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By 

 

Peter Simadiris 

 

Master of Science in Mechanical and Aerospace Engineering 

 

 University of California, Irvine, 2021 

 

Assistant Professor Yoonjin Won, Chair 

 

 

The continuous increase in the performance of high-power energy systems calls for thermal 

management systems capable of dissipating large concentrations of heat. Phase change 

cooling strategies utilize latent evaporation energy to absorb substantial amounts of heat. 

Although phase change cooling has considerable potential in thermal management, little 

research has been done regarding the optimization of these systems. The extreme volatility 

within phase change processes poses a challenge for researchers to obtain measurements 

with any reasonable uncertainty. Essential to altering the heat transfer performance is 

understanding nucleation dynamics, which involves quantifying individual nucleation 

features as well as their correlation to system properties. The complex dynamics within these 

systems prevent accurate extraction of nucleation statistics using conventional methods. 

Recent progression in machine learning enables researchers to automatically quantify these 

system dynamics. For instance, a 10 second dataset composed of high-speed boiling images 

normally contains at least one million bubble features, where an experiment will likely 

exceed millions of bubble features. To accurately extract data from these systems requires an 

extensive amount of time as well as an in depth understanding of the underlying physics. 

Inspired by this challenge, this thesis reports an autonomous vision-based framework 

capable of measuring nucleation dynamics at a high-temporal, microscopic scale. 
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We employ a modular framework that consists of an artificial intelligence (AI) based object 

detection and object tracking to study nucleation dynamics occurring within phase change 

systems including pool boiling, dropwise condensation, and film wise condensation. Vital 

nucleation statistics are extracted by tracking individual droplets within phase change 

systems using sequential high-speed, high-resolution images.
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CHAPTER 1 

Introduction 

Chapter 1 introduces how phase change processes can fulfill the growing need for high heat-

flux thermal management systems. Various methods used in past studies to analyze phase 

change systems are discussed as well as how recent advancements in machine learning 

enable researchers to study highly complex systems at extreme resolutions.  

 

1.1 Thermal Management 

Thermal management systems currently limit the performance of high-power electronic 

devices such as laser diodes, nuclear reactors, microprocessors, and heat exchangers due to 

the inability to dissipate substantial amounts of heat. [1-3] Recent declines in transistor 

density illustrate the dependency between microprocessors and thermal management. On 

the microscale, modern microprocessor designs report a heat generation up to 400 𝑊/𝑐𝑚2.[4] 

For example, approximately 30-55% of the total energy used by data centers is allocated to 

thermal management.[5] This intense heat generation reduces microprocessor lifetime, 

performance, and durability. Thus, thermal engineers seek effective high heat flux thermal 

management systems.  

 

Commonly, high heat flux thermal management systems implement phase change cooling 

setups due to the ability to absorb ample heat loads. Phase change cooling utilizes the latent 

evaporation energy of the working fluid during liquid-to-vapor phase change to dissipate 

large amounts of heat within a small temperature gradient. Current phase change cooling 

systems include condensation [6], pool boiling [7], flow boiling [8], jet impingement [9], 

microchannel heat sinks [10], and spray cooling.[11] Among numerous approaches to improve 
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phase change heat transfer performance, processes governed by nucleation dynamics such as 

pool boiling, flow boiling, and dropwise condensation have gained interest due to recent 

advancements in measurement techniques, in particular artificial intelligence.  

