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ABSTRACT 

Though environments change across space and time, living organisms must 

always find ways to succeed under the mechanical constraints posed by the world around 

them. The nearly 25,000 species of teleost fishes inhabit nearly every imaginable aquatic 

habitat and have amazing diversity of shapes, sizes, and color patterns. Yet all fishes 

must eat, and almost every living teleost fish is capable of using ‘suction feeding’ for prey 

capture. Suction is a dynamic feeding mechanism that leverages the density and viscosity 

of water to pull in water and a prey item via rapid expansion of the head. But there are 

many common prey, like algae, sponges, or coral, that are not easily suctioned in by a 

hungry critter: and thus, some fishes use ‘biting’ to graze, scrape, or yank prey from an 

attachment to the substrate. My dissertation explores how the interactions between 

animals and their physical world shape evolutionary processes over millions of years, 

seeking to understand the drivers of diversity in form and function. 

In my first chapter, I explored the potential for a fundamental mechanical trade-off 

to constrain the evolution of biters. Fishes that use biting for prey capture can also use 

suction, but this may create a trade-off between cranial expansion for suction and force 

transmission for biting. I studied how this mechanical trade-off affects diversification of 

both head shape and feeding kinematics. I filmed high-speed videos of feeding strikes of 

fishes of both groups, then used geometric morphometrics to calculate the amount of 

motion of the anatomy of the head during feeding, which I refer to as “cranial mobility.” I 

then compared rates of evolution of cranial mobility and of head shape between biters 

and suction feeders. I demonstrated that the trade-off results in less diversity of 

kinematics, which evolve more slowly in biters, but accelerates evolution of morphology, 
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as biters evolve head shape more rapidly than suction feeders. These results show the 

potential for trade-offs to provide differing evolutionary constraints on the evolution of 

morphology and kinematics, and to create a mismatch between the adaptive landscapes 

of form and function.  

In my second chapter, I reconstructed the history of feeding mode among 1,530 

species of reef fishes and found that prior to the end-Cretaceous mass extinction, over 

96% of reef-associated lineages were suction feeders. But I found that there has been a 

trophic revolution among fishes since then, and benthic grazers make up fully 40% of 

modern reef fish species diversity. Alongside ecological shifts in the structure of reefs, 

innovations for improved biting by fishes at the dawn of the Cenozoic may have provided 

opportunities for biters to thrive and resulted in a trophic revolution among reef fishes. 

Using body shape data for all 1,530 species, I showed that benthic grazers are evolving 

body shapes 1.7x faster than suction feeders. These results suggest that benthic grazing 

may inherently elevate evolutionary potential by providing access to attached prey with 

diverse functional properties. This study demonstrates that there has been a 

transformation the trophic makeup of reef fishes in the last 65 million years, and that biting 

has been a major contributor to the ecological and phenotypic diversity of reefs.  

In my third chapter, I leveraged body shape data from 5,940 species of teleost 

fishes across 392 families from a dataset that I helped collect at the National Museum of 

Natural History to understand evolution of extreme body shapes in fishes. Fishes range 

from pancake-like, dorsoventrally flattened goosefishes to species that have been 

laterally compressed into a disc-like shape, such as surgeonfishes, and even to slender, 

elongate eels. Yet fishes of all these shapes are subject to the same physical constraints 
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of life underwater. How, then, is it possible for some lineages to “break the rules” and 

evolve extreme body shapes? One intuitive possibility is that fishes are concentrated in 

shape space because it is hard to evolve or function with these odd shapes, and so 

evolution towards extreme shapes is a long, slow battle against the physics of aquatic 

life. Yet this work found that species further in shape space from the average body shape 

are evolving more rapidly, suggesting that the evolution of an extreme body shape 

requires the release of the constraints on the formation of a typical body shape, such as 

a major developmental or ecological shift, likely paired with a major shift in adaptive zone. 

Such a shift in adaptive zone may result in dramatic evolution of body shapes and allow 

the evolution of extreme or unique body shapes. 
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CHAPTER 1 

A MULTIFUNCTION TRADE-OFF HAS CONTRASTING EFFECTS ON THE 

EVOLUTION OF FORM AND FUNCTION 
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INTRODUCTION 

Morphological systems with more than one function may experience trade-offs tied to an 

inability to simultaneously optimize alternative functions (Futuyma and Moreno 1988; 

Wilson and Yoshimura 1994; Koehl 1997; Wainwright 2007). The compromises inherent 

in trade-offs suggest that multifunctionality discourages the incorporation of novel 

functions into existing repertoires, thereby limiting diversification of these systems 

(Schaefer and Lauder 1996; Gatesy and Middleton 1997; Bennett and Lenski 2007; 

Walker 2007; Farina et al. 2019). But, the efficacy of this suppressive effect has been 

called into question by recent research that finds that traits most closely tied to trade-offs 

show elevated rates of evolutionary diversification, demonstrating that trade-offs can 

sometimes promote rather than limit diversification (Holzman et al. 2012; Muñoz et al. 

2017, 2018). These contrasting observations indicate a need for specific tests of 

multifunctional constraint, particularly as they suggest that the impact of a trade-off may 

be context-dependent. Furthermore, most studies of multifunctionality focus on 

underlying anatomical traits, but because the mapping of form to function can be complex, 

it is important to explore diversification at both levels (Koehl 1997). In this study, we asked 

how multifunctionality affects evolution of the feeding mechanisms in fishes. We 

compared prey capture kinematics in fishes that feed with one mechanism, suction, with 

those of fishes potentially exposed to a trade-off invoked by having two prey capture 

mechanisms: suction and biting.  

Suction feeding is used by nearly all aquatic vertebrates for prey capture. Highly versatile, 

suction is used to capture virtually any free-moving prey, including fishes, crustaceans, 

polychaetes, zooplankton, and insects (Lauder 1985). A suction strike involves rapid 
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expansion of the skull that draws in water and prey, made possible by mobile cranial 

elements and by the high density and viscosity of water (Lauder 1980a; Sanford and 

Wainwright 2002; Westneat 2006). Across ray-finned fishes (Actinopterygii), for whom 

suction feeding is the ancestral mode of prey capture, skull expansion is achieved by way 

of flexible joints and many independently moving components (Schaeffer and Rosen 

1961; Anker 1974; Elshoud-Oldenhave 1979; Lauder 1980a; Westneat 2006). Some 

fishes, especially in reef habitats, have expanded their feeding repertoire, using direct 

biting actions to remove attached prey not easily captured with suction (hereafter termed 

“biters”) (Liem 1978, 1980; McKaye and Marsh 1983; Bellwood and Choat 1990; Konow 

and Bellwood 2005; Konow et al. 2008; Gibb et al. 2015). Biters continue to use suction, 

but habitual biting or grazing places novel functional requirements on their cranial 

anatomy (Bemis and Lauder 1986; Gillis and Lauder 1995; Van Wassenbergh et al. 2007; 

Ferry et al. 2012; Mackey et al. 2014). A biting strike typically transmits greater forces 

through the jaws to the prey or substrate than a suction strike (Liem 1979; McGee et al. 

2016). Elevated forces in biters are expected to lead to greater cranial strength and 

stability, but a reduction in mobility as a result of a fundamental trade-off between 

transmitting motion versus force through the musculoskeletal levers that form the kinetic 

fish skull (Kotrschal 1988; Westneat 1994; Ferry-Graham and Konow 2010; McGee et al. 

2016; Martinez et al. 2018). 

We explored the impact of multifunctionality associated with biting on 

diversification of the feeding mechanism by comparing the rates of evolution of cranial 

mobility measured during prey capture in 44 species of suction feeders and biters 

spanning 28 families of fishes of percomorph fishes (Percomorpha includes about 160 
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families). Using landmark morphometrics applied to high-speed videos of fishes feeding, 

we generated a dataset consisting of seven traits capturing cranial motions during suction 

feeding. We then estimated rates of evolution, trait optima, and convergence of suction 

kinematics, as well as the evolutionary rate of cranial morphology. We used two 

contrasting approaches to assess evolutionary rates of cranial mobility (e.g., kinesis) and 

major components of kinesis (e.g., jaw protrusion, rotation, gape, etc.), one based on a 

univariate Brownian-Motion and Ornstein-Uhlenbeck model-fitting framework, and a 

second with a Bayesian, relaxed clock, state-dependent, multivariate model of Brownian 

Motion. If a trade-off between mobility and force transmission constrains the evolution of 

prey capture kinematics, we should see slower rates of evolution in species that use both 

biting and suction, versus those using suction alone.  

 

MATERIALS & METHODS 

Dataset Construction 

Feeding mode distribution. We categorized species in our study as either “biting”, 

referencing those species that use both biting and suction, or “suction feeding” based on 

published information about their feeding ecology and our own observations in the lab 

and the field (Purcell and Bellwood 1993; Westneat 1995; Randall et al. 1997; Ferry-

Graham et al. 2001; Wainwright and Bellwood 2002; Konow et al. 2008; Oufiero et al. 

2012; Copus and Gibb 2013). We classified a “biting” feeding mode as one where the fish 

uses suction as well as direct biting actions. A direct biting action was designated as one 

where the fish’s closing jaws make contact with the prey item to either grip it or scrape it 
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from a holdfast. We identified 31 suction feeders and 13 biters in our dataset of 44 species 

(Table S1). 

Feeding videos & landmark morphometrics. We collected 175 lateral view high-speed 

videos of suction-based feeding strikes in 44 species of fishes from 28 families within 

Percomorpha for which we had identified feeding mode. To calculate overall cranial 

kinesis, we used the method described by Martinez et al. (2018), summarized here. 

Landmark morphometrics were used to digitally capture head shape at ten equidistant 

time points during each feeding strike, starting with onset of mouth opening and ending 

when maximum gape was achieved. We used tpsDig2 (Rohlf 2015) to place 18 landmarks 

on the fish’s head: 10 fixed landmarks denoted functionally informed, homologous points 

of the cranial anatomy and 8 sliding semi-landmarks along the ventral margin of the head 

captured the motion of the lower jaw and depression of the hyoid apparatus of the throat, 

which we refer to as “buccal depression” (Fig. S1; doi: 10.25338/B8703S). Landmark data 

were analyzed in the statistical software R v. 3.6.3 (R Core Team 2019) using the package 

geomorph v. 3.1.2 (Adams and Otárola-Castillo 2013). A generalized Procrustes analysis 

(GPA) was performed to align the data, an iterative process of scaling, rotating, and 

translating all shapes to reduce the Procrustes distance between them (Rohlf and Slice 

1990). Alignment of sliding semi-landmarks during GPA was done in a manner that 

reduced Procrustes distance (Gunz and Mitteroecker 2013). We extracted head shape 

data from the starting image of each strike, when the mouth was closed, computed a 

separate alignment for those shapes, and then averaged them by specimen and then by 

species. This procedure for extracting head shape data from video sequences resulted in 
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a morphological dataset in which all downstream analyses of head shape were 

independent of scale. 

Calculating total cranial kinesis and kinematic components. We visualized each 

feeding strike as a trajectory of head shape change. The length of this trajectory was 

quantified using Procrustes distance, which represents the distance between two points 

(i.e., shapes) in shape space (Kendall 1984; Adams and Otárola-Castillo 2013) (distances 

ij in Fig. 1b). This resulted in nine distances between the ten head shapes representing a 

strike sequence, which we summed to get the total trajectory length, representing overall 

cranial kinesis (sum of i1:i9 in Fig. 1b). A longer shape change trajectory represented 

higher kinesis, with a greater range of motion of cranial bones (Martinez et al. 2018; 

Martinez and Wainwright 2019). We separately measured six components of cranial 

kinesis from the landmark data, which we refer to as “kinematic components” (Fig. S2). 

These measurements included the peak values of major elements of the expansive phase 

of a suction strike: upper jaw protrusion, mouth gape, cranial elevation, upper jaw rotation, 

lower jaw rotation, and buccal depression (Fig. S2). These kinematic components are 

functionally integrated in a suction feeding strike and their sequential, coordinated 

activation is a defining feature of suction feeding (Gibb and Ferry-Graham 2005; Bishop 

et al. 2008; Olsen et al. 2019). All measurements, including overall cranial kinesis and all 

six kinematic components, were computed for each feeding strike and averaged at the 

specimen-, then species-levels prior to conducting statistical analyses.  

Data Analysis 

Phylogenetic comparative methods. To account for the effects of shared evolutionary 

history on kinematic and morphological traits, we employed a dual model-fitting approach 
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to estimate the impact of native feeding mode (suction or biting) on the rate of evolutionary 

diversification of kinematics during suction-based feeding events. We pruned a large 

phylogeny of ray-finned fishes (Rabosky et al. 2018) to the species in our dataset and 

used the R packages stats, ape v 5.3 (Paradis et al. 2004), and phytools 0.6-99 (Revell 

2012) to explore evolutionary patterns. Where species in our dataset were not present in 

the phylogeny, we substituted them with a species chosen at random from those in the 

same genus or the most closely related genus that were sampled in the tree; four species 

required this substitution (genera: within-Choerodon; Oxycirrhites to Paracirrhites; 

Cyprinocirrhites to Notocirrhitus; Terelabrus to Bodianus). 

We estimated disparity separately for each kinematic trait using morphol.disparity 

in geomorph, and also took the average of all 7 values. Separate phylogenetic ANOVAs 

using procD.pgls in geomorph were used to compare overall cranial kinesis and individual 

kinematic components by feeding mode (at α = 0.05). We used principal component 

analysis (PCA) on the correlation matrix to visualize the multivariate kinematic data. 

Lastly, to compare head morphology, we visualized the morphospace of interspecific 

head shape variation from landmark data using the plotTangentSpace function in 

geomorph and measured overall morphological disparity with the morphol.disparity 

function in that R package. 

Convergent evolution. We used two distance-based metrics of evolutionary 

convergence, as implemented in the package convevol v 1.3 (Stayton 2015). We 

estimated convergent evolution among biting lineages in our kinematic data, including 

overall cranial kinesis and the six kinematic components. C1 estimates the proportion of 

phenotypic distance closed by evolution of the putatively convergent tips, given the 
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maximum distance in phenotypic space between lineages, including estimated ancestral 

states at nodes (Stayton 2015). We also compared C3, which estimates the proportion of 

the total evolution of the putatively convergent taxa distance that brings taxa closer 

together, or that which is “attributable to convergence.” We ran significance tests using 

500 simulations of convratsig when estimating the degree of convergence in kinematic 

data, which iterates the distance-based convergence tests. 

Evolutionary rate and trait optima estimates. There are no reliable methods yet to 

model the effect of a discrete trait in a multivariate Ornstein-Uhlenbeck framework for very 

high-dimensional data, like the morphometric landmarks that we used to capture head 

shape (Adams and Collyer 2018, 2019). Therefore, we used multivariate Brownian Motion 

models implemented in geomorph to estimate evolutionary rates and compared the fit of 

single- and multi-rate Brownian motion models (Adams and Otárola-Castillo 2013; Adams 

2014). We used feeding mode as a binary discrete trait. 

We used a two-fold methodology to estimate rates of character evolution for 

kinematic components and kinesis for biters and suction feeders. In the first approach, 

we fit a series of Brownian Motion (BM) and Ornstein-Uhlenbeck (OU) models of trait 

evolution to estimate univariate evolutionary rates. Both BM and OU models can be used 

to estimate evolutionary rate of a continuous character and to test for the effect of discrete 

trait history on continuous character evolution. We used feeding mode as a binary 

discrete character and generated a distribution of 1,000 stochastic character maps using 

phytools (Revell 2012). For kinesis and each kinematic component, we then fit five BM or 

OU models on each stochastic character map using OUwie (Beaulieu et al. 2012). We fit 

single-rate Brownian Motion, “BM1”; multi-rate Brownian Motion, “BMS”; single rate, 
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single optimum Ornstein-Uhlenbeck, “OU1”; multi-optimum, single rate Ornstein-

Uhlenbeck, “OUM”, and multi-rate, multi-peak Ornstein-Uhlenbeck, “OUMV”. We elected 

not to fit multi-rate, multi-peak, multi-selection Ornstein-Uhlenbeck models with a 

separately estimated sigma-squared and alpha (OUMVA) because of difficulties with 

interpreting values of sigma-squared under different estimates of the alpha parameter 

(Ho and Ané 2014; Cooper et al. 2016). We compared the fit of models across all 1,000 

stochastic character maps using AICc, with a distinguishability cutoff of 2.0. 

