNL

ià1

ψinθi
XNR

jà0
ψij

2

66664

3

77775

YNL

ià1
Ö
XNR

jà0
ψijÜ

θi

By mass conservation, (Rtot, n = Req, n + Rbound, n), we can solve
Req, n numerically for each type of receptor.

Application of multivalent binding model to IL-2
signaling pathway
Each IL-2 molecule was allowed to bind to one free IL2Rα and one
IL2Rβ/γc receptor. Initial IL-2–receptor association proceeded with
the known kinetics of monomeric ligand-receptor interaction (table
S1). Subsequent ligand-receptor binding interactions then proceed-
ed with an association constant proportional to available receptor
abundance and affinity multiplied by the scaling constant, K⇤x , as
described above. To predict the pSTAT5 response to IL-2 stimula-
tion, we assumed that pSTAT5 is proportional to the amount of IL-
2–bound IL2Rβ/γc, because complexes that contain these species
actively signal through the JAK/STAT pathway. Scaling factors con-
verting from predicted active signaling species to pSTAT5 abun-
dance were fit to experimental data on a per-experiment and cell
type basis. A single K⇤x value was fit for all experiments and
cell types.

CITE-seq marker selectivity analysis
To assist in identifying possible markers to increase IL-2 selectivity
toward Tregs, a publicly available CITE-seq dataset containing data
gathered from human PBMCs was analyzed (31). Only RNA tran-
scripts encoding cell membrane extracellular-facing proteins were
included.We first analyzed the data by determining theWasserstein
distance and Kullback-Leibler divergence of markers and RNA
measured in Tregs against the distribution of thesemarkers displayed
by all other cells. We also analyzed the data using a ridge classifica-
tion model, where all markers and RNA sequences were used by the
model to distinguish between Tregs and all other cell types.

Markers of interest were then used in conjunction with the
binding model to determine whether they could confer selectivity,
using the CITE-seq data to inform the number of markers per cell.
Conversion factors for calculating marker abundance from CITE-
seq marker and mRNA reads were estimated using proportional
conversions from the data to previously experimentally determined
marker abundances (15). Single-cell marker abundances were calcu-
lated for 1000 cells at a time, and the ratio of Treg signaling to off-
target signaling was calculated. To simulate bispecific binding, two
distinct binding domains for each ligand were modeled, one for IL-
2, with affinity for IL2Rα and IL2Rβ/γc, and the other for themarker
of interest. The ligand affinities were varied while defining

selectivity as the summed Treg signaling divided by the signaling
across all off-target cell populations. After finding IL2Rα to be the
optimal epitope for increasing selectivity, we sought to explore the
effects of increasing valency by doubling the number of binding
domains per ligand.

Tensor factorization
Before decomposition, the signaling response data were back-
ground-subtracted and variance-scaled across each cell population.
Nonnegative CP decomposition was performed using the Python
package TensorLy and using the HALS algorithm with nonnegative
SVD initialization (64).

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Tables S1 to S4
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Figure S1: Receptor quantification and gating of PBMC-derived immune cell types. (A and B) Gating 
for fixed Thelper and Treg cells from donor PBMCs during pSTAT5 quantification. (C and D) Fixed CD8+ T cell 
and NK cell gating. (E and F) Gating for live Thelper and Treg cells during receptor quantification. (G) Live cell 
NK and NKbright cell gating. (H) Live cell CD8+ cell gating. (I) Receptor quantification for each cell type 
described in (A to H). Experiments in (A to I) were performed using PBMCs from a human donorand 
represent 4 experiments. (J) IL2Rα and IL2Rβ abundances on IL-2Rα high and low Treg and Thelper 
populations. Cells were binned using three evenly logarithmically spaced separations between 5th and 95th 
percentile of IL-2Rα abundance.  
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Figure S2: Concentration of optimum ligand selectivity is a function of IL2Rα affinity. (A to D) 
Location of the concentration at which the ratio of Treg to NK (A), NKbright (B) CD8+ (C), and Thelper (D) cell 
activity, assessed as pSTAT5 abundance, is maximized vs. IL2Rα affinity. Lines were fit to monovalent 
(thin) and bivalent (thick). Ratios were measured using cells from a human donor, and signaling data 
represent 3 experiments. Affinity of IL-2 mutants was measured using biolayer interferometry and represent 
2 experiments.  
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Figure S3: Linear and non-linear classification algorithms identify IL2Rα as the most unique marker 
on Treg cells. (A and B) Largest marker coefficients determined by fitting a RIDGE-classifier to previously 
published CITE-seq surface marker data (A) and mRNA data (B) (GSE164378). Model was fit to identify 
Tregs using a one-vs.-all approach. (C and D) Largest Treg identification accuracies of Support Vector 
Classifier fit using IL2Rβ and one other marker using surface marker (C) and RNA (D) data. Accuracy is 
reported as Balanced Accuracy. 
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Figure S4: Full panel of predicted versus experimental immune cell-type responses to monomeric 
and dimeric IL-2 muteins. Dots represent flow cytometry measurements and lines represent pSTAT 
response predicted by model. Experimental pSTAT measurements are shown for 0.5- and 1-hour 
timepoints (inset legend, top left). Predictions and experiments are shown for Tregs, Thelpers, NK, NKbright, 
and CD8 cells. Each individual point is representative of one experimental replicate of triplicate 
experiments.   
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Figure S5: Full panel of predicted versus experimental IL-2Rα high, medium, and low Treg and Thelper 
responses to monomeric and dimeric IL-2 muteins. Dots represent flow cytometry measurements and 
lines represent pSTAT response predicted by model. Experimental pSTAT measurements are shown for 
0.5- and 1-hour timepoints. Predictions and experiments are shown for Tregs, Thelpers binned by their IL-2Rα 
abundances. Each individual point is representative of one of 3 experimental, independently run replicates.  
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Figure S6: Western blot of multivalent IL-2 constructs. Western blot of monovalent, bivalent, tetravalent 
R38Q/H16N (lanes 1–3 and 6–8) and bivalent and tetravalent Bitargeted IL-2 (lanes 4–5 and 9–10). 
Samples in lanes 1–5 were run in reducing buffer, and lanes 6–10 were run in non-reducing buffer. Blot 
was stained with a primary anti-human-IL-2 antibody. Blots are representative of 2 experiments. 
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Figure S7: Full panel of predicted and experimental responses to R38Q/H16N multivalent mutants. 
(A to E) Responses of human Tregs (A), Thelpers (B), NK (C), NKbright (D), and CD8+ (E) cells, measured by 
STAT5 phosphorylation, in response to varying dosages of R38Q/H16N in various valency formats. Cells 
were stimulated with cytokine for 30 minutes and signaling was normalized to the largest signaling response 
for each cell type and donor. Points are representative of experimental results (N=5), error bars represent 
experimental standard deviation, and lines represent model-predicted responses. Shaded regions are 
indicative of the standard error of prediction when the scalar factor converting between signaling complexes 
and MFI was fit to multiple experiments. (F to I) Ratio of STAT5 phosphorylation in Tregs to Thelpers (F), NK 
cells (G), NKbright (H), and CD8+ (I) cells at varying dosages for R38Q/H16N in various valency formats. 
Dots are representative of mean of biological replicates. Data show responses in PBMCs from 5 donors, 
each with two experimental replicates conducted; error bars represent experimental standard deviation. 
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Figure S8: Full panel of predicted and experimental responses to bitargeted, multivalent mutants. 
(A to E) Responses of human Tregs (A), Thelpers (B), NK (C), NKbright (D), and CD8+ (E) cells, measured by 
STAT5 phosphorylation, in response to varying dosages of Live/Dead IL-2 in various valency formats. Cells 
were stimulated with cytokine for 30 minutes and signaling was normalized to the largest signaling response 
for each cell type and donor. Points are representative of experimental results (N=5), error bars represent 
experimental standard deviation, and lines represent model-predicted responses. Shaded regions are 
indicative of the standard error of prediction when the scalar factor converting between signaling complexes 
and MFI was fit to multiple experiments. (F to I) Ratio of STAT5 phosphorylation in Tregs to Thelpers (F), NK 
cells (G), NKbright (H), and CD8+ (I) cells at varying dosages for bitargeted in various valency formats. Dots 
are representative of mean of biological replicates. Data show responses in PBMCs from 5 donors, each 
with two experimental replicates conducted; error bars represent experimental standard deviation. 
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Figure S9: Receptor quantification and gating of PBMC-derived immune cell types. (A to E) Gating 
for fixed ILC2s and Treg cells from donor PBMCs. (F and G) Mean fluorescent intensity (MFI) for Tregs and 
ILC2s across aggregated across 4 donors. (H) MFI of CD25 on Tregs and ILC2s for each donor. In (A to H), 
one experimental replicate was performed for each of 4 donors. 

 
 
 
 
 
Ligand IL2Rα KD (nM) IL2Rβ/γc KD (nM) 
WT IL-2 10.0 0.133 
WT N-term 0.19 5.30 
WT C-term 0.54 3.04 
V91K C-term 0.69 7.56 
R38Q N-term 0.71 4.00 
F42Q N-Term 9.48 2.81 
N88D C-term 1.01 24.0 
H16N N-term 0.43 22.4 
R38Q/H16N 0.71 22.4 

 
Table S1. IL-2 variant affinity for IL-2R subunits. PBMCs were stimulated with IL-2 muteins. The affinities 
of each IL-2 monomeric mutein for IL2Rα and IL2Rβ/γc dimer were measured using biolayer interferometry. 
Two technical replicates of PBMCs collected from a single donor were conducted for each ligand. 
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Ligand       CD8        NK      NKbright       Thelper       Treg 
F42Q N-Term (Mono) N/A 97.0 N/A N/A N/A 

H16N N-term (Biv) N/A N/A N/A N/A N/A 

H16N N-term (Mono) 1.3 0.88 0.94 1.1 1.0 

IL15 (Mono) 3.6 1.9 0.77 1.2 0.94 

IL2 (Mono) N/A N/A 19.6 N/A N/A 

N88D C-term (Mono) N/A 68.1 N/A N/A N/A 

R38Q N-term (Biv) N/A N/A 6.3 37.1 23.3 

R38Q N-term (Mono) N/A N/A N/A 79.0 N/A 

R38Q/H16N (Biv) N/A N/A 14.8 51.9 41.4 

V91K C-term (Mono) N/A N/A 3.3 0.74 0.30 

WT C-term (Mono) N/A 35.0 17.4 11.3 5.5 

WT N-term (Biv) N/A 97.0 N/A N/A N/A 

WT N-term (Mono) N/A N/A N/A N/A N/A 

 

Table S2: IL-2 variant EC50 values for each immune cell subtype. The EC50 of each IL-2 mutein for 
immune cell subtype as determined using STAT5 phosphorylation. All EC50 values are reported in nM units 
and were determined by fitting a Hill function to an experimental dose-response curve. EC50 values greater 
than the dose range tested are reported here as “N/A”. The valency of each ligand is reported next to the 
ligand’s name (Mono, monovalent; Biv, bivalent). Signaling data was gathered using PBMCs harvested 
from a single donor, from which 3 independent replicates were performed. Hill curves were fit to all 
experimental replicates simultaneously for each ligand and cell population. Each experiment was repeated 
over 4 technical, independent replicates, wherein cells from a single blood draw were split, thawed, and 
tested on different days. 
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Name Insert Sequence 
Tetravalent 
R38Q/H16N 

ATGTATAGAATGCAACTGCTCTCCTGCATAGCATTAAGCCTCGCCTTAGTCACTAATAGCGCTCCGAC
ATCAAGTAGTACGAAGAAAACACAACTGCAACTTGAGAATCTTCTACTGGATCTCCAGATGATCCTTA
ACGGTATCAACAACTATAAGAATCCCAAGTTAACACAAATGTTGACCTTTAAATTCTACATGCCCAAGA
AGGCCACAGAATTGAAGCATCTCCAATGTCTTGAGGAAGAGCTGAAACCCCTTGAGGAAGTGTTAAA
TCTGGCACAGTCTAAGAACTTTCATCTCCGCCCCAGAGATTTAATATCTAATATCAATGTGATCGTTCT
GGAACTGAAGGGTTCAGAAACCACTTTCATGTGCGAGTATGCTGATGAGACAGCCACAATTGTAGAA
TTCCTCAACAGGTGGATAACATTCTGCCAGTCCATCATTAGTACATTAACTGGTGGCGGTGGATCAG
GGGGAGGCGGATCAGGTGGCGGAGGATCCGGTGGAGGAGGTTCCGATAAGACCCATACTTGTCCA
CCGTGTCCAGCTCCAGAATTGTTGGGTGGACCTAGCGTGTTTCTGTTCCCACCCAAGCCCAAAGATA
CACTTATGATCAGTCGGACTCCTGAGGTAACGTGCGTGGTAGTGGACGTCAGCCATGAGGACCCAG
AGGTCAAATTTAACTGGTATGTTGATGGAGTTGAAGTGCATAACGCCAAAACTAAACCAAGGGAAGAA
CAGTACAACTCTACCTATAGAGTGGTTTCCGTACTCACAGTACTGCACCAAGACTGGCTGAACGGAA
AAGAATATAAATGTAAGGTGAGCAATAAAGCATTGCCCGCCCCGATCGAGAAAACAATTTCAAAAGCT
AAAGGCCAACCGAGAGAACCCCAAGTTTATACCCTTCCACCCTCTCGGGATGAGTTGACCAAGAACC
AAGTGTCATTAACTTGTCTGGTGAAGGGATTTTATCCCTCTGACATTGCCGTGGAATGGGAATCCAAC
GGTCAGCCGGAAAACAATTATAAAACTACTCCACCCGTCTTAGACTCTGACGGGAGTTTCTTCCTGTA
CAGCAAGCTTACAGTAGACAAGTCTCGGTGGCAACAAGGAAACGTCTTCAGCTGTAGCGTCATGCAT
GAAGCATTACATAATCACTATACACAAAAGTCTCTGTCACTGTCCCCTGGCGGTGGAGGAGGCAGCG
GCGGTGGTGGTTCTGGAGGAGGTGGAAGTGGTGGCGGCGGGAGTGCACCAACTAGCAGTTCCACC
AAAAAGACTCAGTTACAGCTCGAAAACCTGCTGCTTGACCTGCAGATGATTCTGAATGGAATAAATAA
TTACAAAAACCCTAAGCTCACACAGATGCTTACGTTCAAGTTTTATATGCCAAAGAAGGCTACGGAGC
TCAAACACCTGCAATGCTTGGAAGAGGAACTCAAGCCATTGGAAGAGGTTCTGAACCTGGCTCAATC
CAAAAATTTCCACCTTAGGCCTAGAGACCTCATCAGCAACATAAACGTTATAGTACTAGAGCTCAAAG
GGAGCGAGACGACCTTTATGTGCGAGTACGCCGATGAAACTGCTACCATCGTGGAGTTTTTGAATAG
ATGGATCACCTTTTGTCAAAGCATTATATCCACACTTACCTGA 
 

Bivalent 
R38Q/H16N 

ATGTATCGCATGCAACTCTTGTCTTGTATTGCCCTCTCTCTCGCCCTCGTCACGAACTCTGCTCCAAC
AAGTAGTTCAACCAAGAAAACCCAATTACAATTGGAAAACTTGCTGCTGGACTTACAGATGATACTTA
ACGGCATCAATAACTACAAGAACCCAAAGCTCACACAAATGCTTACATTTAAATTCTATATGCCGAAG
AAAGCAACAGAGCTCAAGCATCTCCAATGCCTCGAAGAAGAGTTAAAGCCTCTCGAGGAAGTTCTCA
ATCTTGCCCAATCCAAGAACTTTCATCTTAGACCGCGAGATCTGATATCTAATATAAATGTGATTGTCC
TTGAACTCAAAGGGTCAGAGACTACTTTCATGTGTGAGTATGCCGATGAGACGGCTACCATCGTGGA
GTTCCTCAATAGGTGGATCACGTTTTGCCAAAGCATAATTTCCACCTTGACCGGCGGCGGTGGATCC
GGTGGAGGAGGGAGTGGTGGCGGCGGAAGCGGCGGTGGTGGCTCCGATAAAACACACACATGTCC
CCCTTGTCCTGCACCAGAACTCCTGGGCGGCCCTTCAGTGTTCCTGTTTCCCCCAAAACCCAAAGAC
ACATTGATGATCTCCCGCACTCCTGAGGTGACGTGTGTTGTCGTGGATGTTTCCCATGAAGACCCGG
AAGTTAAATTTAACTGGTACGTGGATGGCGTAGAAGTCCATAATGCCAAGACAAAGCCACGGGAAGA
GCAGTACAACTCTACCTATCGAGTGGTCTCAGTGTTGACCGTTCTGCACCAAGATTGGCTGAATGGG
AAGGAGTATAAGTGTAAGGTTTCAAACAAAGCTCTGCCGGCACCCATTGAAAAGACAATCTCTAAGG
CAAAAGGCCAACCAAGAGAGCCACAAGTCTATACGCTGCCCCCTAGCCGGGATGAGCTCACTAAGA
ACCAGGTATCTCTCACATGTCTCGTCAAAGGGTTCTATCCATCTGATATCGCAGTGGAATGGGAATCA
AATGGACAGCCAGAGAACAATTATAAAACCACTCCACCCGTCCTTGATTCCGACGGGTCCTTCTTCTT
ATATTCCAAGTTAACTGTGGATAAATCTCGTTGGCAGCAAGGCAATGTCTTTAGTTGCTCCGTAATGC
ATGAAGCGCTCCATAACCATTACACACAGAAGTCACTGTCACTCAGCCCTTAA 
  

Monovalent 
R38Q/H16N 

ATGTACCGAATGCAATTGCTTAGCTGTATTGCCTTGAGTCTCGCACTCGTGACTAACTCAGCCCCCAC
CTCATCCAGCACTAAGAAAACGCAGCTGCAACTCGAGAACTTACTGCTTGATCTCCAGATGATTCTCA
ACGGCATCAACAATTACAAGAATCCAAAGTTGACACAAATGCTGACCTTTAAATTTTATATGCCAAAGA
AGGCCACCGAGCTGAAGCATTTGCAGTGCCTTGAAGAGGAACTTAAACCACTGGAAGAAGTTTTGAA
CCTGGCCCAAAGCAAGAACTTCCACTTGAGACCTCGGGATCTGATAAGCAACATTAACGTTATTGTC
CTGGAGCTCAAAGGATCAGAAACAACCTTCATGTGTGAATACGCAGATGAGACTGCAACTATTGTAG
AGTTTCTGAACCGCTGGATTACCTTCTGCCAGAGCATTATTTCCACACTCACAGGCGGAGGAGGATC
AGGCGGCGGCGGTAGCGGCGGAGGAGGAAGCGGAGGAGGCGGCAGTGATAAGACACATACATGT
CCACCTTGTCCAGCCCCAGAGCTTTTGGGCGGCCCGTCCGTGTTTCTGTTTCCACCTAAGCCTAAAG
ATACATTAATGATCAGCCGGACTCCTGAAGTTACTTGTGTTGTGGTTGATGTCAGTCATGAGGATCCA
GAGGTTAAGTTCAACTGGTACGTGGATGGTGTGGAAGTTCACAATGCGAAAACGAAACCACGCGAAG
AACAGTATAATAGTACATACCGTGTAGTGAGCGTATTGACTGTGCTCCATCAAGACTGGCTTAATGGC
AAAGAATATAAGTGTAAGGTGAGTAACAAAGCGCTCCCCGCACCTATTGAGAAGACGATTAGCAAAG
CCAAGGGTCAACCACGCGAACCCCAAGTCTATACACTGCCCCCTTCCCGTGATGAGTTAACCAAGAA
TCAAGTCAATCTTACCTGTCTTGTAAAAGGTTTCTACCCGTCTGATATCGCCGTCGAATGGGAGTCTA
ATGGCCAACCGGAAAACAACTACAAGACCACACCGCCCGTCCTCGACTCAGATGGGAGTTTCTTCCT
GAATAGCACTTTGACAGTGGATAAAAGTCGATGGCAACAGGGGAATGTGTTCTCCTGTAGCGTAATG
CATGAGGCTCTGCATAACCATTACACACAGAAATCACTCAGTCTCAGCCCTTAA 
  

Tetravalent 
bitargeted 

ATGTATAGAATGCAACTGCTCTCCTGCATAGCATTAAGCCTCGCCTTAGTCACTAATAGCGCTCCGAC
ATCAAGTAGTACGAAGAAAACACAACTGCAACTTGAGAATCTTCTACTGGATCTCCAGATGATCCTTA
ACGGTATCAACAACTATAAGAATCCCAAGTTAACACAAATGTTGACCTTTAAATTCTACATGCCCAAGA
AGGCCACAGAATTGAAGCATCTCCAATGTCTTGAGGAAGAGCTGAAACCCCTTGAGGAAGTGTTAAA
TCTGGCACAGTCTAAGAACTTTCATCTCCGCCCCAGAGATTTAATATCTAATATCAATGTGATCGTTCT
GGAACTGAAGGGTTCAGAAACCACTTTCATGTGCGAGTATGCTGATGAGACAGCCACAATTGTAGAA
TTCCTCAACAGGTGGATAACATTCTGCCAGTCCATCATTAGTACATTAACTGGTGGCGGTGGATCAG
GGGGAGGCGGATCAGGTGGCGGAGGATCCGGTGGAGGAGGTTCCGATAAGACCCATACTTGTCCA
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Table S3: DNA sequences for novel IL-2 muteins. DNA sequences used to express novel multivalent 
IL-2 muteins.  

