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Pattern Probabilities for Non-Dichotomous Events:  
A New Rational Contribution to the Conjunction Fallacy Debate 

Momme von Sydow (momme.von-sydow@psychologie.uni-heidelberg.de 
University of Heidelberg, Department of Psychology, Hauptstr. 47-51, 

D-69117 Heidelberg, Germany 
 

Abstract 
This paper analyzes probability judgments about properties 
that can take multiple values (i.e., monadic polytomous 
events). It extends previous work on pattern-based deviations 
from standard (extensional) probabilities. Pattern-probabilities 
are formalized in Bayesian Logic (BL) and should be 
applicable when testing the overall adequacy of alternative 
logical hypotheses while allowing for exceptions. BL 
systematically predicts ‘conjunction fallacies’ (CFs) and, 
more generally, ‘inclusion fallacies’ (IFs), when a subset is 
deemed more probable than its superset. BL formalizes a fit 
between data and explanatory noisy-logical patterns and was 
supported in previous experiments on dyadic logical 
connectives with two dichotomous events. Here BL is 
extended to monadic prediction with several subclasses. BL 
may for instance predict Ppattern(A) > Ppattern(non-A) even 
though f(A) < f(non-A), given that non-A has more subclasses 
than A. Two experiments using material from the Linda 
paradigm corroborate a pattern approach and rule out 
confirmation as an alternative explanation.  

Keywords: probability judgments; biases; conjunction 
fallacy; inclusion fallacy; inductive Bayesian logics; 
predication; strong sampling; categories; Lockean Thesis 
 

We cannot dispense with the idea of the rationality or irra-
tionality of judgments, even though defining their rationality 
may often be difficult. The most established and important 
norms of rationality are presumably basic norms of formal 
logics and probability theory. As early as over 2000 years 
ago, Aristotle’s Organon provided a systematization of log-
ics and also, albeit less refined, of inductive belief. The hi-
story of philosophy and mathematics in recent centuries led 
to canonical formulations of formal logics (Frege, Russell, 
Whitehead, Wittgenstein) and probability theory (e.g., Kol-
mogorov). Although modifications and more specialized sy-
stems continue to be developed in philosophy, mathematics 
and computer science (e.g., modal logics, multivalued log-
ics, non-monotonic logics, belief functions), psychology 
continues to focus almost exclusively on these basic norms. 
Their domain-general application molded Kahneman and 
Tversky’s heuristic-and-bias approach, taking these norms 
as given and concluding that homo sapiens sapiens is ulti-
mately irrational, even with regard to most basic laws of 
rationality (cf. Fiedler & von Sydow, 2005, evaluation of 
this fertile research program).  

Kahneman and Tversky studied for instance a scenario 
wherein Linda, L, is described by a story in a way that 
seems suggestive of her being a feminist. Participants were 
then asked whether P(L is a bank teller) or P(L is a bank 
teller and a feminist) is higher (Kahneman & Tversky, 
1982). Most participants judged P(B) < P(B & F), thus com-
mitting a conjunction fallacy (CF), since the (standard) pro-

bability of a logical conjunction can never be higher than of 
one of its conjuncts.—This bias-and-heuristic approach has 
been criticized, fiercely but eloquently, by Gigerenzer 
(1996). He criticized not only the alternative heuristics (in 
the above example, ‘representativeness’) as “one-word 
theories” almost void of any explanatory value, but also the 
“content-blind” application of “narrow norms” without 
accounting for their ecological context. Although my 
approach clearly differs from Gigerenzer’s explanation of 
the CF (von Sydow, 2011), I think he is right in stressing 
that rational norms are essentially contextual. However, I 
agree with Kahneman (1996) that criticizing ‘narrow norms’ 
risks the danger of normative agnosticism.  