Secondly, we fit estimated rates of kinematic evolution in suction feeders and biters 

with a Bayesian approach, using a relaxed clock, state-dependent, multivariate BM model 

of evolution, implemented with the MuSSCRat model and executed in RevBayes (Höhna 

et al. 2016; May and Moore 2019). We used the MuSSCRat model for estimates of 

evolutionary rate because it allows multivariate estimates of the Brownian rate parameter, 

jointly estimates evolution of the discrete trait and the continuous traits avoiding a source 

of bias in rate estimates (Revell 2013), and uses a relaxed-clock model incorporating 

background rate variation that provides improved type-I error rates (May and Moore 

2019). Most common implementations of BM or OU are univariate, allowing only one 

continuous character at a time (Adams 2014; Denton and Adams 2015; Adams and 

Collyer 2018, 2019). However, the multiple kinematic components measured in our fishes 

are mechanically linked and are concurrently activated during a feeding strike. For this 

reason, a multivariate approach that allows us to capture that covariation is valuable. 

Furthermore, a state-dependent, relaxed-clock model allowed us to directly test our 

hypothesis that the rate of evolution depends on feeding mode, at the exclusion of other 

sources of rate variation. 
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We ran three separate MCMCs of the MuSSCRat model due to unit 

incommensurability between the three forms of measurement data (Huttegger and 

Mitteroecker 2011; Adams and Collyer 2019). We fit independent models with the three 

angular kinematic components, the three linear distance components, and overall cranial 

kinesis as continuous characters and used feeding mode (biting and suction feeding) as 

a binary discrete trait. The MCMCs ran for 500,000 generations (distances), 1 million 

generations (angles), or 2 million generations (kinesis) with a 10% burn-in, and we set a 

prior expectation on the number of transitions between discrete states at 5 for all models. 

We drew transition rates from a log-normal prior and set a log-uniform prior on the 

probability that the rate of the continuous characters was state-dependent. A log-normal 

prior informed the rate shift distribution. We describe how we evaluated the influence of 

priors on the number of rate shifts on posterior parameter estimates in Appendix 1 (Fig. 

S5). 

 

RESULTS 

Diversity in kinematics and morphology 

Overall cranial kinesis and kinematic components. Suction feeding fishes had greater 

overall cranial kinesis, undergoing greater total shape change during feeding strikes, than 

did biters (Fig. 1). Across six components of cranial mobility, suction feeders had more 

diverse feeding kinematics, possessing an average of 13.53-fold greater variance among 

species than in biters (Table S2). Additionally, fishes that use biting had smaller mean 

values than those that use only suction for all kinematic components except for lower jaw 
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rotation, and also displayed lower overall cranial kinesis (Fig. 2; Table S3). A PCA of the 

six kinematic components resulted in all variables loading positively on PC1, which 

accounted for 65.9% of total variation and represented an axis of low to high mobility, with 

biters clustered low on PC1. PC2 (17.8% of total variation) primarily captured variation 

among suction feeders, with upper jaw protrusion and maxillary rotation loading positively 

and highly, but maximum gape loading strongly, but negatively on this axis (Fig. 3a; Fig. 

S3; Table S4). 

Head shape diversity. Feeding mode had a strong effect on head shape. When 

visualized in the first two axes of a PCA, feeding mode separated species into two 

minimally overlapping groups (Fig. 3b). Head depth and mouth size were major 

contributors to this separation, correlating most strongly with PC1 (40% of total variation) 

and PC2, respectively (29.1% of total variation). Biters occupied parts of the 

morphospace associated with deeper heads and smaller mouths as compared to suction 

feeders. Disparity (i.e., variance) of head shape in suction feeders was 1.54x that of biters 

but was not statistically different (p = 0.15). 

Convergence among biters. We found strong evidence for convergent evolution in 

kinematics of species that use both biting and suction (C1=0.404; p < 0.0001), indicating 

that biters have closed 40% of the maximum distance in kinematic phenotype space 

between their lineages. An estimated 20.2% of the total evolution of kinematic 

components and total cranial kinesis in biters brought these putatively convergent taxa 

closer together (C3) (Fig. 4). Consistent with the results for trait means and variances, 

biters converged on lower cranial kinesis and lower variation among species in kinesis 

than suction feeding species.  
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Models of Evolution 

Stochastic character maps. A distribution of 1,000 stochastic character maps, 

simulating the discrete character history of feeding mode, recovered an average of 9.00 

transitions between states, including some from suction to biting, and others back again 

from biting to suction (Fig. 5a). Reconstructions predict the ancestral character state of 

the sampled taxa to be suction feeding. 

Morphological evolution. Head shape evolved faster in biters than in suction feeders, 

with the former having about a 1.62-fold faster rate of evolution. Model fitting significantly 

favored different rates for feeding mode groups over a single-rate model (BMS preferred 

over BM1, p = 0.01). Though biters have an elevated rate of head shape evolution 

compared to suction feeders, their slightly lower disparity is likely due to the smaller 

proportion of time on the phylogeny spent in a biting state. 

Kinematic evolution. In a Brownian Motion and Ornstein-Uhlenbeck model fitting 

framework, suction feeders had elevated rates of evolution when compared to biters in 

all six kinematic components as well as total cranial kinesis (Fig. 5b, Table 1). All traits 

were best fit by a multi-rate, multi-optima model of evolution (OUMV), but some traits 

were equally well fit by either multi-rate Brownian Motion with no adaptive optima (BMS; 

buccal depression, head rotation) or a single-rate, multi-optima model (OUM; lower jaw 

rotation, maximum gape). As all traits were equally well or best fit by the OUMV model, 

we reference its parameters for the rest of this manuscript, particularly when comparing 

this model-fitting framework to an alternative approach used, below. Suction feeders 

always had an optimum associated with larger trait values than biters (Fig. 2). 

Furthermore, in suction feeders, model-predicted trait optima were largely aligned with 
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the central peaks of empirically measured trait values, but observed trait distributions in 

biters were often centered on a peak associated with slightly higher trait values than those 

predicted by the model. Rates of evolution for kinematic traits were, on average, 16.53 

times faster in suction feeders than biters, with the difference ranging from a 2.99-fold 

faster rate in maximum gape to an exceptional 47.40-fold faster rate of upper jaw 

protrusion in suction feeders.   

An alternate method for rate estimation, using Bayesian relaxed-clock, 

multivariate, state-dependent models of evolution, reported an average of 13.50-fold 

faster evolution of kinematics in suction feeders than in biters while accounting for 

background rate variation, across three models (Fig. 6). Suction feeders evolved kinesis 

15.13 times faster than biters, with a posterior probability of separate rates for each 

discrete state of 0.997 and an estimated 5.29 rate shifts. For linear distance-based 

components, suction feeders evolved 22.46-fold faster than biters, with a posterior 

probability of 1.00 for state dependence of the rate and an estimated 8.34 rate shifts. For 

angle-based components, suction feeders evolved 2.91 times faster than biters, with a 

posterior probability of state dependence of 0.91 and an estimated 7.13 rate shifts. The 

magnitude of the effect of feeding mode on trait evolution was variable; in kinesis, there 

was a strikingly strong correspondence between variation in rates that was attributed to 

the discrete trait and the overall rates for each branch (Fig. 6, Fig. S4). In contrast, the 

distance component traits and angle component traits showed a more moderate role for 

background rate variation contributing to overall branch rates. 
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DISCUSSION 

We found patterns of diversity in fish feeding motions that are consistent with a trade-off 

constraining evolution in species with multifunctional jaws used for both biting and 

suction, compared to species that feed only by suction. Our results show a dominant role 

of multifunctionality in governing the evolution of suction strikes and of cranial mobility, 

with exceptional rate differences between groups: 16.5-fold per-trait average or a still high 

13.5-fold (multivariate BM rate) faster evolution of species that use just suction feeding, 

even when accounting for background rate evolution. This very strong effect of feeding 

mode is underscored by the remarkable similarity in the evolution of total cranial kinesis 

between overall branch rates of evolution (Fig. 6a, center) and rate attributed to feeding 

mode, indicating that feeding mode accounts for nearly the full range of rates of evolution 

of suction feeding kinematics (Fig. 6a, right). We found that the constraints of the trade-

off have limited both the degree of kinesis as well as the diversity of kinematic 

combinations in species that use both biting and suction when they feed using suction. In 

contrast, suction feeders have elevated kinematic diversity in part because of the higher 

degree of cranial kinesis, but also because they couple their highly mobile strikes with 

varied contributions from different kinematic components to the overall feeding motion 

(Fig. 3a). For example, two of the highest kinesis suction feeders, Antennarius hispidus 

and Epibulus insidiator, have either high buccal expansion and comparatively modest jaw 

protrusion, or exceptional jaw protrusion with little buccal expansion, respectively.  

Reduced kinesis appears to be adaptive for biting fishes with a multifunctional 

feeding apparatus, with lower rates of kinematic evolution across multiple model-fitting 

methods. Because of the inherent mechanical trade-off in levers between transmission of 
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force and motion (Westneat 1994, 2003), adaptation in a feeding system that uses biting 

toward the transmission and application of force during biting results in less mobility 

during suction strikes. In a biting strike, the force applied to the prey item is transmitted 

directly through the jaw lever systems, which may lead to the evolution of efficient 

muscular force transmission and constraint of skeletal movement to minimize 

misalignment of force and motion (Tedman 1980; Kotrschal 1988; Bellwood and Choat 

1990; Vial and Ojeda 1990; Friel and Wainwright 1997; Wainwright and Bellwood 2002; 

Ferry-Graham and Konow 2010; McGee et al. 2016). These expectations for the design 

of a biting feeding system contrast with characteristics of suction strikes, which often 

include a large expansion of the buccal cavity to drive the flow of water into the mouth 

(Elshoud-Oldenhave 1979; Lauder 1980b; Camp et al. 2015; Jacobs and Holzman 2018), 

including jaw protrusion that increases the hydrodynamic forces that suction feeders exert 

on prey (Holzman et al. 2008; Staab et al. 2012).  

Many biting taxa in our study have lost independent mobility between the two major 

bones of the upper jaw (Gosline 1987; Kotrschal 1988; Purcell and Bellwood 1993). Loss 

of independent upper jaw mobility results in less complex motion of the bones and, in 

most cases, the loss of upper jaw protrusion altogether, likely contributing to the extreme 

difference between groups in evolutionary rates for this trait (47.4-fold faster in suction 

feeders). The relationship between loss of mobility and reduced diversity of kinematics is 

reminiscent of the pattern in terrestrial vertebrate locomotion where an increased number 

of mobile elements is associated with diversity in locomotor patterns (Mosauer 1932; 

Dagg 1973; Hildebrand 1989). For example, mammals that almost exclusively move their 

hind legs synchronously, like adult rabbits, have fewer gaits than animals that routinely 
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move each of their four limbs in different patterns (e.g., horses). Such a relationship 

between diversification and number of independent elements is consistent with literature 

on modularity, which suggests that an elevated number of modules may increase the 

evolvability of the system, or its ability to vary (Hallgrímsson et al. 2009). Interestingly, the 

observed distribution of biters for each kinematic trait is centered around a slightly larger 

value than the optima estimated by Ornstein-Uhlenbeck models (Fig. 2), possibly 

reflecting compromises required to maintain adequate mobility to produce effective 

suction or that these species have yet to reach the optimal trait values. We conclude that 

convergent evolution of reduced cranial mobility during suction feeding may be a 

consequence of trade-offs that are characteristic of a multifunctional feeding apparatus, 

providing an example of how specialization for one function may have major 

consequences for another, within the context of a multifunctional apparatus. 

Much of the observed diversity among suction feeders appears to be associated 

with the different prey that these species normally feed on. Our sample includes 

piscivores with a large mouth opening and substantial buccal expansion (e.g., 

Antennarius hispidus, Epinephelus ongus), predators of small fish and elusive 

invertebrates with a high degree of upper jaw rotation (e.g., Epibulus insidiator, 

Oxycirrhites typus), and species that crush shelled prey in the pharyngeal jaws but 

capture them with suction (e.g., Cheilinus trilobatus) (Hiatt and Strasburg 1960; 

Grobecker and Pietsch 1979; Ormond 1980; Cornic 1987; Myers 1991; Wainwright and 

Richard 1995; Randall et al. 1997; Craig 2007). The higher rate of kinematic evolution in 

native suction feeders suggests that changes to kinematic pattern, achieved by varying 

the amount and relative contribution of different skull motions, are a key part of the 
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adaptive diversification of this feeding behavior, an insight that is supported by literature 

pointing to trends between feeding kinematics and trophic ecology (Liem 1978, 1979, 

1980; Norton and Brainerd 1993; Norton 1995; Rupp and Hulsey 2014; Longo et al. 2016; 

Martinez et al. 2018). 

Surprisingly, the observed difference in the rate of evolution of feeding kinematics 

is not associated with a parallel pattern in cranial morphology, as we found that relative 

to biters, suction feeders have an average of at least 13.50-fold faster kinematic evolution, 

but biters have 1.62-fold faster rates of evolution of head shape (Fig. 5b). It is possible 

that the substantial kinematic constraints imposed by a biting feeding mode have spurred 

evolution of the cranial morphology to meet those requirements. While a more detailed 

exploration of morphology may reveal greater anatomical diversity in specific structures 

in suction feeders, this result indicates that kinematic evolution reflects something more 

than a simple mapping of function onto morphology (Koehl 1997; Wainwright 2007). By 

extension, the impressive morphological diversity of suction feeding ray-finned fishes may 

substantially underestimate their kinematic diversity, whereas fishes that rely on biting 

have less kinematic diversity than would be expected from their morphological variation. 

This result also suggests that caution is warranted when inferring functional traits from 

morphology, a key step in many ecomorphological studies (Feilich and López-Fernández 

2019). 

Our study demonstrates that the effects of multifunctional trade-offs are not 

restricted to phenotype or functional space occupation, but also affect evolutionary rates 

in the involved traits and functions. The role of trade-offs in determining the occupation of 

morphospace have been documented in some taxa. In turtles, interactions of 
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hydrodynamics, self-righting ability, and mechanical stiffness constrain shell shape, and 

the trade-offs between these functions can pull species between optima (Polly et al. 2016; 

Stayton 2019; Polly 2020); in birds, release of trade-offs on the hindlimbs as the forelimbs 

evolve to be used for flight results in elevated diversity of the hindlimb (Gatesy and 

Middleton 1997); and in land plants, an adaptive landscape with multiple functional 

obligations contributing to fitness results in greater morphospace occupation than a 

landscape with just one function (Niklas 1994). Our results conceptually extend these 

principles to show that the effects of trade-offs may not be to just move lineages between 

adaptive peaks but also to increase or decrease the rate at which they traverse functional 

and phenotypic space.  

