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ARTICLE

Hippocampal ensembles represent sequential
relationships among an extended sequence of
nonspatial events
Babak Shahbaba 1,2,3, Lingge Li2,3, Forest Agostinelli 2,3,4, Mansi Saraf 5,6, Keiland W. Cooper 5,6,

Derenik Haghverdian 2, Gabriel A. Elias 5,6, Pierre Baldi 2,3 & Norbert J. Fortin 1,5,6✉

The hippocampus is critical to the temporal organization of our experiences. Although this

fundamental capacity is conserved across modalities and species, its underlying neuronal

mechanisms remain unclear. Here we recorded hippocampal activity as rats remembered an

extended sequence of nonspatial events unfolding over several seconds, as in daily life

episodes in humans. We then developed statistical machine learning methods to analyze the

ensemble activity and discovered forms of sequential organization and coding important for

order memory judgments. Specifically, we found that hippocampal ensembles provide sig-

nificant temporal coding throughout nonspatial event sequences, differentiate distinct types

of task-critical information sequentially within events, and exhibit theta-associated reacti-

vation of the sequential relationships among events. We also demonstrate that nonspatial

event representations are sequentially organized within individual theta cycles and precess

across successive cycles. These findings suggest a fundamental function of the hippocampal

network is to encode, preserve, and predict the sequential order of experiences.
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In humans, the hippocampus is known to play a key role in the
temporal organization of memory and behavior. This includes
our ability to remember when past experiences occurred1–4,

but also extends to our ability to use information about past
experiences to imagine or predict future outcomes5,6. Consider-
able research indicates that this capacity is conserved across
species and applies across spatial and nonspatial modalities3,4,6,
yet the neural mechanisms supporting it remain poorly under-
stood. The emerging conceptual framework suggests that the
propensity of the hippocampal network to generate and preserve
sequential patterns of activity may underlie this fundamental
capacity4,6–10, a view supported by two main lines of electro-
physiological evidence. First, hippocampal ensemble activity
tends to exhibit sequential firing fields during the presentation of
nonspatial stimuli or inter-stimulus intervals (also known as
“time cell” activity)11–13, which has been shown to provide a
strong temporal signal within such task events14,15. Second,
hippocampal neurons have been shown to code for sequences of
spatial locations under different experimental conditions6,16–18.
Of particular interest here is evidence that hippocampal activity
can represent sequences of previous, current, and upcoming
locations when animals run on a maze19–23 or pause at a decision
point (vicarious trial-and-errors)24, conditions in which the
hippocampal network displays prominent theta oscillations and is
thought to be engaged in online processing of upcoming decisions
and goals6,9. However, the key piece of evidence directly linking
this sequence coding framework with our fundamental ability to
remember and predict event sequences across spatial and non-
spatial modalities remains missing. Specifically, it is critical to
demonstrate that these coding properties: (i) extend to sequences
of nonspatial events unfolding over several seconds, as in daily life
episodes, and (ii) are linked to the successful retrieval of such
event sequences.

To address this important issue, we recorded hippocampal
ensemble activity as rats performed a challenging nonspatial
sequence memory task with established parallels in humans25.
Taking advantage of this unique behavioral approach, we began
by examining how the organization of sequential firing fields
varied throughout this extended sequence of discontiguous events
(series of odor stimuli). We then developed statistical machine
learning methods, including deep learning approaches, to reveal
the sequential structure in which the representations of different
types of information varied within individual stimulus presenta-
tions (i.e., within 1.2 s). We present compelling evidence of
nonspatial forms of sequential organization and coding in hip-
pocampal ensembles linked with correct sequence memory
judgments. First, we found that hippocampal ensembles provided
significant temporal information during individual stimulus
presentations, which was primarily stimulus-specific but also
reflected sequential relationships among stimuli through a tem-
poral lag effect, and that this temporal coding extended across the
full sequence of stimuli unfolding over several seconds. Second,
using a latent representation learning approach, we also found
that the ensemble activity simultaneously and sequentially dif-
ferentiated distinct types of trial-specific information within sti-
mulus presentations, including the stimulus presented, its
temporal order, and whether the animal correctly identified the
trial type. Third, using a neural decoding approach to quantify
the decoding probability of each stimulus in the sequence, we
discovered that the sequential relationships among these non-
spatial events (separated by several seconds in real time) were
reactivated during individual stimulus presentations (within 1 s),
providing direct evidence that theta-associated forward reactiva-
tion extends beyond the domain of spatial information. Finally,
using a simpler decoding model with a higher temporal resolu-
tion, we found that these sequential relationships can even be

compressed within a single theta cycle, that the information
represented by individual neurons precessed across cycles, and
confirmed the sequential reactivation pattern within trials
observed with the previous model. Collectively, these results
suggest a fundamental function of the hippocampus is to simul-
taneously represent the sequential order of experience not only in
real-time, including internal representations of the temporal
context of events and of different forms of task-critical infor-
mation, but also at a higher level of abstraction, including tem-
porally compressed representations extracting task-critical
sequential relationships among events separated in time by sev-
eral seconds. These findings are consistent with, and provide
potential neuronal mechanisms for, the critical role of the hip-
pocampus in temporally organizing our past experiences and
future behavior.

Results
We trained rats to perform a nonspatial sequence memory task,
which shows strong behavioral correspondence in rats and
humans25. In rats, this task involves repeated presentations of
sequences of odors in a common odor port (e.g., odors ABCDE)
and requires subjects to determine whether each odor is pre-
sented “in sequence” (InSeq; e.g., ABC…) or “out of sequence”
(OutSeq; e.g., ABD…) to receive a water reward (Fig. 1a).
Importantly, this InSeq/OutSeq judgment is performed on a trial-
by-trial basis (each trial corresponds to the presentation of one
odor in the sequence of five), such that each correctly identified
odor was followed by a reward and an incorrect response resulted
in early termination of the sequence. After reaching criterion on
the task, animals were implanted with a microdrive and, over a
few weeks, tetrodes were gradually lowered into the pyramidal
cell layer of the dorsal CA1 region of the hippocampus. Neural
activity (spikes and local field potentials; LFP) was then recorded
as animals performed the task (Fig. 1b; see ref. 26 for a detailed
analysis of single-cell and LFP activity from this dataset).

Here we focus on identifying the temporal dynamics of CA1
ensemble activity within odor presentations, during which the
animals’ location is constant and the LFP activity displays pro-
minent theta oscillations26, that support the memory for
sequences of events. Note that each analysis focused on com-
parisons in which the animal’s behavior was consistent across
levels, either by only including correctly identified InSeq trials or
by focusing on specific time windows in which the behavior was
matched across conditions. To balance statistical power across
analyses, we concentrated on the first four stimuli in the sequence
to account for the decrease in sampling with sequence position
produced by incorrect responses (trial and neuron counts are
provided in Supplementary Tables 1 and 2). We also took a
rigorous and conservative approach to data inclusion, sampling,
and pooling to maximize the reproducibility of the findings (see
the corresponding section in “Methods”).

CA1 ensemble activity provides a temporal signal that carries
event-specific information and bridges across event sequences.
Consistent with previous reports11–15, hippocampal activity
showed sequences of firing fields (“time cell” activity) during
stimulus presentations (Fig. 2a) as well as during intervals
between stimulus presentations (Supplementary Fig. 1). Here we
extend these findings by determining how this form of temporal
coding interacts with stimulus identity and sequence position
(lag), and whether it extends across sequences of stimuli. Note
that we visualized this sequential organization using peri-stimulus
time histograms (PSTHs) sorted by peak firing latency (see
“Methods” section), but quantified its degree of temporal coding
by implementing a Bayesian model to reconstruct time using the
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ensemble activity alone (the model is agnostic to the PSTH
sorting and uses a cross-validation approach; see “Temporal
coding analyses” and “Control analyses” in “Methods” section).

First, we found that these sequential patterns of activity during
odor presentations were stimulus-specific and linked to correct
order memory judgments. For each odor type, a strong temporal
organization was observed when neurons were sorted by their peak
firing latency relative to the port entry triggering that odor,
whereas it was significantly reduced when the same sorting of
neurons was examined during other odors (Fig. 2a). We started by
examining this temporal organization in a model-free way by
comparing the similarity of PSTHs. To do so, we correlated the
PSTHs from individual trials (the neuron by time bin matrix from
each odor presentation; see “Methods” section) and compared the
correlation coefficients using ANOVAs. We found that PSTHs
were highly correlated across trials of the same odor type (PSTHs
along the diagonal in Fig. 2a; rOdorA= 0.7797, rOdorB= 0.7773,
rOdorC= 0.7632, and rOdorD= 0.7631), and were significantly less
correlated to trials of another odor type (other PSTHs in the same
row, which keep the neuron sorting constant; all one-way
ANOVAs and Dunnett’s posthoc tests p values < 0.0001;
Supplementary Fig. 2a). We then performed the same comparisons
using the Bayesian model, to directly quantify temporal coding,
and observed the same pattern. In fact, our ability to accurately
decode time based on the ensemble activity (accuracy of
reconstructed time) was significantly higher when model training

and decoding was performed on trials of the same type (e.g., train
and decode using different subsets of odor A trials) than across
trial types (e.g., train on odor A trials and decode B, C, or D trials;
all one-way ANOVAs and Dunnett’s posthoc tests p values <
0.0001; Supplementary Fig. 2b). Importantly, reconstructed time
accuracy was significantly higher before correct responses
than incorrect responses (Kolmogorov–Smirnov D= 0.3232,
p= 0.0149), suggesting this form of activity supports order
memory decisions. Note that this effect was tested on OutSeq
trials for adequate sampling of correct and incorrect responses,
using the 250ms window before port entry to avoid the potential
influence of the OutSeq stimulus, and that the result held when the
comparison was downsampled (Kolmogorov–Smirnov D= 0.364,
p= 0.013; see “Methods” section). Finally, it should also be noted
that stimulus-specificity was visibly weaker in the first 250ms
period, suggesting a subset of neurons reflected a shared experience
across trials (e.g., sampling the air in the port until the odor is
identified; see next section).

Second, we found that this temporal coding systematically
varied across (non-preferred) stimuli. In fact, consistent with the
temporal context model27,28, reconstructed time accuracy varied
by lag (F(6,873) = 166.9, p < 0.0001; Fig. 2c). It was highest for lags
of 0 (i.e., train and decode using different subsets of trials from
same odor type; comparisons with lag 0: all Dunnett’s posthoc
tests p values < 0.0001) and showed a significant linear decline
across lags of 1, 2, and 3 in the positive direction (e.g., train on B,

Fig. 1 Neural activity was recorded from hippocampal region CA1 as animals performed a complex nonspatial sequence memory task. a The task
involves repeated presentations of sequences of nonspatial events (odor stimuli) and requires subjects (rats) to determine whether each stimulus is
presented “in sequence” (InSeq; e.g., ABC…) or “out of sequence” (OutSeq; e.g., ABD…). Using an automated odor delivery system (left), self-paced
sequences of five odors (odor A= sky blue, B= brown, C= green, D= purple, E= orange) were presented in the same odor port (median interval between
consecutive odors ~5 s). In each session, the same sequence was presented multiple times (right), with approximately half the presentations including all
InSeq trials (top) and the other half including one OutSeq trial (bottom). Each odor presentation was initiated by a nosepoke and rats were required to
correctly identify each odor as either InSeq (by holding their nosepoke response until a tone signaled the end of the odor at 1.2 s) or OutSeq (by
withdrawing their nose before the signal; <1.2 s) to receive a water reward. Incorrect InSeq/OutSeq judgments resulted in termination of the sequence. b
Example ensemble activity (putative principal neurons and interneurons) and theta oscillations (bandpass: 4–12 Hz) from representative subject during one
sequence presentation. Principal neurons and interneurons were separately sorted by their peak firing time in relation to the port entry triggering delivery of
odor A.
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decode C, D, or E; F(1,327) = 12.93, p= 0.0004) and negative
direction (e.g., train on D, decode C, B, or A; F(1,327) = 12.20,
p= 0.0005). It is also important to note that reconstructed time
accuracy was significantly above-chance levels across all lags
(Fig. 2c; all one-sample t-tests p values < 0.05; chance-level
determined by permutations). These results suggest that, although
predominantly stimulus-specific, this temporal organization is
partially shared between stimuli and decreases with the distance
from the preferred stimulus.