This paper addresses the extensionality inherent in stan-
dard norms of logics and probability theory, by investigating 
probability judgments about several mutually exclusive 
classes. Standard probability is extensional since the pro-
bability of a monadic hypothesis (X are A) is defined by the 
relative frequency of confirmatory elements (its extension) 
relative to all elements in a universe of discourse. Exten-
sionality does not consider the number of subclasses (an 
essential aspect of intension), but rather the number of 
observed cases in a class. We here apply Bayesian Logic 
(von Sydow, 2011) to monadic predicates based on several 
explicitly represented subclasses, where the intension of the 
class matters. It also builds on the renaissance of Bayesian 
approaches in cognitive science (Oaksford & Chater, 2007). 
It also builds on the idea of strong sampling (Tenenbaum & 
Griffiths, 2001; cf. Navarro, Dry, & Lee, 2012), but BL can 
even assign higher probabilities to more specific hypotheses 
if there are known exceptions (von Sydow, 2011).  

In philosophy the Lockean Thesis refers to the controver-
sial idea that one can assign probabilities to logical proposi-
tions (Foley, 2009). The non-standard approach of BL may 
allow for rescuing common sense assumptions and a kind of 
Lockean Thesis—perhaps better called ‘Bayesian thesis’ 
here. 

Truth Table Logics and Probability Theory  
– Two Narrow Norms for Predication? 

Problem of sample size Given one has no prior knowledge 
about a group of animals, X, and has either observed one or 
one hundred confirming cases to be black, B, standard logics 
does not distinguish between these situations, and even 
relative frequencies assign a probability of 1 in either case. 
However, the use of probabilities about probabilities seems 
more reasonable. 

Problem of exceptions We believe “ravens are black”, 
even though we know that white ravens do exist. Should 
exceptions falsify nearly all our general predications? To 
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use standard probability instead of logics seems to resolve 
this problem, since the probability P(B|X) remains high. 

Problem of inclusion However, even if we have 
observed Xs being B a hundred times, and only a single case 
‘X is non-B’, P(B|X) would remain smaller than P(B ∨ non-
B|X). Taking probability as the criterion for adequate predi-
cation would in uncertain situations still force us always to 
prefer tautologies (such as “Ravens are black or not black”) 
over any other, more informative hypotheses.  

Hence, if an adequacy criterion of predication should 
describe the real contingent patterns found in the world, 
neither standard logics nor probability could serve as a 
suitable adequacy criterion (von Sydow, 2011). 

Bayesian Logic and One-Dimensional  
Pattern Probabilities of Several Subclasses 

Dyadic Bayesian Logic Von Sydow (2011, 2014) has 
argued that when one is concerned with alternative hypo-
theses about the interaction of two dichotomous attributes 
(as described by dyadic logic), and if people are concerned 
with predications describing an overall situation, pattern 
probabilities, specified by Bayesian Logic (BL), seems to 
provide a suitable alternative adequacy criterion. BL speci-
fies ideal logical explanatory patterns, adds noise, and then 
calculates posterior probabilities for these ideal noisy-lo-
gical explanations given some data. BL allows for assigning 
higher probabilities to more specific hypothesis even in the 
light of exceptions. A corresponding class of inclusion ‘fal-
lacies’ is thus interpreted as rational. The Linda scenario, for 
instance, with some plausible auxiliary assumptions may 
yield PP(A) > PP (A∧B) > PP(B). BL has been supported in 
several studies using precise frequency input and 
investigating a system of inclusion fallacies (e.g., von 
Sydow & Fiedler, 2013; von Sydow, 2014).  
One-dimensional (monadic) predication with several 
subclasses Most inclusion fallacy studies have focused on 
dyadic connectives such as “AND, EITHER OR, etc.”. In 
contrast, here we concentrate on probability 
judgments about predicates concerning a 
single dimension only. In logical parlance, 
we are concerned with monadic connec-
tives, such as: “X are A” (Affirmation), “X 
are non-A” (Negation), “X are A or Non-A” 
(Tautology) (cf. von Sydow, 2014). Here 
we focus on monadic predication involving 
more than two represented qualitative 
classes. For example, consider the (main) 
jobs of the graduates of a school: Indi-
vidually the outcomes (bank teller B, 
translator C, etc.) should be mutually ex-
clusive. For “pupils from the Linda schools 
become bank tellers or translators”, B ∨ T, 
standard probability judgments do not 
allow for P(B ∨ T) < P(B), whereas BL 
may, depending on data and assumed noise, 
rationally predict such IFs. Another aspect 
of BL is that it might predict P(A) > P(Non-