 

Figure 1. Microprocessor evolution over seven decades (a). Heat transfer coefficient for 

various thermal management processes and working fluids (b). The prediction capability of 

the framework is compared to conventional computer vision techniques (adaptive 

thresholding) (c). An overview of the computer vision framework. (d) 

1.2 Previous Studies about Phase Change Analysis 

Over the past decades, extracting nucleation statistics within phase change processes has 

been a challenging task for thermal engineers. Quantification of nucleation statistics has 

been widely investigated using numerical, theoretical, and experimental methods. Past heat 

transfer models utilize theoretical-empirical correlations to mitigate the complex physical 

mechanisms governing these nucleation dynamics.[12-14] For example, past theoretical 

studies simplified heat transfer models by excluding mid-to-high heat flux regimes near 

CHF.[15] Studies also assumed perfect spherical shape for bubbles to reduce model 

complexity.[16] Previous literature also studied the effect of nucleation dynamics using 
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numerical and experimental methods. However, due to the complexity within phase change 

systems, results documented from direct numerical simulations of phase change processes 

are debatable.[17] This compels researchers to mostly rely on experimental methods to 

measure heat transfer performance (thermocouples, multimeters).  

 

Past studies also utilized infrared thermography to measure the distribution of liquid and 

gas phases in contact with the heater surface. The studies found that the wetted area fraction 

decreases with increasing heat flux.[18] Jiangliang et. al employed a charge-coupled device 

(CCD) camera to record bubble behavior and found that transient conduction due to bubble 

interactions is the main mechanism resulting in high heat transfer rates during 

coalescence.[19] Lee et. al utilized thermometers, multimeters, and heater surface area to 

quantify the effect of ultrasonic actuation on nucleation dynamics. This study reported a 17% 

increase in the heat transfer coefficient when ultrasonic actuation is used within the nucleate 

boiling regime.[20] Barbosa et. al utilized high-speed video recordings to quantify and predict 

annular flow dynamics.[21] Waltrich et. al used high-speed video recordings to produce 

transitional models for slug, churn, and annular flow. It was reported that churn flow is 

present where previous studies regarded the flow regime as underdeveloped slug flow.[22] 

Consequently, phase change heat transfer models vary depending on the assumptions 

specified or lack high heat flux regime information altogether. 

1.3 Introduction to Convolutional Neural Networks 

A favorable approach to tackling the daunting challenge of quantifying nucleation dynamics 

is to use an instance segmentation-based framework to identify and track bubbles within 

phase change systems. For decades, image classification tasks have been performed using 

classic computer vision (CV) methods such as thresholding, clustering, region growing, and 



4 

 

edge detection.[23] These techniques require an extensive understanding to create detectable 

features associated with objects of interest. Global thresholding is a CV technique that selects 

a threshold value as the cutoff value for binary classification. However, binary classification 

automatically prohibits individual droplet tracking, ruling out analysis of bubble density, 

count, distribution, etc. A major downside to traditional CV methods is that handwritten 

detection features are susceptible to incorrect detections due to data variance. For example, 

if light reflects over the region of interest, the object will not appear as expected and will not 

be correctly detected. Adaptive thresholding is a CV technique that adjusts the threshold 

value within the image to account for data variance. However, Figure 1c shows that neither 

threshold can successfully detect complex bubble morphology within phase change processes. 

This vulnerability to data variance is a critical demise of traditional computer vision 

techniques.  

 

However, rapid progression in computer vision methods employing convolutional neural 

networks (CNNs) have enabled researchers to develop frameworks to autonomously extract 

nucleation dynamics using high-speed image datasets. CNN models achieve improved 

performance compared to conventional CV methods due to their ability to efficiently learn 

and recognize features within images similarly to the human brain’s visual system.[23] 

Recently, the majority of AI based computer vision frameworks utilize CNNs to track various 

objects. CNN models are currently solving challenging image classification tasks in various 

fields such as autonomous driving [24], wildlife monitoring [25], and agricultural 

surveying.[26] CNNs are used to extract distinct hierarchical features within images to track 

and study objects.[27] Rudimentary features such as curves and edges are at the lowest level 

of the hierarchy, while the IDs of bubbles are at higher levels. These features are later sent 
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through a state-of-the-art tracking module to determine the bubble location, size, eccentricity, 

and other bubble characteristics.  