CCGTGTCCAGCTCCAGAATTGTTGGGTGGACCTAGCGTGTTTCTGTTCCCACCCAAGCCCAAAGATA
CACTTATGATCAGTCGGACTCCTGAGGTAACGTGCGTGGTAGTGGACGTCAGCCATGAGGACCCAG
AGGTCAAATTTAACTGGTATGTTGATGGAGTTGAAGTGCATAACGCCAAAACTAAACCAAGGGAAGAA
CAGTACAACTCTACCTATAGAGTGGTTTCCGTACTCACAGTACTGCACCAAGACTGGCTGAACGGAA
AAGAATATAAATGTAAGGTGAGCAATAAAGCATTGCCCGCCCCGATCGAGAAAACAATTTCAAAAGCT
AAAGGCCAACCGAGAGAACCCCAAGTTTATACCCTTCCACCCTCTCGGGATGAGTTGACCAAGAACC
AAGTGTCATTAACTTGTCTGGTGAAGGGATTTTATCCCTCTGACATTGCCGTGGAATGGGAATCCAAC
GGTCAGCCGGAAAACAATTATAAAACTACTCCACCCGTCTTAGACTCTGACGGGAGTTTCTTCCTGTA
CAGCAAGCTTACAGTAGACAAGTCTCGGTGGCAACAAGGAAACGTCTTCAGCTGTAGCGTCATGCAT
GAAGCATTACATAATCACTATACACAAAAGTCTCTGTCACTGTCCCCTGGTGGAGGAGGCAGCGGCG
GTGGTGGTTCTGGAGGAGGTGGAAGTGGTGGCGGCGGGAGTGCACCAACTAGCAGTTCCACCAAA
AAGACTCAGTTACAGCTCGAACATCTGCTGCTTGCACTGCAGATGATTCTGAATGGAATAAATAATTA
CAAAAACCCTAAGCTCACACGTATGCTTACGTTCAAGTTTTATATGCCAAAGAAGGCTACGGAGCTCA
AACACCTGCAATGCTTGGAAGAGGAACTCAAGCCATTGGAAGAGGTTCTGAACCTGGCTCAATCCAA
AAATTTCCACCTTAGGCCTAGAGACCTCATCAGCAACATAAACAAGATAGTACTAGAGCTCAAAGGGA
GCGAGACGACCTTTGTTTGCGAGTACGCCGATGAAACTGCTACCATCGTGGAGTTTTTGAATAGATG
GATCACCTTTTGTCAAAGCATTATATCCACACTTACCTGA 
  

Bivalent 
bitargeted 

ATGTATAGAATGCAACTGCTCTCCTGCATAGCATTAAGCCTCGCCTTAGTCACTAATAGCGCTCCGAC
ATCAAGTAGTACGAAGAAAACACAACTGCAACTTGAGAATCTTCTACTGGATCTCCAGATGATCCTTA
ACGGTATCAACAACTATAAGAATCCCAAGTTAACACAAATGTTGACCTTTAAATTCTACATGCCCAAGA
AGGCCACAGAATTGAAGCATCTCCAATGTCTTGAGGAAGAGCTGAAACCCCTTGAGGAAGTGTTAAA
TCTGGCACAGTCTAAGAACTTTCATCTCCGCCCCAGAGATTTAATATCTAATATCAATGTGATCGTTCT
GGAACTGAAGGGTTCAGAAACCACTTTCATGTGCGAGTATGCTGATGAGACAGCCACAATTGTAGAA
TTCCTCAACAGGTGGATAACATTCTGCCAGTCCATCATTAGTACATTAACTGGTGGCGGTGGATCAG
GGGGAGGCGGATCAGGTGGCGGAGGATCCGGTGGAGGAGGTTCCGATAAGACCCATACTTGTCCA
CCGTGTCCAGCTCCAGAATTGTTGGGTGGACCTAGCGTGTTTCTGTTCCCACCCAAGCCCAAAGATA
CACTTATGATCAGTCGGACTCCTGAGGTAACGTGCGTGGTAGTGGACGTCAGCCATGAGGACCCAG
AGGTCAAATTTAACTGGTATGTTGATGGAGTTGAAGTGCATAACGCCAAAACTAAACCAAGGGAAGAA
CAGTACAACTCTACCTATAGAGTGGTTTCCGTACTCACAGTACTGCACCAAGACTGGCTGAACGGAA
AAGAATATAAATGTAAGGTGAGCAATAAAGCATTGCCCGCCCCGATCGAGAAAACAATTTCAAAAGCT
AAAGGCCAACCGAGAGAACCCCAAGTTTATACCCTTCCACCCTCTCGGGATGAGTTGACCAAGAACC
AAGTGAATTTAACTTGTCTGGTGAAGGGATTTTATCCCTCTGACATTGCCGTGGAATGGGAATCCAAC
GGTCAGCCGGAAAACAATTATAAAACTACTCCACCCGTCTTAGACTCTGACGGGAGTTTCTTCCTGAA
TAGCACCCTTACAGTAGACAAGTCTCGGTGGCAACAAGGAAACGTCTTCAGCTGTAGCGTCATGCAT
GAAGCATTACATAATCACTATACACAAAAGTCTCTGTCACTGTCCCCTGGTGGAGGAGGCAGCGGCG
GTGGTGGTTCTGGAGGAGGTGGAAGTGGTGGCGGCGGGAGTGCACCAACTAGCAGTTCCACCAAA
AAGACTCAGTTACAGCTCGAACATCTGCTGCTTGCACTGCAGATGATTCTGAATGGAATAAATAATTA
CAAAAACCCTAAGCTCACACGTATGCTTACGTTCAAGTTTTATATGCCAAAGAAGGCTACGGAGCTCA
AACACCTGCAATGCTTGGAAGAGGAACTCAAGCCATTGGAAGAGGTTCTGAACCTGGCTCAATCCAA
AAATTTCCACCTTAGGCCTAGAGACCTCATCAGCAACATAAACAAGATAGTACTAGAGCTCAAAGGGA
GCGAGACGACCTTTGTTTGCGAGTACGCCGATGAAACTGCTACCATCGTGGAGTTTTTGAATAGATG
GATCACCTTTTGTCAAAGCATTATATCCACACTTACCTGA 
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Antibody Source Identifiers Panel 

Anti-FoxP3, Pacific Blue BioLegend Cat #: 320216; Clone: 206D; RRID: AB_439801 1 

Anti-CD3, PerCP-Cy5 BioLegend Cat #: 300328; Clone: HIT3a; RRID: AB_1575008 1 

Anti-CD4, PE BioLegend Cat #: 300508; Clone: RPA-T4; RRID: AB_314076 1 

Anti-CD8a, Alexa Fluor 488 BioLegend Cat #: 344716; Clone: SK1; RRID: AB_10549301 1 

Anti-CD56, BV605 BioLegend Cat #: 318334; Clone: GCD56; RRID: AB_2561912 1 

Anti-pSTAT5, R718 BD Biosciences Cat #: BDB566978; Clone: 47; RRID: AB_2869984 1 

Anti-CD25, BV786 BD Biosciences Cat #: 563701; Clone: M-A251; RRID: AB_2744338 1 

Anti-CD25, APC-Fire 810 BioLegend Cat #: 356150; Clone: M-A251; RRID: AB_2876679 2 

Anti-CD127, BV421 BioLegend Cat # 351310 Clone: A019D5; RRID: AB_10960140 2 

Lineage Cocktail, FITC Invitrogen Cat # 22-7778-72; Clones: UCHT1; HCD14; 3G8; HIB19;  
2H7; HCD56; RRID: AB_1311229 

2 

Anti-CRTH2, BV605 BioLegend Cat #: 350122; Clone: BM16; RRID: AB_2566760 2 

Anti-FoxP3, Alexa 647 BioLegend Cat # 320114; Clone: 206D; RRID: AB_439754  2 

Anti-FcεR1, FITC  Biolegend Cat # 334608; Clone: AER-37; RRID: AB_1227653 2 

Anti-IL-2 R&D Systems Cat # MAB202-SP; Clone 5334; RRID: AB_2264789 N/A 

Table S4: Antibodies. Antibodies used in this study are listed. Those used to quantify receptor 
abundances, as well as to perform initial pSTAT5 response quantification in PBMCs, are detailed in Farhat 
et al.15 
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SUMMARY

Low-dose human interleukin-2 (hIL-2) treatment is used clinically to treat autoimmune disorders due to the
cytokine’s preferential expansion of immunosuppressive regulatory T cells (Tregs). However, off-target im-
mune cell activation and short serum half-life limit the clinical potential of IL-2 treatment. Recent work
showed that complexes comprising hIL-2 and the anti-hIL-2 antibody F5111 overcome these limitations
by preferentially stimulating Tregs over immune effector cells. Although promising, therapeutic translation
of this approach is complicated by the need to optimize dosing ratios and by the instability of the cyto-
kine/antibody complex. We leverage structural insights to engineer a single-chain hIL-2/F5111 antibody
fusion protein, termed F5111 immunocytokine (IC), which potently and selectively activates and expands
Tregs. F5111 IC confers protection in mouse models of colitis and checkpoint inhibitor-induced diabetes
mellitus. These results provide a roadmap for IC design and establish a Treg-biased immunotherapy that
could be clinically translated for autoimmune disease treatment.

INTRODUCTION

Interleukin-2 (IL-2) is a pleiotropic cytokine that regulates key ho-
meostatic functions, including proliferation, survival, and activa-
tion of both pro-inflammatory immune effector cells (Effs) (e.g.,
CD4+/CD8+ effector T cells, natural killer [NK] cells), and anti-in-

flammatory regulatory T cells (Tregs). IL-2 engages transmem-
brane receptors to activate signaling through the Janus kinase-
signal transducer and activator of transcription (STAT) pathway,
which regulates gene expression and functional outcomes
(Malek, 2008; Stroud and Wells, 2004; Murray, 2007). IL-2
forms either an intermediate-affinity heterodimeric receptor

Cell Reports 41, 111478, October 18, 2022 ª 2022 The Author(s). 1
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complex, comprising the IL-2 receptor-b (IL-2Rb, CD122) and
common gamma (gc) (CD132) chains, or a high-affinity heterotri-
meric receptor complex, comprising the non-signaling IL-2Ra
subunit (also CD25) as well as the IL-2Rb and gc chains (Leonard
et al., 1984; Liao et al., 2013; Wang et al., 2005). IL-2Ra is highly
expressed on Tregs but virtually absent from naive Effs; thus,
Tregs are 100-fold more sensitive to IL-2 (Boyman and Sprent,
2012; Sakaguchi et al., 1995; Taniguchi and Minami, 1993). IL-
2Ra expression is also induced in activated Effs, albeit at lower
levels, and activated Effs may compete with Tregs for extracel-
lular IL-2 (Baecher-Allan et al., 2001; Höfer et al., 2012; Schmidt
et al., 2012). Hence, IL-2 promotes both pro- and anti-inflamma-
tory responses, which has made it an attractive, albeit complex,
candidate for immunotherapy.

IL-2 first received FDA approval as a pro-inflammatory agent,
wherein high doses are administered to treat metastatic cancers
(Alva et al., 2016; Rosenberg, 2014; Sim and Radvanyi, 2014). In
contrast, low doses of IL-2 have been used to treat autoimmune
conditions, such as diabetes, ulcerative colitis, graft-versus-host
disease (GVHD), and allograft rejection. However, low-dose IL-2
strategies are limited by the dangerous off-target effects that
result from activation of Effs and by the short serum half-life of
IL-2.

Several approaches have been explored to overcome the lim-
itations of IL-2 therapy by biasing cytokine activity (Hernandez
et al., 2022), including the design of IL-2 muteins (Peterson
et al., 2018; Carmenate et al., 2018; Khoryati et al., 2020; Glass-
man et al., 2021), PEGylated IL-2 variants (Charych et al., 2016;
Dixit et al., 2021; Zhang et al., 2021), and IL-2/IL-2Ra fusion pro-
teins (Hernandez et al., 2021; Lopes et al., 2020; Ward et al.,
2018, 2020; Xie et al., 2021). In addition, since IL-15 shares IL-
2Rb and gc with the IL-2 receptor but has a distinct a chain
(Waldmann, 2006), IL-15 therapies have been designed that
preferentially target Effs over IL-2RaHigh Tregs (Knudson et al.,
2020), for example, the current clinical candidate ALT-803 (Ro-
mee et al., 2018; Rubinstein et al., 2006; Wrangle et al., 2018;
Xu et al., 2013).

Another approach, pioneered by Boyman et al. (2006), built on
seminal work (Finkelman et al., 1993) in developing cytokine/anti-
body complexes to combine IL-2 with anti-IL-2 antibodies that
bias cytokine activity. These complexes increase therapeutic ef-
ficacy and reduce toxicity of the cytokine by extending its in vivo
half-life (Roopenian and Akilesh, 2007) and selectively targeting
its functions toward particular immune cell subsets (Arenas-
Ramirez et al., 2016; Boyman et al., 2006; De Paula et al., 2020;
Karakus et al., 2020; Lee et al., 2020b; Spangler et al., 2015a;
Tomala et al., 2009; Trotta et al., 2018; Yokoyama et al., 2018).
Trotta et al. (2018) discovered and mechanistically described a
human antibody (F5111) against hIL-2 that biases its activities to-
ward Tregs. F5111 sterically blocks hIL-2 binding to IL-2Rb and
also allosterically reduces hIL-2 affinity for IL-2Ra. Receptor acti-
vation is gated by hIL-2/antibody dissociation, and interaction of
the hIL-2/F5111 complex with IL-2Ra destabilizes cytokine/anti-
body interactions, leading to selective IL-2RaHigh Treg activation.
This paradigm resembles the exchange/release mechanism
observed for the anti-mouse IL-2 (mIL-2) antibody JES6-1 and
the anti-hIL-2 antibody UFKA-20, both of which bias IL-2 toward
Tregs (Boyman et al., 2006; Karakus et al., 2020; Spangler et al.,

2015a). An affinity matured version of F5111 (F5111.2) preferen-
tially expanded Tregs and ameliorated autoimmune diseases in
mice (Trotta et al., 2018). However, clinical translation of cyto-
kine/antibody complexes is complicated by the need for dosing
ratio optimization and by IL-2 dissociation, which leads to off-
target effects. Moreover, use of a single agent rather than a
multi-component mixture facilitates the clinical approval
pathway. For instance, investigational new drug-enabling
nonhuman primate studies of cytokine/antibody complexes
require use of the matched species cytokine, but the antibody
may not cross-react with nonhuman primate cytokines.
To overcome the limitations of IL-2/antibody complexes, the

cytokine has been genetically fused to anti-IL-2 antibodies (Sahin
et al., 2020; Spangler et al., 2018; Tomala et al., 2013). In one
example, a single-chain fusion protein (immunocytokine [IC])
comprising mIL-2 and the JES6-1 antibody led to superior auto-
immune disease control in mice compared with the mIL-2/JES6-
1 complex (Spangler et al., 2018). Here,we designed an IC linking
hIL-2 to the F5111 antibody (termed F5111 IC) that preferentially
promotes mouse and human Treg activation. By modulating the
cytokine/antibody affinity, we developed IC variants with a range
of immune activation potencies. The parent F5111 ICwas poised
at an affinity optimum and showed greater Treg bias than hIL-2/
antibody complexes. Finally, we established the therapeutic
promise of F5111 IC in mouse models of colitis and immune
checkpoint inhibitor-induced diabetes mellitus.

RESULTS

Immunocytokine design and optimization
To advance development of F5111 IC, we first produced the
F5111 human immunoglobulin G1 (IgG1) antibody. Binding
studies using the yeast surface display platform (Boder and
Wittrup, 1997) revealed that recombinantly expressed F5111
bound yeast-displayed hIL-2 with the expected affinity (Trotta
et al., 2018), and the antibody did not cross-react with mIL-2
(Figure S1A).
F5111 IC was constructed by tethering hIL-2 to the N terminus

of the light chain (LC) of the full-length human F5111 antibody
with a flexible linker (Figure 1A). The mechanism of action for
biased immune activation by hIL-2/antibody complexes requires
cytokine dissociation, and we hypothesized that fusing the cyto-
kine to the antibody could hinder this dissociation through
enhanced avidity effects (Spangler et al., 2018). Thus, to reduce
the intramolecular cytokine/antibody affinity and enhance hIL-2
release, we formulated the IC using F5111 rather than the affinity
matured F5111.2. The hIL-2/F5111 complex structure (Trotta
et al., 2018) shows that the F5111 LC N terminus is 43 Å from
the hIL-2 C terminus (Figure 1B); therefore our initial design (de-
noted F5111 IC LN15) used a 15 amino acid (Gly4Ser)3 linker to
enable intramolecular engagement. Constructs with 25 amino
acid (Gly4Ser)5 and 35 amino acid (Gly4Ser)7 linkers were also
designed (F5111 IC LN25 and F5111 IC LN35, respectively).
Control IC was constructed by replacing the variable chains of
the F5111 IC LN35 construct with those of an irrelevant antibody
(Honegger et al., 2005) (Table S1).
ICs were produced in mammalian cells and purified via protein

G affinity chromatography and size-exclusion chromatography
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(SEC). Comparedwith the F5111 antibody, which eluted as a sin-
gle monodisperse peak, F5111 IC LN15 eluted earlier and
showed two broader peaks (Figures 1C and 1D), suggesting
possible oligomerization of F5111 IC LN15. Analysis of F5111
IC LN25 and LN35 revealed three peaks (P1, P2, and P3)
(Figures 1C–1E). Elution volumes suggested that P1 and P2 con-
tained oligomeric structures, whereas P3 contained monomeric
IC (Figures 1D and 1E). Higher-order oligomers likely indicate
binding of linked hIL-2 to F5111 on a neighboring IC (intermolec-
ular assembly) rather than intramolecular assembly (Figure 1E),
presumably due to linker constraint of intramolecular interaction
between hIL-2 and F5111. Indeed, we saw less oligomerization
as we increased linker length. Control IC (which does not
assemble intramolecularly or intermolecularly) eluted as a single
peak that coincided with P3 of F5111 IC LN25 and LN35, further
suggesting that P3 represents monomeric IC. SDS-PAGE veri-
fied IC purity (Figure 1F). Henceforth, F5111 IC LN25 and
F5111 IC LN35 refer to P3 unless otherwise specified. Also,
F5111 IC LN15 indicates the majority peak (Figure 1C).

F5111 ICs are intramolecularly assembled and exhibit
expected binding properties
To confirm proper assembly and functionality of F5111 ICs, we
measured binding to hIL-2, hIL-2Ra, and hIL-2Rb using bio-layer
interferometry. If properly assembled, F5111 IC would not
engage hIL-2 since the hIL-2 within the IC is bound to the anti-

body. F5111 antibody bound to hIL-2 as expected (Trotta
et al., 2018), whereas F5111 IC LN15, F5111 IC LN25, and
F5111 IC LN35 showed impaired hIL-2 binding (Figures 2A,
left, S1C, left, and S1D, left; Table S2), reflecting intramolecular
assembly of the ICs. Trace hIL-2 binding to ICs suggested tran-
sient exchange between intramolecular and intermolecular inter-
actions. hIL-2 binding decreased as linker length increased,
reinforcing that longer linker lengths enhance IC assembly. The
three peaks that eluted from F5111 IC LN25 showed similarly
impaired hIL-2 binding (Figure S1E, left). As expected, binding
was observed between hIL-2 and the hIL-2/F5111 complex
(1:1 molar ratio) due to unoccupied sites on F5111 (Figure 2A,
left).
We expected F5111 IC to interact with hIL-2Ra since the re-

ceptor-binding epitope on hIL-2 is not directly obstructed by
the antibody. F5111 ICs with varying linker lengths bound hIL-
2Ra with similar affinities, all of which were >2-fold higher than
those of free hIL-2 and hIL-2/F5111 complex due to bivalent
cytokine presentation (Figures 2A, middle, S1C, middle, and
S1D, middle; Table S2). Control IC had a 5-fold higher affinity
for hIL-2Ra compared with free IL-2 (Figure 2A, middle;
Table S2). A 2-fold lower hIL-2Ra affinity was observed for
F5111 IC LN15 compared with F5111 IC LN25 and F5111 IC
LN35, likely due to oligomerization. Indeed, among the three
peaks of F5111 IC LN25, P3 had the highest and P1 had the
lowest IL-2Ra affinity (Figure S1E, middle).

Figure 1. Design and production of F5111 IC
(A) Schematic of F5111 IC design.

(B) Structure of the hIL-2/F5111 complex (PDB: 5UTZ), showing the distance between the C terminus of hIL-2 (red) and the N terminus of the F5111 antibody LC

(green).

(C) SEC trace overlay of F5111 ICs.

(D) SEC trace overlay of F5111 antibody (Ab) and ICs.

(E) SEC trace of F5111 IC LN35 with peaks (P1, P2, and P3) denoted.

(F) SDS-PAGE analysis of F5111 IC LN35 P3. R, reducing; NR, non-reducing. Molecular weights (kDa) are indicated on the right. See also Figure S1 and Table S1.
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In contrast with hIL-2Ra, hIL-2Rb should not bind F5111 IC
since F5111 fully blocks the receptor binding epitope on hIL-2.
Control IC had a 100-fold hIL-2Rb affinity improvement over
free hIL-2 due to its bivalency (Figure 2A, right; Table S2).
Whereas binding to hIL-2Rb was completely abolished for hIL-
2/F5111 complex (Figure 2A, right; Table S2), F5111 IC LN15
showed similar hIL-2Rb affinity to free hIL-2 (Figure S1C, right),
indicating deficient intramolecular assembly. Lengthening the
linker eliminated these issues, as F5111 IC LN25 and F5111 IC
LN35 did not engage hIL-2Rb (Figures 2A, right, S1C, right,
and S1D, right; Table S2). F5111 IC LN25 P1 and F5111 IC
LN25 P2 bound hIL-2Rb weakly, whereas F5111 LN25 P3 did
not bind hIL-2Rb (Figure S1E, right). Overall, hIL-2 cytokine
and receptor binding studies confirmed proper assembly and
function of F5111 ICs.

F5111 ICs demonstrate Treg bias in vitro
IL-2-dependent STAT5 phosphorylation (pSTAT5) was assessed
on YT-1 human NK cells that either express (Treg-like) or lack
(Eff-like) IL-2Ra (Kuziel et al., 1993). ICs were compared with
hIL-2/F5111 complex (1:1 molar ratio), and increasing anti-
body-to-cytokine ratio did not affect signaling potency (Fig-
ure S1B; Table S3).
On IL-2Ra+ (Treg-like) cells, F5111 IC LN15, F5111 IC LN25,

and F5111 IC LN35 induced robust activation, similar to free
hIL-2 and hIL-2/F5111 complex (Figures 2B, left, and S1F;
Table S3). Control IC was more potent than free hIL-2 due
to its bivalency, whereas F5111 ICs were slightly less potent
due to incomplete cytokine/antibody dissociation. On IL-
2Ra! (Eff-like) cells, F5111 IC LN15 was 15-fold less potent
than free hIL-2 and control IC, and F5111 IC LN25 and

Figure 2. F5111 IC blocks IL-2 binding to IL-2Rb and biases toward Treg activation
(A) Equilibrium biolayer interferometry-based titrations of F5111 antibody (Ab), hIL-2, control IC, hIL-2/F5111 complex (Cx, 1:1 molar ratio), and F5111 IC LN35

binding to hIL-2 (left), hIL-2Ra (middle), or hIL-2Rb (right).

