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Knowledge and the
Simultaneous Conjoint Measurement of Activity, Agents, and Situations!

Peter Pirolli
Xerox Palo Alto Research Center and University of California, Berkeley

and

Mark Wilson
University of California, Berkeley

Abstract

We outline a measurement theory developed by
integrating ideas about knowledge level analysis,
production system models of transfer, additive
conjoint measurement, and Rasch models of
measurement. Productions are assumed to represent
situation-action elements of knowledge. The mode!
views the performance of such a knowledge element
as the combination of affordance properties
associated with the element and ability properties
associated with an individual. Under specified
conditions, observed behavior can be used to separate
and quantify variables measuring situation-action
affordances and subject abilities. A specific version
of this model is applied to data from four studies
involving the CMU Lisp Tutor.

Introduction

We seek to develop a theory of quantitative
measurement that captures the intendedly rational
behavior that results from bringing individuals and
situations into contact. In this theory, knowledge,
agents, goals, and situations are constitutively
defined, but can be assigned independent quantitative
measures under appropriate conditions. The theory is
grounded in cognitive models of transfer and
fundamental theories of measurement. We present
an overview of this theory and a measurement model
applied to a corpus from four studies using the CMU
Lisp Tutor (Anderson, Conrad, & Corbett, 1989).

Outside of cognitive science, the pursuit of more
direct quantitative measurement of theoretical
constructs has a long history (Campbell, 1928)
because it is such a strong marker of understanding
and control of over the phenomena of interest
(Michell, 1990). Many cognitive scientists are
unfamiliar with models of fundamental
measurement, such as additive conjoint measurement,
and we need note, at the outset, that this means
something much deeper in our scientific ontology
and epistemology than just assigning numbers to
observations. Such measurement implies strong

1This work was supported by Office of Naval
Research Grant N00014-91J-1523. We thank Karen
Draney who performed the data analysis.
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hypotheses that essentially state that properties and
relations in the world behave as recognizable
mathematical structures that we call quantitative.

Knowledge = Observer-ascribed Intention

The knowledge level was offered (Newell, 1982) as a
new systems level, above the symbol level, to
describe intelligent systems. Knowledge-level
systems can be specified completely by an observer
examining a system's interaction with the external
world. A knowledge-level system consists of an
agent behaving in an environment. The agent
consists of a set of acrions, a set of perceptual
devices, a goal, and a body of knowledge. The
operation of such systems is governed by the
principle of rationality: if the agent knows that one of
its actions will lead to a situation preferred according
to its goal, then it will intend the action, which will
then be taken if it is possible. Knowledge refers to
intentions or beliefs and it is defined functionally as
"whatever can be ascribed to an agent, such that its
behavior can be computed according to the principle
of rationality" (Newell, 1982, p. 105). The reason
for specifying knowledge as a function that does not
reside in any particular structure at the symbol level
is that knowledge about the world cannot be captured
in finite structure. The knowledge level is defined
from the stance of an observer ascribing knowledge
to a system based on observable external situations
and actions.

The Symbol Level and Knowledge Access

The symbol level is the medium of symbol structures
that run in a physically realizable computational
architecture. Relations among the knowledge and
symbol levels can become complex. In general
outline (Newell, 1982), a representation scheme is
defined at the symbol level as a combination of data
structures and processes specified in some
architecture. Knowledge representation schemes
determine the access functions to the knowledge
available to the system in a given situation, as well as
their cost structure. The principle of rationality is
mechanistically realized by the total operation of the
symbol level system.

Newell (1982, p.108) found it useful to think of
knowledge as an infinite table representing a relation



and containing elements in which situations and
actions were conditionally associated according to
goals. A compact way to think of the relationship
between knowledge and symbol levels is provided by
Rosenbloom and Aasman (1990). Consider the
infinite table of knowledge mentioned above. At the
knowledge level, the principle of rationality simply
operates on the entire infinite table. At the symbol
level, for any given environmental context, the access
to that knowledge can be imagined as a degree-of-
belief function over that table. The values of this
degree-of-belief function determine the degree to
which each knowledge element is plausible for that
context, and this degree-of-belief value predicts the
ease with which the knowledge element can be
brought to bear within that context. Changes to this
access function may occur through learning.