A) even if f(A) < f(non-A). Such findings exclude many but 
not all alternative models (Tentori et al., 2013; cf. von 
Sydow, 2011, Exp. 2).  

Monadic BL with several subclasses Subsequently BL 
is formalized for monadic predication with c qualitatvive 
subclasses. However, we will focus on c = 5: A, B, C, D, E 
(cf. the experiments for examples). Hypothesis ‘Xs are A’ 
[A] is thus nested in the hypotheses ‘Xs are A or B’ [AB], 
and in AC, or ABC. Therefore, standard (extensional) proba-
bilities require PE(A) ≤ PE(AB) ≤ PE(ABC) ≤ PE(ABCD).  

Step 0 only describes the input which should then be 
compared to the ideal patterns specified in Steps 1 and 2. 
BL may take frequencies as well as beliefs (about exten-
sional probabilities of cells) as input.  BL assumes a 
standard belief-update of cell probabilities for (pre-cate-
gorized) alternative c classes. A multinomial update results 
in beliefs modelled by a Dirichlet distribution, with priors 
and event frequencies for each class. Likewise, for instance 
memory-based, distortions of actual frequencies (which are 
not part of our model) may still be captured by the distribu-
tion, simply by using subjective rather than objective fre-
quencies. The Dirichlet distribution can be used to code 
beliefs in terms of frequencies. In sum, the model takes the 
subjective frequencies or beliefs in the cell frequencies (or 
cell probabilities) as input. This, however, does not resolve 
the problem of inclusion. The Dirichlet distribution flexibly 
formalizes actual belief (coherent with any subjective joint 
frequency distribution), yet it does not specify the belief in 
ideal explanatory patterns given such data. 

Step 1 treats hypotheses such as AC or ABCD as ideal ex-
planatory patterns that may have generated the data. 
Figure 1 shows 13 such patterns/hypotheses (e.g., H8 
ABCD, or H9 AC). The left panel for no noise (r = 0) 
models patterns without exception tolerance. A single coun-
terexample still falsifies a hypothesis (e.g., a single D obser-
vation falsifies H9). For ideal explanatory patterns we as-
sume equiprobability for confirming classes. The ideal cell 

probability for confirmatory cells is pconf = 
1/cconf, with cconf, being the number of con-
firmatory cells in a pattern (e.g., H7: pconf = 
.33; cf. Tenenbaum & Griffiths, 2001). This 
replaces (monadic) truth tables by ideal pro-
bability tables. The cell-probabilities are re-
presented in Figure 2 by shades of grayscale 
(white = 0; black = 1). 

In Step 2 further possible equidistant 
levels of noise r are added in the interval [0, 
1] (in Panel 2, e.g., r = .3). The disconfirma-
tory classes of a pattern here get ideal cell 
probabilities above zero: pdis = r/call. Corres-
pondingly, the confirmatory cell probabili-
ties have to be reduced: pconf = 1/ccon – 
r(1/ccon–1/call). This results in ideal noisy-lo-
gical probability tables, PTs, taken as 
possible (monadic) explanations given the 
data. Based on these patterns the following 
steps proceed in a fairly standard way. 

