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The determination of the hidden states of coupled nonlinear systems is frustrated by the presence of

high-dimensionality, chaos, and sparse observability. This problem resides naturally in a Bayesian context: an

underlying physical process produces a data stream, which – though noisy and incomplete – can in principle

be inverted to express the likelihood of the underlying process itself. A large class of well-developed methods

treat this problem in a sequential “predict-and-correct” manner that alternates information from the presumed

dynamical model with information from the data.

One might instead formulate this problem in a temporally global, non-sequential manner, which sug-

gests new avenues of approach within an optimization context, but also poses new challenges in numerical

implementation. The variational annealing (VA) technique is proposed to address these problems by lever-

aging an inherent separability between the convex and nonconvex contributions of the resulting functional

forms. VA is shown to reliably track unobservable states in sparsely observed chaotic systems, as well as in
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minimally-observed biophysical neural models.

Second, this problem can be formally cast in continuous time as a Wiener path integral, which

then suggests classical solutions derived from Hamilton’s principle. These solutions come with their own

difficulties in that they comprise an unstable boundary-value problem. Accordingly, a further technique called

Hamiltonian variational annealing is proposed, which again exploits an existing separability of convexity and

nonlinearity, this time in a an enlarged manifold constrained by underlying symmetries.

A running theme in this thesis is that the optimal estimate of a nonlinear system is itself a dynamical

system that lives in an unstable, symplectic manifold. When this system is recast in a variational context,

instability is manifested as nonconvexity, the central idea being that when this nonconvexity is incorporated

in a systematic and gradual way, the classical solutions can be tracked reliably.
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Chapter 1

Introduction

1.1 Invitation: the simple oscillator and a naive procedure

Imagine observing a physical system whose dynamics are approximately dictated by Hooke’s Law,

so the position x and velocity v of the system evolve according to the system of ordinary differential equations:

ẋ =−ω
2v

v̇ = x. (1.1)

Suppose we want to precisely determine the character of the dynamics – the oscillation frequency ω – by

observing this system in motion, but the only devices available to us are a ruler and a stopwatch. We could

use these to make measurements Y = {yi} of x at equally spaced times {ti}, as in Fig. 1.1a. Being either

supremely optimistic or supremely naive, we now put our full faith in the accuracy of our measurements,

whereby

yi ≡ x(ti). (1.2)
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Figure 1.1: (a) “Observations” of the position of a weight attached at the end of a bobbing spring.
(b) The same system, interrupted halfway by an earthquake.

Using Eq. 1.2, we can then incorporate our measurements into our model by substituting the data into a

discretization of ẋ,

−ω
2vi = ẋ≈ x(ti+1)− x(ti)

∆t
→ yi+1− yi

∆t
(1.3)

and then inserting this into a discretization of v̇, thereby expressing ω only in terms of the measurements:

yi+2−2yi+1 + yi

∆t2 =−ω
2 vi+1− vi

∆t
=−ω

2xi ∼−ω
2yi. (1.4)

Of course, this equation may give different values of ω , ωi, for each ti. So we further assume that a reasonable

estimate of ω can be found by averaging over ωi:

ω
2
i ∼
−yi+2 +2yi+1− yi

yi∆t2

〈ω〉= 1
N−2 ∑

i
ωi. (1.5)

Eq. 1.5 gives a prescription for estimating the parameter of a dynamical system, in closed form, using a batch

of measured data.
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1.2 The ubiquity of inverse problems in scientific inquiry

This crude procedure, peppered with some reasonable assumptions and many extraordinary ones,

is essentially the problem of interest in this thesis: How does one effectively incorporate measured data to

accurately and reliably infer unknown variables of a dynamical model? Think of this as an inversion of

the underlying physical process. That is, with a dynamical model and initial conditions in hand, we could

i) generate a series of observations by forward integration to generate a “true” trajectory X, ii) corrupt X

with noise to generate “data” Y, and finally iii) prune Y to only the measurements Y′ actually accessible

with existing experimental tools. The inverse problem runs this process in reverse, determining the original

X from the observed but sparse Y′.

The generality of such dynamical inverse problems cannot be understated. Mathematical descrip-

tions underlying physical, biological, and chemical processes are proposed on the basis of physical law –

these interactions are modeled by differential or algebraic equations that fully but parsimoniously describe

how an input in one section of the system generates an output elsewhere. Yet these functional forms are

parameterized, sometimes quite heavily, by constants independent of the nature of these forces, and must be

either chosen heuristically or determined from experiment. Further, only a subset of the dynamical state space

can usually be observed at all. Finally, when the dynamics are nonlinear, the situation is even more delicate

in that entirely distinct qualitative behavior can be produced by differing choices of these constants alone

– this is the theory of dynamical bifurcations. The hope of the inference problem in nonlinear dynamical

systems is that, despite these complications, information from observations may be systematically combined

with the dynamical model to infer all this unknowns in an accurate and reliable manner. As an illustration of

the ubiquity of this problem, consider the following examples:

• The Hodgkin-Huxley (HH) model of a neural cell exhibits well-defined voltage spikes in response to

injected current stimuli, mimicking the voltage response of actual biological neurons [Hodgkin and

Huxley, 1952]. The ease with which spikes are elicited, along with spiking characteristics such as

waveform and frequency, depend sensitively on the model parameters [Dayan and Abbott, 2005, Er-

mentrout and Terman, 2010]. Of the four variables in the dynamical state space, only the voltage is

measurable directly with electrophysiology, so the remaining state variables, along with the static pa-

rameters, must be inferred from voltage traces alone. Finally, in actual neural systems, the complexity

of this scenario is magnified by at least a billion.
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• Earth’s atmosphere is a remarkably complex fluid which can nevertheless be modeled under some rea-

sonable assumptions by a set of six nonlinear differential equations, the atmospheric primitive equa-

tions, whose state space of dynamical variables consists of wind velocity, pressure, temperature, and

moisture content at each point around the globe [Bennett, 1992, Kalnay, 2002]. Obviously this is an

enormous number of variables of which only a tiny fraction are accessible at any time. This small set

of measurements, taken from sparsely located weather centers, must somehow be incorporated into the

highly nonlinear primitive equations to generate reliable daily weather forecasts.

Though this thesis will focus on inference in dynamical models – and those that are nonlinear and

chaotic in particular – inference in some form or another drives the work of every scientist. After all, even

the straightforward task of fitting data to a straight line is essentially an inverse problem.

1.3 Characteristics and challenges

The linear oscillator example in the first section of this thesis proposed a simple procedure to es-

timate ω by incorporating the measured data into equations of motion. Since the dynamics are linear, the

problem is far simpler (and the estimation far more naive) than in practical scenarios of interest, such as those

encountered in neuroscience and meteorology. Still, the example illustrates some universal features common

to inference in dynamical systems, both linear and nonlinear:

• A presumed dynamical model How this description will be chosen is the result of other physical con-

siderations, and consists of some combination of ordinary and partial differential equations or dis-

crete maps specifying the evolution of the system in time. It is a result of both physical considera-

tions and reflects some compromise between reality, versatility, and tractability.

• Regularization Even though data exists for only a few variables, each variable may still (in theory) be

unambiguously estimated, since they are all coupled together through the dynamical equations. The

equations may therefore be thought of as a sort of regulator, precluding the sparsely observed system

from being underdetermined. Regulators play a central role in the theory of inverse problems by

permitting the computation of parameters from otherwise ill-posed problems [Vogel, 2002, Hansen,

2010]. As will be implied later in this thesis, the reliability and accuracy of the estimation relies

critically on the choice and nature of the regulator, whose selection is much an art as a science.
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• A discrete formulation Observations are made in discrete time, so continuous dynamics must be ap-

proximated. The choice of this discretization is problem-dependent, driven by considerations such

as desired accuracy and computational cost. One of the themes of contributions of this thesis will be

a new formulation of the dynamical inference problem in a symplectic manifold, where we will see

that this choice will have nontrivial consequences.

On the other hand, the linear model and the estimation procedure presented in the opening section

of this thesis contained several amenable features that are all but absent in complex, realistic scenarios of

interest. Among them are:

• Model linearity As the dynamics in Eq. 1.1 are linear, v was straightforwardly removed in favor of x.

Even with a less naive estimation procedure, such as least squares, the variables could still be es-

timated in closed form with linear algebra techniques [Björck, 1996, Hansen, 2010, Särkkä, 2013].

For any semi-interesting model, the dynamics are nonlinear, and this inversion cannot be done in

closed form.

• Linear parameterization The static parameter ω also entered the equation linearly, and so was express-

ible explicitly in terms of the data. In most cases, parameters do not admit closed form expressions,

and numerically calculating them may be computationally prohibitive.

• Dense observability The system is two-dimensional, half of the dynamical states are observed, and

there is only a single parameter to be estimated. The anticipated difficulties in scaling are obvious:

even if the estimate could be algebraically determined, matrix inversion scales at least quadratically

with dimension [Cormen et al., 2001]. Further, nonlinearities in either parameters or variables would

preclude a closed-form expression and require iterative techniques such as the Newton-Raphson

method [Nocedal and Wright, 2006]. Finally, for non-convex cost functions (which we will see are

fundamental to nonlinear systems), the solution to this inversion is far from unique.

• Model specificity The estimated parameters may even live in a degenerate manifold, that is, several

distinct data sets produce estimates of near-equal accuracy. This is often the case when the data

is sufficiently sparse and noisy. To take an extreme case, an intracellular voltage trace of a single

neuron in a 106-neuron system would be entirely inadequate in determining the O(1012) connection
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strengths of the network. Any inference procedure would return several estimates of near-equal

validity for a particular dataset.

• Perfect models and clean data Errors in both models and measurements must be taken into account.

Suppose, for example, that a light earthquake disrupted the latter half of the experiment, producing a

measured trajectory as in Fig. 1.1b. Any reasonable procedure would take this variance into account

by weighting the estimate more heavily toward the earlier data.

While all of these considerations will enter the scope of this thesis, we will be concerned mainly

with the ramifications of the first three – the presence of chaotic behavior, of sparse observability and of

nonlinear parameterization. This emphasis is driven by the focus of this thesis on the inference problem in

neuroscience in particular, with the intention of developing estimation techniques that respect, as much as

possible, the known biophysical features of actual neurons that lead to action potential propagation – ion

channels, dynamical synapses, multiple timescales. Admittedly, this is somewhat in contrast to the present

emphasis of computational neuroscience research, which favors increased complexity and dimensionality in

what are essentially static input-output machines [Bishop, 1995]. This emphasis is not without good reason,

driven by the recent success of deep neural networks in machine learning and artificial intelligence [LeCun

et al., 2015]. The central assumption of this thesis is that these state machines, though versatile and powerful,

are fundamentally limited in their neglect of the complex nonlinear interactions at the cellular and synaptic

levels. The hope is that the methods presented here will lay a foundation for transcending these limitations

when they are one day realized.

1.4 The scope of this thesis

The deepest roots of this thesis lie in Rudolf Kalman’s analytical solution to the linear tracking prob-

lem more than a half century ago [Kalman, 1960, Särkkä, 2013]. The algorithm, now known eponymously

as the Kalman filter, prescribes in closed form the optimal estimate of a state vector subject to normally-

distributed noisy observations and discrete-time linear dynamics. Chapter 2 will begin with a discussion of

the Kalman filter, its extensions, and its limitations for the problems of interest in this thesis. The primary

focus of this chapter will be the breakdown of the Gaussian-linear assumption when dealing with sufficiently

nonlinear models, and the ramifications therein. Also discussed is the precarious status of parameter estima-
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tion in the filtering context: indeed, one of the key differences between object tracking and meteorology – for

which the Kalman filter is the primary workhorse – and neural systems is that while unknown parameters are

rare in the former they are pervasive in the latter [Auger et al., 2013, Houtekamer and Zhang, 2016].

Chapter 3 will then propose an algorithm that dispenses entirely with the iterative framework of fil-

ters, instead casting the estimation as a variational approximation to a high-dimensional Bayesian integral [Ye

et al., 2015a,Ye et al., 2015b]. The variational approximation brings its own complications, and a systematic

method to mitigate these difficulties, predicated on the particular mathematical structure of these integrals,

will be presented. The benefits of this variational annealing technique will then be illustrated via numerical

experiments in sparsely measured chaotic systems. This calculation will set the stage for a more involved

application to detailed neuron models in Chapter 4.

Chapter 4 is a lengthy study of the estimation problem applied to the vocal pathway in zebra finch

songbirds. Male zebra finch express a single, short, stereotyped mating call throughout their adult life, and

the neural circuit involved in learning, repeating, and maintaining this song motif has been extensively stud-

ied [Kubota and Taniguchi, 1998, Brainard and Doupe, 2002, Fee et al., 2004, Mooney and Prather, 2005].

This circuit is characterized by some peculiar features. It has been found, for example, that neurons projecting

from the vocal command center to motor neurons in the larynx – those purportedly initiating the vocalization

– burst ultra-sparsely and ultra-reliably during the song motif, while inhibitory neurons fire in patterns far

more erratic and dense [Hahnloser et al., 2002, Kosche et al., 2015]. A neural model for the projection neu-

rons incorporating known experimental features and responses will be presented and analyzed via dynamical

bifurcation theory. Variational annealing will be applied to estimate the unknown parameters, and we will

find interesting complicating features of the estimation procedure that stem from i) the presence of multiple

timescales as well as ii) model degeneracies. A timescale splitting protocol will be proposed in response to

these complications.

Chapter 5 begins the second half of the thesis, which illuminates some novel mathematical features

of the estimation problem. Moving formally to continuous time, the Bayesian integrals encountered in Chap-

ter 2 can now be viewed as some combination of a continuous stochastic process and an incoming observation

process. The formal equivalence between stochastic differential equations and Wiener path integrals is highly

suggestive [Chaichian and Demichev, 2001,Chow and Buice, 2015]; in our case, it leads to a fully continuous

path integral formulation of the estimation problem, with associated Lagrangian function and action func-
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tional. The variational formulation presaged in Chapters 2 and 3 has now opened up a wealth of analogies

with classical and quantum mechanics, including the Euler-Lagrange and Hamiltonian descriptions [Gold-

stein et al., 2002]. The notion that the estimate of the state is itself a well-defined dynamical system is what

gives this thesis its name. What’s more, we will see that the Lagrangian function that describes this system

has a direct correspondence to classical electromagnetism. This connection, still nascent, will be presented

mainly as a divergence point for future work in this field.

The mechanical analogy appears to imply that the estimate may be solvable by simply integrating

dynamics numerically in time to generate an optimal estimate. But we will find that while the traditional me-

chanics problem arising from Hamilton’s principle is an initial-value formulation – well-defined and unique,

if not fully integrable – the estimation dynamics is a boundary value problem since the initial state, being

sparsely observed, is not fully characterized. A key motif in Chapter 5 is that this boundary value problem is

intractable since the dynamics of the estimation are persistently unstable, so a reliable estimation procedure

would require a strong initial guess that is rarely possible.

This notion, reminiscent of similar issues in optimal control theory, will set the stage for a further

look at the estimation dynamics in a Hamiltonian formulation in Chapter 6. Integral curves of Hamilton’s

equations preserve symplectic invariants, and it is proposed that by casting the estimation dynamics into

canonical coordinates, these symmetries can be leveraged to stabilize the estimate. The notion of symplectic-

ity, its destruction in discrete time, and reinstatement by particular numerical integration schemes, as well as

the robust formulation of symplecticity in discrete Lagrangians, will be reviewed in this chapter. Applying

this idea to the estimation problem, the novel contribution of this chapter is an inference algorithm akin to

variational annealing, but formulated entirely in canonical coordinates [Kadakia et al., 2017].

The conclusion will be brief, and mostly open-ended. In it will be proposed an (as yet unexplored)

extension of the annealing methods to chaotic system synchronization. Finally, we conclude with an opti-

mistic but sober reminder of the gap between the breadth of these techniques and the challenges presented by

the supremely complex neural systems actually found in nature.



Chapter 2

Inference in nonlinear dynamical

systems

2.1 Bayesian recursion as a starting point

Though not stated outright, implicit in the oscillator example in Sec. 1.1 is that the estimation prob-

lem is fundamentally probabilistic: the data is noisy, the model is inherently approximate. Further, since the

measurements are sequential, arriving at discrete points in time, it is natural to treat the problem in a Bayesian

setting, where an initial prior distribution is iteratively updated with incoming data and model tendencies to

produce updated posterior distributions [Särkkä, 2013]. In the context of neuroscience and other biological

models, the ultimate goal is the determination of unknown static parameters of the system, yet this will rely

on estimating, simultaneously or in alternating fashion, the time course of the dynamical variables – in par-

ticular, those variables which cannot be observed. So as a first step, we seek expressions for the distributions

of dynamical states, assuming the parameters are known.

Before delving into the Bayesian formulation of the estimation problem, note that the forthcoming

results can be derived equivalently without explicitly drawing on Bayesian inference. In Kalman’s original

paper, the optimal estimate and accompanying optimal covariance were found using a correspondence be-

tween random variable correlations (“projections”) and optimality [Kalman, 1960]. The derivation in this

manner is elegant and clean. Working with the full distributions themselves, however, is a bit more trans-

9
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parent, and importantly will smooth the transition to non-Gaussian distributions which are central to this

thesis.