(B) STAT5 phosphorylation response of IL-2Ra+ (left) and IL-2Ra! (right) YT-1 cells stimulated with hIL-2, control IC, hIL-2/F5111 Cx (1:1 molar ratio), or F5111 IC

LN35.

(C) STAT5 phosphorylation responses of stimulated human Treg (left), CD8+ T (middle), and TConv (right) cells. Data represent mean ± SD (n = 3). See also

Figures S1 and S2; Tables S2, S3, and S4.
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Figure 3. Tuning IC intramolecular affinity modulates Treg bias
(A) hIL-2/F5111 crystal structure (PDB: 5UTZ) with alanine-mutated residues shown in yellow (LC) or green (HC). Human IL-2Ra is overlaid from the IL-2 qua-

ternary complex structure (PDB: 2B5I).

(B) Equilibrium biolayer interferometry-based titrations against hIL-2Rb.

(legend continued on next page)
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F5111 IC LN35 induced little to no activation (Figures 2B,
right, and S1G; Table S3). In contrast, hIL-2/F5111 complex
was only "2-fold less potent than free hIL-2 on IL-2Ra! cells,
highlighting the enhanced IL-2Ra+ cell bias of ICs versus the
complex. The two peaks of F5111 IC LN15 elicited "10-fold
weaker activation of IL-2Ra! cells relative to free hIL-2 (Fig-
ure S1H, top; Table S3). For F5111 IC LN25, P1 and P2
EC50 values were 50- and 100-fold weaker than that of
hIL-2, respectively, whereas P3 was >2,000-fold weaker (Fig-
ure S1H, bottom; Table S3). All three peaks of F5111 IC LN25
were less active on IL-2Ra! cells compared with F5111 IC
LN15, confirming that increased linker length improved IC as-
sembly. The potencies of F5111 IC LN25 and F5111 IC LN35
on IL-2Ra+ and IL-2Ra! cells were similar; however, less olig-
omerization was observed for F5111 IC LN35 (Figure 1B).
Thus, we proceeded with F5111 IC LN35, hereafter denoted
F5111 IC.

To confirm Treg bias in a mixed cell population, IC activity
was interrogated on human peripheral blood mononuclear cells
(PBMCs). F5111 IC was less potent than free hIL-2 and IL-2/
F5111 complex ("500-fold) as well as control IC ("1,000-fold)
on Tregs due to incomplete cytokine/antibody dissociation
(Figure 2C, left; Table S4). However, equivalent EMax values
were achieved for all constructs. F5111 IC did not activate on
CD8+ T cells, as indicated by reduced potency and "80%
reduction in EMax value compared with free hIL-2 and control
IC (Figure 2C, middle; Table S4). In contrast, hIL-2/F5111 com-
plex showed improved potency on CD8+ T cells with a milder
35% reduction in EMax relative to free IL-2 and control IC. Simi-
larly, F5111 IC induced little to no activation of conventional
CD4+ T cells (TConv), with 55% lower EMax compared with free
hIL-2 and control IC (Figure 2C, right; Table S4). However,
hIL-2/F5111 complex activated TConv cells with similar potency
and EMax as free IL-2, presumably due to complex dissociation.
Control IC was more potent than free hIL-2 due to bivalency.
Collectively, PBMC studies revealed that F5111 IC, but not
IL-2/F5111 complex, is strongly biased toward Treg versus
Eff activation due to preferential engagement of IL-2RaHigh

cell subsets.
To understand themore dramatic potency reduction for F5111

IC compared with free hIL-2 on human Tregs compared with IL-
2Ra+ YT-1 cells, we quantified IL-2Ra expression on these cells.
IL-2Ra mean fluorescence intensity (MFI) on Tregs was only
40-fold greater than the fluorescence minus one (FMO) control,
whereas IL-2Ra MFI was 75-fold greater than FMO control for
IL-2Ra+ YT-1 cells (Figure S2B, left), indicating that YT-1 cells
express more IL-2Ra than Tregs. IL-2Ra MFI levels on CD8+ T,
TConv, and IL-2Ra! YT-1 cells were close to FMO background
(Figure S2B, right). As F5111 IC binding requires IL-2Ra-depend-
ent disruption of the cytokine/antibody interaction, lower expres-
sion of IL-2Ra on human primary cells rationalizes the weakened
activity of F5111 IC on Tregs.

Tuning IC intramolecular affinity modulates IL-2
receptor binding and Treg bias
Based on ourmechanistic understanding of F5111 IC activity, we
hypothesized that modulating cytokine/antibody affinity would
impact relative engagement of IL-2RaHigh versus IL-2RaLow cells,
enabling optimization of IC bias on different cell types with
various IL-2Ra expression levels. We conjectured that reducing
the IL-2/F5111 interaction affinity would lead to enhanced IL-2
signaling, particularly on human Tregs. Informed by the structure
of the IL-2/F5111 complex (Trotta et al., 2018), we rationally de-
signed a panel of eight single-point alanine mutations of the
F5111 antibody, including three variable LC (VL) (Y33, Y94, and
S96) and five variable HC (VH) (Y35, Y52, Y54, Y60, and V103)
residues at the cytokine/antibody interface (Figure 3A). Each
F5111 variant and the affinity matured F5111.2 antibody (Ron-
don et al., 2015) were produced as ICs with 35 amino acid linkers
(Figure S3A).
Bio-layer interferometry studies showed that F5111 IC variants

minimally engaged hIL-2, confirming their intramolecular assem-
bly (Figure S3B; Table S2). All IC variants bound hIL-2Ra with
similar affinities, comparable with the parent F5111 IC (Fig-
ure S3B; Table S2). All IC variants showed significantly weaker
IL-2Rb binding compared with free hIL-2 and control IC, indi-
cating successful receptor blockade (Figure 3B; Table S2). How-
ever, whereas most IC variants completely ablated hIL-2Rb
binding, IC variants Y94A, Y35A, Y52A, Y54A, and Y60A detect-
ably bound hIL-2Rb at high concentrations, suggesting weaker
cytokine/antibody interactions for these clones.
Wewonderedwhether hIL-2Rbbindingdifferencesbetween IC

variants would impact IL-2 signaling bias. In human PBMC
studies, all F5111 IC variants either maintained or enhanced
Treg potency compared with the parent F5111 antibody (Fig-
ure 3C, left; Table S4), indicating that the mutations weakened
cytokine/antibody binding, as intended. IC variants were group-
ed into three cohorts: the ‘‘high’’-potency group (Y94A, Y35A,
Y52A,Y54A, andY60A ICs),whichwereof similar potency tocon-
trol IC; the ‘‘intermediate’’-potency group (Y33A and V103A ICs),
which were "50-fold weaker than control IC; and the ‘‘low’’-po-
tency group (parent F5111 IC and the S96A IC), which were
"1,000-fold weaker than control IC. F5111.2 IC impaired the
Tregpotency (>6,000-foldweaker thancontrol IC) due to reduced
cytokine/antibody dissociation. As anticipated, weakened cyto-
kine/antibody affinity alsopotentiated theactivity of F5111 ICvar-
iants on bothCD8+ T cells (Figure 3C,middle; Table S4) and TConv
cells (Figure 3C, right; Table S4). However, all IC variants showed
impaired Eff activation compared with free hIL-2 and control IC,
meaning they retained some Treg bias. IC variants with the high-
est Treg potencies led to the most potent CD8+ T and TConv cell
activation, and F5111.2 IC, which was the least potent on Tregs,
elicited the weakest Eff activation. Moreover, signaling potency
on both Treg and Effs was directly correlated with extent of hIL-
2Rb engagement, as anticipated.

(C) STAT5 phosphorylation responses of stimulated human Treg (left), CD8+ T (middle), and TConv (right) cells.

(D) Schematic of multivalent binding model (left). Predicted Treg:CD8+ T (middle) and Treg:TConv (right) pSTAT5 ratios for ICs at 10 pM concentration are plotted

against predicted IL2Rb/gc KD (nM).

(E) Predicted (lines) and experimental (points) percent control IC pSTAT5 EMax on CD8+ T (left) or TConv (right) cells plotted against the predicted (lines) or

experimental (points) pSTAT5 EC50 on Tregs for each IC. See also Figure S3; Tables S2 and S4.
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F5111 IC variants represent a panel of IL-2Ra ‘‘probes,’’ as
illustrated by IL-2RaMFI analysis within the activated cell popu-
lations for various immune cell subsets. At saturating concentra-
tions, the mean IL-2Ra MFIs of activated Tregs were similar
following treatment with all F5111 ICs except for the significantly
less potent F5111.2 IC (Figure S3C, left). This finding suggests
that Treg cell IL-2Ra expression is sufficient to induce cyto-
kine/antibody dissociation for all F5111 ICs other than F5111.2
IC, which requires more IL-2Ra to induce cytokine/antibody
dissociation. On CD8+ T and TConv cells, ICs that induced more
potent activation required lower levels of IL-2Ra to stimulate
IL-2 signaling (Figure S3C, middle and right).
To further explore the relationship between cytokine/antibody

affinity and Treg bias of ICs we developed a multivalent binding
model that predicts F5111 IC signaling properties in specific im-
mune cell subsets based on receptor affinity (Figure 3D, left).
This model accurately predicted activities of the IC variants
(Figures S3D–S3F) and inferred hIL-2Rb/gc affinities
(Figures S3G and S3H), which we could not measure experimen-
tally since IC variants did not reach binding saturation. We
plotted the predicted affinity of each IC against the predicted
Treg:CD8+ T and Treg:TConv pSTAT5 MFI ratios at a fixed con-
centration (Figure 3D, middle and right). As IC affinity toward
hIL-2Rb/gc decreased, Treg bias increased. Bias resulted from
attenuated signaling on both CD8+ T and TConv cells but
was also accompanied by decreased activation of Tregs
(Figures 3C and 3E), illustrating the trade-off between Treg acti-
vation and selectivity. We selected three IC variants for further
analysis that improved Treg potency while minimizing Eff activa-
tion (Y60A, Y33A, and V103A ICs).
To improve their therapeutic potential, we introduced the

N297A mutation into the Fc region of all ICs. This mutation pre-
vents glycosylation, which significantly impairs Fc g receptor
binding and thus reduces antibody effector functions (Delidakis
et al., 2022; Mimura et al., 2000, 2001; Saunders, 2019; Tao
et al., 1993; Wang et al., 2018). Bio-layer interferometry studies
showed no differences in hIL-2, hIL-2Ra, and hIL-2Rb binding
between F5111 IC with and without the N297A mutation
(Figure S4A; Table S2). Human PBMC signaling assays
confirmed that N297A mutation did not affect the activity of
control IC, F5111 IC, or IC variants (Figures S4B and S4C;
Table S4). Thus, IC will hereafter denote the IC with the N297A
mutation unless otherwise indicated.

Parent F5111 IC maximizes Treg expansion bias
We sought to determine whether the in vitro IL-2 signaling bias of
our engineered ICs toward activation of Tregs would translate
into selective expansion of Tregs in mice. We first evaluated IC
potencies on splenocytes isolated from non-obese diabetic
(NOD) mice. IC activation trends on mouse primary cells were
similar to those on human PBMCs (Figures S4C and S4D;
Tables S4 and S5), albeit with weaker potency due to the lower
affinity of hIL-2 for mIL-2 versus hIL-2 receptors (Spangler
et al., 2015a).
To inform in vivo dosing, we plotted in vitro Treg:CD8+ T and

Treg:TConv pSTAT5 MFI ratios as a function of IC concentration
(Figure S4E). Each IC variant exhibited a unique optimum con-
centration and maximum level of Treg bias, and variants that

were more potent on Tregs had lower optimum concentrations
and higher magnitude biases.
NOD mice were treated with each IC and immune cell subset

expansion was evaluated in harvested spleens (Figure S5A).
Y33A IC, V103A IC, and Y60A IC showed significant Treg bias
(Figure 4A), but remarkably, the parent F5111 IC led to the
most biased Treg expansion among the ICs tested, indicating
that the optimum hIL-2/antibody affinity for Treg bias corre-
sponded to that of the parent F5111 IC. This is visualized by plot-
ting the Treg:CD8+ T cell ratio against Treg potency for each IC
(Figure 4B; Table S4). If Treg activity is weak (as for F5111.2
IC), no activity is observed on any immune cell subset. If the
Treg activity is too potent (as for control IC), all immune cell sub-
sets are activated, confounding Treg bias. The optimum Treg
EC50 lies between these extrema, and F5111 IC is close to this
optimum. Non-negative matrix factorization was performed us-
ing a two-component analysis, revealing that F5111 IC had
equivalent Treg specificity IC variants while maintaining inhibi-
tion of Eff activation (Figure 4C).
We also evaluated our panel of IC variants in a humanized

mouse model. BALB/c Rag2!/! gc
!/! H2d mice engrafted with

human PBMC were treated with ICs and immune cell subset
expansion in the peritoneum was measured. In contrast to
NOD mouse results, optimal Treg expansion bias was observed
for Y60A IC and Y33A IC (Figure S4F), which have weaker cyto-
kine/antibody affinity than the parent F5111 IC. Thus, the optimal
Treg-promoting therapy may vary between mice and humans.
To assess the impact of Fc effector function on IC-induced

Treg expansion, we compared immune activation by the IC
with and without the N297A mutation. F5111 IC with the
N297A mutation (impaired Fc effector function) led to signifi-
cantly more Treg bias and >3-fold more Treg expansion (Fig-
ure S5B); thus we elected to employ F5111 IC with impaired Fc
effector function in mouse models of disease.

F5111 IC exhibits greater Treg bias than hIL-2/F5111.2
complex
We hypothesized that the IC could have stability improvements
over cytokine/antibody complexes; thus,we compared theprevi-
ously reported lead IL-2/antibody complex (hIL-2/F5111.2 com-
plex) (Trotta et al., 2018) to our lead construct (F5111 IC). The
N297Amutationwas installed in the F5111.2 antibody for consis-
tencywith F5111 IC.Bio-layer interferometry studies showed that
theF5111.2antibodyandhIL-2/F5111.2complex (1:1molar ratio)
bound to hIL-2, whereas F5111 IC and control IC had little to no
hIL-2 binding (Figure S5C, left; Table S2). hIL-2/F5111.2 complex
bound hIL-2Ra with "18-fold weaker affinity than F5111 IC and
control IC and"3-foldweaker affinity than free hIL-2 (Figure S5C,
middle; Table S2), consistent with previous data (Trotta et al.,
2018). Both hIL-2/F5111.2 complex and F5111 IC fully blocked
binding to hIL-2Rb (Figure S5C, right; Table S2).
On human Tregs, F5111 IC and hIL-2/F5111.2 complex (1:1

molar ratio) were "1,700- and "10-fold weaker than control IC
on Tregs, respectively (Figure 5A, left; Table S4). On CD8+

T cells, F5111 IC and hIL-2/F5111.2 reduced the EMax by 85%
and 80%, respectively, relative to control IC (Figure 5A, middle;
Table S4). On TConv cells, F5111 IC was "1,000-fold weaker
with a 60% reduction in EMax, whereas hIL-2/F5111.2 complex
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was"7-fold weaker with a 50% reduction in EMax relative to con-
trol IC (Figure 5A, middle; Table S4).

NOD mouse studies showed that both F5111 IC and hIL-2/
F5111.2 complex (2:1 cytokine:antibody molar ratio) led to
15-fold increases in the total number of Tregs compared with un-
treatedmice, and induced 3-fold more Treg expansion than con-
trol IC (Figure 5B). F5111 IC and hIL-2/F111.2 complex treatment
also led to significantly less CD8+ T, TConv, andNK cell expansion
comparedwith control IC, with the IC inducing less Eff expansion
than the complex (Figure 5B). Both F5111 IC and hIL-2/F5111.2
complex elevated expression of forkhead box P3 (FOXP3) within
the Treg population compared with control IC, with the IC
inducing significantly more FOXP3 expression than the complex
(Figure 5C). In addition, F5111 IC and hIL-2/F5111.2 complex
increased IL-2Ra expression on Treg, CD8+ T, and TConv cells
relative to control IC (Figure 5C). Both F5111 IC and hIL-2/
F5111.2 complex augmented the Treg:CD8+ T, Treg:TConv, and
Treg:NK cell ratios compared with control IC, with the IC eliciting
significantly more bias than the complex (Figure 5D). Notably,
F5111 IC treatment resulted in >80%Tregs within the CD4+ pop-
ulation, a massive expansion over the 10% Treg proportion

observed in saline-treated mice (Figure 5E). F5111 IC treatment
also significantly increased the percentage of Ki-67+ (prolifer-
ating) Tregs and lowered the percentage of Ki-67+ CD8+ T, TConv,
and NK cells compared with hIL-2/F5111.2 complex and control
IC (Figure 5F). Taken together, our in vivo data showcase the
Treg-biasing capacity of F5111 IC, and demonstrate its superior-
ity to cytokine/antibody complex.

F5111 IC induces durable expansion of functional Tregs
Dose dependence studies of F5111 IC-induced Treg expansion
showed that Treg frequency within the CD4+ T cell population
was consistent down to a dose of 0.5 mg IL-2 equivalence (Fig-
ure S5D). Kinetic studies revealed that Treg percentage within
the CD4+ population was highest 1 day after the final of four daily
F5111 IC doses, and the percentage declined monotonically for
each subsequent time point but still remained elevated after
1 week (Figures 6A and 6B). Similarly, maximum Treg bias was
observed 1 day after the last dose, and bias was mostly gone af-
ter 5 days (Figure 6C). Serum levels of F5111 IC in C57BL/6 mice
followed a two-phase decay with a fast half-life of "5 min and a
slow half-life of 35 h (Figure 6D).

Figure 4. Parent F5111 IC induces maximum Treg expansion bias
(A) Treg:CD8+ T (left), Treg:TConv (middle), and Treg:NK (right) cell ratios in NOD mice spleens after four daily treatments with PBS (n = 4) or 8.2 mg (1.5 mg IL-2

equivalence) control IC (n = 4), Y60A IC (n = 5), V103A IC (n = 4), Y33A IC (n = 4), F5111 IC (n = 5), or F5111.2 IC (n = 4). Data represent mean + SD. Statistical

significance compared with F5111 IC is shown (all data in Table S6).

(B) Plot of Treg:CD8+ T cell in vivo expansion ratio versus pSTAT5 EC50 on human Tregs (Figure S4C, left; Table S4). Data were fit to a Gaussian distribution.

(C) Non-negativematrix factorization (NNMF) loadings plot (left) and scores plot (right) of in vivo cell subset expansion studies in NODmice. *p% 0.05, **p% 0.01,

***p % 0.001, ****p % 0.0001. See also Figures S4 and S5.
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Figure 5. F5111 IC shows greater Treg bias than hIL-2/F5111.2 complex
(A) pSTAT5 response of stimulated human Treg (left), CD8+ T (middle), and TConv (right) cells. hIL-2/F5111.2 complex (Cx) was at a 1:1 molar ratio.

(B–E) NOD mice (n = 4 per group) were treated daily for 4 days with PBS, 1.5 mg hIL-2 with 6.6 mg F5111.2 antibody (1:2 molar ratio), or 8.2 mg (1.5 mg IL-2

equivalence) control IC or F5111 IC.

(B) Number of Treg, CD8+ T, TConv, and NK cells.

(C) MFI of FOXP3 within Tregs (left) and IL-2Ra MFI within Treg, CD8+ T, and TConv cells.

(legend continued on next page)
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To characterize the functional properties of Tregs expanded
by F5111 IC, we conducted a suppression assay using Tregs
isolated from C57BL/6 CD45.1 RFP-FOXP3 mice treated
with either saline or F5111 IC. Compared with Tregs isolated
from saline-treated mice, Tregs expanded by F5111 IC had
equivalent suppressive capacity against naive TConv cells from
C57BL/6 CD45.2 mice. (Figure 6E). We also assessed the
phenotype of F5111 IC-expanded Tregs from C57BL/6 mice
and found significantly increased numbers of conventional Tregs
(cTregs) (CD4+FOXP3+IL-2RaHighBCL-2High) but not effector
Tregs (CD4+FOXP3+IL-2RaLowBCL-2Low) (Figure 6F). Interest-
ingly, control IC treatment resulted in a reduced number of
cTregs compared with saline-treated mice, whereas eTreg
numbers were not affected. This aligns with the mechanism of
F5111 IC, which biases the molecule toward immune cell sub-
sets with high levels of IL-2Ra.

F5111 IC treatment does not impair immune response to
infection
A potential concern for therapeutic administration of a Treg-pro-
moting agent, such as F5111 IC, is that it may interfere with
T cell-mediated clearance of infection (Belkaid and Tarbell, 2009;
Belkaid et al., 2006; Oldenhove et al., 2009; Sacks and Anderson,
2004). We therefore probed the effects of F5111 IC in a mouse
model of toxoplasmosis. Treatment with either F5111 IC or control
IC following Toxoplasma gondii infection conferred protection
against disease-associated weight loss compared with saline
treatment (Figure 6G), and no significant differences were
observed in lung parasite burden (Figure 6H). Control IC and
F5111 IC led to similar changes in parasite burden in the liver rela-
tive to saline treatment. Histological analysis of immune-mediated
liver pathology in control IC-treated mice showed exacerbated
leukophilia and necrosis compared with saline-treated mice (Fig-
ure S5E). Interestingly, despite similar parasite burden to control
IC-treated animals, F5111 IC-treated mice showed an overall
reduction in immunopathological changes compared with saline-
treated mice (Figure S5E). Importantly, F5111 IC and control IC
behaved similarly in this model even though F5111 IC significantly
increasedTregnumbers (FigureS5F)andskewedratiosofTregs to
bothT-bet+Tetramer+CD8+Tcells (Figure6I) andT-bet+Tetramer+

CD4+ TConv cells (Figure S5G). Expanded Tregs showed evidence
of active proliferation (FigureS5H) and upregulation of IL-2Ra (Fig-
ure S5I). Overall, this study suggests that, although F5111 IC pro-
motes Treg expansion, it does not impair infection clearance.

