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Bioimage informatics
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Abstract
Motivation: Pediatric kidney disease is a widespread, progressive condition that severely impacts growth and development of children. Chronic
kidney disease is often more insidious in children than in adults, usually requiring a renal biopsy for diagnosis. Biopsy evaluation requires copious
examination by trained pathologists, which can be tedious and prone to human error. In this study, we propose an artificial intelligence (AI)
method to assist pathologists in accurate segmentation and classification of pediatric kidney structures, named as AI-based Pediatric Kidney
Diagnosis (APKD).

Results: We collected 2935 pediatric patients diagnosed with kidney disease for the development of APKD. The dataset comprised 93 932 histo-
logical structures annotated manually by three skilled nephropathologists. APKD scored an average accuracy of 94% for each kidney structure
category, including 99% in the glomerulus. We found strong correlation between the model and manual detection in detected glomeruli
(Spearman correlation coefficient r¼0.98, P< .001; intraclass correlation coefficient ICC¼0.98, 95% CI¼0.96–0.98). Compared to manual
detection, APKD was approximately 5.5 times faster in segmenting glomeruli. Finally, we show how the pathological features extracted by
APKD can identify focal abnormalities of the glomerular capillary wall to aid in the early diagnosis of pediatric kidney disease.

Availability and implementation: https://github.com/ChunyueFeng/Kidney-DataSet.

1 Introduction

Chronic kidney disease (CKD) is a global healthcare chal-
lenge, with a prevalence of 13.4% worldwide and 10.8% in
China (Zhang et al. 2012, Lv and Zhang 2019). This affects
around 120 million people and places a substantial burden
on both patients and society. Pediatric CKD, characterized
by symptoms like hematuria, proteinuria, anemia, and
growth retardation, saw rising rates of end-stage renal dis-
ease. While early diagnosis and treatments stabilized this
trend, recent data show a concerning increase in pediatric
CKD inpatients in China from 1.93% in 2013 to 2.09% in

2016, necessitating long-term monitoring and intervention
(Becherucci et al. 2016, Kaspar et al. 2016, Shi et al. 2021).

Pediatric CKD is often elusive, requiring renal biopsies for
precise evaluation and diagnosis. These biopsies involve sam-
pling kidney tissue to understand disease specifics, guide
treatments, and predict disease progresses. However, their
low specificity means detailed pathological interpretation by
expert nephropathologists is essential, demanding significant
time and resources. With the advent of whole slide imaging
(WSI) techniques, physical slides are digitized, but analyzing
multiple slides for each patient remains a labor-intensive
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task. Moreover, we are facing a shortage of pathologists
globally.

Advancements in computer science and imaging technology
have enabled the practical use of artificial intelligence (AI) in
various medical expert systems, including clinical pathology
diagnosis using WSI analysis. In the field of clinical renal
pathological diagnosis, the application value of AI is mainly
reflected in the following aspects. (i) AI interprets pathological
slides, extracting vital quantitative metrics, enhancing diag-
nostic efficiency. (ii) Deep learning (DL) on vast digital pa-
thology and clinical data enhances disease diagnosis. (iii) AI
enables standardized quantification, bridging clinical and
pathological interpretations. AI excels in measuring renal pa-
thology features across WSIs, offering enhanced reliability of
assessments such as glomerular and tubular and reducing di-
agnostic errors and variations.

In recent years, there has been a surge in kidney pathology
studies using DL. Initially, these studies focused on determin-
ing glomerular assessment (Kakimoto et al. 2014, Kato et al.
2015, Marée et al. 2016, Sarder et al. 2016, Gadermayr et al.
2017, 2019a, 2019b, Temerinac-Ott et al. 2017, Gallego
et al. 2018, 2021, Marsh et al. 2018, 2021, Simon et al. 2018,
Ginley et al. 2019), including distinguishing sclerotic and
non-sclerotic glomeruli (Bukowy et al. 2018, Zee et al. 2018,
Kannan et al. 2019, Bueno et al. 2020a,b). Refinements in-
clude precise segmentation with high precision, recall, and F-
measure scores (Barros et al. 2017, Sheehan and Korstanje
2018, Sheehan et al. 2019, Chagas et al. 2020). DL-based seg-
mentation expanded to various kidney structures like tubules,
capillaries, and arterioles, covering pathologies such as inter-
stitial fibrosis and tubular atrophy (Kolachalama et al. 2018,
Mariani et al. 2018, Hermsen et al. 2019, Uchino et al. 2020,
Bülow et al. 2021, Ginley et al. 2021, Jayapandian et al.
2021). Specialized work includes algorithms for locating and
assessing glomeruli, stratification systems for IgA nephropa-
thy (IgAN), and multiclass segmentation (Chen et al. 2019,
Ligabue et al. 2020, Zeng et al. 2020, Bouteldja et al. 2021,
Marechal et al. 2022, Yi et al. 2022). This rapid growing re-
search is automating kidney pathology diagnosis, with impli-
cations for digital pathology applications. Supplementary
Table S8 provided a summary of their datasets and applied
methods to these studies.