Finally, to determine if this temporal organization extended
beyond individual stimuli or intervals, we examined the ensemble
activity across the sequence of odors. Despite the variable time at
which odors were presented (the task is self-paced so the time
between odor presentations varied across sequences), the
sequential organization of firing fields can be observed across
the whole sequence (Fig. 2d). Importantly, this activity provides
significant information about time within the sequences of events
(Fig. 2e), as reconstructed time accuracy was significantly higher
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Fig. 2 CA1 ensembles display sequences of firing fields (“time fields”) within individual events, which vary by the associated stimulus and sequence
position, and across event sequences. a Stimulus-specificity in sequential firing fields. Peri-stimulus time histograms (PSTH; 150ms gaussian) show the
normalized firing rate of all active neurons for each odor type (correct InSeq trials only; active neurons for each odor: A= 267, B= 192, C= 209, D= 223;
neurons collapsed across five subjects, one session per subject). To visualize how sequential firing fields varied across odor types, PSTHs are shown for
each odor presented (in columns), with neurons sorted by their time of peak firing relative to the port entry for each odor (in rows). b Temporal coding
accuracy for each odor type was above-chance levels. Plots show reconstructed time estimates obtained from each animal’s PSTH (correctly sorted for
each odor; i.e., diagonal of panel a but separated by animal) and averaged across subjects. c Accuracy of reconstructed time varied by the lag between the
odor type used to train the model and the odor type in which time was reconstructed (e.g., when the model was trained on odor B trials, decoding time
during odor B, C, D or E trials represented lags of 0, 1, 2, or 3, respectively). Black bars depict mean ± SEM (Lag 0: n= 220; Lag ± 1: n= 165; Lag ± 2: n= 110;
Lag ± 3: n= 55; trial data pooled across subjects), shaded regions the Q1–Q3 range (median denoted by white line), and red lines the permuted chance
levels. Lag data show a significant one-way ANOVA (F(6,873)= 166.9, p < 0.0001; A***), difference between lag 0 and all other lags (two-tailed Dunnett’s
posthoc tests, adjusted for multiple comparisons; ***p < 0.0001), and linear trends (positive lag: F(1,327)= 12.93, p= 0.0004; negative lag: F(1,327)= 12.20,
p= 0.0005; L**). d The sequential organization of firing fields extended across the full sequence of odors. Since the task is self-paced, the PSTH (250ms
gaussian) shows data from a single subject with median times for odors B, C, and D across sequences. e Accuracy of reconstructed time across the
sequence of odors (PSTH from panel d) was above-chance levels. Acc*, reconstructed time accuracy significantly above-chance levels (determined by
random permutations). Color coding of odor types: odor A= sky blue, B= brown, C= green, D= purple, E= orange.
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than chance levels for each subject (t(11) = 7.043, t(6) = 4.730, t(13)
= 7.941, t(11) = 6.174, t(9) = 7.398; all p values < 0.01; same
pattern of results was observed using shorter and longer time
bins, or when collapsing across subjects; Supplementary Fig. 3).
Collectively, these findings suggest that this form of sequential
organization in CA1 ensemble activity can provide a task-critical
temporal signal during event presentations, during the intervals
separating them, as well as across the full sequences of events.

The differentiation of stimulus identity, temporal order, and
trial outcome information varies within individual events.
Next, we examined the temporal dynamics by which different
types of task-critical information were represented within trials
(wherein a trial corresponds to one odor presentation). As
detailed below, we developed a different model to quantify this
because of the need to reduce the dimensionality of the ensemble
activity using an unsupervised approach, which is incompatible
with the Bayesian model used in the previous section. Because the
representations of nonspatial stimuli in hippocampal neurons are
weaker and more complex than the representations of spatial
locations29,30, we used deep learning approaches to quantify the
information represented in the ensemble activity. We began by
identifying the underlying structure of ensemble activity at dif-
ferent moments within trials using a latent representation
learning approach in which the model is not provided with any
information about trial type. More specifically, we used an
autoencoder, which can be viewed as a nonlinear counterpart to
principal component analysis, to encode the spiking activity data
into a two-dimensional latent space (by using only two neurons at
the bottleneck of the neural network architecture; see “Latent
representation analyses” in “Methods” section). This approach
allowed us to visualize a two-dimensional representation of the
ensemble activity at different time windows within trials, to which
trial labels were subsequently added for posthoc analysis (Fig. 3a).
The resulting cluster plots show the location of the neural activity
in the two-dimensional space defined by the activation level of the
two nodes in the middle layer (bottleneck) of the autoencoder.
The degree to which the clusters mapped onto each type of trial
information was quantified using a k-nearest neighbor approach
(k= 2; with cross-validation) across animals, with high classifi-
cation accuracy indicating high differentiation of a specific type of
information (Fig. 3c). For statistical comparisons, we determined
the 95% confidence interval for chance-level classification accu-
racy for each type of information and time window using per-
mutations. Accuracy values above the confidence intervals were
considered statistically significant. Due to the different response
dynamics for correct InSeq trials (i.e., hold until the signal) and
OutSeq trials (i.e., withdraw before signal), we focused on four
epochs common to both trial types. Specifically, as most OutSeq
responses occurred after 500 ms (89.5% OutSeq responses were
>500 ms; mean ± SD: 751 ms ± 229 ms), we examined the first
two 250 ms windows after port entry to highlight dynamics early
in the trial period. Additionally, we examined the 250 ms win-
dows immediately before and after the port withdrawal response.

While the model did not include trial-specific information, we
identified patterns in the data that strongly differentiated
information about stimulus (which odor was presented),
temporal order (whether the odor was InSeq or OutSeq), and
trial outcome (whether the animal correctly identified the trial or
not). More importantly, this approach simultaneously captured
the temporal dynamics of each type of information within trials.
Weak differentiation was observed in the first time window
immediately after port entry (0–250 ms), indicating little trial-
specific information was present at that point. Although above-
chance odor differentiation was observed in that time period,

which likely reflects predictive coding of upcoming odors (see
next section), the differentiation of temporal order or trial
outcome information was at chance levels. The second time
window (250–500 ms after port entry) showed a marked increase
in odor differentiation, accompanied by above-chance differen-
tiation of temporal order and trial outcome information. This
sharp increase in odor differentiation 250 ms after port entry
suggests this effect is mostly driven by the odor itself, not simply
information about sequence position. In the third time window
(250 ms period before withdrawal response), temporal order
differentiation showed a marked increase, with odor and trial
outcome differentiation sustaining their levels. This increase in
temporal order differentiation immediately before the animals’
response is consistent with the main task requirement (to identify
each item as InSeq or OutSeq) and with previous single-cell
analyses showing hippocampal neurons firing differentially on
InSeq vs OutSeq trials26. The fourth time window (250 ms period
after withdrawal response) showed reduced odor and temporal
order differentiation, but preserved trial outcome differentiation
(which peaked in the subsequent window). The trial outcome
differentiation, when observed during odor presentations,
indicates the presence of a pattern in the ensemble activity that
is predictive of whether the animal will respond correctly or not
on that particular trial; this may reflect the anticipation of the
associated reward or error signal, or disrupted representations of
the predicted stimulus, currently presented stimulus, or InSeq/
OutSeq status of the trial. However, the fact that this differentia-
tion peaks after the withdrawal response suggests that it then also
incorporates the neural response to feedback signals (water
reward on correct trials, buzzer on incorrect trials).

Finally, a deeper look at the temporal order differentiation
revealed that, just as with temporal coding (Fig. 2c), a
representation of the temporal context influenced the ensemble
dynamics observed here. In other words, the relative distance
between clusters reflected the ordinal relations among the odors;
for instance, the distance between odor A and B clusters (Lag 1)
was smaller than between A and C clusters (Lag 2) and between A
and D clusters (Lag 3), and so on. More specifically, at all time
points during the trial, cluster distances were significantly
different across lag (all one-way ANOVA p values < 0.05; see
Supplementary Table 3) with the magnitude of the distance
scaling linearly with lag (all linear trend analyses p values < 0.05;
Fig. 3b; Supplementary Table 3). Importantly, this effect was
observed for both InSeq and OutSeq trials, indicating that
temporal order differentiation was not simply a match-mismatch
signal. Moreover, the lag effect was strongest (steepest slope) in
the periods preceding behavioral responses, suggesting temporal
context information was maximally influential on the ensemble
state at this point. To summarize, our results show that ensemble
activity simultaneously differentiated information about stimulus
identity, temporal order, and trial outcome within individual
stimulus presentations. Not only was the sequential organization
of their respective peaks consistent with the expected flow of task-
critical information within a trial, this information was also
“multiplexed” with a representation of the trial’s temporal
context.

The sequential relationships among discontiguous events are
reactivated within individual events. To follow up on the finding
of sustained odor differentiation within trials, we then determined
the content of the odor information represented. More specifi-
cally, we quantified the decoding of each odor representation at
different moments within trials. As detailed below, this quanti-
fication required the development of a separate model because of
the need for a supervised approach with dimensionality
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reduction, a joint requirement incompatible with the previous
two models. We used a convolutional neural network (CNN)
model with a tetrode-wise filtering architecture, which takes both
spike data and LFP signals as input (unlike the previous models
which were not designed to incorporate LFP), and odor labels as

its output (see “Neural decoding analyses” in “Methods” section).
During training, the model was supplied trial-identified neural
activity from the 150–400ms window and used multiple non-
linear hidden layers to create a map between input and output.
After training, the hidden layer that feeds into the output layer
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Fig. 3 Stimulus identity, temporal order, and trial outcome information are simultaneously differentiated, but peak at different times, within events. A
deep learning latent representation approach was used to identify the underlying structure of ensemble activity in four 250ms windows matching behavior
across InSeq and OutSeq trials, to which trial labels were subsequently applied. a Differentiation of stimulus (odors: A = sky blue, B = brown, C = green, D =
purple; correct InSeq trials only), temporal order (InSeq in navy blue, OutSeq in red; correct trials only), and trial outcome (correct trials in light green, incorrect
trials in dark orange) information in example subject. The model reduced the dimensionality of each animal’s ensemble activity to two dimensions, which
correspond to the activation level of the two nodes in the middle layer of the autoencoder (see “Methods” section). Each point representing a 100ms slice of
spike activity data projected onto this two-dimensional space (white circles indicate cluster centroids). To better visualize cluster separation at different
moments within trials, the model was run separately on each 250ms window (shown in columns; plots are on same scale within a column but are re-scaled
across columns). b The distance between clusters scaled as a function of lag (the distance between odors in the sequence) for both InSeq and OutSeq trials.
Bars depict mean ± SEM (correct trials only; trial data pooled across subjects) and shaded regions the Q1–Q3 range (median denoted by white line). Data from
InSeq trials is shown in navy blue (lag 0: n = 664; lag 1: n = 995; lag 2: n = 664; lag 3: n = 333) and OutSeq trials in red (lag 0: n = 46; lag 1: n = 32; lag 2: n =
26; lag 3: n = 14). Lag data show significant one-way ANOVAs (A*, p < 0.05; A**, p < 0.005; A***, p < 0.0001) and linear trends (L*, p < 0.05; L**, p < 0.005;
L***, p < 0.0001; see Supplementary Table 3). c Differentiation (mean classification accuracy; trials pooled across subjects) for each type of information relative
to chance levels. Since two-dimensional embeddings were specific to each rat’s neuronal ensemble, classification accuracy for each trial was calculated using a
k-nearest neighbor approach (k= 2) to allow trial data to be pooled across subjects. Gray bands represent chance-level classification accuracy (values below
+95% CI; determined by random permutations). Vertical dotted line indicates port withdrawal time.
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provided a supervised latent representation of the data, which was
used to decode odor representations across time windows. For
statistical comparisons, we determined the 95% confidence
intervals of the decoding probabilities in each time window
(which follow a multinomial distribution). To be conservative,
decoding probabilities with non-overlapping confidence intervals
were considered significantly different.