2.1.1 The Bayesian recursion equations

The estimation problem is set in discrete time, where the state of the D-dimensional system at time

tn is denoted by a vector xn ∈ RD. Working for now in complete generality, we assume only that the state

evolves as a Markov process [Gardiner, 1985]. Simultaneously, measurements yn are generated by passing

xn through some observation operator Hn:

yn = Hn(xn)+ rn (2.1)

The parenthesis indicate that Hn may be a nonlinear function and its subscript that it may not be stationary,

while the addition of random variable rn reflects the reality that measurements are never pure. For all of

the examples in this thesis, Hn is essentially a constant linear projection and rn is a homogeneous Gaussian

process. For example, the Hodgkin-Huxley model dynamics are described by three unmeasurable gating vari-

ables and one observed voltage variable: Hn≡H is a projection matrix of unity rank. Similarly, current clamp

electrophysiology is clean up to the addition of some Gaussian white noise, whereby rn ≡ r∼N (0,σ2).

The presence of the random process rn linking states and observation naturally suggests a proba-

bilistic dependence of the measurements upon the true state, for example, p(yn|xn) ∼N (Hn(xn),Var[rn]).

We need to invert this expression for a distribution of xn, having measured yn: p(xn|yn). These distributions

are of course linked by Bayes’ Rule.

Actually, a more useful quantity is the distribution of xn given not just the present observation, but

all those prior:

p(xn|Yn), (2.2)

where upper-case Yn is the set of all observations; Yn = {y0, ...,yn}. This expression can be broken up

into a product of individual factors by applying the Markov property and Bayes’ rule in alternating fash-

ion. The Markov assumption allows this expression to be decoupled into factors representing information

gain timepoint by timepoint. For Markovian dynamics, we can always use the the Chapman-Kolmogorov
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equation [Gardiner, 1985],

p( f3| f1) =
∫

d f2 p( f3| f2)p( f2| f1), (2.3)

the content of which is that the probability of transitions from state f1 to f3 is the sum of all possible transitions

also passing through an intermediate state f2. Applying both this and Bayes’ Rule to the final dynamical state

xn in Eq. 2.2 gives:

p(xn|Yn) = p(xn|yn,Yn−1) ∝ p(yn|xn,Yn−1)p(xn|Yn−1)

= p(yn|xn)p(xn|Yn−1)

= p(yn|xn)
∫

dxn−1 p(xn|xn−1)p(xn−1|Yn−1). (2.4)

In the second line, the disappearance of the measurement history in the first factor is due to the presumed

conditional independence of yn upon previous measurements Yn−1, given xn, as a consequence of Eq. 2.1.

The final factor in the last line of Eq. 2.4 is identical to the analogous distribution, just one timestep earlier.

This suggests an obvious iterative recursion. Repeating the steps in Eq. 2.4 from the initial to final time

therefore gives:

p(xN |YN) ∝ p(yN |xN)

[∫ N−1

∏
n=0

dxn p(xn+1|xn)p(yn|xn)

]
p(x0) (2.5)

In general, these integrals do not admit closed form expressions, but they may be estimated with Markov

Chain Monte Carlo sampling or of its many variants [Metropolis et al., 1953, Duane et al., 1987, Neal, 1996,

Gelman et al., 2013]. Though Monte Carlo approaches are powerful, useful, and widely studied, they will for

the most part not be considered in this thesis; rather the focus will be on variational approximations and their

relation to sequential filtering. Let us therefore begin with the various manifestations of the latter.
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2.2 Kalman-based filtering and smoothing

2.2.1 Kalman filter: linear dynamics and Gaussian errors

Since products of Gaussians are also Gaussian, then Eq. 2.5 can be evalauted iteratively in closed

form when the transition and measurement probabilities, p(xn|xn−1) and p(yn|xn), are normally distributed.

This is the basis of the Kalman filter, which expresses exact recursion relations for the moments of these

normal distributions at each point in time [Kalman, 1960, Grewal and Andrews, 2014]. The Kalman filter

relies on the observation that a Gaussian transition probability arises when a linear map generating xn+1 from

xn is combined with perturbing “process” noise that is normally distributed. Specifically, we can write

xn+1 = Fnxn +qn

qn ∼N (0,Qn)

→ p(xn+1|xn)∼N (Fnxn,Qn). (2.6)

The measurements follow Eq. 2.1 with linear observation operators and Gaussian corruption:

yn = Hnxn + rn

rn ∼N (0,Rn)

→ p(yn|xn)∼N (Hnxn,Rn). (2.7)

When these assumptions – linear dynamics and Gaussian noise – are used in iterative fashion from a Gaussian

prior, p(x0)∼N (m0,P0), the integrals in Eq. 2.4 are exact. After some lengthy but straightforward integra-

tion and algebraic manipulations, what results are the Kalman filtering distributions at each time step, which

are most transparently written in two distinct steps reflecting the alternating applications of the state evolu-

tion by the Markov dynamics (prediction) and incorporation of new observations by Bayes’ Rule (updating).

These distributions are:

p(xn|Yn−1)∼N (m−n ,P
−
n )

p(xn|Yn)∼N (mn,Pn), (2.8)
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where the moments of the prediction step are

m−n = Fn−1mn−1

P−n = Fn−1Pn−1FT
n−1 +Qn−1, (2.9)

and the moments of the updating step are

mn = m−n +Kn(yn−Hnm−n )

Pn = P−n −Kn(HnP−n ), (2.10)

where Kn = P−n HT
n (HnP−n HT

n +Rn)
−1 is the gain factor quantifying the strength with which the data corrects

the anticipated evolution of the dynamical step alone. By applying these equations to the a priori assumed

values of m0 and P0, the updated moments m1,P1, can be calculated in closed form, and so on. Since the

filtering distributions are Gaussian, the optimal estimate after all the observations are incorporated is simply

the final mean value mN , with accompanying variance PN .

The expressions for the optimal estimate and covariance are explicit. Any anticipated difficulties

will arise entirely from issues of ill-conditioning and cost in performing the multiplication, inversions, and

storage required for Kn. The theory and practical methods to perform these linear algebraic manipulations

effectively has been developed in quite some detail, and can be found for example in [Grewal and Andrews,

2014].

2.2.2 Nonlinear extensions: extended and unscented Kalman filters

The Kalman filter equations are of course predicated on the fairly limiting assumptions of linearity

and Gaussian statistics. There are a few ways to relax this assumption and still produce quality estimates. In

the case of nonlinear dynamics, xn+1 = f(xn)+qn, we can opt to linearize around the current mean 1 :

Fn =
∂ f
∂x

∣∣∣∣
un

, (2.11)

1Here and throughout, lower-case f will be used to denote nonlinear functions, while upper-case F will
denote matrix operators.



14

and use this approximated evolution operator in Eqs. 2.9. This is the extended Kalman Filter (EKF), and is a

first-order approximation of the Kalman filter for nonlinear systems. EKF works well for weak nonlinearities

and small timesteps, but can quickly become inaccurate – and possibly even diverge – for many realistic

nonlinear models of interest [Julier and Uhlmann, 1997, Julier et al., 2000, Särkkä, 2013].

Nonlinear evolutions operators destroy the Gaussian nature of the probability distributions, even

if the process noise qn is itself still normally distributed – the argument of the exponential in p(xn+1|xn)

is ∼ f(xn)
TQ−1

n f(xn), which is no longer quadratic. EKF solves this problem by linearizing the dynamics:

f→ F. But one could adopt the alternate viewpoint – retain the exact dynamics but break the assumption

of Gaussianity. That is, we dispense with the probability distributions altogether, instead representing the

distribution by a set of discrete D-dimensional points whose statistics are chosen to match the first and second

moments at tn. These points can then be propagated through the full nonlinear dynamics, with un+1 and Pn+1

then recomputed by sampling. This is the essence of the unscented Kalman filter, which represents the

distribution by a prescribed set of 2D+1 sigma points, X m
n , which are dilated, shifted copies of the 2D+1

so-called canonical sigma points. X m
n are individually evolved through the nonlinear model f, the result

being used to calculate the sample mean and covariance m−n and P−n . In the Kalman filter, these moments are

given analytically, whereas here they are statistical.

These sampled moments are used in Eqs. 2.10 to produce the updated moments mn and Pn, and the

cycle is restarted by again producing new sigma points by dilating and shifting the canonical sigma points

to reflect the new statistics given by mn and Pn. Thus, in UKF, the Gaussian assumption is relaxed in the

update step (allowing full model nonlinearity), but reinstated in the analysis step since the new sigma points

are prescribed only by the first two moments. Since the dynamics are not linearized, Jacobian calculations

are avoided ;in fact, the dynamical map need not even be differentiable. The UKF is is third-order accurate

compared to the first-order EKF, remarkably for similar computational cost [Julier and Uhlmann, 1997,Julier

et al., 2000, Wan and van der Merwe, 2002].

2.2.3 Smoothing: backwards passes

The Kalman filtering equations produce an estimate of xn given prior observations. This is quite

natural in, for example, meteorology: estimates are updated in real-time on a 24-hour cycle, given newly

gathered daily weather patterns. In estimating neural systems, the situations is less restricted. Results are
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analyzed after an entire batch of experimental data is taken, and the time for analysis and estimation is not

constrained by a morning forecast. It is reasonable to ask about the neural activity early in the experiment,

at time tn, having knowledge not only of observations before tn, but those throughout the entire observation

window [t0, tN ],

p(xn|Yn)→ p(xn|YN). (2.12)

Though the optimal estimates produced by these two distributions coincide at the end of the observation win-

dow, we would expect that for the optimal estimates in the latter distribution are more accurate for earlier

xn, having been informed by more datapoints. One method for producing the distributions p(xn|YN) essen-

tially requires running the Kalman filter twice – once forward, once backwards. As in Eq. 2.4, the derivation

requires only Bayes’ Rule and the Markov property, resulting in :

p(xn|YN) = p(xn|Yn)
∫ [ p(xn+1|xn)p(xn+1|YN)∫

p(xn+1|xn)p(xn|Yn)dxn

]
dxn+1. (2.13)

This “backward” recursion relation generates p(xn|YN) by combining p(xn+1|YN) with the output of the

forward Kalman filter, p(xn|Yn). When the dynamics are normal and the noise is Gaussian, we expect

closed form recursion relations for the optimal estimates and covariances, analogous to Eqs. 2.8-2.10. These

closed form expressions comprise what is now known as the Rauch-Tung-Striebel smoother, named after its

developers [Rauch et al., 1965].

2.2.4 Ensemble Kalman filter: A partially statistical approach

The Kalman filter and its nonlinear extensions require the manipulation and storage of large covari-

ance matrices, costly matrix multiplication and inversions, and limiting assumptions on allowable nonlinear-

ities in the dynamical evolution. We saw that in UKF we could alleviate the issue of nonlinearities by repre-

senting the distribution by set of discrete points and propagating these points through the exact dynamics f.

In UKF, 2D+1 distinct sigma points are needed, so scaling may become prohibitive for the high-dimensional

models prevalent in geophysics and neuroscience.

Can we adequately represent the distribution by fewer discrete samples? This idea is the basis of

the ensemble Kalman filter (EnKF), which represents the distribution at each timepoint tn by an ensemble
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of M discrete, sampled D-dimensional points {x1
n, ...,xM

n } [Evensen, 1994, Evensen, 2003, Evensen, 2009].

The idea is similar to UKF, except that M is arbitrary, and is in practice often smaller than the state space

dimension D. The EnKF proceeds as follows. In the prediction step, each sample is passed through the

nonlinear dynamics to produce the updated samples x̃m
n , i.e. x̃m

n = f(xm
n )+qn (recall that qn is an instantiation

of the process noise random variable, Eq. 2.7). Now, rather than calculating the covariance matrix analytically

as in Eq. 2.9, the moments are calculated statistically from the updated ensemble members, as in UKF:

m−n = 〈x̃m
n 〉=

1
M ∑

m
x̃m

n

P−n = 〈(x̃m
n −m−n )

2〉= 1
M−1 ∑

m
(x̃m

n −m−n )
T(x̃m

n −m−n ), (2.14)

where 1/(M−1) is Bessel’s correction on the sample covariance, since the mean is unknown [Johnson and

Wichern, 2007]. With these moments in hand, the update equations are equivalent to Eqs. 2.10 with one

difference: the observations cannot be used directly, but must themselves be sampled from a distribution

with mean yn and variance Rn, otherwise the resulting updated covariances Pn are underestimated [Evensen,

2003].

The EnKF samples are initialized from some prior distribution, or background, xm
0 ∼ pb(x), which

is chosen to reflect some prior knowledge of the system state before observations have been incorporated. It

is then run forward by iteratively applying, to each sample xm
n , the predict and update steps just described.

When D is large, even a moderate M may produce adequate statistics and remain stable. See [Mitchell et al.,

2002,Natvik and Evensen, 2003] for applications to atmospheric and ocean models in particular; an overview

of applications and extensions can be found in [Evensen, 2003].

2.3 Sequential Monte Carlo

In implementing the filtering equations Eq. 2.9 and 2.10, both UKF and EnKF dipped a cautious toe

in the waters of sampling methods. Recall that the initial impetus of Gaussian-linear assumption was that it

could allow the computation of the Bayesian conditional distributions Eq. 2.5 in closed form. While UKF and

EnKF both relax the Gaussian assumption during the prediction step – at the cost of an exact expression for

the moments – they effectively reinstate it during the analysis step by updating only the first two moments of

the sample distribution via the optimal Kalman gain correction K. In UKF, the intent was that a non-Gaussian
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p(xn+1|xn) might be represented more accurately by a collection of samples, while in EnKF, the focus was on

reducing the cost of matrix operations in high D by representing the full distributions by a smaller collection

of stochastic points.

We might instead dive headlong into a sampling approach, dispensing entirely with any of Kalman’s

closed form expressions for un and Pn. Could this be done effectively, in a way that mitigates the curse of

dimensionality? Certainly, a naive application of the Metropolis-Hastings Monte Carlo method to the full

conditional distribution Eq. 2.5 might be slow and inefficient for appreciable D [Metropolis et al., 1953,Gilks

et al., 1995, Gelman et al., 2013]. It might be more advantageous to continue working in the iterative context

suggested by the Kalman filter. This is the approach taken by one of the many variants of the particle filter,

which essentially performs the recursion in Eq. 2.4 by sampling from a surrogate distribution iteratively in

time, weighted appropriately by the measurement and model functions, p(yn|xn) and p(xn|xn−1) [Gordon

et al., 1993, Doucet et al., 2001, Arulampalam et al., 2002, Doucet and Johansen, 2009]

Though particle filters arise in many forms, including genetic-type algorithms, we will focus here on

one widespread variant amenable to Gaussian observation and process noise, where neither the observation

operator nor the the dynamics are required to be linear. This approach is known in the literature as sequential

Monte Carlo (SMC), though may sometimes also be referred to generically as a particle filter or sequential

importance sampling (SIS) [Doucet and Johansen, 2009, Doucet et al., 2001].

To begin, SMC approximates the conditional distributions at all steps by a collection of M samples,

xm
n , as in EnKF. To each sample at time tn is also associated a weight wm

n , with ∑m wm
n = 1. The goal of SMC

is to update both these samples and their weights iteratively, but since samples cannot always be easily drawn

from the integrand of Eq. 2.4, the idea is to instead draw them from a feasible proposal distribution with

compensating weights.