Currently, most datasets of AI-based renal pathology are
from adults and have not been validated on pediatric cohorts.
The unique developmental characteristics of pediatric kidney
structures and age-specific nephropathological conditions ne-
cessitate targeting and validating these AI algorithms for chil-
dren. To address the challenges of rapid and accurate kidney
pathological diagnosis in children CKD with limited numbers
of nephropathologists, we established a pediatric kidney dis-
eases database of a substantial number of annotations for net-
work training. Based on the database, we developed an
assistive diagnostic system for the segmentation and classifica-
tion of kidney tissue structure, which we have named the
AI-based Pediatric Kidney Diagnosis network (APKD).
We compared the six current state-of-the-art network models,
including newly released networks (Han et al. 2017, He et al.
2017, Cai and Vasconcelos 2019, Fang et al. 2021, Qiao
et al. 2021). Supplementary Sections SI and SII provided the
introduction of the models and comparison of their perfor-
mance. After selecting the optimal network model (SCNet),
we integrated it into the APKD framework. Thereafter, we
trained this optimal AI model on a copiously annotated

library of nephropathological WSI. We validated the trained
model on segmentation and quantification of a set of compre-
hensive pathological features in WSIs of pediatric renal biop-
sies and validated the model using pediatric patient samples
who were diagnosed with various kidney diseases.

2 Materials and methods

2.1 Patient cohort recruitment

The Department of Pathology, Children’s Hospital Affiliated
to Zhejiang University School of Medicine, collected 2935 re-
nal biopsy specimens of children diagnosed with kidney dis-
ease from 2009 to 2019 and stained with hematoxylin and
eosin (H&E) staining and periodic acid-Schiff (PAS) staining,
respectively. The requirements to obtain informed consent
were waived by the Ethic Review Committee of Children’s
Hospital of Zhejiang University School of Medicine
(IRB2020-IRB-086), and all methods were carried out in ac-
cordance with relevant guidelines and regulations. Pediatric
kidney diseases in the younger age group are mainly charac-
terized by congenital anomalies of the kidney and urinary
tract, or hereditary kidney diseases, so renal biopsy is not
common in 1- to 5-year-old group and presents more com-
monly in boys (1562, 59.39%) than in girls (1068, 40.61%),
typically between 6 and 15 years old, as illustrated by our
data in Fig. 1a. In our sample collection, the children with
kidney disease who underwent renal biopsy are mostly diag-
nosed as mild change glomerulopathy, Henoch-Schonlein
purpura nephritis (HSPN), mesangial proliferative glomerulo-
nephritis (MsPGN), and IgAN, as shown in Fig. 1b.

2.2 Sample digitalization and preparation

The renal biopsy tissues were scanned using a high-
throughput KF-PRO-400 scanner at 10� (1 mm/pixel) and
40� (0.25mm/pixel) magnifications. As our specimens were
collected between 2009 and 2019, the quality of some sam-
ples degraded, such as discoloration and unclear nuclear
staining. To obtain high-quality image data for AI training,
we manually assessed image quality and excluded faded or
unrecognizable tissue from the study. The number of patients
with renal biopsy sections used for AI learning and develop-
ment was 2935. Specifically, 779 patients’ kidney biopsy sec-
tions were used for AI model optimization and development,
100 patients for an independent testing cohort of efficiency
performance, and 2056 patients for a separate, independent
testing cohort of clinical validation. For AI model develop-
ment patient cohort, there are 988 region of interest (ROI)
extracted from 779 biopsy sections and split to training (690),
validation (98), and testing (200) set with a ratio of 7:1:2 (see
Fig. 1c). The ROI area was the region selected by pathologists
on the WSI, and it typically must include glomeruli. The path-
ologists then annotated different kidney structures within the
ROIs. All patients have paired sections of both H&E and
PAS, while the 100-patient cohort in the efficiency indepen-
dent test only has H&E slides. In addition, we accelerated the
creation of nuclei annotations by obtaining them from a pub-
licly available dataset (https://www.kaggle.com/c/data-sci
ence-bowl-2018/data). It contained many segmented cell nu-
clei images acquired under different conditions, including a
range of cell type, magnification, and imaging modalities. In
this study, a total of 856 nuclei images and their associated
nuclei annotations were downloaded from the dataset named
“data-science-bowl-2018.”
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2.3 Data annotation scheme and strategies