Our results show that the representations of odors B, C, and D,
which were normally separated by several seconds in real-time,
were sequentially reactivated within individual odor presenta-
tions. On odor B trials (Fig. 4a–c), we found that the
representation of B was significantly predicted before the odor
was present (−200 ms to 50 ms window) and maintained
(significantly above that of other odors) until it peaked in the
200–450 ms period. Of particular interest is that, while still
presented with odor B, the representation of upcoming items in
the sequence (C and D) were then activated in the subsequent
time windows. In fact, the probability of B significantly declined
as the probability of C and D increased (positive slope for “PC –
PB” difference across windows: t(6) = 4.914, P= 0.00796; positive
slope for “PD – PB” difference: t(6) = 5.069, p= 0.00357).
Importantly, a similar pattern was observed on odor C trials
(Fig. 4d–f). In fact, not only was peak decoding of odor C
occurring in the 200–450 ms window and followed by the
upcoming item in the sequence (odor D; positive slope for PD –
PC; t(6) = 4.086, p= 0.0064), the representation of odor B was
also activated before the presentation of odor C (positive slope for
PC – PB; t(6) = 9.078, p= 0.0008).

Similar sequential decoding peaks of B, C, and D were also
observed on odor D trials (Supplementary Fig. 4), further
supporting the consistency of the pattern. However, it is important
to note that the representation of odor A was not strongly decoded
throughout presentations of odors B, C, or D. This is consistent
with the fact that the first item of the sequence was always odor A
(whereas any odor could be presented in subsequent sequence
positions) and thus the discriminative part of the sequence started
at the second sequence position. Importantly, the pre-trial
predictive coding above (decoding of B before odor B or C trials)
was significantly stronger before correct than incorrect responses
(Kolmogorov–Smirnov D= 0.3683, p= 0.0175; D= 0.3790,
p= 0.028 when downsampled), suggesting it is critically linked to
order memory judgments. As with the Bayesian model, this effect
was tested on OutSeq trials for adequate sampling of correct and
incorrect responses, using the 250ms window before port entry to
avoid the potential influence of the OutSeq stimulus (see
“Methods” section). Importantly, we also ruled out the possibility
that these findings were influenced by replay events associated with
sharp-wave ripples (SWRs), which were exceedingly rare in the
windows of interest (see “Control analyses” in the “Methods”
section). Collectively, these findings provide compelling evidence of
a theta-associated (i.e., not SWR-associated) form of sequence
reactivation capturing the sequential relationships among discon-
tiguous nonspatial events, which may reflect a schematic
representation of the sequence that was retrieved and played
forward within each event presentations to guide behavioral
decisions.

Nonspatial event representations are sequentially organized
within theta cycles and precess across successive cycles. We then
examined whether these sequential representations of nonspatial
items could also be compressed within individual theta cycles, a
phenomenon originally reported in place cell studies (theta
sequences)19–23. During spatial navigation, theta sequences are
thought to represent a segment of trajectory in space: within a
single theta cycle, the animal’s preceding location tends to be

represented in the descending phase, its current location at the
trough, and its subsequent location in the ascending phase. Here,
we tested the hypothesis that a similar organization extends to
sequences of nonspatial stimuli that are conceptually linked but
normally separated by seconds (Fig. 5a, top). Since decoding
individual theta cycles is beyond the temporal resolution of the
CNN model from the previous section, we used a simpler mul-
tinomial logistic regression model to quantify odor decoding at
faster timescales (see “Theta sequence decoding analyses” in
“Methods” section). Note that this model is more appropriate for
decoding categorical variables, in this case, the different odors
presented, than the Bayesian model from the first section.

Our first analysis focused on the first theta cycle beginning
100 ms after port entry (cycle 1), to capture the period when
hippocampal processing should be reflecting the currently
presented odor. The model was trained using the spiking activity
of the ensemble during the trough of that theta cycle (120–240
degrees; CA1 pyramidal layer theta; InSeq correct trials only) and
was then used to decode odor information during the entire cycle
(ascending phase, trough and descending phase). Consistent with
evidence of theta sequences during spatial navigation, we found
that information about past, present, and future stimuli were
differentially represented across the descending phase, trough,
and ascending phase of theta (Fig. 5a). More specifically, the
present (currently presented) stimulus was most strongly
represented at the trough (tDescendingVsTrough (294) = 10.2727, p
< 0.0001; tTroughVsAscending (294) = 9.4514, p < 0.0001), the
descending phase showed significantly higher decoding of the
past stimulus than of the future stimulus (tPastVsFuture (294) =
2.2098, p= 0.0189), but the opposite pattern was observed in the
ascending phase (future > past; tPastVsFuture (294) = 2.8302,
p= 0.0025; Ascending/Descending × Past/Future ANOVA
F(1,294)= 12.16, p= 0.0006). To help visualize this pattern, we
also ran the model on each neuron independently to capture how
the coding of individual neurons varied across theta phases.
Importantly, since the decoding of the present odor was
particularly strong across phases (consistent with the ensemble
results in Fig. 5a), we z-normalized past, present, and future
decodings separately to highlight their respective dynamics across
phases (Fig. 5b). This approach revealed that the sequential
organization within the cycle could also be observed at the single
neuron level: decoding of past, present, and future stimuli were
stronger in the descending, trough, and ascending phases,
respectively (Fig. 5b, bottom; significant diagonal relative to
shuffled data; p < 0.0001; see “Methods” section). These findings
indicate that the representation of past, present, and future
nonspatial events, which are separated by several seconds in real-
time, can be compressed within a theta cycle.

We then examined whether this sequential information contained
within theta cycles is associated with decision accuracy and whether it
flexibly incorporates trial-specific contingencies. To do so, we used
the same model training as above (ensemble activity in trough of
cycle 1; correct InSeq trials) but applied model testing to other trial
types and cycles. As in previous sections, we examined the effect of
accuracy by comparing decodings between correct and incorrect
OutSeq trials in the time window preceding port entry (aggregating
data over the two pre-stimulus cycles corresponding to the −250 ms
to 0ms window; Fig. 5c). Consistent with the prediction that the
ascending phase is linked with the processing of upcoming
information, we found that decoding of the expected (InSeq)
stimulus in that phase was significantly higher on correct than
incorrect trials (FCorrectVsIncorrect × Phases (2,88) = 3.717, p= 0.028;
tAscending (44) = 2.683, Bonferonni-corrected p= 0.0027; down-
sampled comparison: tAscending (30) = 2.1435, p= 0.020). We assessed
the flexibility of this form of theta sequences by determining whether
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Fig. 4 The neural representation of sequences of discontiguous events is reactivated within individual events. A deep learning neural decoding
approach was used to quantify the decoding probability of each odor representation in 250ms windows (correct InSeq trials only). a Decoding dynamics
during odor B presentations in example subject. Regions of latent space are color-coded according to the odor of highest probability (odor A= sky blue,
B= brown, C= green, D= purple), with boundaries indicating equal probability between two odors. Each black dot indicates the latent representation of a
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decoding dynamics during odor B presentations. Since latent space coordinates were specific to each rat’s neuronal ensemble, trial data were pooled across
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they differed between InSeq and OutSeq trials. More specifically, we
compared their decoding of past, present, and future items across the
three phases of the first cycle (cycle 1; Fig. 5d). If the same pattern
were observed between InSeq and OutSeq trials, it would indicate
that these theta sequences rigidly reflect the most common sequence
of items (InSeq) even if a different (OutSeq) stimulus is actually
presented (or that they simply reflect information about sequence
positions). Instead, we observed that the decoding was significantly
different, but only in the trough (FInSeqVsOutSeq × Phases (2,650) = 6.779,
p= 0.001; tTrough (325) = 3.819, Bonferonni-corrected p < 0.0001).
The significantly lower decoding in the trough indicates the activity
on OutSeq trials did not simply represent the same information as on
InSeq trials (i.e., it reflected the OutSeq nature of the trial), whereas
the lack of a significant difference on the descending and ascending
phases suggests the same past and future InSeq stimuli were coded on
InSeq and OutSeq trials which is consistent with task contingencies
(i.e., items preceding and following OutSeq items are always InSeq).
Taken together, these results suggest that this form of theta sequence
information is important to perform accurate order judgments and
flexibly captures trial-specific features associated with task demands.

Finally, we investigated how the information represented
varied across a series of equidistant theta cycles within individual
odor presentations, ranging from a pre-stimulus cycle to a cycle
near the end of the odor presentation (cycle 5). First, we
examined how the ensemble decoding of past, present, and future
stimuli varied across cycles. To do so, we used the same model
training period as above but now tested the model across the four
cycles. Notably, we z-normalized the decoding values of past,
present, and future stimuli separately to highlight their respective
magnitude and dynamics across phases and cycles (Fig. 6a),
though the same pattern of statistical significance was observed
without normalization. When focusing on the overall pattern on
each cycle (collapsing across phase; Fig. 6b), we observed a
structure consistent with the sequential reactivation reported in
the previous section. More specifically, we found that decoding of
past, present and future stimuli exhibited significantly different
distributions across cycles (FStimulus × Cycles (6,10656) = 64.288, p <
0.0001): past stimulus decoding increased toward the pre-
stimulus cycle (FLinearTrend (1,888) = 89.57, p < 0.0001), present
stimulus decoding peaked in cycle 1 (FQuadraticTrend (2,888) = 48.34,
p < 0.0001), and future stimulus decoding increased toward the
last cycle (FLinearTrend (1,888) = 103.5, p < 0.0001). Second, we
examined whether the information coded by individual neurons
precessed across cycles. To do so, we adapted the single-cell
visualization method used in Fig. 5b, in which the model was run
on each neuron independently. Consistent with the canonical
view of theta phase precession from the place cell literature20,21

(Fig. 6c), we found that the peak decoding of the present stimulus
shifts from a late to an earlier phase within trials (Fig. 6d;
r=−0.377, p= 0.007; p= 0.002 when examined using a
permutation approach to maintain the overall strength of
decodings within trials but disturb their phase). We also used
standard analyses to determine whether the spiking activity of
individual neurons precessed within trials. Although the com-
plexity of our design is not well-suited to quantify this (our use of
many odors makes odor-specific coding more graded and limits
the number of trials on each), we did observe a proportion of
neurons with significant phase precession during the trial period
(26.1% of neurons when collapsing data across BCD trials; 17.7%,
14.1%, and 16.8% when examining B, C, and D trials separately;
see examples in Supplementary Fig. 5). These results suggest that
the ensemble representations of past, present, and future stimuli
are sequentially organized within individual stimulus presenta-
tions, a pattern that parallels the sequence reactivation observed
with the CNN model in the previous section, and that the

information represented in individual neurons precesses across
theta cycles.

Discussion
In this study, we leveraged complex behavioral and statistical
machine learning approaches to discover forms of sequential
organization in hippocampal ensemble activity supporting the
memory for sequences of events, a capacity known to critically
depend on the hippocampus31–33. We report that neurons with
time-locked firing fields (time cells) were observed across a series
of discrete nonspatial events distributed over several seconds, and
that this temporal signal was linked with correct order memory
judgments. We also found that CA1 ensembles simultaneously
and sequentially differentiated distinct types of trial-specific
information within stimulus presentations, including the stimulus
presented, its temporal order, and whether the animal correctly
identified the trial type. In addition, despite the stimuli being
separated by several seconds in real-time, we discovered that
hippocampal ensembles reactivated the corresponding sequential
relationships among past, present, and future stimuli within
individual stimulus presentations and that these sequential
representations can be compressed within a single theta cycle. We
also found that the decoded information precessed in theta phase
across successive cycles within individual trials. Collectively, these
results strongly suggest that encoding, preserving, and predicting
event sequences is fundamental to hippocampal function.