 

Recently, thermal engineers recognized the capability of CNNs to measure slight variations 

between images to extract nucleation statistics. Hobold et. al detected and classified pool 

boiling regimes using a custom machine learning vision-based framework.[28] Another report 

introduces real-time heat flux quantification utilizing visualization-based data and a neural 

network-based model with errors as low as 7%.[29] A recent study presents a CNN-based 

instance segmentation framework to study dropwise condensation heat transfer at a 

microscopic scale (300nm) with a 200ms time resolution.[30]  

1.4 Scope of Thesis 

The objective of this thesis is to present a novel AI assisted vision-based framework capable 

of accurately quantifying complex nucleation dynamics occurring within phase change 

experiments. Training and optimization of the framework is thoroughly explained in the 

Methods section so that thermal engineers could setup, optimize, and integrate the 

framework into their laboratory. 
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CHAPTER 2 

Methodology 

Chapter 2 introduces the metrology that is used to extract bubble features within phase 

change systems. Mask R-CNN model training is discussed as well as an overview of the 

experimental setups used to record the phase change processes. 

2.1 Deep Learning CV Framework 

2.1.1 Framework Summary 

To study nucleation dynamics occurring within phase change systems, we developed a CNN 

based framework composed of an object detector and a tracking module to identify and track 

individual droplets within sequential high-speed, high-resolution images. The objector 

detector utilizes a deep learning instance segmentation model, MASK R-CNN to identify and 

assign unique IDs to individual droplets. The detector generates a grey-scale pixel wise mask 

containing spatial features, such as bubble size and location. Sequential images containing 

unique IDs and spatial information are then processed in the tracking module (TrackPy) 

where k-dimensional (k-d) tree algorithms track spatial features for each time step and 

compute the most probable trajectory for each ID. Potential errors in individual trajectories 

can be manually verified and mitigated using a graphical user interface (GUI) derived from 

PyQt and PyQtGraph libraries.[31] The spatiotemporal features for individual bubbles are 

recorded in a spreadsheet file where algorithms containing derived energy balance equations 

can be implemented to quantify high-level system properties to study nucleation dynamics 

and heat transfer properties. 

This high-resolution spatiotemporal data enables heat transfer models to account for complex 

coalescence events for the first time. Bubble features (i.e., location, size) can identify 
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departure events, calculate void fraction, compute individual droplet growth rate, detect 

surface deterioration, and recognize onset of critical heat flux. The same bubble features are 

used to calculate bubble density, rising velocity, and size distribution. Departure physics is 

particularly important in nucleate boiling experiments, where departure characteristics (i.e., 

velocity, frequency) exhibit a large impact on heat transfer performance. Void fraction 

information within flow boiling systems can determine the onset of critical heat flux within 

flow boiling systems. Individual droplet heat transfer rate is essential to understanding the 

relationship between droplet growth rate and size distribution. These bubble statistics are 

required to quantify high level system properties such as heat transfer rate per bubble and 

bubble density.[32] These high-level properties are used to calculate total surface heat flux, 

which defines overall heat transfer performance.  

2.1.2 Mask R-CNN Model Training 

MASK R-CNN is a CNN that extracts features from images which can be used to quantify 

system dynamics. MASK R-CNN is an instance segmentation model that outperforms most 

state-of-the-art methods.[23] The images generated from MASK R-CNN are used to obtain 

spatiotemporal data from each object. MASK R-CNN is a supervised learning model, which 

requires a labeled training dataset to learn the features of an object.[23] A durable, 

pretrained CNN model, VGG16, was chosen for this framework.[33] Although the model is 

pretrained, the feature weights must be adjusted for the desired object of interest (e.g., 

bubbles). The training dataset was annotated using an online commercial software 

(Supervisely, San Jose, CA, USA) where the regions of interest were highlighted, as shown 

in Figure 3. To mitigate possible bias, the training dataset consisted of randomized images. 