Specifically, the algorithm at time tn proceeds as follows. The conditional distribution from the

previous step, p(xn−1|Yn−1), is represented by M discrete weighted samples xm
n−1:

p(xn−1|Yn−1)≈
M

∑
m=1

wm
n−1δ (xn−1−xm

n−1), (2.15)
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which when inserted into the Bayesian recursion Eq. 2.4, gives

p(xn|Yn) ∝ p(yn|xn)
∫

dxn−1 p(xn|xn−1)
M

∑
m=1

wm
n−1δ (xn−1−xm

n−1). (2.16)

The integrand here cannot be sampled, so again the goal is to incorporate a feasible proposal distribution. In

SMC, it is assumed that the proposal distribution can be separated into time-adjacent factors – this is what

allows us to sample iteratively: q(Xn|Yn) = ∏
N
n=1 q(xn|Xn−1,Yn). Inserting the nth factor of this decomposi-

tion into Eq. 2.16:

p(xn|Yn) ∝

M

∑
m=1

wm
n−1

∫
dxn−1

p(yn|xn)p(xn|xn−1)

q(xn|Xn−1,Yn)
q(xn|Xn−1,Yn)δ (xn−1−xm

n−1). (2.17)

Since delta functions similar to the last factor in this expression have propagated from previous times, we

anticipate that not only xn−1 → xm
n−1, but the stronger statement Xn−1 → Xm

n−1. Then, carrying out the∫
dxn−1 integral gives

p(xn|Yn) ∝

M

∑
m=1

wm
n−1

p(yn|xn)p(xn|xm
n−1)

q(xn|Xm
n−1,Yn)

q(xn|Xm
n−1,Yn). (2.18)

We are now in a position to approximate p(xn|Yn) by sampling from q(·). Technically, we could choose any

number of samples L, independent of the existing particles M,

p(xn|Yn) ∝

M

∑
m=1

L

∑
l=1

wm
n−1

p(yn|xl
n)p(xl

n|xm
n−1)

q(xl
n|Xm

n−1,Yn)
δ (xl

n−xn), (2.19)

but in this scheme the number of samples would increase exponentially in n. The idea of the particle filter is

that a single sample is chosen for each existing particle, xm
n ∼ q(xn|Xm

n−1,Yn), giving:

p(xn|Yn) ∝

M

∑
m=1

wm
n−1

p(yn|xm
n )p(xm

n |xm
n−1)

q(xm
n |Xm

n−1,Yn)
δ (xm

n −xn), (2.20)

Thus, we have the following picture: the conditional distribution at time tn is represented by M
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particles (consider them “propagated” particles from the previous step), with corresponding weights:

w̃m
n = wm

n−1
p(yn|xm

n )p(xm
n |xm

n−1)

q(xm
n |Xm

n−1,Yn)
(2.21)

wm
n =

w̃m
n

∑
M
m=1 w̃m

n
(2.22)

SMC propagates particles by sampling from the proposal distribution q(·) at each time step, compensating

for this surrogate distribution with iteratively updated weights wm
n , which in turn only require direct evalu-

ations of the (unnormalized) measurement and transition distributions. In this way, the filtered distribution

represents the full Bayesian integrals in a tractable recursive manner that makes no assumptions about linear-

ity, unimodality, or Gaussianity. Estimators can then be calculated by appropriately weighted sample means,

variances, etc., for example:

un = 〈xn〉=
M

∑
m=1

wm
n xm

n . (2.23)

2.3.1 The bootstrap filter

One common choice for proposal distribution is the so-called “bootstrap filter,” in which the transi-

tion density is used as the proposal density [Gordon et al., 1993],

q(xn|Xm
n−1,Yn) = p(xn|xm

n−1), (2.24)

giving weight updates of

w̃m
n = wm

n−1 p(yn|xm
n ). (2.25)

The bootstrap filter is simple to implement and broadly useful for nonlinear Gaussian Markov models in

which the transition density p(xm
n |xm

n−1) is straightforward to evaluate. The bootstrap filter was the first

appearance of the particle filter methodology in the literature.
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2.3.2 Resampling

A central issue of SMC is that after a few time steps, all but one of the samples will carry negligible

weight – there is no distribution whatsoever. This can be solved fairly efficiently with a further resampling

step, in which, at all (or a select number of) timepoints, new particles xm,r
n are regenerated by sampling from

the distribution itself:

xm,r
n ∼

M

∑
l=1

wl
nδ (x−xl

n) (2.26)

The resampled particles xm,r
n are then used as the propagated particles for the next filtering step at tn+1, but

now with the weights reset:

wm
n → 1/M (2.27)

xm,r
n → xm

n . (2.28)

Though resampling increases the estimate variance, it removes particles of low weight and instead reshuf-

fles the existing particles to regions of higher probability density, preventing the exponential suppression of

particles outside the distribution peaks.

2.4 The limitations of the sequential filter

2.4.1 Filtering in neural estimation

A number of studies, having recognized the similarity of high-dimensional and complex meteo-

rological models to neural systems, have employed Kalman-based filters or SMC to estimate unknowns in

neurons and networks [Huys and Paninski, 2009, Ullah and Schiff, 2009, Vogelstein et al., 2009, Meng et al.,

2011, Vavoulis et al., 2012]. These works can produce estimates of acceptable accuracy but are narrow in

scope. First, the estimated models are often limited to reduced Hodgkin-Huxley models with few state vari-

ables, and though SMC has been applied to more detailed compartmental models, estimation accuracy is poor

without strong priors on (or even complete knowledge of) nonlinear parameters such as voltage thresholds

in gating kinetics [Vavoulis et al., 2012]. None of the models exhibit chaos, operating mainly in the regime
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between statis and periodicity.

To the point of parameters, recall that state-space filtering – basically an iterative predict-and-correct

method for dynamical systems – is an unnatural setting for the estimation of static quantities; parameter esti-

mation must therefore be incorporated in some other way. One method appropriate to SMC is the expectation-

maximization algorithm (E-M) [Dempster et al., 1977,MacKay, 2003,Kantas et al., 2015]. E-M, in conjunc-

tion with SMC, alternates i) particle filtering (with fixed parameters) with ii) optimization of expected joint

likelihoods over the unknown parameter space. As it is only guaranteed to converge to local minima, it is

generally only useful for parameters that enter HH dynamics linearly, such as maximal conductances and

some timescales. Further, since state variable estimates are themselves dependent on the parameter estimate

θ̂n−1 at the prior time, then transitions likelihoods p(xn|xn−1) = p(xn|xn−1, θ̂n−1) conditioned on inaccurate

θ̂n−1 may cause the estimate to rapidly diverge.

Alternatively, parameters may be estimated by artificially promoting them to model states with trivial

dynamics (pn+1 = pn + rn), and treating them on the same footing as state variables, {x} → {x,θ}. It is

known that this introduces bias and increases the estimate variance; as well, it may fail to adequately probe

the parameter space by subjecting the parameters to highly correlated Gaussian walks [Kantas et al., 2015].

Naturally, these downsides manifest sharply with strong model nonlinearities, precluding the determination

of key neural mechanisms such as gating kinetics and synaptic dynamics.

2.4.2 Breakdown of the Gaussian assumption

While estimate divergence compounds with nonlinearities, sparse and noisy data, and the presence

of unknown static parameters, it could be managed with sufficient a priori knowledge via p(x0,θ0). A

well-informed prior places the estimate in the vicinity of the underlying trajectory; this is critical because

nonlinearities may render the transition probabilities not only non-normal but multimodal entirely. Weak

priors may place the estimate in an auxiliary mode of the distribution, subjecting Kalman filters to linearizing

approximations around a local maxima of p(xn|Yn) that may never allow return to the true trajectory. Thus,

estimate “divergence” equates to tracking peripheral modes of the conditional distribution. As we will soon

see, these modes are prevalent in the estimation of nonlinear systems and ubiquitous in chaotic ones.

Since SMC works outside of the linearizing and Gaussian assumptions, one might contend that it

is more immune to estimate divergence. Its efficacy is tempered by dimensionality, as the variance of the
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Figure 2.1: (a) Estimated trajectories of an observed component (top) and unobserved component
(bottom) of the chaotic Lorenz 1996 system with 9 of 10 components observed. Here the mean of
the unobserved component’s prior distribution is chosen from a normal distribution of deviation
σ10 = 5.0 around its true value. (b) The same estimated trajectories, but with σ10 = 10.0.

estimate increases quadratically in timesteps N, and there is evidence that the number of necessary particles

to maintain accuracy below observation noise scales exponentially with a parameter that depends collectively

on i) model dimension, ii) variance of the prior, and iii) observation characteristics [Snyder et al., 2008].

Applying a variant of SMC to the chaotic Lorenz model in 40 dimensions with 20 measured variables, for

example, it was observed that 500-1000 particles were needed to bound the variance below measurement

noise [Lorenz, 2006, Nakano et al., 2007]. This bodes poorly for higher-dimensional neural networks, when

observations are sparse.

To illustrate how weak priors and sparse observations may conspire with multimodal conditionals

to produce diverging estimates, consider the unscented Kalman smoother (UKF with an analogous backward

pass) applied to the D = 10-dimensional chaotic Lorenz 1996 model, whose continuous dynamics are given

by

dxd

dt
= fd(x) =−xd−2xd−1 + xd−1xd+1− xd + f (2.29)
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where f = 8.0, the subscripts are state variable indices, x = {xd}, and the states are subject to periodic

boundary conditions: xd+D = xd
2. Synthetic observations are generated by numerically integrating Eqs. 2.29

forward from a given initial condition x(0) for 501 timesteps in intervals of ∆t = 0.01 – this is the true

trajectory x∗(t) – and then adding iid Guassian noise of zero mean and variance σ2 = 0.1. We first assume

that x1(t), ...,x9(t) are measured, i.e H is a rank-9 projection operator.

Since the only information at t = 0 is the observations of the measured subspace, let us assume a

highly peaked prior for these components, centered on the data:

p(xd(0)) = N (yd(0),σd � 1) d = 1, ...,9. (2.30)

On the other hand, there is no a priori information about x10(0), it is initialized somewhere within a given

range. Specifically, it is chosen from a normal distribution centered on its true value with a given deviation:

p(x10(0)) = N (x∗10(0),σ10). (2.31)

The results of these estimations are shown in Fig. 2.1, for σ10 = 5 and σ10 = 10. The information passed

from the observed variables {x1...x9} via the dynamics is sufficient to align the estimates to of both observed

and unobserved states to their true trajectories, despite a virtually uninformative prior on the latter.

If on the other hand, only {x1, ...x5} are observed, then the filter may end up tracking a distinct

mode of the system far afield of the true underlying trajectory. Examples of this are shown in Fig. 2.2, for

σ6, ...,σ10 = 2.0 and σ6, ...,σ10 = 7.0, respectively. In the former case, the smoothed UKF estimate matches

the true trajectory, but when the initialization is outside of this neighborhood as in the latter case, a distinct

mode is tracked and the unobserved states (and even the observed trajectories), are poorly estimated. These

other modes arise as an interplay of missing measurements – equivalently, large covariances in the initial state

– and nonlinear dynamics. The Gaussian assumption has broken down.

The role of the prior distribution p(x0) in revealing the non-Gaussian nature of the conditional

distributions is illustrated explicitly in Figures 2.3 and 2.4. These figures show histograms representing

2A notational note: from here forward, timepoints may be indicated by an index as in xn, or in parentheses
such as x(5.26) and x3(5.26). When t is represented in parentheses, it notates an exact time; when it is a
subscript, it notates the nth of a discrete set of timepoints. The choice should be obvious depending on the
context. Further, the Roman index d will always refer to model component, while m and n will always refer
to time.
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Figure 2.2: (a) Estimated trajectories of an observed component (top) and unobserved component
(bottom) of the chaotic Lorenz 1996 system with 5 of 10 components observed. Here the means of
the unobserved components’ prior distributions are chosen from a normal distribution of deviation
σd = 2.0 around their true values. (b) The same estimated trajectories, but with σd = 7.0, indicating
that with sparser observations, a weak prior can lead to filter divergence.

the full conditional distributions p(xn|Yn) at various times throughout the estimation window, again for the

estimation of the Lorenz96 model under the same condition as above. Here, only the variables {x1, ...,x5}

are measured. The histograms are generated using SMC with a bootstrap filter and one million particles.

When the prior is centered tightly about the true initial state (σd = 0.1 for the unmeasured variables), the

distributions are nearly Gaussian for both measured and unmeasured variable alike (Figure 2.3). Further,

the peak of these distributions lies near the true state, as the estimate accurately tracks the true trajectory.

When the initial variance of the unmeasured components is increased to σd = 2.0, however, the distributions

generate several new peaks and quickly lose their Gaussian character (Fig. 2.4). The multimodality is more

pronounced for the unmeasured states (lower panel).

In the context of EKF and UKF, the Gaussian approximation suppresses the other sections of the

distribution in the next filtering step, leading the estimate to track a local mode of the distribution. This is

suggested by the rightmost panels of Figure 2.4: the true state (yellow line) lies near a peripheral mode, yet
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Figure 2.3: (a) The posterior conditional distributions in the estimation of the chaotic Lorenz 1996
attractor with five measured variables, at various times tn = 0.10,0.60, and 0.90. The prior distri-
bution for the unmeasured variables is centered tightly with a deviation of just σd = 0.1 around
the true state x∗d(0). The red line indicates the mean of the distribution at the given time, while the
yellow line indicates the true state. (b) The same distributions for an unobserved component.

propagating forward a Gaussian estimate about the statistical mean (far away, in red) would fail to account

for that contribution in the subsequent filtering step. Further, recall that these distributions are generated with

SMC using 106 particles, yet the model is only 10-dimensional. In the context of SMC, more reasonably-

sized ensembles would still eventually lose track of all the distribution modes, particularly as resampling

shuffles the particles away frmo those that are narrow and highly-peaked, as is the mode representing the true

state in the bottom-right panel of Figure 2.4.
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Figure 2.4: (a) The posterior conditional distributions in the estimation of the chaotic Lorenz 1996
attractor with five measured variables as in Figure 2.3. The prior distribution for the unmeasured
variables are now centered more loosely – with a deviation of just σd = 2.0 around the true states
at t0. (b) The same distributions for an unobserved component.

2.5 Beyond filtering: the variational approximation

2.5.1 The simultaneous conditional expectation

To see how we might partially address the issue of multimodality, let us begin again with the

Bayesian recursion equations, Eqs. 2.5:

p(xN |YN) ∝ p(yN |xN)

[∫ N−1

∏
n=0

dxn p(xn+1|xn)p(yn|xn)

]
p(x0). (2.5 revisited)
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This conditional probability on the left-hand side is also the joint distribution of {x0, ...xN}, marginalized

over the intermediate variables:

p(xN |YN) =
∫ N−1

∏
n=0

dxn p(XN |YN). (2.32)

Equating Eqs. 2.5 and 2.32 expresses the joint conditional probability as

p(XN |YN) ∝ exp[−A(X|Y)] (2.33)

where

A(X|Y) =−
N−1

∑
n=0

log p(xn+1|xn)−
N

∑
n=0

log p(yn|xn)− log p(x0), (2.34)

and we have adopted the shorthand XN = X = {x0, ...xN} and similarly for YN . The joint conditional can

be used to give estimators (e.g. expected values) of quantities G(X) defined on the entire observation time

window; for example, when G is the identity, then 〈G(X)〉 is the expected value of the trajectory itself. In

the filtering picture, these expected values are updated sequentially in time, subject to the approximation

scheme relevant to that particular procedure. In Kalman filtering, this approximation is the pruning of higher

order moments (the Gaussian assumption); in SMC, it is the representation of a continuous function by

discrete samples. Here, we instead represent these expected values in exact form and simultaneously in time,

dispensing with the iterative context:

〈G(X)|Y〉=
∫

dXG(X)p(X|Y)∫
dXp(X|Y)

=

∫
dXG(X)exp[−A(X|Y)]∫

dXexp[−A(X|Y)]
(2.35)

Of course, the whole point of filtering is that high-dimensional Bayesian integrals of this sort are

intractable. On the other hand, the exponential form of the joint probabilities suggests that this integral

may be at least approximated in the saddle point approximation, if the integral were dominated by one or a

few such extrema of A(X|Y) [Laplace, 1986, MacKay, 2003, Abarbanel, 2013]. That is, applying Laplace’s
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approximation to the integral Eq. 2.35, we get

〈G(X)|Y〉 ≈ ∑q G(Xq)|∂ 2
x A(Xq|Y)|−1/2 exp[−A(Xq|Y)]

∑q |∂ 2
x A(Xq|Y)|−1/2 exp[−A(Xq|Y)]

, (2.36)

where |∂ 2
x A(Xq|Y)| denotes the determinant of the Hessian matrix of A with respect to X evaluated at Xq and

the extrema are defined by

∂A(X|Y)

∂X

∣∣∣∣
Xq

= 0. (2.37)

In other words, Laplace’s method 3 requires the minimization of A(X|Y) over an ND-dimensional manifold

housing the full collocated trajectories X, and relies on the ability to find the few most dominant such Xq.

Yet the pervasive multimodality we found in the conditional distributions of sequential filtering bodes poorly

for the variational method: A(X|Y) is the negative log likelihood of the joint conditional probability, so a

plethora of modes in the latter translate to a plethora of minima in the former. Though we expect that the

true trajectory X would give a substantial, possibly the largest, contribution to the expected value integral, it

is likely hidden among many others in the RND distribution support.

2.5.2 The ubiquity of local minima in A(X|Y) when model linearity is broken

Let us draw again on the instructive chaotic Lorenz 1996 model in ten dimensions to investigate the

density of extrema in the collocated log-likelihood A(X|Y). As in Section 2.4.2, we again use synthetic data Y

generated by integrating the model equations over 201 timepoints of ∆t = 0.01 and add iid standard Gaussian

noise. We can express the discrete transition probabilities p(xn+1|xn) that enter A(X|Y) by discretizing the

continuous time Lorenz model dynamics (Eq. 2.29) with an implicit trapezoidal scheme, adding small process

noise of zero mean and small variance Q =1e-6 to each variable:

− log p(xn+1|xn) =
D

∑
d=1

1
2Q

(
xd(tn+1)− xd(tn)−

∆t
2
[ fd(x(tn))+ fd(x(tn+1))]

)2

. (2.38)

One can also think of this as a discrete-time Markov process whose transition probabilities from {tn,xd(tn)} to

{tn+1,xd(tn+1)} are normally-distributed with mean xd(tn)+ ∆t
2 [ fd(x(tn))+ fd(x(tn+1))] and variance Q. Fi-

3With some abuse of terminology, method of stationary phase, Laplace’s method, and variational method
will be used more or less interchangeably throughout this thesis.
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Figure 2.5: (a) A two-dimensional projection of the cost surface minima in the estimation of the
Lorenz 1996 chaotic attractor with one measured variable. Of 10,000 initializations, more than
4000 distinct minima were found. The true state is indicated by the red circle. (b) The same
projection, with 5 measured variables; in this case, nearly 900 distinct minima were found.

nally, the observations are assumed normally distributed, centered on the states with variance unity, whereby

− log p(yn|xn) =
L

∑
d=1

1
2
(yd(tn)− xd(tn))2, (2.39)

where it should be noted that the sum over states only extends to the number of observations L. Finally,

assuming a uniform prior on the system at t0, p(x0) is a constant. A(X|Y) is thus:

A(X|Y) =
N−1

∑
n=0

Eq. 2.38+
N

∑
n=0

Eq. 2.39+ constant (2.40)

To visualize the preponderance of extrema along the surface of A(X|Y), let us minimize the func-

tion several times over using a local minimizer, specifically the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm [Fletcher, 1987, Broyden, 1970, Fletcher, 1970]. To hit as many optima as possible, we will per-

form 10,000 distinct optimizations by uniformly sampling an initializing point in the model’s approximate

dynamical range (a ND-hypercube of side length 30 centered at the origin), letting the optimization proceed

from there. To visualize the density of local minima in this high-dimensional manifold, we then project the

ND = 2010 dimensions down to only two arbitrary coordinates x6(tn = 1.0) and x9(tn = 1.0).