Sequential firing fields (time cells) have previously been
reported during individual stimulus presentations, inter-stimulus
intervals, and across contiguous stimuli and responses11–15.
Considerable evidence indicates this form of coding can provide a
strong temporal signal within such task events14,15. Here we offer
direct evidence that hippocampal sequential firing fields provide
significant temporal information across a sequence of dis-
contiguous events unfolding over several seconds, and that this
form of coding is important to correctly remember the order of
events. These findings lend support to theoretical models pro-
posing that this form of coding supports our ability to organize
our experiences in time4,27,28,34, a characteristic feature of epi-
sodic memory1–4. In light of recent evidence that the lateral
entorhinal cortex, a region with a strong anatomical and func-
tional relationship with the hippocampus, provides a robust
temporal signal across a longer timescale (several minutes)35,36,
our results suggest that different aspects of the temporal context
of episodic memories may be represented across medial temporal
lobe structures.

Our unique behavioral and analytical approaches allowed us to
extend previous demonstrations of conjunctive or stimulus-
specific odor coding in hippocampal neurons, including indivi-
dual neurons responding to a specific odor in a specific sequence
position26 or to a specific moment in time during a specific
stimulus14. Here we extend these previous findings by discovering
that the representations of individual stimuli also contain infor-
mation about their sequential relationships. In fact, we demon-
strate a temporal lag effect in which the temporal distance
between stimuli (in terms of sequence position) was reflected by
the degree of dissimilarity of their neural activity, an effect that
was observed using different metrics (temporal coding accuracy
in Fig. 2c, distance between clusters in the low-dimensional
representation of the neural activity in Fig. 3b). This effect pro-
vides a potential neural mechanism for our ability to judge the
relative temporal distance and order of discrete experiences that is
consistent with computational models of the representations of
the temporal context of events27,28. We also provide a significant
extension to our previous demonstration of individual neurons
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firing differentially to InSeq and OutSeq items26, by revealing that
this differentiation reflects more than just a match/mismatch
signal. In fact, since the lag effect above was observed for both
InSeq and OutSeq items, it indicates that the differential activity
observed between InSeq and OutSeq items also captures “how far
off” an OutSeq item is from its expected sequence position. This
representation of the temporal lag among events, and the
simultaneously observed sequential coding properties above,
suggest a strong “multiplexing” of different forms of temporal
information in hippocampal ensemble activity, akin to what has
been reported in the spatial domain37.

Our findings support and extend recent evidence of theta-
associated predictive and temporal coding properties in hippo-
campal ensembles. First, a previous study has reported theta-
associated sequential representations that reflected the length of
upcoming spatial trajectories22. These representations are thought
to play a key role in planning and decision-making by main-
taining an online representation of the planned trajectory toward
the current goal. Importantly, the present study provides evidence
that such predictive coding extends to nonspatial information
that is not directly perceptible and is directly linked with correct
sequence memory judgments. Notably, these findings are also
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Fig. 5 The representations of past, present and future nonspatial events are sequentially organized within theta cycles and associated with decision
accuracy and trial-specific contingencies. A multinomial logistic regression model was used to quantify odor decoding within theta cycles. a Ensemble
decoding during cycle 1 (first cycle beginning 100ms after port entry). Top, Hypothesized pattern of theta sequence organization. Middle, decoded
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CI). Bottom, The descending phase showed significantly higher decoding of past than of future stimuli, whereas the opposite pattern was found in the
ascending phase (phase × stimulus F(1,294)= 12.16, p= 0.0006; tDescending(294)= 2.2098, p= 0.0189; tAscending(294)= 2.8302, p= 0.0025). Decoding of
present stimuli was stronger during the trough than either the descending (t(294)= 10.2727; p < 0.0001) or ascending (t(294)= 9.4514; p < 0.0001) phases.
Horizontal black lines depict means; gray shading indicates model training period. b Single-cell decoding during cycle 1. Top, hypothesized pattern. Middle
three panels, decoding of past, present, and future stimuli in same example neurons across trials of odor B, C, and B & C combined. Color indicates odor
with highest z-scored probability per 10° bin (Odor A= sky blue, B= brown, C= green, D= purple). Bottom, Proportion of phase-modulated neurons
coding for past, present, and future stimuli in each 10° bin (B & C trials; Corr*, significant stimulus-phase correlation determined by permutations). c Theta
sequence information was associated with decision accuracy. Ensemble decoding accuracy of upcoming stimulus was higher on correct (n= 60) than
incorrect (n= 30) trials during ascending phase (averaged over two pre-trial cycles; performance × phase F(2,88)= 3.717, p= 0.0282;
tAscending(44)= 2.683, Bonferonni-corrected p= 0.0027). d Theta sequence information flexibly reflected trial-specific contingencies. Using decoding of
InSeq stimuli as reference, InSeq (n= 297) and OutSeq (n= 30) trials were shown to differ in content during the trough of cycle 1 (capturing the OutSeq
nature of trials) but not in the descending and ascending phases (InSeq/OutSeq × phase; F(2,650)= 6.779, p= 0.001; tTrough(325)= 3.819, Bonferroni-
corrected p < 0.0001). Bars graphs in c, d depict mean ± SEM (B & C trials, pooled across subjects), with shaded regions reflecting Q1–Q3 range (median as
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ANOVA interactions (p < 0.05 and p < 0.005, respectively).
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compatible with the view that the hippocampus plays a key role in
representing task-related schemas38, in this case, the sequential
relationships among those events, to guide behavioral decisions.
Second, our findings are consistent with a recent study that used a
conditional discrimination task with overlapping pairs of stimuli
(a tone and an odor) to demonstrate theta phase precession for
nonspatial information in hippocampal neurons14. In that study,
the authors also used reconstructed time estimates to show that
immediately preceding and upcoming time points (on the order
of a few hundred ms) could be represented within a theta cycle.
Our study extends these findings by suggesting a higher level of
abstraction for nonspatial theta sequences—that the sequential
relationships among past, present, and future events (separated by
seconds in real-time) can also be compressed within a theta cycle.

Our findings also raise a number of important questions to
address in future studies. As we demonstrated, the sequence coding
properties reported here were associated with correct order memory
judgments. How can such representations in the hippocampus
directly influence decisions and responses? It has been proposed that
theta oscillations may play an essential role in allowing prospective
hippocampal representations to facilitate decision-related processing
in downstream structures9,22,37. For instance, it is well established
that neural activity in regions associated with planning behavior,
including the prefrontal cortex and striatum, is significantly
entrained to the hippocampal theta rhythm39–41. This proposal is
consistent with work using other temporal memory tasks showing
that, in addition to the hippocampus, the prefrontal cortex is also
strongly engaged during task performance in both rodents and
humans32,42–44. However, the specific prefrontal mechanisms
remain to be demonstrated. Finally, it remains to be determined

whether the forms of sequence coding reported here are present in
other medial temporal lobe structures, and how these “online” theta-
associated representations interact with “offline” SWR-associated
representations related to upcoming behavior or goals observed
during reward consumption, quiescence, or sleep16,17.

Methods
Animals. Subjects were five male Long–Evans rats, weighing ~350 g at the
beginning of the experiment. They were individually housed and maintained on a
12 h light/dark cycle. Rats had ad libitum access to food, but access to water was
limited to 2–10 min each day, depending on how much water they received as a
reward during behavioral training (3–6 ml). On weekends, rats received full access
to water for ≥12 h to ensure adequate overall hydration. Hydration levels were
monitored daily. All procedures were conducted in accordance with the Institu-
tional Animal Care and Use Committee (Boston University and the University of
California, Irvine).

Equipment and Stimuli. The apparatus consisted of a linear track (length, 150 cm;
width, 9 cm), with walls angled outward (30 degrees from vertical; height, 40 cm).
An odor port, located on one end of the track, was equipped with photobeam
sensors to precisely detect nose entries and was connected to an automated odor
delivery system capable of repeated deliveries of multiple distinct odors. Two water
ports were used for reward delivery: one located under the odor port (used to
reward correct order judgments), the other at the opposite end of the track (used to
encourage rats to leave the odor port area before the presentation of the next
sequence). Timing boards (Plexon) and digital input/output boards (National
Instruments) were used to measure response times and control the hardware. All
aspects of the task were automated using custom Matlab scripts (MathWorks). A
96-channel Multichannel Acquisition Processor (MAP; Plexon) was used to
interface with the hardware in real-time and record the behavioral and electro-
physiological data. Odor stimuli consisted of synthetic food extracts contained in
glass jars (A, lemon; B, rum; C, anise; D, vanilla; E, banana) that were volatilized
with desiccated, charcoal-filtered air (flow rate, 2 L/min). To prevent cross-con-
tamination, separate Teflon tubing lines were used for each odor, which converged
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Fig. 6 The representations of nonspatial events display sequential decoding peaks and phase precession across theta cycles. a, b Ensemble decoding
showing sequential peaks of past, present, and future stimulus coding across cycles consistent with sequence reactivation in Fig. 4 (n= 297; B & C trials
combined and pooled across rats). a Decoding probabilities across phases and cycles. Past (yellow), present (orange), and future (red) stimulus
probabilities were separately z-normalized using their data from all plots to highlight their respective dynamics across phases and cycles. b Summary and
quantification of dynamics across cycles shown in a, collapsed across phase. The decoding of past, present, and future stimuli exhibited significantly
different distributions across cycles (stimulus × phase F(6,10656)= 64.288, p < 0.0001). Past stimulus decoding decreased across cycles (linear trend
F(1,888)= 89.57, p < 0.0001), whereas future stimulus decoding increased (linear trend F(1,888)= 103.5, p < 0.0001), and present stimulus decoding showed
a curvilinear relationship peaking in cycle 1 (quadratic trend F(2.888)= 48.34, p < 0.0001). c Hypothesized decoding pattern based on demonstrations of
theta phase precession from the place cell literature. d Theta phase precession of present stimulus decoding across cycles. Data shown represents the sum
of z-scored decodings of all neurons (n= 251; pooled across animals, normalized to cycle maximum; see “Methods” section). Peak decoding of present
stimulus significantly varied in phase across cycles (Corr*; r=−0.377, p= 0.007), from a late (ascending) phase to an early (descending) phase. Data in
a, b depict mean ± SEM (B & C trials, pooled across subjects). Shaded regions in a depict Q1–Q3 range (median denoted by white line). L*** and Q***
indicate significant linear and quadratic trends (p < 0.0001). X*** denotes significant interaction by two-way ANOVA (p < 0.0001).
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into a single line at the bottom of the odor port. In addition, an air vacuum located
at the top of the odor port provided constant negative pressure to quickly evacuate
odor traces. Readings from a volatile organic compound detector confirmed that
odors were cleared from the port 500–750 ms after odor delivery (inter-odor
intervals were limited by software to ≥800 ms).

Behavior. Naive rats were initially trained to nosepoke and reliably hold their nose
for 1.2 s in the odor port for a water reward. Odor sequences of increasing length
were then introduced in successive stages (A, AB, ABC, ABCD, and ABCDE) upon
reaching the behavioral criterion of 80% correct over three sessions per training
stage. In each stage, rats were trained to correctly identify each presented item as
either InSeq (by holding their nosepoke response for at least 1.2 s to receive a water
reward) or OutSeq (by withdrawing their nose before 1.2 s to receive a reward).
Note that OutSeq items could be presented in any sequence position except the first
(i.e., sequences always began with odor A, though odor A could also be presented
later in the sequence as an OutSeq item). After reaching criterion performance on
the five-item sequence (>80% correct on both InSeq and OutSeq items), rats
underwent surgery for microdrive implantation.

Only one sequence was used during training (ABCDE; same odors and order
across rats) and the same sequence was used in the recorded session. Although we
have counterbalanced sequences in behavioral studies using the same task25,45, we
chose to match the sequences across animals in this recording study to keep the
neural coding as consistent as possible across rats. Note that, given the stepwise
training, animals had more exposure to the earlier odors in the sequence in their
lifetime, though all odors were highly familiar to them (they received hundreds of
presentations of each during training). Therefore, differences in decoding levels are
viewed as primarily related to sampling idiosyncrasies of the recorded session (the
number of trials for each odor and the coding properties of each ensemble).