Annotation of the image data is often the bottleneck of AI
training as it can be expensive and time consuming. Three ju-
nior nephropathologists used the online kidney annotation
platform to generate annotations and a senior nephropatholo-
gist reviewed the annotations. The annotation labels include
arteries, distal tubule, proximal tubule, glomeruli with cres-
cents, glomeruli without crescents, glomerular tuft, mesangial
hypercellularity, and endocapillary hypercellularity, as shown
in Fig. 1d.

Image patches of pixel size 648�648 (at a 10� magnifica-
tion, 1 mm/pixel) which contain at least one glomerulus is
cropped from each H&E-stained image. Glomeruli, glomeru-
lar tuft, proximal tubules, distal tubules, and arteries in this
region are annotated as shown in Fig. 2a. The glomerular
crescents and glomerular without crescents are identified and
annotated separately (see Fig. 2c). Mesangial hypercellularity
cells and endocapillary hypercellularity cells are annotated in
PAS-stained images (at a 40� magnification, 0.25 mm/pixel)
as illustrated in Fig. 2b since they are not recognizable in
H&E-stained images. During our annotation of each selected
glomerulus, we defined areas of hypercellularity (Chagas

et al. 2020), as at least four mesangial cells aggregated in the
mesangial area (mesangial hypercellularity) and at least two
endothelial cells aggregated in capillary lumen area (endoca-
pillary hypercellularity).

These image patches and their annotations were reviewed
by a senior nephropathologist to ensure that the quality of the
annotations was sufficient for the development of the APKD.
Subsequently, when the average precision (AP, see Equation 1
in Section 2) of the AI detection model for kidney structure
reached 77% from a total of 613 validated images with anno-
tations, we then deployed a preliminary AI detection model to
speed up the annotation review process. During the annota-
tion review process, annotations drawn by the junior nephrol-
ogist were matched with the detection of APKD. We
calculated mAP (mean value of AP of each class) for all H&E
and PAS images separately, and a senior nephrologist
reviewed and revised the annotations in images having the
lowest 20% mAP. Hence, a total 93 932 histological structure
annotations in the kidney have been manually annotated by
three nephropathologists, and a total of 38 560 nuclear anno-
tations were obtained from data-science-bowl-2018, as illus-
trated in Fig. 1d.

Figure 1. Profile of the recruited cohort and database statistics. (a) A summary pediatric patient number, age, and male-to-female ratio. (b) Number of

pediatric patient samples who were diagnosed with various kidney diseases. (c) The number of renal biopsy sections used to optimize AI development for

training, validation, testing, and independent testing cohorts. Left pie chart: patient (biopsy) level; right pie chart: region of interest (ROI) level. (d) The

number of annotations for kidney structures, crescent/non-crescentic glomerulus, nuclei, mesangial hypercellularity, and endocapillary hypercellularity

used to perform training, testing, and validation.
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2.4 Model optimization

We developed and performed APKD training using the
PyCharm integrated development environment (https://www.
jetbrains.com/pycharm/), CUDA v10.2, CUDNN v7.6.5,
and Pytorch v1.9.0 (https://pytorch.org/) running on a
Ubuntu16.04 x64 operating system. The computer specifica-
tions used to develop and train AI algorithms are RAM:
32GB, CPU: Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40 GHz,
and GPU: NVIDIA RTX 2080Ti *4.

In our APKD training, we use softmax cross-entropy as the
loss function, a batch size of 16, and the Adam optimizer with
a learning rate of 0.001. To avoid overfitting with limited

data, we employ early stopping by monitoring the validation
set. During training, the model’s weights are updated using
the training set, while the validation set is used for inference.
The average loss is tracked for both sets, with the model con-
sidered optimal when the validation set’s average loss reaches
its minimum, which typically occurs after 24 training epochs.
The model parameters yielding the lowest average validation
mAP are saved post-training.