Phase change experts carefully labeled each bubble to ensure that the model accurately 

learns to detect bubbles. Depending on the complexity of the system, this could take 
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thousands of images. The annotation process was reduced to 50 images by utilizing data 

augmentation techniques, which help improve the generalizability of the model by inputting 

slightly modified versions of the training dataset. The augmented training dataset contains 

704 images where 80% are used for training, and 20% are used to test the model. The 

pretrained model begins with weights from the Microsoft Common Objects in Context 

(MSCOCO) dataset.[34] These feature weights are adjusted during training to detect the 

object of interest. The model trains for 100 epochs with a stochastic gradient descent using a 

learning rate of 1e-3 and a momentum of 0.9. After each epoch, the weights are adjusted to 

minimize error. The results in Figure 2 show that the training and test loss both decrease, 

with a minimum test less of 0.09 at epoch 98. The model with the lowest losses is selected for 

this study. Figure 3 displays an overview of training an AI assisted vision-based framework 

using a custom training dataset. 

 

Figure 2. Training and testing losses shown during CNN model training. Losses continue to 

decrease as the model adjusts the feature weights for more accurate predictions.[30] 
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Figure 3. An overview of the steps to extract nucleation statistics using artificial intelligence 

and a custom training dataset. 

2.2 Data Acquisition 

2.2.1 Boiling Setup 

High resolution images were captured from four consecutive pool boiling experiments 

conducted in the UCI Won Lab. The pool boiling apparatus composed of a guard heater, 

boiling chamber, boiling surface, heating block, four cartridge heaters, thermocouples 

connected to a data acquisition device, and a high-speed camera. The boiling surface consisted 

of a 1 cm x 1 cm copper square soldered to the heating block. Thermal paste was evenly coated 
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on the sample to ensure accurate thermocouple measurements. The boiling chamber and 

surface were both thoroughly cleansed using a piranha solution for five minutes before each 

experiment. The heating block used four cylindrical cartridge heaters powered by an AV 

voltage regulator (Variac Transformer) within a copper block wrapped in fiberglass 

insulation to promote thermal equilibrium. The guard heater connected to a PID controller 

maintained saturation conditions within the degassed, deionized water. Heat flux is 

calculated using 𝑞" = 𝑘𝛥𝑇/𝐿, where ΔΤ is the temperature difference from equally spaced 

thermocouples at a distance L. The uncertainty within the thermocouple measurements is ± 

1 °C. Thermal stability within the temperature readings must be observed before any data 

collection can occur to ensure consistent results. The data acquisition device (LabJack U6) 

measures and records the thermocouple readings throughout the experiment. A high-

powered LED light paired with a light diffuser were placed behind the boiling chamber to 

promote illumination. The images are captured with a high-speed camera (DS-Qi2, Nikon) 

mounted on a fixture. Images are captured with a resolution of 1024 x 1024 pixels for 

approximately 3 minutes for each heat flux step. A high resolution was selected to ensure 

sufficient bubble statistics were captured. High speed capture rates of 2,000 fps further 

improve image quality by minimizing motion blur. However, a disadvantage to using a high 

capture rate is the increased probability of potential bias when training the model with highly 

similar images. To mitigate any bias and increase model generalizability, randomized images 

were captured for a 30 second period to be used for training. 
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Figure 4. Schematic of pool boiling experimental setup (a). Boiling images captured from the 

experimental setup verify the complexity of bubble growth as heat flux increases (b). [35] 

2.2.2 Condensation Setup 

The condensation dataset was obtained from a custom-made droplet coalescence optical light 

microscopy setup. Silicon wafers were thoroughly cleaned using acetone and isopropyl 

alcohol, rinsed with distilled water, and dried with nitrogen. Silicon wafers were cut into 2 

cm x 2 cm squares and coated with 100 nm thickness of octafluorocyclobutane (𝐶4𝐹8) to exhibit 

hydrophobic properties. The wafers were horizontally mounted onto a cold stage (Instec, 

TP104SC-mK2000A) utilizing thermal grease (Omegatherm, Omega, thermal conductivity of 

