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ABSTRACT OF THE DISSERTATION

Learning to Isolate Muons and Address Broken Symmetries with Encouraged Invariance

By

Edmund Witkowski

Doctor of Philosophy in Physics

University of California, Irvine, 2023

Professor Daniel Whiteson, Chair

We demonstrate techniques to improve the performance of data driven methods used in

collider experiments, through the use of neural networks. First, using a simulated muon

dataset, we probe the discriminating power of the typically used isolation observable by

comparing it to neural networks trained on full event details. By performing a search over

the space of Energy Flow Polynomials (EFPs), a set of scalar observables which performs

similarly to the full information is identified. This methodology is then applied to real

collider data obtained from CMS Open Data. The CMS data lacks event level class labels,

necessitating the use of CWoLa, a weakly supervised training method, along with an sPlots-

based performance evaluation method. Once again, we successfully identify a minimal set

of scalar observables capable of outperforming isolation. Finally, a novel data-augmentation

scheme is introduced. Symmetries present in an ideal dataset may be broken by detector

effects, leading to lower quality augmented copies. We perform augmentation pre-detection

in simulation, and further encourage invariance across augmented copies during training. We

find that synthesizing examples this way leads to faster convergence, and that encouraging

invariance yields further performance gains.

xiii



Chapter 1

Introduction

1.1 Background and Motivation

The Standard Model of particle physics has demonstrated remarkable success in explaining

many of the fundamental aspects of the universe, but it has some significant shortcom-

ings. These include not leading to predictions consistent with general relativity, lacking a

viable dark matter candidate, and not providing an explanation for baryon asymmetry[66].

The pursuit of a more complete model has led to the development of many experiments

designed to search for new fundamental physics. These include the ATLAS and CMS ex-

periments at CERN, which collect and analyze large amounts of detector data produced by

the Large Hadron Collider (LHC). These experiments curate massive datasets, with AT-

LAS alone reporting 10, 000 TB of data a year[18]. This data potentially holds clues which

could lead to the discovery of new physics, and constrain the space of theories which should

be considered. In order to identify useful information within the vast quantity collected,

it is natural to employ the techniques that have been developed in the realm of data sci-

ence. The application of artificial neural networks to high-energy physics experiments is a
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Figure 1.1: The CMS detector, which consists of silicon trackers, a crystal electromagnetic
calorimeter, a hadron calorimeter, a solenoid, and muon sub-detectors[33].

relatively recent development, yielding impressive results in tasks ranging from simulation

to classification[10, 53, 39, 58] Neural networks will be further detailed in section 1.2, but

at a high level, they use an iterative process to automatically “learn” a mapping, given

some training data and a properly defined loss function to guide the network to the desired

solution. This process can present certain advantages over more traditional methods.

A specific example arises when working with jet images, which inherently possess high dimen-

sionality. High dimensional data notoriously presents significant issues for many numerical

and machine learning methods; this is a phenomenon referred to as “the curse of dimen-

sionality.” In order to mitigate this, the high dimensional jets are typically reduced to

theoretically motivated scalar observables. While these can be quite powerful, they do not

necessarily capture all of the useful information present in the data. However, as we will
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Figure 1.2: An example of a jet image produced from data collected by the CMS
experiment[1].

demonstrate in Chapters 2 and 3, neural networks can not only be used to directly perform

dimensionality reduction in a more optimal way, but they may also assist in identifying the

optimal scalar observables in a given set. Using existing observables may be preferable, as

they typically have a clearer physical meaning, highlighting one of the weaknesses of neural

networks, which is a lack of human interpretability. Another disadvantage of neural networks

is that they typically require very large amounts of training data, and can be quite compu-

tationally intensive to train, optimize, and evaluate. Even in the case that a large amount

of collider data is available, this may not be the case in a given region of interest. This

motivates the investigation of methods for improving the performance of neural networks in

the presence of limited training data. Previous work has found that symmetries present in

a dataset may be leveraged to improve data efficiency. These techniques typically involve

3



synthesizing new training examples by applying transformations to the existing data[81], or

integrating the structure of a symmetry into the design of a network[30]. However, directly

applying these solutions to jet images can lead to less than ideal performance. Symmetries

expected to be present in jet images may be slightly broken by detector effects, and at-

tempting to apply transformations after this may not be straightforward or may give rise to

artifacts. Chapter 4 presents a data-augmentation technique which mitigates these issues by

modifying data produced in simulation, prior to the introduction of detector effects.

This thesis aims to further delve into these challenges, and elaborate on our proposed so-

lutions. Our overarching goal is to explore and demonstrate how neural networks can be

harnessed both to enhance traditional methods in high-energy physics analyses, and to op-

timize neural network methodologies specifically for this context. In order to ensure clarity

and lay the groundwork for the studies that follow, we now provide a broad overview of

neural networks and how they operate.

1.2 Artificial Neural Networks

Artificial neural networks are parameterized machine learning models loosely inspired by

biological neural networks[68]. They are typically organized as graphs consisting of nodes,

referred to as neurons, interconnected by edges representing weights. Each neuron contains

a value, either provided as input or computed within the network, and the weights control

the strength of the interactions between connected neurons. These are organized into layers,

with the first referred to as the input layer, the last as the output layer, and with a number

of “hidden” layers in between. At each layer, a scalar bias may be added and an activation

function applied, expanding the class of functions which the network may model. According

to various formulations of universal approximation theorems, a network containing a single

hidden layer and an appropriate non-linear activation function is capable of approximating

4



x y

Figure 1.3: A simple fully connected, feed-forward neural network, consisting of an input
layer taking an input vector x, two hidden layers, and an output layer yielding a scalar
output y.

a broad range of continuous functions, specifically those that are Borel measurable, to arbi-

trary precision[57]. In practice, the use of multiple hidden layers is found to allow iterative

optimization methods to converge to a solution more efficiently than a single layer. This gives

rise to the many-layered “deep” neural networks, which form the basis of many successful

neural network solutions.

More formally, a network may be represented as a mapping F , which takes an input vector x

from an input space X , to an output vector y in an output space Y . For a network composed

of N layers, where the ith layer applies a transformation fi, a network may be expressed as

a nested composition of its layers

F (x) = fN ◦ fN−1 ◦ ...f2 ◦ f1(x) (1.1)

5
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y

Figure 1.4: Input nodes with elements from x are used to calculate the value of an output
node y, using weights w. This illustration does not include the activation function or bias
which may additionally be applied to the value y.

. A given layer in a basic neural network consists of an activation function σi applied to the

linear transformation defined by the weights Wi and biases bi.

fi(z) = σi (Wiz + bi) (1.2)

The specific choice of activation function may vary depending on the task and type of layer,

but it should be noted that for most learning algorithms it is required to be differentiable.

Certain aspects of the network, termed hyperparameters, are typically specified manually.

These include the number of neurons in each layer, as well as the number of hidden layers

used, among other things. In contrast, the weights and biases are optimized iteratively

through a backpropagation algorithm, allowing the network to find a solution which yields

the desired results. The first step of this process is known as the forward pass, in which

inputs are fed through the network, their respective outputs are evaluated, and then passed

to a “loss” function. The loss function can take different forms depending on the task, but

6
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Figure 1.5: Examples of commonly used activation functions. (Left) A rectified linear unit
(ReLU), which is commonly used as the activation for hidden layers in modern networks. This
introduces non-linearity and mitigates some issues which commonly arise during training
with other functions. (Right) A sigmoid function, which ensures that values are in the range
0 to 1, commonly applied at the output layer of binary classifiers. (Bottom) A tanh function,
which outputs values between −1 and 1, is favored in cases where it is desirable to have an
output centered at 0 and where both positive and negative signals may be informative.

generally it quantifies how close the outputs are to the desired solution. Next, the gradients

of the loss with respect to the parameters of the model are evaluated, necessitating that

the chosen loss function should be differentiable. During the forward pass, values computed

at each step are stored, and used with an automatic differentiation algorithm to compute

the gradients. A network can be represented as a computational graph, with nodes being

mathematical operations, and edges being the data which these operations act on. As

long as each operation is differentiable, the chain rule allows gradients to be computed in
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succession as the graph is traversed, typically starting from the output in the case of neural

networks. This process is particularly efficient, and is crucial for the feasibility of training

large networks. The gradients indicate how the model parameters should be updated in order

to decrease the loss, increasing performance. This update process is broadly referred to as

gradient descent, and the exact details of how the update is done can vary depending on the

optimization algorithm used. Different algorithms may introduce various hyperparameters

to control aspects of the optimization, among these typically being a learning rate, which

scales the size of each update. As the gradients are computed and parameters are updated

starting from the output layer, this is known as the backwards pass, and serves as the

namesake of the backpropagation algorithm. This is done repeatedly over a training dataset,

and stopped when the training loss is determined to be sufficiently minimal and stable.

Gradient descent is not without challenges, however. Issues such as exploding gradients,

where values grow too large and become numerically unstable, or vanishing gradients, where

the gradients become extremely small and no longer contribute meaningfully to updates,

can hinder convergence. These issues are largely mitigated through the use of activation

functions such as rectified linear units (ReLUs), and modern optimizers. Another significant

issue is overfitting, where a model is learned which closely reproduces the training data,

but does not generalize well to new examples. Neural networks are frequently largely over-

parameterized, further exacerbating the likelihood of overfitting. There are several common

ways to mitigate this. For example, a simple and frequently used method is to evaluate

the model on a validation dataset after each update. This data is not used to update

the model itself, and so if the training loss continues to decrease while the validation loss

either stabilizes or begins to increase, it can indicate that the model is beginning to overfit

and training should be halted. Other techniques to avoid overfitting include using dropout

during training, where some neurons are randomly ignored at each iteration, or the inclusion

of regularization terms in the loss which can encourage smaller weights and simplify the

model.
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While these principles can be broadly applied to the understanding of many artificial neural

network methods, and are relied on greatly in the studies presented here, other modes of

learning do exist which require additional steps or significant changes to the overall proce-

dure. For our purposes, we will be exploring fully supervised learning, where each training

example comes with a label that is supplied to the loss function, as well as weakly supervised

learning, where these individual labels are unavailable. In the weakly supervised setting, we

present a method which relies on macroscopic sample information to synthesize training la-

bels, which are provided to the loss as in the fully supervised case. In terms of network

architectures, we use fully connected neural networks, convolutional neural networks, and a

more physics specific architecture known as a Particle Flow Network, which is deeply related

to the other two. Fully connected networks present a straightforward design, in which every

neuron in a given layer is connected to every neuron in the following layer. Convolutional

neural networks apply a convolution operation to the data at each layer, sliding a window

composed of trainable weights over groups of neurons. This allows the network to better

capture spatial relationships, making it well suited to tasks involving images, such as those

constructed from collider data. In the work that follows, the methods presented here lay the

foundation for techniques to improve high-energy physics analyses.
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Chapter 2

Learning to Isolate Muons

This chapter is heavily based on work previously published in collaboration with Julian Col-

lado, Kevin Bauer, Taylor Faucett, Daniel Whiteson, and Pierre Baldi[38].

Distinguishing between prompt muons produced in heavy boson decay and muons produced

in association with heavy-flavor jet production is an important task in analysis of collider

physics data. We explore whether there is information available in calorimeter deposits that

is not captured by the standard approach of isolation cones. We find that convolutional

networks and particle-flow networks accessing the calorimeter cells surpass the performance

of isolation cones, suggesting that the radial energy distribution and the angular structure

of the calorimeter deposits surrounding the muon contain unused discrimination power. We

assemble a small set of high-level observables which summarize the calorimeter information

and close the performance gap with networks which analyze the calorimeter cells directly.