Measurement at the Knowledge Level

The basic assumption about formal representations of
the knowledge level is that “to ascribe to an agent the
[symbol] structure § is to ascribe whatever the
observer can know from [symbol] structure §”
(Newell, 1982, p. 112, italics in original). In any
particular model we need not worry about the
complete unbounded knowledge potential.
Production systems could be used as the basis for the
logic for the knowledge level analysis. Many studies
(Pirolli, 1991; Polson, Bovair, & Kieras, 1987,
Singley & Anderson, 1989) suggest a very simple and
direct correspondence between formal production
rules and elements of knowledge which results in an
identical elements theory of transfer (Singley &
Anderson, 1989). The following are some key
properties of the Singley-Anderson formulation that
are relevant to the knowledge level analysis:

* Permanence property.2 Productions, once
acquired, remain in the system.

e Abstractness property. The production rule
conditions are patterns that variabilize over the
space of possible situations. The production
system maps observable situations and goals
onto the conditions of productions. Each
production therefore defines an equivalence
class of situations. The production conditions
may be regarded as specifications of
situational invariants controlling cognition and
behavior.

» Independence properties Each production rule
can be acquired and can transfer independent
of other productions.

* Asymmetry property. Each production
specifies a state change in the interaction of
agent and environment. The system can

2This property is not explicitly stated by Singley and
Anderson, but it is clearly part of their theory.
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reason from conditions to actions but not vice
versa.

To which we add the following restriction to
constrain the system to knowledge-level analysis

*  Knowledge-level restriction. Only productions
(or specifiable compositions of production
execution structures) that match identifiable
external situations and yield identifiable
external actions are relevant to the knowledge-
level analysis.

We need to also define properties indicating the
extent to which observed agents approximate
knowledge-level systems. For the purposes of
developing a broad measurement model, we seek to
make the weakest possible assumptions about
knowledge access. We will concentrate on knowledge
access properties in relation to individual differences,
skill acquisition, and practice:

»  Affordance properties. Individual productions
have properties that reflect the performance of
a particular situation-action knowledge
element. We may also refer to the opposite of
affordance as difficulty.

e Ability properties. Individual agents differ in
their ability to exhibit knowledge.

Intelligent Tutoring Systems as
Knowledge-ascribing Instruments

Concrete examples of knowledge level analyses are
provided by overlay student models in intelligent
tutoring systems. An overlay model is often specified
in the form of a production system model that can
solve problems in a particular domain such as
medical diagnosis, geometry, or Lisp. The intelligent
tutoring system (ITS), in addition to its pedagogical
role, is a complex observational instrument. Based
on its mechanical observation of different interface
situations with a student (e.g., the computer screen
state) the ITS uses its production system model to
predict possible actions, and observes the actual
student actions. The ITS records external observable
situations and actions. The observed situation-action
mappings are then matched against the mappings
embodied in the production rules. The ITS basically
has an internal table of productions that captures the
elements of knowledge that are possible (both within
and across students), and it ascribes these knowledge
elements to the observed student agent when the
student exhibits the appropriate behavior. This
process is depicted in Figure 1: Behavior over time is
matched to productions (P1, P2, and P3), and
response measures (Ri) associated to a particular
production are tabled by trials on that production (as
for P1 in Figure 1). The ITS knows the mapping of
situation to action implied by a production symbol
structure §, and mechanically fulfills Newell’s (1982)
role of observer: “to ascribe to an agent the [symbol]



structure § is to ascribe whatever the observer can
know from [symbol] structure §” Thus, in practice,
an ITS can be viewed as an automated knowledge-
ascribing instrument that treats a student as a
knowledge-level system.

Behavior ovar Time

-~ | | >
P1| |[p1]] [P P1

1
P2 P2

P3

Production Trials
I 1 2 3 4

P1 Rl Rz R3 R4

Figure 1. Behavior over time is matched to
productions and trial.

Theories of Fundamental Measurement

Fundamental measurement concerns the
quantification of observed relations or properties
(Campbell, 1928; Luce & Tukey, 1964). The marks
of quantity are established by ordinal relations and
additive structure among the variables of interest. In
the case of extensive properties, such as length,
specific ordinal relations are clearly manifest in
comparisons of objects of different lengths and
additivity is manifest in the manner in which lengths
can be concatenated to produce new lengths. More
abstractly, the marks of quantity can be established
by determining if the observed relations or properties
conform to algebraic structures that satisfy specific
axiomatic conditions (Michell, 1990).