Multifunctionality is widespread in organismal systems and our study indicates that 

it can elevate the exposure of these systems to trade-offs, with substantial consequences 

for the evolutionary dynamics of functional attributes. Nearly all organismal systems are 

multifunctional in some form, but the fundamental physical principles underlying 

organismal design provide opportunities to understand the effects of the consequential 

trade-offs on evolution of those very same systems. A key goal in future work will be to 

test the generality of how multifunctionality impacts diversification, especially the degree 

to which variation among taxa in the level of multifunctionality is a major regulator of the 

pace of functional evolution. 
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FIGURES & TABLES 

Fig. 1. Comparison of motion trajectories of suction-feeding strikes by fishes that naturally 

feed with either a biting or suction-based feeding mode. a) 175 feeding sequence motion 

trajectories displayed on PCs 1 and 2, colored by feeding mode. Individual lines connect 

frames that are part of a single feeding sequence, and each point along the lines reflects 

head shape during one of the 10 sampled frames of the video sequence. Larger points at 

the ends of lines indicate starting postures (i.e., closed mouth, shown as an open point) 

and maximum gape (closed point), and smaller points represent intermediate motion 

points. All strikes proceed in a generally downward direction on the plot. Deformation 

grids indicate landmark positions at minima and maxima for each PC; the position of the 

eye is circled. The major axis of variation corresponded with head shape diversity (PC1), 

followed by an axis of shape change largely associated with feeding motions (PC2). b) 

Mock illustration in the style of sequences shown in a, displaying shape change of a fish 

head during a single suction feeding event and the resulting shape trajectory.  
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Fig. 2. Major kinematic components in fishes that use suction and biting feeding modes 

and their evolutionary optima. Density plots depict the maximum value of each measured 

variable attained during a feeding sequence, averaged by species. Dashed lines indicate 

the evolutionary optima (theta) estimated by the multi-rate, multi-optima Ornstein-

Uhlenbeck model (OUMV), colored by feeding group. Phylogenetic ANOVAs for all 

kinematic traits were significant at α = 0.05, except for lower jaw rotation. In every 

measured kinematic component and in overall kinesis, biters have both lower values and 

lower variance among-species, relative to suction feeders. Illustrated on the left are 

starting and maximum gape postures of Paranthias furcifer; illustrated at each panel is 

the motion measured by that kinematic component. Red lines on the illustrated fish 

indicate mobile anatomy that has been measured and arrows show the direction of 

motion.  
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Fig. 3. Distribution of biting and suction feeding fishes in kinematic and morphological 

space. a) Principal component axes (PCs) 1 and 2 from a PCA of six kinematic 

components. Points represent species’ means. Note that suction feeders occupy much 

larger ranges than biters on PCs 1 and 2. Vectors in upper left inset represent PC loadings 

of kinematic components. Illustrated species at maximum gape posture, clockwise, 

starting from left: Chaetodon lunula; Epibulus insidiator; Antennarius hispidus. b) 

Morphospace of head shapes based on landmark morphometric data. Within the space 

defined by PCs 1 and 2, the two feeding modes have minimal overlap in shape. Illustrated 

head shapes (closed mouth posture) of selected species, clockwise, starting from left: 

Naso elegans; Antennarius hispidus; Oxycirrhites typus; Canthigaster bennetti. 
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Fig. 4. The evolutionary history of overall cranial kinesis among fishes. The y-axis is total 

cranial kinesis measured during suction-feeding strikes. Selected species have been 

drawn in starting and maximum gape postures to illustrate the range of overall cranial 

kinesis found in our dataset. Illustrated fishes, as well as species names, have been 
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colored by feeding mode. Internal branches and nodes were estimated using maximum-

likelihood with the phenogram function in phytools (Revell 2012). 
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Fig. 5. Results of macroevolutionary models in a Brownian Motion and Ornstein-

Uhlenbeck model-fitting framework. a) Sample stochastic character map of feeding mode 

history, with pie charts at each node indicating the frequencies of each state, across 1,000 

stochastic character maps. b) Rate ratios of suction feeding species to biting species for 

multi-rate, multi-optima Ornstein-Uhlenbeck (OUMV) models for each trait except head 

shape, where multi-rate Brownian Motion (BMS) estimated the rate. Bars indicate 95% 

confidence intervals. Blue coloration indicates observations where suction rates are faster 

than biting rates. Gold coloring indicates that biters have a faster rate. The dashed line, 

at 1, marks where the rates of evolution of suction feeders and biters are equal. 
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Fig. 6. Results of macroevolutionary model-fitting with a Bayesian, multivariate, state-

dependent, relaxed clock model of Brownian Motion across 3 models, showing 
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substantial support for independent rates for each feeding mode state. Left, the posterior 

density distributions of the rates for each group colored by feeding mode. Center, overall 

per-branch rate estimates are mapped onto the phylogeny. Right, rate variation that is 

attributed to the discrete state are mapped onto the phylogeny. Center and right, on 

branches warmer colors indicate higher rates and cooler colors, lower rates. To the right 

of tree tips, circles indicate the feeding mode state for each species. a) Model-fitting on 

overall cranial kinesis showed strong support for distinct rates between groups, with most 

of the rate variation explained by the feeding mode state. b) The three distance-based 

traits showed strong support for distinct rates between groups but a more moderate effect 

of background rate evolution, seen in the increased disparity between the overall rates 

and the rate variation attributed to the discrete trait. c) The three angle-based traits, while 

still strongly supporting two discrete rate classes, show a peak indicating a lower 

probability of identical rates between groups. Notably, the relationship between branch 

rate and feeding mode state is very pronounced in angle state-dependent rates, as 

suction feeders uniformly have higher rate than biters. 
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Table 1. Best-fitting evolutionary models from Ornstein-Uhlenbeck model fitting. 

Notes: We fit single-rate Brownian Motion, “BM1”; multi-rate Brownian Motion, “BMS”; 
single rate, single optimum Ornstein-Uhlenbeck, “OU1”; multi-optimum, single rate 
Ornstein-Uhlenbeck, “OUM”, and multi-rate, multi-peak Ornstein-Uhlenbeck, “OUMV”. 
We display multiple models in the cases where more than one model was considered 
‘equally likely’ by AICc. The sum of “total percent best model” for a single trait may exceed 
100% in cases where more than one model was consistently identified as best- or equally-
well-fitting. ‘σ2 ratio’ is the ratio of σ2 estimated in suction feeders relative to biters, under 
the best fitting model.  

 

  

Trait Model AICc AICc diff. % best 
model σ2 ratio Alpha Θbiters Θsuction 

Maximum 
gape  

OUM -131.59 0.62 93.3 1.00 0.01 0.03 0.13 

OUMV -131.87 0.34 97.7 2.99 0.02 0.04 0.12 

Head rotation 
BMS 316.95 1.78 74.9 6.46 - - - 

OUMV 315.37 0.23 96.2 15.35 0.03 1.06 17.31 

Buccal 
depression 

BMS -224.53 0.04 99.5 20.15 - - - 

OUMV -223.31 1.28 95.0 22.73 0.01 0.01 0.03 

Kinesis  OUMV -63.03 0.07 95.8 10.52 0.05 0.13 0.34 

Lower jaw 
rotation 

OUM 380.56 1.05 80.8 1.00 0.02 19.34 46.00 

OUMV 379.93 0.50 85.4 3.07 0.06 22.87 45.61 

Upper jaw 
rotation OUMV 372.25 0.01 99.4 13.62 0.02 11.38 38.54 

Upper jaw 
protrusion  OUMV -172.82 0.01 97.0 47.40 0.13 0.01 0.05 
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CHAPTER 2 

THE RISE OF BITING DURING THE CENOZOIC FUELED REEF FISH BODY SHAPE 

DIVERSIFICATION 
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INTRODUCTION 

Reef habitats are renowned for high biodiversity (Alfaro et al. 2007; Cowman and 

Bellwood 2011; Brandl and Bellwood 2014; Floeter et al. 2018; Hemingson et al. 2021). 

Often, this pattern is attributed to the structural complexity of reefs, as complex habitats 

provide increased opportunity for microhabitat-related adaptations and niche partitioning 

(MacArthur and MacArthur 1961; Schoener 1974; Price et al. 2015). Among reef fishes, 

many major drivers of phenotypic and ecological diversity have been recognized at a 

range of phylogenetic scales (Wainwright and Bellwood 2002; Goatley et al. 2010; 

Borstein et al. 2019; Gajdzik et al. 2019; Hemingson et al. 2019), but we still lack a clear 

understanding of the processes and mechanisms that have made reef fish faunas the 

most diverse in modern oceans. 

One striking axis of diversity that distinguishes reef fish communities from those in 

other marine habitats is the variety of feeding modes used to capture prey. Fishes can 

employ a direct biting mechanism to remove attached prey from hard substrates or can 

use suction feeding, which relies on the density and viscosity of an aquatic medium to 

pull in water and prey via rapid expansion of the head. Suction feeding, which is most 

effectively used to capture mobile prey (Lauder 1980a, 1980b; Muller et al. 1982; Sanford 

and Wainwright 2002; Westneat 2006; Van Wassenbergh et al. 2009), is both ancestral 

for teleost fishes (Lauder 1980c) and well-represented on modern reefs (Mihalitsis and 

Bellwood 2019). However, direct biting feeding mechanisms characterize many iconic 

reef fish groups, including parrotfishes, butterflyfishes, surgeonfishes, and triggerfishes. 

The evolution of biting has allowed fishes to exploit a variety of benthic prey that are firmly 

attached to reef surfaces and thus resist suction, including molluscs, echinoderms, 
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cnidarians, sponges, algae, and other primary producers (Motta 1988; Bellwood and 

Choat 1990; Purcell and Bellwood 1993; Konow et al. 2008; Copus and Gibb 2013; 

Clements et al. 2017). The ecosystem importance of this functional breakthrough in 

trophic habits is perhaps best represented by the many benthic biting herbivores and 

detritivores (Randall 1967; Hobson 1974; Kotrschal 1988; Bellwood et al. 2014b; 

Clements et al. 2017; Nicholson and Clements 2021) that play a central role in energy 

transfer through reefs and regulating the composition of benthic communities (Williams 

and Polunin 2001; Bellwood et al. 2006; Hughes et al. 2007, 2013; Teichert et al. 2020).  

Benthic biting has been a major facet of the trophic diversity of reef fishes since at 

least the Eocene. Herbivores were well established in the Monte Bolca lagerstätte (~ 50 

Ma), marking the first evidence that teleosts could graze upon the reef surface and 

signaling a major shift in reef community functions (Bellwood 2003; Friedman 2010; 

Bellwood et al. 2014a). These herbivores appear to have risen to dominance within reef 

ecosystems globally through expansion and colonization following the split of the Tethys 

Sea and the increased availability of reef flat habitats in the late Cenozoic (Friedman 

2010; Bellwood et al. 2017; Siqueira et al. 2019a, 2019b, 2020), though the implications 

of biting for phenotypic diversification of reef fishes remain unknown (Friedman 2010). 

Use of a biting feeding mode prior to the Eocene appears to be primarily the domain of 

non-teleost fishes. As long ago as the Devonian, lungfishes and some arthrodire 

placoderms captured and crushed hard prey with their jaws (Campbell and Barwick 1990; 

Anderson 2008, 2009; Long 2011). Several lineages of early-branching ray-finned fishes 

used biting for prey capture throughout the Mesozoic, including pycnodonts, 

macrosemiids, and semionotids (Nursall 1996; Tintori 1998; Bellwood 2003; Bellwood 
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and Hoey 2004); of these, pycnodonts persisted until the Eocene (Nursall 1996). The 

striking lack of biting teleosts prior to the Eocene (Bellwood 2003) may be due to a 20-

million year gap in major deposits of spiny-rayed (Acanthomorph) fishes from the late 

Campanian (~75 Ma) to the late Paleocene (~55 Ma) (Patterson 1993), during which 

biting by teleost fishes most likely proliferated to its Eocene prominence. The ambiguity 

regarding the origins of the expansion of biting among teleosts and its role in 

morphological diversification presents an opportunity for comparative phylogenetics to 

provide insight into the history of modern reef fishes. 

In this study, we explored the evolutionary history of benthic biting feeding 

mechanisms in reef fishes and the impact this novelty had on their phenotypic 

diversification. We compared benthic biting with three other feeding modes: suction 

feeding, an intermediate group using a mix of both suction and biting, and an uncommon 

feeding mode we refer to as “ram biting.” To determine how the prevalence of benthic 

biting has changed through time, we reconstructed the history of feeding modes among 

reef-dwelling teleosts using stochastic mapping on a time-calibrated phylogeny. We then 

measured the effect of feeding mode on rates of body shape evolution across a broad 

sample of 1,530 species of reef fishes spanning 111 families of extant teleosts. If biting 

feeding modes have been a significant stimulus to the diversification of modern reef 

fishes, we expect to see differences in body shape occupation of morphospace and 

phenotypic diversification when comparing biters to fish that employ other feeding modes. 

Our results provide insight into the evolutionary mechanisms underlying the vast 

phenotypic and ecological diversity of reef fishes. 
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MATERIALS & METHODS 

Morphological trait data. Body shape data were drawn from a previously published 

collection of measurements we made from museum specimens of teleost fishes (Price et 

al. 2019, 2020; Friedman et al. 2020a, 2020b). Wherever possible, species values were 

computed as averages of measurements from 3 adult specimens. The dataset consisted 

of 8 linear measurements spanning three dimensions: standard length and jaw length; 

mouth, body, and caudal peduncle width; and head, body, and caudal peduncle depth. 

We used the R package ‘rFishBase’ (Boettiger et al. 2012b) to identify 1,530 species from 

the larger body shape dataset that were both marine and reef-associated according to 

FishBase (Froese and Pauly 2018), and extracted these species for use in our analyses. 

These 1,530 species spanned 486 genera and 111 families, nearly one-quarter of all 

extant teleost fish families (Dataset S2).  

Body shape is a key aspect of morphology that interacts functionally with feeding 

mode. Though feeding mechanisms have long been linked to evolution of the feeding 

apparatus, recent research suggests that motions of the body are integral to successful 

prey capture across feeding mechanisms. Suction-based prey capture is only effective 

within ~1 mouth diameter of the jaws (Day et al. 2005) and so suction feeders must swim 

towards their prey; these forward swimming motions are the major axis of variation among 

suction kinematics (Longo et al. 2016), and muscles of the body power the rapid motions 

of the cranium that produce suction (Camp et al. 2015). For herbivores and other 

attached-prey feeders, motions of the body and fins are crucial to prey capture as they 

can be the dominant cause of the forces that detach prey items from the substrate 

(Perevolotsky et al. 2020). 
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We conducted most statistical analyses in the R computing environment v 4.0.2 

(87). Measurements were size-corrected using the preferred method from previous 

comparisons of size correction with this dataset (Price et al. 2019), log shape ratios 

(Claude 2013; Klingenberg 2016). We created a “size” variable as the geometric mean of 

standard length, body depth, and body width for each species. Then, we calculated scaled 

trait values as the ratio of each trait and the new size variable and took the log of those 

values.  

Feeding mode categorizations. We categorized fishes into feeding modes based on the 

prey that each species feeds on, using a combination of the primary literature, our own 

field and lab-based observations, and FishBase (Froese and Pauly 2018) (see Dataset 

S1). We used the functional characteristics of the prey to infer the likely feeding mode 

required to capture that prey item (further details are provided in Appendix 2).  

“Suction feeders” were categorized as species where >90% of the prey were free-

swimming or otherwise non-attached (including, but not limited to fishes, many 

crustaceans, errant polychaetes, and zooplankton). Examples of suction feeders include 

most grunts (Haemulidae), groupers (Serranidae), and jacks (Carangidae). 

A “biter” was a species for whom >50% of the prey require direct contact with the 

jaws for acquisition, in order to graze, scrape, or dislodge the item from a substrate (e.g., 

many molluscs, hard and soft corals, sponges, algae, hydroids, bryozoans, detritus, and 

some echinoderms). Examples of biters include parrotfishes (Scarinae), most angelfishes 

(Pomacanthidae), most surgeonfishes (Acanthuridae), porcupinefishes (Diodontidae), 

and most triggerfishes (Balistidae). Not all biters are herbivores, feeding on plant material, 

or detritivores, feeding on detritus; instead, some benthic biters consume higher 
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proportions of metazoan prey such as sponges, corals, molluscs, echinoderms, or fish 

scales. We used data on prey type to describe whether biters were 

“herbivores/detritivores” or not by categorizing a species as an herbivore/detritivore if 50% 

or more of its attached prey were plant material and/or detritus. 

In classifying feeding modes, we discretized a naturally continuous trait. To 

accommodate this uncertainty, we added a third category, “mixed biting and suction”, for 

species for which between 10-50% of their prey were attached prey items that require 

direct biting actions to capture, and the remainder of their diet were prey that would likely 

be captured using suction. For example, we classified many wrasses (Labridae), most 

porgies (Sparidae), and some pufferfishes (Tetraodontidae) as “mixed” feeders that rely 

on both suction and biting. 