These observables are theoretically well-defined and can be studied with collider data.
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2.1 Introduction

Searches for new physics and precision tests of the Standard Model at hadron colliders

have long relied on leptonic decays of heavy bosons, due to the relatively low background

rates and excellent momentum resolution compared to hadronic final states. In the case

of muons, the primary source of background to prompt muons (those from W,Z or other

bosons) is production within a heavy-flavor jet. This non-prompt background is largest at

lower values of muon transverse momentum, which has become important in searches for

supersymmetry [4, 78, 59] as well as low-mass resonances [56].

The current state of the art strategy for distinguishing prompt and non-prompt muons in

experimental searches involves techniques which integrate information from multiple detector

systems [82, 73]. Critical to these strategies is the concept of isolation, which is sensitive to

the presence of an associated jet that produces many tracks and calorimeter deposits. While

the entire detector is worth studying [83], here we focus on the nature of the information

available in the calorimeter. There, the traditional approach is to use a robust and simple

method, measuring:

Iµ(R0) =
∑

i,R<R0

pcell iT

pmuon
T

within a cone R =
√

∆ϕ2 +∆η2 < R0 surrounding the muon [6]. Typically a single cone is

used, with values of R0 in the 0.1-0.45 range. This approach relies on identifying a typical

characteristic of the signal, low calorimeter activity in the vicinity of the muon.

The traditional strategy, however, focuses on the simple nature of the signal and may overlook

the rich set of characteristics offered by the background object, which can provide handles for

additional rejection power. Related work, which approaches similar object classification tasks

as a background jet rejection problem, has shown significant improvement in background
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discrimination when applied to photons [10, 53], pions [17] or electrons [39]. Other studies

have shown that muons which fail the traditional isolation requirement can contain power

to reveal new physics [29].

At the same time, there have been significant advances in machine learning techniques and

their applications in physics [22, 19], specifically in the context of jet classification tasks,

which take a fuller view of the object by directly analyzing the low-level calorimeter energy

deposits, representing them either as a type of image [36, 20] or as a list [62].

It seems likely, therefore, that these machine learning strategies may identify the presence

of significant additional calorimetric rejection power in the context of prompt muon identi-

fication. In this paper, we apply machine learning tools similar to those developed for jet

calorimeter analysis to the task of distinguishing muons due to heavy boson decay from those

produced within a heavy-flavor jet, analyze the nature of the information being used, and as-

semble a set of interpretable calorimeter features which capture that additional classification

power.

2.2 Approach and Dataset

The observable Iµ(R0) is a powerful discriminator which reduces a large amount of informa-

tion to a single high-level scalar. However, it is possible that it fails to capture the fullness

of the calorimeter information available to distinguish prompt muons from those which are

produced within a jet. To probe whether information has been lost, we compare the per-

formance of deep neural networks which access the full calorimeter information to shallow

networks which use one or more isolation cones.

Neural network decisions are notoriously difficult to reverse-engineer [32, 23, 76, 95, 13],

especially when the dimensionality of the data is large, as is the case for networks which
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directly use the low-level calorimeter cells. Understanding the nature of the decisions is

particularly vital when the training is done with simulated samples, as it leads to valid

concerns about the application of such complex strategies to collider data.

In this study, our goal is not to develop deep networks for use in collider data. Instead,

we apply these deep networks as a probe, to measure a loose upper bound on the possible

classification performance, and provide insight into whether information has been lost in the

reduction of the calorimeter cells to isolation cones.

Where information has been lost, we attempt to capture it, not by applying the deep network,

but by assembling a small set of new high-level (HL) observables that bridge the performance

gap and reproduce the classification decisions of the calorimeter cell networks [47]. These

high-level observables are more compact, physically interpretable, can be validated in data,

and allow for the straightforward assessment and propagation of systematic uncertainties.

2.2.1 Data generation

Samples of simulated prompt muons were generated via the process pp → Z ′ → µ+µ− with

a Z ′ mass of 20 GeV. Non-prompt muons were generated via the process pp → bb̄. Both

samples are generated at a center of mass energy
√
s = 13 TeV. Collisions and heavy boson

decays are simulated with Madgraph5 v2.6.5 [15], showered and hadronized with Pythia

v8.235 [86], and the detector response simulated withDelphes v3.4.1 [42] using the standard

ATLAS card and root version 6.0800 [28]. The classification of these objects is sensitive

to the presence of additional proton interactions, referred to as pile-up events. We overlay

such interactions within the simulation with an average number of interactions per event of

µ = 50, as an estimate of LHC Run 2 experimental data.

Muons in the range pT ∈ [10, 15] GeV with |η|< 2.53 were considered; see Fig. 2.1. To
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avoid inducing biases from artifacts of the generation process, signal and background events

are weighted such that the distributions in pT and η are uniform, using 32 bins in each

dimension. Only events where a muon is identified as a track in the muon spectrometer

are used. In total, 499,970 events were used, where 249,991 were signal and 249,979 were

background. Both the signal and background datasets are randomly split as: 83% training,

8.5% validation, and 8.5% testing sets.

Calorimeter deposits can be represented as images where each pixel value represents the ET

deposited by a particle [36]. Images are formed by considering cells in the calorimeter within

a cone of radius up to ∆R = 0.45 surrounding the muon location after propagating to the

radius of the calorimeter.

We use a 32x32 grid, which approximately corresponds with the calorimeter granularity of

ATLAS and CMS. Heat maps of the calorimeter energy deposits in η − ϕ space for both

signal prompt muons and background non-prompt muons are shown in Fig. 2.2. The signal

calorimeter deposits are uniform and can be attributed to pileup whereas the background

deposits appear largely radially symmetric with a dense core from the jet.

We calculate the standard muon isolation observable Iµ(R0) for a set of cones with 0.025 ≤

R0 ≤ 0.45 in 18 equally spaced steps.

Crucially, these isolation observables and all other calorimeter observables are calculated

directly from the pixels of the muon images, ensuring that they contain a strict subset of the

information available. This allows for direct and revealing comparisons of the performance

between networks trained with the images and those trained with Iµ. Note that pixelization

of the detector may incur some loss of information relative to the underlying segmentation

of the calorimeter. However, this work focuses on examining the relative power of different

techniques, rather than identifying the best performance under the most realistic scenario.
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Figure 2.1: Distributions of muon transverse momentum (top) and pseudorapidity (bottom)
for signal and background samples. Afterwards, the distributions are weighted to make both
samples uniform.
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Figure 2.2: Mean calorimeter images for signal prompt muons (top) and muons produced
within heavy-flavor jets (bottom), in the vicinity of reconstructed muons within a cone of
R = 0.45. The color of each cell represents the sum of the ET of the calorimeter deposits
within the cell.
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2.3 Networks and Performance

We apply several strategies to the task of classifying prompt and non-prompt muons, using

both low-level calorimeter information and higher-level isolation quantities. We evaluate the

performance of each approach by comparing the integral of the ROC (Receiver Operating

Characteristic) curve, known as the AUC (Area Under the Curve). The uncertainty for the

AUC is calculated by training 100 randomly initialized models with the same hyperparam-

eters on different bootstraps of the data. In this case, we seek to determine the statistical

uncertainty due to the stochastic training method, rather than any systematic uncertainty

due to the calorimeter resolution.

For the high-level quantities, the standard approach of using a single isolation cone yields

an AUC of 0.787 for the optimal cone size, R0 = 0.4251. We hypothesized that additional

cones would provide useful information about the radial energy distribution. Including a

second cone with a distinct R0 value as input to a small neural network (see Appendix

A) slightly improves performance, with an AUC of 0.793. To estimate the full information

available in the cones, we perform a greedy search through all 18 cones; we find that a set

of 10 cones2 yields another small boost in classification power up to an AUC of 0.803, as

shown in Fig. 2.3. Performance was fairly insensitive to the specific choices of cone sizes, and

does not grow significantly beyond 10 cones. Feed-forward dense networks are trained to

use the information in one or more isolation cones (see the Appendix for details on network

architectures and training).

We next examine whether additional information is available by applying strategies which

access the calorimeter information at the lowest-level and highest-dimensionality. Convolu-

tional networks (CNN) are applied to the muon images [36, 20, 19]. As an alternative, we

apply particle-flow networks (PFN) [62], which are mathematically structured as sums over

1Similar performance was seen for other cone sizes.
2R0 = [0.025, 0.05, 0.075, 0.125, 0.15, 0.225, 0.275, 0.325, 0.425, 0.45]

17



Figure 2.3: Comparison of classification performance using the metric AUC between Particle-
Flow networks trained on lists of calorimeter deposits (orange, solid), Energy-Flow networks
trained on lists of calorimeter deposits (red, solid), convolutional networks trained on muon
images (blue, dashed) and networks which use increasing numbers of isolation cones (green,
solid). For each number of cones, the optimal set is chosen.

inputs and thus are invariant to permutations of the inputs.

The muon image CNN achieves a significantly higher performance than the isolation-only

networks, with an AUC of 0.841, and the particle flow network reaches 0.857, see Fig. 2.4 and

Table 2.1. This immediately suggests that there is significant additional information available

to distinguish between the prompt and non-prompt muons beyond what is summarized in the

isolation cones. A more restricted version of the PFN, an Energy-Flow Network [62] (EFN),

which enforces infra-red and collinear (IRC) safety, achieves nearly the same performance,

0.849. This suggests that most of the additional information beyond the isolation cones is

IRC-safe.

These results support the conventional wisdom that a significant fraction of the information

relevant for classification is captured by a single, simple cone. However, they also indicate
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Figure 2.4: Background rejection versus signal efficiency for Particle-Flow networks trained
on lists of calorimeter deposits (orange, dashed), Energy-Flow networks trained on lists of
calorimeter deposits (red, dashed), convolutional networks trained on muon images (blue,
dashed), networks trained on a set of isolation cones (purple, dotted) and the benchmark
approach, a single isolation cone approach (green, dashed).
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that there is additional information in the radial distribution of energy, which can be cap-

tured by using multiple cones. However, even many cones fail to match the performance

of the networks which use the calorimeter cell information directly, suggesting that there

is additional non-radial information relevant to the classification task not captured in the

isolation cones. This is likely due to a difference between the muon axis, the center of the

isolation cones, and the jet axis.

2.4 Analysis

The networks which use the calorimeter cells directly have the most powerful performance,

but our aim is not simply to optimize classification performance in this particular simulated

sample. Instead, we seek to understand the nature of the learned strategy in order to validate

it and translate it into simpler, more easily interpretable high-level features which can be

studied in other datasets, real or simulated. In addition, this understanding can reveal how

well the strategy is likely to generalize to other kinds of jets that are not represented by this

background sample, such as charm jets.

The CNN and PFN results indicate that the radially symmetric isolation cones are failing

to utilize some information which is relevant to the classification task. In this section, we

search for additional high-level observables which capture this information.

2.4.1 Search Strategy

Interpreting the decisions of a deep network with a high-dimensional input vector is no-

toriously difficult. Instead, we attempt to translate its performance into a smaller set of

interpretable observables [47]. This allows us to understand the nature of the information

being used as well as to represent it more compactly.
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One might imagine exploring a set of physically-motivated quantities, such as the relative pT

between the jet and the muon or the energy-weighted average distance between the jet and

calorimeter cells. These particular quantities were considered and found to not contribute

significant power in addition to the isolation cones.