2.5 Framework of AI training and implementation

An overview of our APKD development for multi-type auto-
matic kidney tissue detection and segmentation is shown in

Figure 2. Annotation of the data and image argumentation for the training of APKD. (a) Annotations of various kidney tissues manually drawn by

nephropathologists on 10� H&E images. (b) Annotations of endocapillary hypercellularity and mesangial hypercellularity manually drawn by

nephropathologists on 40� PAS images. (c) Identification of glomeruli with and without crescents by nephropathologists. (d) Random augmentations

such as orientation, flip, and color to train a SCNet model on 10� H&E images. (e) Random augmentations such as orientation, flip, and color to train a

SCNet model on 40� PAS images.
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Fig. 3. The proposed framework can be divided into four
parts: (1) kidney structure segmentation module, (2) nuclei
segmentation module, (3) glomerular crescents classification
module, and (4) mesangial/endothelium region segmentation
module. These four modules can be further split into two cate-
gories: the segmentation phase (Modules 1, 2, and 4) and the
classification phase (Module 3), which are trained using dif-
ferent network structures. As shown in Fig. 3, digital H&E
and PAS-stained renal biopsy WSIs are used as input, and the
nucleus and kidney structures are segmented using H&E-
stained images with 40� magnification and 10� magnifica-
tion, respectively. At the same time, we use the PAS WSIs
with 40� magnification to segment the mesangial and endo-
thelium regions. Next, the glomerulus patches segmented
from 10� H&E WSI are further classified as non-crescentic
glomerulus or crescentic glomerulus.

2.5.1 Modules 1 and 2: kidney structure segmentation
module and cell nuclei segmentation module
For kidney structure segmentation, we first applied Otsu
thresholding to remove the background from the renal biopsy
of H&E on WSI. This method speeds up the analysis process
by extracting only image data from the targeted region. A
sliding window method is applied to extract the image
patches. The size of the window is n-by-n, and stride is
0.5�n. n is 700 pixels for 10� images and 2800 pixels for
40� images as illustrated in Fig. 3a. We then modify the im-
age patch size to 768 pixels for 10� images and 1024 pixels
for 40� images through padding and resizing. These 10� and
40� H&E-stained image patches were used as input to the
trained APKD model of kidney structure segmentation
(SCNetþResNet 50 as backbone) and the nuclei segmentation
(HoverNet), respectively. The segmented nucleus masks at
40� H&E WSI were resized by a factor of 1/4 to obtain the

corresponding mask at 10� magnification. Then the nuclei
mask was integrated with kidney structure mask at 10�, and
nonmaximum suppression was applied with 0.5 IoU thresh-
old on the whole slide images.

Through this process, the segmentation-bounding box and
mask of the module consist of arteries, distal tubules, proxi-
mal tubules, glomeruli, glomerular tuft, and nuclei. These out-
puts are feasible for obtaining a large amount of quantitative
information for diagnosis or prognosis from digital renal
biopsy sections.

2.5.2 Module 3: glomerular crescents classification module
The glomerular patches segmented by kidney structure seg-
mentation module were cropped and served as input to the
glomerular crescent classification module. Due to the different
sizes of the glomerulus being cropped, the image patches were
first resized to 224�224, and then input to the trained
APKD model of glomerular crescents classification module as
demonstrated in Fig. 3a. We compared four lightweight con-
volutional networks for this module, including Resnet18 (He
et al. 2016), Vgg16 (Simonyan and Zisserman 2014),
MobileNetV2 (Sandler et al. 2018), and InceptionV3
(Szegedy et al. 2016). The InceptionV3 outperforms the other
three models and is hence used for the glomerular crescent
classification module. The accuracy of each model can be
found in Section 3.

2.5.3 Mesangial/endothelium region segmentation module
Similar kidney structure segmentation process performed on
H&E-stained WSI was applied to PAS-stained WSI for glo-
merular detection. First, we extracted 700�700 image
patches by sliding windows in 10� PAS WSI and increased
the image patch size to 768 pixels through a padding process.
These patches were used as input to the trained model of

Figure 3. Overview of whole slide image detection and segmentation pipeline. (a) Nuclei detection and kidney tissue structure segmentation processes

were performed using APKD based on 40�magnification H&E images and 10�magnification H&E images, respectively. (b) Endocapillary hypercellularity

(indicated in green region) and mesangial hypercellularity (indicated in red region) detection process were performed using APKD based on 40�
magnification PAS images.