These 2D projections are shown in Figures 2.5a and 2.5b, for L = 1 and L = 5 measured variables,
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respectively. When A(X|Y) contains observations from only the single component x1, the 10,000 optimiza-

tions return more than 4000 distinct estimates (Figure 2.5a). If the five components {x1, ...x5} are observed,

the optimization returns nearly 900 distinct estimates. In the first case, finding the lowest minima that con-

tribute to the conditional integral Eq. 2.35 is hopeless. In fact, even with relatively high observability of 50%,

the number of minima far exceeds the model dimension, a scenario that does not portend well for even the

tiniest biophysical neural network. And yet, the extended Kalman smoother could estimate this same model,

reliably and accurately, with 50% observability. It is unclear what the variational formulation buys us, if

anything at all.

2.5.3 The Gaussian error approximation

To proceed, let us first make a few simplifying assumptions about the observation noise and model

stochasticity, which will allow the conditional log-likelihood to be written in a more concrete form, and

suggest a way to rectify the problem of multimodality confronted in the previous sections. Specifically, we

first assume that L components of the full state can be directly observed, but these observations are corrupted

by normally-distributed noise uncorrelated in space and time. Secondly, we assume as before that the model

is a discrete-time stochastic Markov process; we can think of the process as the discretization of a continuous

time Langevin equation:

dx
dt

= f(x)+ξ(t) → xn+1 = g({xm},{tm},∆t)+qn, (2.41)

where g(·) is some numerical discretization of the continuous deterministic dynamics f(·), and the set notation

{xm},{tm} indicates that g could in theory depend on several xm and/or several timepoints tm prior. The

discrete time forward map g is still a Markov process, though possibly of higher order if the discretization is

beyond second-order. The fluctuating components ξ(t) and qn are Gaussian stochastic variables uncorrelated

in both space and time, with

〈qn〉= 0

〈qmqn〉= Qnδmn, (2.42)
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where Qn is a diagonal square matrix of dimension D. Finally, we assume an agnostic prior density on the

system at t0, whereby log p(x0) is constant which we can ignore. We may then write A(X|Y) explicitly as

A(X|Y) =
N

∑
n=1

(yn−Hxn)
2∣∣

R−1
n

+
N

∑
n=0

(xn+1−g({xm},{tm},∆t))2∣∣
Q−1

n
, (2.43)

where Rn is the L-dimensional covariance matrix of the observations at time tn, and H is a D-dimensional

projection matrix of rank L. For ease of notation, the following component form of these quantities will also

be used in this thesis:

A(X|Y) =
N

∑
n=1

L

∑
d=1

Rm(n,d)
2

(yd(tn)− xd(tn))2 +
N

∑
n=0

D

∑
d=1

Rf(n,d)
2

(xd(tn+1)−gd({xm},{tm},∆t))2 (2.44)

where

Q−1
n =


Rf(n,1)

. . .

Rf(n,D)

 (2.45)

and

R−1
n =



Rm(n,1)
. . .

Rm(n,L)

OD−L


. (2.46)

Refer to the expressions Eq. 2.43 and Eq. 2.44 as the Gaussian error approximation, emphasizing that the

errors are Gaussian, even though the distributions themselves are not.

2.5.4 Manifold structure of A(X|Y)

The structure of the A(X|Y) manifold arises from the competing interplay of two sums in Eq. 2.43.

The first “measurement term” localizes the estimate about the observed data; it is quadratic in the measured

components and flat in the unmeasured ones, a two-dimensional projection of which is shown in Figure 2.6a.

The second sum consisting of “model terms” removes this degeneracy along the unmeasured directions in
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Figure 2.6: (a) The contribution of the measurement term to the cost surface A(X|Y), projected
to two variables. The surface is quadratic in the measured direction x9 and degenerate in the
unmeasured x6. (b) Same projections for the model term in A(X|Y), showing an approximately
fractal surface arising from the chaotic dynamics.

a most dispiriting way: local minima permeate the A(X|Y), portending sever issues for local optimization

routines. As we would expect a fully quadratic A(X|Y) with linear dynamics, indeed the fractal-like surface

of the model term contributions (Figure 2.6b) arises from the chaotic nature of the Lorenz model, a connection

that has been noted in the context of parameter estimation in engineering and biological applications, as well

as in chaotic control and synchronization [Abarbanel et al., 2009, Zelinka et al., 2014].

The interplay of the two competing contributions – one tractable but under-determined, one unam-

biguous but convoluted – depends sensitively on the balance of the inverse noise covariances Rf and Rm,

or more generally, between the spectra of Qn and Rn. Rn is determined by experimental setup – the preci-

sion of the measurement apparatus – but the choice of Qn is often heuristic and unknown. Typically, it is

tuned in a way to most adequately smooth the estimated trajectory from noisy data or produce faster conver-

gence [Bavdekar et al., 2011, Karasalo and Hu, 2011, Feng et al., 2014]. Filter performance is quite sensitive

to model covariance; while high covariance can compromise estimation accuracy, small Qn will (in SMC for

example) produce sample impoverishment – strong confidence in the dynamics renders the filtered distribu-

tion highly peaked, leading to an ensemble consisting of many copies of only a few distinct samples [Särkkä,

2013]. In the Kalman filter, unnaturally high confidence in the dynamics can heavily bias the estimate and

lead to divergence [Karasalo and Hu, 2011].

We might expect that the variational approximation to the full simultaneous conditional distribution

Eq. 2.5 would be less susceptible to these issues, the iterative context having been dispensed with. But
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the consequences of low process noise manifest in a a related way. To illustrate this, Figure 2.7 shows the

progression of 2D projections of A(X|Y) from Rf = 1e-5 to Rf = 1e7 in the vicinity of the true path of the

10D Lorenz 1996 model. In the variational context, increasing Rf sharpens the minima of A, much like what

occurs in the filter. The expected value integral is dominated by the needle-like valley in the last panel, but the

basin of attraction for this minimum narrows considerably with increasing Rf. Among the many local minima

in A(X|Y) – as we saw in Figure 2.5 – the true path becomes more difficult to locate as the model dynamics

are enforced. Any local optimization routine seeking the stationary points of A(X|Y) would converge to a

spurious minimum in much the same way as the iterative filter. Though the symptoms differ, the upshot is

the same.

Yet the process noise, as mentioned, is often a heuristic parameter informed less by physical consid-

erations than by the need for filter accuracy and performance. Much as it can be tuned in the Kalman filter,

it could likewise be promoted to an algorithmic parameter in the variational framework. Indeed, the gradual

deformation of A(X|Y) – from one defined by a valley of degenerate minima to one nearly fractal – suggests

an iterative way to do this within the structure of the Gaussian error approximation.



34

α
β

A

(a)

α
β

A

(b)

α
β

A

(c)

α
β

A

(d)

Figure 2.7: (a) Projections onto a measured variable α and an unmeasured variable β of the cost
surface A(X|Y) for low model precision, Rf = 1e-5. The surface is nearly convex in the measured
direction and highly degenerate in the measured direction. (b) Same projections for higher model
precision, Rf =1e-1; the degeneracy in the unmeasured directions has partially lifted (c) Rf = 1e3
(d) Rf = 1e7. Not only has the degeneracy lifted, but the global minimum is not hidden in a small
region with a tiny basin of attraction, hindering its detection in the full high-dimensional state
space.



Chapter 3

Variational annealing

3.1 The variational annealing algorithm

The challenges posed by the structure of the Gaussian error approximation manifold A(X|Y) were

illustrated quite vividly by the surface plots in Section 2.5.4. It was suggested that this challenge might

be tackled by exploiting the heuristic character of the process noise Qn. To this end, let us begin with the

observation that A(X|Y) simplifies when the process noise is maximal: when Rf(n,d)≈ 0 (where ≈ 0 is the

order of machine precision), then

A(X|Y)Q→∞ =
N

∑
n=1

(yn−Hxn)
2∣∣

R−1
n

(3.1)

=
N

∑
n=1

L

∑
d=1

Rm(n,d)
2

(yd(tn)− xd(tn))2. (3.2)

A(X|Y)Q→∞ contains no information from the model dynamics, and relies solely on information from the

observations. The stationary solution is nearly degenerate, characterized by

xd(t)≈ yd(t) d = 1, ...,L (3.3)

and xd(t) unconstrained for d = L+1, ...,D. Assuming that the process noise is time-independent and uniform

across state variables, so Rf(n,d)≡ Rf, we could now use this path as the seed for a subsequent optimization

35
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Algorithm 1: Variational Annealing (VA)
Input : Observations Y and annealing parameters βmax, α , Rf0
Output: Estimated trajectories and parameters {X̂q,β}

1 for q = 1, ...,Q, in parallel do
2 Sample Xq

init uniformly from presumed dynamical range
3 end
4 for β ← 0 to βmax do
5 Rf← Rf0αβ

6 Aβ (X)← A(X|Y)|Rf (Eq. 2.44)
7 for q = 1, ...,Q, in parallel do
8 X̂q,β ← argmin Aβ (X) with initial guess Xq

init
9 Xq

init← X̂q,β

10 end
11 end

in which Rf has been slightly increased, the degeneracy in the unmeasured directions will lift. Many such

optimizations initialized in parallel from low Rf will return distinct estimates as this alternating optimization-

initialization procedure continues. Further, if the increase in Rf is sufficiently gradual, some of these estimates

may track the lowest minima whose basins of attraction narrow with higher Rf as seen in Figure 2.7d. In this

way, the largest contributions to the conditional expectation Eq. 2.35 value could be systematically followed

to the tiny basins that are virtually invisible for high model precision.

With this brief outline, let us propose the following annealing-like algorithm. To broaden the gener-

ality of this method, and to emphasize the equal footing of parameters and states, we write X to include static

unknown parameters P:

{X} ≡ {x1, ...,xN ,P}. (3.4)

Choosing an initially small Rf = Rf0, perform Q minimizations of A(X|Y) over the joint state and parameter

space X. At this first step, these optimizations are initialized randomly, generally by uniformly sampling

the states xd(t) from their dynamical range and the parameters from their presumed range. This is the first

step of the anneal, and the resulting paths X̂q,0 of these optimizations are then used as the initialization for

a new minimization with Rf = Rf0α , where α is fixed at some value larger than one. This is continued

for β = 1, ...,βmax, with Rf increasing from Rf0αβ to Rf0αβ+1 at each step. The result is a collection of Q
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estimated paths and parameters for each annealing level β , labeled as

{X̂q,β}, (3.5)

with corresponding

Âq,β ≡ A(X̂q,β |Y). (3.6)

This procedure, which we call variational annealing, is described in Algorithm 1 and was introduced in [Ye

et al., 2015a, Ye et al., 2015b] and utilized in [Breen et al., 2016, Kadakia et al., 2016] where further illustra-

tions and discussion can be found.

3.1.1 Variational annealing as homotopy continuation

The graduation deformation of the cost surface resembles a similar method for tracking solutions to

nonlinear differential equations, called homotopy continuation [Allgower and Georg, 1990, Li, 1997]. The

idea of homotopy continuation is that the solution of a nonlinear system of equations might be reliably tracked

by beginning with the known solution of a simpler but related system which can be deformed into the original

one in a continuous way. For example, g(x) = x3− 8 = 0 can be deformed into x3− x2− 4 = 0 by solving

g(x,γ) = x3− 8+ γ(−x2 + 4) = 0 from γ : 0→ 1. That is, one uses the solution of g(x,0) = 0→ x = 2 to

initialize a search for g(x,1/N) = 0, and so on, for N steps until the solution g(x,1) = 0 is determined with

what is (hopefully) a well-informed initial guess.

Variational annealing exploits a similar notion, that the Gaussian error action with weakly enforced

dynamics is not only trivial but nearly degenerate; it corresponds to homotopy continuation with β taking

the role of γ . The motivation is that while the lowest minima demanded by Laplace’s Method in Eq. 2.36

may exist in extremely narrow basins of attraction (Figure 2.7d), the degenerate solutions at low Rf may first

place at least some components of the estimates in their vicinity, before the appearance of the many spurious

minima at higher Rf. The connection between variational annealing and homotopy continuation is simply

being mentioned here as a matter of theoretical interest, but suggests some fruitful directions for future work.



38

Table 3.1: Algorithmic parameters for variational annealing of 10-D Lorenz 1996 model.

α 2.0 βmax 30
Rf0 1e-4 L {1,...,5}
Q 10,000 σ2 = 1/Rm 1.0
∆t 0.01 N 200

3.2 Inference in chaotic systems with variational annealing

3.2.1 Annealing plots

Fully visualizing the A(X|Y) manifold in ND+ P dimensions is impossible. One place we can

begin is a plot of the estimated minimum values through the annealing progression – Aq,β versus β – with

an eye toward the dispersion of Âq,β as a function of experimental considerations such as observability (L)

and noise (σ = 1/
√

Rm). Specifically, In these “annealing plots,” we expect that for β ≈ small, all of the

Âq,β are approximately equal, this degeneracy lifting as β increases and the model dynamics are enforced.

With sufficient β the estimates will begin to settle into distinct minima, with the hope that many converge to

the global minimum corresponding to the true path. Of course, how many do so is a strong function of the

number and character of the observed datapoints. In these plots, a particular progression of the estimate for

given q will be referred to generically as a “run.”

3.2.2 Reliable estimation of sparsely observed Lorenz 1996 model

Let us use these plots to investigate the performance of variational annealing for the Lorenz 1996

model in ten dimensions (Eq. 2.29), given the model and algorithmic conditions listed in Table 3.1. We saw

in Figures 2.5 that the surface of A(X|Y) with these chaotic dynamics is riddled with local minima, and our

hope is that a large proportion of distinctly initialized runs will track the global minimum corresponding true

path despite this fractal character.

We first generate synthetic observations as before by integrating the Lorenz model equations (Eq.

2.29) with a 4th-order Runge-Kutta integrator and infusing the resulting trace with additive normally dis-

tributed noise of variance σ2 = 1.0. These data are used as Y in the measurement term in of A(X|Y), Eq. 2.44,

with various numbers of observed components from one to five to compare the algorithm performance as a

function of observability. Traces of some of these data are shown in Figure 3.1 to give an idea of the noise
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Figure 3.1: Observations (black dots) and true trajectory (blue solid curve) for two variables in
the variational annealing numerical experiments on the Lorenz 1996 chaotic attractor.

deviation compared to the dynamical range of the model.

The measurement term of A(X|Y) is derived from an implicit trapezoidal integrator of the continuous

dynamics, whereby gd(·) in Eq. 2.44 is expressed as

gd({xm},{tm},∆t) = xd(tn)+
∆t
2
[ fd(x(tn))+ fd(x(tn+1))]. (3.7)

For each q ∈ Q, the annealing is initialized by uniformly sampling each component of X within [-15, 15],

which approximately spans the dynamical extent of the strange attractor. Variational annealing is then carried

out for each q as described in Section 3.1 and Algorithm 1, where the optimizations themselves are performed

with the interior point constrained optimization routine IPOPT [Wächter and Biegler, 2006]. Constraints are

enforced to maintain the variables within their given range; it appears that none of the variables hit the

bounds, so the constraints are inactive anyhow. In this case, IPOPT effectively performs Newton’s method,

for which we provide analytical expressions for both first and second derivatives of A(X|Y) explicitly, so no

finite difference approximations are needed. Each run completes in around 10 seconds on an Intel i7 quad

core processor.

Figure 3.2 shows the annealing plots for the five cases L = {1, ...,5}. Often, distinct runs will return

equivalent Âq,β values, so many of the 10,000 lines may be overlaid. To highlight this, the opacity of the

blue lines roughly reflects the multiplicity of a particular run. First observe the degeneracy alluded to earlier

for model inverse covariance. Though all 10,000 runs produce the same Âq,β for β / 15, the associated

estimates X̂q,β lie in distinct minima of the A(X|Y) manifold. They are truly degenerate, though only in

the unmeasured components – this is illustrated explicitly in Figure 3.3a: for β = 10, the 10,000 estimates
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Table 3.2: Number of unique minima Aq,βmax among 10,000 initializations in the estimation of the
chaotic Lorenz 1996 model with sparse observations, using direct optimization versus variational
annealing.

L = .. 1 2 3 4 5
Direct optimization 4199 1927 1647 1031 868

Variational annealing 124 40 16 3 2

Table 3.3: Likelihood of finding the global minimum of Aq,βmax among 10,000 initializations in the
estimation of the chaotic Lorenz 1996 model with sparse observations, using direct optimization
versus variational annealing.

L = .. 1 2 3 4 5
Direct optimization < 0.1 2.04 4.90 11.91 11.46

Variational annealing < 0.1 9.08 68.12 97.35 99.99

project to a single value along one of the the measured components x1(1.0), but scatter quite broadly along

an unmeasured x5(1.0). Compare this to a projection along two unmeasured variables, which is dispersed

broadly along both axes (Figure 3.3b). At sufficient Rf, the degeneracy begins to break and the measured

components begin to veer from the central line and settle in minima Âq,β , now of differing values; along the

unmeasured axes, further movement occurs (Figure 3.4).