Instead, we use a systematic approach and explore a formally complete set of observables.

As the background non-prompt muons are due to jet production, we search within a set of

observables originally intended for analysis of jets: the Energy Flow Polynomials (EFPs) [61],

a formally infinite set of parameterized engineered functions, inspired by previous work on

energy correlation functions [65], which sum over the contents of the cells scaled by relative

angular distances. An EFP for a jet with M constituents which considers N correlators with

angular connections k, l is written as:

EFP =
M∑

i1=1

...
M∑

iN=1

zκi1 ...z
κ
iN

∏
k,l

θβikil

where

(zi)
κ =

(
pTi∑
j pTj

)κ

, (2.1)

θβij =
(
∆η2ij +∆ϕ2

ij

)β/2
. (2.2)

Here, pTi is the transverse momentum of cell i, and ∆ηij (∆ϕij) is the pseudorapidity (az-

imuth) difference between cells i and j. These parametric sums correspond to the set of all

isomorphic multigraphs where:

each node ⇒
N∑
i=1

zi, (2.3)

each k-fold edge ⇒ (θij)
k . (2.4)
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As the EFPs are normalized, they capture only the relative information about the energy

deposition. For this reason, in each network that includes EFP observables, we include as

an additional input the sum of pT over all cells, to indicate the overall scale of the energy

deposition.

The original IRC-safe EFPs require κ = 1. To more broadly explore the space, we consider

examples with κ ̸= 1 to explore a broader space of observables3.

In principle, the space spanned by the EFPs is complete, such that any jet observable can

be described by one or more EFPs of some degree. One might consider simply searching this

space for all possible combinations of EFPs for a set which maximizes performance for this

task. Such a search is computationally prohibitive; instead, we follow the black-box guided

algorithm of Ref. [47], which iteratively assembles a set of EFPs that mimic the decisions of

another guiding network (the PFN in our case) by isolating the portion of the input space

where the guiding network disagrees with the isolation network, and finding EFPs which

mimic the guiding network’s decisions in that subspace.

Here, the agreement between networks f(x) and g(x) is evaluated over pairs of (x, x′) by

comparing their relative classification decisions, expressed mathematically as:

DO[f, g](x, x′) = Θ
(
(f(x)− f(x′))(g(x)− g(x′))

)
, (2.5)

and referred to as decision ordering (DO). A DO= 0 corresponds to inverted decisions over

all input pairs and DO= 1 corresponds to the same decision ordering. As prescribed in

Ref. [47], we scan the space of EFPs to find the observable that has the highest average

decision ordering (ADO) with the guiding network when averaged over disordered pairs.

The selected EFP is then incorporated into the new network of HL features, HLNn+1, and

3Also, note that κ > 0 generically corresponds to IR-safe but C-unsafe observables. For κ < 0, empty
cells are omitted from the sum.
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the process is repeated until the ADO plateaus.

2.4.2 IRC Safe Observables

As the elements of the EFP space are not orthogonal, there are potentially many combina-

tions of EFP observables which capture the relevant information. As simpler EFPs may be

more conducive to theoretical interpretation, we begin our search in a restricted subset of

the EFP space. Specifically, we consider those which are IRC safe (κ = 1), have a simple

angular weighting (β ∈ [1, 2]), and n ≤ 3 fewer nodes with at most three edges between

nodes. We also include
∑

pT, where the summation is over all calorimeter cells in the image,

to set the scale accompanying the normalized EFPs. The first EFP observable identified is

a simple three-point correlator:

(κ=1,β=1) =
N∑

a,b,c=1

zazbzcθabθbcθca

which, when combined with the isolation cones and
∑

pT, yields an AUC of 0.838 and an

ADO with the CNN of 0.891, a significant boost relative to just using the radial information

of the isolation cones. The subsequent scans produce variants of this observable :

(κ=1,β=2) =
N∑

a,b,c=1

zazbzcθ
4
abθ

6
bc

(κ=1,β=1) =
N∑

a,b,c=1

zazbzcθ
2
abθ

3
bc

(κ=1,β=2) =
N∑

a,b=1

zazbθab

with additional edges corresponding to higher powers of the angular information. Their
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power may come from their sensitivity to the collimated radiation pattern of the jet. Together

with the isolation cones, these observables reach an AUC of 0.842 and an ADO with the

PFN of 0.888, see Table 2.1.

This set of observables partially closes the performance gap with the best calorimeter cell

networks, indicating that angular information is relevant to the muon isolation classification

task, but fails to fully match its performance. Distributions of these EFPs for signal and

background are shown in Fig. 2.5. Further scans in this limited space do not yield significant

boost in AUC or ADO values. The strong result of the IRC-safe EFN indicates that it

is possible to capture nearly all of the classification power using IRC-safe graphs, likely

requiring graphs with complexity beyond what we have considered.

A scan guided by the CNN rather than the PFN yields very similar results, with identical

choices for the first three EFPs.

3 2
log10 [EFP Observable]

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

background signal

κ = 1, β = 1

8 7 6 5 4 3 2
log10 [EFP Observable]

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

background signal

κ = 1, β = 2

5 4 3 2
log10 [EFP Observable]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
ty

background signal

κ = 1, β = 1

2 1
log10 [EFP Observable]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

background signal

κ = 1, β = 2

Figure 2.5: Distributions of the log10 of the selected IRC-safe EFPs as chosen by the black-
box guided strategy, for prompt (signal) muons and non-prompt (background) muons.
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Figure 2.6: Distributions of the log10 of the selected EFPs as chosen by the black-box guided
strategy, for prompt (signal) muons and non-prompt (background) muons.

2.4.3 IRC-unsafe Observables

To understand the nature of the remaining information used by the PFN but not captured

by the isolation cones and the IRC-safe observables, we expand the search space to include

observables which are not IRC safe (κ ∈ [−1, 0, 1
4
, 1
2
, 1, 2]), with alternative angular powers

(β ∈ [1
4
, 1
2
, 1, 2, 3, 4]) and with up to n = 7 nodes and d = 7 edges.

A scan of these observables finds a set of 5 which, when combined with the isolation cones and∑
pT reach an AUC of 0.857. Figure 2.6 shows the EFP graphs as well as their distributions

for prompt and non-prompt muons. They include single point-graphs, with no angular

powers, as well as a two-point correlators with large angular power sensitive to high-angle

effects, and more complex graphs with multiple nodes. We note that due to the overlapping

nature of the large space of EFPs, there are several sets of EFPs which achieve similar

performance. Again, a similar scan guided by the CNN rather than the PFN yields very

similar results.
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Table 2.1: Summary of performance (AUC) in the prompt muon classification task for various
network architectures and input features. Statistical uncertainty in each case is ±0.001 with
95% confidence, measured using bootstrapping over 100 models. Uncertainty due to the
initial conditions of the network is found to be negligible. Also shown are the number of
inputs to and parameters of each network.

Method Ninputs AUC ADO NParams

[PFN]
Single Iso Cone 1 0.787 0.860 40k
10 Iso 10 0.803 0.877 41k
10 Iso,

∑
pT 11 0.807 0.884 42k

10 Iso,
∑

pT, 4 simple EFPs 15 0.842 0.888 42k
10 Iso,

∑
pT, 5 EFPs 16 0.857 0.900 43k

Calo image CNN 1024 0.841 0.950 167k
Calo cell Energy-Flow Net 102 0.849 0.951 453k
Calo cell Particle-Flow Net 102 0.857 1 453k

2.5 Discussion

The performance of the networks which use the low-level calorimeter cells indicates that

information exists in these cells which is not captured by the isolation cones, see Table 2.1.

A guided search through the space of IRC-safe EFPs closes most of the gap between these

networks, giving us some insight as to the nature of the information. A broader search is

able to complete the bridge, yielding the same performance as the low-level network, but

employing IRC-unsafe EFPs. The multi-point correlators may be sensitive to the width of

the jet, due to the momentum of the constituents relative to the jet axis, as a result of b-

and c-quark decays.

A comparison of the network complexity for the various approaches is shown in Tab. 2.1.

The set of high-level features (isolation cones and EFP graphs) matches the PFN perfor-

mance with 10 times fewer parameters, supporting the notion that the high-level features

are effectively summarizing the relevant low-level information.
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2.6 Conclusions

We have applied deep networks to low-level calorimeter deposits surrounding prompt and

non-prompt muons in order to estimate the amount of classification power available and to

probe whether the standard methods are fully capturing the relevant information.

The performance of the calorimeter cell networks significantly exceeds the benchmark ap-

proach, a single isolation cone. The use of several isolation cones provides some improvement,

suggesting that there is additional useful information in the full radial energy distribution.

However, a substantial gap remains, hinting that there is non-radial structure in the calorime-

ter cells which provides useful information for classification. We map the strategy of the

calorimeter cell networks into a set of energy flow polynomials, finding four IRC-safe, simple

three-point correlators which capture a significant amount of the missing information. As

they are simple functions of the energy deposition, they can be physically interpreted, and

the fidelity of their modeling can be studied in control regions in collider data. Any boost

in the efficiency to identify prompt muons is extremely valuable to searches at the LHC,

especially those with multiple leptons, where event-level efficiencies depend sensitively on

object-level efficiencies.

Additional, more complex EFPs provide a further modest boost in performance, closing the

gap with the PFN. The strong performance of the IRC-safe EFN suggests that most of the

additional information beyond the isolation cones is IRC-safe.

More broadly, the existence of a gap between the performance of state-of-the-art high-level

features and networks using lower-level calorimeter information represents an opportunity

to gather additional power in the battle to suppress lepton backgrounds. Rather than em-

ploying black-box deep networks directly, we have demonstrated the power of using them to

identify the relevant observables from a large list of physically interpretable options. This

allows the physicist to understand the nature of the information being used and to assess
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its systematic uncertainty. Here we have focused on two-dimensional projections of the

calorimeter response, but longitudinal information expressed in three dimensions may offer

additional power in future work. While these studies were performed with simulated sam-

ples, similar studies can be performed using unsupervised methods [44, 69] on samples of

collider data, which we leave to future studies.
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Chapter 3

Learning to Isolate Muons in Data

This chapter is heavily based on work previously published in collaboration with Benjamin

Nachman and Daniel Whiteson[93].

We use unlabeled collision data and weakly-supervised learning to train models which can dis-

tinguish prompt muons from non-prompt muons using patterns of low-level particle activity

in the vicinity of the muon, and interpret the models in the space of energy flow polynomi-

als. Particle activity associated with muons is a valuable tool for identifying prompt muons,

those due to heavy boson decay, from muons produced in the decay of heavy flavor jets.

The high-dimensional information is typically reduced to a single scalar quantity, isolation,

but previous work in simulated samples suggests that valuable discriminating information

is lost in this reduction. We extend these studies in LHC collisions recorded by the CMS

experiment, where true class labels are not available, requiring the use of the invariant mass

spectrum to obtain macroscopic sample information. This allows us to employ Classification

Without Labels (CWoLa), a weakly supervised learning technique, to train models. Our re-

sults confirm that isolation does not describe events as well as the full low-level calorimeter

information, and we are able to identify single energy flow polynomials capable of closing
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the performance gap. These polynomials are not the same ones derived from simulation,

highlighting the importance of training directly on data.

3.1 Introduction

Data collected in hadronic collisions offer a significant opportunity to precisely test the

Standard Model (SM) and to search for physics beyond the SM (BSM). The identification

of muons resulting from electroweak boson decays (called ‘prompt’) is a crucial part of

many such studies, as muons are typically well measured and have low rates of background.