 
Figure 1: Thirteen hypotheses 
about five true/false classes as 
ideal-noisy patterns (or proba-
bility tables) at two levels of 
potential noise r = 0; .3. 
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Step 3 calculates the likelihood of the data δ given the 
ideal explanatory hypotheses. δ, in our polytomous monadic 
case, consists of a vector of length c, δ1,…,δc, (cf. Step 0). 
For a particular probability table PT (Step 2, 3) referring to 
a hypothesis j and a noise level i, we calculate the likelihood 
using the multinomial distribution. In our example (c = 5):  

 

𝑃�𝛿�𝑃𝑃𝑖,𝑗� = �
𝑛

𝛿1𝛿2𝛿3𝛿4𝛿5� 𝑝1
𝛿1𝑝2𝛿2𝑝3𝛿3𝑝4𝛿4𝑝5𝛿5 

 

In Step 4, Bayes’ theorem is used to turn the likelihoods 
into posterior probabilities:  

 

𝑃�𝑃𝑃𝑖,𝑗�𝛿� =
𝑃�𝛿�𝑃𝑃𝑖 ,𝑗�𝑃(𝑃𝑃𝑖 ,𝑗)

𝑃(𝛿)
 

 

Here P(PT) represents the prior for a PT (in line with the 
subjective frequencies defining our subjective belief distri-
bution; cf. Step 0). P(δ) is a normalizing constant (calcula-
ted by summing up all likelihoods weighted by their priors). 

In Step 5, the probability of a particular hypothesis i is 
determined by summing up over the PTs with its different 
noise levels j. (Here no further steps or weightings are 
needed; cf. von Sydow 2011.) The one-dimensional pattern-
probabilities differ considerably from standard extensional 
probabilities and from other measures suggested to model 
IFs. In the following, we start investigating monadic poly-
tomous BL and the predicted class of IFs empirically.   

Experiments 1 and 2 
Here I report only considerable parts of two simple experi-
ments concerning probability judgments single polytomous 
attribute dimensions. (monadic predication).   

The experiments investigate (monadic) inclusion fallacies 
(IFs) since the hypotheses are partially nested. The classes 
in this dimension, A, B, C, D, E, are framed as mutually 
exclusive, and one prediction of BL is that people judge 
P(A) > P(non-A) with P(non-A) = P(B) + P(C) + P(D) + 
P(E) even if f(A) < f(non-A). The predictions for pattern 
probabilities, PP, clearly differ from those based on standard 
extensional probabilities (relative frequencies), PE.  

The predictions of BL also differ, for instance, from a 
confirmation account of IFs that assumes that people 
misinterpret probability as confirmation, which should result 
in selecting the most strongly confirmed hypothesis when 
asked for the most probable one (cf. von Sydow, 2011).  

Although we focus on monadic IFs, we use attributes 
reminiscent of the original Linda task: In Experiment 1 we 
are concerned with job descriptions, in Experiment 2 with 
political attitudes. Additionally, in Experiment 1 we use 
either ordinary language “OR” or “AND” to sum several 
subclasses. Although the latter seems logically incorrect, we 
predicted that in a context of mutually exclusive events the 
meaning of these ‘connectives’ would not differ. Further-
more, in both experiments the order of labels of the classes 
was counterbalanced to control for content effects. Finally, 
in Phase 1 we investigated single samples of data and in 
Phase 2 a timed series of three samples to test for 
contrasting predictions of priors vs. confirmation.  

Method 
Materials and procedures Both experiments concern 
thirteen alternative statements about the graduates of 
different schools (Linda school, Humboldt school, Goethe 
school etc.). The experiments were run on a computer. 

On the introduction pages, participants were told that they 
would receive sample information about the distribution of 
graduates, and they were given two examples for sample 
distributions. In Experiment 1, the attribute-dimension con-
cerned five classes of graduates’ main jobs (A translator, B 
bank employee, C artist, D teacher, E physician). Experi-
ment 2 concerned five classes of main political attitude (A 
conservative, B social, C liberal, D ecological, E feminist), 
explicitly framed as alternative outcomes of a test that 
assigns people to one political group only. With regard to 
procedure and samples the experiments were identical.  