Crucially, this level splitting depends heavily on system observability. We saw in Figure 2.5 that

the A(X|Y) manifold at high Rf is densely occupied by local minima, even when half of the variables are

measured. Yet the minima produced by variational annealing with the same observations are a tiny subset of

these – indeed only the lowest among them. This is seen quite explicitly by comparing the density of returned

optimizations in Figs. 3.4b to those in Figure 2.5. For L = 1, the number of distinct minima returned by

variational annealing is about 100, dropping to less than 20 for L = 3-5 (Table 3.2). In the direct optimization,

more than 800 distinct estimates were returned even for 50% observability.

More telling are the number of minima that lie at the expected global minimum for Rf → ∞. To

derive this global minimum value, note that in the Rf→ ∞ limit, the model term dominates A(X|Y), so X̂q,β

nearly mimics the true trajectory. Thus the model term in A(X|Y) is near zero, while the measurement term
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Figure 3.2: The annealing plots for the 1e4 parallel estimations of the Lorenz 1996 attractor using
variational annealing, for different levels of observability. The number of distinct minima reduces
a more variables are observed, but even for low observability, this number is far lower than what
was found in direct optimization. For sufficient observability, the global minimum is found with
near 100% reliability.
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Figure 3.3: (a) A 2D projection of the minima found with variational annealing for low Rf (β = 10)
shows that these minima scatter broadly along the unmeasured component x5(1.0) but are tightly
confined in the measured components x1(1.0). (b) This broad scattering is again seen for two
unmeasured components.
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Figure 3.4: (a) Projecting the estimate of the Lorenz 1996 model along the same axes as in Fig-
ure 3.3a, now with higher model precision β = 17, shows the movement of the estimates along
both components as the degeneracy lifts. (b) Same plot, now with β = 29, shows further move-
ment.



43

produces an expected error of:

E =

〈
N

∑
n=1

L

∑
d=1

Rm(n,d)
2

(yd(tn)− xd(tn))2

〉
(3.8)

=
N

∑
n=1

L

∑
d=1

Rm(n,d)
2

σ
2 (3.9)

=
NL
2

, (3.10)

which for this example equals {2.00,2.30,2.48,2.60,2.70} for L = {1, .., .5} in log base 10. The percentage

of the Q = 10,000 runs that achieve this value at βmax is shown in Table 3.3, and indicated qualitatively in

Fig. 3.2, where the lowest level appears quite dark for L ≥ 3. The advantages of variational annealing over

direct optimization are evident: remarkably, virtually all of the variational annealing runs find the global

minimum when L > 3, a feat accomplished by barely 10% for direction optimization.

In light of Laplace’s method, the global minimum is critical in that it dominates the expected value

integral Eq. 2.35 – if it is well separated from the local minima lying above. Consider for example L = 3,

where the lowest two levels seen in Fig. 3.2c are Âq1,βmax = 303.8 and Âq2,βmax = 368.014. When exponen-

tiated, the contribution of Âq1,βmax is more than 25 orders of magnitude smaller than that from the global

minimum, completely eliminating its relevance to 〈G(X)|Y〉. All subsequent examples illustrating the power

and versatility of variational annealing will thus center on our ability to find this path.

3.2.3 Estimation quality of globally minimizing paths

All these results notwithstanding, the goal of the estimation problem is inferring the unknowns: How

well do the estimated trajectories compare with the true ones? In Figure 3.5 is plotted the true and estimated

trajectory X̂q1,βmax corresponding to the lowest level Âq1,βmax . As indicated above, this estimate dominates

the expected integral when Aq1,βmax is sufficiently separated from the rest – this is true by at least four orders

of magnitude for L = 2, ...,5 and true to within 1% for L = 1. In this case, X̂q1,βmax will alone represent the

expected value of the path, 〈X|Y〉. The estimates are poor when a single variable is measured (aside from the

measured component x1(t)), but are quite accurate with only 20% observability, and excellent beyond. This

holds true not only for the observed components, but, importantly, the unobserved components as well.

It is the accurate determination of these hidden states that is the true test of variational annealing. We

are virtually agnostic about their trajectories and can at best choose them uniformly within a broad dynamic
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Figure 3.5: Optimal estimated paths (orange) versus true paths (black) in the Lorenz 1996 system
using variational annealing, for various numbers of observed components from one to five.
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Figure 3.6: Progression of an optimal estimate (top row in each set) and suboptimal estimate
(bottom row) as variational annealing progresses, plotted on the corresponding annealing plot for
L = 3. Each row of plots shows one observed variable (left) and one unobserved variable (right).
As β increases, the enforcement of model precision smooths the noisy trajectories found at low β ,
but even though the two A values of these estimates are fairly close at high β , only the lowest one
produces a truly accurate estimate of the unobserved components.
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range – yet nearly 7 in 10 attempts generates accurate estimations, even when observability is 30%; further, a

slightly higher observability guarantees that we locate these hidden trajectories with near perfect reliability.

Further insight can be gained by plotting the estimates as the annealing progresses. Figure 3.6

shows estimated trajectories for one measured and one unmeasured variable, for two distinct runs at a few

values of β . At low β , the estimates match the data closely in the measured components, but differ in

the unmeasured variables. At higher β , two things occur: the measured components smooth as the model

dynamics are enforced more stringently, and unmeasured components may converge toward the true states.

At high β , the estimate corresponding to the lowest Âq,β is excellent, though other estimates (even those of

slightly higher Âq,β ) may be quite poor. The lowest level Âq1,29 lies near the global minimum (Eq. 3.10), and

so we expect the estimate to match the true dynamics a priori. Not only is it comforting to see this borne out

by the time traces themselves, but also justifies the use of the more compact annealing plots as an informative

metric for estimation quality.

3.3 The local vs. the global perspective

Finally, let us return to our primary motivation in moving beyond Kalman filters: the absence of

an informative prior. The advantage of the filter was its computational simplicity via a systematic, gradual

incorporation of observed information, timepoint by timepoint. The upshot is that it necessarily propagates

forward the biases of the prior distribution, producing sensitivities to the presence of heavily non-Gaussian

features of the full distribution. Further, low process noise Qn compounds these sensitivities, demanding

judicious, yet often heuristic, tuning.

In theory this might have been addressed with an ensemble method such as the particle filter, but as

mentioned SMC suffers from untenable problems of dimensionality. With this in mind, variational anneal-

ing “works” for several reasons. First, even for mildly appreciable Rf, the global minimum of A(X|Y) is an

excellent approximation to the full distribution – it reflects estimates that are accurate by by orders of magni-

tude. This means i) the majority of the conditional distribution modes are a distraction and ii) it is absolutely

critical that these spurious modes are avoided. Variational annealing exploits these facts by working entirely

within a variational context which deforms the cost manifold in a systematic way. This is not possible in a

filtering context.

Second, it addresses the issue of uninformative priors in a different spirit. To be sure, variational
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annealing still relies on prior information: while in the filtering context, the prior is the actual estimate

distribution at the initial time – p(x0)) – in variational annealing, this information is effectively embedded as

the distribution of the optimization initialization at the first stage of the anneal, X0
init. Since Rf is so small,

the prior is broad in unmeasured variables and nearly delta peaked in the measured ones. But unlike in

filtering, the a priori information is encoded in the simultaneous trajectory at all timepoints n, the apparent

message being that tight initialization along the fully collocated trajectory of observed states (a “temporally

global perspective”) is more robust than a broad initialization of the states at a single time, x0, propagated

sequentially in time – the “local perspective.”

Third, there is the as yet unaddressed issue of computational complexity. Newton’s method requires

the storage and manipulation (e.g. inversion) of Hessian matrices, which can be unwieldy with large di-

mension. Fortunately, the Hessian ∂ 2
XA(X|Y) is block-banded, since only the collocated state variables at

neighboring timepoints are coupled together. The relevant manipulations can therefore be accelerated con-

siderably by using dedicated algorithms for sparse matrices [Pissanetzky, 1984]. This is crucial in that the

block-diagonal Hessian structure tames the complexity as a function of problem dimension and makes the

variational annealing procedure at all viable.

Finally, though not relevant to the example just shown, we can see that parameters in variational

annealing lie essentially on equal footing as states – the iterative framework having been dispensed with,

parameter estimation in variational annealing needs no artificial dynamics such as those alluded to in Sec-

tion 2.4.1. While parameter estimation will be explored in considerable detail in Chapter 4, it will be helpful

to motivate this particular advantage of variational annealing with an illustrative example of a simple spiking

neural model.

3.4 Parameter estimation in variational annealing

The sensitivities of sequential filtering methods to their prior distributions are particularly important

in parameter estimation: oftentimes, more is known a priori about dynamical trajectories of biophysical

systems than the static quantities. Consider the dynamics of a single neuron, the details of which will be

discussed at length in Chapter 4. Ion channel conductances, which may vary over five orders of magnitude

even for a single class of neurons, could nonetheless produce spiking behavior in which the membrane voltage

is bounded tightly between -100 and 50 mV, and the gating variables between 0 and 1 [Dayan and Abbott,
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2005, Ermentrout and Terman, 2010]. Further, dynamical bounds for measured variables are constrained by

the known range of the observations themselves. Parameter ranges are considerably more lax, compounding

the problem of tracking spurious distribution modes.

In variational annealing, parameters pi and (collocated) states xa(tn) appear on the same footing. Pa-

rameters can be treated as they really are – constants a priori – at the cost of augmenting the dimensionality of

the optimization manifold from ND to ND+P. Of course, these extra dimensions will further complicate the

manifold of A(X|Y), likely inducing further local extrema concealing the global minimum and possibly com-

promising the efficacy of variational annealing. As a first step then, let us carry out an illustrative comparison

of the accuracy of variational annealing against a nonlinear Kalman filter in the 2-variable Fitzhugh-Nagumo

(FN) model 1 [FitzHugh, 1961].

3.4.1 Two-variable Fitzhugh-Nagumo neuron model

The Fitzhugh-Nagumo model is

dV
dt

= fV (V,w) =V (a−V )(V −1)−w+ I(t) (3.11)

dw
dt

= fw(V,w) = bV − cw (3.12)

which is parameterized by a, b, c, in addition to the “injected current” I(t) = I, which we assume to be con-

stant. V is akin to a membrane voltage, which we assume to be only measured component, with observation

noise σV = 0.01. (Further details of the HH model, upon which the Fitzhugh-Nagumo model is based, is

described in Chapter 4).

Estimation with unscented Kalman filter

Let us estimate FN model using both the unscented Kalman smoother and variational annealing. To

generate the true trajectory and synthetic data, we fix the parameters to the “true” values listed in Table 3.4

and integrate forward the dynamical equations Eq. 3.12 for some time. To apply the unscented Kalman

filter, we promote the parameters to states with trivial dynamics d pi/dt = 0 plus associated process noise σpi

1The FN model of spiking neurons was developed in 1961 by R. Fitzhugh as a simplification of the original
Hodgkin-Huxley dynamics; an equivalent electrical circuit model was developed a year later [Nagumo et al.,
1962]
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Table 3.4: Algorithmic parameters for unscented Kalman filter applied to the Fitzhugh-Nagumo
model.

I 0.1 a 0.1 b 0.01 c 0.02 σV 0.001
σI 0.001 σa 0.001 σb 0.001 σc 0.001 σw 0.001

(chosen over several test runs to be as small as possible without causing filter divergence), listed in Table 3.4.

The state variables V (t) and w(t) are assumed to have process noise σV = σw = 0.001; the estimation was

fairly insensitive to further reduction in these values. Finally, the state and parameter estimates were each

discretized with a forward Euler step, which determines the updated means m−n in the filtering equations:

m−n = f(mn−1) (3.13)

where the vector space here is the augmented 6-dimensional state space [V,w, I,a,b,c].

The UKF was run for 2000 timesteps of size ∆t = 0.25. Kalman filters require statistics for the

Gaussian prior distributions at t0, for which we set:

mV (0) = yV (0)

mw(0)∼U [−3,3] (3.14)

and

mpi(0)∼U [pi− γ, pi + γ]

γ = 0.01,0.1,1.0,10.0. (3.15)

That is, the mean of the measured component V (t) was set to at its measured value, the mean of w(t) was

chosen uniformly from [−3,3] (concomitant with its approximate dynamical range), and the mean of the

parameter distributions were chosen uniformly from various ranges centered at their true value. Note that

these are not the initial covariances of the initial estimate, P0, rather the initial means, treated as random

variables. The initial covariance of the state and parameter distributions, P0, was assumed diagonal and

chosen optimally with several test runs (it should be noted that in real numerical experiments, this may not

always be possible).
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Table 3.5: Parameter estimates of the Fitzhugh-Nagumo model using i) the unscented Kalman
filter with various prior distribution strengths and ii) variational annealing with a very weak prior.

y I a b c

True value 0.100 0.100 0.010 0.020

γ = 0.01 0.102 0.100 0.010 0.021
γ = 0.1 0.150 0.101 0.010 0.019
γ = 1.0 -0.133 0.107 0.005 -0.010

γ = 10.0 -0.547 0.119 0.008 -0.005

Variational, γ = 100 0.098 0.100 0.998 0.020

For small-to-medium-sized misplacement of the parameter initializations, γ = 0.01 and 0.1, the

estimates at the end of the observation window were quite accurate, as indicated in Table 3.5. On the other

hand, when the prior parameter distribution is centered incorrectly, γ = 1 and 10, the estimates have degraded,

some appreciably.

Estimation with variational annealing

The variational annealing estimation requires no statistics for p(x0), rather initial guesses for the

collocated state-parameter space in the first annealing optimization, X0
init in addition to hard bounds during

the optimization itself (at all steps). For the states V and w, the states were confined to their dynamical range,

[−3,3]. Analogously to the UKF estimation, the parameter bounds were chosen as [−γ,γ] for various γ . The

initial guesses at the first anneal step (with Rf0 = 0.001) were chosen uniformly within these bounds and the

anneal was iterated for 30 steps in increments of α = 2.

For a broad range of γ , even as high as γ = 100, the parameter estimates with variational annealing

are excellent (Table 3.5). Moreover, the estimates are virtually unchanged beyond a certain value of the

annealing parameter Rf = Q−1, eliminating the need to tune the process noise for maximum performance. At

least in this particular case, variational annealing is far more robust to the type of parameter uncertainties that

commonly reflect the state of knowledge of real neural systems.

It was found that a lengthier filtering window can improve estimates for UKF; in particular, for

γ = 1.0, increasing the number of filtering steps from 2000 to 40,000 brought the parameters to errors within

the levels of the α = 0.1 estimates. Still, this fails to occur for α = 10.0; the estimates remain poor even

for such long time windows, suggesting that the spurious minimum to which the estimate has settled may be
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fairly peaked and impervious to further incoming observations.

This model, though a fairly simple one, is the best-case scenario for Kalman filters: the parameters

themselves enter the equations linearly and the model is relatively well-observed (50% of the variables are

measured). Yet the example still suffices to illustrate that parameter estimation may arise more naturally

in the variational context, which relies on a collocated cost function and does not require the introduction

of artificial time dependencies. The nonconvexities in the cost function imbued by unknown parameters –

particularly nonlinear ones – are well tamed, in contrast to the spurious modes that can trap the sequential

filter.

For the neural estimation problem, this is the key point. Filters are often applied to scenarios in

which the quantity of interest is the state vector at the final time in an estimation window. This is certainly

the case in weather prediction, for example, where knowledge of past temperature and climate conditions is

combined with 6-hour observation window and climate models to predict the next day’s forecast – all the

variables of interest are dynamical, coupled together via the primitive equations. In addition, meteorological

systems are sparsely but indefinitely observed.

Data collection in neural systems differs markedly from the meteorological context in that i) ob-

servations are not continuous, but gathered in short bouts, ii) background terms are virtually agnostic, and

iii) the key quantities of interest are not unobservable dynamical variables but static (or slowly-varying) pa-

rameters underlying network connectivity and critical timescales of activity. It is therefore appropriate that

a short-window optimization procedure may be more amenable to learning the variables of interest in neural

networks, where a few minutes of extracellular voltage traces or calcium fluorescence both contains a wealth

of information and exhausts the limits of experimental feasibility.



Chapter 4

Nonlinear estimation in neural systems

Neural networks are among the most complex dynamical systems in nature. Even the behavior of a

single neuron requires highly-detailed, nonlinear biophysical descriptions to faithfully describe the transfor-

mation of input stimuli to robust action potential propagation [Dayan and Abbott, 2005, Izhikevich, 2007,Er-

mentrout and Terman, 2010]. It was realized in the middle of the 20th century that a description of neurons

as leaky capacitors with stochastically-driven ion “gates” could reproduce excitable, spiking behavior in a re-

markably faithful and parsimonious way [Hodgkin and Huxley, 1952, Catterall et al., 2012]. It soon became

clear that the transition from quiescence to spiking was a manifestation of a particular class of bifurcations,

ubiquitous in nonlinear dynamical systems.

Bifurcations are topological changes in dynamical behavior via changes in parameterization [Stro-

gatz, 2001]. The defining feature is that these change are qualitatively discontinuous, as opposed to gradual

or predictable. To make this distinction, compare the following two examples:

• A simple harmonic oscillator is parameterized by its spring constant k. For any given k, the portrait in

the x-v phase plane traces the same curve – an ellipse – merely of differing size and shape. Since there

are no qualitative behavioral changes, the system does not undergo a bifurcation with respect to k.

• A damped harmonic oscillator is parameterized by both spring constant k and damping coefficient γ .