An important source of background for these events comes from muons produced within

jets from decays in flight. This ‘non-prompt’ background is largest at the lower end of

the muon transverse momentum spectrum, which has become important in searches for

supersymmetry [4, 78, 59, 2, 89, 8] as well as for low-mass resonances [56, 3, 11, 88].

Prompt muons tend to have less nearby detector activity as compared to muons from jets,

which are found near hadrons from the rest of the jet. The concept of isolation is therefore

important to much of the work involving the discrimination of prompt muons from the

non-prompt backgrounds. A complete description of the isolation requires capturing the

high-dimensional data in the vicinity of the muon. In practice, high-dimensional data are

challenging to analyze and isolation is typically reduced to a scalar quantity [82, 83, 9]

However, in the reduction from a high-dimensional (low-level) representation of the data to

a lower-dimensional (high-level) one, information can be lost.

Deep learning with low-level inputs has been demonstrated to exceed the performance of

engineered high-level observables on a number of tasks in high energy physics, starting

with Refs. [23, 43] and now including many studies [49]. In the context of prompt muon

identification, deep neural networks were able to outperform classical isolation definitions
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using simulated data – by as much as 50% in non-prompt background rejection at a prompt

muon efficiency of 50% [38]. This was achieved by processing all of the calorimeter cells1 in

the vicinity of the muon, corresponding to roughly 1000 dimensions per event. Significant

suppression of non-prompt backgrounds with a deep learning approach has the potential to

improve the precision and sensitivity of many measurements and searches involving muons

at the Large Hadron Collider (LHC).

However, previous studies were based on simulations, with relatively simple detector effects.

Hadronic final states are complex and difficult to model, so it is reasonable to be concerned

that the performance of a deep learning-based isolation strategy trained on simulated events

may depend on details of the simulation which are not faithful reproductions of collider data.

Scale factors derived using standard tag-and-probe methods [5, 84] may correct the efficiency,

but the performance in data would be suboptimal [31]. Achieving optimal performance in

data requires training with data. The limitation is that data are not labeled as prompt or

not-prompt, so the supervised machine learning strategies used in previous studies and which

require such labels cannot be applied to data.

We propose to overcome this limitation with weakly supervised learning. In contrast to su-

pervised learning, where every event is labeled with certainty as prompt or non prompt,

weakly supervised learning is trained with noisy labels, which describe the overall composi-

tion of the sample but not individual events. Specifically, we use the Classification Without

Labels (CWoLa) [69] approach to weak supervision where two samples of training events

are prepared. One sample is dominated by prompt muons, and receives the noisy label of

‘signal’ (and will be called ‘prompt abundant’); the second sample, while still mostly con-

taining prompt muons, has a relatively higher fraction of non-prompt muons and receives

the noisy label of ‘background’ (and will be called ‘prompt moderate’). Under mild assump-

tions, training a standard classifier with these noisy labels converges to the same classifier

1The previous work mentioned here only used calorimeter information, though this study considers both
calorimeter and track information.
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found in a supervised setting. While weak supervision has been used previously for data

analysis [85, 70, 41, 40, 7], these studies only used 2-18 inputs. Our goal is to approach

the muon isolation problem with weak supervision directly on low-level, high-dimensional

(O(100)) inputs. While the inputs are high dimensional enough to hold a large number of

detected objects, this is only necessary for a small number of events, as on average the inputs

have O(10) non-zero entries.

Even if proven effective in data, deep networks operating on low-level observables can be

opaque. To improve the interpretability and compactness of the network, we follow Ref. [38],

bridging the performance gap between the low-level observables and classical isolation vari-

ables through a small set of additional high-level observables identified by the decisions of

a network operating at the low-level. We search for new high-level observables among the

Energy Flow Polynomials (EFP) [61], a set of relatively simple combinations of energies and

angles of reconstructed objects within the isolation cone. EFP observables are identified

automatically using the Average Decision Ordering (ADO) method [48], which uses the de-

cisions of the low-level network as a guide. While still complex, the resulting EFP is more

physically interpretable than the original deep neural network. Interestingly, the first EFP

selected through this process was not identified in the previous study as a top candidate for

closing the corresponding gap in simulation [38]. This is one more reason why it is essential

here to train directly on data.

This paper is organized as follows. Section 3.2 introduces the dataset, which is from the

CMS experiment [33, 1]. Then, Sec. 4.3 describes the machine learning strategy. Numerical

results are presented in Sec. 4.4. The paper ends with conclusions and outlook in Sec. 4.5.
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Figure 3.1: Histogram of the dimuon invariant mass near the Z boson peak, for events in
data with identical (yellow) or opposite (blue) electric charges. The unshaded area indicates
the region for the oppositely-charge pairs which comprises our “prompt muon abundant”
sample. The grey, shaded region for the oppositely-charge pairs, as well as the entire region
for identically-charged pairs, comprise our “prompt muon moderate” sample.

3.2 Dataset

Proton-proton collisions at
√
s = 8 TeV were recorded in 2012 and curated by the CMS

Collaboration and made available through the CERN Open Data Portal [1]. The number

of collisions corresponds to 19.5 fb−1. Reconstruction was performed with the Particle Flow

(PF) algorithm [83], which integrates calorimeter and tracker information to approximate

individual particle four-vectors. The PF algorithm also assigns a particle identification (PID)

from one of the following types: muon, charged hadron, neutral hadron, photon, or pileup.

For the charged PF objects, the sign of the charge is reconstructed. PF object momenta are

represented by their transverse momentum (pT), pseudorapidity (η), and azimuthal angle

(ϕ).

33



We select events with exactly two muons, both with pT ≥ 25 GeV, |η|≤ 2.1, and with a

dimuon invariant mass between 70 and 110 GeV to accommodate the Z boson mass of 90

GeV [94]. Events are separated into two samples which have different mixtures of prompt

and non-prompt muon events, as is required by the CWoLa method. One sample, with a

higher fraction of non-prompt muons, consists of all events in which the muons have identical

electric charge, as well as events with muon pairs of opposite electric charge but reconstructed

invariant mass far from the Z boson invariant mass, below 84 GeV or above 96 GeV. This

sample is referred to as the “prompt muon moderate sample.” The remaining events, which

are almost entirely prompt muons, form the complementary sample and are referred to as

the “prompt muon abundant sample.” These regions are illustrated in Fig 3.1. The opposite

sign sample is almost entirely from Z boson decays and so is peaked at the Z boson mass.

The same sign sample is mostly from decays in flight and has a nearly smooth and steeply

falling spectrum.

In order to ensure that the two samples have similar kinematic distributions, event weights

are computed so that the muon pT and η spectra are the same between the prompt-enriched

and non-prompt-enriched samples. The unbinned likelihood ratio is estimated using a two-

dimensional Kernel Density Estimator with Gaussian kernels. The pre-weighted spectra are

displayed in Fig. 3.2. The pT spectrum is peaked near mZ/2 and the sharp features in the

muon histogram are due to detector acceptance effects. We additionally validate the core

assumption of CWoLa (see Sec. 4.3) – that the (non)prompt muons look the same in both

samples – using samples of simulated muons; see Appendix B.

Once events are selected, they are formatted to be used as inputs to the neural networks.

The low-level inputs are comprised of the pT, η, ϕ, and PID for each constituent within a 0.45

radius around a given muon. We additionally preprocess the low-level input by centering on

the muon and dividing the momenta by the muon transverse momentum. A visualization of

the momentum in the vicinity of the muon, not including the muon itself, for both samples
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Figure 3.2: Histograms of muon pT and pseudorapidity η in the two samples with varying
fractions of prompt muons, as defined in text and Fig. 3.1.
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is shown in Fig. 3.3. We see that the sample means per pixel have distinct distributions,

with the more prompt sample being more uniform.

Traditional, high-level scalar observables are calculated from the low-level data. These ob-

servables include the summed pT of non-muon objects in an event, isolation, and EFP ob-

servables. We calculate isolation as defined in Eq. 3.1, where h± and h0 denote charged and

neutral hadrons, respectively. This definition quantifies the activity around a muon within

a given radius strictly in terms of Particle Flow objects and treats the objects differently

according to their Particle Flow ID. The expression is composed of terms which sum over

the transverse momenta of the non-muon Particle Flow candidates within the chosen radius,

and the result is normalized by the muon momentum. Pileup is mitigated by subtracting

half of its sum from the neutral hadron and photon sums, and clamping the result of this

subtraction at 0. Distributions of the isolation for two choices of cone radius are shown in

Fig 3.4. The larger of the two choices of radius tends to yield larger isolation values, as one

might expect.

Iµ(R0) =

[ Nh±∑
i,R<R0

piT,h± +max

(
0,

Nh0∑
i,R<R0

piT,h0

+

Nγ∑
i,R<R0

piT,γ −
1

2

Npileup∑
i,R<R0

piT,pileup

)]
/pT,muon (3.1)

We calculate isolation quantities for a set of radii from 0.025 - 0.45 in steps of 0.025. CMS

has previously studied isolation at radius of 0.3 [83], which is included in our generated set.

While in principle the demonstration of weak supervision as a technique for learning to

improve muon isolation beyond cone-based quantities could use simulation instead of data,

we have chosen to use collider data for a number of reasons. First, realistic simulation

of muon isolation is very challenging, for both the prompt and non-prompt categories; see

App. B. Second, a demonstration in data can confirm (or refute) the results of earlier studies
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Figure 3.3: The average image of hadronic activity in the vicinity of an identified muon, in
angular coordinates of azimuthal angle ϕ and pseudorapidity η, for our two training samples,
one which is dominated by prompt muons (top) and a second which has a more moderate
mixture of prompt and non-prompt muons (bottom). The muon itself is excluded from these
visualizations, but the energies are normalized by that of the muon.
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Figure 3.4: Histograms of the muon isolation (defined in Eq. 3.1) for each of our training
samples, one of which is dominated by prompt muons, for two choices of isolation cone radius
parameter R0 = 0.025 (top) and R0 = 0.45 (bottom).
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in simulation, which showed a significant gap between the power of isolation cones and full

use of the lower-level data. If such a gap exists in collider data, it would indicate that

additional information is available in nature; the interpretation of that gap in terms of EFP

observables will provide clues as to the physical processes involved, and the size of the gap

can motivate a further study in a complete experimental context. For this reason, we also do

not estimate systematic uncertainties, which would be required before application to searches

and measurements. As a data-driven method, there are no simulation-based uncertainties,

but there would be method closure uncertainties related to the underlying assumptions of

CWoLa and sPlots.