F5111 IC efficacy in a mouse colitis model
To evaluate the potential for F5111 IC to prevent autoimmune dis-
easedevelopment,weassessed itsperformanceasaprophylactic
treatment in a mouse dextran sulfate sodium (DSS)-induced
mouse colitis model (Chassaing et al., 2014; Cooper et al., 1993;
Okayasu et al., 1990; Spangler et al., 2015a, 2018) (Figure 7A).
Both F5111 IC and hIL-2/F5111.2 complex significantly reduced

the severity of weight loss and led to decreased disease activity
scores on day 15 compared with saline and control IC treatment
(Figures 7B, 7C, S6A, and S6B). Relative to control mice without
DSS exposure, mice treated with F5111 IC and hIL-2/F5111.2
complex exhibited a less significant colon length reduction
compared with mice treated with saline or control IC (Figure 7D).
Colon histology analysis revealed that both F5111 IC and hIL-2/
F5111.2 complex treatment led to reduced histopathological
scores compared with control IC and saline treatment
(Figures 7E and S6C). Overall, this colitis model illustrated the ca-
pacity of F5111 IC to confer protection against autoimmune dis-
ease pathogenesis.

F5111 IC is protective in a mouse model of immune
checkpoint inhibitor-induced diabetes mellitus
To further evaluate the therapeutic potential for F5111 IC, we
examined its performance in a mouse model of immune check-
point inhibitor-induced diabetes mellitus (Ansari et al., 2003; Fife
et al., 2006; Hu et al., 2020). This model mimics the etiology of a
current clinical concern, in which cancer patients treated with
immunotherapies are at risk of developing immune-related
adverse events, including diabetes (Quandt et al., 2021; Stama-
touli et al., 2018; Young et al., 2018). NODmice were treated with
saline, control IC, or F5111 IC, and then administered anti-
mouse PD-1 antibody to induce disease (Figure 7F). Saline-
treated mice began developing diabetes on day 12, whereas a
proportion of control IC-treated mice showed accelerated dia-
betes onset starting on day 4 (Figures 7G and 7H). In contrast,
all mice treated with F5111 IC remained diabetes free until day
22. On day 44 (before onset of spontaneous disease in the con-
trol group that did not receive anti-PD-1), 60% of mice treated
with F5111 IC were diabetes free, whereas only 10% of mice in
the saline-treated group were diabetes free. Disease-free
survival was found to be significantly improved for F5111 IC-
treated but not control IC-treated mice compared with saline-
treatedmice. To further assess the durability of F5111 IC therapy
in this model, we performed a similar study over 175 days (Fig-
ure S6D). F5111 IC led to significant long-term protection
compared with saline in immune checkpoint inhibitor-treated
mice, as no additional animals developed diabetes after day 31
(Figures S6E and S6F). Control mice that did not receive anti-
PD-1 antibody began developing spontaneous diabetes on
day 50 and, by day 157, all mice had disease. These studies
highlight that the biased Treg expansion induced by F5111 IC
is protective in preventing the onset of immune checkpoint inhib-
itor-induced diabetes in mice and hint that therapymay also help
prevent spontaneous diabetes onset in NOD mice.

DISCUSSION

Biased cytokines are of great interest as therapeutics due to their
potential to harness the power of natural proteins and precisely

(D) Treg:CD8+ T (left), Treg:TConv (middle), and Treg:NK cell (right) ratios.

(E) Percent Tregs within the CD4+ T cell population.

(F) Percent Ki-67+ cells within Treg, CD8+ T, TConv, and NK cells from NOD mice (n = 5 per group) treated as in (B–E). Data represent mean ± SD. Statistical

significance between control IC, hIL-2/F5111.2 Cx, and F5111 IC shown. *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001. See also Figure S5; Table S4.
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Figure 6. F5111 IC expands functional Tregs without compromising infection immunity
(A–C) C57BL/6 mice (n = 3 per group) were treated daily for 4 days (intraperitoneally) with PBS or 8.2 mg F5111 IC (1.5 mg IL-2 equivalence) and spleens were

harvested at the indicated times.

(A) Representative flow plots showing Treg percentage and IL-2Ra versus FOXP3 levels in CD4+ T cells at the indicated times. (B) Percent Tregs within CD4+

T cells at the indicated times. (C) Treg:CD8+ T (left), Treg:TConv (middle), and Treg:NK (right) at the indicated times. Dashed lines show baseline values for the PBS-

treated cohort harvested 1 day after the last dose.

(D) Serum half-life of F5111 IC in C57BL/6 mice (n = 5) treated retro-orbitally with 2 mg/kg F5111 IC ("0.4 mg/kg IL-2 equivalence).

(legend continued on next page)
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regulate their biological effects (Spangler et al., 2015b). Ongoing
efforts in cytokine targeting include mutein engineering
(Peterson et al., 2018; Carmenate et al., 2018; Khoryati
et al., 2020; Glassman et al., 2021), selective PEG-ylation (Char-
ych et al., 2016; Dixit et al., 2021; Zhang et al., 2021), and cyto-
kine/antibody complex design (Arenas-Ramirez et al., 2016;
Boyman et al., 2006; De Paula et al., 2020; Karakus et al.,
2020; Lee et al., 2020b; Spangler et al., 2015a; Tomala et al.,
2009; Trotta et al., 2018; Yokoyama et al., 2018). Here, we built
upon a Treg-biasing anti-hIL-2 antibody (Trotta et al., 2018)
and engineered a single-chain hIL-2/antibody fusion protein
(F5111 IC). Compared with hIL-2/antibody complexes, our IC
benefits from extended serum half-life, enhanced stability, and
reduced counterproductive activation of Effs. Also, the single-
chain format results in a stoichiometrically balanced cytokine-
to-antibody ratio and streamlines the clinical development
pathway. Indeed, F5111 IC induced a more pronounced Treg
bias compared with hIL-2/F5111.2 complex.

Tethering IL-2 to an anti-IL-2 antibody enhances the apparent
affinity of the cytokine/antibody interaction (Spangler et al.,
2018). However, the mechanism of action for biased immune
activation by hIL-2/F5111.2 complex requires cytokine/antibody
dissociation. We speculated that the strengthened hIL-2/
F5111.2 interaction in the context of the ICwould hinder cytokine
dissociation, rationalizing our choice to use the weaker affinity
F5111 antibody in our IC. In fact, when the F5111.2 antibody
was formatted as an IC, Treg activation was severely impaired.
Thus, although hIL-2/F5111.2 complex led to enhanced Treg
bias compared with the hIL-2/F5111 complex, F5111 outper-
formed F5111.2 when formatted as ICs.

Based on this finding, as well as the differential IL-2Ra expres-
sion patterns between mouse and human immune cells, we de-
signedapanelof F5111 ICvariantswithvaryingcytokine/antibody
affinities and consequent IL-2 receptor interaction properties.
Although cellular studies showed increased Treg activation po-
tency for IC variants, this improved activity was accompanied
by increased potency on Effs. The IL-2Ra affinities of IC variants
were identical, and discrepancies in IL-2Rb affinities drove differ-
ential immune cell subset engagement. Furthermore, IL-2Ra
expression levelswere lower withinCD8+ T and TConv cell popula-
tions activated by IC variants with higher Treg potencies, indi-
cating that these ICs have a lower threshold for activation in the
presence of IL-2Ra. Insights from our affinity modulation studies
thus provide a roadmap for designing biased IL-2 therapies.

We deployed our IC variants in vivo, and a clear cytokine/anti-
body affinity optimum emerged for the parent F5111 IC,
balancing activation of Tregs with concurrent stimulation of
Effs. The Treg EC50 for F5111 IC was poised at an optimum;
enhanced activity on Tregs confounded bias by activating Effs

as well, whereas attenuated activity on Tregs led to poor stimu-
lation of all cell types. Importantly, IL-2 receptor expression
levels differ between human and mouse cells, and the affinities
of receptor subunits toward hIL-2 also vary across species
(Spangler et al., 2015a). We observed that the optimal IC variant
for biased Treg expansion in humanized mice differed from that
in immunocompetent mice, suggesting the possibility for
designing patient-specific treatments to address IL-2 receptor
level heterogeneity.
F5111 IC design efforts emphasized the importance of

optimizing linker length. Shorter linker lengths hindered intramo-
lecular assembly of the cytokine and antibody, driving intermo-
lecular interactions that resulted in higher-order oligomers.
Moreover, IC variants with higher Treg potencies eluted as broad
single peaks by SEC, whereas F5111.2 IC eluted as a single peak
at the expected molecular weight for the monomeric IC, sug-
gesting that stronger cytokine/antibody interactions reduce IC
oligomerization. Direct comparison of ICs with intact versus
impaired effector function capabilities showed that curbing anti-
body effector function is critical for avoiding Treg depletion via
antibody-dependent cellular cytotoxicity (Saunders, 2019;
Wang et al., 2018). Collectively, these findings will guide future
IL-2 IC design, and use of the modular hIgG1 scaffold enables
extension of the IC approach to other cytokines.
In vivo studies showed that F5111 IC improves autoimmune

disease outcomes in mice, without compromising pathogen
clearance. This represents an important translational achieve-
ment for the application of hIL-2-based therapies in autoim-
mune disease treatment, which is hindered by the cytokine’s
short half-life, dosing complications, off-target effects, and
toxicity. Deployment of an IL-2-based therapy in amousemodel
of immune checkpoint inhibitor-induced diabetes showed that
F5111 IC confers long-term protection against drug-induced
disease and continues to protect mice even when control
mice develop spontaneous disease. F5111 IC had the reverse
effect of control IC, which accelerated disease development,
likely due to stimulation of Effs. Acceleration of diabetes onset
resonates with previous reports that IL-2 and untethered IL-2/
antibody complexes can exacerbate disease pathogenesis
(Dong et al., 2021; Tang et al., 2008; Wesley et al., 2010), high-
lighting the safety, selectivity, and efficacy advantages for our
IC. Our therapeutic approach could be extended to additional
autoimmune conditions, including multiple sclerosis, systemic
lupus erythematosus, and GVHD (Klatzmann and Abbas,
2015; Koreth et al., 2011; Webster et al., 2009), and it could
also be leveraged to suppress anti-drug immune responses or
to prevent immune-related adverse events in cancer patients
(June et al., 2017; Kang et al., 2021; Quandt et al., 2021; Stama-
touli et al., 2018).

(E) C57BL/6 CD45.1 RFP-FOXP3 mice were treated daily for 4 days with PBS (n = 3) or 6.2 mg F5111 IC (1.125 mg IL-2 equivalence, n = 2). Percent proliferation

suppression of TConv cells from untreated C57BL/6 CD45.2 mice (n = 5) by titrating ratios of Tregs from spleens of treated mice is shown.

(F) C57BL/6 mice (n = 5 per group) were dosed on days 0, 2, and 4 with PBS or 8.2 mg (1.5 mg IL-2 equivalence) control IC or F5111 IC. Spleens were harvested on

day 6. Number of cTregs (CD4+FOXP3+IL-2RaHighBCL-2High) and effector (eTregs) (CD4+FOXP3+IL-2RaLowBCL-2Low) are shown.

(G–I) C57BL/6 mice were administered 25 cysts of T. gondii on day 0. The control group was not given cysts. Starting on day 1, mice were treated daily for 5 days

with PBS (control, n = 5; PBS, n = 4) or 8.2 mg (1.5 mg IL-2 equivalence) control IC (n = 5) or F5111 IC (n = 5). Mice were sacrificed on day 10. (G) Mouse weight. (H)

Parasite burden. (I) Treg:T-bet+Tetramer (Tet)+ CD8+ T cell ratio in the spleen. (G–I) Mean ± SEM. All other data are mean ± SD. Statistical significance in percent

initial weight on day 10 compared with F5111 IC is shown. *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001. See also Figure S5.
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Figure 7. F5111 IC confers protection in mouse models of autoimmune disease
(A) BALB/c mice (n = 6 per group) were treated daily for 7 days with PBS (control and PBS), 1.5 mg hIL-2 complexed with 6.6 mg F5111.2 antibody (1:2 molar ratio,

hIL-2/F5111.2 Cx), or 8.2 mg (1.5 mg IL-2 equivalence) control IC or F5111 IC. Beginning on day 7, all groups except disease-free control received 3%DSS in their

drinking water.

(B) Weight change.

(C) Disease activity index (DAI).

(legend continued on next page)

Cell Reports 41, 111478, October 18, 2022 13

Article
ll

OPEN ACCESS

95



F5111 IC biases the activity of IL-2 while also extending its
serum half-life; however, it does not target IL-2 toward specific
tissues. Several recent approaches have been taken to target
IL-2 and other cytokines to specific locations, such as the tumor
microenvironment (Hutmacher et al., 2019; Mortara et al., 2018;
Ongaro et al., 2020; Silver et al., 2021). Our approach could be in-
tegrated with these emerging technologies to bias the local
immune microenvironment and enhance therapy. In addition,
F5111 could be incorporated with antigen-specific immune-acti-
vating technologies to enable targeted activation of disease-pro-
tective Tregs. Overall, this work presents a stable, off-the-shelf
Treg-expanding agent with potential applications as a research
tool and for therapeutic design.

Limitations of the study
Certain limitationsneed tobeaddressed in futurestudiesof F5111
IC to advance clinical translation. Mechanistic experiments will
consider thecomparative effectsof F5111 IConvariousTreg sub-
sets. For instance, detection of Helios and Neuropilin-1 could be
used to interrogate the expansion and survival of thymically
versus peripherally derived Tregs (Weiss et al., 2012; Yadav
et al., 2012). Additional phenotyping andRNAsequencing studies
are also needed to compare the functional activity of F5111 IC-
expanded Tregs relative to endogenous Tregs. It will also be
important to characterize Treg persistence in disease models to
better understand the long-term effects of F5111 IC.

We note that autoimmune disease models in this study used
prophylactic treatment strategies due to the rapid onset of path-
ogenesis. Although there is evidence that preventative treatment
can be effective in delaying development of type 1 diabetes (Her-
old et al., 2019) and that prophylactic therapy could offer benefit
in rheumatoid arthritis (Dekkers et al., 2017), such early interven-
tions are not always possible. Thus, futureworkwill explore auto-
immune disease reversal. We plan to demonstrate generality of
F5111 IC through testing in additional contexts, such as GVHD
and allograft rejection models and the experimental autoimmune
encephalomyelitis model of multiple sclerosis. Furthermore,
although the DSS colitis model has been widely used to evaluate
IL-2-based therapies (Abo et al., 2019; Lee et al., 2020a; Sagiv
et al., 2009; Spangler et al., 2015a), colitis can also be induced
in immunodeficient mice lacking T and B cells using this model
(Dieleman et al., 1994; Strober et al., 2002). Therefore, it will be
important to demonstrate the clinical potential of F5111 IC in
other colitis models, such as the chronic T cell transfer model
or 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

Finally, to advance clinical development of F5111 IC, it will be
important to address developability considerations. For
instance, further optimization of sequence and/or linker length
may be needed to increase IC purity and yield. Also, it will be

critical to benchmark our molecule against other IL-2-based
therapies and Treg-biased molecules. Collectively, downstream
studies of the activity, therapeutic efficacy, and biophysical
properties of F5111 IC will offer valuable insight into its mecha-
nistic activities and support therapeutic translation.
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(D) Colon lengths on day 15 (n = 6 PBS, Cx, F5111 IC, control; n = 5 control IC).

(E) H&E-stained colons from treated mice (n = 5 control, control IC; n = 6 PBS, Cx, F5111 IC). Scale bar, 200 mm. (B–D) Mean ± SEM.Weight change and DAI plots

show significance of control IC-, Cx-, and F5111 IC-treatedmice versus PBS-treatedmice on day 15. Colon length plot shows significance comparedwith control

group and between PBS- and F5111 IC-treated mice.

(F–H) NOD mice (n = 10 per group) were treated with PBS (control and PBS) or 8.2 mg (1.5 mg IL-2 equivalence) control IC or F5111 IC.

(G) Blood glucose concentrations. The gray line indicates the 250 mg/dL threshold.

(H) Percent diabetes-free mice. Statistical significance compared with mice treated with PBS + anti-PD-1 is shown.

*p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001. See also Figure S6.
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Pérez-Cruz, M., Ho, P.P., Koliesnik, I., Nagy, N., et al. (2021). Calibration of

cell-intrinsic interleukin-2 response thresholds guides design of a regulatory

T cell biased agonist. eLife 10, e65777. https://doi.org/10.7554/eLife.65777.

Grover, H.S., Blanchard, N., Gonzalez, F., Chan, S., Robey, E.A., and Shastri,

N. (2012). The toxoplasma gondii peptide AS15 Elicits CD4 T cells that can

control parasite burden. Infect. Immun. 80, 3279–3288. https://doi.org/10.

1128/IAI.00425-12.
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Hernandez, R., Põder, J., LaPorte, K.M., and Malek, T.R. (2022). Engineering

IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 72,

281–311. https://doi.org/10.1038/s41577-022-00680-w.

Herold, K.C., Bundy, B.N., Long, S.A., Bluestone, J.A., DiMeglio, L.A., Dufort,

M.J., Gitelman, S.E., Gottlieb, P.A., Krischer, J.P., Linsley, P.S., et al. (2019).

An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes.

N. Engl. J. Med. 381, 603–613. https://doi.org/10.1056/NEJMoa1902226.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

F5111 Antibody This manuscript; see Table S1 N/A

F5111.2 Antibody (N297A) This manuscript; see Table S1 N/A

Trastuzumab Antibody This manuscript N/A

Anti-human IgG Fc APC [HP6017] BioLegend Cat# 409306; RRID: AB_11149491

Anti-mouse/human phospho-STAT5

AlexaFluor 647 [pY694]

BD Biosciences Cat# 562076; RRID: AB_11154412

Anti-human CD3 APC-eFluor780 [UCHT1] ThermoFisher Scientific Cat# 47-0038-42; RRID: AB_1272042

Anti-human CD4 PerCP-Cy5.5 [SK3] BD Biosciences Cat# 341654; RRID: AB_400452

Anti-human CD8 BV605 [SK1] BioLegend Cat# 344742; RRID: AB_2566513

Anti-human IL-2Ra BV421 [M-A251] BD Biosciences Cat# 562442; RRID: AB_11154578

Anti-human FOXP3 PE [236A/E7] BD Biosciences Cat# 560852; RRID: AB_10563418

Anti-human CD127 AlexaFluor 488 [eBioRDR5] ThermoFisher Scientific Cat# 53-1278-42; RRID: AB_2744750

Anti-mouse CD3 BV510 [145-2C11] BioLegend Cat# 100353; RRID: AB_2565879

Anti-mouse CD4 APC-eF780 [RM4-5] ThermoFisher Scientific Cat# 47-0042-82; RRID: AB_1272183

Anti-mouse CD8a AlexaFluor 488 [53-6.7] BD Biosciences Cat# 557668; RRID: AB_396780

Anti-mouse IL-2Ra PE [PC61.5] ThermoFisher Scientific Cat# 12-0251-83; RRID: AB_465608

Anti-mouse FOXP3 eFluor450 [FJK-16s] ThermoFisher Scientific Cat# 48-5773-82; RRID: AB_1518812

Anti-human CD4 PerCP-Cy5.5 [SK3] BD Biosciences Cat# 566316; RRID: AB_2739678

Anti-mouse CD4 eFluor450 [RM4-5] ThermoFisher Scientific Cat# 48-0042-82; RRID: AB_1272194

Anti-mouse CD49b PE-Cy7 [DX5] BioLegend Cat# 108922; RRID: AB_2561460

Anti-mouse CD16/32 [2.4G2] BD Biosciences Cat# 553142; RRID: AB_394657

Anti-mouse FOXP3 APC [FJK-16s] ThermoFisher Scientific Cat# 17-5773-82; RRID: AB_469457

Anti-mouse CD8a BV570 [53-6.7] BioLegend Cat# 100739; RRID: AB_10897645

Anti-mouse Ki-67 AlexaFluor 488 [16A8] BioLegend Cat# 652417; RRID: AB_2564236

Anti-mouse CD44 PerCP-Cy5.5 [IM7] ThermoFisher Scientific Cat# 45-0441-82; RRID: AB_925746

Anti-mouse/human Helios PE/Dazzle 594 [22F6] BioLegend Cat# 137231; RRID: AB_2565796

Anti-mouse CD45 APC-Cy7 [QA17A26] BioLegend Cat# 157617; RRID: AB_2890720

Anti-mouse TER-119 APC-Cy7 [TER-119] BioLegend Cat# 116223; RRID: AB_2137788

Anti-human CD3 BV605[OKT3] BioLegend Cat# 317321; RRID: AB_11126166

Anti-human CD56 PE [TULY56] ThermoFisher Scientific Cat# 12-0566-41; RRID: AB_2572562

Anti-human CD4 PE-eFluor610 [RPA-T4] ThermoFisher Scientific Cat# 61-0049-42; RRID: AB_2574522

Anti-human CD8 BV711 [SK1] BioLegend Cat# 344733; RRID: AB_2565242

Anti-human IL-2Ra PE-Cy7 [M-A251] BD Biosciences Cat# 557741; RRID: AB_396847

Anti-human FOXP3 AlexaFluor 647 [259D] BioLegend Cat# 320214; RRID: AB_492984

Anti-human Ki-67 FITC [20Raj1] ThermoFisher Scientific Cat# 11-5699-42; RRID: AB_10687464

Anti-mouse CD45 PerCP-Cy5.5 [30-F11] BioLegend Cat# 103132; RRID: AB_893340

Anti-mouse CD3 BV605 [17A2] BioLegend Cat# 100237; RRID: AB_2562039

Anti-mouse CD4 APC [GK1.5] BioLegend Cat# 100411; RRID: AB_312696

Anti-mouse CD8a BV786 [53-6.7] BD Biosciences Cat# 563332; RRID: AB_2721167

Anti-mouse IL-2Ra BV421 [7D4] BD Biosciences Cat# 564571; RRID: AB_2738849

Anti-mouse FOXP3 FITC [FJK-16s] ThermoFisher Scientific Cat# 11-5773-82; RRID: AB_465243