2.2 W/m·K) and maintained at the test temperature of 𝑇𝑤  = ± 1 °C in a laboratory 

temperature of 𝑇𝑎𝑖𝑟 = 22 ± 0.5 °C with a relative humidity of Φ = 28 ± 1% (Roscid Technologies, 

RO120). (EnDrJm) The condensation dataset was captured at a resolution of 800 x 600 pixels 

using a high-speed camera (Eclipse LV100, Nikon) mounted to an upright microscope 

(Phantom, V711, Vision Research). An LED light was utilized to increase illumination to 

obtain clear images.  
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Figure 5. Schematic of dropwise condensation experimental setup shown in (a). Top-view 

condensation images captured at extreme spatiotemporal resolution of 300 nm and 200 ms 

(b).[36] 

2.2.3 Data Augmentation 

Data augmentation strategies are used to maximize the generalizability of the training 

images by generating a large dataset consisting of slight alterations of an original 

dataset.[37] The images were flipped along the vertical and horizontal axis, as well as 

rotation and size adjustment. Other augmentation techniques included adjusting image 

brightness, introducing gaussian noise, and cropping. 704 augmented images are generated 

from 50 original images. These techniques directly reduce the amount of annotated data 

required; a laborious, time-consuming task required to train the model.  
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Figure 6. Data augmentation performed on a pool boiling image. The image presents a 

rotation augmentation along the vertical axis. 
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CHAPTER 3 

Results and Discussion 

Chapter 3 reviews the performance of the model with respect to runtime, image size, and 

heat flux. The prediction performance metrics used to evaluate the model are discussed as 

well as different types of errors that vision-based frameworks encounter when tracking 

nucleation dynamics. The methodology developed to optimize model predictions is also 

discussed. 

3.1 Runtime and Accuracy Tradeoff 

The tradeoff between runtime and precision becomes particularly important for real-time 

frameworks. A high-resolution image will require an increase in runtime but contains more 

information (pixels) than a low-resolution image. This results in a more precise prediction at 

the cost of runtime. Figure 7 shows the runtime for various image resolutions and the 

corresponding precision values for our framework. The figure shows that as image resolution 

increases, runtime and precision increase together. The increase in performance is due to 

higher resolution images containing more pixels. The large spike in runtime is due to the 

model training dataset image resolution being 1024 x 1024. It must be noted that high-
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resolution images are vital for detecting smaller objects (i.e., condensation droplets), but not 

as critical for larger objects (i.e., high heat flux coalescence).  

 

Figure 7. The tradeoff between runtime and precision is shown for boiling and condensation 

datasets. 

3.2 Mask R-CNN Prediction Performance 

A script is developed to determine the performance of the model using a commercial 

programming software (MATLAB). The script binarizes the predicted dataset and ground 

truth dataset, then checks if the predicted dataset pixels correspond with the ground truth 

pixels. A true condition occurs when pixels are equal to each other, similarly a false condition 

occurs when the pixels do not equal each other. A positive condition is when the model detects 

an instance, whether it is true or false. A negative condition is when the model does not detect 

an object.[38] That is, true and false positive (TP/FP) is defined as the number of positives 

that were correct/incorrect and is similarly defined for true and false negatives (TN/FN). 

These conditions are summed across the dataset and used to determine the performance of 

the model. An overview of the image adjustments is shown below. 
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Figure 8. Pool boiling image captured via high-speed camera (a). Annotated ground truth 

segmentation mask (b). Mask-RCNN greyscale mask detection (c). Mask-RCNN binary mask 

used for performance analysis (d). 

The performance metrics used to validate the model were accuracy, recall, precision, and F1 

score, and mean average pixel error (MAPE). Accuracy is the ratio of the sum of true positive 

instances to the overall positive instances, showing how often the model predicts a pixel 

correctly.[39] 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall is the ratio of true positive instances to the sum of overall true positive instances and 

false negative instances, representing how often the model predicts a true positive instance 

correctly with respect to all observed positive instances.[39] 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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Precision is the ratio of true positive instances to the sum of all observed true instances. This 

describes how often a positive instance was correctly predicted compared to all positive 

instances.[39] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

F1 score is the weighted average of recall and precision and does not include true negative 

instances. It can be used as an alternative to accuracy when true negatives are not considered 

significant observations.[39] 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

MAPE was determined by subtracting the ground truth binary mask from the predicted 

binary mask, then dividing by the ground truth. An example of the subtracted mask is shown 

below.  