3.3 Methods

Classification Without Labels (CWoLa) defines a weakly supervised setting which relies

on the principle that given two classes, an optimal classifier may be obtained by training

to discriminate between two samples composed of different mixtures of the classes, rather

than training directly on two pure class samples. This technique only requires that the

two samples have different class mixtures, and these mixtures do not need to be known in

order for training to proceed. The essential assumption is that class fraction is the only

feature that determines the different properties of the two samples. This means that the

spectrum of radiation around the muon for prompt leptons is identical for the prompt muon

abundant and the prompt muon moderate samples. Similarly, the probability density for

hadrons around the muon for non-prompt leptons should be the same within the prompt

muon abundant and the prompt muon moderate samples. We expect this to be the case here,

since the invariant mass of the muons and their relative electric charges should statistically

independent from the radiation pattern around the muons given the prompt status. This

expectation is validated in simulation in App. B.
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While CWoLa does not need class labels to derive a classifier, some class information is

required to determine the performance of the method. The only information needed is

the proportion of prompt muons in each sample; from this information, it is possible to

characterize the full tradeoff between signal efficiency and background rejection. The prompt-

muon fraction is measured directly from the data in each sample by modeling the invariant

mass distribution as a mixture model with two components: one peaking component of Z

bosons which decay to two prompt muons, and a second, non-peaking component. The

invariant mass spectrum is fit using a Voigt profile and an exponential function for the

respective components. Fitting is done with Scipy v1.7.3 [91] and visually demonstrated

in Fig 3.5, where the fit is applied to the full dataset, finding an overall prompt fraction

of 95.6 ± 0.6%, where the error bar corresponds to 1σ statistical. In the “prompt muon

abundant” sample, the prompt fraction is measured to be 98.9%; in the “prompt muon

moderate” sample, the prompt fraction is measured to be 56.0%. This is the first application

of weak supervision in particle physics where the relative proportions have also been extracted

directly from data.

Characterizing the network performance is non-trivial without pure samples. To measure the

efficiency of a varying network threshold in the prompt and non-prompt samples, one could

fit the distribution of the invariant mass of events surpassing each threshold. Measurement

of the efficiencies of each class allows calculation of performance metrics, such as the stan-

dard Receiver Operating Characteristic (ROC) and its associated statistics. However, fits

are expensive and stochastic. Fitting the mass spectrum for each threshold output can be

avoided using the sPlots technique [75], which can decompose the prompt and non-prompt

contributions to distributions of the network output given weights from the single invariant

mass fit into the full sample. sPlots assumes that the variable being weighted is statistically

independent of the invariant mass, within the individual classes. This is approximately true

for our discriminating variables, such as model outputs, and so the method can be applied.

Once the variable has been separated by the components, the resulting histograms may be
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integrated to calculate true and false positive rates, and construct a ROC curve. Perfor-

mance is evaluated through the Area Under the Curve (AUC) and the signal efficiency at

50% background efficiency. While we do not perform a full determination of the uncertainty,

we do consider statistical sources of uncertainty from the training and from the fit2. While

not an uncertainty per se [71], the statistical variation from the finite size of the training

dataset3 gives a sense for the stability and optimality of the result. This effect is estimated

using bootstrapping [45] with 100 event ensembles with a new classifier trained per ensem-

ble. Additionally, we propagate the statistical uncertainty from the fit in each ensemble by

sampling 100 times from the fitted parameter covariance matrix. Metrics are recomputed

and averaged across each ensemble, and we report the 1σ confidence intervals according to

the resulting set of values.

We consider two types of neural networks: high-level networks with an increasing list of

engineered observables (such as isolation) and low-level networks that process the full muon

image. For the high-level networks, one of our goals is to determine the minimal set of

isolation observables that will saturate the performance. To do this, we start by training

a network using the single isolation cone corresponding to the largest radius in our set

and subsequently train networks with incrementally smaller cones included as inputs. The

summed event pT is included as an input in all of these sets, in order to be sensitive to overall

normalization effects.

The low-level networks take the full, high-dimensional representations of the events as inputs.

We use the deep sets architecture [96] implemented as Particle Flow Networks (PFNs) [62]

to process these data. This architecture was chosen because the inputs are a permutation-

invariant, variable-length set of four-vectors and so a point-cloud model is the natural choice

for processing them. Deep sets models are composed of two fully connected networks. The

2While these are the only sources of uncertainty quantified in Table 3.1, other sources are present, such
as a bias due to imperfect description of the mass distribution by the fit function.

3The random initialization of the network is also folded into this estimation.
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Figure 3.5: A visualization of the masses overlaid with the fit and its prompt / non-prompt
components. The shaded regions indicate events which are included in the relatively less
prompt sample. Here we fit the full CMS sample used in the study, finding that it is
95.6± 0.6% prompt overall.
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first network embeds each particle flow object (represented by (pT, η, ϕ,PID)) into a latent

space. The second network processes the sum of these latent space vectors across all inputs.

The sum operation is permutation invariant and can readily process variable-length inputs.

Additionally, we strive to close the gap in performance between low- and high-level networks

using relatively simple variables. Energy Flow Polynomials (EFPs) [61] serve as a set of

potential variables for this purpose. EFPs are a set of parameterized functions which sum

over objects within an event, were each term is weighted using the angular relations between

these objects. EFPs can be represented using graphs, where

each node ⇒
N∑
i=1

zi, (3.2)

each k-fold edge ⇒ (θij)
k . (3.3)

(zi)
κ =

(
pTi∑
j pTj

)κ

, (3.4)

θβij =
(
∆η2ij +∆ϕ2

ij

)β/2
. (3.5)

When κ = 1 the EFPs form a basis for Infrared and Collinear (IRC)-safe observables [61].

We compute a set of EFPs which contains IRC-safe, as well as unsafe, information, using

the same parameterizations as in Ref. [38]: κ ∈ [−1, 0, 1
4
, 1
2
, 1, 2] and β ∈ [1

4
, 1
2
, 1, 2, 3, 4], for

graphs with up to n = 7 nodes and up to d = 7 edges.

We use the Average Decision Ordering (ADO) [48] metric to determine which EFPs from this

generated set might bridge the performance gap to the PFN. ADO compares two classifiers

on signal and background input pairs, measuring how often the classifiers rank the inputs in

the same way. This is quantified with a Heaviside step function on many different pairs, and

the results are averaged to obtain the ADO. The ADO can be interpreted as the probability
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that a given pair will be ordered in the same way by the two classifiers. This is intuitively

similar to the AUC metric, which measures the probability that a given signal example will

be ranked higher than a given background example. While AUC can be seen as comparing

a classifier to the truth, the ADO compares two classifiers to one another without regard for

correct ordering. To avoid training a large set of new high-level networks, one for each EFP

being considered as an additional observable, we follow the strategy of Ref. [48] and search

for EFPs which have a high ADO with our PFN for the subset of events where the PFN

and the high-level network disagree. In general, this process can be iterated, selecting new

observables until the ADO no longer improves.

3.4 Results

The performance of each network is measured through ROC AUC as well as the signal ef-

ficiency at a fixed background efficiency of 50%. Fig. 3.6 illustrates the effects of including

additional isolation cones as network input features. Adding cones tends to increase per-

formance up until nine cones are used, after which there is no clear further gain in AUC.

There is a significant performance gap between the network which uses nine cones and the

PFN, which respectively yield AUCs of 0.848(1)4 and 0.874(1), as well as signal efficiencies

of 0.939(1) and 0.957(1). This suggests that isolation cones alone do not capture all discrim-

inating information available in the low-level data. This is consistent with previous results

shown on simulation [38], and it is notable that it holds for real collider data.

We use the ADO metric to search among the EFP observables for ways to close the gap with

the PFN performance. Note that the EFPs lack the built-in radial symmetry of the isolation

cones, and so may contain additional useful information. The networks using EFP features

are also provided the nine largest isolation cones and the summed event pT. Remarkably,

4The reported error values should be understood as rounded to 1 × 10−3 from values calculated to be
≲ 1× 10−3.
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the ADO search method is able to identify a single IRC-safe EFP which obtains an AUC of

0.871(1) and signal efficiency of 0.953(1), almost fully closing the gap in AUC to the PFN

from 0.026 to 0.003. The graph representation of this EFP, as well as class distributions

separated through the sPlots technique, are illustrated in Fig. 3.7. This EFP corresponds to

parameters κ = 1 and β = 0.25, and the full expression is provided in Eq. 3.6.

N∑
a,b,c,d=1

zazbzczd
(
θabθacθbdθ

4
cd

)1/4
(3.6)

An additional scan is done over the quadratic EFPs included in our full set of calculated

EFPs, as these are simple in structure and are therefore more interpretable. This identifies

another single EFP with κ = 1 and β = 0.25 which yields performance close to that of the one

identified by the first ADO search, at an AUC of 0.870(1) and signal efficiency of 0.956(1).

We further check the performance of sets of EFPs identified as useful by previous work done

on simulation [38], which selected an IRC-safe set of EFPs, as well as a set not restricted to

be safe. The IRC-safe set yields an AUC of 0.868(1) with a signal efficiency of 0.949(1), while

the unsafe set yields an AUC of 0.865(1) with a signal efficiency of 0.954(1). While these

sets identified in simulation close much of the performance gap, they require more features

and are outperformed by the EFPs identified directly on the CMS data, underscoring the

importance of training in data.

A full summary of performance across the methods used is presented in Table 3.1, as well

as depicted in Fig. 3.8. Our results indicate that we are able to construct a minimal set of

high-level observables which perform comparably to the low-level inputs, allowing for the use

of more physically intuitive features and less complex networks without making concessions

regarding performance.
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Figure 3.6: Isolation network performance shown as a function of number of input cones.
Performance of the PFN and best performing high-level network are shown as benchmarks.
ROC AUC is shown for each model (top) as well as the signal efficiency at a fixed background
efficiency (bottom).
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Figure 3.7: Distribution of the EFP observable identified in the search described by the text.
Samples shown are separated by class using the sPlots weighting technique after applying
a 50% background efficiency cut according to the outputs of the 9 isolation cone network.
Also shown is the graph representation of the EFP.
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Input features AUC TPR EFP Scan
Single Iso Cone +

∑
pT 0.835 0.922

9 Iso,
∑

pT 0.848 0.939
9 Iso,

∑
pT, ADO EFP 0.871 0.953 CMS

9 Iso,
∑

pT, Quadratic EFP 0.870 0.956 CMS
9 Iso,

∑
pT, 4 IRC-safe EFP 0.868 0.949 Sim

9 Iso,
∑

pT, 5 EFP 0.865 0.954 Sim
Full details PFN 0.874 0.957

Table 3.1: Comparison of the performance of the various networks discussed in the text.
Performance is measured through ROC AUC, as well as signal efficiency (TPR) at 50%
background efficiency. Standard error is evaluated to be ≲ 1×10−3 for both metrics over a 1σ
confidence interval (see Sec. 4.3 for details on calculation). While the reported performance
values refer only to testing done on CMS data, the “EFP Scan” column indicates whether
the EFP inputs used were identified as useful by a scan over CMS or simulated data. These
results correspond to the ROC curves in Fig 3.8.

3.5 Conclusions

On collision data from the LHC, we apply neural networks to the problem of prompt muon

discrimination. We investigate how much information is present in high and low-level repre-

sentations of the data, finding that the traditionally used scalar isolation does not capture all

useful classification information present at the low-level. Furthermore, we find that another

high-level set of observables, the EFPs, may be used to create a network which performs

almost as well as one operating at the low-level, while providing the advantage of being less

complex and more human interpretable. In addition to being notable for using real rather

than simulated data, this study demonstrates the use of weakly supervised training meth-

ods with CWoLa on low-level features, as well as performance evaluation without having

access to individual class labels. Future work may include investigating the interpretation of

the observables selected here, exploring how much information might be captured by other

types of high-level observables, and the generalizability of these results. While our study

indicates that additional information is available beyond the use of simple cones, and the

identification of a single EFP observable which captures that information allows for simple

application and interpretation, further work would be required before implementation within

48



0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency

100

101

102

103

Ba
ck

gr
ou

nd
 R

ej
ec

tio
n

PFN
4 Safe EFP + 9 Iso + Sum pT
ADO EFP + 9 Iso + Sum pT
5 EFP + 9 Iso + Sum pT
Quadratic EFP + 9 Iso + Sum pT
9 Iso + Sum pT
1 Iso + Sum pT

Figure 3.8: Comparison of the performance of the networks described in Table 3.1, via ROC
curves. Shown is background rejection (inverse of efficiency) versus signal efficiency.

an experimental context. A robust estimate of the systematic uncertainties involved has not

been done, which would be necessary to establish the optimal observables. Our result does

not replace work by the experimental collaborations, but motivates further study.