Both abilities and affordances are reflected in the
same performance, so our knowledge-level
assumptions provide constitutive definitions of the
situatdon-action affordance, individual ability, and the
measurable performance. Unlike extensive properties,
such as length or mass, constitutively defined
variables raise the issue of separating out and
establishing the quantities associated with each of the
constitutively defined concepts. This too can be
achieved, as in the theory of additive conjoint
measurement (Luce & Tukey, 1964), which
establishes the axioms that must be met to establish
the appropriate order and algebraic structure to
quantify constitutively defined (conjointly measured)
variables. The general idea to separate out the
measures for constitutively defined variables is
familiar to anyone who has used the additive factors
logic of experimental design. If variables defined
over the two classes of entities and the resultant
response variable can be simultancously scaled so
that an ordinal additive (noninteractive) structure
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results, then one can separate the scales associated
with the variables. Imagine that an ITS uses an
overlay model to dichotomously score actions made
by a person i and in a situation class corresponding 0
the conditions specified by production j, such that Xj;
= 1 scores that "subject i acted as if they had
knowledge k; appropriate for situation ;" otherwise
Xjj = 0.3 Assume that we simply associate a
parameter z with each individual to indicate level of
ability and each situation-action knowledge element
will be associated with a parameter d indicating its
difficulty (the inverse of the degree to which it
affords understanding). One might assume a simple
stochastic model in which the probability of a person
i exhibiting the appropriate knowledge in situation j
is some function of zj/dj. The following is a simple
model with the necessary properties for illustration.
Let

z.
Pr(X; =1lz;,d;) = —— 1
(X; =1]z.d)) ey (1)
and the complement is
d-:
Pr(X; = 0]z.d;) ey @)

Examination of this formulation shows that a person

of zero ability, z; = 0, has a zero probability of
exhibiting knowledge in all situations, whereas a
person of infinite ability, z; = ©, has a probability of
one of exhibiting knowledge in all situations. A
situation-action element of zero difficulty, dj = 0, has
a probability of one of being successfully performed
across individuals of all ability, whereas an element

of infinite difficulty, dj = ©°, has a zcro probability of
being successfully evoked in anyone. If the difficulty
of the situation is equal to the ability of the
individual, z; = dj, then there is a .5 probability of it
being successfully performed. The estimation of
these parameters becomes realizable through the
observation of the relative proportions of correct and
incorrect solutions across individuals and problems.
This is because the relative proportion of correct to
incorrect solutions is predicted by the combination of
Equations 1 and 2 to be

Pr(X; =1) _% 3
We can look at a particular situation j and use as its
parameter the relative proportion of individuals
scoring as successfully having the relevant
knowledge. Alternatively we can look at a particular

3This example is a modification of one discussed by
Rasch (1960).



individual and examine their relative proportion of
success to estimate that person's parameter. A
particular situation (or individual) can be chosen as
an arbitrary zero point of reference, and another
situation (or individual) as the unit. Although the
example here examines probability correct, the
analysis can be easily mapped on to performance
time.

Note that we can transform the metric of z; and d;
above to a logarithmic metric and achieve an additive
structure. Let 6 = log(z;) and §j = log(dj), so that
Equations 1, 2 and 3 become:

exp(6; - &)

4)
Pr(X;; = 016,.6,)= m v
and
Pr(X;; = 16;,¢;)
= 0" Y
PX;=08,8) -

This is a form of the logistic or Rasch model that is
more commonly used, and we will use in what
follows. The values of 8 and & are reported as logits.

Rasch Models

Rasch (1960) developed a measurement theory with
similarities to additive conjoint measurement but
based on assumptions of stochastic processes. We
use a Rasch framework in our measurement model.
Rasch (1960) established that sufficient statistics
could be obtained quite simply for the parameters in
his models. Estimators based on such statistics fulfill
the dual role of establishing the empirical conditions
under which a model applies, and provides the
underpinnings for statistical estimation and inference.
Rasch models satisfy an important property of
specific objectivity. Specific objectivity means that a
response measure is a conjoint measure of two
entities (such as an agent and situation) whose
measures can be separated and quantified, similar to
the manner discussed above. Rasch stated that
specific objectivity holds when

the result of any comparison of two objects
[persons] ... is independent of everything
else within the frame of reference other than
the two objects [persons] which are to be
compared (Rasch, 1977, p.77, italics in
original).