Our final category was “ram biters”, which were categorized as species that use 

direct biting actions of the jaws but minimal suction to capture evasive or free-swimming 

prey (Norton 1991, 1995; Norton and Brainerd 1993; Ferry et al. 2015). This feeding mode 

was only possible to designate in cases where the literature contained information on the 

mechanism of prey capture, or we had personal observations. Most ram biters are 

piscivorous, including moray eels (Muraenidae), barracudas (Sphyraenidae), and many 

lizardfishes (Synodontidae).  

Phylogeny of teleost fishes. In order to align the time calibration closely with community 

consensus of divergence times (Near et al. 2012; Alfaro et al. 2018; Hughes et al. 2018), 

we calibrated a pruned phylogram of our 1,530 species (Rabosky et al. 2018) by aligning 

it with a smaller, recent phylogeny based on genomic ultraconserved elements for which 

divergence times had been estimated with fossils (Alfaro et al. 2018). We used the R 



 36 

package ‘geiger’ v 2.0.7 (Harmon et al. 2008; Eastman et al. 2013; Pennell et al. 2014) 

to “congruify” these trees by identifying nodes shared between both trees, and a 

penalized likelihood program (treePL) to estimate divergence times across the rest of the 

phylogeny’s nodes using the shared nodes as starting calibrations (Sanderson 2002; 

Smith and O’Meara 2012; Maurin 2020). 

Models of discrete and continuous character variation. To reconstruct the history of 

feeding modes along the phylogeny, we used ‘phytools’ v 0.7-80 to generate a distribution 

of 100 stochastic character maps (104, 105; further details in Appendix 2). We generated 

a distribution of character maps to account for uncertainty in the timing and number of 

feeding mode transitions throughout the evolutionary history of teleost fishes. While using 

a distribution allows us to alleviate some uncertainty, the reconstructions are confined to 

the information in our sampled dataset of 1,530 species. It is possible that biases among 

unobserved speciation and extinction events may also influence our trait reconstructions. 

We used a Principal Component Analysis (PCA) on the correlation matrix of all 

eight body shape variables to visualize body shape variation in our dataset. We 

conducted phylogenetic ANOVAs and MANOVA to examine the effect of feeding mode 

on average body shape in the R package ‘geomorph’ v 3.3.1 (Adams and Otárola-Castillo 

2013; Adams et al. 2018).  

 We used random forest models to understand which body shape traits were most 

powerful in discriminating between feeding mode groups. Random forest models are a 

machine-learning method of categorization using decision trees that uses combinations 

of continuous variables (body shape data) to categorize species by feeding mode group 

(Breiman 2001). We used cforest in the R package ‘party’ v 1.3-5 (Hothorn et al. 2006, 
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2015) to fit random forest models using conditional inference trees, which are more robust 

to interactions between the continuous variables. We trained the model on a subset of 

70% of the data (sampled randomly and without replacement) and then fit the model on 

the remaining 30% of the dataset, generating a distribution of 5,000 decision trees. We 

estimated the importance of each continuous variable across the distribution of decision 

trees as the mean decrease in categorization accuracy when that variable is excluded 

from the analysis (further details in Appendix 2). 

 We used ‘geomorph’ to compute multivariate and univariate morphological 

variance for each of the four feeding mode groups. To further compare morphospace 

occupation among feeding mode groups, we generated hypervolumes using the R 

package ‘hypervolume’ v.3.0.0 (Blonder et al. 2014, 2018) which each contained the 6-

dimensional morphospace that a given set of species occupied. We used the first 6 axes 

of a PCA on the correlation matrix, which together accounted for 98.5% of the variance 

in the data. Hypervolumes were generated for species in each feeding mode group and 

for sets of species not in each group (e.g., comparing all “suction feeders” to all species 

not coded as “suction feeders”). We compared overlap of the hypervolumes in order to 

estimate how much of the morphospace occupied by each feeding mode group was 

unique. To assess how similar our comparisons were to random groupings of our data, 

we simulated a null distribution of hypervolumes by permuting group assignments among 

our species data and compared the percentile of unique space occupation of our data to 

the distribution of permuted hypervolumes (more details in Appendix 2). 

We used MuSSCRat (implemented in RevBayes v. 1.0.10; Höhna et al. 2016; May 

and Moore 2019) to compare rates of body shape evolution between feeding mode 
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groups (O’Meara et al. 2006). MuSSCRat is a Bayesian model of multivariate Brownian 

motion that estimates the effect of a discrete character (feeding mode) on rates of 

continuous-character evolution (body shape evolution), while controlling for “background” 

variation in rates. We used an uncorrelated log-normal clock to place an independent 

parameter on each branch to model background-rate variation that is not due to the 

discrete trait of interest (similar to the UCLN relaxed-clock model for molecular evolution; 

116). The MCMC ran for 200,000 generations. We used Tracer v 1.7.1 (Rambaut et al. 

2018) to verify convergence of the MCMC and the package ‘RevGadgets’ v 0.1.0 in R to 

visualize and plot results (Tribble et al. 2021). 

 

RESULTS 

Evolutionary history of feeding modes. We classified 1,530 species of reef fishes by 

feeding mechanism. 335 (22%) were classified as biters; 277 (18%) were mixed suction 

and biting feeders; 830 (54%) were suction feeders; and 88 (6%) were ram biters (Dataset 

S1). We also classified biters and mixed feeders by whether they prey primarily upon 

algae and detritus (“herbivores/detritivores”) or take a larger portion of animal material 

such as sponges, corals, or echinoderms. In total, 58% of dedicated biters were 

herbivores/detritivores, 17% of “mixed” feeders were herbivores/detritivores, and 

combined, 39% of biters and mixed feeders were herbivores/detritivores. 

We used stochastic character mapping to reconstruct the history of feeding mode over 

the phylogeny. A distribution of 100 stochastic character maps had a mean of 244.5 

transitions between feeding modes across reef-dwelling teleosts, with strongly 

asymmetrical transitions between states (Fig. 1, and Figs. S1-S2). The mean total time 
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on the phylogeny spent in each state varied dramatically among feeding mode groups 

(Table 1). 

Stochastic character maps indicated a major transformation since the early 

Cenozoic in the representation of all three non-suction modes (Fig. 1). Prior to the end-

Cretaceous, suction feeding was used by at least 96% of teleost lineages that include 

species on modern reefs, with the three non-suction modes accounting for only about 

2.8% of all branches at the K/Pg boundary. Since that time, the proportion of lineages 

using biting modes has grown to its peak in the present at 40%. Beginning in the early 

Cenozoic, a steady rise was observed in the proportion of lineages that use the three 

non-suction modes of feeding, especially the dedicated attached prey biting category, 

which clearly accelerated in representation over the past 30 My. 

Morphological disparity and occupation of shape space. We explored how feeding 

mode affects the morphological diversity of reef fishes, estimating three-dimensional body 

shape with 8 linear measurements of length, depth, and width of the head, body, jaws, 

and caudal peduncle. When visualizing body shape diversity with a scatterplot of principal 

components 1 and 2, most species in our dataset were concentrated in an oval-shaped 

region of morphospace distributed in the upper half of PC1 and across PC2. A low-density 

spur spanned the majority of PC1, composed of eels and other elongate species, such 

as pipefishes and needlefishes. Standard length, body depth, and head depth were the 

major axes of diversity, dominating PC1, which accounted for 43.1% of the total variation, 

with smaller roles for caudal peduncle depth and width (Fig. 2, Table S1). PC1 defined 

an axis with elongate, slender bodies with shallow heads on one side and deeper, shorter 

bodies and deeper heads on the other. PC2, which contained 26.8% of the variation, was 
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dominated by width and jaw traits: body width, lower jaw length, and mouth width. PCs 3 

and 4, which each contained ~10% of the variation in the data, were made up of fish width 

and caudal peduncle traits; and lower jaw length, caudal peduncle width, and fish width; 

respectively.  

All eight body shape traits differed between feeding mode categories in 

phylogenetic ANOVAs at α = 0.05, and all traits except maximum fish width at α = 0.01 

(Fig. S3, Table S2). All traits had low explanatory power and small effect sizes, except 

lower jaw length, where feeding mode explained 6% of the variation in the data. Similarly, 

in a phylogenetic MANOVA, including all eight body shape traits, there was a significant 

effect of feeding mode on body shape (p < 0.0001), explaining 2.8% of the overall 

variance in body shape and an effect size of 5.98. Random forest model fitting identified 

lower jaw length as the most important trait for discriminating between feeding mode 

groups, with over 3-fold higher importance in correctly categorizing species than any other 

trait (Table S3). We found a trend among feeding mode groups along a gradient of prey 

evasiveness, where ram biters had elongate, slender bodies with large jaws, and species 

using biting had shorter, deeper heads and bodies, with short jaws. Suction feeders 

typically had intermediate body shapes between ram biters and benthic biters, but with 

substantial variation.  

To analytically compare which feeding mode groups had the most variation in body 

shape, we used multivariate disparity analyses. Body shape disparity was highest in ram 

biters, followed by suction feeders, then biters and mixed biting and suction feeders 

(Table 1). This pattern was generally repeated among univariate disparity analyses with 

the notable exceptions of maximum body depth and mouth width, where ram biters had 
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the lowest disparity, and maximum fish width, where there was very little variation 

between groups (Table S4). 

We used hypervolumes to compare the multidimensional morphospace 

occupation by feeding mode groups. Hypervolumes composed of the first 6 dimensions 

of a principal components analysis revealed modest differences in the amount of unique 

shape space occupied by feeding mode groups when each was compared to a group 

containing all other species. However, no comparisons were more extreme than 95% of 

a ‘null’ distribution of hypervolumes randomly generated from our data (Table S5). 

Notably, 19% of the space occupied by a composite group of all species using any form 

of attached prey biting, formed by combining the biting group and the mixed biting and 

suction group, was unique when compared to a group composed of ram biters and suction 

feeders (Table S5; Fig. S4).  

Evolutionary models of body shape diversity. Feeding mode had a strong effect on 

the multivariate rate of body shape evolution (across all 8 body shape traits; posterior 

probability of state-dependence = 1.0; Fig. 3). Attached-prey biters evolved traits 1.5-fold 

faster than species that use mixed suction and biting, 1.7-fold faster than suction feeders, 

and 1.9-fold faster than ram biters (Table 1). The substantial variation in background rate 

of body shape evolution uncovered and accounted for in these models is not surprising, 

given the vast amounts of evolutionary time and taxonomic breadth encompassed by our 

dataset; Fig. S5, Appendix 2). 
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DISCUSSION 

Our results reveal that the end-Cretaceous mass extinction preceded a sustained growth 

in the preponderance of teleost reef fish lineages that use biting for prey capture. The 

timing indicated in our reconstruction suggests that the prominence of herbivorous 

teleosts in the middle Eocene fossil record (Bellwood 2003; Friedman 2010; Goatley et 

al. 2010; Bellwood et al. 2014a) resulted from a rapid escalation of biting feeding modes 

among reef fishes, as the frequency of biting had only begun to increase among teleosts 

in the previous 15 My. These Eocene fossil teleosts show the shortened lower jaws that 

characterize benthic biters (Westneat 1994; Wainwright and Bellwood 2002), a novel 

invasion of functional morphospace specialized for feeding on attached prey (Bellwood 

2003). This rise in benthic biting overlaps with the emergence in the Paleogene and 

Neogene of lineages that are foundational to modern coral reefs, such as scleractinian 

corals and crustose coralline algae, and which are major substrates for the feeding 

activities of benthic biting reef fish (Wood 1998; Kiessling 2008). Coupled with these novel 

functional abilities in marine fishes, the evolution of modern reefs in the early Cenozoic 

appears to have facilitated a dramatic shift in the distribution of feeding modes used by 

reef teleosts. We find that the ecological composition of modern reef fish faunas is a 

relatively recent state and is very different from the historical distribution of feeding 

modes: the ancestors of modern reef fishes used almost exclusively suction prior to the 

Cenozoic, but on today’s reefs, fully 40% of species use some degree of biting to capture 

their prey. Furthermore, these benthic feeders are a major driver of reef fish phenotypic 

diversification as they show substantially elevated rates of body shape evolution when 

compared to suction feeders despite reduced disparity (Fig. 2, Fig. 3, Table 1). Taken 
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together, these results suggest that reef biters, which uniquely exploit the flora and fauna 

that compete for and attach to hard substrates on modern reefs, capitalized on 

mechanical modifications of the teeth and jaws to diversify around the novel ecological 

opportunities represented by this resource. 

It appears that the expansion of biting in the early Cenozoic took advantage of 

already-shifting reef communities. Reefs during the early Cretaceous were formed by 

groups of rudist bivalves, bryozoans, corals, and some algae (Scott 1981, 1988; Wood 

1995, 1998), and there is little evidence from the fossil record to suggest that teleosts fed 

on these substrates (Wood 1998; Bellwood 2003; Bellwood et al. 2014a). However, by 

the late Cretaceous, a transition was underway to reef structures dominated by grazing-

resilient forms of algae and corals that are directly fed on by modern reef fishes and 

provide substrate for attachment of many other benthic prey (Wood 1995, 1998). The 

transition to reef structures that succeed despite breakage and excavation, which 

preceded the expansion of biting in fishes, may have been driven by recently evolved 

herbivorous urchins and deep-boring limpets (Wood 1998). Thus, ecological shifts 

towards grazing-resilient structures in response to invertebrate grazers may have made 

reef conditions increasingly favorable for biters and able to support larger communities of 

high-efficiency attached prey feeders (Wood 1998), such that when fishes began to use 

biting and evolved functional features adapted for benthic feeding, like shortened jaws 

and flexible teeth (Tedman 1980; Bellwood 2003; Bellwood et al. 2014a, 2014b), they 

were extremely successful and were able to diversify within this broad adaptive zone. 

This pattern could contribute to the previously observed increase in morphological and 

species diversification of acanthomorph fishes in the early- to mid-Cenozoic 
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(Ghezelayagh et al. 2021). A similar ecological mechanism may explain the dramatic rise 

of dedicated biting in the last 30 My (Fig. 1), where colonization of highly productive reef 

flat habitats may have offered new opportunities for intense attached prey feeding by 

fishes (Bellwood et al. 2018); the novelty of reef flats appears to have also stimulated 

herbivore speciation in this period (Siqueira et al. 2020). 

Our results demonstrate that biting feeding mechanisms elevate body shape 

diversification. While we find that dedicated biters evolve body shape most rapidly, we 

also observe subtly increased rates of body shape evolution of mixed feeders that use 

both suction and biting (~1.15x faster than dedicated suction feeders). The pairing of a 

reduced reliance on biting in “mixed” feeders with a minor rate shift suggests that the 

magnitude of the role of biting in a fish’s feeding repertoire may correlate with the 

magnitude of increase in evolutionary rate. While reliance on a biting feeding mechanism 

is not common in the marine realm outside of reef habitats, our results generalize across 

111 families of teleost fishes and extend findings from other studies that a biting lineage, 

the parrotfishes, has the highest rates of evolution of functional morphological traits (Price 

et al. 2010; Gajdzik et al. 2019), though this effect is not uniform between and within 

families, as other ecological factors may affect body shape evolution of species (Fig. 3). 

However, previous studies have found significant but small effects of major habitat 

transitions on fish body shape diversification (Friedman et al. 2020a; Martinez et al. 2021) 

that contrast with the significant and stronger results from our phylogenetic MANOVA, 

suggesting that feeding mode has a relatively strong influence on body shape and its 

evolution when compared to the effects of other ecological traits. 
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Among reef fishes, herbivores have been found to evolve functional traits most 

rapidly, alongside top predators (Borstein et al. 2019). Our results suggest that this effect 

extends to all fishes that feed by biting benthic prey, as only 39% of species across both 

our biting and ‘mixed biting and suction feeders’ fed specifically on plant material or 

detritus. Evolution of biting prey capture mechanisms allowed access to a group of novel 

trophic niches for fishes (Bellwood et al. 2014b) involving a diversity of prey types with 

distinct functional properties. This group includes several lineages that feed on turfs, leafy 

algae, detritus, and benthic microbial communities that must be scraped, browsed, or 

yanked off the substrate (Jones 1968; Perevolotsky et al. 2020); predators of colonial 

cnidarians that either scrape the coral surfaces (e.g. many butterflyfishes) or bite off 

pieces of the colony, complete with bits of the skeleton (e.g. some filefishes and 

pufferfishes); species that scrape encrusted dead coral to feed on the mix of turf algae, 

detritus and cyanobacteria that resides on and within the skeleton (e.g., parrotfishes) 

(Bellwood and Choat 1990; Clements et al. 2017; Nicholson and Clements 2021; Pombo-

Ayora and Tavera 2021); and even species that grab and extract more mobile 

invertebrate prey, including urchins and bivalve molluscs, from holdfasts (e.g. some 

triggerfishes and wrasses). These different prey impose diverse functional requirements 

on the prey capture apparatus (Huby et al. 2019), providing opportunity for functional and 

morphological diversification. Reliance on biting for prey capture often results in a highly 

modified feeding apparatus; indeed, jaw length was the strongest variable in 

differentiating between feeding mode groups, with biters having shorter jaws on average 

(Fig. S3). Many biters have evolved substantial novelties that increase access or 

processing of attached prey such as a pharyngeal mill (Gobalet 1989), an intramandibular 
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joint within the oral jaws (Konow et al. 2008; Gibb et al. 2015), or elongated teeth, an 

innovation that improves access to loosely attached algae and detritus (Bellwood et al. 