In Phase 1, fifteen schools with counterbalanced names 
were shown in random order. For each school they saw one 
sample of graduates: a table with category names and 
frequencies (numbers) showed which jobs the sample had 
chosen. Apart from the category order A, B, C, D, E, a 
second condition involved the label orders E, D, B, A, C 
(experimental factor 1 in both Experiments) to control for 
content effects/prior knowledge: Ecological analysis sug-
gested that if exogenous prior probabilities were considered, 
D and E should subjectively be expected the most probable. 
Likewise for Phase 1 and the first label order summing up 
all samples involved PE(A) = 13%, PE(B) = 24%, PE(C) = 
10%, PE(D) = 27%, PE(E) = 25% (since the frequencies are 
kept constant in the second condition, other labels had 
high/low values). BL should only be weakly influenced by 
such priors, since a strong transfer between different schools 
seems implausible, particularly if the present samples are 
large enough that it is clear they come from different 
populations. However, a confirmation approach may rely on 
these differences (cf. also Phase 2).  

Participants were asked: “Which statement appears most 
probably to be valid to you? [...] Answer intuitively.” The 
experiments concerned: “Pupils of this school…”. In Ex-
periment 1, the hypotheses concerned whether the pupils of 
the school become for example “S1 translators”, or “S8 
translators, bank tellers, artists or teachers”. Note that S1 
refers to a subset of S8. In Experiment 2, hypotheses 
likewise concerned nested attributes such as: “S1 …conser-
vative” or “S8 …conservative, social, liberal or feminist”.  

In addition to the logically correct OR-formulations, Ex-
periment 1 used AND-formulations (experimental factor 2): 
“S8 translators, bank tellers, artists and teachers”. If AND 
were here interpreted as logical conjunction, the intersection 
would be empty, but for alternative classes AND was 
expected to be used for adding as well.1  

Apart from the logical formulations and the varied labels, 
the thirteen hypotheses in both experiments referred to the 

                                                           
1 Experiment 2 did not pursue this issue, since the AND-interpretation as 

logical conjunction may become more plausible due to a non-exclusive 
interpretation of classes such as “conservative” and “feminist”. 
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same classes; as shown in Figure 2 in Phase 1 this is: S1 A; 
S2 B; S3 C; S4 D; S5 E; S6 AC; S7 ADE; S8 ABCD; S9 
BC; S10 BE; S11 BDE; S12 BCDE; S13 DE.  

Phase 2 of the experiments concerned ten further schools 
in random order. Participants now for each school were 
successively provided with samples from three surveys of 
differing dates, one twenty years earlier, another ten, and 
then with a recent survey. It was mentioned that the surveys 
might differ in size. Participants should select the hypothesis 
that appeared most probably valid with regard to the present 
school. The hypotheses in Phase 2 (cf. Figure 2, Panel 2, cf. 
the abscissa of the graphs), apart from the label and the 
formulation factor, did not differ in the experiments.  

Participants In Experiments 1 and 2, 57 and 36 par-
ticipants from the University of Heidelberg took part volun-
tarily, in exchange for course credits or money (8 Euros per 
hour). They were assigned randomly to the four conditions 
of Experiment 1 and the two conditions of Experiment 2. 

Results 
Figure 2 shows the proportion of selected hypotheses judged 
to be most probable in the six selected schools S inves-
tigated in Phase 1 (with a single sample per school), and the 
six selected schools in Phase 2 (three successive samples). 
We selected most informative examples (including the cases 
with most deviation between the two experiments: S3, S5). 
For simplicity, we conflate over the experimental conditions 
of label order and formulation type. But out of the 25 data 
patterns in overall six conditions (hence 150 charts), the 
main prediction of BL deviated from the predicted modal 
selection in two cases only. As predicted, it does not seem to 
matter whether the addition of classes was expressed by an 
OR or an AND in ordinary language. The high fit of the pre-
dictions of BL, however, suggests that people understood 
the relationship between language and logical meaning. 