That is, the parameter describing the person must be
inferentially separable from the parameters describing
the situation-action knowledge element. This must
hold, in a dual fashion, for comparisons of situation-
action knowledge elements.
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It can be shown that Rasch models satisfy the
conditions of additive conjoint measurement.
Because of space limitations, we leave that proof to a
formcoming paper. It is important to observe that
this proof is shown to hold for the determinate Rasch
model (Rasch, 1977. p.6). It remains to be shown
whether in any actual situation the Rasch model
holds, and evidence for all such real situations will
always be empirical rather than theoretical (i.e., the
conclusion that "the Rasch model holds" or
otherwise, will for all such situations be based on
weight of empirical evidence, rather than be true or
false according to some theory). Numerous
procedures for testing fit to the Rasch model have
been given in the literature. This is paralleled by the
search for "indirect evidence" (Michell, 1990, pp. 78-
84). That is, the evidence that an additive conjoint
structure holds in a given (sufficiently large and
interesting) situation can only be based on a weight of
empirical evidence, just as for the Rasch model.

Application of the Model

Programming is perhaps the most studied cognitive
skill. Production system models of this domain
reveal remarkable regularities in performance,
learning, and practice. We begin by noting that
Anderson et al. (1989) report factor analyses of the
Subject by Production matrices of error rates. Their
findings suggest that subjects and productions have
independent additive effects (under appropriate
transformation) on error rates. This provides some
indirect evidence that the general Rasch approach
requiring separable parameters for agents (people)
and knowledge elements is appropriate.

Clearly people vary in their abilities, and we will
assign each person i a parameter 6;. Performance
varies across productions rules, and we will assign
each production j a parameter §; o indicate its
difficulty. Particularly important to us is the
observation of practice effects for individual
productions. Performance time and errors improve as
a sublinear function of practice. Error rates improve
as exponential or power functions of trials of practice
(the specific form may depend on a number of other
factors, Pirolli, 1991). We will find it useful to think
of each trial of practice as an increment that improves
performance. The same increment can be applied to
model each trial, if the practice function is
transformed into a space in which it is linear. If we
let o be the increment, then on trial ¢ there will be (¢ -
1)a incremenets received by a production. We will
denote this sum by a,.1, so for trials 1, 2, ...n the
difficulty & of production j will be improved by ag
=0,01 =0, 0 =2q,..., 0.1 = (n- 1o

Another relevant finding for us is that various kinds

of reatments can have specific impact on specific
productions. For instance, instructional examples



Production Trials

1 2

3 ese n

P 01+81+10+0aQ 01+ +10+ ()
P2 |01+82+10+00 01+ +10+00]
Px

0] +dk +10+00 B+ +10+ )

01 +8]1 +10+ 2 oo
01+ +10+ 02

O] +0k +TQ0+0@2 oo

01 + 6] + 10+ ap-1
01 +8& +10+ ap-1

0] +5k+10+ 0n-]

{ Different subject (6) and different treatment (1) on Py 1

Pk

P 02+81+10+ 02+ 8] +10+ ) 02+08] +10+ 2 oo 02 +31 +10 + Op-1
P2 N+N+11+00 020+HN+11+0] 02+ +11+ 02 e 02+82 +11 + 0p-]
B +dk+10+00 02+ +10+ ) 02 + 8k +TQ + a2 oo 02 + 8k + 10 + Op-1

Figure 2. A matrix depicting parametric variations with people, practice, and treatments for a set of

knowledge elements or productions, Pj,

improve learning to program, but more importantly
an example can be analyzed to determine the specific
productions that will be improved (Pirolli, 1991).
Learners may employ different learning strategies
when processing instructional materials, and these
have specific effects on production performance
(Pirolli & Recker, in press). Each such specific
treatment k will be associated with a parameter 7 that
alters the difficulty of performing a specific
production.