2014b). Such novelties may also promote morphological diversification (Simpson 1944; 

Schluter 2000; Dornburg et al. 2011; Rabosky 2017; Larouche et al. 2020; Burress and 

Muñoz 2021). 

Biters densely populate a region of shape space characterized by shorter jaws and 

laterally compressed bodies (Fig. 2), consistent with observations that biters have 

shortened jaws for improved force transmission during prey capture (Westneat 1994; 

Bellwood 2003) and predictions that they use a deep body shape for agile maneuvering 

among the complex reef substrate (Blake 2004). Biting species with the most extreme 

body shapes in this region lie fully outside the range shown by suction feeding species 

(Fig. S4). However, the dynamic body shape evolution of attached prey feeders also led 

to occupation of morphospace that is shared with fishes using other feeding mechanisms, 

indicating that feeding mode is not a rigid predictor of body shape. The relatively recent 

proliferation of biting among reef fishes and the elevated rates of biters’ body shape 

evolution suggest that the emergence of biting in the Cenozoic exposed a range of 

underexploited feeding niches with consequences for both feeding and locomotor 

functional morphology. We propose that this novel landscape of diverse feeding 

opportunities, made possible by adept biting, stimulated jaw and body shape evolution. 

Our results demonstrate the relative recency of feeding mode diversity among 

teleost fishes on reefs, dominated by the emergence of the major ecological group of 

benthic biters that play a prominent role in modern ecosystem processes. We reconstruct 

the evolution of mechanisms of feeding on attached prey, finding a steady increase in the 
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proportions of reef fishes using biting throughout the Cenozoic. Coupled with evolutionary 

model-fitting results showing that biters have elevated rates of morphological 

diversification, our results suggest that ecological changes surrounding the end-

Cretaceous mass extinction event set the stage for the diversification of benthic biters, 

which uniquely took advantage of new, more grazing-resilient reefs in the Cenozoic. A 

major role for feeding on attached prey appears to be one key to the spectacular diversity 

of modern reef fishes. 
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Fig. 1. a) An ancestral state reconstruction of feeding mode using stochastic character 

mapping in reef-dwelling teleost fishes. Branches are colored by feeding mode, with 

selected major lineages labeled to the right. Background bars (white and grey) indicate 

geologic time period. b) A barplot showing the proportion of branches at million-year 

intervals in each feeding mode state, averaged across 100 stochastic character maps. 

Proportion of branches in each feeding mode is on the y-axis, with bars along the x-axis 

at million-year intervals starting 192 million years ago (left) and progressing rightwards 

towards the present. Dashed line indicates the time of the end-Cretaceous mass 

extinction event 66 million years ago. Note the dramatic increase of biting and mixed 

feeding modes following the mass extinction event.  
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Fig. 2. A plot of 1,530 reef fish species on Principal Components 1 and 2 based on eight 

body shape traits, with an inset on the right of a high-density region. Points represent 

species averages, and each species is colored by feeding mode. Several fishes are 

drawn to illustrate shapes of fishes at different regions of morphospace. Main plot (left), 

clockwise from with upper right: Aeoliscus strigatus, Remora remora, Halieutichthys 

aculeatus, Tylosaurus acus, Rhinomuraena quaesita. Inset (right), starting with upper 

right: Zebrasoma scopas, Amanses scopas, Scarus guacamaia, Lutjanus cyanopterus, 

Paragobiodon modestus, Hypsoblennius hentz, Parapercis millepunctata, Sphyraena 

jello, Ostorhinchus holotaenia, Cephalopholis cruentata, Equulites stercorarius, 

Stegastes obreptus, Chaetodon multicinctus. Fish images drawn by K. Corn. 
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Fig. 3. Results from model-fitting for rate of body shape evolution. Center, distribution of 

multivariate, state-dependent rates, colored by feeding mode. Branch colors on the 

phylogeny indicate per-branch state-dependent rates of evolution, with grey indicating a 

lower rate and teal indicating a higher rate. Outer ring, bars are colored by feeding mode, 

and length of bars represents lower jaw length. Selected fishes have been drawn and 

placed near their clade on the phylogeny; clockwise from inset at bottom right: Lutjanus 
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cyanopterus (inset), Chaetodon multicinctus, Equulites stercorarius, Zebrasoma scopas, 

Amanses scopas, Halieutichthys aculeatus, Scarus guacamaia, Stegastes obreptus, 

Hypsoblennius hentz, Sphyraena jello, Paragobiodon modestus, Ostorhinchus 

holotaenia, Aeoliscus strigatus, Rhinomuraena quaesita, Cephalopholis cruentata, 

Parapercis millepunctata. Fish images drawn by K. Corn. 
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Table 1. Comparison of results of multivariate disparity, stochastic character mapping, 

and evolutionary rate analyses among feeding mode groups. 

Feeding group Disparity1 Time on tree2 Rate3 

Biting 0.103 12.1% 1.426 

Mixed suction & biting 0.121 14.4% 0.966 

Ram biting 0.324 7.4% 0.77 

Suction 0.189 66.0% 0.838 

1Disparity represents multivariate disparity across all eight body shape traits.  
2Time on tree represents the proportion of the total branch length on the phylogeny 
reconstructed to be in each state using stochastic character mapping, averaged across 
100 reconstructions.  
3Rates are calculated as the state-dependent rate of multivariate evolution, which 
excludes background evolution on each branch. 
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CHAPTER 3 

FASTER BODY SHAPE EVOLUTION AT THE EDGES OF FISH MORPHOSPACE 
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INTRODUCTION 

Extreme or exaggerated morphologies, such as the elongated horn of the rhinoceros 

beetle, are iconic examples of the unusual or bizarre spaces to which evolution can take 

species. Often, these morphologies are a consequence of a mismatch in morphological 

scaling, where the extreme trait changes size at a different rate than the rest of the body 

(Emlen and Nijhout 2000; Emlen et al. 2012; Shingleton and Frankino 2013). Typical 

animals with ‘extreme morphologies’ have scaled just a single aspect of morphology to 

an exaggerated form, and the rest of their body has a common shape that is not very 

disparate from their relatives or their form without such a structure (Emlen 2001). Many 

examples of extreme morphologies are driven by sexual selection, frequently as honest 

signals of health and fitness, and thus are present in just a single sex (Darwin 1871; 

Emlen 2001; Irschick et al. 2007). But some taxa have evolved extreme body shapes, 

where the extreme form is not just an exaggerated feature alongside an otherwise 

proportionately scaled body but is the shape of the entire body. 

Defining an extreme body shape is non-trivial, as it requires comprehensive 

knowledge of the distribution of body shapes within that clade. The recently developed 

morphospace of teleost fishes provides an opportunity to do so, and shows that nearly all 

teleost species lie in a single, dense oval in shape space (Price et al. 2019, Fig. 1). This 

oval, or “ridge,” encompasses considerable body form diversity, ranging from deep-

bodied, laterally compressed fishes like butterflyfishes to nearly cylindrical bodies like 

many catfishes. Just ~10% of fish species lie outside this oval-shaped region of shape 

space, including fishes with some of the most striking shapes and life histories. These 

species have substantially altered the classic body form along many different axes of 
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morphology; for example, goosefishes are strongly dorsoventrally compressed; snipe 

eels are extremely thin and elongate, with bodies as much as 161 times as long as they 

are deep; and batfishes are short and deep, with bodies that are deeper than they are 

long. The mechanisms underlying the evolution of these extreme shapes are not clear. 

There are abundant links between morphology and ecology (“ecomorphology”; 

Wainwright and Reilly 1994), such as the relationship between body shape and swimming 

mechanism (Webb 1984; Dornburg et al. 2011; Di Santo et al. 2021) or body shape and 

prey capture mechanism (e.g., Cooper and Westneat 2009; McCord and Westneat 2016). 

The apparent pervasiveness of these links in the literature makes it puzzling how fish 

lineages would evolve body shapes so disparate from a ridge in morphospace that 

contains a wide range of shapes with strong functional associations with the lifestyles that 

fishes typically have. Yet it is possible that novel ecological and functional opportunities 

available to fishes with extremely different forms facilitates more dynamic evolution of 

body shapes at the extremes of morphospace.  

 In this study, we explored the evolution of extreme body shapes among the largest 

vertebrate radiation, teleost fishes. We used the largest available dataset of three-

dimensional body shape to estimate extremeness of fish shapes for 5,940 species from 

392 families of teleosts. After reconstructing the history of body shape evolution, we 

estimated the average fish shape, then integrated these morphological data with 

ecological data for the species in our dataset. We measured whether position in 

morphospace (as the difference from the average shape) affects the rate of evolution of 

body shapes, and whether ecological traits spanning habitat, migration, and trophic status 

promoted the evolution of extreme morphologies. If extreme body shapes represent a 
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departure from body shapes that are well suited for the lifestyles that most fishes live, we 

expect body shape evolution to be faster among fishes with common shapes. However, 

if there is novel ecological opportunity available to fishes with extreme forms, we expect 

evolution to be more dynamic at the extremes of morphospace. 

 

MATERIALS & METHODS 

Phylogeny. We used the largest available time-calibrated phylogeny of ray-finned fishes 

to accommodate the effect of shared ancestry between species (Rabosky et al. 2018). 

We pruned the phylogeny to the 5,940 species in our morphological dataset using the 

package ape v 5.6-2 (Paradis et al. 2004) in the statistical programming environment R v 

4.1.3 (R Core Team 2022). We used base R in conjunction with the tidyverse data 

handling framework to manage data (Wickham et al. 2019); and ggplot2 v 3.3.5 and 

cowplot v 1.1.1 for data visualization (Wickham 2016; Wilke 2021). 

Body shape data. We used a previously published dataset of body shapes for 5,940 

extant species of teleost fishes spanning 392 families (Price et al. 2019, 2020). These 

data comprise eight linear measurements capturing body shape in three dimensions: 

standard body and jaw length; head, body, and caudal peduncle depth; and body, jaw, 

and caudal peduncle width. Species values were calculated as the average of three adult 

specimens wherever possible. We used log shape ratios for each species to scale 

measurements by size among species (Claude 2013; Klingenberg 2016), which was the 

favored method of size correction in a previous study on this dataset (Price et al. 2019). 

 We visualized the distribution of fishes in morphospace using a Principal 
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Components Analysis (PCA) on the covariance matrix of all 5,940 extant species using 

the stats package v 4.1.3. To understand the history of body shapes in this space, we 

projected ancestral shapes for nodes into the morphospace of extant species by 

reconstructing ancestral states for each PC axis using Brownian Motion in the R package 

phytools v 1.0-1 (Revell 2012). These reconstructions did not incorporate correlations 

between dimensions, as ancestral states for species along each PC axis were 

reconstructed independently. 

 We estimated the 8-dimensional centroid of extant fish shapes as the weighted 

average of species’ shapes, computed by taking the mean of each of the 8 PC axes. This 

centroid can be thought of as the mean fish shape, weighted by the relative contribution 

of each aspect of morphology to the variation among species. As a metric of extremeness, 

we measured the distance of each point from the centroid in 8 dimensions; a greater 

distance from the centroid indicates a more extreme shape, and a species with a smaller 

distance from the centroid has a shape closer to the average (or a “more common 

shape”). Using the distances of each node and tip from the centroid, we estimated the 

length of each branch on the phylogenetic tree in 8 dimensions of morphospace and 

whether the branch was traveling towards the centroid (ending node/tip closer to the 

centroid than starting node) or away from the centroid (starting node closer to the centroid 

than ending node/tip). 

Evolutionary rates. We estimated rates of evolution in two ways. First, we computed 

point estimates of rates at each internal node using phylogenetic independent contrasts 

in ape v 5.6-2 (Felsenstein 1985; Paradis et al. 2004). We computed contrasts separately 

for each morphological trait, then averaged the 8 contrasts for each node to get a mean 
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estimate of evolutionary rate across all traits at that node. We refer to these as “rates” or 

“contrasts.”  Second, we manually estimated rates of evolution through morphospace for 

each branch as the ratio of the length of the branch in 8 dimensions of PC space and the 

length of the branch in millions of years. We refer to these as “branch rates” or “per-branch 

rates” of evolution.  

 We chose to focus our rate measurements on estimates of Brownian rate, rather 

than use Ornstein-Uhlenbeck (OU) models, a common alternative (O’Meara 2012; Huey 

et al. 2019). Our rationale for this choice was two-fold; first, given the inherent 

multidimensionality of our data (e.g., shape in 8 dimensions), the univariate nature of most 

implementations of OU models would miss out on a large portion of the diversity among 

the species in our dataset. For example, seahorses and pipefishes occupy a region of 

shape space characterized by extreme elongation, a small jaw, and a moderately sized 

caudal peduncle; these species would be indistinguishable from either other elongate 

species, like eels, or other small-jawed and moderate-caudal peduncled species, like 

butterflyfishes, were we to use a univariate metric of body shape; thus missing out on 

what appears to be a nearly unique radiation into a novel region of morphospace. Second, 

most OU model-fitting frameworks are best suited to recovering a small number of peaks 

(Boettiger et al. 2012a). Given the incredible taxonomic and ecological diversity among 

our data, we feel that the few peaks we would be likely to recover would be a gross 

oversimplification of the complexity of body shape evolution among fishes and would be 

misleading with regards to the true patterns of diversification among body shapes. 

Ecological traits. We used the package rfishbase v 4.0.0 (Boettiger et al. 2012b) to 

access ecological data about the species in our dataset. We downloaded information 
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about food items (at the lowest level of resolution, I); migration status, which we re-coded 

as a binary trait (“migratory” or “non-migratory”); depth habitat, which we re-coded as a 

discrete trait with 3 states (“epipelagic”, “mesopelagic”, and “bathy-/abyssopelagic”) 

following Martinez et al. (2021); reef habitation, which we estimated as a composite trait 

from the fishbase categorizations for ‘DemersPelag’, reef flats, and reefs; intertidal 

habitation, which we estimated as a binary trait compositely from the fishbase 

categorizations for the intertidal, littoral zone, and tidepools; cave habitation, which we 

estimated as a binary trait compositely from the fishbase categorizations for ‘Cave’, 

‘Caves’, ‘CaveAnchialine’, and ‘Cave2’; as well as habitation of  streams, lakes, 

mangroves, estuaries, and swamps/marshes. We also downloaded information about 

trophic level as a continuous trait using the fishbase categorization for trophic level based 

on food items. 

Linear model fitting. We fit ordinary least squares models in the stats package to 

compare the relationship between variables. We estimated the effect of distance from the 

centroid on contrasts (a rate-by-state test); and we estimated the effect of the distance of 

the starting node of a given branch on its branch rate; and the total length of the branch 

in 8 dimensions of PC space. We fit an ANOVA to determine whether the directionality of 

branches with regards to the centroid affected the rate of evolution. Branch rates, distance 

from centroid of nodes and tips, and length of the branch in 8 dimensions of PC space 

were log10-transformed for statistical analyses to fit the assumption of normality among 

continuous variables. 