AI-based pediatric kidney diagnosis 5



kidney structure segmentation developed from H&E WSI be-
cause the color augmentation process can compensate for the
color variation in PAS-stained image to segment the glomeru-
lus. Subsequently, the detected glomerulus bounding box
coordinates (x, y, w, h) were multiplied by 4 to obtain the cor-
responding coordinates at 40� magnification PAS-stained
images as demonstrated in Fig. 3b. The glomerular patches
were cropped from 40� PAS image and the endocapillary
hypercellularity/mesangial hypercellularity region in each im-
age patch was detected by the trained APKD model of endoca-
pillary hypercellularity/mesangial hypercellularity segmentation
using Mask RCNN with Resnet50 as the backbone. Finally,
we integrated the results of all patches and performed nonmax-
imum suppression with the threshold of IoU¼ 0.5 on the whole
slide images.

2.6 Evaluation metrics for detecting each kidney

tissue, glomerular structure, and glomerulus

counting efficiency

For the kidney structure detection model, we reported the av-
erage precision (AP) metric defined in PASCAL VOC 2010
(Everingham et al. 2010) to assess the model performance, as
shown in Equation (1).

AP ¼ 1
11

X

r2 0;0:1;...;1½ �
PinterpðrÞ;

Pinterp rð Þ ¼ max~r:~r�rp ~rð Þ;
(1)

where p ~rð Þ is the measured precision at recall ~r

We calculate AP50 using 11-point interpolation. First, we
average a set of 11 equally spaced recall values [0, 0.1, 0.2,
. . ., 1] and their corresponding precision to create a precision–
recall curve. When computing precision, for a specific recall
value r, precision is taken as the maximum value among all
recalls � r. This ensures the precision–recall curve is mono-
tonically decreasing, preventing fluctuations in the curve.
AP50 means the IoU threshold is set at 0.5.

Commonly used evaluation metrics such as sensitivity
[Equation (2)], specificity [Equation (3)], and precision
[Equation (4)] were used as well.

Recall Sensitivityð Þ ¼ TP
TPþ FN

; (2)

Specificity ¼ TN
TNþ FP

; (3)

Precision ¼ TP
TPþ FP

; (4)

where TP represents true positive, TN the true negative, FP
the false positive, and FN represents false negative. As for the
crescentic glomeruli classification model, area under receiver
operating characteristic curve (AUC) is used to assess the
performance.

We compared the performance of nephropathologists and
the trained model on counting glomeruli and conducted an
experiment with 98 cases new WSI dataset. A senior nephro-
pathologists counted the number of glomeruli on the glass

slides under microscope and recorded the time spent.
Meanwhile, the trained model was applied to the digitalized
images of these cases to count the number of glomeruli, and
the processing times were tracked.

2.7 Statistical analysis

The Spearman correlation coefficient and intra-class correla-
tion coefficient (ICC) tests were employed to measure the cor-
relation and agreement, respectively. A Pearson correlation
value of 1 indicates the best correlation, and a P-value of
<.05 is considered statistically significant. To test the consis-
tency, we calculated the ICC and its corresponding 95% con-
fidence interval (CI) to determine the coincidence between the
number of glomeruli detected by the AI model and the ob-
server counted manually. According to the procedure recom-
mended by Koo and Li (2016), the appropriate ICC
parameter selected for this reliability analysis is where the reli-
ability of a single measurement has “absolute consistency” be-
cause there are two evaluators (manual and AI models). In
addition, we used analysis of variance (ANOVA) test to com-
pare the number of glomeruli across the age range of pediatric
patients. All statistical analyses were performed in MATLAB
2014a (Mathworks Inc., USA) and its statistical toolbox, ex-
cept the ANOVA test, performed by JASP (https://jasp-stats.
org/), a free and open-source program for statistical analysis
developed in the R language.