Anti-mouse NK-1.1 PerCP-Cy5.5 [PK136] BioLegend Cat# 108727; RRID: AB_2132706

Anti-mouse CD45.1 APC-Cy7 [A20] BioLegend Cat# 110716; RRID: AB_313505

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-mouse CD45.2 PerCP-Cy5.5 [104] BioLegend Cat# 109828; RRID: AB_893350

Anti-mouse CD62L PE [MEL-14] BioLegend Cat# 104408; RRID: AB_313095

Anti-mouse CD44 AlexaFluor 700 [IM7] BioLegend Cat# 103026; RRID: AB_493713

Anti-mouse CD16/32 [2.4G2] Bio X Cell Cat# BP0307; RRID: AB_2736987

Rat IgG Isotype Control ThermoFisher Scientific Cat# 10700; RRID: AB_2610661

Anti-mouse CD4 BUV563 [GK1.5] BD Biosciences Cat# 612923; RRID: AB_2870208

Anti-mouse CD8a BUV615 [53-6.7] BD Biosciences Cat# 613004; RRID: AB_2870272

Anti-mouse CD11a BUV805 [2D7] BD Biosciences Cat# 741919; RRID: AB_2871232

Anti-mouse IL-2Ra BV785 [PC61] BioLegend Cat# 102051; RRID: AB_2564131

Anti-mouse CD27 BV650 [LG.3A10] BioLegend Cat# 124233; RRID: AB_2687192

Anti-mouse CD44 BV570 [IM7] BioLegend Cat# 103037; RRID: AB_10900641

Anti-mouse CD69 BUV737 [H1.2F3] BD Biosciences Cat# 612793; RRID: AB_2870120

Anti-mouse CD122 BUV661 [TM-b1] BD Biosciences Cat# 741493; RRID: AB_2870951

Anti-mouse KLRG1 BUV395 [2F1] BD Biosciences Cat# 740279; RRID: AB_2740018

Anti-mouse ICOS APC/Fire 750 [C398.4A] BioLegend Cat# 313536; RRID: AB_2632923

Anti-mouse PD-1 BV421 [29F.1A12] BioLegend Cat# 135218; RRID: AB_2561447

Anti-mouse BCL-2 AlexaFluor 647 [BCL/10C4] BioLegend Cat# 633510; RRID: AB_2274702

Anti-mouse CD3 BV570 [17A2] BioLegend Cat# 100249; RRID: AB_2734148

Anti-mouse CTLA-4 APC-R700 [UC10-4F10-11] BD Biosciences Cat# 565778; RRID: AB_2739350

Anti-mouse FOXP3 PE-Cy5.5 [FJK-16s] ThermoFisher Scientific Cat# 35-5773-82; RRID: AB_11218094

Anti-mouse Ki-67 AlexaFluor 488 [B56] BD Biosciences Cat# 558616; RRID: AB_647087

Anti-mouse T-bet PE-Cy5 [4B10] ThermoFisher Scientific Cat# 15-5825-82; RRID: AB_2815071

Anti-mouse CXCR3 BV650 [CXCR3-173] BioLegend Cat# 126531; RRID: AB_2563160

Anti-mouse NK-1.1 BV711 [PK136] BioLegend Cat# 108745; RRID: AB_2563286

Anti-mouse NKp46 BV605 [29A1.4] BioLegend Cat# 137619; RRID: AB_2562452

Anti-mouse PD-1 [RMP1-14] Bio X Cell Cat# BE0146; RRID: AB_10949053

Bacterial and virus strains

One ShotTM MAX EfficiencyTM

DH5a-T1R Competent Cells

ThermoFisher Scientific Cat# 12297016

Biological samples

Human PBMCs Anne Arundel Medical Blood

Donor Center; NHS Blood

and Transport

N/A

Chemicals, peptides, and recombinant proteins

Polyethylenimine, Linear, MW 25000,

Transfection Grade (PEI 25KTM)

Polysciences Cat# 23966

OptiPROTM SFM ThermoFisher Scientific Cat# 12309019

FreeStyleTM 293 Expression Medium ThermoFisher Scientific Cat# 12338018

PierceTM Protein G Agarose ThermoFisher Scientific Cat# 20397

F5111 IC LN15 This manuscript; see Table S1 N/A

F5111 IC LN25 This manuscript; see Table S1 N/A

F5111 IC LN35 This manuscript; see Table S1 N/A

F5111 IC LN35 (Y35A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y52A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y54A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y60A) This manuscript; see Table S1 N/A

F5111 IC LN35 (V103A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y33A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y94A) This manuscript; see Table S1 N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

F5111 IC LN35 (S96A) This manuscript; see Table S1 N/A

F5111.2 IC LN35 This manuscript; see Table S1 N/A

Control (FITC-E2) IC LN35 This manuscript; see Table S1 N/A

F5111 IC LN35 (N297A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y60A, N297A) This manuscript; see Table S1 N/A

F5111 IC LN35 (V103A, N297A) This manuscript; see Table S1 N/A

F5111 IC LN35 (Y33A, N297A) This manuscript; see Table S1 N/A

F5111.2 IC LN35 (N297A) This manuscript; see Table S1 N/A

Control (FITC-E2) IC LN35 (N297A) This manuscript; see Table S1 N/A

Human IL-2 This manuscript N/A

Biotinylated human IL-2 This manuscript N/A

Biotinylated human IL-2Ra This manuscript N/A

Biotinylated human IL-2Rb This manuscript N/A

Ni-NTA Agarose Qiagen Cat# 30210

16% Paraformaldehyde (formaldehyde)

aqueous solution

Electron Microscopy Science Cat# 15710

Ficoll! Paque Plus MilliporeSigma Cat# GE17-1440-02

ACK Lysing Buffer Quality Biological Cat# 118-156-101

LIVE/DEADTM Fixable Blue

Dead Cell Stain Kit

ThermoFisher Scientific Cat# L34961

eBioscienceTM Fixable Viability

Dye eFluorTM 780

ThermoFisher Scientific Cat# 65-0865-18

Violet Proliferation Dye 450 BD Biosciences Cat# 562158

Zombie NIRTM Fixable Viability Kit BioLegend Cat# 423105

NHS-Rhodamine (5/6-carboxy-

tetramethyl-rhodamine succinimidyl

ester), mixed isomer

ThermoFisher Scientific Cat# 46406

CD4 (L3T4) MicroBeads, mouse Miltenyi Cat# 130-117-043

CellTraceTM Violet Cell Proliferation Kit ThermoFisher Scientific Cat# C34571

DynabeadsTM Mouse T-Activator

CD3/CD28 for T-Cell Expansion and Activation

ThermoFisher Scientific Cat# 11452D

Ghost DyeTM Violet 510 Tonbo Biosciences Cat# 13-0870-T100

Tetramer H2k(b) Tgd057 PE: SVLAFRRL NIH Tetramer Core Facility;

Wilson et al., 2010

N/A

Tetramer I-A(b) AS15 PE: AVEIHRPVPGTAPPS NIH Tetramer Core Facility;

Grover et al., 2012

N/A

Power SYBRTM Green PCR Master Mix ThermoFisher Scientific Cat# 4368577

Dextran sulfate sodium salt, colitis grade

(36,000–50,000)

MP Biomedicals Cat# 160110; Lot# S5036

Critical commercial assays

BirA biotin-protein ligase standard

reaction kit

Avidity Cat# BirA500

Octet! Streptavidin (SA) Biosensor Sartorius Cat# 18-5019

Transcription Factor Phospho Buffer Set BD Biosciences Cat# 565575

eBioscienceTM Foxp3/Transcription Factor

Staining Buffer Set

ThermoFisher Scientific Cat# 00-5523-00

DNeasy Blood & Tissue Kit Qiagen Cat# 69506

Experimental models: Cell lines

FreeStyleTM 293-F Cells ThermoFisher Scientific Cat# R79007

YT-1 Human NK Cells Yodoi et al., 1985 N/A

IL-2Ra+ YT-1 Human NK Cells Kuziel et al., 1993 N/A
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Mouse: NOD/ShiLt The Jackson Laboratory Strain #:001976; RRID: IMSR_JAX:001976

Mouse: BALB/c Rag2!/! gc
!/! H2d (BRG) The Jackson Laboratory Strain #: 014593

RRID: IMSR_JAX:014593

Mouse: C57BL/6 The Jackson Laboratory Strain #:000664; RRID: IMSR_JAX:000664

Mouse: C57BL/6 CD45.1 The Jackson Laboratory Strain #:002014; RRID: IMSR_JAX:002014

Mouse: C57BL/6 FOXP3-IRES-mRFP The Jackson Laboratory Strain #:008374; RRID: IMSR_JAX:008374

Mouse: C57BL/6 CD45.1; RFP-FOXP3 mice This manuscript; CD45.1 mice

were bred in house to FoxP3-RFP

mice to homozygosity and maintained at

Johns Hopkins University Cancer

Research Building 1 use facility

N/A

Mouse: C57BL/6 Taconic Biosciences Model: B6-M

Toxoplasma gondii – ME49 strain N/A N/A

Mouse: CBA/Ca The Jackson Laboratory Strain #: 000654 RRID: IMSR_JAX:000654

Mouse: BALB/c Purchased from Charles River

Laboratories and bred at Czech

Centre for Phenogenomics

Strain: 028

Oligonucleotides

qPCR primer: TCCCCTCTGCTGGCGAAAAGT

(Toxoplasma gondii forward)

This manuscript; Lin et al., 2000 N/A

qPCR primer: AGCGTTCGTGGTCAACTATCGATTG

(Toxoplasma gondii reverse)

This manuscript; Lin et al., 2000 N/A

Recombinant DNA

Human IL-2 sequence GenBank GenBank: X00695.1

Mouse IL-2 sequence GenBank GenBank: X01772.1

pCT3CBN Derived from pCT302

(Boder and Wittrup, 1997)

N/A

pCT3CBN_hIL2 (Yeast display

vector for human IL-2)

This manuscript N/A

pCT3CBN_mIL2 (Yeast display

vector for mouse IL-2)

This manuscript N/A

F5111 VH and VL sequence Rondon et al., 2015 N/A

F5111.2 VH and VL sequence Rondon et al., 2015 N/A

FITC-E2 VH and VL sequence Honegger et al., 2005 N/A

Human IgG1 constant heavy chain

sequence

ImMunoGeneTics (IMGT) IMGT: J00228

Human IgG1 constant lambda chain

sequence

ImMunoGeneTics (IMGT) IMGT: J00253

Human IL-2Ra sequence (1–217) GenBank GenBank: X01057.1

Human IL-2Rb sequence (1–214) GenBank GenBank: M26062.1

gWiz High Expression Blank Vector Genlantis P000200

gWiz_F5111_Ab_HC (Expression vector

for F5111 heavy chain)

This manuscript N/A

gWiz_F5111_Ab_LC (Expression vector

for F5111 light chain)

This manuscript N/A

gWiz_F5111.2_Ab_HC (Expression vector

for F5111.2 heavy chain)

This manuscript N/A

gWiz_F5111.2_Ab_LC (Expression vector

for F5111.2 light chain)

This manuscript N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

gWiz_F5111_IC_LN15_LC (Expression vector

for human IL-2 linked to F5111 light chain

with a 15 amino acid linker)

This manuscript N/A

gWiz_F5111_IC_LN25_LC (Expression

vector for human IL-2 linked to F5111

light chain with a 25 amino acid linker)

This manuscript N/A

gWiz_F5111_IC_LN35_LC (Expression

vector for human IL-2 linked to F5111

light chain with a 35 amino acid linker)

This manuscript N/A

gWiz_F5111_Ab_HC_Y35A (Expression

vector for F5111 heavy chain with Y35A mutation)

This manuscript N/A

gWiz_F5111_Ab_HC_Y52A (Expression

vector for F5111 heavy chain with Y52A mutation)

This manuscript N/A

gWiz_F5111_Ab_HC_Y54A (Expression

vector for F5111 heavy chain with Y54A mutation)

This manuscript N/A

gWiz_F5111_Ab_HC_Y60A (Expression

vector for F5111 heavy chain with Y60A mutation)

This manuscript N/A

gWiz_F5111_Ab_HC_V103A (Expression

vector for F5111 heavy chain with V103A mutation)

This manuscript N/A

gWiz_F5111_IC_LN35_LC_Y33A (Expression

vector for human IL-2 linked to F5111 Y33A

mutant light chain with a 35 amino acid linker)

This manuscript N/A

gWiz_F5111_IC_LN35_LC_Y94A (Expression

vector for human IL-2 linked to F5111 Y94A

mutant light chain with a 35 amino acid linker)

This manuscript N/A

gWiz_F5111_IC_LN35_LC_S96A (Expression

vector for human IL-2 linked to F5111 S96A

mutant light chain with a 35 amino acid linker)

This manuscript N/A

gWiz_F5111.2_IC_LN35_LC (Expression vector

for human IL-2 linked to F5111.2 light chain

with a 35 amino acid linker)

This manuscript N/A

gWiz_Control_IC_HC (Expression vector

for FITC-E2 heavy chain)

This manuscript N/A

gWiz_Control_IC_LN35_LC (Expression vector

for human IL-2 linked to FITC-E2 light chain with

35 amino acid linker)

This manuscript N/A

gWiz_F5111_Ab_HC_N297A (Expression vector

for F5111 heavy chain with N297A mutation)

This manuscript N/A

gWiz_F5111.2_Ab_HC (Expression vector for

F5111.2 heavy chain with N297A mutation)

This manuscript N/A

gWiz_F5111_Ab_HC_Y60A_N297A (Expression

vector for F5111 heavy chain with Y60A

and N297A mutations)

This manuscript N/A

gWiz_F5111_Ab_HC_V103A_N297A (Expression

vector for F5111 heavy chain with V103A and

N297A mutations)

This manuscript N/A

gWiz_Control_IC_HC_N297A (Expression vector

for FITC-E2 heavy chain with N297A)

This manuscript N/A

gWiz_hIL2 (Expression vector for human IL-2) This manuscript N/A

gWiz_hIL2_BH3 (Expression vector for human

IL-2 with BH3 tag for biotinylation)

This manuscript N/A

gWiz_hIL2Ra_BH3 (Expression vector for human

IL-2Ra residues 1–217 with BH3 tag for biotinylation)

This manuscript N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jamie
Spangler (jamie.spangler@jhu.edu).

Materials availability
Reagent generated in this study will be made available on request, but we may require a completed Materials Transfer Agreement.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.
d This paper does not report original code.
d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HEK 293F cells (ThermoFisher Scientific) were cultivated in Freestyle 293 Expression Medium (ThermoFisher Scientific) supple-
mented with 2 U/mL penicillin-streptomycin (Gibco). Unmodified YT-1 (Yodoi et al., 1985) and IL-2Ra+ (Kuziel et al., 1993) YT-1 hu-
man NK cells were cultured in RPMI complete medium (RPMI 1640 medium supplemented with 10% FBS, 2 mM L-glutamine, 13
minimum non-essential amino acids, 1 mM sodium pyruvate, 25 mM HEPES, and 100 U/mL penicillin-streptomycin [Gibco]). All
cell lines were maintained at 37#C in a humidified atmosphere with 5% CO2.

Human PBMCs
For in vitro studies containing human PBMCs, leukopaks containing de-identified whole blood were obtained from Anne Arundel
Medical Blood Donor Center (Anne Arundel, Maryland, USA). For the immune cell subset expansion studies in humanized mice,
PBMCs were isolated from leukocyte cones from de-identified healthy volunteers (NHS Blood and Transport, UK). Human tissue
samples taken by NHS Blood and Transport with informed consent and ethical approval from the Oxfordshire Research Ethics Com-
mittee, study number 07/H0605/130.

Mice
Female NOD/ShiLt and both male and female C57BL/6 mice were purchased from The Jackson Laboratory unless otherwise
specified. Mice were used at 8 weeks of age. Animals were housed in specific pathogen-free conditions and experiments conducted
in accordance with National Institutes of Health guidelines, and approval by the Johns Hopkins University Animal Care and Use
Committee.

For the immune cell subset expansion studies in humanizedmice,male BRGmicewere obtained fromThe Jackson Laboratory and
were maintained under specific pathogen-free conditions in the Biomedical Services Unit of the University of Oxford (Oxford, United
Kingdom). Mice were used at 8 weeks of age. All experiments in this study were performed using protocols approved by the Com-
mittee on Animal Care and Ethical Review at the University of Oxford and in accordance with the UK Animals (Scientific Procedures)
Act 1986.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

gWiz_hIL2Rb_BH3 (Expression vector

for human IL-2Rb residues 1–214 with

BH3 tag for biotinylation)

This manuscript N/A

gWiz_Trastuzumab_HC (Expression

vector for trastuzumab heavy chain)

This manuscript N/A

gWiz_Trastuzumab_LC (Expression

vector for trastuzumab light chain)

This manuscript N/A

Software and algorithms

GraphPad Prism 8.4.3 GraphPad https://www.graphpad.com/

FlowJo v10.7.1 FlowJo, LLC https://www.flowjo.com/solutions/flowjo

PyMOL v2.3.2 PyMOL https://pymol.org/2/

BioRender BioRender https://biorender.com/
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For the in vitro Treg suppression assay, both male and female C57BL/6 CD45.1 and C57BL/6 FOXP3-IRES-mRFP mice were pur-
chased from The Jackson Laboratory. For the C57BL/6 CD45.1; RFP-FOXP3 mice, C57BL/6 CD45.1 and C57BL/6 FOXP3-IRES-
mRFP mice were bred in house to homozygosity and maintained. 8-week-old female C57BL/6 CD45.1; RFP-FOXP3 mice were
used for all studies. All mice were housed and bred under specific pathogen-free conditions at Johns Hopkins University Animal
Care and Use Facility in Cancer Research Building I. The Institutional Animal Care and Use Facility at Johns Hopkins University
approved all animal experiments.
For the comparison of cTreg versus eTreg expansion and the Toxoplasma gondii infection mousemodel, 6-week-old male C57BL/

6 mice were purchased from Taconic Biosciences (Rensselaer, NY, USA) and kept in the University of Pennsylvania Department of
Pathobiology vivarium until they reached 8–9 weeks of age for experimental use. CBA/Ca mice were purchased from the Jackson
Laboratory and maintained kept in the University of Pennsylvania Department of Pathobiology vivarium. Mice housed in the Univer-
sity of Pennsylvania Department of Pathobiology vivariumweremaintained under institutional guidelines of 12-hour light/dark cycles,
temperature ranges of 68–77#F and humidity ranging from 35–55%. Ethical oversight of all animal use in this study was approved by
the University of Pennsylvania Institutional Animal Care and Use Committee.
For the DSS-induced colitis mouse model, female BALB/c mice were acquired from the colony kept at the Czech Centre for Phe-

nogenomics, Prague, Czech Republic. Mice were used at 8 weeks of age. They were housed and handled according to the institu-
tional committee guidelines with free access to food and water. Animal experiments were approved by the Animal Care and Use
Committee of the Institute of Molecular Genetics and were in agreement with local legal requirements and ethical guidelines.
For the immune checkpoint inhibitor-induced diabetes mellitus mouse model, female NOD/ShiLtJ mice were purchased from

the Jackson Laboratory and maintained in the UCSF specific pathogen-free animal facility in accordance with guidelines estab-
lished by the Institutional Animal Care and Use Committee and Laboratory Animal Resource Center. Mice were used at 8 weeks
of age.

METHOD DETAILS

Protein purification and expression
The published VH and VL sequences of F5111 (Trotta et al., 2018) were used to formulate the recombinant F5111 antibody on the
human IgG1 lambda isotype platform. The heavy chain (HC) and LC of the F5111 antibody were separately cloned into the gWiz vec-
tor (Genlantis). Antibodies were expressed recombinantly in HEK 293F cells via transient co-transfection of plasmids encoding the
HC and LC. HC and LC plasmids were titrated in small-scale co-transfection tests to determine optimal ratios for large-scale expres-
sion. HEK 293F cells were grown to 1.23106 cells/mL and diluted to 1.03106 cells/mL. Midiprepped DNA (1 mg total of HC and LC
plasmids per liter of cells) and 2 mg per liter of cells of polyethyleneimine (PEI, Polysciences) were independently diluted to 0.05 and
0.1 mg/mL in OptiPro medium (ThermoFisher Scientific), respectively, and incubated at room temperature for 15 minutes. Equal vol-
umes of DNA and PEI were mixed and incubated at room temperature for an additional 15 minutes. Subsequently, the diluted HEK
293F cells and 40 mL/L of DNA/PEI mixture were added to a shaking flask and incubated at 37#C and 5% CO2 with rotation at
125 rpm for 5 days. Secreted antibodies were purified from cell supernatants 5 days post-transfection via protein G agarose
(ThermoFisher Scientific) affinity chromatography followed by SEC on a Superdex 200 Increase 10/300 GL column (GE Healthcare)
on a fast protein liquid chromatography (FPLC) instrument, equilibrated in HEPES-buffered saline (HBS, 150 mM NaCl in 10 mM
HEPES pH 7.3). Purity (>99%) was verified by SDS-PAGE analysis.
For F5111 IC production, the hIL-2 cytokine (residues 1–133) was fused at the N-terminus of the F5111 antibody LC, connected by

either a flexible 15-amino acid (Gly4Ser)3 linker (F5111 IC LN15), a 25-amino acid (Gly4Ser)5 linker (F5111 IC LN25), or a 35-amino acid
(Gly4Ser)7 linker (F5111 IC LN35). We prepared a plasmid encoding the hIL-2-fused F5111 LC into the gWiz vector (Genlantis). ICs
were expressed and purified via transient co-transfection of HEK 293F cells with the F5111 HC and the hIL-2-fused F5111 LC plas-
mids, as described for the F5111 antibody. F5111 IC variants (all with a 35-amino acid linker) were generated in the same manner,
with the indicated single-point mutation in either the HC or the hIL-2 fused LC construct. The following single-point mutations were
made to the VH sequence: Y35A, Y52A, Y54A, Y60A, and V103A. The following single-point mutations weremade to the VL sequence:
Y33A, Y94A, and S96A. The sequence for the F5111.2 antibody and F5111.2 IC constructs was obtained from the following patent:
(Rondon et al., 2015).
The Control IC was generated in the same manner as described for F5111 IC. Published VH and VL sequences of the FITC-E2

antibody (Honegger et al., 2005) were used to formulate the recombinant Control IC on the human IgG1 lambda isotype platform.
hIL-2 (residues 1–133) was fused at the N-terminus of the LC, connected by a 35-amino acid (Gly4Ser)7 linker. Separate plasmids
were constructed in the gWiz vector (Genlantis) encoding the Control HC and the hIL-2-fused Control LC. The Control IC was ex-
pressed via transient co-transfection of HEK 293F cells with the HC and hIL-2-fused LC plasmids. Purification proceeded as
described for the F5111 antibody.
Antibody or IC constructs with Fc effector function knocked out were generated in the samemanner as above, using a HC plasmid

with the N297A mutation (Mimura et al., 2000, 2001; Saunders, 2019; Tao et al., 1993; Wang et al., 2018). In all studies, the F5111.2
antibody includes the N297A mutation. All in vivo studies were performed with constructs with Fc effector function knocked out un-
less otherwise noted.
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The hIL-2 cytokine (residues 1–133) was cloned into the gWiz vector (Genlantis) with a C-terminal hexahistidine tag. Protein was
expressed via transient transfection of HEK 293F cells, as detailed for antibody constructs, and purified via Ni-NTA affinity chroma-
tography followed by SEC using a Superdex 200 Increase 10/300 GL column (GE Healthcare) on an FPLC instrument, equilibrated in
HBS. Purity (>99%) was verified by SDS-PAGE analysis.