 We used phylogenetic least squares (PGLS) models to estimate the relationships 

between traits and species’ distances from the centroid while incorporating the effects of 
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shared evolutionary history, fit in geomorph (Adams and Otárola-Castillo 2013).  

We used a series of PGLS models described below to estimate the effects of 

various ecological traits on the distance from the centroid of each species. Significance 

for each PGLS model was estimated by permuting the data across the tips of the 

phylogeny 10,000 times. We fit separate models with four types of ecological data, for 

which we had data for varying numbers of species. 

1.  “Salinity” model, measuring the effect of marine-freshwater habitation, for 

which we had data for 5749 species. 

2. “Migration” model, measuring the effect of migratory status, for which we had 

data for 1,493 species. 

3. “Trophic” model, measuring the effect of continuous trophic level, for which we 

had data for 3,253 species. 

4. “Food” model, measuring the effect of discrete food categories used as prey 

(“FoodI”), for which we had data for 3,324 species. 

5. “Habitat” model, comparing the effect of depth zone, reef habitation, intertidal 

habitation, streams habitation, cave habitation, mangroves habitation, 

swamp/marsh habitation, lake habitation, and estuary habitation; for which we 

had data for 2,591 species. For this model, we used backwards stepwise 

regression using p-values to identify the combination of habitat traits with the 

most meaningful effect on the distance from centroid of each species. 

Stochastic character mapping. We reconstructed the history of “extremeness” among 

fish lineages using stochastic character maps implemented in phytools (Huelsenbeck et 

al. 2003; Bollback 2006; Revell 2012). “Extremeness” was discretized by labeling the top 
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10% of fishes when ranked by decreasing distance from the centroid as “extreme” fishes, 

and all others as “not extreme.” We generated a distribution of 100 stochastic character 

maps to account for uncertainty in our reconstructions, and estimated the ratio of 

transitions to and from extreme shapes.  

 In order to determine whether our stochastic character maps represented a pattern 

that was meaningfully different than a Brownian Motion process on our tree, we generated 

a “null” distribution by simulating 100 datasets under Brownian Motion. For each dataset, 

we simulated 8 independent traits under a constant rate for 5,940 species using the 

phylogeny of our species in phytools, then rotated the dataset in a PCA and computed 

both the centroid of points in all 8 dimensions of PC space and the distance of each 

simulated species from the centroid in 8 dimensions of PC space. We then characterized 

“extremeness” in the dataset using the same criteria as for our true data and 

reconstructed the history of extremeness in each simulated dataset using a distribution 

of 100 stochastic character maps. We took the ratio of transition rates between extreme 

body forms and non-extreme body forms for the averages for each of the distribution of 

100 null datasets and compared it to our true data (see Appendix 3 for more details). 

 

RESULTS 

Body shapes of fishes. Principal components analysis of our data largely agree with 

previous analyses of fishes (Claverie and Wainwright 2014; Price et al. 2019); with major 

axes of shape variation among species being body length, width, and depth (Table S1). 

Over 90% of all species in the dataset were concentrated in a ‘ridge’ along PC2, with an 
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extended, less dense ‘spur’ of species spanning PC1 (Fig. 1, Fig 2a). PC1, which 

contained 43% of the variation among species, was dominated by standard length, body 

depth, and caudal peduncle depth and width; with elongate, slender species with small 

caudal peduncles high on this axis. In contrast, PC2 contained 23% of the variation 

among species and represented an axis of both body and jaw width, jaw length, and body 

depth; with longer and wider jawed and shallower-bodied fishes high on this axis, while 

laterally compressed, deep-bodied fishes with small jaws appeared low on this axis.  

 The centroid of all fishes lay in the middle of the dense cluster of fishes along PC2, 

shifted slightly towards the edge of the cluster higher along PC1 (Fig. 2a). The closest 

species to the centroid in our dataset, and therefore the closest fish to the “average” body 

shape of fishes, was Malacoctenus triangulatus, the saddled blenny. The distribution of 

fishes when ordered by distance from the centroid was similar to their positioning on PCs 

1-2, but did not match perfectly due to variation in positioning on PCs 3-8. Distance from 

the centroid was not concentrated along the phylogeny, but instead was relatively 

dispersed (Fig. 2b). 

Reconstructed ancestral shapes. Ancestral states, or estimated states of nodes, 

reflected the general distribution of extant species, which is expected when reconstructing 

ancestral states with Brownian motion (Martins and Hansen 1997; Polly 2001).  

Linear model fitting. Ordinary least squares models found that shapes farther from the 

centroid have higher rates of body shape evolution (Table 1, Fig. 2c). Nodes had higher 

standardized phylogenetic independent contrasts with increased distance from the 

centroid. Branches that began farther from the centroid traversed more morphological 

space, and had higher branch rates, than branches that started close to the centroid. We 
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found that branches traveling away from the centroid had slightly higher branch rates than 

those traveling towards the centroid, suggesting that elevated rates of evolution at the 

extremes of morphospace are not due to rapid “pull” of shapes back towards the centroid 

(Table 1, Fig. 2d). We also found that species farther from the centroid spent more of their 

path history traveling away from the centroid than species closer to the centroid (Table 

1). 

Ecology. We found a range of habitat traits that were disproportionately represented in 

the extremes of morphospace (Fig. 4; Tables 2, S3). Among habitat traits, habitation of 

the deep sea, caves, and reefs had significant effects on the distance from centroid of 

species. Other habitats, such as swamps/marshes, and lakes had few to no fishes with 

extreme forms, though there was some presence of species with extreme shapes in 

estuaries, the intertidal zone, and mangroves.  

In contrast, though not statistically significant, migration appeared to be under-

represented among fishes with extreme shapes. A gradient of high to low trophic level 

(where low values indicate a position lower in the food chain and increased reliance on 

herbivory or detritivory) better described the range of fishes within the oval of common 

shapes (Fig. 4) than the diversity of extreme fishes, but was statistically significant across 

all data (Table 2). Likewise, food group had a significant effect on distance from centroid 

(Table 2). Fishes with extreme forms appeared under-represented outside of the ocean, 

though not statistically so (Table 2).  

Stochastic character mapping. We recovered an average of 176 transitions between 

“extreme shapes” and “non-extreme” shapes across the distribution of 100 stochastic 

character maps (Fig. 3a). Transitions were highly asymmetric, with an average of 140 
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transitions from non-extreme shapes to extreme body shapes, and 37 transitions from 

extreme shapes to non-extreme shapes; lineages were 3.8-fold more likely to transition 

from being non-extreme to being extreme than from extreme shapes back to non-extreme 

shapes.  

This asymmetry was reflected in the transition rates recovered for data simulated 

using Brownian Motion on our phylogeny, but with a far higher number of transitions in 

both directions recovered from the simulations (Fig. 3c,d, Fig. S1). Across 100 simulated 

datasets and 100 stochastic character maps for each dataset, there was an average of 

309 transitions between states, a 1.75-fold increase over our data. Simulated data had 

an average of 230 transitions from non-extreme shapes to extreme body shapes, and 79 

transitions from extreme shapes to non-extreme shapes; a 2.98-fold higher chance of 

evolving an extreme shape from a non-extreme shape than the reverse. In total, our 

measured data had fewer transitions between states than 100% of the simulated 

datasets; fewer transitions from extreme states to non-extreme states by nearly half than 

the fewest among the distribution of simulated data (36.8 transitions in our data to 49.5 

transitions in the simulated dataset with the fewest transitions in this direction); and fewer 

transitions from non-extreme states to extreme states than all but 4% of the simulated 

data sets. 

 

DISCUSSION 

Our results reveal that the position of fish in morphospace has a substantial effect on the 

tempo and mode of body shape evolution. The acceleration of rates of body shape 
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evolution with increasing distance from the average shape suggests that the evolution of 

extreme shapes involves the release of constraints that limit typical fish shapes. These 

constraints may be biomechanical, ecological, or developmental. Shifts in any or a 

combination of these realms could promote extreme morphologies, via mechanisms like 

extreme trait values as a consequence of increased integration among traits (Claverie 

and Patek 2013; Goswami et al. 2014; Klingenberg 2014), or axial elongation due to 

mutations to Hox genes (Krumlauf 1994; Burke et al. 1995; Woltering et al. 2009; Di-Poï 

et al. 2010). Our data suggest that the evolution of an extreme shape is likely due to 

changes in these or other mechanisms that are difficult to achieve. Though most fishes 

have body shapes that are highly effective for the things that fishes typically do, many 

fishes with extreme body shapes may have invaded novel adaptive zones, such as 

challenging hydrodynamic environments with functional or ecological pressures that 

promoted the evolution of extreme morphologies. The evolution of extreme body shapes 

in fishes appears to be largely a consequence of major disruptions in the evolutionary 

and developmental mechanisms promoting body shape evolution. 

The transformations in body shape required to achieve an extreme shape appear 

to be relatively rare, as extreme body shapes were evolved just half as often as predicted 

by simulated Brownian evolution; we recover just ~140 transitions to extreme shapes 

across 5,940 species (Fig. 3). Such major changes in body shapes may be successful 

only in specific ecological or evolutionary conditions despite being highly successful in 

those scenarios (Wainwright & Price 2016). Evidence based on the time scale of evolution 

of phenotypic disparity suggests that disparity accumulates in burst-like shifts in adaptive 

zone on the scale of millions of years (Simpson 1944; Estes and Arnold 2007; Uyeda et 
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al. 2011), perhaps due to the rarity of matches between morphological innovations and 

novel adaptive zones that allow their success. The fishes in our data may be examples 

of successful matches between evolving an innovative body shape and a large-scale shift 

in adaptive zone that allows it to flourish, and the rarity we observe may be an indicator 

of the uncommon nature of such a successful opportunity. It appears that transitions to 

extreme body shapes are not just a consequence of random evolution, but instead may 

represent rare transitions in adaptive zone that result in dramatic increases in disparity. 

Such novel adaptive zones appear to include major changes to the lifestyles of 

most extreme fishes. Groups of fishes that are strongly represented in extreme regions 

of shape space include goosefishes (Lophiidae), which lie on the seafloor and ambush 

prey with exceptionally wide mouths (Steimle et al. 1999); flatfishes (Pleuronectiformes), 

which perform much the same strategy for prey capture, but have moved both eyes to the 

same side of the head to more effectively lie on their sides and bury in the sand (Gibson 

2005); seahorses, pipefishes, and their relatives (Syngnathiformes), which have a diverse 

range of novel habitat and locomotory strategies, including swimming vertically in the 

water column or hanging onto substrate via a prehensile tail (Gill 1905; Aronson 1983; 

Foster and Vincent 2004); and the amazingly diverse deep sea fishes, which have 

modified their caudal region dramatically, likely to suit constant but low-intensity 

swimming with a less muscularized body (Pelster 1997). Such strange and unusual life 

histories are a marked contrast to the lifestyles of most fishes that have common shapes. 

Ecological correlates of extreme shapes 

Habitats with novel hydrodynamic conditions in the ocean may provide conditions that 

stimulate the rapid diversification of extreme morphologies into novel adaptive zones. 
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Overall, we found that extreme shapes were over-represented in habitats that impose 

difficult hydrodynamic or ecological conditions upon their inhabitants, such as the deep 

sea, reefs, and caves (Table 2, Fig. 4, Fig. S2). Some of these zones are characterized 

by intense interaction with the substrate, consistent with past analysis of marine fishes 

demonstrating that substrate-association promotes morphological diversification, 

perhaps as a release from the functional requirements of swimming (Friedman et al. 

2020a). Indeed, the most swimming-intensive ecological trait in our dataset, migration, 

appears to be under-associated with extreme forms (Fig. 4E, Fig. S2), though not 

statistically significantly so (Table 2). The reduced frequency of migration among extreme 

fishes suggests that the migration to spawn among Anguillid eels, some of which migrate 

from Europe or North America to the Sargasso Sea to mate, is truly remarkable. 

Though the deep sea and reef habitats have been recognized as a source of body 

shape diversification (Price et al. 2011, 2013; Gilbert et al. 2021; Martinez et al. 2021, but 

see Frédérich et al. 2016; Evans et al. 2019b), our results suggest that caves have been 

historically overlooked as sources of extreme morphological disparity. The deep sea may 

promote the evolution of slow, physiologically efficient swimming modes performed well 

by body forms that we recover as highly extreme, such as extreme elongation and a small 

caudal peduncle (Martinez et al. 2021). Caves are known for convergently producing 

unusual or bizarre morphologies, such as absent or reduced eyes or pelvic girdles 

capable of tetrapod-like ‘walking’ (Wilkens et al. 1989; Flammang et al. 2016; Hart et al. 

2020; Crawford et al. 2022), and this pattern appears to extend to extremeness of body 

shapes that can be evolved by cave fishes.  Reefs are often recovered as a source of 

morphological diversification, and we find that reef habitation both promotes the evolution 
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of extreme forms as well as diversity among non-extreme shapes (Fig. 4B). Some 

common shapes that are evolved by reef fishes may vary based on prey type. Most 

morphologically extreme fishes typically feed, likely using suction, on the other fish and 

nekton that are common prey for most fishes. But, feeding on attached prey and reef 

habitation are each often associated with morphological modifications for deep, narrow 

body shapes specialized for maneuvering around complex substrates (Webb 1984; 

Larouche et al. 2020), and laterally compressed shapes appear to be common enough to 

be part of the range of typical body shapes in fishes despite being fairly different from the 

average fish shape. Differentiation in trophic status towards feeding on attached prey 

such as plants occurs primarily within the ridge of common shapes; a similar pattern is 

clear when trophic level is measured as a continuous trait (Figs. 4D, S2).  

Potential mechanisms underlying the diversification of extreme shapes  

Shifts in the regulation or structure of Hox genes are a compelling mechanism for the 

evolution of novel body plans in fishes. Variation in Hox expression throughout the body 

is strongly associated with body plan regionalization across animals (Krumlauf 1994; 

Burke et al. 1995; Averof and Patel 1997; Martin et al. 2016). Some extreme fishes in our 

dataset have evidence of a role for variation in body regionalization in becoming extreme, 

as different groups of eels elongate different regions of their body (Mehta et al. 2010; 

Ward and Mehta 2014). There is some evidence for a direct link between flexibility of the 

suite of Hox genes and the evolution of extreme forms in fishes, as fully duplicated set of 

Hox genes, likely retained from the genome duplication at the base of the teleost radiation, 

may provide the genetic blueprint for the whole-body morphological transformation some 

eel larvae undergo that results in extreme elongation (Henkel et al. 2012a, 2012b). 
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However, it is unlikely that alterations to body plan patterning in the genome are the sole 

mechanism underlying the evolution of extreme shapes. Though genomic correlations 

are highly effective at creating suites of morphologies that evolve together, adequate 

natural selection can pull apart even closely linked traits (Beldade et al. 2002). 

An alternative mechanism that could contribute to accelerated evolution of body 

shapes in regions of extreme shape space is shifting in modularity among regions of the 

body. An increase in the number of modules can provide more opportunities for 

diversification by reducing the potential trade-offs that could arise from evolving traits 

together; and changes in modularity are known to elevate morphological evolution in 

fishes (Larouche et al. 2018; Evans et al. 2019a). The variation in degree of elongation 

among regions of the body in eels (Mehta et al. 2010; Ward and Mehta 2014) suggests 

that increased modularity has allowed elevated diversification of elongate body shapes. 

Or, decreases in the number of modules by integrating traits can drag morphologies to 

extreme forms, sometimes via selection on just one of those traits (Goswami et al. 2014). 

We see this pattern in other regions of extreme morphospace, where an increase in 

integration among skull traits has driven the rapid evolution of flatfishes (Evans et al. 

2021), suggesting that differences in patterns of changes in integration and modularity 

among parts of the body may allow access to different extreme shapes. 

Conclusions  

Taken together, our data suggest that the evolution of extreme shapes is a result of rapid 

evolution following relatively rare invasions of extreme shape space. This rapid evolution 

is associated with some hydrodynamically challenging environments, which may facilitate 

uncommon matches between innovative life histories or morphologies and the 
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environments in which they can succeed. Fishes evolving extreme morphologies may be 

doing so via release of the constraints that typically limit body shapes, perhaps due to 

shifts in the genetics of body plan patterning or to changes to the modules among fishes. 