 

Figure 9. Subtracted binary mask where white pixels indicate a false negative detection. 

This results in the true negatives being removed from the binary matrix, leaving only true 

positives, false positives, and false negatives. Similar to recall, MAPE compares the ratio of 

predicted positive pixels to overall positive pixels. 
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𝑖𝑚𝑎𝑔𝑒𝐷𝑎𝑡𝑎 =
(𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

(𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ)
           𝑀𝐴𝑃𝐸 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Our framework displays striking performance (>94%) based on multiple object detection 

performance metrics including precision, recall, F1 score, MAPE, and occlusion-induced pixel 

error (OPE). The maximum error can be seen in Figure 10, denoted by the largest MAPE. 

Prediction performance overall declines as heat flux increases due to the increase in bubble-

to-bubble interactions occurring near the boiling surface. The growth in coalescence events 

leads to nucleating bubbles being partially or fully covered, resulting in an inaccurate 

detection (occlusion). Condensation and low heat flux datasets have superior results 

compared to mid-to-high heat flux datasets due to occlusion-based events. Film-wise 

condensation achieves outstanding performance compared to pool boiling because 

condensation is a less volatile phase change process. At 30W, few bubbles form at the surface 

and there are minimal coalescence events. Model performance decreases from 30W to 50W 

due to the increase in coalescence events covering bubbles. However, model performance 

starts to increase around 90W once coalescence events begin to decrease and bubbles begin 

to merge into large, singular clusters. Figure 13 shows how occlusion-based events increase 

as a function of heat flux. 

3.3 Mask R-CNN Compared to Traditional Computer Vision Methods 

To compare traditional computer vision methods with our model, global and adaptive 

thresholding methods were tested using MATLAB Image Segmentation Functions, graytresh 

and adaptthresh. The prediction performance for each segmentation method is shown Figure 

11. Although global thresholding achieves comparable performance to Mask R-CNN, 

MATLAB image segmentation functions do not provide instance-wise segmentation masks 

nor are the results accurate enough to track nucleation events. This is a major downfall 

because the segmented masks cannot be used to track nucleation events without instance-
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wise information. However, Mask R-CNN is the only autonomous segmentation method 

capable of extracting instance-wise data. 

 

Figure 10. Mask R-CNN prediction performance is shown for condensation and various 

boiling datasets.  
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Figure 11. Object detection performance metrics shown for adaptive threshold, global 

threshold, and Mask R-CNN. 

3.4 Inherent Issues with Phase Change Analysis 

The surfaces within phase change experiments produce an overwhelming amount of 

nucleation events. These nucleation events are directly related to the amount of heat 

dissipated from the system. Thus, accurate quantification of nucleation dynamics requires 

consistent and precise multiple object tracking. Multiple object tracking relies on accurate 
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detections generated by the object detector to produce precise object tracks. Incorrect 

detections created by the object detector will yield inaccurate object tracks. However, 

tracking based errors can also affect the accuracy of the results. Tracking based errors 

originate within the tracking algorithm independent of the detection accuracy. Tracking 

errors are denoted by incorrect, inconsistent object ID assignment across multiple frames. 

 

Detection and tracking based errors ultimately lead to invalid object trajectories, where 

nucleation statistics are distorted resulting in erroneous heat transfer quantification. Since 

heat flux mappings are highly dependent on individual bubble growth rate, a small 

fluctuation in nucleation statistics will scale to a large fluctuation in heat flux. The figure 

below shows an example of inaccurate object tracking.  

 

Figure 12. Example of inaccurate tracking of nucleating bubbles within a pool boiling 

experiment. 