Code and Data

The code for this paper can be found at https://github.com/Edwit4/learning_to_isol

ate_muons_in_data. The datasets will be provided upon reasonable request to the authors.
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Chapter 4

Learning Broken Symmetries with

Resimulation and Encouraged

Invariance

This chapter is heavily based on work previously published in collaboration with Daniel White-

son.

Recognizing symmetries in data allows for significant boosts in neural network training. In

many cases, however, the underlying symmetry is present only in an idealized dataset, and

is broken in the training data, due to effects such as arbitrary and/or non-uniform detector

bin edges. Standard approaches, such as data augmentation or equivariant networks fail to

represent the nature of the full, broken symmetry. We introduce a novel data-augmentation

scheme that respects the true underlying symmetry and avoids artifacts by augmenting the

training set with transformed pre-detector examples whose detector response is then res-

imulated. In addition, we encourage the network to treat the augmented copies identically,

allowing it to learn the broken symmetry. While the technique can be extended to other sym-
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metries, we demonstrate its application on rotational symmetry in particle physics calorime-

ter images. We find that neural networks trained with pre-detector rotations converge to

a solution more quickly than networks trained with standard post-detector augmentation,

and that networks modified to encourage similar internal treatment of augmentations of the

same input converge even faster.

4.1 Introduction

Evidence for new physics and subtle features of the Standard Model are often hidden in high-

volume, high-dimensional datasets produced at the Large Hadron Collider and in other high-

intensity particle beams. Traditional methods of data analysis reduce the dimensionality of

the data with engineered features which exploit our physical understanding of the task.

While powerful, these heuristics often rely on simplifying assumptions which fail to fully

capture the available information. Recently, artificial neural networks have demonstrated

the capacity to exceed the performance of engineered features [23, 43, 49]. However, training

such networks often requires vast quantities of data or computational resources, which can

be problematic in practice.[16] There may only be a limited amount of data available for a

given region of interest, or there may be computational limitations on how much data can

feasibly be processed or generated with simulation programs. Learning strategies which are

more efficient, reaching the performance plateau with fewer learning cycles or on smaller

training samples, are therefore of great value to the particle physics research program.

Evidence for new physics and subtle features of the Standard Model are often hidden in high-

volume, high-dimensional datasets produced at the Large Hadron Collider and in other high-

intensity particle beams. Traditional methods of data analysis reduce the dimensionality of

the data with engineered features which exploit our physical understanding of the task.

While powerful, these heuristics often rely on simplifying assumptions which fail to fully
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capture the available information. Recently, artificial neural networks have demonstrated

the capacity to exceed the performance of engineered features [23, 43, 49]. However, training

such networks often requires vast quantities of data or computational resources, which can

be problematic in practice[16]. There may only be a limited amount of data available for a

given region of interest, or there may be computational limitations on how much data can

feasibly be processed or generated with simulation programs. Learning strategies which are

more efficient, reaching the performance plateau with fewer learning cycles or on smaller

training samples, are therefore of great value to the particle physics research program.

Efficiency may be gained by leveraging physical symmetries present in the data, where the

data are closed under some transformation. This is typically done by enforcing equivariance

in latent space operations or by requiring invariance in classification output.[37, 14, 51,

26, 80, 79, 25] If the symmetry group is understood exactly, the network structure might

incorporate it, effectively constraining the functional search space. A constrasting strategy

is data augmentation, expanding the training set to explicitly include transformations of

the original data, allowing the network to infer the symmetry. However, in many cases the

symmetry is exact only in an idealized scenario and in practice is broken by asymmetries

such as the data-collection devices. For example, the exact and continuous translational and

rotational symmetry of an idealized image of a cat is broken into a discrete symmetry by the

camera’s pixel edges. Arbitrary shifts or rotations of the cat only generate shifted or rotated

versions of the image when they reflect the discrete symmetry of the pixel geometry. If the

pixels themselves are not identical, the symmetry is broken further. What was a powerful,

continuous and exact symmetry is broken into a less effective, discrete and approximate

symmetry, which hinders our ability to exploit it to boost training efficiency.

Detection of particle energies by detectors presents a widespread and important example of

broken symmetries, especially in the context of detection of a jet’s energy deposition by a

grid of calorimeter cells. A given jet is equally likely to have any orientation around its axis,
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and rotation of its constituent particles around the axis changes none of its crucial physical

observables. An idealized detector would respect this symmetry, but a realistic calorimeter

is composed of discrete, non-uniform cells. The continuous symmetry is broken such that

the detector pattern is preserved only under rotations of the particles by multiples of π
2
.

Rotations of the observed image by arbitrary angles, as is often done in data-augmentation

strategies, introduce artifacts from the double-pixelization and fail to generate training exam-

ples which demonstrate the true symmetry, as demonstrated in Fig. 4.1. Enforcing symmetry

in the network’s latent operations faces a similar hurdle, as the training data do not reflect

the true continuous symmetry, only the more limited, broken symmetry.

Certain tasks may be relatively more resilient to these artifacts than others. For example,

these effects will be less prominent for datasets containing high resolution images with pixels

of uniform shape, where an approximate rotation will closely resemble the true rotation.

These artifacts may also be less impactful for non-sparse images, where the exact value

of a given pixel could be less vital in observing macroscopic structure, as illustrated in

Fig 4.2. However, for calorimeter images, which may be low resolution, use non-uniform

pixels, or be sparse, such artifacts are often significantly detrimental. In pixelated calorimeter

images, an artifact-free augmented dataset cannot not be created from the post-detector

data alone; a network trained on the post-detector augmentations is learning the wrong

symmetry. The true symmetry, before the symmetry is broken, is not demonstrated in these

augmentations [92].

We propose a novel data-augmentation technique which allows a network to learn a bro-

ken symmetry, assisting the learning process and increasing data efficiency. In traditional

data augmentation, examples are synthesized directly from the post-detection training data,

resulting in non-physical artifacts such that the augmented examples do not reflect the de-

sired symmetry, making it challenging for the network infer their relationship. Perhaps more

importantly, the post-detector augmented data do not represent the expected detector pat-
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Incident Jet

Rotated Jet

Image Rotated
Post-Detection

Figure 4.1: Demonstration of the breaking of a continuous rotation symmetry by the pix-
elization of a realistic detector. (Left) shows an ideal detector that performs no binning,
while (Right) is a realistic detector which produces a pixelated image. (Top) shows a jet
incident on the detector, and the images produced by each. (Middle) shows the image pro-
duced by the realistic detector rotated by an angle that is not a multiple of π

2
. Rotating a

pixelated image by such an angle results in artifacts and does not produce a detector image
which reflects the true symmetry. (Bottom) shows the case where the jet itself is rotated
pre-detector, producing an image which accurately represents the symmetry of the problem.
Though it is not closed under rotation, it avoids introducing artifacts from post-detector
rotation.

terns under the true detector transformation, such that a network which attempts to infer

the symmetry is learning the wrong thing. We introduce two modifications to the traditional

approach: pre-detector augmentation and encouraged invariance. If the data are generated

with a simulator, as is the case with calorimeter images, pre-detector augmentation applies
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Figure 4.2: Demonstration of the significance of rotation-induced artifacts on less sparse
(left) and more sparse (right) images by comparing original (top) and rotated images (bot-
tom). Visually, the image on the left (CIFAR-10[64]) appears relatively unchanged after the
rotation. The artifacts in the image on the right are far more prominent, and so might have
relatively more influence on any learned strategy.
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the transformation before the symmetry is broken, rather than after; this is also referred to

as re-simulation [34]. The post-detector data are still not closed under the transformation,

but now accurately represent the set of expected detector signatures under the true sym-

metry. Our second modification is to the loss function, penalizing the network for violating

invariance across the pre-detector augmented examples of a given image during training.

This effectively provides crucial missing information, indicating to the network which set

of images are expected to produce the same output. In this way the symmetry that was

initially hidden by the detector is exposed during training, and the network might learn to

classify in an approximately invariant manner. If the simulation used to create the training

data represents the physical process well, then a network trained using this technique might

be fine tuned and applied to real world data, though this step is not explored in this study.

We explore the effectiveness of this technique on a simplified toy dataset designed to have

similar properties to calorimeter images, which is computationally cheaper to produce than

using a full simulation pipeline. In order to probe the relative data efficiency of each method,

the performance of training with a post-detection augmented dataset is compared to that

of a pre-detection augmented dataset, as well as to a network where output invariance is

encouraged, across a range of training set sizes.

The organization of this paper is as follows. Sec. 4.2 provides the details of the dataset used,

summarizing how it is generated and the structure of the resulting data. Sec. 4.3 covers the

proposed method for encouraging model output invariance, as well as model implementation

and evaluation. Sec. 4.4 presents numerical results along with their discussion. Finally,

Sec. 4.5 ends with conclusions, summarizing findings and future outlook.
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4.2 Dataset

To reduce the computational and time costs associated with generating jet images through

a full simulation pipeline, we use a simplified toy dataset to evaluate the viability of the pro-

posed methods. The structure of the signal and background are inspired by jet substructure

tasks (e.g. [67]), but not intended to be physically realistic.

This dataset is generated using Python v3.10.11[90] and Numpy v1.22.3[54]. A given toy

example, referred to as an “event”, is composed of a list of simulated energy deposits, or

intensity values with associated 2D spatial coordinates. In total, 3000 events consisting of

16 deposits each are generated, with half belonging to a signal class sample, and the other

half belonging to a background sample. The intensity values are drawn from a uniform

distribution of values between 0 and 1 for both classes. For background events, the location

of every deposit is drawn from a uniform distribution over a disk of radius 1. For signal

events, initially only a single deposit is drawn from the uniform disk distribution. Subsequent

deposits are then drawn from a 2D Gaussian centered on this deposit, with equal variances

of 0.3 in each dimension. If the location drawn happens to be outside of the radius of the

disk, it is redrawn until it is inside the disk. This results in the signal events having an

internal structure distinct from what is found in the background sample, in a spirit similar

to the task of tagging jets with sub-structure [38]. To increase the complexity and realism

of the problem, noise is added to the signal events by drawing a number of additional events

from the uniform disk distribution, independent of the other deposits within the event. The

noise deposits only differ in their spatial distribution, with the intensities values being drawn

from the same distribution across all deposits. This means that the network cannot learn to

separate the noise based on this information, and the overall normalization remains similar

between the two classes.

To mimic the physical extent of the shower created by an incident particle, each deposit
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is given a width by drawing 32 points from Gaussian distributions, with equal variances

of 1 × 10−4 in each dimension, centered on each of the chosen locations. The intensity

corresponding to a given deposit is then distributed evenly across these points. An example

of an event generated before and after the spreading process may be seen in Fig. 4.3.

Pre-detector augmented images are created by applying rotations in 45◦ increments to the

events at this step, creating a set of 8 copies for every event. The intensities are then binned

according to their position for a simplified detector response, creating the final pixelated

event images. Two variants of the pixelated events are created, with one using square

binning on a 32 × 32 grid, and the other using rectangular binning on a 4 × 32 grid. An

example of a single event with each binning scheme is shown in Fig. 4.4.