Surgery. Rats received a preoperative injection of the analgesic buprenorphine
(0.02 mg/kg, s.c.) ~10 min before induction of anesthesia. General anesthesia was
induced using isoflurane (induction: 4%; maintenance: 1–2%) mixed with oxygen
(800 mL/min). After being placed in the stereotaxic apparatus, rats were admi-
nistered glycopyrrulate (0.5 mg/kg, s.c.) to help prevent respiratory difficulties. A
protective ophthalmic ointment was then applied to their eyes and their scalp was
locally anesthetized with marcaine (7.5 mg/mL, 0.5 ml, s.c.). Body temperature was
monitored and maintained throughout surgery and a Ringer’s solution with 5%
dextrose was periodically administered to maintain hydration (total volume of
5 mL, s.c.). The skull was exposed following a midline incision and adjustments
were made to ensure the skull was level. Six support screws (four titanium, two
stainless steel) and a ground screw (stainless steel; positioned over the cerebellum)
were anchored to the skull. A piece of skull ~3 mm in diameter (centered on
coordinates: −4.0 mm AP, 3.5 mmML) was removed over the left hippocampus.
Quickly after the dura was carefully removed, the base of the microdrive was
lowered onto the exposed cortex, the cavity was filled with Kwik-Sil (World Pre-
cision Instruments), the ground wire was connected, and the microdrive was
secured to the support skull screws with dental cement. Each tetrode was then
advanced ~900 μm into the brain. Finally, the incision was sutured and dressed
with Neosporin, and rats were returned to a clean cage, where they were monitored
until they awoke from anesthesia. One day following surgery, rats were given an
analgesic (flunixin, 2.5 mg/kg, s.c.) and a topical antibiotic (Neosporin) was
reapplied to the incision site.

Electrophysiological recordings. Each chronically implanted custom microdrive
contained 21 independently drivable tetrodes. Each tetrode consisted of four
twisted nichrome wire (13 µm in diameter; California Fine Wire) and gold-plated
to achieve final tip impedance of ~250 kΩ (measured at 1 kHz). Following a
surgical recovery period of five days, tetrodes were slowly advanced over a period of
~3 weeks while monitoring established electrophysiological signatures of the CA1
pyramidal cell layer (e.g., sharp waves, ripples, and theta amplitude). Voltage sig-
nals recorded from the tetrode tips were referenced to a ground screw positioned
over the cerebellum, and differentially filtered for single-unit activity (154 Hz to
8.8 kHz) and LFP (1.5–400 Hz). The neural signals were then amplified
(10,000–32,000× for units, 1000× for LFP), digitized (40 kHz for units, 1 kHz for
LFP), and recorded to disk with the data acquisition system (MAP, Plexon). Action
potentials from individual neurons were manually isolated offline using a combi-
nation of standard waveform features across the four channels of each tetrode
(Offline Sorter, Plexon). Proper isolation was verified using interspike interval
distributions for each isolated unit (assuming a minimum refractory period of
1 ms) and cross-correlograms for each pair of simultaneously recorded units on the
same tetrode. To confirm recording sites, current was passed through the electrodes
before perfusion (0.9% PBS followed by 4% paraformaldehyde) to produce small
marking lesions, which were subsequently localized on Nissl-stained tissue slices.

Data inclusion, sampling, and pooling. We took a rigorous and conservative
approach to data inclusion, sampling, and pooling to maximize the reproducibility
of the findings. First, we only used data from one session per animal to avoid
oversampling neurons and trials (only one session was recorded per day). In other
words, we did not combine an animal’s neurons or trials across daily sessions to

artificially increase statistical power. Second, to balance the flexibility, power, and
rigor of the analyses, our primary statistical approach was to treat decoded prob-
abilities from each trial as individual samples, and the trial data were then pooled
across subjects to perform statistical comparisons at the group level. Whenever
possible, we performed key comparisons using a “within-ensemble” design (e.g.,
how the pattern of decoding probabilities from each subject’s ensemble varied
across time periods or trial types) using omnibus tests (e.g., repeated-measures
ANOVAs) followed by posthoc tests controlling for the number of comparisons
performed. Third, we took a conservative approach to cell inclusion criteria to
avoid unintentionally biasing the analyses. Briefly, we only excluded neurons if
their firing rate values would create problems with an analysis (e.g., a firing rate of
zero across all trials of a specific type would leave some calculations undefined).
Thus, instead of filtering neurons based on their degree of informativeness, we took
a more systematic approach and let the models determine which neurons were
informative or uninformative. Note that the strength of our findings either
remained unchanged or significantly improved when excluding uninformative
neurons (see Supplementary Fig. 6 and “Control analyses” section below). Fourth,
upon review of the behavioral data during pre-processing, we identified rare
instances where the rat’s behavior was scored incorrectly due to extremely brief
entries into the port where the system only registered a rat’s port entry and not its
withdrawal. These trials were removed and not considered as part of the analyses
reported here. Post-processing trial and neuron counts are provided in Supple-
mentary Tables 1 and 2. Finally, note that a small fraction of tetrodes (<10%) may
have been located within the borders of neighboring subregion CA2. Since that
number of neurons is too small to properly quantify ensemble dynamics and that
there was no clear evidence their single-cell coding properties differed from the
rest, these cells were included in the ensemble analyses.

Peri-stimulus time histograms and correlation analyses. The activity of indi-
vidual neurons during odor presentations was visualized using peri-stimulus time
histograms (PSTHs) averaging data from all correct InSeq trials from the session.
Each row represents the mean normalized firing rate from a single neuron across
trials of a specific type. More precisely, for each neuron, the activity was binned
into 1 ms bins, smoothed across bins using a gaussian filter (150 ms for individual
odor PSTHs in Fig. 2a, 250 ms for full sequence PSTHs in Fig. 2d), collapsed across
trials to obtain the mean firing rate per bin, and finally normalized to its peak rate
within the row. PSTHs for individual odor presentations (e.g., Fig. 2a) aggregated
neurons across all subjects to easily visualize the activity from all active neurons.
However, to be conservative, PSTHs for full sequences (e.g., Fig. 2d) only displayed
neurons from a single subject to acknowledge potential differences in the pacing of
trials across subjects. For each PSTH, neurons that did not fire in any of the
corresponding trials were excluded (though such neurons may be included in
another PSTH).

The similarity among odor PSTHs was quantified using a simple correlational
approach (Supplementary Fig. 2a). First, to balance the sampling, we used the same
number of trials for each odor type (first 14 correct InSeq trials for odors A, B, C,
and D; 56 trials in total). Then, we essentially produced a PSTH for each trial
(neurons aggregated across subjects; firing rate in 1 ms bins, gaussian smoothed
and normalized) and correlated all pairs of trial-specific PSTHs (within and across
odors). Correlation coefficients (r) for the different combinations of trial types
(AvsA, AvsB, AvsC, etc) were statistically compared using one-way ANOVAs.
Dunnett’s posthoc tests were then used to directly compare “same odor” vs
“different odor” pairs (e.g., comparing AvsA with AvsB, AvsC, and AvsD) while
controlling for the number of comparisons performed. Statistical significance was
determined using p < 0.05.

Temporal coding analyses. The objective of this approach was to quantify the
degree of temporal information contained in sequential firing fields from each
animal’s neuronal ensemble, by assessing the degree to which time can be accu-
rately decoded from the ensemble activity. To do so, we adapted a memoryless
Bayesian decoding model from a recent study examining temporal coding during
sampling of olfactory and auditory stimuli14. To match the unbiased approach we
used with the other models, temporal coding analyses included all active neurons
(i.e., neurons that fired at least one spike during any of the odor presentations). In
other words, neurons were not filtered by their coding properties to avoid
potentially biasing the analyses. Notably, the same pattern of results was observed
when non-informative neurons were excluded (see “Control analyses” below;
compare Fig. 2 with Supplementary Fig. 6). In addition, significant reconstructed
time accuracy was also observed when using a more conservative training/test
validation approach (i.e., 50:50 splits instead of leave-one-out cross-validation; also
in “Control analyses” below; Supplementary Fig. 7). Unless specified otherwise, an
animal’s ensemble decoding accuracy values for each trial (i.e., each odor pre-
sentation; see “accuracy of reconstructed time” below) were treated as individual
samples, and the trial data were then pooled across subjects to be analyzed at the
group level. Statistical significance was determined using p < 0.05.

Bayesian model for time reconstruction. By assuming the ensemble spiking activity
has a Poisson distribution and the spiking activity of each neuron is independent,
we can use the spiking activity in a specific time bin (actual time) to calculate the
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probability of time (reconstructed time) in Fig. 2b as follows:

P timejspikes; odor� � ¼ P spikesjtime; odor
� �

:P timejodorð Þ
P spikesjodor� � ð1Þ

P timejspikes; odor� � ¼ C:P timejodorð Þ
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f iðtime; odorÞ

� �

ð2Þ
In Fig. 2e, we use P (time, odor|spikes) instead. Here, τ is the length of the time

bin (50 ms with step size of 5 ms in Fig. 2b; 1500 ms with step size of 150 ms in
Fig. 2e), fi(time, odor) is the mean firing rate of the i-th unit in the time bin, ni is the
number of spikes occurring in the time bin, odor refers to the treatment of
individual odors (odors ABCD in Fig. 2b; odors ABCDE in Fig. 2e), C is a
normalization factor to make the probability distribution for each time bin (actual
time) sum up to 1, and P(time, odor) is a constant since all InSeq trials have the
same duration.

Unless otherwise noted, the model was trained using a balanced subset of
sequence presentations in which all odors were InSeq, consecutively presented, and
correctly identified (using a leave-one-out cross-validation approach). Temporal
coding plots (e.g., Fig. 2b) show the posterior probability distribution of
reconstructed time for each bin of actual time (calculated separately for each
subject, then averaged across subjects).

Accuracy of reconstructed time. Decoding accuracy was determined by quantifying
the degree of relationship between actual time and reconstructed time estimates for
each animal’s ensemble separately. To do so, for each trial’s reconstructed time
matrix, we calculated the correlation across rows and columns of the same index
(one correlation value per row-column pair) and the mean of these correlation
values represented the accuracy of reconstructed time on that specific trial. Chance
levels were determined by calculating the mean reconstructed time accuracy across
1000 random permutations of the time factor in the f iðtime; odorÞ matrix. For
accuracy comparisons across odors (Supplementary Fig. 2b), pooled trial data were
analyzed using one-way ANOVAs followed by Dunnett’s posthoc tests (comparing
“same” vs “different” odors while controlling for the number of comparisons).
Comparisons with chance levels were performed using one-sample t-tests (two-
tailed) using pooled trial data for individual odors (Fig. 2b; using the same number
of trials for odors A–D) but separately for each subject for the full sequence
(because of variations in the timing of odor presentations across subjects; Fig. 2e).

Lag analysis. For the lag analysis, the model was tested on trial types not included
in the training set. For lags of 1–3 (positive or negative) the model was trained
using the proper sequence position of a given odor, but tested on the other
sequence positions (e.g., training during B in ABCDE, but decoding during C, D, or
E). For lags of 0, the model was tested on a subset of non-consecutive InSeq trials of
comparable size. Statistical comparisons across lags were performed using a one-
way ANOVAs (using pooled trial data as samples), followed up by linear trend
analyses and pairwise comparisons using Dunnett’s posthoc tests (comparing each
lag with a lag of 0 while controlling for the number of comparisons).

Correct vs incorrect trials. InSeq mistakes are relatively rare in this paradigm when
animals are well trained and tend to occur a few ms before the signal, thus most
likely reflect errors of anticipation instead of incorrect decisions25,45. Therefore,
comparisons between correct and incorrect trials focused on OutSeq trials. More
specifically, the model was trained on the full sequence of InSeq odors (as in
Fig. 2e) but tested on the 250-ms window preceding port entry on OutSeq trials (to
avoid the confounding influence of the OutSeq odor presentation). Only OutSeq
trials in sequence positions 2–4 were included to avoid edge effects and maximize
alignment across trial types (81 correct vs 33 incorrect trials). OutSeq reconstructed
time accuracy was quantified through comparison with the corresponding
decoding on InSeq trials (which served as expected values). More specifically, we
used a Kullback–Leibler (KL) divergence analysis to compare the shape of the
probability distribution from each OutSeq trial with that of the mean probability
distribution from InSeq trials. Statistical comparisons between correct and incor-
rect trials used non-parametric Kolmogorov–Smirnov tests to account for potential
non-normality in the distribution of KL divergence values, though the same pattern
of results was observed with parametric tests. Similarly, the result was the same
when the comparison was downsampled (by repeating the analysis with 1000
permutations using 33 randomly-selected correct trials).