This inherent prediction fluctuation can be alleviated by implementing moving average 

analysis. Moving average analysis will “flatten” the fluctuating heat flux mappings by 
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calculating the average of different subsets within the dataset.[40] The tracking algorithm 

requires fine-tuning of hyperparameters to mitigate any tracking errors. 

3.4.1 Tracking Complex Dynamics 

An innate feature of MASK R-CNN is that it is difficult to track small, similar objects that 

overlap each other.[41] Occlusion induced errors lead to improper object detection which 

result in invalid object ID assignment and inaccurate spatiotemporal data. This detection-

based error leads to the tracking module producing inaccurate object trajectories. This error 

is predominately caused by bubbles in the front of the boiling surface covering bubbles in the 

rear. To determine how much occlusion induced error is present, separate annotations are 

created to account for occlusion events. The error within an image must solely be due to 

occlusion to be annotated for occlusion induced error. The annotation should only include the 

bubble that was missed due to being covered by another bubble. An example of an occlusion 

specific annotation is shown in Figure 13a. The plot below shows the occlusion-induced error 

for each heat flux. For phase change experiments, the maximum occlusion induced error is 

4.6%. This error is relatively small compared to conventional measuring techniques and can 

be accounted for in calculations.[42] Occlusion induced errors could not be mitigated due to 

the reduced dimensionality of two-dimensional images describing the intricate nucleation 

dynamics of a three-dimensional system. Other studies with similar difficulties regarding 

occlusion induced error show that the implementation of multiple cameras can solve the 

problem; however, this is a more costly and complex experimental setup.[43]  
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Figure 13. The red circle in the right image indicates an occlusion error, where the bubble is 

partially covered by other bubbles. The left-hand image shows an example of an occlusion 

specific annotation (a). Plot showing occlusion induced error for condensation and various 

boiling datasets (b). 
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3.4.2 Object Tracking Parameter Optimization 

The object tracker connects detection hypotheses throughout a series of frames to form object 

trajectories. The trajectories are calculated using object features from consecutive frames. To 

link the trajectories across each frame, the algorithm compares all possible trajectories and 

determines which is the most probable position for each object. The tracking parameters that 

must be fine-tuned for optimal performance include the distance cut-off factor (δ) and the 

maximum absence interval (γ).  

 

The tracking module utilizes a distance cut-off factor (max displacement), the furthest 

distance an object can travel before being considered a new object. The optimal distance cut-

off factor varies depending on system dynamics and data capture rate. In this paper, we have 

developed a procedure to determine the optimal distance cut-off factor for any dataset. First, 

determine the theoretical object velocity (φ) using analytical methods including conservation 

of mass, momentum, and energy. A valid model of the system will accurately approximate 

the theoretical object velocity. The equation below is used to determine the optimal distance 

cut-off, where (𝑡𝑗 − 𝑡𝑗−1) is defined as the time difference between trajectories. 

𝛿 = 𝛷 ∗ (𝑡𝑗 − 𝑡𝑗−1) 

If the system dynamics cannot be described using analytical solutions, the theoretical object 

velocity can be approximated using manually verified spatiotemporal results. To 

approximate theoretical object velocity, we calculate the average velocity across all detected 

objects. Using the average object velocity and the time between frames, the optimal distance 

cut-off factor can be calculated.  
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Figure 14. A diagram demonstrating the steps to train the framework and determine optimal 

tracking parameters. 
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In the case that an object is not detected in the sequential frame, the tracker retains an array 

of these “missing” objects for a certain number of frames. The number of frames is referred 

to as the maximum absence interval. For example, a maximum absence interval of two 

indicates that an object can vanish for two frames, reappear, and be considered the same 

object. The figure below shows examples of errors associated with max absence interval and 

distance cut-off factor. The optimal maximum absence interval can be determined by 

investigating which γ value yields the most accurate spatiotemporal results. With our 

approach of optimizing γ and δ, the tracking module will produce consistent and reliable 

results. Tracking performance with varying tracking hyperparameters among several heat 

flux steps shows that the value of the hyperparameters directly affects tracking performance. 