Rectangular pixel geometries are present in real detectors[50], and this non-uniformity could

exaggerate the degree to which the effects of rotation are obscured by binning. Traditionally,

in computer vision tasks where augmentations are applied, it is done directly to pixelated im-

ages. In our pipeline this would be equivalent to applying the rotation after the binning step.

By applying rotations prior to the binning step, we are able to augment the dataset with

synthetic examples which have been transformed exactly as expected, without introducing

non-physical effects. For comparison, we create another augmented dataset where augmen-

tations are applied this way using OpenCV v4.7.0[27], with the default bilinear interpolation

method for rotating pixels. It should be noted that other interpolation methods, as well as

foregoing interpolation entirely in the case that re-binning is not required to produce valid

network inputs, may result in different performance. While the performance may change,

none of these methods will be capable of recovering information lost through pixelization,

and so will not match the output obtained by applying rotations pre-detection. The dif-

ferences between applying rotations before and after the detector step are demonstrated in

Fig. 4.5. This leads to higher quality synthetic examples, as well as a way to expose a sym-

metry hidden by the binning to a neural network during training. This may only be done in
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Figure 4.3: Visualization of dataset generation process. (Top) An example of an event before
pixelization, where the size of each deposit is proportional to its energy. (Bottom) The same
event, after the deposits have been distributed over a small area to simulate shower width
effects which can lead to deposits over adjacent pixels. In the bottom pane the size of the
deposits is arbitrary.
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Figure 4.4: (Top) The event shown in Fig. 4.3 with uniform binning (Top) and rectangular
binning (Bottom) applied.
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prior to binning (Left) avoids the interpolation artifacts which arise from applying rotations
after binning (Right), where the images look relatively blurrier and more washed out.
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cases where the data is accessible prior to the step which results in pixelization, which could

be the case for simulation but not for real world collider data.

4.3 Encouraged Invariance

We extend our novel learning method beyond the pre-detector data augmentation procedure

outlined above, by the use of a loss function which explicitly encourages a neural network

to learn a classification invariant to augmentations applied prior to the binning. This is

achieved by adding an additional component to the usual classification loss function, which

penalizes differences in outputs across all of the augmented variants for a given event. This

takes the form shown in Eq. 4.1, where a and b are scalar weight parameters, Lcls is a typical

loss function used for classification, and Linv is a loss function responsible for encouraging

invariance.

L = aLcls + bLinv (4.1)

For all models presented here, binary cross-entropy is used for Lcls, and mean squared error is

used for Linv. Training is constrained to process all augmented copies for a given event within

the same batch before a gradient update, producing a network output for each individual

copy. The standard deviation is computed across the outputs produced by augmented copies

of a given event. The outputs themselves are passed to Lcls, and the standard deviations are

passed to Linv. Linv penalizes for non-zero deviations, and in the case of mean squared error

this is done by comparing the computed values to zero. This effectively introduces more

information to the training, by encouraging the network to treat all augmented versions of

the jet identically, even if the post-detector data are not simply related under transformation

in a way that would allow the network to infer it.

62



For models that are not trained with encouraged invariance, we effectively use a = 1 and

b = 0 reducing the expression to the usual classification loss, and otherwise the weighting is

tuned during hyperparameter optimization. Fully Connected Networks (FCNs) and Particle

Flow Networks[62] (PFNs), of the deep sets architecture[96], are used to process the data,

implemented and trained with Pytorch v2.0.0[72]. While the total number of pixels in an

event is fixed, the number of non-zero pixels may differ between events. PFNs are a natural

choice for this type of data, as they take a permutation invariant set of variable length inputs,

and have been shown to yield good performance with collider data in previous studies[38].

The hyperparameters of each model are selected by performing 5-fold cross-validation with a

random search over a set of learning rates, batch sizes, layer sizes, and loss term weights with

early stopping based on the validation loss. Specifically, the learning rates are allowed to

vary from 1×10−3 to 1×10−6 in steps of powers of 10, batch sizes from 32 to 1024 and layer

sizes from 32 to 512 in steps of powers of 2, and loss term weights are drawn from the set

{0.01, 1, 10, 100, 300}. A minimum change of 1× 10−3 in the validation loss with a patience

of 10 epochs is used as the early stopping criteria. This is done at the largest training size

in order to obtain stable parameters in a computationally efficient manner. Performance

is then measured by constructing the standard Receiver Operating Characteristic (ROC)

and evaluating the ROC AUC and signal efficiency at a fixed background efficiency of 50%,

over 100 event ensembles using the optimized hyperparameters. Error due to statistical

uncertainty is estimated from these ensembles to 1σ. Both architectures are evaluated in

this way for the uniform and non-uniform image binning schemes across a range of training

set sizes. Each model is evaluated with augmentations applied prior to and after binning,

and the pre-detector variants are additionally evaluated with invariance encouraged.
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4.4 Results

Learning strategies which take advantage of symmetries in the data can provide efficiencies

in training, reaching a performance plateau with smaller training samples. We explore the

relative power of several methods by evaluating the AUC with respect to the proportion

of the full dataset used to train. Figure 4.6 shows the dependence of the ROC AUC for

FCNs and PFNs on the training set proportion for uniform pixels or non-uniform pixels.

Additional figures and results for signal efficiency at 50% background efficiency are included

in the appendix. For simplicity, we will focus on the AUC performance in the discussion

that follows, as the trends found in the signal efficiency scans are very similar.

Scans are performed across a range of training set sizes, from 480 to 3000 unique events, not

counting the 8 synthetic variants of each image that are included in the data augmentation

approaches. We observe that in all cases the performance increases as the training set size

increases, and that not using any augmentation yields the lowest performance, as might be

expected.

In the case of uniform pixelization, the FCNs show a clear trend across the various meth-

ods. At every training set size, there is a gain from one method to the next, with post-

detection augmentations giving the smallest gain, followed by pre-detection augmentations,

and then by encouraged invariance with the largest gain. The PFN outperforms the FCN,

which may not be surprising, as it is a more complex network that is better suited for this

dataset. Further, performance quickly converges for both augmentation schemes as well as

encouraging invariance. It appears that for uniformly pixelated data, where an approximate

post-detection rotation leads to something close to a true pre-detection rotation, coupling

any of the tested training methods with a more powerful network overcomes much of the

challenge presented by the broken symmetry.

When non-uniform pixelization is used, differences between methods are apparent for both
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Figure 4.6: Performance of FCNs (left) and PFNs (right) trained on uniformly binned data
(top) or non-uniformly binned data (bottom) as a function of training set size. Though results
depend on the nature of the task and the structure of the network, pre-detector augmentation
and resimulation typically improves the learning rate, and encouraged invariance provides a
further boost in learning.
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types of networks. The FCN shows no clear gain in performance when using post-detection

augmentations, but does benefit from pre-detection augmentations, and sees the largest im-

provement from using encouraged invariance. Interestingly, the PFN not only demonstrates

a gain from using the post-detection augmented data, but shows a comparable gain from

the pre-detection augmentations. This suggests that there is useful information in the post-

detection augmentations, but that it is harder for the FCN to take advantage of it, than

it is for the PFN. Unlike with uniform pixelization, the performance of the PFN does not

completely converge across every method, but it does approach convergence more rapidly

than the FCN.

These findings suggest that the differences in these methods are more apparent when training

data is limited and when the symmetry breaking process is more exaggerated. As including

pre-detection augmented image variants in the training set, and encouraging invariance, con-

sistently yield performance boosts for the FCN, these techniques may be especially beneficial

in a computationally limited setting where the use of a simpler network is favored, even in the

case that the symmetry of interest is only lightly obscured. Notably, the performance gains

obtained through the use of the pre-detection augmentations suggests that synthesizing new

examples this way does indeed lead to higher quality augmented copies than applying the

transformations post-detection. It is of additional significance that across both pixelization

schemes, encouraging invariance almost always yields the best performance. This shows that

training with explicit symmetry awareness meaningfully enhances the training process, in a

way that is achievable even when the symmetry is obscured in the final data, to the point of

not being exactly recoverable due to loss of information. While these methods do require ac-

cess to a way to apply transformations during data generation, it is not necessary to attempt

to understand the specific details of how the transformation ends up being represented in

the final data, which in itself may present an advantage. The AUC values for the smallest

and largest training set sizes are tabulated in Table 4.1.
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Uniform bins Non-uniform bins
small large small large

Arch. Augm. set set set set
FCN None 0.585(1) 0.632(1) 0.571(1) 0.615(1)

post-det 0.606(2) 0.687(1) 0.551(1) 0.618(1)
pre-det. 0.635(1) 0.710(1) 0.625(2) 0.682(1)
enc. inv. 0.656(1) 0.724(1) 0.672(2) 0.725(1)

PFN None 0.519(1) 0.735(1) 0.526(1) 0.664(2)
post-det 0.734(1) 0.771(1) 0.617(5) 0.746(1)
pre-det 0.724(4) 0.770(1) 0.581(5) 0.758(1)
enc. inv. 0.718(4) 0.776(1) 0.681(5) 0.765(1)

Table 4.1: The ROC AUC performance for models with various augmentation strategies
described in the text, trained and evaluated on events with uniform or non-uniform pixeliza-
tion, shown for the smallest and largest training set sizes tested.

4.5 Conclusions

We propose a method for training neural networks with greater data efficiency, in the case

that a symmetry known to be present in the data at some point during its generation is

broken in the representation that is ultimately observed. By creating an augmented dataset

where the relevant transformation is applied at a step in the generation process when the

symmetry is fully represented, higher quality synthetic examples may be obtained. This

information can be further leveraged by explicitly encouraging invariance across augmented

variants of a given example through the loss during training.

We successfully demonstrate this method on a toy problem designed to probe the viability

of these techniques for use with collider data. In the case that a rotational symmetry is ob-

scured by a detector-like binning process, training on a dataset which uses the higher quality

augmentations results in better performance, especially with simpler networks. Further, en-

couraging invariance can allow for even more data efficient training, showing that a network

may be trained in a symmetry aware way even if the symmetry is not perfectly represented in

the observed data. Our results indicate that the utility of this technique depends on factors

such as the amount of data available, the degree to which a symmetry is hidden within the
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data, and the type of network used.

Further work is necessary to determine how well this method can be used with both simu-

lated and real world collider data. Since pre-detector intervention and resimulation cannot

be applied directly to real world data, it must also be explored how well performance gains

are preserved when transferring from models trained on simulation. This study also does

not explore the optimization of the number of augmented copies created. Using more aug-

mented copies may serve to close some of the performance gap between the models which

use synthetic examples, and those which encourage invariance. This effect would likely be

dependent on the dataset, and depending on the degree to which performance is dependent

on it, it may be worth optimizing along with other hyperparameters.

More generally, our findings suggest that it may be possible to improve the learning efficiency

in other scenarios in which a symmetry is only approximately realized, such as Lorentz

symmetry [24, 30].

Code and Data

The code for this paper can be found at https://github.com/Edwit4/learning_broken_

symmetries. The datasets will be provided upon reasonable request to the authors.
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Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Sept. 2020.

[55] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi. Sherpa: Robust hyperpa-
rameter optimization for machine learning. SoftwareX, 2020. Software available at:
https://github.com/sherpa-ai/sherpa.

72

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning


[56] I. Hoenig, G. Samach, and D. Tucker-Smith. Searching for dilepton resonances below
the Z mass at the LHC. Phys. Rev. D, 90:023, 2014.