Conflated over conditions, the modal selection in all 25 
schools (both phases) corresponded to the hypothesis 
predicted by BL. The mean correlation in the schools be-
tween selections and deterministic prediction were: Exp. 1, 
.98; Exp. 2, .96. In all schools, S, (both Experiments) the 
same modal values resulted—despite different content.  

Subsequently we discuss results for the example schools 
in Phase 1 and in Phase 2. In school S1, PE(A) is less exten-
sionally probable than its negation PE(B)+PE(C)+PE(D) 
+PE(E). Nevertheless the vast majority of participants, in 
line with BL, judged hypothesis A to be more probable than 
hypothesis ‘BCDE’ (with PP(A) < PP(BCDE)). This involves 
systematic inclusion fallacies (IFs) predicted by BL (since 
the hypotheses AC, ABE, ABCD have higher extensional 
probabilities). The difference between the experiments or 
corresponding two label conditions seemed week. Addition-
ally, for another school—not reported here—a exactly 
reverse order of frequencies led to highly analogous results. 

S2 excludes that people always select the modal answer 
(B), since people, as predicted by BL, mostly selected the 
BDE hypothesis. For a confirmation account, prior cell 
beliefs should have led to more varying selections in the two 

label order conditions. Likewise, confirmation cannot ex-
plain the results if one assumes flat prior beliefs, since it 
would be highest for the modal-frequency hypothesis (B).  

S3 corroborates that people select the inclusive BCDE 
hypothesis if predicted, although confirmation (for flat 
priors) would predict selection of E instead of BCDE.  

S4 excludes a possible simpler approximation of pattern 
probabilities by a ‘ratio heuristic’. The break-point between 
attributed and non-attributed classes might have been the 
largest ratio between classes. However, despite 6/1 > 29/6, 
the results corroborate the prediction of PP(DE) > PP(BDE). 

S5 investigates a situation in which BL’s prediction DE is 
less clear (see the second, minor prediction D). Participants 
in Exp. 2 (political attitude) selected more frequently the 
more specific hypothesis (D) over the main prediction (DE) 
– perhaps due to chance, or to greater noise-tolerance in the 
political scenario (cf. S3, S11), which could be accounted 
for within BL.—S6 led to the predicted dominant inclusive 
selection ADE,  not to the hypothesis referring to the modal 
frequency A. However, in at least one of the labeling 
conditions, A may have had lower prior expectations and 
hence a higher confirmation than classes D or E (and hence 
than the overall hypothesis ADE). Even if again we alter-
natively assume flat priors for the five classes, the standard 
extensional conceptualization of confirmation predicts the 
selection of the most specific hypothesis, here A. 

Panel 2 of Figure 2 shows the results for Phase 2 and 
which hypotheses are thought to hold most probable for a 
present school (t3), after showing two previous samples 
from earlier years (t1, t2). Although it is not clear to what 
extent previous data should be used for the judgment about 
t3, an inductive transfer parameter may rationally model the 
degree to which old data should be used in new situations. 
However, the directions of prior effects are clear and they 
can be contrasted with predictions of confirmation. For BL 
the influence of a prior should be mainly effective if one has 
small data samples in t3, otherwise the data may suggest 
that earlier samples come from different populations and 
should be ignored.—In S7 and S8 the small sample in t3 
according to BL does not favor DE very strongly over 
hypothesis E. As predicted, the selections (in both 
Experiments) varied in line with the t1 and t2 priors, 
favoring either E (S7) or DE (S8). In contrast the 
confirmation of D (as part of DE) in S8 is actually negative; 
thus no measure of confirmation (difference, ratio, etc.) 
would predict that D should be involved in the preferred 
hypothesis.—Similarly, in S9 and S10 the frequency in t3 
was identical; however, the selection of hypotheses was in 
line with priors and BL but not with a confirmation 
approach. In S9, the mostly selected B answer is not 
confirmed but actually disconfirmed in t3 (relative to t1 and 
t2) (67% relative to 79%), whereas A and C were confirmed. 
In contrast, in S10, with most ADE selections, B is actually 
confirmed and A and C disconfirmed. Thus confirmation 
seems unable to account for the data.—S11 corroborates that 
the most participants change hypotheses if a new pattern in 
t3 is clearly predicted (here E). However, some selected the 
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Figure 2: Proportions of selected hypotheses to be most probable in different schools (S) in Exp. 1 (jobs: dark) and Exp. 2 
(political attitude: grey). Arrows refer to the same main (and further minor) BL-predictions in both experiments.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