The predefined parameters cannot account for low heat flux and high heat flux motion at the 

same time. Thus, tracking parameters were adjusted for each heat flux step to optimize 

tracking results. For lower heat flux datasets, the optimal max displacement was found to be 

around 100 pixels. The middle heat flux datasets (50 - 70W) had an optimal max displacement 

of around 150 pixels. The high heat flux datasets (90 - 100W) achieved optimal tracking with 

a max displacement of 200 pixels. 
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Figure 15. Tracking issues associated with max displacement and max absence interval 

tracking parameters are shown in (a). Tracking performance with varying tracking 

hyperparameters for various heat flux steps is shown (b). 
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Chapter 4 

This chapter discusses future opportunities to study phase change processes as well as 

potential challenges when using artificial intelligence-based frameworks. Future research 

directions are also reviewed. 

Conclusion 

In conclusion, the proposed artificial intelligence-based framework enables thermofluidic 

engineers to customize the model to perform different tasks for various experimental setups 

(i.e., surface features, working fluid, experiment configuration). This framework has the 

potential to discover unknown relationships within complex phase change systems by 

automatically extracting object-specific spatiotemporal features of nucleation events. 

Nonetheless, the governing physics behind phase change is still largely theoretical due to 

weak correlations between nucleation statistics and heat transfer. This is owing to the 

difficulty of extracting nucleation statistics from surfaces with large bubble densities. 

However, the proposed framework enables the collection of nucleation statistics to study 

various phase change systems. For example, surface-dependent heat transfer models can be 

generated using the extracted data from various surfaces (i.e., bare copper, sintered copper). 

Additionally, the relationship between bubble departure dynamics and heat transfer 

performance within pool boiling can be further investigated. Moreover, researchers can 

explore the effects of droplet removal via coalescence-induced events (i.e., droplet jumping) 

occurring within condensation experiments.  

 

However, accurate object tracking at high spatiotemporal resolutions remains a challenge 

due to detection-based and tracking based errors. Precise annotations quantify the 
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magnitude of detection-based errors while experimental setups consisting of multiple 

cameras reduce these errors. The proposed tracking parameter optimization process 

generates ideal tracking parameters to minimize tracking-based errors.  

 

One primary concern in phase change thermal management systems is the lifetime 

expectancy of the phase change surface. The proposed model has potential to identify when 

surface deterioration begins to occur by autonomously observing changes in nucleation events 

(e.g., bubble growth, departure frequency). Excessive void fraction within flow boiling 

systems also causes sudden and premature failure within thermal management systems. 

Current studies are investigating the performance of flow boiling prediction models, where 

void fraction is calculated using binarized images. 

 

AI vision-based frameworks are advantageous due to minimal computational costs and 

experimental setup required. For example, the model is capable of instantly extracting bubble 

features over different experimental setups due to non-invasive measurement techniques 

requiring only a high-speed camera and a computer with a trained model. The model also has 

potential to significantly reduce computation time for thermofluidic engineers by eliminating 

the time-consuming task of manually identifying each nucleation event over a large dataset.  

 

Furthermore, the prediction performance script developed has the potential for determining 

the performance of any vision-based object detection framework. For instance, the 

performance of autonomous vehicle sensors exposed to extreme conditions can be determined 

using the prediction performance script. This allows researchers to determine the effect of 

various factors on the performance of vision-based object detection frameworks.  
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The development of a non-invasive autonomous model enables researchers to quantify the 

heat transfer performance of newly engineered surfaces at an astonishing rate. As 

thermofluidic engineers progress in the urgent search for more efficient phase change 

surfaces, heat transfer models will continue to reveal the underlying physics governing phase 

change processes. As future work, the relationship between void fraction and heat transfer 

performance within flow boiling will be investigated. 
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