For expression of biotinylated hIL-2, and the extracellular domains of the hIL-2Ra (residues 1–217) and hIL-2Rb (residues 1–214)
receptor subunits sequences were cloned into the gWiz vector (Genlantis) with a C-terminal biotin acceptor peptide (BAP)-
GLNDIFEAQKIEWHE followed by a hexahistidine tag. Proteins were expressed and purified via Ni-NTA affinity chromatography
and then biotinylated with the soluble BirA ligase enzyme in 0.5 mM Bicine pH 8.3, 100 mM ATP, 100 mM magnesium acetate,
and 500 mM biotin (Avidity). Excess biotin was removed by SEC on a Superdex 200 Increase 10/300 column (GE Healthcare) on
an FPLC instrument, equilibrated in HBS. Complete biotinylation was verified via SDS-PAGE streptavidin shift assay.

Yeast surface binding studies
For binding studies on yeast, hIL-2 (residues 1–133) or mIL-2 (residues 1–149) were cloned into the pCT3CBN yeast display vector (a
variant of pCT302 (Boder andWittrup, 1997) with anN-terminal yeast agglutinin protein (Aga2) fusion followed by a 3Cprotease site, a
C-terminal myc epitope tag, and BamHI/NotI gene-flanking restriction sites). After induction for 48 hours, 13105 cells of IL-2-display-
ing yeast per well were transferred to a 96-well plate and incubated in PBE (PBS with 0.1% BSA and 1 mM EDTA) containing serial
dilutions of recombinant F5111 antibody for 2 hours at room temperature. Cells were then washed and stained with anti-human IgG
Fc APC (HP6017, BioLegend 409306, 1:50) in PBE for 15 minutes at 4#C. After a final wash, cells were analyzed for antibody binding
using a CytoFLEX flow cytometer (Beckman Coulter). Background-subtracted and normalized binding curves were fitted to a first-
order bindingmodel, and KD values were determined using GraphPad Prism. Studies were performed three timeswith similar results.

Bio-layer interferometry binding measurements
Binding studies were performed using bio-layer interferometry on an OctetRED96! bio-layer interferometry instrument (Molecular
Devices). Biotinylated hIL-2, hIL-2Ra, and hIL-2Rbwere immobilized to streptavidin-coated biosensors (Sartorius) in 0.45 mm filtered
PBSA (PBS pH 7.2 containing 0.1%BSA). hIL-2 and hIL-2Rbwere immobilized at a concentration of 50 nM for 120 seconds and hIL-
2Ra was immobilized at a concentration of 100 nM for 120 seconds. Once baseline measurements were collected in PBSA, binding
kinetics were measured by submerging the biosensors in wells containing serial dilutions of the appropriate analyte for 300 seconds
(association) followed by submerging the biosensor in wells containing only PBSA for 600 seconds (dissociation). hIL-2/F5111 or hIL-
2/F5111.2 complexes were formed by incubating a 1:1 molar ratio of the F5111 antibody to hIL-2 for 60 minutes at 37#C and then
diluting to the appropriate concentration. An irrelevant protein (themonoclonal antibody trastuzumab) was immobilized to a reference
streptavidin biosensor for subtraction of non-specific binding. Tipswere regenerated in 0.1Mglycine pH 2.7. Data was visualized and
processed using the Octet!Data Analysis software version 7.1 (Molecular Devices). Equilibrium titration curve fitting and equilibrium
dissociation constant (KD) value determination was implemented using GraphPad Prism, assuming all binding interactions to be first
order. Experiments were reproduced two times with similar results.

YT-1 human NK cell activation studies
Approximately 23105 IL-2Ra+ YT-1 or IL-2Ra! YT-1 cells were plated in each well of a 96-well plate and resuspended in 20 mL of
RPMI complete medium containing serial dilutions of either hIL-2, hIL-2/F5111 complexes, or IC. hIL-2/F5111 complexes were
formed by incubating a 1:1 molar ratio of the F5111 antibody to hIL-2 for 60 minutes at 37#C and then diluting to the appropriate con-
centration. Cells were stimulated for 20 minutes at 37#C and immediately fixed by addition of paraformaldehyde (Electron Micro-
scopy Sciences) to a final concentration of 1.5% and incubated for 10 minutes at room temperature. Permeabilization of cells
was achieved by resuspension in 200 mL of ice-cold 100%methanol (MilliporeSigma) for 30 minutes at 4#C. Fixed and permeabilized
cells were washed twice with PBSA and incubated with anti-pSTAT5 AlexaFluor 647 (pY694, BD Biosciences 562076, 1:50) diluted in
20 mL of PBSA for 2 hours at room temperature. Cells were then washed twice in PBSA and analyzed on a CytoFLEX flow cytometer
(BeckmanCoulter). Dose-response curves were fitted to a logistic model andmaximum values (EMax) and half maximal effective con-
centration (EC50) values were calculated using GraphPad Prism data analysis software after subtraction of the MFI of unstimulated
cells and normalization to the maximum signal intensity. Experiments were conducted in triplicate and performed at least twice with
similar results.

Human PBMC and mouse splenocyte activation studies
For IL-2 induced pSTAT5 assays in human PBMCs, leukopaks containing de-identified whole blood were obtained from Anne Arun-
del Medical Blood Donor Center (Anne Arundel, Maryland, USA). Human PBMCs were isolated fromwhole blood by density gradient
centrifugation using a standard Ficoll gradient (Ficoll Paque, MilliporeSigma) according to the manufacturer’s protocol. PBMCs were
subjected to ACK red blood cell lysis (Quality Biological) and resuspended in PBS. Approximately 23106 cells/well were then plated
into 96-well plate, pelleted, and resuspended in 40 mL of RPMI complete medium containing serial dilutions of the appropriate treat-
ment. hIL-2/antibody complexes were formed by incubating a 1:1 molar ratio of hIL-2 to either the F5111 or F5111.2 antibody for
60 minutes at 37#C and then diluting to the appropriate concentration. Cells were stimulated for 20 minutes at 37#C and immediately
fixed by addition of 160 mL of 13 TFP Fix/Perm buffer (Transcription Factor Phospho Buffer Set, BD Biosciences) and incubated at
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4#C for 50 minutes. 40 mL 13 TFP Perm/Wash buffer (Transcription Factor Phospho Buffer Set, BD Biosciences) was then added to
each well, and cells were then pelleted and washed again with 200 mL of 13 TFP Perm/Wash buffer. Permeabilization was achieved
by resuspending the cells in 150 mL of Perm Buffer III (BD Biosciences) and incubating for 30 minutes at 4#C. Cells were then washed
with 200 mL of 13 TFP Perm/Wash buffer and then resuspended in 50 mL of 13 TFP Perm/Wash buffer containing the following an-
tibodies: anti-human CD3 APC-eFlour780 (UCHT1, ThermoFisher Scientific 47-0038-42, 1:50), anti-human CD4 PerCp-Cy5.5 (SK3,
BD Biosciences 341654, 1:20), anti-human CD8 BV605 (SK1, BioLegend 344742, 1:50), anti-human IL-2Ra BV421 (M-A251, BD Bio-
sciences 562442, 1:100), anti-human FOXP3 PE (236A/E7, BD Biosciences 560852, 1:50), anti-pSTAT5 AlexaFluor 647 (pY694, BD
Biosciences 562076, 1:50), and anti-human CD127 Alexa Fluor 488 (eBioRDR5, ThermoFisher Scientific 53-1278-42, 1:50). Cells
were incubated for 2 hours at room temperature and then washed twice with PBSA. Data were collected on a BD Biosciences
LSRII flow cytometer (Becton Dickinson) and analyzed using FlowJo software (FlowJo, LLC). Tregs were gated as CD3+CD4+IL-2Ra-
HighFOXP3High cells, CD8+ T cells were gated as CD3+CD8+ cells, and TConv cells were gated as CD3+CD4+FOXP3- cells. pSTAT5
dose-response curves were fitted to a logistic model and EMax and EC50 values were calculated using GraphPad Prism data analysis
software after subtraction of theMFI of unstimulated cells and normalization to themaximum signal intensity. Unless otherwise spec-
ified, PBMC activation experiments were conducted in triplicate and performed at least twice using PBMCs from independent
donors.
For IL-2-induced pSTAT5 assays in murine lymphocytes, spleens from female NOD/ShiLtJ mice (The Jackson Laboratory) were

collected and processed into a single-cell suspension followed by ACK red blood cell lysis (Quality Biological). Cells were seeded at
23106 cells/well into a 96-well plate, and the same protocol as for PBMC studies was followed using a different panel of antibodies:
anti-mouse CD3 BV510 (145-2C11, BioLegend 100353, 1:100), anti-mouse CD4 APC-eF780 (RM4-5, ThermoFisher Scientific 47-
0042-82, 1:100), anti-mouse CD8a AlexaFluor 488 (53-6.7, BD Biosciences 557668, 1:50), anti-mouse IL-2Ra PE (PC61.5,
ThermoFisher Scientific 12-0251-83, 1:100), anti-mouse FOXP3 eFlour450 (FJK-16s, ThermoFisher Scientific 48-5773-82, 1:50), and
anti-pSTAT5Alexa Fluor 647 (pY694, BDBiosciences 562076, 1:50).Mouse splenocyte activation studieswere conducted in triplicate.

Quantification of IL-2Ra expression levels
Human PBMCs were isolated as described in the section ‘‘human PBMC and mouse splenocyte activation studies.’’ Approximately
23106 human PBMCs/well or 0.23106 YT-1 cells/well were resuspended in 50 mL of PBS containing LIVE/DEADTM Fixable Blue Dead
Cell Stain Kit (ThermoFisher Scientific L34961, 1:1000) and stained for 15 minutes at 4#C. Cells were washed with PBSA, resus-
pended in 40 mL of RPMI, and then fixed by addition of 160 mL of 13 TFP Fix/Perm buffer (Transcription Factor Phospho Buffer
Set, BD Biosciences) and incubated at 4#C for 50 minutes. 40 mL 13 TFP Perm/Wash buffer (Transcription Factor Phospho Buffer
Set, BD Biosciences) was then added to each well, and cells were then pelleted and washed again with 200 mL of 13 TFP Perm/
Wash buffer. Permeabilization was achieved by resuspending the cells in 150 mL of Perm Buffer III (BD Biosciences) and incubating
for 30 minutes at 4#C. Cells were then washed with 200 mL of 13 TFP Perm/Wash buffer and resuspended in 50 mL of 13 TFP Perm/
Wash buffer containing the following antibodies: anti-human CD3 APC-eFlour780 (UCHT1, ThermoFisher Scientific 47-0038-42,
1:50), anti-human CD4 PerCp-Cy5.5 (SK3, BD Biosciences 566316, 1:100), anti-human CD8 BV605 (SK1, BioLegend 344742,
1:50), anti-human IL-2Ra BV421 (M-A251, BD Biosciences 562442, 1:100), and anti-human FOXP3 PE (236A/E7, BD Biosciences
560852, 1:50). For the IL-2Ra FMO control, the same panel was used minus the addition of anti-human IL-2Ra BV421. Cells were
incubated for 2 hours at room temperature and then washed twice with PBSA. Data were collected on a BD Biosciences LSRII
flow cytometer (Becton Dickinson) and analyzed using FlowJo software (FlowJo, LLC). Staining was conducted in triplicate and per-
formed twice using PBMCs from independent donors.

Development of a multivalent binding model for IC signaling
The multivalent binding model used to predict cell type-specific signaling response to ICs was formulated as described in Tan et al.
(Tan and Meyer, 2021). Each IL-2 molecule within the IC was assumed to bind to one free IL-2Ra and one IL-2Rb/gc receptor; there-
fore, bivalent ICswere allowed to bind up to two IL-2Ra and IL-2Rb/gc receptors each. Initial IL-2-IL-2Ra association wasmodeled as
proceeding with the experimentally determined kinetics of monomeric ligand-receptor interaction. The affinities with which each IC
initially interacted with IL-2Rb/gc receptor dimer were inferred by fitting the binding model to our experimental in vitro pSTAT5
signaling data as described below, using least-squares fitting. Subsequent ligand-receptor binding interactions were modeled
with an association constant proportional to the free receptor abundance and the monomeric affinity of receptor-ligand interaction
multiplied by the scaling constant, K$

x . A single K$
x value was fit for all experiments and cell types when we fit our model to our in vitro

pSTAT5 signaling data. To predict pSTAT5 response to IL-2 stimulation, we assumed that pSTAT5 is proportional to the amount of IL-
2-bound IL-2Rb/gc, as complexes which contain these species actively signal through the JAK/STAT pathway. Scaling factors con-
verting from predicted active signaling species to pSTAT5 abundancewere fit to experimental data on a per-experiment and cell type
basis. The abundance of each IL-2 receptor subunit on each cell type was assumed to be equal to previously published experimental
human PBMC receptor quantitation data (Farhat et al., 2021).

Immune cell subset expansion studies in NOD mice
For immune cell expansion studies in NOD mice (Tomala and Spangler, 2020), 8-week-old female NOD/ShiLtJ mice (4–5 mice per
group, The Jackson Laboratory) were injected intraperitoneally (i.p.) for 4 consecutive days (Days 0, 1, 2, 3) with either 200 mL of
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PBS or the indicated treatment diluted in 200 mL of PBS. ICs were dosed at 8.2 mg per day (1.5 mg hIL-2 equivalence) and hIL-2/
F5111.2 antibody complexes were formed by preincubating 1.5 mg hIL-2 with 6.6 mg F5111.2 antibody (1:2 antibody to cytokinemolar
ratio) in PBS for 60 min at 37#C. Mice were sacrificed 24 hours after the last dose (Day 4) by cervical dislocation, and spleens were
harvested. Single-cell suspensions were prepared bymechanical homogenization and then subjected ACK red blood cell lysis (Qual-
ity Biological) and resuspended in PBS. Absolute count of splenocytes was assessed for each spleen. Approximately 23106 cells
were used per sample. To assess viability, cells were resuspended in 50 mL of PBS containing eBioscience Fixable Viability Dye
eFluor780 (ThermoFisher Scientific 65-0865-18, 1:2000) and stained for 15 minutes at 4#C. Cells were then washed with PBSA
and resuspended in 50 mL of PBSA containing the following antibodies: anti-mouse CD3 BV510 (145-2C11, BioLegend 100353,
1:50), anti-mouse CD4 eFluor450 (RM4-5, ThermoFisher Scientific 48-0042-82, 1:100), anti-mouse CD8a AlexaFluor 488 (53-6.7,
BD Biosciences 557668, 1:50), anti-mouse IL-2Ra PE (PC61.5, ThermoFisher Scientific 12-0251-83, 1:100), anti-mouse CD49b
PE-Cy7 (DX5, BioLegend 108992, 1:100), and anti-mouse CD16/CD32 (2.4G2, BD Biosciences 553142, 1:100). Cells were stained
for 30 minutes at 4#C. Cells were then washed with PBSA and resuspended in 200 mL of 13 eBioscience Fixation/Permeabilization
buffer (ThermoFisher Scientific) and incubated for 45 minutes at 4#C. 800 mL of 13 eBioscience Permeabilization buffer
(ThermoFisher Scientific) was then added to each tube. Cells were subsequently resuspended in 50 mL of 13 eBioscience Perme-
abilization buffer containing anti-mouse FOXP3 APC (FJK-16s, ThermoFisher Scientific 17-5733-82, 1:80) and incubated for 45 mi-
nutes at 4#C. After a final wash and resuspension in PBSA, data were collected on a BD Biosciences LSRII flow cytometer (Becton
Dickinson) and analyzed using FlowJo software (FlowJo, LLC). Tregs were gated as CD3+CD4+IL-2RaHighFOXP3High cells, CD8+

T cells were gated as CD3+CD8+ cells, TConv cells were gated as CD3+CD4+FOXP3- cells, and NK cells were gated as
CD3!CD49b+ cells. Statistical significance was determined by one-way ANOVA with Tukey post hoc test. Experiments were per-
formed at least twice with similar results.

To quantify cell proliferation the same procedure as abovewas followed using the following panel: eBioscience Fixable Viability Dye
eFluor780 (ThermoFisher Scientific 65-0865-18, 1:2000), CD3 BV510 (145-2C11, BioLegend 100353, 1:50), anti-mouse CD4
eFluor450 (RM4-5, ThermoFisher Scientific 48-0042-82, 1:100), anti-mouse CD8a BV570 (53-6.7, BioLegend 100739, 1:100), anti-
mouse IL-2Ra PE (PC61.5, ThermoFisher Scientific 12-0251-83, 1:100), anti-mouse CD49b PE-Cy7 (DX5, BioLegend 108992,
1:100), anti-mouse CD16/CD32 (2.4G2, BD Biosciences 553142, 1:100), anti-mouse FOXP3 APC (FJK-16s, ThermoFisher Scientific
17-5733-82, 1:80), anti-mouse Ki-67 AlexaFluor 488 (16A8, BioLegend 652417, 1:100), anti-mouse CD44 PerCP-Cy5.5 (IM7,
ThermoFisher Scientific 45-0441-82, 1:100), and anti-mouse Helios PE/Dazzle 594 (22F6, BioLegend 137231, 1:100). Statistical sig-
nificancewasdeterminedbyone-wayANOVAwithTukeypost hoc test. Experimentswereperformedat least twicewith similar results.

Non-negative matrix factorization of immune cell subset expansion studies in NOD mice
The in vivo proliferative responses induced by the ICs were visualized using non-negative matrix factorization as implemented in sci-
kit-learn (Pedregosa et al., 2011). The replicate average number of cells measured in NODmice after treatment with each complex or
IC was assembled. The log of the experimentally determined cell number was then taken, and number of each cell type measured
during control (PBS) trials was subtracted from all other experimental measurements to obtain the log-fold changes in cell counts
induced by each ligand in relation to the control trial. Non-negative matrix factorization with two components was subsequently per-
formed on the processed matrix of cellular expansion data.

Immune cell subset expansion studies in humanized mice
Human PBMCs (NHS Blood and Transport) were dyed with Violet Proliferation Dye 450 (BD Biosciences) before i.p. injection into
8-week-old male BRG mice (The Jackson Laboratory). Mice received 53106 PBMCs on day 0 and on day 1 received a single i.p.
dose of either PBS (n = 6) or 8.2 mg (1.5 mg IL-2 equivalence) Y60A IC (n = 5), Y33A IC (n = 4), F5111 IC (n = 4), or F5111.2 IC (n =
5). Mice were sacrificed on day 4 and the PBMCs were retrieved by peritoneal lavage for flow cytometry analysis.

Cell were stained with Zombie NIR Fixable Dye (BioLegend 423105, 1:8000), anti-mouse CD45 APC-Cy7 (QA17A26, BioLegend
157617, 1:400), anti-mouse TER-119 APC-Cy7 (TER-119, BioLegend 116223, 1:400), anti-human CD3 BV605 (OKT3, BioLegend
317321, 1:200), anti-human CD56 PE (TULY56, ThermoFisher Scientific 12-0566-41, 1:200), anti-human CD4 PE-eFluor610 (RPA-
T4, ThermoFisher Scientific 61-0049-42, 1:200), anti-human CD8 BV711 (SK1, BioLegend 344733, 1:200), anti-human IL-2Ra PE-
Cy7 (M-A251, BD Biosciences 557741, 1:200), anti-human FOXP3 (259D, BioLegend 320214, 1:200), and anti-human Ki-67 FITC
(20Rag1, ThermoFisher Scientific, 1:200). The eBioscience Foxp3/Transcription Factor Staining Buffer Set (ThermoFisher Scientific)
was used for intracellular staining following the manufacturers protocol. Samples were collected on an Attune NxT flow cytometer
and analyzed using FlowJo software (FlowJo, LLC). Tregs were gated as CD3+CD4+IL-2RaHighFOXP3High cells, CD8+ T cells were
gated as CD3+CD8+ cells, and TConv cells were gated as CD3+CD4+FOXP3- cells. Murine cell populations (mCD45+mTER-119+)
were excluded from the gating. Statistical significance was determined by one-way ANOVAwith Tukey post hoc test. The experiment
was performed twice with similar results.

Immune cell subset expansion study dose titrations
8-week-old female C57BL/6 mice (2 mice per group, The Jackson Laboratory) were administered either 200 mL of PBS or increasing
doses of F5111 diluted in 200 mL of PBS via i.p. injection daily for 4 days. The doses of F5111 IC used were 0.91 mg (0.167 mg IL-2
equivalence), 2.7 mg (0.5 mg IL-2 equivalence), 4.1 mg (0.75 mg IL-2 equivalence), 6.2 mg (1.125 mg IL-2 equivalence), and 8.2 mg (1.5 mg
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IL-2 equivalence). Mice were euthanized 24 hours after the last dose and spleens were harvested. Splenocytes were isolated by me-
chanical dissociation through 100 mm filters and subjected to ACK red blood cell lysis buffer. Cells were stained with anti-mouse
CD45 PerCP-Cy5.5 (30-F11, BioLegend 103132, 1:1200), anti-mouse CD3 BV605 (17A2, BioLegend 100237, 1:80), anti-mouse
CD4 APC (GK1.5, BioLegend 100411, 1:3200), anti-mouse CD8a BV786 (53-6.7, BD Biosciences 563332, 1:400), anti-mouse IL-
2Ra BV421 (7D4, BD 564571, 1:200). Transcription Factor Phospho Buffer Set (BD) was used for intracellular staining following
the manufacturers protocol and then stained with anti-mouse FOXP3 FITC (FJK-16s, ThermoFisher Scientific 11-5773-82, 1:200).
Samples were acquired on a BD Celesta and analyzed using FlowJo (FlowJo, LLC). Tregs were gated as CD45+CD3+CD4+IL-2Ra-
HighFOXP3High cells. Statistical significance was determined by one-way ANOVA with Tukey post hoc test.