[57] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

[58] J. N. Howard, S. Mandt, D. Whiteson, and Y. Yang. Learning to simulate high energy
particle collisions from unlabeled data. Scientific Reports, 12(1), may 2022.

[59] V. Khachatryan et al. Search for supersymmetry in the vector-boson fusion topology in
proton-proton collisions at

√
s = 8 TeV. JHEP, 11:189, 2015.

[60] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[61] P. T. Komiske, E. M. Metodiev, and J. Thaler. Energy flow polynomials: A complete
linear basis for jet substructure. JHEP, 04:013, 2018.

[62] P. T. Komiske, E. M. Metodiev, and J. Thaler. Energy Flow Networks: Deep Sets for
Particle Jets. JHEP, 01:121, 2019.

[63] P. T. Komiske, E. M. Metodiev, and J. Thaler. Energy flow networks: deep sets for
particle jets. Journal of High Energy Physics, 2019(1), Jan 2019.

[64] A. Krizhevsky. Learning multiple layers of features from tiny images. pages 32–33, 2009.

[65] A. J. Larkoski, G. P. Salam, and J. Thaler. Energy Correlation Functions for Jet
Substructure. arXiv.org, Apr. 2013.

[66] H. M. Lee. Lectures on physics beyond the standard model. Journal of the Korean
Physical Society, 78(11):985–1017, may 2021.

[67] Y. Lu, A. Romero, M. J. Fenton, D. Whiteson, and P. Baldi. Resolving extreme jet
substructure. JHEP, 08:046, 2022.

[68] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[69] E. M. Metodiev, B. Nachman, and J. Thaler. Classification without labels: Learning
from mixed samples in high energy physics. JHEP, 10:174, 2017.

[70] V. M. Mikuni. Collider Physics Measurements in High Jet Multiplicity Final States,
2021. Presented 2021.

[71] B. Nachman. A guide for deploying Deep Learning in LHC searches: How to achieve
optimality and account for uncertainty. SciPost Phys., 8:090, 2020.

73



[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[73] J. Pata, J. Duarte, J.-R. Vlimant, M. Pierini, and M. Spiropulu. MLPF: Efficient
machine-learned particle-flow reconstruction using graph neural networks. 1 2021.

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[75] M. Pivk and F. R. Le Diberder. SPlot: A Statistical tool to unfold data distributions.
Nucl. Instrum. Meth. A, 555:356–369, 2005.

[76] T. Roxlo and M. Reece. Opening the black box of neural nets: case studies in stop/top
discrimination. 4 2018.

[77] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. CoRR, abs/1312.6120, 2013.

[78] R. Schoefbeck. Search for supersymmetry with extremely compressed spectra with the
atlas and cms detectors. Nuclear and Particle Physics Proceedings, 273-275:631 – 637,
2016. 37th International Conference on High Energy Physics (ICHEP).

[79] C. Shimmin. Particle Convolution for High Energy Physics. 7 2021.

[80] C. Shimmin, Z. Li, and E. Smith. Rethinking SO(3)-equivariance with Bilinear Tensor
Networks. 3 2023.

[81] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):60, 2019.

[82] A. M. Sirunyan et al. Particle-flow reconstruction and global event description with the
CMS detector. JINST, 12(10):P10003, 2017.

[83] A. M. Sirunyan et al. Particle-flow reconstruction and global event description with the
CMS detector. JINST, 12(10):P10003, 2017.

[84] A. M. Sirunyan et al. Performance of the CMS muon detector and muon reconstruction
with proton-proton collisions at

√
s = 13 TeV. JINST, 13(06):P06015, 2018.

[85] A. M. Sirunyan et al. Measurement of the tt̄bb̄ production cross section in the all-jet
final state in pp collisions at

√
s = 13 TeV. Phys. Lett. B, 803:135285, 2020.

[86] T. Sjostrand, S. Mrenna, and P. Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP,
0605:026, 2006.

74



[87] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15(1):1929–1958, 2014.

[88] A. Tumasyan et al. Search for low-mass dilepton resonances in Higgs boson decays to
four-lepton final states in proton–proton collisions at

√
s = 13TeV. Eur. Phys. J. C,

82(4):290, 2022.

[89] A. Tumasyan et al. Search for supersymmetry in final states with two or three soft
leptons and missing transverse momentum in proton-proton collisions at

√
s = 13 TeV.

JHEP, 04:091, 2022.

[90] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009.

[91] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
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Appendix A

Appendix: Learning to Isolate Muons

A.0.1 A. Neural Network Architectures

All networks were trained in Tensorflow[12] and Keras[35]. The networks were optimized

with Adam [60] for up to 100 epochs with early stopping. For all networks except the PFNs,

the weights were initialized using orthogonal weights[77]. Hyperparameters were optimized

using Bayesian optimization with the Sherpa hyperparameter optimization library [55]. The

variables and ranges for the hyperparameters are shown in tables A.1 and A.2.

Below are further details regarding the networks which use images and those which use

isolation and EFP observables.

B. Muon Image Networks

The pixelated images were preprocessed to have zero mean and unit standard deviation.

We tried rotating the images as in [20] but performance was considerably lowered by this

preprocessing step. The best muon image network structure begins with three convolutional
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blocks. Each block contains three convolutional layers with 48 filters with rectified linear

units [52], followed by a 2x2 pooling layer. Afterwards there are two fully connected layers

with 74 rectified linear units and a final layer with a sigmoidal logistic activation function

to classify signal vs background. The model had dropout [87, 21] with value 0.2388 on the

fully connected layers and an initial learning rate of 0.0003 and batch size of 128.

Table A.1: Hyperparameter ranges for bayesian optimization of convolutional networks

Parameter Range Value
Num. of convolutional blocks [1, 4] 3

Num. of filters [16, 128] 48
Num. of fully connected layers [2, 4] 2

Number of hidden units [25, 200] 74
Learning rate [0.0001, 0.01] 0.0003

Dropout [0.0, 0.5] 0.2388

C. Particle-Flow Networks

The Particle Flow Network (PFN) is trained using the energyflow package[63]. Input

features are taken from the muon image pixels and preprocessed by subtracting the mean

and dividing by the variance. The PFN uses 3 dense layers in the per-particle frontend

module and 3 dense layers in the backend module. Each layer uses 100 nodes, relu activation

and glorot_normal initializer. The final output layer uses a sigmoidal logistic activation

function to predict the probability of signal or background. The Adam optimizer is used with

a learning rate of 0.0001 and trained with a batch size of 128.

D. Isolation Cone and EFP Networks

The isolation inputs and EFPs are preprocessed by subracting the mean and dividing by

the variance. We trained neural networks with two to eight fully connected hidden layers

depending on the hyperparameter value and a final layer with a sigmoidal logistic activation
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function to predict the probability of signal or background.

For the minimal set of isolation inputs, the best model we found had 2 fully connected layers

with 197 rectified linear hidden units[52] and a learning rate of 0.0003 and dropout rate of

0.0547.

Table A.2: Hyperparameter ranges for Bayesian optimization of fully connected networks

Parameter Range ISO Value
Num. of layers [2, 8] 2

Num. of hidden units [1, 200] 197
Learning rate [0.0001, 0.01] 0.0003

Dropout [0.0, 0.5] 0.0547

A.0.2 ADO comparison

In Fig. A.1, the ADO between the various networks is shown.
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Figure A.1: Comparison of the similarity of decisions made by pairs of networks, as quantified
by the Average Decision Ordering (ADO) [48], defined in the text.

79



Appendix B

Appendix: Learning to Isolate Muons

in Data

CWoLa assumes that the mixed samples are generated in such a way that a given component

feature is distributed the same way in one sample as it is in the other. While we cannot

explicitly demonstrate this on an unlabeled dataset, we can use a simulated dataset similar

to the experimental data to probe whether we can reasonably expect this assumption to

hold.

We simulate events where prompt muons are generated by the process pp → Z → µ+µ−,

and non-prompt muons by pp → bb̄. A center of mass energy of s =
√
(13) TeV is used.

Madgraph5, Pythia, and Delphes are used respectively for collision and heavy boson decay

simulation, showering and hadronization, and the detector simulation, with pile-up included.

In total we generate 22766 events, where half are prompt and the other half are non-prompt

events. The muon transverse momentum and pseudorapidity distributions for this dataset

are shown in Fig B.1, and the average event images are shown in Fig B.2, where quantities

are separated between the prompt and non-prompt distributions.
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Figure B.1: (MG5+Pythia+Delphes) Distributions of the simulated muon transverse mo-
mentum and pseudorapidity.
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Figure B.2: (MG5+Pythia+Delphes) Average event images similar to Fig 3.3, but for the
simulated dataset and separated by prompt and non-prompt events.
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Using the simulated dataset, we compute one of the features included in our models which

use the CMS dataset, the summed transverse momentum of the objects in an event. We

see in Fig B.3 that the component distributions do approximately match across the samples

for the simulated dataset. Similarly, the class components of a network classifier should be

distributed the same way, regardless of which mixed sample the events were drawn from. We

check this by training a PFN using the simulated dataset and looking at the distributions of

the outputs, as shown in Fig B.4. Once again we see that the distributions depend on the

class rather than the mixed sample to which events belong.
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Figure B.3: (MG5+Pythia+Delphes) (Top) The total summed event pT distributions for two
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samples. (Bottom) Only the background components of the two simulated mixed samples.
We see that while the class proportions are different, the signal and background distributions
are approximately the same across the samples.
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Figure B.4: (MG5+Pythia+Delphes) Similar to Fig B.3, but demonstrating that network
output distributions for each class match across mixed samples.
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Appendix C

Appendix: Learning Broken

Symmetries with Encouraged

Invariance

Signal efficiencies are tabulated in Table C.1. The results presented in these tables are

illustrated in Figs. C.1 and C.2.

The signal efficiencies at fixed background efficiency are depicted in Fig. C.3 separated by

network architecture and binning scheme.

The averages of each sample may be seen in Fig. C.4 with uniform binning and non-uniform

binning.
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Figure C.1: Performance of FCNs (left) and PFNs (right) trained on a small training set
size (top) or a large training set size (bottom) using uniformly binned data.
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Figure C.2: Performance of FCNs (left) and PFNs (right) trained on a small training set
size (top) or a large training set size (bottom) using non-uniformly binned data.
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Figure C.3: Performance of FCNs (left) and PFNs (right) trained on uniformly binned data
(top) or non-uniformly binned data (bottom) as a function of training set size.
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Figure C.4: Average images of the signal (Left) and background samples (Right), with
uniform pixelization (Top) and non-uniform pixelization (Bottom).
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Uniform bins Non-uniform bins
small large small large

Arch. Augm. set set set set
FCN None 0.614(2) 0.682(1) 0.593(1) 0.660(2)

post-det. 0.648(2) 0.747(1) 0.576(2) 0.676(2)
pre-det. 0.687(1) 0.773(1) 0.677(2) 0.743(1)
enc. inv. 0.711(1) 0.785(1) 0.726(2) 0.786(1)

PFN None 0.524(2) 0.806(1) 0.535(2) 0.722(3)
post-det. 0.799(1) 0.845(1) 0.653(7) 0.819(1)
pre-det. 0.788(5) 0.843(1) 0.611(7) 0.830(1)
enc. inv. 0.781(5) 0.853(1) 0.740(7) 0.840(1)

Table C.1: A summary of the signal efficiency at a fixed background efficiency of 50%, shown
for the smallest and largest training set sizes tested and both pixelization schemes.
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