Latent representation analyses. The objective of this approach was to visualize
and quantify differences in the underlying structure of each animal’s ensemble
activity at different moments within individual stimulus presentations. To do so,
we used an autoencoder, a nonlinear dimensionality reduction method based on
neural networks46,47, to identify a low-dimensional latent representation of the
spike activity data in 250 ms time windows. Note that the autoencoder was run on
each subject’s data separately to obtain their unique latent representations, but
classification accuracy was examined by pooling trial data across all subjects. We
used an unbiased approach and included the data from all recorded neurons
(neurons were not filtered by their coding properties or firing rate thresholds).

Autoencoder model. Data from each trial were divided into 250-ms time windows,
aligned to either port entry or withdrawal (see below), and the autoencoder was
trained on the data using a sliding window approach (100 ms sub-window, 10 ms
steps; 16 data points per window on each trial). Briefly, the model consisted of an
input layer (the original neural data), an encoder portion (two layers with 500
nodes each), a “bottleneck” layer (one layer with two nodes), a decoder portion
(two layers with 500 nodes each), and an output layer (the reconstructed neural
data; see model architecture in Supplementary Fig. 8). The 100 ms sub-windows of
spike activity data for each neuron constituted the input layer (the size of the input
layer corresponded to the animal’s number of neurons multiplied by 10, as the
activity was further binned into 10-ms increments). The encoder portion of the
model then projected the 100 ms sub-windows of spike activity data (the input
layer) onto a two-dimensional latent space by passing it through its two layers and
the bottleneck layer (with the activation of the two nodes in the bottleneck layer
representing the two dimensions). The decoder portion projected the latent space
back into the original space by passing the output from the bottleneck layer
through its two layers and finally to an output layer whose dimensionality was the
same as the input. The activation function at node i of layer l is defined as:

hl ið Þ ¼ f ðwT
il hl�1Þ ð3Þ

where f is a pointwise function (see below), wil is a vector of learnable parameters,
hl−1 represents the output of the previous layer, and T the matrix transposition
operation. The input layer (observed data) is referred to as h0. The model was
trained to minimize the difference between the original input data and the
reconstructed data. To accomplish this, we estimated the parameters wil, for all i
and l, using stochastic gradient descent48 with momentum49 to minimize the mean
squared error between the input and output. We used a rectified nonlinear unit for
the pointwise function50,51, f, for all layers except the bottleneck layer, where we
used a linear function.

Visualization of latent representations and k-NN classification. We focused speci-
fically on the four 250 ms windows in which the behavior was matched between
InSeq and OutSeq trials (0:250 ms and 250:500 ms relative to port entry, −250:0 ms
and 0:250 ms relative to port withdrawal; see Fig. 3). After training the model, we
visualized each subject’s two-dimensional latent representation for each window
and color-coded each data point according to its trial type: the odor presented
(stimulus), whether the odor was presented in or out of sequence (temporal order),
and whether the rat performed the correct or incorrect response (trial outcome).
Then, we used a k-nearest neighbors (k-NN) with k = 2 method to determine when
the different types of trial-specific information were well separated in the latent
space (70% of trials used for model training, 30% used for testing). More specifi-
cally, for each trial in the test set, we predicted the stimulus, temporal order, and
trial outcome label based on its top two closest neighbors in the training set. Mean
classification accuracy was then determined by pooling trial data across subjects.
To focus the k-NN classification on the type of information of interest, the k-NN
classification of stimulus and temporal order information only included correct
trials (to focus on trial-relevant representations) and odors B, C, and D (to focus on
odors with comparable discriminability; including odor A, which was strongly
differentiated by the model, further enhanced classification accuracy). Similarly,
stimulus classification only included InSeq trials. For statistical comparisons, we
determined the 95% confidence interval for chance-level classification accuracy for
each type of information and time window using 100 permutations. For each
permutation, we randomly shuffled the labels corresponding to stimulus, temporal
order, and trial outcome and repeated the k-nearest neighbors classification.
Accuracy values above the confidence intervals were considered statistically sig-
nificant. Note that the same comparisons were also statistically significant when
using 99% confidence intervals, with the exception of the temporal order effect in
the 250–500 ms window.

Lag analysis. To determine if temporal order differentiation (i.e., InSeq vs OutSeq)
solely reflected a match/mismatch signal or also contained information about their
degree of mismatch (e.g., how “far” an OutSeq odor was from its expected sequence
position), we quantified the distance among the cluster representations of each trial
type (InSeq odors B–E, OutSeq odors B–E in positions 2–5). To do so, we deter-
mined the centroid of each trial in the two-dimensional latent variable space (each
trial has 16 data points because the 100 ms sub-window is sliding in 10 ms
increments), calculated the Mahalanobis distance between each pair of trial-specific
centroids, and categorized trial pairs by their lag. For InSeq trials, lags represented
the distance between presented odors: Lag 0 (e.g., B vs B), Lag 1 (e.g., B vs C), Lag 2
(e.g., B vs D) and Lag 3 (e.g., B vs E). For OutSeq trials, lags represented the
distance (in sequence position) between two OutSeq presentations of a given odor:
Lag 0 (e.g., odor B presented in position 3 vs another trial in which B was in
position 3), Lag 1 (e.g., odor D presented in position 3 vs in position 2), Lag 2 (e.g.,
odor E presented in position 2 vs in position 4) and Lag 3 (e.g., odor C presented in
position 5 vs in position 2). Notably, identical results were obtained when either the
raw data (all 16 data points per trial) were used instead of centroids, or when
Euclidean distance was calculated rather than Mahalanobis distance (Mahalanobis
distance was used to account for potential correlations between the two latent
variables). Statistical comparisons across lags were performed using one-way
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ANOVAs, followed up by linear and quadratic trend analyses. Statistical sig-
nificance was determined using p < 0.05.

Neural decoding analyses. The objective of this approach was to build a powerful
predictive model for decoding the stimulus information represented in the neural
activity data using a supervised learning method. More specifically, we used a
convolutional neural network, an approach most commonly used for image
classification52 but that can also be used for sequential data53. An animal’s
ensemble decoding probabilities (the probability of A, B, C, and D) per 250 ms
window for each trial (i.e., each odor presentation) were treated as individual
samples. Statistical analyses were performed on trial data pooled across subjects
using a “within-ensemble” approach (e.g., how decoding varied across windows
within a specific trial type). Note that we used an unbiased approach and included
the data from all recorded neurons (neurons were not filtered by their coding
properties or firing rate thresholds). A control analysis was performed to ensure
group effects were not simply driven by particularly strong data from any one
subject (see “Control analyses” below).

Convolutional neural network model (CNN). For our analysis, the CNN took both
spike data and LFP signals from each tetrode as input, and odor labels as its output.
The convolution was performed on each tetrode separately (Supplementary
Fig. 9a). More specifically, for each tetrode, the continuous LFP signal and spike
activity from each unit were combined into one multivariate time series. Filters
(small matrices) were then convolved on these time series to produce convolution
features. Time averaged features from different tetrodes were concatenated together
and fed into subsequent hidden layers with drop-out54 and finally to the output
layer prediction. The model was trained on data from the 150–400 ms time window
(relative to port entry) using a variant of stochastic gradient descent55 following the
early stopping rule. As shown in Supplementary Fig. 9b, this model produced
higher decoding accuracy compared to the benchmark multinomial logistic
regression model (10-fold cross-validation). Moreover, by using the hidden layer
that feeds into the output layer as a latent space, our model allows for nonlinear
projection of the original data onto a low-dimensional space for visualizing and
quantifying the decoding probability of each odor over time. Note that in contrast
to the autoencoder model used for the latent representation learning analyses, this
projection in the low-dimensional latent space was obtained in a supervised
manner by taking the labels (as well as the neural signals) into account. For each
trial, the decoding model was then applied to each 250 ms time window (ranging
from −400 ms to 1450 ms, relative to port entry) to obtain the corresponding
hidden layer vectors.

Visualization of latent space. After the latent space was divided into subregions
associated with each odor (according to the odor of highest probability), the latent
space vectors for each trial could be visualized as a point that moves around in the
latent space across different time windows. For easier visualization (Fig. 4a, d), we
have further reduced the dimension of the latent space to two using the top two
principal components and linearized the boundaries between odors using a simple
multinomial logistic regression model. To aggregate decoding results across sub-
jects (Fig. 4b, e), for each time window, we compiled the number of points (trials)
in each odor subregion of each subject’s latent space. As a result, for each time
window, we obtained four clusters of color-coded points representing the aggregate
decoding probability of odors A, B, C, and D across all trials (the total number of
points remains constant across windows).

Statistical comparisons. For statistical comparisons, we determined the 95% con-
fidence intervals of the decoding probabilities in each time window, which follow a
multinomial distribution. To be conservative, decoding probabilities with non-
overlapping confidence intervals were considered significantly different. This
approach was corroborated using standard chi-square tests in each time window
(significant at p < 0.05).

Theta sequence decoding analyses. The objective of this approach was to
determine whether the sequential activation of odor representations can be
detected in a compressed form within a single theta cycle, and examine how this
form of coding varies across trial types and across cycles. To do so, we used a
multinomial logistic regression model, which while yielding weaker odor decoding
than our CNN model (Supplementary Fig. 9b), can be used at the faster timescale
necessary to decode within theta cycles (which is beyond the temporal resolution of
the CNN model). Notably, the logistic regression model shows a similar pattern of
sequential activation of upcoming stimuli within individual presentations as the
CNN model, though, as expected, with more variability (Supplementary Fig. 10).
Note that we used an unbiased approach and included the data from all active
neurons (neurons were not filtered by their coding properties) and that a control
analysis was performed to ensure group effects were not simply driven by parti-
cularly strong data from any one subject (see “Control analyses” below). Unless
specified otherwise, an animal’s ensemble decoding probabilities (the probability of
A, B, C, and D) in bins of 10 or 120 degrees for each trial (i.e., each odor pre-
sentation) were treated as individual samples. Statistical analyses were performed
on trial data pooled across subjects. To maximize statistical power, decoding

probabilities of past, present, and future stimuli were combined across odor B and
C trials (i.e., odors ABC on B trials; odors BCD on C trials). A “within-ensemble”
approach was used to examine how decoding varied across phases and stimulus
types, which included both the use of paired t-tests (two-tailed) to probe specific a
priori hypotheses and of repeated-measures ANOVAs to examine differences
across levels (followed by posthoc tests controlling for the number of comparisons
performed). Statistical significance was determined using p < 0.05.

Logistic regression model. We used a LASSO logistic regression model56 that
imposes L1 penalty on the regression parameters. For each trial (−2 s to 2 s,
relative to port entry), the LFP signal from each tetrode was smoothed with a
Butterworth filter between 4 Hz and 7 Hz (the main frequency range of theta we
observed during odor sampling26) and the Hilbert transformation was then used to
calculate the theta phase at each time point. The model was trained using the
ensemble data from correct InSeq trials, specifically the firing rate of each neuron
during the trough (120–240 degrees; CA1 pyramidal layer theta) of the first theta
cycle beginning 100 ms after port entry (cycle 1). Trials in which the amplitude of
that theta cycle was very weak (lowest 20th percentile) were not included in the
analysis. Since not every neuron’s activity was associated with odor presentations,
the LASSO model automatically eliminated neurons not significantly contributing
to the odor decoding (setting their beta weights to zero). The amount of penalty
was set using a 10-fold cross-validation with stratification because the numbers of
trials for different odors were unequal57. In the following analyses, the same model
training was used but model testing was extended to other phases, cycles, and
trial types.

Past, present, and future decoding in cycle 1. To apply the decoding model to the
entire theta cycle, we used a sliding window (120 degrees in width) to calculate the
firing rate of each neuron in an ensemble in 10-degree increments and determine
the decoding probability of each odor per 10-degree bin. Note that this process was
performed on each trial using the ensemble activity from the corresponding sub-
ject, and that trial data were then aggregated across subjects. Decoding traces were
visualized in 10-degree bins but collapsed to 120-degree bins, or one value for each
of the three phases, for hypothesis testing. Paired t-tests (two-tailed) were used to
test the hypothesized pattern (Fig. 5a) of decoding for past, present, and future
stimuli across the descending phase, trough, and ascending phase, respectively.