Rather than being an evolutionary sink, departing from the range of typical fish body 

shapes may simply be an alternate path to success in novel environments.    
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FIGURES & TABLES 

 

 
Fig. 1. Scatterplot of 5,940 extant species, rotated in a Principal Components Analysis of 

8 morphological traits. Every point represents a species, and points have been colored 

by the local density of points surrounding it. Selected fishes have been highlighted to 

show the range of shapes in different regions of the PCA. Clockwise from top: 

Halieutichthys aculeatus, Rhinomuraena quaesita, Aeoliscus strigatus, Amanses scopas. 
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Fig. 2. a) Principal components analysis of 5,940 extant species, colored by the distance 

of each point from the centroid in 8 dimensions. Centroid is in navy. b) Phylogeny of all 

5,940 species, with bars representing the distance in morphospace of each species from 

the centroid. c) Distance from centroid of each node, plotted against mean trait contrast. 

Each point represents a node. Points are colored by local point density on this plot. d) 
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Distribution of branch directionality demonstrating that branches traveling away from the 

average shape (the centroid) have higher rates than those traveling towards the centroid. 
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Fig. 3. Data and selected results from simulated character histories. a) A sample 

stochastic character map generated from our true data demonstrating a reconstruction of 

“extremeness” among lineages. b) PCs 1 and 2 of fishes coded as “extreme” using this 

metric, where the top 10% of fishes when ranked by decreasing distance from the centroid 

(in 8 dimensions) were labeled “extreme.” c) Comparisons of average numbers of 

transitions between states between our true data and the distribution of simulated 

datasets. d) A sample stochastic character map and PCA displaying a dataset generated 

under Brownian Motion. Notably, the shape of the data is very different than in our true 

PCA, and the “extreme” taxa are much more evenly distributed across the PCA. 
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Fig. 4. Distribution of selected ecological traits among species; all three statistically 

significant habitat traits, trophic level, and migration status. Left column, distribution in 

principal components space of species in various ecological groups, with points colored 

by ecological grouping. Right, plots of the proportion of species in different trophic groups 

by distance from centroid. Distance from centroid was split into 22 equally sized bins, and 

the proportion of bins in each ecological category was calculated. Points represent the 

proportion of bins in a given ecological state in each ‘distance from centroid’ bin, with the 

size of the point representing the total number of species in that state in the bin. a) 

Variation in phenotype due to depth zone. Notably, though the total number of species is 

much lower with increasing distance from the centroid, nearly all species that are farthest 

from the centroid are in mesopelagic or bathypelagic zones. b) Approximately a quarter 

of fishes with moderately extreme shapes inhabit reefs, suggesting that reefs encourage 

both diversity among common shapes but also promote extreme shapes. c) Cave fishes 

are over-represented in extreme regions of shape space. d) Trophic level best 

distinguishes variation among body shapes along the ridge of common shapes. e) 

Though not statistically significant, there is a substantial visually obvious decrease in the 

frequency of migration far from the centroid. 
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Table 1. Results of ordinary least squares model fitting. 

Regression Intercept Slope d.f. Adj. R-sq p-value 

Mean trait contrast ~ 
Distance of node from 
centroid 

0.019 0.011 1, 5937 0.039 < 2.2e-16 

Branch rate ~ Branch 
directionality to or from 
the centroid 

-2.48 -0.16 1, 11876 0.014 < 2.2e-16 

Branch rate ~ 

Distance of the start of 
the branch from the 
centroid 

-2.29 0.53 1, 11876 0.030 < 2.2e-16 

Length of PC space 
traversed by branch ~ 
Distance of the start of 
the branch from the 
centroid 

-1.50 0.48 1, 11876 0.022 < 2.2e-16 

 

 

Table 2. Results of phylogenetic least squares model fitting. 

Regression d.f. Adj. R-sq p-value Z-score 

Distance from centroid ~ Trophic 
level 

1, 3251 0.01338 9.999e-
05 

4.3197 

Distance from centroid ~ Food 
(categorical) 

1, 3318 0.00565 0.008299 2.47 

Distance from centroid ~  

Marine habitation 

1, 5746 0.00004 0.8956 -1.2516 

Distance from centroid ~ 
Migration 

1, 1491 0.00001 0.8985 - 1.3386 

Distance from centroid ~  

   Depth zone  

+ Reef habitation  

+ Cave habitation 

Total: 
2590 

2 

1 

1 

 

0.01276 

0.00257 

0.00214 

 

9.999e-
05 

0.0121 

0.0199 

 

4.1946 

2.1128 

1.9433 
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APPENDIX 1 

SUPPLEMENTAL MATERIALS FOR CHAPTER 1 

A MULTIFUNCTION TRADE-OFF HAS CONTRASTING EFFECTS ON THE 

EVOLUTION OF FORM AND FUNCTION 
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SUPPLEMENTAL METHODS 
 
Dataset construction. Fishes were classified as “suction feeders” if their primary mode 

of prey capture uses suction. We classified a “biting” feeding mode as one where the fish 

uses suction as well as direct biting actions. A direct biting action was designated as one 

where the fish’s closing jaws make contact with the prey item to either grip it or scrape it 

from a holdfast. The number of strikes in our analyses for each species ranged from 2-9, 

with a median of 3. The number of individuals filmed for each species ranged from 1-3, 

with a median of 1 individual per species. All fishes were filmed feeding on minimally- or 

non-evasive prey and care was taken to induce high-effort strikes, where the fishes 

achieved a fully opened mouth. Protocols for animal care and experiments were approved 

by the University of California, Davis Institutional Animal Care and Use Committee 

(protocol #20475). 

Landmark data. Landmarks were chosen to capture the highest proportion possible of 

the motion of the fish’s head during suction feeding strikes. Sliding semi-landmarks were 

designed to track changes in curvature along the ventral margin of the fish’s head. Semi-

landmarks were necessary in order to capture shape change along a structure with few 

features that could be identified to discrete, fixed points. In this case, they captured the 

curvature of the hyoid of the fish with eight equidistant semi-landmarks that were bounded 

on either end by fixed points at the insertion of the pelvic fin and at the base of the rostral 

tip of the dentary (Fig. S1). We measured kinematic components as the maximum value 

of each trait throughout the strike, regardless of whether that value occurred at peak gape. 

Measurements are depicted in Fig. S2.  
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Evolutionary model simulations. To test the ability of our tree topology and character 

distribution to distinguish between different Brownian Motion or Ornstein-Uhlenbeck 

evolutionary models, we ran simulations in the R package OUwie (Beaulieu et al. 2012). 

We simulated data using our tree and discrete trait topology under each model that we fit 

in our analysis (single-rate Brownian Motion, BM1; multi-rate Brownian Motion, BMS; 

single-rate, single-optimum Ornstein-Uhlenbeck, OU1; single-rate, multi-optimum 

Ornstein-Uhlenbeck, OUM; multi-rate, multi-optimum Ornstein-Uhlenbeck, OUMV). First, 

we generated a distribution of 100 stochastic character maps of the discrete trait history 

using phytools (Revell 2012). Then, we simulated a dataset under each of the 5 models 

on each discrete trait history. We compared the fit of all 5 BM and OU models on each of 

the simulated datasets to see whether we could recover the model under which the traits 

had been simulated as the best-fit model. 

Bayesian evolutionary model prior robustness. To measure the effect of the prior we 

specified on the number of rate shifts, we ran alternative models with priors of 1, 5, and 

10 rate shifts and compared its effect on posterior estimates of key parameters. The 1 

and 10 shift prior models on the linear distance dataset MCMCs ran for 750,000 

generations and the 5 shift prior model MCMC ran for 500,000 generations. The angles 

dataset MCMCs ran for 1 million generations. The overall kinesis dataset ran for 2 million 

generations and we ran an additional MCMC for the 10 shift prior for 3 million generations 

(see Results). All models ran with a with a 10% burn-in. 

 



 99 

SUPPLEMENTAL RESULTS 
 
Evolutionary model simulations. Simulations suggested that we had moderately high 

ability to distinguish between evolutionary models, which may explain the similar fits of 

the OUMV model with either BMS or OUM models with our observed dataset. Most 

models that we fit were well- or moderately- able to be distinguished from other models, 

or were selected as the best model with one or more other models having comparable 

fits. 88% of the time, simulations run under BM1 were best-fit by BM1 alone or BM1 fit 

similarly as 1 or more other models. The other proportions of the time in which the 

simulated model was recovered as the best-fit were as follows: 44% BMS, 98% OU1, 

92% OUM, and 78% OUMV. 

Bayesian evolutionary model prior robustness. We found that the estimated 

parameters were largely consistent across the three priors on the number of rate shifts in 

the angles and distances dataset (Figure S5). As expected, the posterior number of rate 

shifts in the continuous characters increased with the prior, but the posterior number of 

states changes and the rate ratio between the states were consistent across different 

priors. However, in the overall cranial kinesis data, we found some variation in the rate 

ratios between the states based on the prior on the number of rate shifts. It appears that 

the 1-shift prior model found a peak in parameter space where the rates of evolution 

between groups are different, but with higher rates of evolution in biters. It is likely that 

the 1-shift prior model has gotten stuck in an area of low likelihood, but with just one 

predicted shift, has few opportunities to traverse parameter space in search of another 

likelihood region. The 10-shift prior produced contrasting results across different runs, 

with a model run for 2 million generations mirroring the 1-shift results and a model run for 
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3 million generations mirroring the 5-shift results, indicating that there may be a local 

likelihood peak where the models support a faster rate in biters. However, with more 

generations of the MCMC, the model found a peak with suction feeders faster. This 

pattern may reflect issues outlined in Moore et al. (2016) where the prior on the number 

of rate shifts may constrain or overly influence the posterior, or highlight the benefit of 

running the MCMCs for additional generations. 
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SUPPLEMENTAL FIGURES & TABLES 

  

Fig. S1.  Landmarks on a fish at a) strike initiation and b) maximum gape. Ten green 

points indicate fixed landmarks. Purple points indicate the eight sliding semi-landmarks. 

 
  

a)

b)
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Fig. S2. Angles and distances used to measure kinematic components. a) Blue indicates 

angle of maxillary rotation; purple displays premaxillary protrusion. b) Blue shows 

measurement of hyoid depression, as height of triangle; purple is angle of lower jaw 

depression. c) Blue indicates gape measurement; purple depicts angle of cranial 

elevation. 

 
  

a) b) c)
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Fig. S3. Plots of principle component axes 1 and 2 with lines displaying phylogenetic 

relationships between observations, species (depicted without phylogeny in Fig. 3). a), 

kinematic space occupation. b), cranial shape morphospace occupation. Notably, the 

kinematic PCA shows a relatively moderate effect of phylogenetic signal. In contrast, the 

head shape PCA shows a substantial effect of relatedness in the biting group and weaker 

effect in suction feeders.  
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Fig. S4.  Background rate of evolution mapped onto the phylogenetic tree for each 

kinematic trait dataset from Bayesian relaxed clock, state-dependent, multivariate models 

of evolution. Rates of evolution shown are rate variation that could not be attributed to the 

discrete trait. 
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Fig. S5. Effects of the prior on the number of rate shifts on parameter estimates for 

Bayesian relaxed-clock, multivariate, state-dependent models of evolution. We find 

generally consistent parameter results at each value of the prior on the number of rate 

shifts for distances and angles, but varied effects of the prior on models of overall cranial 

kinesis. In models of kinesis, “10.2” is a 10-shift-prior model run for 2 million generations 

of the MCMC, and “10.3” is a 10-shift-prior model run for 3 million generations.  



 106 

Table S1. List of species used in this study with feeding mode designation. 

Species Family Feeding mode 

Acreichthys tomentosus Monacanthidae biting 

Antennarius hispidus Antennariidae suction feeding 

Canthigaster bennetti Tetraodontidae biting 

Caranx sexfasciatus Carangidae suction feeding 

Centrogenys vaigiensis Centrogenidae suction feeding 

Chaetodon lunula Chaetodontidae biting 

Cheilinus trilobatus Labridae suction feeding 

Chilomycterus antillarum Diodontidae biting 

Choerodon cyanodus Labridae suction feeding 

Chromis cyanea Pomacentridae suction feeding 

Coris formosa Labridae suction feeding 

Cromileptes altivelis Serranidae suction feeding 

Cyprinocirrhites polyactis Cirrhitidae suction feeding 

Emmelichthyops atlanticus Haemulidae suction feeding 

Epibulus insidiator Labridae suction feeding 

Epinephelus ongus Serranidae suction feeding 

Escenius midas Blenniidae suction feeding 

Haemulon aurolineatum Haemulidae suction feeding 

Haemulon striatum Haemulidae suction feeding 

Haemulon vittatum Haemulidae suction feeding 

Halichoeres zeylonicus Labridae suction feeding 

Hemitaurichthys zoster Chaetodontidae suction feeding 

Inimicus didactylus Synanceiidae suction feeding 

Liopropoma rubre Serranidae suction feeding 

Microspathodon chrysurus Pomacentridae biting 

Naso elegans Acanthuridae biting 
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Nemateleotris magnifica Microdesmidae suction feeding 

Ostorhinchus angustatus Apogonidae suction feeding 

Oxycirrhites typus Cirrhitidae suction feeding 

Paracentropogon rubripinnis Tetrarogidae suction feeding 

Paranthias furcifer Serranidae suction feeding 

Parupeneus cyclostomus Mullidae suction feeding 

Pomacanthus xanthometopon Pomacanthidae biting 

Pseudanthias pleurotaenia Anthiinae suction feeding 

Ptereleotris evides Microdesmidae suction feeding 

Pterocaesio pisang Lutjanidae suction feeding 

Scarus iseri Scaridae biting 

Siganus uspi Siganidae biting 

Siganus virgatus Siganidae biting 

Siganus vulpinus Siganidae biting 

Sphyraena barracuda Sphyraenidae suction feeding 

Terelabrus flavocephalus Labridae suction feeding 

Zanclus cornutus Zanclidae biting 

Zebrasoma flavescens Acanthuridae biting 
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Table S2. Morphological disparity analyses. 

Trait Biters 
Variance 

Suction 
Variance Variance ratio p-value 

kinesis 0.0016 0.018 10.93 0.02 

upper jaw 
protrusion  1.85e-04 2.01e-03 10.87 0.11 

maximum gape  9.37e-04 3.06e-03 3.27 0.04 

upper jaw rotation 39.85 379.03 9.51 0.01 

lower jaw rotation 104.29 348.21 3.34 0.02 

head rotation 4.71 107.92 22.91 0.00 

buccal depression 1.68e-05 5.68e-04 33.89 0.01 

 
Table S3. Results from phylogenetic ANOVAs. 

Regression d.f. p-value F-value 

overall cranial kinesis ~ feeding 
mode 

1,42 p < 0.01 8.63 

upper jaw protrusion ~ feeding mode 1,42 p < 0.05 4.97 

upper jaw rotation ~ feeding mode 1,42 p < 0.01 7.46 

buccal depression ~ feeding mode 1,42 p < 0.05 6.62 

head rotation ~ feeding mode 1,42 p < 0.01 8.81 

lower jaw rotation ~ feeding mode 1,42 p = 0.15 2.09 

maximum gape ~ feeding mode 1,42 p < 0.05 
 

4.72 
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Table S4. Loadings from a principal component analysis. 

component PC1 PC2 PC3 PC4 PC5 PC6 

 upper jaw protrusion 0.30 0.66 0.37 -0.11 0.15 -0.42 

maximum gape 0.37 -0.46 -0.26 -0.10 0.68 -0.19 

upper jaw rotation 0.35 0.47 -0.42 0.45 0.24 0.43 

lower jaw rotation 0.39 0.08 -0.45 -0.65 -0.43 0.13 

buccal depression 0.40 -0.23 -0.14 0.55 -0.50 -0.47 

head rotation 0.40 -0.24 0.53 0.10 -0.14 0.59 

cumulative variance 
explained 

0.66 0.84 0.90 0.95 0.98 1.00 
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APPENDIX 2 

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

THE RISE OF BITING IN THE CENOZOIC FUELED REEF FISH BODY SHAPE 

DIVERSIFICATION 
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SUPPLEMENTAL METHODS 

Feeding mode categorizations. We used a hierarchical process to categorize prey 

proportions: where volumetric data of consumer stomach contents were available, then 

proportions of volume were used. If volumetric data were not available but individual 

counts of prey items from stomach contents were available, then proportions of the total 

number of prey were used. If only lists of prey taxa found in gut contents were available, 

then we used the proportion of taxa on which the species feeds listed to estimate 

proportions of prey. In this case, prey items at the end of a long list of taxa were 

considered less important than prey items at the beginning of the list. 