Immune cell subset expansion study kinetics
8-week-old male C57BL/6 mice (3 mice per group, The Jackson Laboratory) were administered i.p. injections for 4 consecutive days
(Days!3,!2,!1, 0) containing either 200 mL of PBS or 8.2 mg F5111 IC (1.5 mg hIL-2 equivalence) diluted in 200 mL of PBS. Spleens
from the PBS-treated group were harvested one day post-treatment (Day 1). Spleens from the F5111 IC treatedmice were harvested
1, 3, 5, and 7 days post-treatment (3 mice per harvest). The same protocol was implemented as described for the ‘‘Immune cell sub-
set expansion studies in NOD mice’’ with the substitution of the following antibody panel: anti-mouse CD3 BV510 (145-2C11,
BioLegend 100353, 1:100), anti-mouse NK-1.1 PerCp-Cy5.5 (PK136, BioLegend 108727, 1:100), anti-mouse CD4 eFluor450
(RM4-5, ThermoFisher Scientific 48-0042-82, 1:100), anti-mouse CD8a AlexaFluor 488 (53-6.7, BD Biosciences 557668, 1:100),
anti-mouse IL-2Ra PE (PC61.5, ThermoFisher Scientific 12-0251-83, 1:100), anti-mouse FOXP3 APC (FJK-16s, ThermoFisher Sci-
entific 17-5733-82, 1:80), and anti-mouse CD16/CD32 (2.4G2, BD Biosciences 553142, 1:100). Tregs were gated as CD3+CD4+IL-
2RaHighFOXP3High cells, CD8+ T cells were gated as CD3+CD8+ cells, TConv cells were gated as CD3+CD4+FOXP3- cells, and NK cells
were gated as CD3!NK-1.1+ cells.

Pharmacokinetic study
F5111 IC was labeled using 10-fold molar excess of N-hydroxysuccinimide (NHS)-Rhodamine (ThermoFisher Scientific), following
the manufacturer’s protocol. Non-reacted NHS-rhodamine was removed by SEC on a Superdex 200 Increase 10/300 GL column
(GE Healthcare), equilibrated in HBS. Protein concentration and degree of labeling were calculated according to the manufacturer’s
protocol.
Prior to treatment, a small volume of blood was collected from the tail vein of 8-week-old male C57BL/6 mice (5 mice, The Jackson

Laboratory). Mice were then administered retro-orbital injections of 2 mg/kg ("0.36 mg/kg hIL-2 equivalence, "10 mg hIL-2 total/
mouse) F5111 IC diluted in 200 mL of PBS. Blood was collected from the tail vein of eachmouse at 5minutes, 20minutes, 40minutes,
1 hour, 2 hours, 4 hours, 8 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 120 hours. At each time point, blood was collected in
EDTA-coated tubes and centrifuged at 5003g for 5 minutes. The plasma was collected and stored at 4#C for later analysis. After all
samples were collected, the plasma was diluted in PBS (1:10 dilution), and 100 mL of diluted sample was added to a 96 well black
clear-bottom plate. Fluorescence (Excitation/Emission: 540/590 nm) was measured on a BioTek Synergy 2 instrument, and blood
samples collected before treatment were used for background subtraction. Standard curves were generated from fluorescent mea-
surements of rhodamine-labeled F5111 IC at concentrations ranging from 3 mg/mL to 0.023 mg/mL (2-fold dilutions) and this standard
curvewas used to determine protein concentration of the collected samples. Serum half-life was calculated using a two-phase decay
model in GraphPad Prism.

In vitro Treg suppression assay
8-week-old female C57BL/6 CD45.1; RFP-FOXP3 mice (The Jackson Laboratory) were treated with either 200 mL of PBS (n = 3) or
6.2 mg F5111 IC in 200 mL of PBS (n = 2) i.p. every day for 4 days. 24 hours after the last dose, Tregs were isolated from spleens from
each group for the Treg suppression assay. Spleens from female C57BL/6 CD45.2 mice (n = 5) were taken for isolation of TConv cells.
Pooled mouse spleens were digested and CD4 cells were positively selected from all mouse groups (Miltenyi, 130-117-043). CD4+

cell suspensions were stained with either a Treg isolation panel: anti-mouse CD45.1 APC-Cy7 (A20, BioLegend 110716, 1:400), anti-
mouse CD45.2 PerCp-Cy5.5 (104, BioLegend 109828, 1:400), anti-mouse CD4 APC (GK1.5, BioLegend 100411, 1:3200), anti-
mouse CD8a BV786 (53-6.7, BD 563332, 1:400), anti-mouse IL-2Ra BV421 (7D4, BD 564571, 1:200), or a TConv isolation panel:
anti-mouse CD45.1 APC-Cy7 (A20, BioLegend 110716, 1:400), anti-mouse CD45.2 PerCp-Cy5.5 (104, BioLegend 109828, 1:400),
anti-mouse CD4 APC (GK1.5, BioLegend 100411, 1:3200), anti-mouse CD8a BV786 (53-6.7, BD 563332, 1:400), anti-mouse IL-
2Ra BV421 (7D4, BD 564571, 1:200), anti-mouse CD62L PE (MEL-14, BioLegend 104408, 1:200), and anti-mouse CD44
AlexaFluor 700 (IM7, BioLegend 103026, 1:400). CD45.1+CD4+CD8!IL-2RaHighRFP-FOXP3+ Tregs were sorted from F5111 treated
and PBS treated mice. CD45.2+CD4+CD8!IL-2Ra!CD62LHighCD44Low naı̈ve TConv cells were sorted for effector cells. Cell sorting
occurred on a BD FACSAriaTM.
For division tracking, TConv cells were labeled with CellTraceTM Violet (CTV, ThermoFisher Scientific) by incubating cells for 16 mi-

nutes at 37#C at a cell density of 106/mL in PBSA. Cells were vortexed every 4minutes of staining. Reaction was quenched in ice cold
RPMI 1640 medium (Invitrogen) with 10% FBS (MilliporeSigma).
Cells were cultured in RPMI 1640 medium (Invitrogen) supplemented with non-essential amino acids (Gibco), 1 mM sodium pyru-

vate (MilliporeSigma), 10 mM HEPES (Gibco), 100 U/mL Penicillin, 100 mg/mL streptomycin (Quality Biologic), 50 mM
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2-mercaptoethanol (Gibco), 2 mM L-glutamine (Gibco) and 10% FBS (MilliporeSigma). Cells were incubated at 37#C in 5%CO2. The
Treg suppression assay was performed as follows: 50,000 TConv cells were co-cultured with a varying ratio of Tregs in 96-well
U-bottom plate. Anti-CD3/anti-CD28 coated microbeads (Dynabeads Mouse T Activator, ThermoFisher Scientific, 11452D) were
added at a 1:2 (bead: cell) ratio with final number of cells in each well. Proliferation was analyzed by flow cytometry done on a BD
FACSCelestaTM after 4 days. Cells were washed in PBS and stained with anti-mouse CD45.1 APC-Cy7 (A20, BioLegend 110716,
1:400) and anti-mouse CD45.2 PerCp-Cy5.5 (104, BioLegend 109828, 1:400) to differentiate TConv cells from Tregs. Aminimum num-
ber of 20,000CD45.2+CTV+ cells were collected and analyzedwith FlowJo software (FlowJo, LLC). The percent suppression is calcu-
lated using the following formula: ((%CTV! of TConv cells alone - %CTV! of TConv cells treated with Treg)/%CTV! of TConv cells
alone)*100 (Collison and Vignali, 2011). CTV is gated on unstimulated TConv with all divisions beyond unstimulated condition consid-
ered CTV!. Experiment was conducted with technical replicates and repeated twice with similar results. Statistical significance at
each ratio was determined by two-tailed unpaired Student t test.

Comparison of cTreg versus eTreg expansion
8-week-oldmale C57BL/6mice (5mice per group, Taconic Biosciences) were injected i.p. every 48 hours (days 0, 2, and 4) with either
200 mL of 13 Dulbecco’s PBS (DPBS, Corning) or 8.2 mg (1.5 mg IL-2 equivalence) Control IC or F5111 IC diluted in 200 mL of 13
DPBS. The mice were sacrificed on day 6 and their splenocytes were harvested for analysis via flow cytometry. Splenocyte single
cell suspensions were isolated by mechanically processing harvested spleens through 70 mm nylon filters. The suspensions were
spun down at 3003g for 5 minutes, and then resuspended in 1 mL of lysis buffer (0.846% solution of NH4Cl) for 5 minutes to lyse
red blood cells. The cells were then washed in 10 mL of complete RPMI and then resuspended to 30e6 cells/mL on ice for staining.

5e6 cells per sample were placed in a 96 well round bottom plate and washed with ice cold 13 DPBS. The cells were resuspended
in 50 mL of Ghost DyeTM Violet 510 viability dye (TonboBiosciences 13-0870-T100, 1:200) reconstituted in 13DPBS for 20minutes on
ice and then washed in 0.2% FACS buffer (13DPBS, 2 g/L BSA, 0.5M EDTA). The cells were then resuspended in 50 mL of volume of
0.2%FACSbuffer containing anti-mouseCD16/CD32 (2.4G2, Bio XCell BP0307, 1 mg/mL) and rat IgG IsotypeControl (ThermoFisher
Scientific 10700, 1:200) for 30minutes on ice. The cells were washed in 0.2%FACSbuffer, and then incubated for 30minutes on ice in
50 mL volume of antibody cocktail composed of: anti-mouse CD4BUV563 (GK1.5, BDBiosciences 612923, 1:200), anti-mouse CD8a
BUV615 (53-6.7, BD Biosciences 613004, 1:200), anti-mouse CD11a BUV805 (2D7, BD Biosciences 741919, 1:200), anti-mouse IL-
2Ra BV785 (PC61, BioLegend 102051, 1:200), anti-mouse CD27 BV650 (LG.3A10, BioLegend 124233, 1:200), anti-mouse CD44
BV570 (1M7, BioLegend 103037, 1:100), anti-mouse CD69 BUV737 (H1.2F3, BD Biosciences 612793, 1:200), anti-mouse IL-2Rb
BUV661 (TM-b1, BD Biosciences 741493, 1:200), anti-mouse KLRG1 BUV395 (2F1, BD Biosciences 740279, 1:300), anti-mouse
ICOS APC/Fire 750 (C398.4A , BioLegend 313536, 1:200), and anti-mouse PD-1 BV421 (29F.1A12, BioLegend 135218, 1:250) in
0.2% FACS buffer supplemented with Brilliant Stain Buffer (BD Biosciences, 1:10). The cells were washed in 0.2% FACS buffer
and re-suspended in 100 mL 13 eBioscience Fixation/Permeabilization buffer (ThermoFisher Scientific) for 4 hours at 4⁰C. The cells
were then washed twice in 13 eBioscience Permeabilization buffer (ThermoFisher Scientific), and then resuspended in 50 mL of 13
eBioscience Permeabilization buffer containing: anti-mouse BCL-2 AlexaFluor 647 (BCL/10C4, BioLegend 633510, 1:200), anti-
mouse CD3 BV750 (17A2, BioLegend 100249, 1:200), anti-mouse CTLA-4 APC-R700 (UC10-4F10-11, BD Biosciences 565778,
1:300), anti-mouse FOXP3 PE-Cy5.5 (FJK-16s, ThermoFisher Scientific 35-5773-82, 1:200), anti-mouse Helios PE/Dazzle 594
(22F6, BioLegend 137231, 1:200), anti-mouse Ki-67 AlexaFluor 488 (B56, BD Biosciences 558616, 1:400), and anti-mouse T-bet
PE-Cy5 (4B10, ThermoFisher Scientific 15-5825-82, 1:200) for 2 hours at 4⁰C. The cells were then washed with 13 eBioscience Per-
meabilization buffer twice, and then resuspended in 500 mL 0.2% FACS buffer for flow cytometric analysis. Fluorescence minus one
(FMOs) controls and individual single color controls and were created using pooled remaining splenocytes and were prepared simul-
taneously with experimental samples. The prepared and stained cells were analyzed using a FACS Symphony A5 (BD Biosciences)
running BD FACSDiva v9.0 (BD Biosciences). Raw flow cytometry data was compensated and analyzed using FlowJo (FlowJo, LLC).
cTregs were gated as CD4+FOXP3+IL-2RaHighBCL-2High and eTregs were gated as CD4+FOXP3+IL-2RaLowBCL-2Low. Statistical sig-
nificance was determined separately for cTregs and eTregs by one-way ANOVA with a Tukey post hoc test.

Toxoplasma gondii infection mouse model
ME49 strain Toxoplasma gondii cysts were obtained from neural tissue harvested from chronically infected CBA/Ca mice (The Jack-
son Laboratory) and resuspended to 125 cysts/mL in 13DPBS (Corning). Cohorts of male C57BL/6 mice (5 mice per group, Taconic
Biosciences) were infected via i.p. injection at 8–9 weeks of age using 200 mL of diluted ME49 cysts for an infection dose of 25 cysts/
mouse. The disease-free control group did not receive ME49 cysts and instead received an injection of 13 DPBS. Mice were then
injected i.p.with either 200 mL of 13DPBS (control group and PBS) or 8.2 mg (1.5 mg IL-2 equivalence) Control IC or F5111 IC diluted in
200 mL of 13 DPBS every 24 hours after infection on days 1, 2, 3, 4, and 5. The mice were sacrificed on day 10 of infection, and sple-
nocytes were harvested for analysis via flow cytometry, the right lateral lobe of the lungs and liver were frozen at!80#C for DNA isola-
tion, and the left lateral lobe of the liver was stored in 10% buffered formalin (Jansen Pharmaceuticals) for histological analysis.

The staining and flow cytometry analysis was performed as described in the ‘‘Comparison of cTreg versus eTreg expansion’’
methods except anti-mouse CD27 was excluded and the following antibodies were added to the panel: anti-mouse CXCR3
BV650 (CXCR3-173, BioLegend 126531, 1:150), anti-mouse NK-1.1 BV711 (PK136, BioLegend 108245, 1:300), and anti-mouse
NKp46 BV605 (29A1.4, BioLegend 137619, 1:300). Additionally, toxoplasma-specific tetramers for CD4+ (Tetramer I-A(b) AS15
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PE, NIH, AVEIHRPVPGTAPPS, 1:400) and CD8+ (Tetramer H2k(b) Tgd057 PE, NIH, SVLAFRRL, 1:400) T cells were included. Tregs
were gated as CD3+CD4+IL-2RaHighFOXP3High cells, CD8+ T cells were gated as CD3+CD8+ cells, and TConv cells were gated as
CD3+CD4+FOXP3- cells.
Harvested left lateral liver lobes were kept submerged in 10% buffered formalin for 48 hours then mounted in paraffin, cut, and

hematoxylin and eosin (H&E) stained by the University of Pennsylvania Comparative Pathology Core.
Total DNA was isolated from frozen sections of the liver, heart, and lungs using a DNeasy Blood and Tissue Kit (Qiagen) according

to manufacturer protocol. Isolated DNA concentration was quantified via NanoDrop spectrophotometry (ThermoFisher Scientific)
and then individual samples were diluted in DNase/RNase-free distilled water (ThermoFisher Scientific) to equivalent concentrations
for qPCR analysis (lungs 40 ng/mL, livers 50 ng/mL). Parasite DNA quantity was assessed in triplicate from the individual prepared
DNA samples via qPCR using toxoplasma specific primers: (forward) 50-TCCCCTCTGCTGGCGAAAAGT-30 and (reverse)
50-AGCGTTCGTGGTCAACTATCGATTG-30 with Power SYBR Green master mix (ThermoFisher Scientific). The reaction conditions
for the qPCRwere: holding phase of 2minutes at 50#C, and then 10minutes at 95#C (occurs only once); followed by 50 cycles of PCR
phases of 15 seconds at 95#C, and 1minute at 60#C. The qPCR reaction was performed on a ViiA 7 Real-Time PCR system operating
ViiA 7TM Software. Analysis of parasite qPCR data was performed in Microsoft Excel version 2202 (Build 14931.20120).
Statistical significance was determined by one-way ANOVA with Tukey post hoc test. The experiment was performed twice with

similar results.

DSS–induced colitis mouse model
Female, 8-week-old, BALB/c mice (6 mice per group, Czech Centre for Phenogenomics) were injected i.p. daily for 7 days (days 0–6)
with either 200 mL of PBS (control group and PBS) or 8.2 mg (1.5 mg hIL-2 equivalence) Control IC or F5111 IC diluted in 200 mL of PBS.
For the complex, 1.5 mg hIL-2 was complexed with 6.6 mg F5111.2 antibody (1:2 antibody to cytokine molar ratio) in 200 mL of PBS for
60 min at 37#C. Beginning on day 7, all groups except for the disease-free control group were administered 3% DSS (MW = 36,000–
50,000; MP Biomedicals) in their drinking water to induce colitis. Mice weight, stool consistency, and rectal bleeding were measured
daily and scores were assigned for each category (Cooper et al., 1993). The weight loss score was calculated based on initial weight
as follows: 0 (<1% weight loss); 1 (1–5% weight loss); 2 (5–10% weight loss); 3 (10–20% weight loss); 4 (>20% weight loss). Stool
consistency was scored as follows: 0 (normal stool); 2 (loose stool); 4 (diarrhea/liquid stool). Rectal bleeding was scored as follows:
0 (no presence of blood); 4 (blood observed). The disease activity index was calculated as the average of the weight loss, stool con-
sistency, and rectal bleeding. On day 15, mice were sacrificed and entire colons were removed (from cecum to anus). Colon length
was measured, and shortening was used as an indirect marker of pathological inflammation. Distal colon sections were fixed in Car-
noy’s solution and embedded in paraffin. Histological scoring of paraffin-embedded and hematoxylin and eosin-stained transversal
colon sections was implemented in a blinded manner using a weighted score, ranging from 0 (no signs of inflammation) to 4 (severe
inflammation). Statistical significance was determined by one-way ANOVA with Tukey post hoc test. The experiment was performed
two times with similar results.

Immune checkpoint inhibitor-induced diabetes mellitus mouse model
8-week-old female NOD/ShiLtJ mice (the Jackson Laboratory) were treated i.p.with either 200 mL of PBS (control group and PBS) or
8.2 mg (1.5 mg IL-2 equivalence) Control IC or F5111 IC diluted in 200 mL of PBS from day!3 to 0 prior to initiating anti-PD-1 treatment.
Starting on day 0 (4 hours after the last IC treatment), mice were treated i.p. every 4 days with either PBS (control group) or 200 mg
anti-PD-1 antibody (clone RMP1-14, Bio X Cell) for a total of four or five doses. Non-fasting blood glucose was monitored by using a
OneTouch! Ultra! 2 glucometer. Diabetes onset was considered to have occurred when non-fasting blood glucose concentration
exceeded 250mg/dL for two consecutivemeasurements. Statistical significance was determined by pairwise comparisons using the
Log-rank (Mantel-Cox) test.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using GraphPad Prism. The number of replicates, number of mice, definition of center, disper-
sion and precision measures, and type of analysis performed is described in each of the above sections where applicable. p% 0.05
was considered significant for all experiments (*p% 0.05, **p% 0.01, ***p% 0.001, ****p% 0.0001). Significance between all groups
is not always shown in figures, for full analysis see Table S6.
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Figure S1. Increasing IC linker length improves Treg bias. Related to Figures 1 and 2.

(A) Binding of the F5111 antibody (Ab) to yeast-displayed hIL-2 or mIL-2. Fitted equilibrium

dissociation constant (KD) is shown. (B) STAT5 phosphorylation response of IL-2Ra- YT-1

human NK cells stimulated with either hIL-2 or hIL-2/F5111 complex (Cx) at varying molar

ratios of cytokine to antibody. (C-E) Equilibrium biolayer interferometry-based titrations of

hIL-2, F5111 antibody (Ab), Negative Control (trastuzumab), F5111 IC LN15 P1, and F5111

IC LN25 P1, P2, and P3 binding to immobilized hIL-2 (left), immobilized hIL-2Ra (middle),

and immobilized hIL-2Rβ (right). (F) STAT5 phosphorylation response of IL-2Ra+ YT-1

human NK cells stimulated with either hIL-2, F5111 IC LN15 P1 (top), or F5111 IC LN25 P3

(bottom). (G) STAT5 phosphorylation response of IL-2Ra- YT-1 human NK cells stimulated
with either hIL-2, F5111 IC LN15 P1 (top), or F5111 IC LN25 P3 (bottom). (H) STAT5

phosphorylation response of IL-2Ra- YT-1 human NK cells stimulated with either hIL-2,

F5111 IC LN15 P1 and P2 (top), or F5111 IC LN25 P1, P2, and P3 (bottom). Data in (F-H)

represent mean ± SD (n=3). See also Tables S2 and S3.
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Figure S2. IL-2Ra+ YT-1 cells express higher levels of IL-2Ra than human Tregs.