For sufficient γ , the oscillator exponentially decays to its equilibrium; however if γ is sufficiently small,

it will oscillate about its equilibrium with diminishing amplitude. These phase portraits are qualitatively

distinct: the first is a curve that connects to the origin, while the second is a curve that spirals toward

52
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the origin. The system therefore undergoes a bifurcation as a function of γ .

The second example, though a simple, linear system, illustrates the defining feature of bifurcations:

continuous changes in parameters produce abrupt changes in system response. Nonlinear systems are even

richer, exhibiting not only equilibria and periodic orbits, but limit cycles and chaos – indeed it is the bifur-

cation from a stable equilibrium to a limit cycle that accounts for the generation of action potentials in the

spiking neuron.

The message here is that parameters in biophysical neural models fundamentally encode the breadth

and qualitative character of neuron response; yet they can rarely be probed directly by experiment. So enters

the role of nonlinear inference. In this section we will apply the tools described in the previous chapter,

variational annealing, to the determination of neural network parameters in a biophysically-inspired model of

neurons that underlie vocal processing in the avian brain. Let us begin with a discussion of the physical basis

of the model neuron and an analysis of its dynamics via bifurcation theory.

4.1 The Hodgkin-Huxley neuron

The modern mathematical description of a point neuron as a nonlinear continuous dynamical system

owes its development to the work of Alan Hodgkin and Andrew Huxley in 1952. This formulation, known

as the Hodgkin-Huxley (HH) model, has been proven remarkably robust and predictive, to the extent that

virtually every neuron characterized in the 70 years since can be described within its framework [Johnston

and Wu, 1994].

Two success of the HH model was predicated on two breakthroughs: i) a description of the lipid

bilayer membrane as a capacitative junction, and ii) a description of ionic motion through permissive ion

channels as a nonlinear voltage-mediated decay process. The equivalent electric circuit for this process is one

in which the capacitative membrane is in series with the resistive ion channels; by Kirchoff’s junction rule,

these currents must sum to zero:

dQ
dt

=Cm
dVm

dt
=−∑

i
Ii (4.1)

where Cm is the membrance capacitance, Vm the membrane voltage, and Ii the current through ion channel i.

How do ionic currents drive changes in the membrane voltage? Ions permeate into and out of a cell
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under the action of two forces. On the one hand, large disparities in concentration across the membrane would

produce a diffusive flux; on the other hand, ions are charged, and this flux would soon lead to an opposing

electrical force. As we would expect, an equilibrium situation exists when the chemical gradient is balanced

by the voltage gradient. The total flux and associated current derived from this collective electrochemical

gradient is

JT = Jdiffusive + Jelectric =−
µkT

q
∂ [C]

∂x
−µz[C]

∂Vm

∂x
(4.2)

IT =−µzRT
∂ [C]

∂x
−µz2F [C]

∂Vm

∂x
, (4.3)

where µ is the ion mobility, [C] its concentration, and z is its valence. The first term arises from Fick’s Law

and Einstein’s relation D = µkT
q ; the second is the microscopic Ohm’s Law. Equilibrium, JT = 0, results

therefore when the voltage drop across the membrane is

Veq =−
RT
zF

ln
[C]in
[C]out

. (4.4)

In other words, for a single ion channel, when Vm = Veq, Eq. 4.1 is identically zero and the neuron

is at rest 1. The consequence of Eq. 4.4 is that deviations from Veq produce current flow, the magnitude of

which depends on a (possibly voltage-dependent) conductance gi(Vm):

Ii = gi(Vm) · (Vm−Veq,i). (4.5)

Extending to many ion channels, each channel with associated equilibrium potential Veq,i ≡ Ei:

Cm
dV
dt

=−∑
i

gi · (V −Ei), (4.6)

where here forward, Vm ≡V for notational brevity and the voltage-dependence of g is understood.

The second core feature of the HH model is its specification of the voltage-dependent ion conduc-

tances gi. The idea is to model the ion channel as a collection of “gates” which open and close stochastically,

1Eq. 4.4 is no doubt familiar to solid state physicists – it is analogous to the expression for the built-in
voltage of a p-n junction as a function of electron or hole density. This is of course unsurprising – elec-
trons and holes are also charged species that equilibriate under the combined action of electric and chemical
potentials
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with voltage-dependent rates, α(V ) ≡ α and β (V ) ≡ β , respectively. By the mass action law, the rate at

which the gates close is proportional to those that are currently open, with proportionality constant given by

the voltage-dependent rate β , and vice versa. Denoting the fraction of open gates at time t by n(t), this gives

dn
dt

= α(1−n)−βn =
n∞(V )−n

τ(V )
, (4.7)

where the steady state function n∞ and decay rate τ(V ) can be written in terms of α , β . The latter expression

is more illuminating in that it indicates that, out of equilibrium, n(t) exponentially decays to the baseline

n∞(V ) with rate τ(V )−1. In their original paper, Hodgkin and Huxley determined this baseline function by

fitting of experimental data. In fact, it is found that quite often, n∞ is logistic, which suggests a situation in

which the gates are “activated” with increasing (or decreasing) voltage.

Since the gating function n(t) gives the percentage of open gates within the ion channel; the con-

ductance can be expressed by multiplying this function by some maximum constant value, whereby

gi = ḡinp(t), (4.8)

where ḡi is the maximal conductance when the gates are fully opened, and where p is an integer power – the

conductance gi is not constant but depends on time through the gating variable n(t), which in turn depends on

the state of V (t). This power is used to indicate the number of independent components of the ion channel,

all of which must be activated to allow current to fully flow. The original HH model, which modeled the

giant squid axon, assumed the existence of potassium and sodium channels, along with a persistent, non-

gated “leak” channel that serves more or less as a catch-all for other currents not explicitly modeled. For

potassium, p = 4, while for the sodium channel, p = 3, but it includes also an inactivating gate h(t) which

must be closed for current to flow. The full dynamical model equations for the squid axon thus assume the

form

Cm
dV
dt

=−ḡNam3h · (V −ENa)− ḡKn4 · (V −EK)− ḡL(V −EL)+ Iinj(t)

di
dt

=
i∞(V )− i

τ(V )
(4.9)

for gates i = {m,n,h}, where Iinj indicates additional injected currents. The steady state logistic function can
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Table 4.1: Parameters of Hodgkin-Huxley model, Eqs. 4.9.

EK -80 EL -55 ENa 50 mV
ḡK 360 ḡL 3 ḡNa 1000 nS
θm -40 θn -55 θh −62.2 mV
σm 10 σn 20 σh -5 mV
τm,0 0.05 τn,0 1 τh,0 1 ms
τm,1 0.4 τn,1 5 τh,1 7.5 mV
τm,2 0 τn,2 0 τh,2 0 mV
Cm 1 pF

be modeled many ways; for the remainder of this thesis we will use

i∞(V ) =
1
2

(
1+ tanh

V −θi

2σi

)
. (4.10)

The fact that the inactivating gate h must be closed to open the sodium channel is indicated by a negative value

for σh – it is a negative logistic function. The time constant functions τi(V ) are generally more heuristic (or

even assumed constant); the following model is appropriately versatile:

τi(V ) = τi,0 + τi,1

(
1− tanh2 V −θi

2σi

)
+ τi,2

(
1+ tanh

V −θi

2σi

)
. (4.11)

The Hodgkin-Huxley neuron is four-dimensional and nonlinear, parameterized by various constants

that enter the dynamical equations both linearly (Ei, ḡi, Cm) and nonlinearly (everything else). Key among

these parameters is the injected current, if assumed constant: the variation of Iinj accounts for a critical

bifurcation that allows the neuron to transition from a stable resting state to robust spiking [Ermentrout and

Terman, 2010].

4.1.1 Hopf bifurcations in the HH model

To investigate the dynamical behavior of the model, let us fix all parameters except Iinj, assumed

constant, to the values given in Table 4.1. Since the system is 4-dimensional, it is impossible to plot all

variables simultaneously, but a phase portrait in the V -n-h manifold will show the salient dynamical behavior.

Figure 4.1 shows phase portraits of the system when Iinj is set first to 0 pA, and then to 70 pA. These

trajectories were determined by integrating forward the HH equations, Eq. 4.9, for 1 second in timesteps
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Figure 4.1: (a) Phase portraits of the Hodgkin-Huxley neuron in the V -n-h manifold, using the
parameterization listed in Table 4.1 and with 0 pA of injected current. The three trajectories,
initiating at different points, all converge to the same fixed point. (b) Phase portraits of HH model
with the same initial points as in (a), but now 70 pA of injected current. All three initializations
converge to the same limit cycle (black dotted curve) representing tonic spiking.

of ∆t = 0.005 ms, using a 4th order Runge-Kutta numerical integrator, and initialized from various random

points in the approximate dynamical range. It is evident from Figure 4.1a that a stable fixed point with

relatively large basin of attraction exists when the bifurcation parameter Iinj is set to 0 pA. On the other hand,

we see in Figure 4.1b that a stable limit cycle, with large basin of attraction, occurs with Iinj = 70 pA. Since

these behaviors are qualitatively quite distinct, a bifurcation must occur somewhere between these points.

Specifically, stable node loses its stability via the creation of a stable limit cycle, which is known as a Hopf

bifurcation [Strogatz, 2001,Ermentrout and Terman, 2010]. To see this in detail, a plethora of phase plots like

those in Figure 4.1 would need to be examined and compared for various bifurcation parameters. However,

the qualitative behavior can be visualized in a single plot known as a bifurcation diagram.

The bifurcation diagram for this HH system is shown in Figure 4.2. The x-axis is the bifurcation

parameter, Iinj and on the y-axis is the membrane voltage V . Rather than plotting phase plots of the system,

we only plot the limiting qualitative dynamical behavior: fixed points, (stable fixed points in blue, unstable

ones in red) and limit cycles. The diagram plots the V -component of the fixed points (equilibria) that exist

for various values of the bifurcation parameter. Some regions may also contain a stable limit cycle, whose

maximum and minimum voltage values are indicated by in grey.

The fixed points were found by setting the HH dynamical equations, Eq. 4.9, to zero; this system
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of nonlinear algebraic equations was solved with hundreds of initial guesses (for each value of Iinj to find all

possible such points. The fixed point stability was then found by calculating the eigenspectrum of Jacobian

of the HH vector field; the system is locally unstable when the real part of at least one of these eigenvalues is

positive.

We see in the bifurcation diagram shown in Figure 4.2a that the neuron spikes for steady injected

currents between 56.2 and 599.0 pA. Outside this range, the system will decay to a stable resting voltage

somewhere around -60 V. Further, the stability of these low voltage fixed points is lost for injected currents

lying between 138.5 pA and 359.5. The combination of these fixed points and limit cycles therefore produces

a feature that will we will meet again in our models of the HVC neuron: bistable regions in which stable

limit cycles and stable fixed points coexist, between 56.2 and 138.5 pA and between 359.5 and 599.0 pA.

Depending on the relative sizes of the attractive basins and the initial point, the neuron may either spike or rest

for steady injected currents in these ranges. We will soon see that when a spiking neuron is combined with

an additional slow subsystem, bistability can be exploited to produce an even richer repertoire of stimulus

response.

A similar diagram is shown in Figure 4.2b, except with the gating parameter θh now set to the

slightly different value of -60.7 mV. Though the diagram is qualitatively similar to that in (a), the regions

of stability, spiking, and bistability have shifted. One may imagine that an opposing change in θh could

annihilate the unstable fixed points altogether. One could imagine even further changes in behavior as any of

the other two dozen parameters are adjusted. Even in this relatively small system of just four variables, the

behavior is rich and quite varied.

4.2 Projection neurons in the zebra finch HVC

4.2.1 Modeling nonlinear biophysical neurons and the role of inference

Though the Hodgkin-Huxley model is a bare-bones description of a point neuron with no spatial

extent or dendritic interaction, it has been enormously applicable in faithfully describing specific neural

firing patterns throughout the animal kingdom [Koch and Segev, 1998, Dayan and Abbott, 2005, Izhikevich,

2007, Sterratt et al., 2011]. Further, it is modular and therefore amenable to straightforward extensions – one

only need identify the existing ionic channels and add their corresponding functional forms to the sum of
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Figure 4.2: (a) Bifurcation diagram of the Hodgkin Huxley model with parameters listed in Ta-
ble 4.1. Stable fixed points are shown in blue, unstable fixed points in red, and stable limit cycle
bounds in black. (b) Similar bifurcation diagram of the HH neuron, except now with θh =−60.7.
The behavior of the system is qualitatively similar to an extent. The bistable regions, for exam-
ple, have shrunk considerably, and further increases in θh would produce a vanishing of the stable
regions entirely.

ionic currents in Eq. 4.1.

As an aside, a large lexicon of “reduced” HH-type models has been developed and classified, their

behavior systematically understood via bifurcation theory [Izhikevich, 2007]. These models can individually

reproduce many desired features of spiking models, and, though not emphasized in this thesis, provide alter-

nate descriptions of reduced dimensionality with minimal compromises in qualitative behavior. We should

keep in the back of our mind this that there indeed exists an array of options when choosing biophysical

neural models for the purpose at hand.

In developing HH-models of single neurons, a useful starting point is the experimental identification

of existing ionic channels using pharmaceutical agents. In practice, this information is binary: the physiolo-

gist may be able to identify that an interneuron, for example, contains several distinct Na and K channels in

addition to calcium channels, but may not know how strongly these channels contribute to the overall current

– for example, ḡi – nor their kinetic details embodied by the gating parameters and timescales, θi, τi, etc.

Yet the lesson of bifurcations is that these parameters are absolutely central, accounting for not only contin-

uously varying quantities such as spiking frequency and spike amplitude, but qualitative distinctions such as

the regimes that spiking even occurs at all.
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The importance of parameterization in bifurcating nonlinear systems illustrates the power of neural

modeling from the “inverse” viewpoint of nonlinear inference: i) known anatomical features are used to iden-

tify a general model description (say, a set of differential evolution equations), whose unknown parameters

are then ii) found by passing electrophysiological data into the estimation algorithm. With this in mind, let

us apply this idea to a particular class of neurons in the avian vocal pathway, by beginning first with what is

known about the anatomy and behavior of this widely-studied neural system.

4.2.2 Zebra finch HVC

We will focus here on a particular avian species, zebra finch: a colorful songbird that expresses a

short, stereotyped mating call throughout its adult lifetime, following a several month sensorimotor period

of learning as a juvenile [Hahnloser et al., 2002, Fee et al., 2004]. Though the mechanics of this particular

species are in no way requisite for the estimation models investigated in this thesis, the system is interesting

in its own right as a template for language acquisition, syntax, learning, and synaptic plasticity in higher-level

organisms [Brainard and Doupe, 2002]. Indeed, the male zebra finch only learns a single ∼1 second song,

permitting repeated experimentation on the relevant neural mechanisms involved. This is contrast to other

songbirds such as Bengalese finch, which exhibit a still limited but more variable vocal repertoire [Okanoya,

2004].

Vocalization in zebra finch involves the interplay of several distinct brain regions. Primary among

these is the HVc (HVC), thought to initiate the string of neural events that ultimately lead to motor commands

in the vocalbox 2 [Yu and Margoliash, 1996, Mooney and Prather, 2005]. While the possibility remains

that HVC may in turn receive vocal initiation commands from other regions, nucleus uvaeformis (Uva) and

nucleus interfacialis of the nidopallium (NIf), lesion studies suggest that they may play a subsidiary role, if

any at all [Cardin et al., 2004, Coleman and Vu, 2005]. HVC in turn forges excitatory synaptic connections

with – “projects” to – other regions of the brain that assume distinct roles. In particular, HVC contains

projection neurons exciting those in the motor-command center robust nucleus of arcopallium (RA), known

to be responsible for directly driving the motor neurons in the vocalbox [Mooney, 2000,Mooney and Prather,

2005]. These neurons are denoted as HVC RA-projecting neurons or HVCRA neurons, and are the primary

focus of this chapter.

2HVC originally stood for “High Vocal Center,” a term which has been since deprecated.
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Figure 4.3: (top panel) An auditory spectrum of zebra finch mating call shows distinct syllables
comprising a single motif. (middle panel) Spike rasters of nine different HVCRA neurons through
several renditions of the song. Each projection neuron bursts at most once, at a tightly time-locked
instance in the song motif. (bottom panel) Spike rasters of two HVC inhibitory interneurons.
Interneurons spike more broadly in the song, although they appear to exhibit some instances in
which they are quiescent, perhaps pointing to the initiation of HVCRA bursts from a release of
inhibition [Gibb et al., 2009, Kosche et al., 2015]. [Reprinted by permission from Macmillan
Publishers Ltd: Nature 419(6902):65–70, copyright 2002]

4.2.3 Sparse, robust bursting in HVC projection neurons

HVCRA neurons have attracted a great deal of attention for the following reason: during a song

motif, they exhibit a peculiar firing pattern consisting of only a single short 3-5 ms burst [Hahnloser et al.,

2002]. This solitary burst of activity appears to occur repeatably and at the same instance of any given

rendition of the motif (Figure 4.3). They are also highly stereotyped, exhibiting little jitter or variation in

spike frequency or length across song renditions. That is, they appear to be time-locked somehow to the song

itself, and there is an ongoing debate concerning whether these bursting patterns are in correspondence with

particular acoustic features of the song, or rather to the exact timing at which these features occur [Long

and Fee, 2008, Goldin et al., 2013, Kosche et al., 2015]. These competing perspectives suggest differing

network topologies, from feed-forward synaptic chains to broader, less-directed connection webs [Jin et al.,
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2007, Gibb et al., 2009, Long et al., 2010, Kosche et al., 2015].