Decoding across cycles. Using the same method as above, we extended the decoding
of the model to a series of theta cycles within each trial, ranging from three cycles
before port entry to five cycles after (which consistently occurred toward the end of
the odor presentation). For each InSeq trial (B and C trials combined), decoding
probabilities of past, present, and future stimuli were obtained. Decoding prob-
abilities for each stimulus type were then separately z-normalized (e.g., the past
stimulus probability of a given trial was z-scored using all past stimulus prob-
abilities across phases and cycles; see Fig. 6a). Note that this normalization was
performed so plots could better capture their respective magnitude and dynamics
across phases and cycles, but this transformation had no effect on the results: the
same analyses were run using non-normalized values and the same pattern was
obtained. For clarity, analyses focused on four cycles that were equidistant in time
and spanned the duration of the trial (the second pre-stimulus cycle, cycle 1, cycle
3, and cycle 5). Data from those four cycles were collapsed across phase, aggregated
across subjects, and analyzed using a two-way repeated-measures ANOVA (Sti-
mulus × Phase), followed up by linear and quadratic trend analyses to further
specify the dynamics across cycles (Fig. 6b).

Trial-type comparisons. To determine whether this form of theta sequence infor-
mation is important for decision accuracy, decodings were compared between trials
that were correctly or incorrectly identified by the animals. As in previous sections,
this comparison focused on OutSeq trials (for better sampling of correct and
incorrect trials) during the 250 ms time window preceding port entry (a period
when behavior is matched between trial types), and focused on trials in the second
or third sequence position. For each trial, the decoding probability of the expected
(InSeq) stimulus across phases were calculated by averaging the values over two
theta cycles occurring in that time window. Data from correct and incorrect trials
were aggregated across subjects and analyzed using a two-way ANOVA (correct/
incorrect × Phase; Phase as repeated factor) followed by posthoc unpaired t-tests at
each phase (Bonferroni-corrected for three comparisons). Note that the result was
the same when the comparison was downsampled (by repeating the analysis with
1000 permutations using 30 randomly-selected correct trials). To assess the flex-
ibility of this form of theta sequences, we tested whether the same sequential
information was decoded on InSeq and OutSeq trials: the same decoding pattern
would indicate that these sequences rigidly reflect the most common sequence of
items (InSeq stimuli) regardless of the stimulus presented on a given trial, whereas
a different pattern would indicate decodings reflect the OutSeq nature of the
individual trial. Using InSeq stimuli as the reference, we obtained the decoding
probabilities across the three phases of cycle 1 for each InSeq and OutSeq trial (i.e.,
past InSeq stimulus in descending phase, present InSeq stimulus in trough, future
InSeq stimulus in ascending phase). Data from InSeq and OutSeq trials (also from
the second or third sequence position) were aggregated across subjects and ana-
lyzed using a two-way ANOVA (InSeq/OutSeq × Phase; Phase as repeated factor)
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followed by posthoc unpaired t-tests at each phase (Bonferroni-corrected for three
comparisons).

Data visualization using single-cell decodings (cycle 1). To help visualize the
ensemble decoding results above, we used univariate logistic regression models for
each neuron separately (Fig. 5b) with the same methods for model training and
testing as above. Since the decoding of the present odor was stronger than past and
future odors (as shown in Fig. 5a), we z-normalized the decoding probability of
each stimulus separately to be able to reveal their respective distributions. More
specifically, we used the distribution of past, present, and future stimulus decoding
values across all phase bins and trials to z-score each decoding probability on a
given bin and trial. We treated each individual neuron’s model as a logistic clas-
sifier: for each 10-degree bin, we averaged the past, present, and future stimulus
probabilities across trials and classified the stimulus with the highest z-score as the
decoded stimulus. We then tested whether past, present, and future stimulus
decodings followed the hypothesized pattern across phases. For clarity, we focused
on neurons whose decodings showed significant modulation with phase for at least
one odor type (62.2% of neurons) and then tabulated the proportion of phase-
modulated neurons decoding the past, present, or future stimulus in each phase bin
(grayscale plot in Fig. 5b). Similar to the temporal coding analyses, we then
quantified the diagonal by computing the correlation between the columns (the
three stimuli) and the rows (the three phases) and determined statistical sig-
nificance using permutation testing (1000 random permutations). Specifically, we
permuted the odor classifications within each phase bin, maintaining the overall
distribution of decoded odors across the cycle but disturbing their phase. For each
permutation, we computed the same correlation to build the null distribution of
phase-permuted values.

Theta phase precession in individual neurons. We first examined theta phase pre-
cession using standard single-cell analyses quantifying how the phase of spikes
shifted within odor presentations. More specifically, we matched a published
approach58 and tested whether each neuron showed a significant linear-circular
correlation between spike time (from port entry to port withdrawal) and phase
(0–360 degrees) using a significance threshold of p < 0.01 (see examples of sta-
tistically significant neurons in Supplementary Fig. 5). This analysis excluded
neurons with fewer than 10 spikes during the trial period and was performed using
data collapsed across odors (B–D) as well as using data from each odor separately
(odor A trials were excluded to avoid the potentially confounding influence of
running-associated theta). We then used a different approach to quantify how the
decodings of individual neurons precessed within odor presentations. To do so, we
adapted the single-cell decoding approach used in Fig. 5b and, for each animal
separately, examined the decoding of the present stimulus across all neurons in 10-
degree bins across cycles (ranging from three cycles before port entry to six cycles
after). Specifically, for each bin, we computed for each neuron the mean present
stimulus decoding across odor B and C trials, z-scored the decoding values using
the mean and standard deviation of all neurons in the bin to put them on the same
scale, and summed the z scores across neurons to capture the strength of the
decoding in the population for each 10-degree bin. This process was then repeated
for each cycle, which allowed us to obtain the phase at which present stimulus
decoding peaked in each cycle. To facilitate comparisons across cycles, values were
then normalized to the maximum decoding value of each cycle such that 1 and −1
indicated the strongest and weakest decoding of the present stimulus across neu-
rons, respectively. We then aggregated the data across animals (5 data points per
cycle) and determined if the observed peaks of present stimulus decoding varied in
phase across successive cycles using a standard correlation analysis (Fig. 6d shows
the data averaged across animals). We also examined this relationship using per-
mutations, to maintain the overall strength of decodings during the trial period but
disturb their phase. Specifically, to build the null distribution of correlation values,
we permuted the order of theta cycles for each B or C trial, then recomputed the
aggregate individual neuron decodings across theta cycles and correlation coeffi-
cient for each permutation (1000 random permutations).

Control analyses
Effect of excluding non-informative neurons on temporal coding results. By default,
our temporal coding analyses included all active neurons (neurons that fired at
least one spike across any of the trial types). This unbiased approach allows us to be
consistent across models: rather than selecting which cells go into the model
(which could bias the results), we let the models determine which neurons are
informative or uninformative. To ensure the pattern of results is the same using a
less conservative approach, we reproduced the same analyses using only neurons
with statistically significant temporal information. To do so, we quantified the
temporal information provided by each neuron by running the model on each
neuron independently. For each neuron, we then calculated the accuracy of
reconstructed time and determined statistical significance by permuting the data
(1,000 random permutations across the time factor). Using only the most infor-
mative neurons (the 81% that reached statistical significance; odor A: 144/173, odor
B: 131/168, odor C: 142/175, odor D: 141/170), we re-ran the analyses previously
performed on the entire ensemble of active neurons. We observed the same pattern
of findings across analyses (compare Fig. 2 with Supplementary Fig. 6); in fact,

when non-significant cells were excluded, reconstructed time accuracy either
remained unchanged (a difference < 2% for individual odors; Fig. 2b vs Supple-
mentary Fig. 6b) or significantly increased (11.6% increase for the full sequence;
Fig. 2e vs Supplementary Fig. 6e; t(54) = 2.836, p = 0.0064).

Effect of using a conservative 50:50 training/test validation on temporal coding
results. Neurons in PSTHs (Fig. 2a) are sorted using their average activity from the
whole session. This is a standard approach in “time cell” studies12,14 and an
accurate parallel to our decoded time plots (Fig. 2b), which consider the whole
session except for the trial being decoded (leave-one-out cross-validation). How-
ever, to confirm that significant temporal coding is observed using a more con-
servative training/test validation approach, we split the data into halves (three
different types: first vs second half, Q1&Q3 vs Q2&Q4, and odd vs even trials).
Using the data from one half, we sorted the PSTH and calculated temporal coding
in the corresponding other half. As expected given the reduction in sample size,
sorting and decoding using 50:50 splits led to noisier results, but time decoding
accuracy was still significantly above permutation levels (Supplementary Fig. 7).
Similarly, decoding accuracy for the full sequence was still significant using a
50:50 split when E was excluded to increase sampling (A–D: subjects’ p values are
0.001, 0.042, 0.001, 0.001, and 0.001; whereas A–E primarily showed significant
trends: subjects’ p values are 0.01, 0.067, 0.1286, 0.062, and 0.046).

Effect of subject on group decoding results. We used the Cochran–Mantel–Haenszel
test (a generalized version of the chi-square for three dimensions) to examine the
effect of subject on group decoding accuracy. More specifically, we produced five
group confusion matrices (each one leaving out a different subject), re-stratified the
data by true odors, and tested whether predicted odors varied across the five leave-
one-out matrices. We found that, given each odor, the accuracy of predictions did not
significantly vary across group confusion matrices (CNN model: χ2= 3.7679, df= 12,
p = 0.9873; logistic regression model: χ2 = 1.4718, df = 12, p = 0.9998), confirming
that the group effects reported are unlikely to be solely driven by any one subject.

Effect of potential SWR-associated replay events on decoding. Automated SWR
(sharp-wave ripple) detection was performed by adapting a published approach59.
A SWR event was identified as the co-occurrence of a sharp-wave event and a
ripple event detected on two separate tetrodes, which were selected after visual
inspection for maximal sharp wave (electrode closest to CA1 stratum radiatum)
and ripple (electrode closest to the center of CA1 pyramidal layer) magnitude in
their LFP. For both sharp wave and ripple events, the LFP was first filtered (sharp
wave: high pass >4 Hz; ripple: bandpass 150–250 Hz) and instantaneous power was
calculated as the real component of the Hilbert transformed trace. Putative events
were identified as periods where power exceeded three standard deviations above
the mean. Periods that occurred within 15 ms of each other were considered part of
a common event. SWRs were then identified as periods of temporal overlap
between putative sharp wave and ripple events, which were verified through visual
inspection to remove artifacts. Temporal boundaries for SWR events were deter-
mined as the earliest and latest time points of either the sharp wave or ripple events
identified. Using these criteria, only 18 trials (across all subjects) were identified as
having a potential SWR event during the odor presentation (out of 1047 trials; <
2% of trials). The incidence was even lower in the 250 ms periods preceding and
following the odor period (13 and 8 trials, respectively). The models were re-run
with those trials excluded and the pattern of results did not change. Note that
potential SWR events tended to cluster around the time of reward delivery (near
the middle of the inter-odor interval), a period not included in our analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study have been deposited at https://doi.org/10.7280/
D14X3060. Source data are provided with this paper.

Code availability
All pre-processing and analyses were performed using Python 3.6, Matlab 2019b, and
Prism 9. Code used for analysis and figure generation in this manuscript is available at
https://doi.org/10.5281/zenodo.557978561

Received: 31 May 2020; Accepted: 28 December 2021;

References
1. Clewett, D., DuBrow, S. & Davachi, L. Transcending time in the brain: How event

memories are constructed from experience. Hippocampus 29, 162–183 (2019).
2. Ranganath, C. & Hsieh, L. T. The hippocampus: a special place for time. Ann.