3 Results

3.1 Model optimization and detection performance

of APKD

The kidney structure detection model of the proposed APKD
is optimized from six latest CNN models. The details of six
models are provided in Supplementary Section SI and the op-
timization results are provided in Supplementary Section SII.
All six models were based on the ResNet 50 backbone due to
its success application in the field. We evaluated the accuracy
(in terms of mAP50, which is the mean value of AP50 of each
class) of six models in both training set and testing set as
shown in Fig. 4a. SCNet with ResNet 50 as the backbone out-
performed the other five models and achieved 0.95 and 0.94
mAP50 in training and testing set, respectively. The data
clearly show that the SCNet achieved the optimal perfor-
mance with intermediate computational efficiency which is
shown in Supplementary Table S2. The average precision
(AP50) of each class for six models in testing set is demon-
strated in Fig. 4b. SCNet ranked first among all models in
three classes (Glomerular, AP¼ 0.99; Glomerular tuft,
AP¼ 0.96; and Distal tubular, AP¼0.91), and second in the
other two (Proximal tubular, AP¼ 0.95; and Arteries,
AP¼ 0.92). As illustrated in Fig. 4c, SCNet achieved more
than 0.9 testing set average precision in all classes; in particu-
lar, the average precision was 0.99 for Glomerular, the most
important structure. We also reported the mean of receiver
operating characteristic (ROC) curve and AUC across all clas-
ses of testing set for each model, as shown in Fig. 4e. SCNet
achieved high sensitivity and specificity with AUC of 0.963.
The sensitivity, specificity, and AUC of SCNet in each class
are shown in Supplementary Table S3.

Both mAP50 and AUC accuracy differed substantially be-
tween QueryInst and SCNet (0.86 versus 0.94 in mAP50, and
0.667 versus 0.963 in AUC). After interrogating the results of
QueryInst and SCNet, we found at least 11 target misses in
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QueryInst detection compared to ground truth (indicated by
black arrows, Fig. 4d), while SCNet clearly showed an almost
perfect match with the ground truth.

To assess the speed of detection, a total of 200 image
patches (648�648 pixel) were used to compare the detection
time among six models. We observed a mean inference time
of the six models for one image is about 0.3 s on a standard
workstation (see Supplementary Table S4). Given the chal-
lenge for nephropathologists to continuously perform visual
inspections of WSIs while maintaining a high degree of accu-
racy, the automatic detection of AI can thus effectively and
quickly assist nephropathologists to identify diseased kidney
tissue.

3.2 APKD detection performance and quantification

of various types of kidney structures for assistive

diagnosis

To optimize our APKD model, we iterated the SCNet training
process for 24 epochs until the mAP of the validation set no
longer improved, with an optimized precision of 87%, as
shown in Fig. 5a. The detection accuracy (AP50) for the test-
ing set of APKD for each class ranged from 0.59 to 0.99 as in
Fig. 5b and their corresponding representative segmentation
results are illustrated in Fig. 5d. The number of glomeruli is a
key parameter that nephrologists need to consider in the diag-
nostic process. As shown in Fig. 5b, the accuracy of APKD
for glomerular detection reached 99%. Identifying the forma-
tion of glomerular crescent can help detect the progression of
crescentic glomerulonephritis. Our classification and quantifi-
cation of 12 related features, including area of glomerular
crescent, length, and roundness, will serve as a powerful refer-
ence parameter for nephropathologists to give correct diagno-
ses. We compared the performance of four lightweight
convolutional networks, Resnet18, Vgg16, MobileNetV2,

and InceptionV3 in glomerular crescent classification, as dem-
onstrated in Fig. 5c. The InceptionV3 model has an AUC of
88% on the testing set and clearly outperforms the others
(Resnet18: 84%, Vgg16: 82%, MobileNetV2: 87%).

We employed an independent testing cohort (1625, retro-
spective) for clinical analyst validation. Spearman correla-
tion coefficient and ICC were used to measure the
correlation and consistency between the number of glomer-
uli detected by the APKD model and the manual detection
by experienced nephropathologists, showing a significant
and strong correlation between the APKD model and man-
ual detection by the nephropathologists (r¼ 0.9778,
P<.001; see Fig. 6a). As an additional reliability test, we
obtained the ICC to evaluate the consistency between man-
ual glomerulus detection by the nephropathologists and the
AI model. The result shows that the ICC using the APKD
model is 0.9765 (95% CI¼0.9647–0.9843), showing strong
correlation. We validated the speed of the automated
method versus the manual method for counting glomeruli
on 100 H&E kidney digital pathology images as an addi-
tional independent testing cohort. Nephropathologists
spent an average of 37 s per WSI, while the average process-
ing time of the model was only 7 s, as illustrated in Fig. 6b.
In general, the model is approximately 5.5 times faster than
nephropathologists in counting glomeruli (counts of glo-
meruli/sec), as shown in Fig. 6c.