In contrast to RA-projecting neurons, inhibitory interneurons fire densely throughout the song, ex-

hibiting a fair amount of variation by rendition, as shown in Figure 4.3 [Mooney and Prather, 2005]. It has

been observed that they do exhibit brief pauses, possibly coincident with HVCRA bursting, and may therefore

play some role in suppressing the projection neurons until it is “their turn” to fire during the song [Gibb et al.,

2009, Kosche et al., 2015].

How the interplay of interneurons, projection neurons, and others lead to the sparse, robust pattern

found in zebra finch requires a full understanding of both cellular and network properties of HVC circuitry.

This is still an open problem, of which the remainder of this chapter will address the following: i) the con-

struction of a comprehensive model of RA-projecting neurons and ii) a method for inferring the full param-

eterization of the model from current clamp data, within the constraints of available electrophysiology. This

proposed ideas will generalize readily to the larger features of the system, such as the features of interneurons

and connection topologies, and the intent being that a combination of systematic methods of inference and

clever experimentation can eventually uncover the neural mechanisms responsible for vocalization.

4.3 Modeling the HVCRA neuron

4.3.1 Known anatomical features

A number of electrophysiological studies have elucidated the characteristics of various neuron

classes present in HVC [Kubota and Taniguchi, 1998, Mooney and Prather, 2005, Long et al., 2010, Daou

et al., 2013]. For RA-projecting neurons in particular, there is strong support for the presence of both calcium

channels and calcium-mediated channels, such as calcium-gated potassium channels. In addition to these and

the usual Na+ and K+ channels, there appear to be A-type currents, responsible for spiking delay in response

to depolarizing currents.

As we will see, the combined action of calcium channels and calcium-mediated channels will to-

gether conspire to produce the robust type of short bursting observed in HVCRA neurons. For the purposes

of this thesis, we will ignore the action of A-type currents, which do not affect the bursting behavior. We will

first begin with a model for calcium and calcium-mediated channels, drawing again on the total channel flux,

Eqs. 4.2 and 4.3.
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4.3.2 Calcium channels and the GHK equation

Calcium channels require a slightly different description than the conductance-gating description of

the Hodgkin-Huxley model, one that respects the vast differences in Ca concentration on either side of the

neuron cell body membrane. Consider again the ion current equation, derived by summing the electric and

chemical forces acting upon the charged ion species of valence z and mobility µ:

IT =−µzRT
∂ [C]

∂x
−µz2F [C]

∂V
∂x

. (4.3 revisited)

Recall that the expressions for ion current, I = ḡnp(V −Veq) were derived by using Eq. 4.3 to determine the

equilibrium voltage Veq and assuming that current flows under the combined effect of an Ohmic dependence

on (V −Veq) and additional non-Ohmic gates n. Disregarding the action of the gate for a moment, how

appropriate is the Ohmic assumption? Certainly it is true when V ≈ Veq, but this may be easily violated

during an action potential.

It turns out that the assumption is valid when the disparity in concentrations on either side of the

membrane, [Cout] and [Cin], is moderate. To see this, let us revisit the channel current, but now model the

membrane more realistically as having a finite width l, and include the simplifying assumption that the

electric field within the membrane is constant. The latter assumption removes V (x) in favor of only the

voltage drop across the membrane ∆V ≡V :

IT =−µzRT
d[C]

dx
−µz2F [C]

V
l
, (4.12)

assuming a steady state. This is a first order boundary value equation, where we enforce that the ion concen-

tration on either side of the cell membrane equals the intracellular and extracellular concentrations:

[C](0) = [C]in

[C](l) = [C]out (4.13)

A solution to the differential boundary problem is

IT,CF(V ) =−gGHKV
[C]oute−V/VT − [C]in

e−V/VT −1
, (4.14)
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Table 4.2: Constant field (GHK) model parameters for various ions.

[Na+] [K+] [Ca2+]

[C]out (mM) 145 5 2.5
[C]in (mM) 15 140 1e-4
VT (mV) 25 25 13
Veq (mV) 55 -83 130

where CF denotes the “constant field” approximation, gGHK is composed of various constants, and

VT =
RT
zF

(4.15)

is the “thermal voltage” in analogy to the carrier activation voltage in semiconductors. The notation “GHK”

signifies Goldman, Hodgkin, and Katz, after whom this equation is named [Hille, 2001, Ermentrout and

Terman, 2010].

The GHK current-voltage relationship is clearly not ohmic. To gain some insight into the relevance

of the linear assumption, consider the I-V characteristics for Na and K, plotted in Figure 4.4a, along with the

associated ohmic approximation centered at Veq; typical concentrations for these ions in mammalian species

are given in Table 4.2. Since the concentrations of K and Na on either side of the neuron membrane differ

by at most 10-30 times, the ohmic approximation remains reasonable in the range of physical membrane

voltages, between -80 and 30 mV.

Conversely, calcium concentrations on either side of the neuron membrane vary by as many as

four or five orders of magnitude. This pushes the equilibrium voltage up above 100 mV, and the strong

rectification renders the Ohmic approximation completely invalid in the spiking regime – the constant field

and ohmic expressions differ by several orders of magnitude (Figure 4.4b). For this reason, calcium currents

are often modeled by the GHK expression when computationally feasible, with the clear disadvantages of

added complexity, parameterization, and nonlinearities in the model description.

Pharmacological experiments have pointed to the presence of these calcium currents in HVCRA

neurons, in particular a high-threshold “L-type” current which assumes a functional form composed of the
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Figure 4.4: (a) Magnitude of ion channel current as a function of constant membrane voltage,
using the gating-ohmic approximation of the channel current (Eqs. 4.5 and 4.8), shown by the
dotted line for Na (blue) and K (orange). The currents given by the more exact GHK expression,
Eq. 4.14, is shown by the corresponding solid lines. The gating-ohmic conductance expression is
a fair approximation, even far from the equilibrium voltage. (b) A similar comparison for calcium
channels. Since calcium concentrations differ markedly on either side of the cell membrane, the
gating-ohmic and constant field expressions differ by several order of magnitudes.

maximal conductance indicated by the GHK equation and gating variable r [Daou et al., 2013]:

ICa-L = ḡCa-Lr2
ΦGHK(V ) (4.16)

ΦGHK(V ) =V
[Ca]oute−V/VT − [Ca]

e−V/VT −1
(4.17)

dr
dt

=
r∞(V )− r

τr(V )
, (4.18)

where [Ca]in ≡ [Ca]. In modeling HVCRA neurons, we will utilize the realistic concentration-dependent

dynamics inherent in the GHK description, keeping in mind that if the parameterization proves unwieldy, this

equation could be swapped in favor of a less realistic Hodgkin-Huxley-type gating model.

4.3.3 Calcium-gated potassium channels and calcium dynamics

Due to the large concentration of extracellular calcium relative to that inside the cell, the intracellular

calcium can fluctuate substantially during neuron activity. The Ca influx in turn may drive other channels,

which are activated by the presence of other ions and are highly selective to calcium [Ermentrout and Terman,

2010]. One such channel whose presence in HVCRA has been suggested pharmacologically is the calcium-

gated potassium channel, IK/Ca, which is modeled as an ohmic channel, but with a gating variable that depends
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on intracellular calcium concentration [Ca]in ≡ [Ca] [Daou et al., 2013]:

IK/Ca = ḡK/Car∞([Ca])(V −EK) (4.19)

r∞([Ca]) =
[Ca]2

[Ca]2 + k2
s
. (4.20)

The functional form of r∞([Ca]) is known as a Hill function and is logistic, in analogy to the limiting voltage

gating functions n∞, r∞, etc. Though not shown for notational brevity, the intracellluar calcium concentration

[Ca] is explicitly time-dependent. What are its dynamics? The influx of calcium arises from the action of the

L-type channel, while a return to baseline is maintained calcium buffers and pumps. Thus:

d[Ca]
dt

= φ ICa-L +
[Ca]0− [Ca]

τCa
, (4.21)

where [Ca]0 is an intracellular equilibrium background concentration. Of particular note is the value of the

decay time constant, τCa – it is between 20 and 100 ms, an order or two slower than the frequency of spiking.

The consequence of these two disparate timescales will soon become apparent.

4.3.4 Multiple timescales and the origin of bursting

The behavior of HVCRA during a song motif is defined by a single, short series of spikes, time-

locked to multiple renditions of the song. One may imagine that these bursts arise from a sustained pulse of

synaptic current, lasting for the duration of the burst, about 5 ms. But noise in synaptic currents would then

introduce a variability in burst length and firing rate that does not otherwise exist – the bursts exhibit little

variation in spike frequency and length over repeated song renditions.

An alternative viewpoint, in line both with this stereotypy and with the experimental evidence for

the presence of dominant calcium channels, is that bursting arises from a cellular mechanism alone [Jin

et al., 2007]. This occurs fundamentally via i) the interplay of disparate timescales and ii) the presence of

coexisting stable states. To see this, let us view a bifurcation diagram of the model Hodgkin-Huxley neuron

with usual Na, K, and leak channels, and in addition the calcium channel and calcium-gated potassium

channels described by Eqs. 4.16 and 4.20. However, instead of retaining the calcium dynamics (Eq. 4.21),

we will fix [Ca], treating it as a bifurcation parameter. The question then is, What are the possible behaviors

of the system for a particular value of [Ca], with constant injected current?
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Table 4.3: Parameters of Hodgkin-Huxley model neuron with traditional Na, K, and leak currents,
in addition to Ca currents, Ca dynamics, and Ca-gated potassium currents.

EK -90 EL -80 ENa 55 mV
ḡK 120 ḡL 3 ḡNa 1050 nS
θm -30 θn -35 θh −45 mV
σm 9.5 σn 1 σh -7 mV
τm,0 0.01 τn,0 0.1 τh,0 0.1 ms
τm,1 0 τn,1 0 τh,1 0 mV
τm,2 0 τn,2 0.5 τh,2 0.75 mV
[Ca]out 2500 C0 0.2 ks 2.0 µM

θr -40 σr 10 ms
Cm 21 pF

ḡK/Ca 120 nS
φ 5e-5 µM/pA/ms

τCa 60 ms
ḡCa-L 8e-3 nS/µM

The parameter values chosen for this illustration are shown in Table 4.3; the injected current is

held steady at 200 pA. (Note that for this bifurcation study, d[Ca]/dt = 0, so φ and τCa are irrelevant).

The corresponding bifurcation diagram for V as a function of the bifurcation parameter [Ca], in Figure 4.5,

with stable fixed points plotted in blue and unstable equilibria in red. For low calcium concentrations, less

than 0.4 or so, the only stable state is the spiking limit cycle. For a small region between around 0.42 and

0.50, a stable equilibrium at V ≈ −65 mV coexists with this limit cycle, while above 0.50, the spiking has

disappeared, given way only to the stable equilibrium and some other unstable fixed points.

The structure of this diagram gives a clue into how an internal cellular mechanism of calcium could

produce bursting. Low Ca concentrations would send the system into tonic spiking – this is the only stable

state. If the concentration then slowly rises, spiking will terminate when [Ca] surpasses 0.50, bringing the

neuron to its depolarized rest state at V ≈ −60 mV. If [Ca] then begins to decrease slowly, this stable equi-

librium will be tracked for some time. But further decreasing it beyond the turnaround at 0.42 will send the

system off of the stable fixed point and back to its only stable option – the limit cycle. If [Ca] begins to rise

again, the process repeats.

The interplay of the two distinct timescales is clear: slow Ca modulates the fast Na-K system be-

tween quiescence at high [Ca] and spiking at low [Ca], creating well-separated bursts without requiring the

modulation of the injected current. If the parameterization of the calcium dynamics – φ and τCa in Eq. 4.21 –

is chosen judiciously, then [Ca] will indeed traverse the bistable region from spiking to resting, producing the
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Figure 4.5: Bifurcation diagram for steady-state voltage in a HH-neuron, now with added Ca
channels and Ca-gated K channels; parameters indicated in 4.3. The bifurcation parameter is
intracellular calcium concentration [Ca], here assumed constant. Stable fixed points are shown in
blue, unstable fixed points in red, and stable limit cycle bounds in black. A region of bistability
is sandwiched between regions of tonic spiking on the left and hyperpolarized quiescence to the
right.

bursting behavior suggested by the bifurcation diagram. Indeed, when the [Ca] dynamics are turned on, with

parameters chosen as in Table 4.3, this is indeed what we find (Figure 4.6). The calcium concentration varies

in the expected range with the peak concentration ([Ca] = 0.51) coinciding with the transition from spiking

to rest predicted by Figure 4.5.

4.3.5 Compartmental modeling and robust bursting

We see that neuron bursting can arise naturally from slow moving calcium ions. The original impetus

for searching for this type of cellular mechanism of bursting was the observed stereotypy of HVCRA bursts:

if burst or spike characteristics are sensitive to incoming currents, fluctuations in synaptic currents would

quickly destroy this homogeneity.

While calcium dynamics may produce bursting internally, is this enough to retain this robustness to

synaptic stimuli? Are the bursts still sensitive to the mean and variance of the injected or synaptic current? To

probe this, consider this neuron’s response to a pseudo-noisy current, which consists of uniformly chosen I

every ∆t = 5 ms between -300 and 300 pA, linearly interpolating between. The resulting voltage and calcium
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Figure 4.6: (a) Membrane voltage trace of HH-neuron with added Ca channels, Ca-gated K chan-
nels, and Ca dynamics (Eq. 4.21). As predicated by the bifurcation diagram in Figure 4.5, the
neuron switches between well-separated periods of tonic spiking and quiescence when injected
with a steady current. (b) The corresponding trace of intracellular [Ca](t).
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Figure 4.7: Voltage and calcium traces of the HH-neuron with Ca dynamics in response to noisy
injected currents shows that the individual burst waveforms, while separated, are still sensitive to
variations in the injected current.

traces are shown in Figure 4.7; the bursts are varied, ranging from 1 to 7 spikes or more.

So while the neuron may produce bursts, these bursts waveforms are somewhat sensitive to the

injected current. We can reduce this sensitivity by adding an extra mechanism between the calcium and

voltage bursts, slightly decoupling these phenomena. This can be accomplished in a biophysically-realistic

with some morphological considerations; in particular, we separate the fast spiking behavior and slow calcium

and calcium-driven currents into a separate somatic and dendritic “compartments.” These compartments are

connected ohmically, the intent being that the fast somatic spiking is now driven by broad dendritic voltage

bursts which wash out fast, subthreshold fluctuations and render the somatic spike bursts more robust.
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In this scheme, the membrane voltage dynamics assume the following schematic form:

Cm
dVs

dt
=−∑

i
Ii + ḡSD(Vd−Vs) (4.22)

Cm
dVd

dt
=−∑

i
Ii + ḡSD(Vs−Vd). (4.23)

where the somatic currents include K and Na, while the dendritic currents include low-threshold calcium and

calcium-gated potassium channels. Either the soma or dendrite could have injected currents, depending on the

experimental setup, although somatic injections are more feasible. Finally, the synaptic currents, included,

would be placed in the dendritic compartment.

With all this in mind, let us delineate the full model system for the HVC RA-projecting neuron, and

then illustrate how this compartmental model smoothes the sensitivity to variances in the injected current. We

will also show how the model qualitatively reproduces many experimentally-observed features of HVC RA-

projecting neurons in response to calcium blockers and varying injected currents. Finally, we will move to the

prodigious task of determining the many unknown parameters of this model from short, noisy, intracellular

recordings3

4.3.6 Full HVC model description and parameterization

The HVCRA neuron model is 7-dimensional, described by the following dynamical equations:

Cm
dVs

dt
=−IK− INa− IL + ISD + Iinj,s(t)

Cm
dVd

dt
=−ICa-L− IK/Ca− ISD + Iinj,d(t)

di
dt

=
i∞(Vs)− i

τ(Vs)
, i = m,n,h

dr
dt

=
r∞(Vd)− r

τ(Vd)

d[Ca]
dt

= φ ICa-L +
[Ca]0− [Ca]

τCa
, (4.24)

3This study is also described in detail in its original published form in [Kadakia et al., 2016].
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with the following ionic currents

IK = ḡKn4 · (Vs−EK)

INa = ḡNam3h · (Vs−ENa)

IL = ḡL(Vs−EL)

ISD = ḡSD(Vd−Vs)

ICa-L = ḡCa-Lr2
ΦGHK(Vd)

IK/Ca = ḡK/Cas∞([Ca])(Vd−EK) (4.25)

and static functions

i∞(V ) =
1
2

(
1+ tanh

V −θi

2σi

)
, i = m,n,h,r

τi(V ) = τi,0 + τi,1

(
1− tanh2 V −θτ,i

2στ,i

)
+ τi,2

(
1+ tanh

V −θτ,i

2στ,i

)
, i = m,n,h,r

s∞([Ca]) =
[Ca]2

[Ca]2 + k2
s

ΦGHK(Vd) =Vd
[Ca]oute−Vd/VT − [Ca]

e−Vd/VT −1
(4.26)

Note that the τi functions in this model are slightly more general than those in Eq. 4.11 in that the thresholds

and widths θτ,i and στ,i may be distinct than those in i∞(V ).

The conductance, timescales, threshold voltages, rate constants, and other parameters describing

this neuron may vary, sometimes considerably, even within the same class of RA-projecting neurons. The

parameters will of course be determined from data, yet as a first indication that the model lives at a proper

nexus of sparsity and versatility, let us illustrate a few responses that reflect at least qualitatively what is

known from experiment.