N. Y. Acad. Sci. 1369, 93–110 (2016).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28057-6 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:787 | https://doi.org/10.1038/s41467-022-28057-6 | www.nature.com/naturecommunications 15

https://doi.org/10.7280/D14X30
https://doi.org/10.7280/D14X30
https://doi.org/10.5281/zenodo.5579785
www.nature.com/naturecommunications
www.nature.com/naturecommunications


3. Allen, T. A. & Fortin, N. J. The evolution of episodic memory. Proc. Natl Acad.
Sci. USA 110, 10379–10386 (2013).

4. Eichenbaum, H. Time cells in the hippocampus: a new dimension for mapping
memories. Nat. Rev. Neurosci. 15, 732–744 (2014).

5. Schacter, D. L. et al. The future of memory: remembering, imagining, and the
brain. Neuron 76, 677–694 (2012).

6. Redish, A. D. Vicarious trial and error. Nat. Rev. Neurosci. 17, 147–159 (2016).
7. Lisman, J. E. Relating hippocampal circuitry viewpoint to function: recall of

memory sequences by reciprocal dentate–CA3 interactions. Neuron 22,
233–242 (1999).

8. Levy, W. B. A sequence predicting CA3 is a flexible associator that learns and
uses context to solve hippocampal-like tasks. Hippocampus 6, 579–590 (1996).

9. Buzsáki, G. & Tingley, D. Space and time: the hippocampus as a sequence
generator. Trends Cogn. Sci. 22, 853–869 (2018).

10. Lisman, J. & Redish, A. D. Prediction, sequences and the hippocampus. Philos.
Trans. R Soc. B 364, 1193–1201 (2009).

11. Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsaki, G. Internally
generated cell assembly sequences in the rat hippocampus. Science 321,
1322–1327 (2008).

12. MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal
‘time cells’ bridge the gap in memory for discontiguous events. Neuron 71,
737–749 (2011).

13. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by
the hippocampal-entorhinal circuit. Nature 543, 719–722 (2017).

14. Terada, S., Sakurai, Y., Nakahara, H. & Fujisawa, S. Temporal and rate coding
for discrete event sequences in the hippocampus. Neuron 94, 1248–1262
(2017).

15. Mau, W. et al. The same hippocampal CA1 population simultaneously codes
temporal information over multiple timescales. Curr. Biol. 28, 1499–1508
(2018).

16. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).
17. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in memory

retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757
(2018).

18. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of
extended experience. Neuron 63, 497–507 (2009).

19. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase
precession in hippocampal neuronal populations and the compression of
temporal sequences. Hippocampus 6, 149–172 (1996).

20. Foster, D. J. & Wilson, M. A. Hippocampal theta sequences. Hippocampus 17,
1093–1099 (2007).

21. Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by
hippocampal cell assemblies. Neuron 50, 145–157 (2006).

22. Wikenheiser, A. M. & Redish, A. D. Hippocampal theta sequences reflect
current goals. Nat. Neurosci. 18, 289–294 (2015).

23. Zheng, C. et al. Hippocampal place cell sequences differ during correct and
error trials in a spatial memory task. Nat. Commun. 12, 3373 (2021).

24. Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths
forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).

25. Allen, T. A., Morris, A. M., Mattfeld, A. T., Stark, C. E. L. & Fortin, N. J. A
sequence of events model of episodic memory shows parallels in rats and
humans. Hippocampus 24, 1178–1188 (2014).

26. Allen, T. A., Salz, D. M., McKenzie, S. & Fortin, N. J. Nonspatial sequence
coding in CA1 neurons. J. Neurosci. 36, 1547–1563 (2016).

27. Howard, M. W. & Kahana, M. J. A distributed representation of temporal
context. J. Math. Psychol. 46, 269–299 (2002).

28. Shankar, K. H. & Howard, M. W. Timing using temporal context. Brain Res.
1365, 3–17 (2010).

29. Manns, J. R., Howard, M. W. & Eichenbaum, H. Gradual changes in
hippocampal activity support remembering the order of events. Neuron 56,
530–540 (2007).

30. O’Keefe, J. & Krupic, J. Do hippocampal pyramidal cells respond to nonspatial
stimuli? Physiol. Rev. 101, 1427–1456 (2021).

31. Fortin, N. J., Agster, K. L. & Eichenbaum, H. B. Critical role of the hippocampus
in memory for sequences of events. Nat. Neurosci. 5, 458–462 (2002).

32. Kesner, R. P., Gilbert, P. E. & Barua, L. A. The role of the hippocampus in
memory for the temporal order of a sequence of odors. Behav. Neurosci. 116,
286–290 (2002).

33. Allen, L. M., Lesyshyn, R. A., O’Dell, S. J., Allen, T. A. & Fortin, N. J. The
hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental
order memory. Behav. Brain Res. 379, 112215 (2020).

34. Shankar, K. H. & Howard, M. W. A Scale-Invariant Internal Representation of
Time. Neural Comput. 24, 134–193 (2012).

35. Tsao, A. et al. Integrating time from experience in the lateral entorhinal
cortex. Nature 561, 57–62 (2018).

36. Montchal, M. E., Reagh, Z. M. & Yassa, M. A. Precise temporal memories are
supported by the lateral entorhinal cortex in humans. Nat. Neurosci. 22,
284–288 (2019).

37. Kay, K. et al. Constant sub-second cycling between representations of possible
futures in the hippocampus. Cell 180, 552–567.e25 (2020).

38. McKenzie, S. et al. Representation of memories in the cortical–hippocampal
system: results from the application of population similarity analyses.
Neurobiol. Learn. Mem. 134, 178–191 (2016).

39. Van Der Meer, M. A. A. & Redish, A. D. Theta phase precession in rat
ventral striatum links place and reward information. J. Neurosci. 31, 2843–2854
(2011).

40. Jones, M. W. & Wilson, M. A. Phase precession of medial prefrontal cortical
activity relative to the hippocampal theta rhythm. Hippocampus 15, 867–873
(2005).

41. Hyman, J. M., Zilli, E. A., Paley, A. M. & Hasselmo, M. E. Medial prefrontal
cortex cells show dynamic modulation with the hippocampal theta rhythm
dependent on behavior. Hippocampus 15, 739–749 (2005).

42. Chiba, A. A., Kesner, R. P. & Reynolds, A. M. Memory for spatial location as a
function of temporal lag in rats: role of hippocampus and medial prefrontal
cortex. Behav. Neural Biol. 61, 123–131 (1994).

43. Jenkins, L. J. & Ranganath, C. Prefrontal and medial temporal lobe activity at
encoding predicts temporal context memory. J. Neurosci. 30, 15558–15565 (2010).

44. Schuck, N. W. & Niv, Y. Sequential replay of nonspatial task states in the
human hippocampus. Science 364, eaaw5181 (2019).

45. Allen, T. A., Morris, A. M., Stark, S. M., Fortin, N. J. & Stark, C. E. L. Memory
for sequences of events impaired in typical aging. Learn. Mem. 22, 138–148
(2015).

46. DeMers, D. & Cottrell, G. W. Non-linear dimensionality reduction. In
Advances in Neural Information Processing Systems 5 [NIPS Conference]
580–587 (Morgan Kaufmann Publishers Inc., 1992).

47. Hinton, G. E. Reducing the dimensionality of data with neural networks.
Science 313, 504–507 (2006).

48. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Neurocomputing:
Foundations of Research 696–699 (MIT Press, 1988).

49. Sutskever, I., Martens, J., Dahl, G. & Hinton, G. On the importance of
initialization and momentum in deep learning. In Proc. 30th International
Conference on International Conference on Machine Learning-28 III-1139-
III–1147 (JMLR.org, 2013).

50. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann
machines. In Proc. 27th International Conference on International Conference
on Machine Learning 807–814 (Omnipress, 2010).

51. Jarrett, K., Kavukcuoglu, K., Ranzato, M. & LeCun, Y. What is the best multi-
stage architecture for object recognition? In 2009 IEEE 12th International
Conference on Computer Vision 2146–2153, https://doi.org/10.1109/
ICCV.2009.5459469 (2009).

52. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied
to document recognition. Proc. IEEE 86, 2278–2324 (1998).

53. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, 2016).
54. Baldi, P. & Sadowski, P. Understanding dropout. In Proceedings of the 26th

International Conference on Neural Information Processing Systems - 2
2814–2822 (Curran Associates Inc., 2013).

55. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint
at https://arxiv.org/abs/1412.6980 (2017).

56. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc.
Ser. B Methodol. 58, 267–288 (1996).

57. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning
(Springer New York, 2009).

58. Kempter, R., Leibold, C., Buzsáki, G., Diba, K. & Schmidt, R. Quantifying
circular–linear associations: hippocampal phase precession. J. Neurosci.
Methods 207, 113–124 (2012).

59. Headley, D. B., Kanta, V. & Paré, D. Intra- and interregional cortical
interactions related to sharp-wave ripples and dentate spikes. J. Neurophysiol.
117, 556–565 (2017).

60. Shahbaba, B. et al. Hippocampal ensembles represent sequential relationships
among an extended sequence of nonspatial events. Dryad Dataset https://
doi.org/10.7280/D14X30 (2021)

61. Shahbaba, B. et al. FortinLab/Shahbaba_et_al_2021 (v1.0.0). Zenodo https://
doi.org/10.5281/zenodo.5579785 (2021)

Acknowledgements
We thank members of our labs and departments for their helpful comments on this
research. This work was supported by NIH (awards R01-MH115697, R01-DC017687,
and T32-DC010775), NSF (awards CAREER IOS-1150292, DGE-1839285, and BCS-
1439267), and the Whitehall Foundation (award 2010-05-84).

Author contributions
N.J.F. conceived the project, conducted the experiment, funded the research, supervised
the data analysis, and wrote the manuscript. B.S. funded the research, supervised data
analysis, and wrote the manuscript. L.L., F.A., M.S., K.W.C., D.H., and G.A.E. performed

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28057-6

16 NATURE COMMUNICATIONS |          (2022) 13:787 | https://doi.org/10.1038/s41467-022-28057-6 | www.nature.com/naturecommunications

https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.1109/ICCV.2009.5459469
https://arxiv.org/abs/1412.6980
https://doi.org/10.7280/D14X30
https://doi.org/10.7280/D14X30
https://doi.org/10.5281/zenodo.5579785
https://doi.org/10.5281/zenodo.5579785
www.nature.com/naturecommunications


data curation and analysis, and reviewed and edited the manuscript. P.B. supervised the
data analysis, and reviewed and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28057-6.

Correspondence and requests for materials should be addressed to Norbert J. Fortin.

Peer review information Nature Communications thanks Eleonore Duvelle and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28057-6 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:787 | https://doi.org/10.1038/s41467-022-28057-6 | www.nature.com/naturecommunications 17

https://doi.org/10.1038/s41467-022-28057-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Hippocampal ensembles represent sequential relationships among an extended sequence of nonspatial events
	Results
	CA1 ensemble activity provides a temporal signal that carries event-specific information and bridges across event sequences
	The differentiation of stimulus identity, temporal order, and trial outcome information varies within individual events
	The sequential relationships among discontiguous events are reactivated within individual events
	Nonspatial event representations are sequentially organized within theta cycles and precess across successive cycles

	Discussion
	Methods
	Animals
	Equipment and Stimuli
	Behavior
	Surgery
	Electrophysiological recordings
	Data inclusion, sampling, and pooling
	Peri-stimulus time histograms and correlation analyses
	Temporal coding analyses
	Bayesian model for time reconstruction
	Accuracy of reconstructed time
	Lag analysis
	Correct vs incorrect trials
	Latent representation analyses
	Autoencoder model
	Visualization of latent representations and k-nobreakNN classification
	Lag analysis
	Neural decoding analyses
	Convolutional neural network model (CNN)
	Visualization of latent space
	Statistical comparisons
	Theta sequence decoding analyses
	Logistic regression model
	Past, present, and future decoding in cycle 1
	Decoding across cycles
	Trial-type comparisons
	Data visualization using single-cell decodings (cycle 1)
	Theta phase precession in individual neurons
	Control analyses
	Effect of excluding non-informative neurons on temporal coding results
	Effect of using a conservative 50:50 training/test validation on temporal coding results
	Effect of subject on group decoding results
	Effect of potential SWR-associated replay events on decoding

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