In the early days of pathological quantification, Nyengaard
and Bendtsen (2010) reported age-related studies on the num-
ber and size of glomeruli and reached a consensus in this field.
However, the quantitative information about the relationship
between the number and size of glomeruli and increased age
is scant, especially in child cohorts. Therefore, we analyzed
the area of glomeruli detected in a cohort of children aged
1–5, 6–10, 11–15, and 16–20 years with the assistance of

Figure 4. Model optimization of APKD. (a) Comparison of mAP50 of different models in training and testing set. (b) AP50 of different models for different

classes in testing set. (c) Comparison of AP50 of SCNet for different classes in training, validation, and testing set. (d) Manual delineation (Ground Truth),

compared to segmentation results generated by SCNet and QueryInst; arrows indicate undetected structures. (e) The mean of receiver operating

characteristic (ROC) curve across all classes and the corresponding AUC of testing set for each model are compared.
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APKD and their gender using ANOVA testing, as shown in
Supplementary Table S5. It revealed a significant increase in
glomeruli areas from ages 1–5 until 16–20 years for both
females and males (P<.001, post hoc by Tukey with correc-
tion for multiple comparison for the four families), as illus-
trated in Fig. 6d.

The total number of nucleated cells in the glomerular tuft
has been quantified in various kidney diseases, and we have
observed that the number of nucleated cells in the glomerular
tuft of endocapillary proliferative glomerulonephritis (EPGN)
is significantly higher than that of other diseases (P<.001 by
the ANOVA test, post hoc by Tukey with correction for

Figure 5. Quantitative analysis of APKD detection performance. (a) The loss function during training and the optimal mean Average Precision of the

SCNet model is 87%. (b) APKD detection accuracy (AP50) for all kidney structures and nuclei in testing set. (c) Resnet18, VGG16, MobileNetV2, and

InceptionV3 assessed crescentic glomerulonephritis detection accuracy by area under the receiver operating characteristic (ROC) curve. (d) Visualization

results of APKD detection and segmentation for all kidney structures and nuclei.

Figure 6. Consistency between manual detection and the AI model. (a) Correlation evaluation between manual glomeruli count and automatic glomeruli

detection. (b) Comparison of time spent for manual glomeruli counting and automated glomeruli detection. (c) Speed evaluation between manual

glomeruli count and automatic glomeruli detection. (d) Detected size of glomeruli by APKD in children of different age range and genders (***P< .001

regardless the gender). (e) Detected number of cells in glomeruli by APKD in children of different kidney disease and genders (***P< .001 and **P< .01

regardless of the gender).
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multiple comparison for the 10 families; see Fig. 6e and
Supplementary Table S6).

4 Conclusion and discussion

The focus of this research was to develop and apply DL solu-
tions to help nephropathologists rapidly identify and detect
kidney structures for quantification. We also derived tissue
morphological features from segmentation calculations to en-
able biopsy interpretation. The proposed framework and ap-
plied DL network we developed helps to pave the way for
future development of kidney tissue assays by providing a net-
work optimized for, trained on, and validated by a cohort of
highly annotated pediatric patient samples. The trends in
pathomorphological features we have shown for pediatric
kidney disease subtypes may also help to establish a baseline
from which to assess kidney disease prognosis or predict
treatment response.

The comprehensive set of pathomorphological features
detected and quantified through our framework can help neph-
ropathologists quickly understand the organization of structural
indexes in renal tissue, including the number of glomeruli, glo-
merular volume, cells in the glomerulus, area of the mesangial
matrix, formation of crescents, and tubules. Such a solution has
the potential for facilitating early diagnosis, guiding therapeutic
strategy, and prognosticating the evolution of glomerular dis-
eases for pediatric kidney disease. Another potential application
is that the annotations generated by APKD will be superim-
posed on WSI as a navigator to effectively assist the pathologi-
cal examination of each ROI. Thus, this platform helps reduce
the tedious and repetitive workload of nephropathologists.