A B C D E
A 

C
A 

D 
E

A 
B 

C 
D

B 
C

B 
E

B 
D 

E
B 

C 
D 

E
D 

E

0%
10%
20%
30%
40%
50%
60%
70%
80%

A B C D E
A 

C
A 

D 
E

A 
B 

C 
D

B 
C

B 
E

B 
D 

E
B 

C 
D 

E
D 

E

0%
10%
20%
30%
40%
50%
60%
70%
80%

A B C D E
A 

C
A 

D 
E

A 
B 

C 
D

B 
C

B 
E

B 
D 

E
B 

C 
D 

E
D 

E

0%
10%
20%
30%
40%
50%
60%
70%
80%

A B C D E
A 

C
A 

D 
E

A 
B 

C 
D

B 
C

B 
E

B 
D 

E
B 

C 
D 

E
D 

E

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

A B C D E
A 

C
A 

D 
E

A 
B 

C 
D

B 
C

B 
E

B 
D 

E
B 

C 
D 

E
D 

E

0%
10%
20%
30%
40%
50%
60%
70%

A B C D E
A 

C
A 

D 
E

A 
B 

C 
D

B 
C

B 
E

B 
D 

E
B 

C 
D 

E
D 

E

Panel 1: Hypotheses Selected to be Most Probable for Samples, Phase 1

A B C D E
t1 4 7 2 6 71
t2 6 7 5 4 79
t3 0 0 0 1 2

Panel 2: Hypotheses Selected to be most Probable after Successive Sampling, Phase 2
S7 A B C D E

t1 0 3 3 33 40
t2 4 6 0 38 44
t3 0 0 0 1 2

S8 A B C D E
t1 2 22 0 2 2
t2 3 31 2 3 0
t3 1 4 1 0 0

S9

A B C D E
t1 13 12 14 0 1
t2 22 13 14 1 2
t3 1 4 1 0 0

S10 A B C D E
t1 1 0 3 39 3
t2 2 0 3 33 1
t3 1 3 0 1 34

S11 A B C D E
t1 3 20 1 39 30
t2 2 21 3 33 40
t3 1 11 2 9 11

S12

A B C D E
16 5 3 5 4

S1 A B C D E
2 14 1 9 9

S2 A B C D E
2 17 14 25 33

S3

A B C D E
1 6 0 29 59

S4 A B C D E
2 2 1 17 9

S5 A B C D E
30 3 4 20 15

S6

0%
10%
20%
30%
40%
50%
60%
70%
80%

A B C D E
A 

C
A 

B 
C

A 
D 

E
B 

C
B 

E
B 

D 
E

B 
C 

D 
E

D 
E

0%
10%
20%
30%
40%
50%
60%
70%

A B C D E
A 

C
A 

B 
C

A 
D 

E
B 

C
B 

E
B 

D 
E

B 
C 

D 
E

D 
E

0%
10%
20%
30%
40%
50%
60%
70%
80%

A B C D E
A 

C
A 

B 
C

A 
D 

E
B 

C
B 

E
B 

D 
E

B 
C 

D 
E

D 
E

0%
10%
20%
30%
40%
50%
60%
70%
80%

A B C D E
A 

C
A 

B 
C

A 
D 

E
B 

C
B 

E
B 

D 
E

B 
C 

D 
E

D 
E

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

A B C D E
A 

C
A 

B 
C

A 
D 

E
B 

C
B 

E
B 

D 
E

B 
C 

D 
E

D 
E

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

A B C D E
A 

C
A 

B 
C

A 
D 

E
B 

C
B 

E
B 

D 
E

B 
C 

D 
E

D 
E

2515



 

DE hypothesis, thus putting stronger emphasis on the prior 
than expected. This is even more at odds with confirmation, 
since D was disconfirmatory.—Finally, S12 corroborates the 
predicted hypothesis of BL (BDE), whereas classes D and E 
were actually disconfirmatory.  