We can elaborate the model in Equations 4 to 6 by
expanding & to be a linear combination of the relevant
production parameter §, treatment parameter 7, and
practice increment .1, 0r §= § + T+ .. Figure 2
illustrates a hypothetical analysis of performance on
productions Py, P2, ..., Pk, over trials 1, 2, ... n for
different subjects under different treatments. In the
top table of Figure 2, performance is attributed to a
person parameter (81) and production parameters 81,
&2, ..., 8x. Performance is improved by practice
effects ag=0, a] = a,..., 0ap.; = (n -1 )a. We also
assign a treatment parameter 1 to this base treatment.
The bottom table of Figure 2 shows how we would
indicate a different subject (82) who received some
treatment (1) that specifically affects performance of
production P (perhaps an example program).

We have developed and applied such a model to a
corpus of data from several studies involving the
CMU Lisp Tutor. The formal expression of the
measurement model is
f'(x;A,B.gl e) _ Kt:,xp(buo o au&_‘)

3 lexn(b:..(? +a,8)
u=

)
where A is a design matrix describing how the data
relate o productions, trials of practice, and treatment,
and whose rows are ajx, € is a vector of parameters
that describe the production, trial, and treatment
parameters, B is a score matrix describing how the
data relate to the subjects and whose rows are bjx,
and @ is a parameter that describes each subject. A
detailed description of this model and the marginal
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maximum likelihood algorithm used to estimate its
parameters is given in Adams and Wilson (1992).
The model is applied to particular circumstances by
specification of the A and B matrices. Pirolli and
Wilson (1992) also provide some simple illustrative
examples.

The data come from four experiments (Bielaczyc,
Pirolli, & Brown, 1991; Pirolli & Recker, in press;
Recker & Pirolli, 1992) investigating people learning
to program recursive functions. Although conditions
vary across experiments, all used the same
programming problems (though possibly in different
sequences) and involved the same production system
models. For our first tests of the measurement model,
we selected 22 productions for analysis across the 76
participants in the studies. These productions
represented new knowledge learned in the recursion
lesson or elements that could be induced from the
instructional examples given to subjects. One set of
subjects (N = 32) saw an example illustrating
recursion on numbers, another set of subjects (N =
44) saw an example illustrating recursion on lists.
Some productions that could be induced from the
numeric recursion example but not the list recursion
example we called number productions (4). Another
set of productions could be induced from the list
recursion example but not the numeric recursion
example was called list productions (5). Some
productions could be induced from both examples (1)
and some could be induced from neither example
(12).

Application of the model in Equation 7 to these
data shows that the production difficulties (J) vary
from -1.98 logits to 1.57 logits, with the number
productions having a mean difficulty of .41 logits, the
list productions -.47 logits, and the productions
available from neither example had a mean difficulty
of -.02 logits. The mean of abilities (8) for the
subjects seeing the number recursion example was
-1.07 logits and for those seeing the list recursion
example was -1.26 logits. Seeing a number recursion
example had a treatment effect (7) of -.36 logits on
the number production difficulties and seeing the list



recursion example treatment effect was -..22 logits.
Each trial of practice (a) had an effect of -.10 logits.
Figure 3 presents the predicted probability of error (in
log-linear coordinates) based on these parameter
estimates. Examples improve the error estimates on
the productions they affect, and this effect is two 1o
four times the practice increment on a logit scale (see
also Pirolli, 1991).

Number Example Number Productions

sl xample r Productions
ple |sl roductions
xampe umber Productions
1 T I T I T ] T ' T I T l rl T [T

Probability Error
e

Production trial

Figure 3. Estimated learning curves for the CMU
Lisp Tutor studies (log-linear scale).

General Discussion

Our measurement model integrates assumptions
about the observation of knowledge, thé elementary
nature of knowledge and its transfer and practice
properties, and theories of fundamental measurement.
The measurement model estimates the affordance
properties of individual elements of knowledge and
the ability properties of individual subjects on scales
that are fundamentally quantitative (have order and
additivity). Unlike analysis of variance, regression,
or similar techniques, the model estimates are not of
samples or populations, but the specific entities of
interest. In essence the model treats knowledge as
the combined additive effect of situation-action
affordances, individuals, and their joint histories in
terms of practice or treatments. We have treated
these parameters as scalar properties, but it is possible
to extend the model so that abilities and affordances
are treated as multifaceted structures (i.e., matrices,
see Adams & Wilson, 1992).
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