Related to Figures 2, 3, and 5. (A) Representative flow cytometry plots illustrating the

gating strategy used for human PBMCs. (B) Representative histograms illustrating IL-2Ra

MFI of IL-2Ra+ YT-1 cells and human Tregs (left) and IL-2Ra- YT-1 cells, human CD8+ T

cells, and human TConv cells (right) as compared to the IL-2Ra fluorescence minus one

(FMO) controls.
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Figure S3. Characterization of F5111 IC variants. Related to Figures 3 and 4. (A)

Overlay of SEC traces for F5111 IC variants. (B) Equilibrium biolayer interferometry-based

titrations of hIL-2, Control IC, and F5111 IC variants binding to immobilized hIL-2 (left) and

immobilized hIL-2Ra (right). Binding to immobilized hIL-2 was normalized based on the

binding of the F5111.2 antibody (Figure S5C, left). (C) IL-2Ra MFI within the pSTAT5+

population of Treg (left), CD8+ T (middle), and TConv (right) cell populations within human

PBMCs stimulated with either hIL-2, Control IC, or F5111 IC variants at treatment

concentrations of 2 nM (left) and 200 nM (middle and right). (D) Predicted vs. experimentally

measured pSTAT5 MFI for all cell types, ICs, and concentrations modeled. Each point

represents a single experimental measurement (n=1). (E) Model accuracy delineated by cell
type for all ICs. (F) Model accuracy delineated by treatment for all ICs. Accuracies are

calculated as a Pearson’s correlation R2. (G) Inferred IL2Rβ/γc equilibrium dissociation

constants (KD, nM) for each IC. (H) Inferred IL2Rβ/γc equilibrium dissociation constants (KD,

nM) compared to the maximum normalized IL2Rβ biolayer interferometry (BLI) signal

experimentally measured for each IC. See also Table S2.
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Figure S4. The N297A mutation does not impact in vitro function and IC variants

modulate Treg bias in vitro and in vivo. Related to Figures 3 and 4. (A) Equilibrium

biolayer interferometry-based titrations of Control IC, F5111 IC, and F5111 IC without the

N297A mutation (w/o N297A, intact effector function) binding to immobilized hIL-2 (left),

immobilized hIL-2Ra (middle), and immobilized hIL-2Rβ (right). Binding to immobilized hIL-2

was normalized based on the binding of the F5111.2 antibody (Figure S5C, left). (B) STAT5

phosphorylation response of Treg (left), CD8+ T (middle), and TConv (right) cell populations

from human PBMCs stimulated with either Control IC, F5111 IC, or F5111 IC w/o N297A.

Data represent mean ± SD (n=3). (C) STAT5 phosphorylation response of Treg (left), CD8+

T (middle), and TConv (right) cell populations within human PBMCs stimulated with either hIL-

2, Control IC, Y60A IC, V103A IC, Y33A IC, F5111 IC, or F5111.2 IC (all with N297A

mutation). Data represent mean ± SD (n=3). (D) STAT5 phosphorylation response of Treg

(left), CD8+ T (middle), and TConv (right) cells isolated from spleens of NOD mice and

stimulated with either hIL-2, Control IC, Y60A IC, V103A IC, Y33A IC, F5111 IC, or F5111.2

IC (all with N297A mutation). Data represent mean ± SD (n=3). (E) Average pSTAT5 MFI

ratio of human Treg:CD8+ T (left) and human Treg:TConv (right) for each IC determined at

each stimulation concentration from the experiment shown in (C). (F) BRG mice were

administered 5´106 human PBMCs (i.p.) on day 0 and then on day 1 were treated (i.p.) with

either PBS (n=6) or 8.2 μg (1.5 μg IL-2 equivalence) Y60A IC (n=5), Y33A IC (n=4), F5111

IC (n=4), or F5111.2 IC (n=5). Cells were collected by lavage from the peritoneum on day 4

and ratios of human Treg:CD8+ T (left) and Treg:TConv (right) were evaluated. Data represent

mean + SEM. Statistical significance was determined by one-way ANOVA with a Tukey post

hoc test. Only statistical significance compared to PBS is shown on the plots. All statistical

data are provided in Table S6. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. See also

Tables S2, S4, and S5.
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Figure S5. In vivo characterization of F5111 IC. Related to Figures 4-6. (A)

Representative flow cytometry plots illustrating the gating strategy used for NOD mouse

immune cell subset expansion studies. (B) Ratios of Treg to CD8+ T cells (left), Treg to TConv
cells (middle), and Treg to NK cells (right) in spleens harvested from NOD mice (n=4 per

group) treated daily for four days (i.p.) with either PBS or 8.2 μg (1.5 μg IL-2 equivalence)

Control IC, F5111 IC, or F5111 IC without the N297A mutation (w/o N297A, intact effector

function). Data represent mean + SD. Statistical significance was determined by one-way

ANOVA with a Tukey post hoc test. Significance is shown between Control IC and F5111 IC

with and without the N297A mutation. (C) Equilibrium biolayer interferometry-based titrations

of F5111.2 antibody (Ab), hIL-2, Control IC, hIL-2/F5111.2 complex (Cx, 1:1 molar ratio), and

F5111 IC binding to immobilized hIL-2 (left), immobilized hIL-2Ra (middle), and immobilized

hIL-2Rβ (right). (D) C57BL/6 mice (n=2 per group) were treated daily for 4 days (i.p.) with

either PBS or varying dosages of F5111 IC: 0.91 μg (0.167 μg IL-2 equivalence); 2.7 μg (0.5

μg IL-2 equivalence); 4.1 μg (0.75 μg IL-2 equivalence); 6.2 μg (1.125 μg IL-2 equivalence);

or 8.2 μg (1.5 μg IL-2 equivalence). Spleens were harvested 24 hours after the last dose.

Percent of Tregs within the CD4+ T cell population is shown. Data represent mean + SD.

Statistical significance was determined by one-way ANOVA with a Tukey post hoc test. (E-I)

C57BL/6 mice were administered (i.p.) 25 cysts of the ME-49 strain of Toxoplasma gondii (T.

gondii) on day 0. Control group designates disease-free mice that were not given cysts.

Starting on day 1, mice were treated daily for 5 days (i.p.) with either PBS (Control, n=5;

PBS, n=4) or 8.2 μg (1.5 μg IL-2 equivalence) Control IC (n=5) or F5111 IC (n=5). Mice were

sacrificed on day 10. (E) Representative H&E staining of harvested mouse livers. Scale bar,

100 μm. (F) Total number of Tregs in harvested spleen. (G) Ratio of Tregs to T-bet+Tetramer

(Tet)+ CD4+ TConv cells in harvested mouse spleen. (H) Total number of CD11aHighKi-67+

Tregs in harvested mouse spleen. (I) IL-2Ra MFI of Tregs in harvested mouse spleen. Data

in (F-I) represent mean + SEM. Statistical significance in (F-I) was determined by one-way

ANOVA with a Tukey post hoc test. Significance compared to F5111 IC is shown. All

statistical data are provided in Table S6. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. See

also Table S2.
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Figure S6. Evaluation of F5111 IC in mouse models of autoimmune disease. Related

to Figure 7. (A-C) BALB/c mice (n=6 per group) were treated daily for 7 days (i.p.) with

either PBS (Control and PBS), 1.5 μg hIL-2 complexed with 6.6 μg F5111.2 antibody (1:2

molar ratio, hIL-2/F5111.2 Cx), or 8.2 μg (1.5 μg IL-2 equivalence) Control IC or F5111 IC.

Beginning on day 7, all groups except for the disease-free cohort (Control) were

administered 3% DSS in their drinking water. Mice were sacrificed on day 15. (A) Weight

change on day 15. (B) Disease activity index (DAI) on day 15. (C) Histopathology scores for

H&E stained colons (n=5 Control, Control IC; n=6 PBS, Cx, F5111 IC). Data represent mean

± SEM. Statistical significance was determined by one-way ANOVA with a Tukey post hoc

test. All plots show significance of Control IC, Cx, and F5111 IC treated mice versus PBS

treated mice. (D-F) 8-week-old NOD mice (n=7 per group) were treated daily for 4 days (i.p.,

days -3, -2, -1, 0) with either PBS (Control and PBS) or 8.2 μg (1.5 μg IL-2 equivalence)

F5111 IC. Starting on day 0 (4 hours after the last IC dose), mice were administered anti-

PD-1 antibody (200 µg) every 4 days until day 16. Control group designates mice that did

not receive anti-PD-1 antibody. (E) Blood glucose concentrations over the study. The

threshold 250 mg/dL value is indicated by the gray line. (F) Percent diabetes-free mice.

Statistical significance was determined by pairwise comparisons using the Log-rank (Mantel-

Cox) test. Statistical significance compared to mice treated with PBS + anti-PD-1 is shown.

All statistical data are provided in Table S6. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001.
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Construct
Amino Acid Sequence

Signal sequence – VH or VL – human IgG1 CH1, CH2, and CH3 – hIL-2 – Linker – human 
Lambda CL

F5111 Heavy 
Chain

(Single-point 
alanine mutations)

(N297A)

METDTLLLWVLLLWVPGSTGDQLQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIR
QHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARTPTV
TGDWFDPWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN
SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD
KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE
VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL
YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

F5111 Light 
Chain

MRVPAQLLGLLLLWLPGARCGSNFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQ
RPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNVVF
GGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGV
ETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

F5111 Light 
Chain + hIL-2

LN15: X = 3
LN25: X = 5
LN35: X = 7

(Single-point 
alanine mutations)

MYRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKF
YMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYA
DETATIVEFLNRWITFCQSIISTLT(GGGGS)XNFMLTQPHSVSESPGKTVTISCTRSSGSIASN
YVQWYQQRPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQS
YDSSNVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKAD
SSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

Control IC Heavy 
Chain

(N297A)

METDTLLLWVLLLWVPGSTGDQVQLVESGGNLVQPGGSLRLSCAASGFTFGSFSMSWVRQ
APGGGLEWVAGLSARSSLTHYADSVKGRFTISRDNAKNSVYLQMNSLRVEDTAVYYCARRS
YDSSGYWGHFYSYMDVWGQGTLVTVSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFP
EPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDK
KVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKF
NWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI
SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV
LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

Control IC Light 
Chain + hIL-2

MYRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKF
YMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYA
DETATIVEFLNRWITFCQSIISTLTGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGG
SSVLTQPSSVSAAPGQKVTISCSGSTSNIGNNYVSWYQQHPGKAPKLMIYDVSKRPSGVPD
RFSGSKSGNSASLDISGLQSEDEADYYCAAWDDSLSEFLFGTGTKLTVLGGQPKAAPSVTLF
PPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSL
TPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

F5111.2 Heavy 
Chain

(N297A)

METDTLLLWVLLLWVPGSTGDQLQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIR
QHPGKGLEWIGYIYKSGSAYYSPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARTPTV
TGDWFDPWGRGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN
SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD
KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE
VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL
YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

F5111.2 Light 
Chain

MRVPAQLLGLLLLWLPGARCGSNFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQ
RPGSSPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQTYDSIDVYFG
GGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVE
TTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

F5111.2 Light 
Chain + hIL-2

MYRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKF
YMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYA
DETATIVEFLNRWITFCQSIISTLTGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGG
SNFMLTQPHSVSESPGKTVTISCTRSSGSIASNYVQWYQQRPGSSPTTVIYEDNQRPSGVP
DRFSGSIDSSSNSASLTISGLKTEDEADYYCQTYDSIDVYFGGGTKLTVLGQPKAAPSVTLFP
PSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLT
PEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

Table S1. Antibody and IC sequences. Related to Figures 1 and 3.
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Treatment Equilibrium KD (nM) Figure

hIL-2 hIL-2Ra hIL-2Rβ

F5111 Ab 2.7 - - 2A, S1C, S1D

hIL-2 - 16 480 2A, S1C, S1D

Control IC - 3.4 4.4 2A

hIL-2/F5111 Complex 4.8 18 >2000 2A

F5111 IC LN35 >2000 3.0 >2000 2A

hIL-2 - 25 470 3B, S3B, S5C

Control IC - 2.5 4.1 3B, S3B

F5111 IC >2000 3.2 >2000 3B, S3B, S4A

Y33A IC >2000 2.6 >2000 3B, S3B

Y94A IC >2000 2.2 >2000 3B, S3B

S96A IC >2000 2.5 >2000 3B, S3B

Y35A IC >2000 2.5 >2000 3B, S3B

Y52A IC >2000 2.8 500 3B, S3B

Y54A IC >2000 2.8 >2000 3B, S3B

Y60A IC >2000 2.7 >2000 3B, S3B

V103A IC >2000 2.4 >2000 3B, S3B

F5111.2 IC >2000 2.4 >2000 3B, S3B

F5111 IC LN15 >2000 7.5 210 S1C

F5111 IC LN25 >2000 3.4 >2000 S1D

F5111 Ab 2.1 - - S1E

hIL-2 - 16 310 S1E

F5111 IC LN25 P1 >2000 11 >700 S1E

F5111 IC LN25 P2 >2000 8.1 >1000 S1E

F5111 IC LN25 P3 >2000 4.8 >2000 S1E

Control IC + N297A - 3.8 7.7 S4A, S5C

F5111 IC + N297A >2000 3.6 >2000 S4A, S5C

F5111.2 Ab + N297A 4.9 - - S5C

hIL-2/F5111.2 Complex 5.6 68 >2000 S5C

Table S2. Equilibrium KD values from biolayer interferometry studies. 
Related to Figures 2 and 3.
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Treatment EC50 (nM) Normalized EMax Figure

IL-2Ra+ IL-2Ra- IL-2Ra+ IL-2Ra-

hIL-2 0.13 0.88 82 69 2B, S1F, S1G

Control IC 0.031 0.83 87 91 2B

hIL-2/F5111 Complex 0.081 1.8 85 62 2B

F5111 IC LN35 0.70 >2000 80 21 2B

hIL-2 - 0.98 - 94 S1B

hIL-2:F5111 = 1:1 - 0.91 - 88 S1B

hIL-2:F5111 = 1:2 - 0.89 - 74 S1B

hIL-2:F5111 = 1:4 - 0.35 - 64 S1B

hIL-2:F5111 = 1:7.5 - 1.7 - 60 S1B

F5111 IC LN15 0.10 13 76 65 S1F, S1G

F5111 IC LN25 0.58 >2000 84 23 S1F, S1G

hIL-2 - 0.57 - 83 S1H (top)

F5111 IC LN15 P1 - 8.9 - 75 S1H

F5111 IC LN15 P2 - 6.9 - 87 S1H

hIL-2 - 0.68 - 81 S1H (bottom)

F5111 IC LN25 P1 - 37 - 73 S1H

F5111 IC LN25 P2 - 69 - 82 S1H

F5111 IC LN25 P3 - >2000 - 76 S1H

Table S3. EC50 and EMax Values from YT-1 cell activation studies. 
Related to Figure 2.
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Treatment EC50 (pM) EMax (pSTAT5 MFI) Figure

Treg CD8+ T TConv Treg CD8+ T TConv

hIL-2 4.5 1200 110 5300 3600 2500 2C

Control IC 1.3 1600 30 5200 3300 2400 2C

hIL-2/F5111 Complex 3.7 240 70 5100 2200 2200 2C

F5111 IC LN35 1700 6.1e4 3.7e4 5200 760 1100 2C

hIL-2 5.2 1000 110 5300 3500 2400 3C

Control IC 1.4 1500 39 5600 3600 2500 3C

F5111 IC 2100 5.0e4 3.4e4 5500 740 980 3C

Y33A IC 81 2.2e4 1.5e4 5300 1100 1400 3C

Y94A IC 6.9 4300 1200 5400 1800 1900 3C

S96A IC 910 3.3e4 2.6e4 5100 710 1000 3C

Y35A IC 7.7 4100 1400 5700 1800 2100 3C

Y52A IC 2.9 3500 360 5500 2300 2200 3C

Y54A IC 7.8 3000 1300 5500 1600 1900 3C

Y60A IC 15 5300 2900 5400 1400 1800 3C

V103A IC 51 1.3e4 7400 5300 1000 1400 3C

F5111.2 IC 8600 >2.0e5 >2.0e5 4700 370 460 3C

hIL-2 1.8 890 35 3700 2800 2100 5A

Control IC + N297A 0.87 2900 19 3600 2700 2000 5A, S4B

F5111 IC + N297A 1500 1.8e4 1.8e4 3800 400 770 5A, S4B

hIL-2/F5111.2 Complex 8.2 190 140 3700 570 1100 5A

F5111 IC w/o N297A 1700 3.2e4 3.4e4 3600 380 700 S4B

hIL-2 1.9 660 84 4800 3400 2800 S4C

Control IC + N297A 0.48 1200 16 4700 3200 2600 S4C

Y60A IC + N297A 17 6300 2900 4900 1100 1500 S4C

V103A IC + N297A 42 1.3e4 7200 4800 950 1400 S4C

Y33A IC + N297A 47 1.5e4 8000 4900 1000 1500 S4C

F5111 IC + N297A 440 1.8e4 7900 4900 790 1200 S4C

F5111.2 IC + N297A 1800 1.3e4 1.1e4 4300 310 430 S4C

Table S4. EC50 and EMax values from human PBMC activation studies. 
Related to Figures 2, 3, and 5. 
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Treatment EC50 (pM) EMax (pSTAT5 MFI) Figure

Treg CD8+ T TConv Treg CD8+ T TConv

hIL-2 6.8 1.3e5 - 8600 5700 1000 S4D

Control IC + N297A 3.2 2.9e5 - 8600 4900 1100 S4D

Y60A IC + N297A 93 >2e6 - 8400 280 650 S4D

V103A IC + N297A 260 >2e6 - 8000 370 720 S4D

Y33A IC + N297A 270 >2e6 - 8100 340 680 S4D

F5111 IC + N297A 2100 >2e6 - 7700 320 720 S4D

F5111.2 IC + N297A 6300 >2e6 - 5500 220 660 S4D

Table S5. EC50 and EMax values from mouse splenocyte activation studies. 
Related to Figures 3 and 4.
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SIGNIFICANCE OF THE DISSERTATION 

The work described within this dissertation contains results significant to not only the 

development of more effective interleukin-2 (IL-2) based therapies, but more generally to the 

development of superior cytokine-based medicines. Our initial, generalist approach to 

generating quantitative guidelines for the development of cytokines with increased cell type-

selectivity revealed the potential benefits of simultaneous optimization of multiple aspects of a 

cytokine’s design. Often when engineering cytokines with the goal of increasing their 

selectivities, researchers rely on engineering the affinity with which a cytokine binds to its 

cognate receptors alone. However, in contrast to this more common approach, we found that by 

altering a ligand’s affinity, valency, and specificity simultaneously and in a quantitatively 

informed manner, cytokines with far greater selectivity for target cells than those designed with 

affinity alterations alone could be produced. This study also demonstrated the importance of 

thoroughly characterizing the receptor abundances of target and off-target populations, as the 

appropriate design of cytokine agents were inevitably determined by this landscape. We then 

specifically analyzed the gamma-chain family of cytokines using an ordinary differential 

equation model. Using this highly parameterized modeling approach, we generated a litany of 

novel insights; we were able to infer the dynamics of the many previously uncharacterized 

receptor-receptor and receptor-cytokine interactions which occur during gamma-chain cytokine 

signaling cascades, demonstrate the oft-overlooked critical importance of receptor trafficking 

during cytokine signaling activities, and quantify the full range of how affinity alterations could 

be wielded to increase the selectivity with which monovalent IL-2 signals. Next, we used a 

combination of data-driven and mechanistic modeling approaches to reveal how valency plays 

a governing role in determining Fc-fused IL-2’s signaling activities, and then characterize its 
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effects mechanistically. Using these results as a guide, we then generated multivalent Fc-fused 

IL-2 mutants with selectivity for regulatory cells superior to those demonstrated by state-of-the-

art affinity mutants. These combined findings showed that valency engineering, a yet largely 

unexplored axis of cytokine engineering, can be exploited to more effectively exploit relative 

differences in receptor abundances of target and off-target populations and thus dramatically 

enhance the selectivity of engineered cytokine constructs. Finally, we leveraged mechanistic 

modeling approaches to characterize the signaling activity of next-generation IL-2 

immunocytokines and were able to generate insights as to the parameters which determined the 

in vitro performance of affinity engineered variants. These results better characterized the 

mechanisms by which engineered IL-2 mutants could expand suppressive populations in vivo 

and helped spur the selection and development of mutants which effectively ameliorated 

autoimmunity across several models of disease. In total these studies have, from the ground up, 

expanded our understanding of cytokine engineering generally, our fine-grained understanding 

of IL-2 signaling pathway dynamics, and our understanding of the tools we have at our disposal 

to better design IL-2 and cytokine-based therapeutics. Using approaches which incorporated and 

relied heavily upon the application of computational techniques, we have generated quantitative 

perspectives on each of these topics and shown that such perspectives can be leveraged to 

generate significant improvements in the design of cytokine-based medicines in both in vitro 

and in vivo experimental settings. Thus, the work in this dissertation represents a critical step 

away from traditional, qualitatively informed cytokine engineering, and towards more 

efficacious and efficient computationally guided design efforts. 

More broadly, when considered together, the studies contained within this dissertation 
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represents a model for the rational selection and application of modeling techniques in biological 

applications. The selection of the correct modeling approach must be informed by a combination 

of one’s objectives in modeling a system, as well as the data and domain knowledge already 

available to answer that question. For example, when studying a well characterized system, one 

might elect to use a detailed ordinary differential equation model, which allows a modeler to 

leverage available domain knowledge aided in the extensive parameterization required of such 

a model, and in turn grants deep insight into the mechanisms and dynamics governing that 

system. When attempting to study a family of systems more generally, it is beneficial to select 

modeling approaches which carefully leverage intelligently imposed assumptions that in turn 

allow the model to generalize efficiently. While it is important to understand what benefits a 

computational approach affords you, it is of equal importance for a modeler to understand the 

limitations of a given modeling technique; for example, insights derived from data-driven modes 

should generally not be used to draw conclusions about yet-uncharacterized systems, as such 

models are molded entirely by what data they are fit to and are thus generally ill-suited to out-

of-set prediction. Such principles guided the selection of each approach leveraged within this 

dissertation. Furthermore, the benefits of considerate selection and application of modeling 

techniques are evident throughout each study as manifested in the efficacy of the insights we 

generated using such approaches; we found that our computational findings consistently 

translated well into the physical realm.  

We plan to use the work contained within this dissertation as a springboard to design cytokine 

therapeutics which flexibly deliver cytokine signals in a cell type-selective manner. By studying 

the transcriptomic programs induced by various cytokines, identifying which may most 
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effectively induce desirable activity in target cells, and using the computational methods 

described in this to design molecules which selectively deliver those signals, we may be able to 

design medicines which better galvanize regulatory T cells into highly suppressive states, and 

thus generate better treatments for autoimmune diseases. 
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