History of feeding modes. We used make.simmap to reconstruct ancestral character 

states using the R package ‘phytools’ (Revell 2012). We set the function to fit a 

continuous-time Markov model for the evolution of feeding modes using a fixed value of 

the Q matrix (Huelsenbeck et al. 2003; Bollback 2006), and we estimated the stationary 

distribution (pi) from the Q matrix, which was used as the prior on the root frequency. 

Random forest models. We used 7 continuous variables in each decision tree. We 

selected this number after iterating random forest model-fitting over different numbers of 

variables (ranging from 1-7), each across 5,000 decision trees, and comparing predicted 

group membership accuracy across the different numbers of variables used for the 

decision trees. We used a conditional implementation of varimp in the ‘party’ R package 

to estimate variable importance. In the conditional implementation, the importance of 

each trait is computed by permuting other variables whose covariance with the variable 

of interest exceeds a user-specified threshold (0.2 in our model) (Hothorn et al. 2004, 

2006; Strobl et al. 2007, 2008). 
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Hypervolumes. We used six PC axes to generate hypervolumes as hypervolumes are 

best run on orthogonal data axes (Blonder et al. 2018) and constructed hypervolumes 

using the R package ‘hypervolume’ (Blonder et al. 2014; 2018). Each hypervolume was 

computed by generating a gaussian density kernel containing 95% of points from the 

original group of data. To assess how extreme our data were compared to a random 

distribution of hyervolumes, we permuted group assignments among original species data 

and re-computed all hypervolumes and all hypervolume comparisons. We ran 10,000 

iterations of the permuted hypervolumes and comparisons between them, then compared 

the proportion of our comparisons between hypervolumes that were more extreme than 

comparisons between the distribution of analagous hypervolumes. We estimated whether 

our data were more extreme than the ‘null’ distribution in a 2-tailed fashion, such that our 

data could be more extreme than the distribution of permuted hypervolumes by occupying 

either more or less unique space than 95% of the distribution.  

Evolutionary rate models. We set a log-normal prior on each branch’s background rate. 

We placed a log-uniform prior at 1 x 10-10 on the rate of transitions between states 

(“lambda”). To ensure that model fitting was not affected strongly by the transition rate 

prior, we also fit models with higher (1 x 10-7) and lower (1 x 10-13) priors on lambda. Both 

alternative prior models ran for 150,000 generations of the MCMC.  

 

SUPPLEMENTAL RESULTS 

History of feeding mode. Stochastic character mapping recovered asymmetrical 

transitions between states (Fig. S2), with many transitions between attached prey biting 

and mixed feeding; fewer but still numerous transitions between mixed feeding and 
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suction feeding; some transitions between attached prey biting and suction feeding; and 

few transitions from suction to ram biting. We recovered almost no transitions from ram 

biting to any other state, and zero transitions from ram biting to either attached prey biting 

or mixed suction and biting. 

Evolutionary rate models. A Bayesian, state-dependent, relaxed-clock model of 

evolutionary rate estimated 214 transitions between feeding mode states. We uncovered 

substantial variation in background rate across the history of body shape, as the standard 

deviation of the background rate parameter was relatively large (1.41). Alternative prior 

testing on lambda, the rate of transitions between states, revealed minimal effects of the 

prior (Fig. S6). There was little difference across alternative priors in any of three relevant 

metrics: 1) the estimated number of transitions between states, 2) the posterior estimate 

of lambda, or 3) the resulting ratio of rate estimates between groups of interest.  
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SUPPLEMENTAL FIGURES & TABLES 

 
Fig. S1. A sample stochastic character map showing a simulated character history of 

feeding mode, with tips labeled by species. Branch mapping shown is a single map 

chosen at random, but pie charts at nodes summarize estimated states at each node over 

the full distribution of 100 stochastic character maps. 
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Fig. S2. Transition rate matrix between character states, from a distribution of 100 

stochastic character mappings. Thickness of arrows and number beside each arrow 

indicates the number of transitions between the two indicated states. Notably, there are 

no transitions from either attached prey biting or mixed suction and biting to ram biting, 

and there are almost no transitions from ram biting to any other state. 
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Fig. S3. Distributions of morphological traits by feeding mode. All traits were different in 

univariate phylogenetic ANOVAs at α = 0.05. Only fish width was not significantly different 

between feeding mode groups at α = 0.01. 
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Fig. S4. Data used for generating 6-dimensional hypervolumes (principal components 1-

6) plotted bivariately with convex hulls to demonstrate unique shape space occupation; 

together these six axes account for 98.5% of the variance in the data. Each point 

represents a species; points and convex hulls are colored by feeding mechanism. The 

primary region of unique shape space occupation by biters and mixed feeders lies along 

the right margin of PC1, and includes a range of species from several families using biting 

or mixed suction and biting, such as Monacanthus chinensis, Acanthurus 

coeruleus, Canthigaster janthinoptera, Platax batavianus, and Pervagor janthinosoma. 

These fishes are characterized by laterally compressed, shortened bodies with small 

mouths. 
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Fig. S5. Additional branch-specific rates of evolution from evolutionary model-fitting. Left, 

overall branch rates plotted onto the phylogeny, calculated as the product of state-

dependent rates and background rates for each branch. Right, background rates, which 

absorb rate variation not attributed to feeding mode. Homogeneity of background rates 

on a broader scale suggests that a small number of short branches have elevated rates 

in comparison to longer branches clades, a pervasive phenomenon in evolutionary rate 

modeling (Harmon et al. 2021). 
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Fig. S6. Relevant statistics from alternative prior testing on the log uniform prior on the 

number of state changes for evolutionary rate modeling. Left, total number of transitions 

between discrete character states; center, estimate of lambda, the transition rate 

parameter; and right, sample of rates of continuous character evolution in different 

discrete states shown as a rate ratio of “biting” group and “suction” group. The model 

using the “mid” prior was used for interpretation of results in the main text. 
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Table S1. Loadings from a principal component analysis on the correlation matrix. 

 
  

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Standard 
length -0.50 0.09 -0.32 0.06 -0.08 -0.27 0.32 -0.07 

Maximum 
body depth 0.46 0.27 0.08 -0.33 0.15 0.027 -0.45 -0.06 

Maximum 
fish width 0.12 -0.54 0.41 0.40 -0.10 0.40 0.14 -0.04 

Head depth 0.49 0.11 0.03 -0.13 0.32 -0.10 0.78 5.55 x 10-17 

Lower jaw 
length -0.23 -0.40 -0.26 -0.66 0.22 0.48 0.07 -2.78 x 10-17 

Mouth width 0.01 -0.59 0.21 -0.19 0.21 -0.71 -0.14 2.08 x 10-16 

Minimum 
caudal 

peduncle 
depth 

0.39 -0.22 -0.33 -0.20 -0.79 -0.11 0.08 -5.55 x 10-17 

Minimum 
caudal 

peduncle 
width 

0.28 -0.25 -0.70 0.45 0.36 0.03 -0.19 8.33 x 10-17 

Cumulative 
variance 
explained 

0.43 0.70 0.80 0.90 0.94 0.98 1.00 1.00 
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Table S2. Results from phylogenetic ANOVAs. 

Regression d.f. p-value r2 Z score 

Standard length ~ feeding mode 3, 
1526 p < 0.01 0.0084 1.88 

Maximum body depth ~ feeding 
mode 

3, 
1526 p < 0.0001 0.021 2.84 

Maximum fish width ~ feeding mode 3, 
1526 p < 0.05 0.0074 1.77 

Head depth ~ feeding mode 3, 
1526 p < 0.001 0.010 2.12 

Lower jaw length ~ feeding mode 3, 
1526 p < 0.0001 0.062 3.82 

Mouth width ~ feeding mode 3, 
1526 p < 0.01 0.010 2.02 

Minimum caudal peduncle depth ~ 
feeding mode 

3, 
1526 p < 0.0001 0.022 2.89 

Minimum caudal peduncle width ~ 
feeding mode 

3, 
1526 p < 0.0001 0.021 2.80 

All traits ~ feeding mode  

(MANOVA) 
3, 

1526 p < 0.0001 0.028 5.98 
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Table S3. Random forest results. 

Trait Importance (weighted mean decrease 
in accuracy when trait is excluded) 

Lower jaw length 0.201 

Head depth 0.0533 

Standard length 0.0401 

Minimum caudal peduncle depth 0.0307 

Maximum body depth 0.00500 

Minimum caudal peduncle width 0.00448 

Maximum fish width 0.00275 

Mouth width 0.00149 

 
Table S4. Morphological disparity results, computed using geomorph. 

Trait Biters 
variance 

Mixed suction 
& biting 
variance 

Ram biting 
variance 

Suction 
variance 

Standard length 0.0037 0.0060 0.022 0.020 

Maximum body 
depth 0.0098 0.011 0.0063 0.015 

Maximum fish width 0.0071 0.0064 0.0086 0.0081 

Head depth 0.0088 0.011 0.018 0.015 

Lower jaw length 0.019 0.028 0.049 0.028 

Mouth width 0.023 0.021 0.016818 0.033 

Minimum caudal 
peduncle depth 0.016 0.024 0.080 0.044 

Minimum caudal 
peduncle width 0.015 0.0135 0.12 0.025 
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Table S5. Hypervolume results, computed using hypervolume. 

Hyper-
volume 1 

Hyper-
volume 2 

Unique 
fraction 

of hyper-
volume 1  
(unique 
frac. 1) 

Proportion of 
permuted 

distribution 
less than 

unique frac. 1 

Unique 
fraction of 

hyper-
volume 2 
(unique 
frac. 2) 

Proportion 
of 

permuted 
distribution 

less than 
unique frac. 

2 
Biting All not Biting 0.13 0.597 0.84 0.542 

Mixed suction 
& biting 

All not Mixed 
suction & 

biting 
0.10 0.831 0.80 0.188 

Suction All not 
Suction 0.44 0.201 0.54 0.779 

Ram biting All not Ram 
biting 0.91 0.267 0.82 0.960 

Biting + Mixed 
suction & 

biting 

Suction + 
Ram biting 0.19 0.110 0.83 0.870 
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APPENDIX 3 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

FASTER BODY SHAPE EVOLUTION AT THE EDGES OF FISH MORPHOSPACE 
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SUPPLEMENTAL METHODS 

Linear model fitting. In addition to fitting ordinary least squares models with log10-

transformed data, we also fit linear models without log10 transformations to ensure these 

transformations did not have an undue effect on our results. 

 We performed stepwise regression on the phylogenetic least squares model 

(PGLS) fitting habitat traits to distance from centroid. We began with the fully saturated 

model containing all nine habitat traits. As the habitats in our dataset were largely mutually 

exclusive among species, we chose not to include the effects of interaction terms. At each 

step, we removed the trait with the highest p-value until we reached a model where all 

traits had a significant effect on distance from centroid at alpha = 0.05. 

Stochastic character mapping. Stochastic character maps were generated using 

‘make.simmap’ in the R package phytools (Huelsenbeck et al. 2003; Bollback 2006; 

Revell 2012). We used a fixed value of the Q matrix and estimated the stationary 

distribution using the Q matrix, which was set as a prior on the root state. We used the 

same parameters when building distributions of stochastic character maps for simulated 

datasets used to generate a “null” distribution of the transition rate between extreme 

shapes and non-extreme shapes. 

 For these simulated datasets, we generated 100 datasets sequentially using 

‘fastBM’ in phytools (Revell 2012). Each of these datasets was simulated using the tree 

for the 5,940 species in our dataset, and we set the state at the root = 0 and the rate = 1, 

with no trend. We generated 8 traits, all using these parameters, for each simulated 

dataset.  
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SUPPLEMENTAL RESULTS 

Linear model fitting. Linear models without log10-transformed continuous variables 

showed the same patterns as those with the transformations (Table S2). However, the 

pattern was much stronger in an ANOVA of the effect of branch directionality on log10-

transformed branch rates than non-transformed branch rates. 

 The full phylogenetic least squares model (PGLS) containing all habitat traits found 

significant effects among just three habitat traits: depth zone, reef habitation, and cave 

habitation (Table 3). 
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SUPPLEMENTAL FIGURES & TABLES 

 

 
Figure S1. Results of the distribution of stochastic character maps of our true data (red) 

and of simulated data (black). Comparisons of the ratio of transitions between states are 

largely overlapping between our true data and the simulated data (a, b). However, the 

absolute number of transitions in our data was much lower than the number of transitions 

in data simulated under Brownian motion (c, d). 
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Figure S2. Representation of fishes along a gradient of extremeness in a range of 

ecological groups.  
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Table S1. 

Loadings from a Principal Components Analysis on the covariance matrix of 5,940 

species of extant teleost fishes. 

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Standard 
length 

0.285 -0.012 0.324 -0.348 -0.086 0.523 0.281 -5.77E-
01 

Maximum 
body depth 

-0.233 -0.266 -0.016 0.446 0.130 0.112 -0.559 -5.77E-
01 

Maximum 
fish width 

-0.052 0.277 -0.308 -0.099 -0.044 -0.635 0.278 -5.77E-
01 

Head depth -0.217 -0.122 -0.053 0.526 0.376 0.187 0.694 -5.55E-
17 

Lower jaw 
length 

0.174 0.500 0.714 0.390 0.038 -0.230 -0.057 -1.11E-
16 

Mouth width 0.046 0.721 -0.470 0.170 -0.035 0.459 -0.128 1.80E-
16 

Minimum 
caudal 
peduncle 
width 

-0.549 0.247 0.185 -0.460 0.614 0.044 -0.109 -5.55E-
17 

Minimum 
caudal 
peduncle 
depth 

-0.693 0.080 0.179 0.024 -0.673 0.104 0.129 2.22E-
16 

Proportion 
of Variance 0.424 0.229 0.130 0.110 0.070 0.022 0.015 

0.00E+0
0 

Cumulative 
Variance 
Explained 0.424 0.653 0.783 0.892 0.963 0.985 1.000 

1.00E+0
0 
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Table S2. Results from ordinary least squares models without log transformed data. 

Regression Intercept Slope d.f. Adj. R-sq p-value 

Mean trait contrast ~ 
Distance from centroid 
(for nodes) 

0.0095 0.010 1, 5937 0.041 < 2.2e-16 

Rate as distance of a 
branch ~ Branch 
directionality  

0.0087 -0.0012 1, 11876 0.00032 0.02785 

Rate as distance of a 
branch ~ 

Distance of the start of 
the branch from the 
centroid 

0.0030 0.013 1, 11876 0.013 < 2.2e-16 

Length of PC space 
traversed by branch ~ 
Distance of the start of 
the branch from the 
centroid 

0.019 0.063 1, 11876 0.061 < 2.2e-16 
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Table S3. Results the fully saturated model of a phylogenetic least squares regression of 

habitat traits. 

Regression d.f. Adj. R-sq p-value Z-score 

Distance from centroid ~  

Depth zone  

+ Reef habitation 

+ Intertidal habitation  

+ Stream habitation  

+ Cave habitation  

+ Mangrove habitation 

+ Swamp/Marsh habitation  

+ Lake habitation 

+ Estuary habitation 

Total: 
2950 

2 

1 

1 

1 

1 

1 

1 

1 

1 

 

0.01276 

0.00257 

0 

0.00046 

0.00214 

0.00002 

0.00009 

0.0007 

0.00002 

 

1.00e-04 

0.0122 

0.9305 

0.2546 

0.0197 

0.8327 

0.5364 

0.1666 

0.8154 

 

4.1927 

2.1118 

-1.5424 

0.698 

1.9457 

-1.0259 

-0.0643 

0.987 

-0.9509 
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