General Discussion 
Overall, the results obtained in these first frequency-based 
experiments on monadic polytomous BL strongly corrobo-
rate BL’s predictions. People commit inclusion fallacies 
even within one dimension with many subclasses. We found 
only few or minor differences between (a) label conditions, 
(b) AND vs. OR formulations, and (c) the experiments with 
different content. The differences between the two experi-
ments—if not entirely due to chance—may be explained by 
differences in noise-tolerance, which can be modelled 
within BL. The results strongly support a pattern-approach 
of IFs and could not differ more clearly from extensional 
probability. Here non-A involved several subclasses and 
people judged P(A) > P(non-A) even if f(A) > f(non-A) was 
the case (dissociation with frequencies).  

To my knowledge, the present results cannot be explained 
by any of the many alternative accounts of conjunction fal-
lacy (see von Sydow, 2011; von Sydow & Fiedler, 2013). 
Tentori et al. (2011) correctly note that most approaches of 
CFs cannot account for a dissociation with frequencies. Al-
though a confirmation approach may do so, it cannot 
account for our results: in Phase 1, there was no ‘inverse’ 
influence of prior beliefs, as predicted by confirmation. If 
one alternatively assumes flat priors, since each situation is 
evaluated anew (as we assume), confirmation in contrast to 
the results would always predict the selection of very 
specific hypotheses (with modal frequencies). Moreover, 
Phase 2 explicitly addressed priors, by varying previous 
information about the schools. Although people as predicted 
preferred using newer evidence, they were influenced by the 
priors if the new evidence did not clearly show that one is 
concerned with a population that differs from the old one. 
Crucially, the effect of priors went in the direction predicted 
by our Bayesian pattern approach, not in the opposed dir-
ection of a confirmation approach. Although these results 
may shed light on previous findings (apparently favouring 
confirmation; Tentori et al., 2013), a disconfirmation of a 
confirmation account does not imply its falsification. Con-
firmation may nonetheless play a role to explain one class of 
CFs (even if one distinguishes it from pseudo-confirmation 
effects, such as scale construction effects, or relevance 
effects).  Generally, inclusion fallacies presumably have 
several different causes, including misunderstanding of 
terms (Hertwig, Benz, & Kraus, 2008; von Sydow, 2014), 
unclear sets (Sloman, Over, Slovak, & Stibel, 2003), con-
fusing confirmation with probability (Lagnado & Shanks, 
2003; Tentori et al., 2013), or using pattern probabilities 
where CFs cease to be fallacies (von Sydow, 2001, 2014). 
Confirmation of patterns may even play a role.  

The present results, in any case, corroborate a pattern-
probability account. The findings nonetheless suggest that 

standard dichotomous BL (von Sydow, 2001) only applies if 
one is concerned with two classes and dichotomous events. 
The results suggest that a proper formalization of pattern-
probabilities depends on the subjective representation of 
classes—the intension—, not only on the extension. If one is 
concerned with stories, as in the original Linda scenario, 
such representations may vary in an uncontrolled way. 
Formalizations of BL (and of heuristic approximations of 
pattern probabilities) should take subjective representations 
into account (for another aspect, see von Sydow, 2014).  

In conclusion, the present research corroborates BL in a 
new domain. It reveals new avenues of research and 
suggests that the role of representation in probability 
judgments is richer than previously assumed. Subsequent 
research is crucial to address such issues in more detail.   
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