Rapidly progressive glomerulonephritis is a kidney disease
whose chief clinical feature is a rapid decline of at least 50% in
the glomerular filtration rate within a short period, from a few
days to three months. The main pathological finding is extensive
glomerular crescent formation. The common pathological fea-
ture of crescents is the proliferation of parietal epithelial cells.
Our glomerular crescents classification module and 58 compre-
hensive pathomorphological features can help to detect crescent
for early diagnosis (see Supplementary Table S7). Clinically,
crescents are described as cellular, cellular fibrous crescent, and
fibrous crescent, which are more accurate indicators for the
prognosis and response to treatment. This APKD cannot distin-
guish the crescents with detail now, and further work is needed
to encompass this complexity. Our model trained on samples
across the pediatric age range also allowed us to show a main
effect from age after automatically calculating the number and
size of glomeruli, indicating that the size of the glomerulus
increases linearly with age during this period (see Fig. 6d and
Supplementary Table S5). Our quantitative results are consis-
tent with earlier reports in adults and extend these findings to
child cohorts (Nyengaard and Bendtsen 2010).

The identification and classification of glomerular lesions
are fundamental steps toward the diagnosis of most kidney
diseases. Of particular importance is glomerular hypercellu-
larity, a lesion defined by an increase in the number of cells in
the glomeruli and frequently found in pediatric kidney dis-
ease, including IgAN, HSPN, and MsPGN. The presence and
abundance of glomerular hypercellularity are closely related
to the diagnosis, severity, and prognosis of disease. Our study
can quantify the number of nucleated cells in the glomeruli of
children with kidney disease (see Fig. 6e and Supplementary
Table S6). Future implementations will need to distinguish

features of these cell types (e.g. podocytes, mesangial cell, and
endothelial cell) by AI, which may serve as important patho-
morphological features in future kidney AI studies.

Many previous studies have only aimed to identify glomer-
ulosclerosis (Ginley et al. 2019, 2021, Altini et al. 2020), a
few structures (e.g. renal tubules (Bevilacqua et al. 2017), in-
terstitial fibrosis, and renal tubular atrophy), or pathological
features of specific diseases, such as diabetic nephropathy,
IgAN (Zeng et al. 2020), or lupus nephritis. Furthermore, in
most studies, the size of the dataset was rather small (n< 100
WSI). The results of our study show that our method, sup-
ported by big data (n> 1000 WSI), can accurately detect mul-
tiple types of kidney structures and cells in different kidney
diseases. Furthermore, as indicated by the kidney studies men-
tioned above, the vast majority of AI nephrology studies to
date have focused on adults rather than children with kidney
disease. As the number of cases in children increases (Shi et al.
2021), more attention needs to be paid to the unique pathol-
ogy of kidney disease. In addition, AI is also necessary for the
development of kidney disease, especially the comprehensive
detection and quantification of various structures in renal bi-
opsies to help nephropathologists rapidly quantify and ana-
lyze tissue samples of all age groups. Our results in a pediatric
dataset suggest that AI is suitable for use in children with kid-
ney disease, especially for identification of glomeruli, with the
ability to accurately count glomeruli of different sizes and at
different ages while achieving consistent diagnoses with those
of nephropathologists.

However, our study has limitations. First, our datasets used
in research are not large enough and are from a single
Chinese children’s hospital; the applicability of the results to
other institutions remains to be verified. Second, our dataset
was limited to H&E and PAS staining. Third, the glomerulus
contains three resident cell types: mesangial, endothelial, and
podocytes. Although podocyte loss or podocytopenia is im-
portant to assess the progression of glomerular disease, our
work has yet to segment podocytes. To address these limita-
tions, we are currently collecting a multicenter kidney disease
dataset from Chinese hospitals. These datasets will include
several stains used to diagnose kidney disease, such as H&E,
PAS, Silver, and Trichrome. Given the rapid pace of advance-
ment in AI models, we will also incorporate the latest models,
such as the Swin-transformer-base network model (Liu et al.
2021), to enhance the detection accuracy and generalizability
of our model, while comparing the detection efficiency and
accuracy performance of the current models.

In conclusion, our automated APKD extracts detailed
quantitative features to interpret renal biopsies and assist
nephropathologists to make rapid assessments. In future
work, we will combine the path-morphology identified by
APKD with clinical features such as medical history and labo-
ratory tests extracted through AI and larger, multicenter data-
sets to enhance the accuracy and broaden the applicability of
APKD for diagnosis of pediatric kidney disease.
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