4.3.7 Qualitative experimental predictions

To this end, we will fix the parameters of this model to those listed in Table 4.4, which will also be

used to generate synthetic data to test the inference methods. The first feature predicted by experiment, of

course, are somatic voltage bursts more robust than those found in the single-compartment model, Figure 4.7.
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Figure 4.8: Injected current and responses of some dynamical variables in the two-compartment
HVCRA neuron model, Eqs. 4.24. (a) Injected current into the dendrite, consisting of pseudo-noisy
waveform in the excitable range of the neuron model. (b) Voltage response of neuron soma shows
that despite variations in the injected current, the bursts are highly stereotyped. (c) Broad dendritic
voltage bursts, which elicit the short somatic voltage bursts. (d) Corresponding calcium traces
show broad, slow decays before a new burst can be initiated.

Let us record the response to the pseudo-noisy injected current from before, consisting of uniformly chosen

Iinj,d every ∆t = 5 ms between -500 and 500 pA, linearly interpolating between (Figure 4.8a). The current is

injected into the dendrite, not soma, to mimic synaptic currents which pass from axon to dendrite, then to the

cell body. The resulting somatic voltage, Figure 4.8b, exhibits a tighter distribution of burst length and spikes

per burst, arising from the stereotyped dendritic bursts (Figure 4.8c), in turn caused by the slow motion of

calcium, which is now effectively decoupled from the cell body.

It has also been reported that the interburst interval is sensitive to the calcium channel conductance.

In particular, [Jin et al., 2007] have found that when calcium channel blockers are applied to the sleeping bird,

the time between bursts increases noticeably, and the opposite effect occurs with the application of calcium

enhancers. We can test this in the compartmental model by adjusting the calcium channel conductance, ḡCa-L
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Table 4.4: Parameters of two-compartment HVCRA neuron model.

ḡK 120 ḡL 3 ḡNa 1050 ḡSD 5 nS
ḡK/Ca 240 nS
ḡCa-L 0.06 nS/µM
EK -90 EL -80 ENa 55 VT 13.5 mV
θn -35 σn 10 θτ,n -27 στ,n -15 mV
θm -30 σm 9.5 θτ,m - στ,m - mV
θh -45 σh -7 θτ,h -40.5 στ,h -6 mV
θr -40 σr 10 θτ,r - στ,r - mV
τn0 .1 τn2 .5 τm0 .01 τm2 0 ms
τh0 .1 τh2 .75 τr0 1 τr2 0 ms
[Ca]0 0.48 ks 3.5 [Ca]out 2500 µM

φ 8.67e-5 µM/pA/ms
τCa 33 ms
Cm 21 pF

– a reduction would correspond to the presence of an antagonist, and an enhancement to that of an agonist.

Figure 4.9 shows the response of the neuron to a pseudo-noisy current with the original conductance ḡCa-L =

0.06 nS/µM, a reduced conductance of 0.03 nS/µM, and an inflated value of 0.18 nS/µM; the interburst

interval reproduces, at least qualitatively, the experimentally-backed expectations.

The authors in [Jin et al., 2007] also demonstrate a difference in response to somatically and den-

dritically injected currents. While step currents injected into the dendrite (externally or via synapses) elicit

an all-or-nothing burst, increasing step heights into the soma produce instead bursts of gradually increasing

spike count. We test this latter prediction by setting Iinj,s to values between 150 and 350 pA for a 20 ms

window. As seen in Figure 4.10, the spike count increases steadily with the injected current magnitude, in

contrast to an all-or-nothing burst with pre-defined spike count for dendritic current injections. We also see

that spikes may occur for low current injections without the presence of the initiating calcium burst.

Interestingly, the same study found that all-or-nothing bursting could be initiated with somatic cur-

rent injection if done in the presence of a calcium agonist. The model reproduces this finding as well: we

again inject a short 20 ms current step of varying magnitude with an enhanced calcium conductance of

ḡCa-L = 0.18 nS/µM, finding that for current magnitudes above 100 pF or so, a burst of fixed size and spike

count results (Figure 4.11). These somatic voltage bursts coincide with a calcium burst in the dendrite, which

is now easier to incite due to the calcium agonist.

These four behaviors corroborate the plausibility of the compartmental model of HVCRA neurons.
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Figure 4.9: Effect of calcium agonists on the HVCRA neuron are modeled by changes in the
calcium conductance ḡCa-L. The burst incidence increases as ḡCa-L is increased from 0.5 (top
panel), to 1.0 and 3.0 (middle and bottom panels), in line with experiment [Jin et al., 2007].

But exact metrics such as the waveforms of the spikes, spike count, burst sensitivity, etc., have not been tuned.

Since these aspects depend, sometimes quite sensitively, on the model parameterization, we must ultimately

leave the determination of the exact parameters to the inverse problem. To this end, we will now see how

variational annealing can be used to successfully determine the unknown parameters of our proposed HVCRA

model from realistic observed datasets and realistic prior information.
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Figure 4.10: The HVCRA does not exhibit all-or-nothing responses to current injected into the
cell body (somatic compartment), as indicated by experiment [Jin et al., 2007]. Somatic voltage
responses (left column) and calcium responses (right column) to short, 20 ms somatic current
pulses of varying magnitude are shown; the pulse magnitudes range from 100 pA in the top row
to 300 pA in the bottom row.
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Figure 4.11: The same plots as in Figure 4.10, now with the calcium conductance increased,
mimicking the presence of a calcium agonist. With sufficient agonists, the all-or-nothing behavior
can again be evoked, again in line with experimental evidence [Jin et al., 2007].
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4.4 Inferring the HVCRA model parameters

4.4.1 Information from transients

For single neurons, patch clamp electrophysiology can be used to accurately measure membrane

voltage response to injected current waveforms [Sakmann and Neher, 1984,Covey and Carter, 2015]. What’s

more, synaptic blockers may be used as well to eliminate synaptic currents to a large degree, functionally

isolating the cell from its environment. Since the current is delivered externally, it is known, but among the

variables in the model description, only the soma membrane voltage is observable.

The currents delivered in a current clamp experiment are user-defined. Step currents are informative,

but only weakly. A weak step current (below spiking threshold) would probe only a single point in the neuron

phase space – the fixed point at hyperpolarization – but even a higher step current would probe just a single,

periodic closed curve in phase space, the spiking limit cycle. The information transferred from the resulting

voltage traces would be far too little to successfully determine the many missing parameters. The same would

be true for other common current waveforms such as saws, pulses, and sinusoids.

An alternative viewpoint is to deliver an injected current that contains underlying structure, but

more densely fills phase space. This can be achieved by subjecting the neuron to a current that spans a broad

power spectrum and many characteristic frequencies. Since the neuron is stable (either to a limit cycle or

fixed point) in the dynamic range in question, static currents alone will quickly relax to their limiting stable

manifolds. Thus, a useful current is one that produces information by continually pushing the system to

transients between these limiting regions.

With this in mind, we will carry out the variational annealing protocol using Vs time traces from

an injected current consisting of a normalized version of one component of the chaotic Lorenz oscillator, an

idea that has proven useful in past studies [Toth et al., 2011, Kostuk et al., 2012, Meliza et al., 2014, Kadakia

et al., 2016]. The normalization is chosen to span a realistic range of injected currents, plus or minus a few

hundred pA; the time axis is also scaled so the highest frequency is not larger than the fastest timescale of the

neural model, about 0.01 ms. In addition to this “chaotic” current, we add a pseudo-noisy current generated

as described in Section 4.3.5.

We create a synthetic observed voltage trace by injecting this current waveform (Figure 4.12) into

the somatic compartment and integrating the neuron dynamics, Eqs. 4.24, forward for 600 ms. The timestep
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Figure 4.12: Injected somatic current used to generate the data for the numerical experiments on
the HVCRA model. The current consists of a pseudo-noisy waveform and the output of the Lorenz
attractor, intended to push the system along its transients to more fully probe the dynamical phase
space.

used in the integration is 0.02 ms, in line with the commonly used 50 kHz sample rate of current injection

and data acquisition in typical electrophysiological setups; in addition the 600 ms recordings are completely

within acceptable in vitro recording times, and will allow for multiple epochs to record before the neuron

dies. The synthetic observation vector, Y = {yVs(tn)} is then produced by adding idd Gaussian noise of null

mean and deviation σm = 2 mV to the soma voltage time trace.

4.4.2 Timescale separation and an experimental protocol

Carrying out a variational annealing procedure with this set of synthetic observations does not suc-

ceed – many of the parameters are estimated quite poorly, and in many cases the optimization does not con-

verge, likely due to a poorly conditioned cost surface A(X|Y), arising from the small observation dimension

(1 of 7 variables), considerable nonlinearity in the model equations, and large unknown parameter space. The

failure of the procedure is also attributed partly to the interplay of two disparate timescales in the model, one

governing the slow calcium dynamics, and another the fast spiking dynamics in the neuron cell body. This

disparity can introduce extreme sensitivities to parameterization, which in an optimization context manifest

as additional roughness or nonconvexity in the cost surface.

To address these issues within an experimentally realizable framework let’s consider the following.

We have seen that the compartmental model contains fast spiking currents, K and Na, periodically modulated

on a slower scale by the calcium-gated potassium current. Intracellular calcium moves five to ten times slower
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Figure 4.13: Synthetic somatic voltage observations for the reduced two-compartment HVCRA
model with fast currents switched off.

than spike-mediating Na and K currents. If we decouple the neuron into fast and slow terms by setting ḡNa and

ḡK to zero, effectively blocking the fast currents, it may then be possible to estimate the parameters governing

the slow variation – Ca and Ca-mediated channels – alone. Then, setting these estimated parameters fixed

in the full model, the remaining parameters governing the fast variables can be estimated through a second

application of the inference routine.

This idea can be implemented in practice by carrying out two recordings of Vs with the same patch

clamp, the first as usual and the second with the application of a sodium channel blocker such as TTX, which

can be done without repatching (carrying this out in the opposite order would likely subject the neuron to

lingering effects of the channel blocker in the unadulterated recording trace). The observed traces are then

used in reverse order in the annealing routines, as suggested above. The idea is that decoupling the fast and

slow processes would smooth the cost function surface and more easily reveal the lowest minima.

4.4.3 Estimation of slow subsystem: computational details

To this end, we will first create synthetic observations of the reduced model neuron by integrating

Eq. 4.24 in steps of ∆t = 0.02 with ḡNa = 0 and ḡK = 0 and adding iid Gaussian noise with deviation 2 mV.

The spiking mechanism is eliminated, so no single spikes are seen, only broader, slower, depolarizations

(Figure 4.13).

Each step of variational annealing carries out an optimization over all collocated state variables

xd(tn), as well as parameters p = {pi} 4. Since the sodium and potassium currents have been suppressed,

4A notational note: In later chapters, p will refer to momenta variables; the distinction should be obvious
from the context, and when it is not, will be explicitly stated
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their associated kinetic parameters do not enter the dynamical equations, and are thereby removed from the

search space. We also add the caveat that the background calcium concentration parameters, [Ca]0 and [Ca]out,

were required to be held fixed for the inference to produce accurate estimations. Interestingly, this does not

imply that these parameters be known a priori. In fact, to highlight this, let us fix them to incorrect values

[Ca]0 = 0.285 and [Ca]out = 1000 in the model equations. As will be explained in detail later, the accurate

estimations arising from incorrect prior information will be attributed to a partial degeneracy of the system.

A(X|Y) is very high-dimensional. There are four collocated dynamical variables to be estimated

at every ∆t = 0.02 ms in a 600 ms window (since ḡK = ḡNa = 0, then m(t), n(t) and h(t) are eliminated).

Adding the 17 unknown parameters relevant for the slow dynamics with [Ca]0 and [Ca]out fixed, produces a

120,017-dimensional search space X≡ {x(tn),p}. As in the variational annealing examples in Section 3.2.2,

the interior point method IPOPT will be used to carry out the optimization at each stage of the annealing.

In actual implementation, A(X|Y) requires a discretization of the continuous neuron dynamics,

Eqs. 4.24. One benefit of this collocated cost function is that implicit and explicit integrators are equally

simple to implement, since integration is not actually carried forward in time. We will use a 4th-order Simp-

son rule, which interpolates a function quadratically using third-order Lagrange polynomials between every

other timestep. In this scheme, an interpolated function f (x(t)) and its integral in the region of interpolation

[tn, tn +2∆t] are [Abramowitz and Stegun, 1964]:

f (x(t))≈
3

∑
j=1

f (x(t j))
3

∏
k 6= j

t− tk
t j− tk

=
(t− (tn +∆t))(t− (tn +2∆t))

2∆t2 f (x(tn))

+
(t− tn)(t− (tn +2∆t))

−∆t2 f (x(tn +∆t))

+
(t− tn)(t− (tn +∆t))

2∆t2 f (x(tn +2∆t)) (4.27)

and

∫ tn+2∆t

tn
f (x(t))dt ≈ ∆t

3
[ f (x(tn))+4 f (x(tn +∆t))+ f (x(tn +2∆t))]

≡ ∆t
3
[ f (x(tn))+4 f (x(tn+1))+ f (x(tn+2))] . (4.28)
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Table 4.5: Upper and lower bounds on the parameters for the constrained optimization in the
reduced HVCRA model. [Ca]0 and [Ca]out are fixed at the erroneous values 0.285 and 1000, re-
spectively, so they do not enter the optimization routine. Also listed are the upper and lower
bounds and initializing Rf0 values for the four active state variables.

parameter lower upper parameter lower upper

ḡL 0.1 10 Cm 1 100
ḡCa-L 0 10 ks 1 100
ḡK/Ca 0 5000 φ 1e-5 1e-2
ḡSD 1 50 τr0 0 1
EL -110 -70 τr1 0 1
EK -100 -75 τr2 0 1
θr -50 -10 τCa 20 50
σr 5 25 [Ca]0 - -

θτ,r -50 -10 [Ca]out - -
στ,r 5 25

state lower upper Rf0

Vs(tn) -120 50 1e-3
Vd(tn) -120 50 1e-3
r(tn) 0 1 1e1

[Ca](tn) 0 1 1e1

Applying this discretization of the dynamical term in the Gaussian error approximation A(X|Y) 5:

dxd

dt
= fd(x,p) with fd(x,p) = Eq. 4.24

→ xd(tn+2) = xd(tn)+
∫ tn+2

tn
fd(x,p)dt

≈ xd(tn)+
∆t
3
[ fd(x(tn),p)+4 fd(x(tn+1),p)+ fd(x(tn+2),p)] . (4.29)

Note that this interpolation, being 3rd order, occurs at every other step, in time intervals of 2∆t. The full

Gaussian error cost function for the HVCRA neuron is therefore (cross reference Eq. 2.44):

A(X|Y) =
N

∑
n=1

Rm

2
(Vs(tn)− yVs(tn))

2

+
N−2

∑
n even

D

∑
d=1

Rf(d)
2

(
xd(tn+2)− xd(tn)

− ∆t
3

[
fd(x(tn),p)+4 fd(x(tn+1),p)+ fd(x(tn+2),p)

])2
, (4.30)

5Though not shown for purposes of brevity, the vector field f also depends on time here through the time-
dependence of the injected current: f = f(x,p, t). The discretization scheme simply evaluates the current at
the same time as the state variable; i.e fd(x(tn),p) = fd(x(tn),p, tn), etc.
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where X = {x(tn),p}, with

{x(tn)}= {Vs(tn),Vd(tn),r(tn), [Ca](tn)}

p = listed in Table 4.5,

Y = {yVs(tn)} (4.31)

and N = 600 timesteps and D = 4 dimensions. The observation inverse covariance of the measured somatic

voltage is Rm = 1/22 = 0.25 mV−2. The optimizations will also require inequality constraints on the state

variables and parameters: these are listed in Table 4.5, and reflect relatively agnostic priors on conductances,

which can vary by orders of magnitudes among distinct neurons. The kinetic parameters and timescales are

also constrained to physically plausible ranges. The reversal potentials are quite uniform and not difficult to

estimate by eye anyway, so their ranges are tighter. Finally, the state variables {xd(tn)} are constrained to

their known physical ranges.

As described at length in Chapter 3, variational annealing strings together Q isolated optimizations

within an iterative scheme. For the first step, Rf(d) is set to Rf0(d), which are listed in Table 4.5. The values

are chosen to normalize the model errors to similar ranges: since Vs and Vd have larger dynamical ranges,

their associated Rf0 are a few orders smaller. The Q parallel optimizations at this first annealing step are

initialized by choosing the 120,000 collocated state variables and 17 free parameters from their bounds listed

in Table 4.5. The annealing progresses for βmax = 30 steps with α = 2, as described in detail Section 3.1. For

this problem, we will run Q = 100 parallel optimizations.

4.4.4 Estimation of slow subsystem: results

At each value of β , the optimization returns Q = 100 paths trajectories, in addition to 17 parameter

estimates:

X̂q,β = {x̂q,β
d (tn), p̂q,β

i } (4.32)

The values A(X̂q,β |Y) are plotted in the anneal plot shown in Figure 4.14. All Q anneals appear to converge

to the same value of A =1.59e4, well in the vicinity of the expected limiting error value for the perfect

model (Eq. 3.10; here it is E = 1.50e4), suggesting that all estimates have converged to the true trajectory.
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Figure 4.14: Annealing plot for the variational annealing estimation of the reduced two-
compartment HVCRA model. A single minimum is found for all estimations, with limiting value
within the expected range of the global minimum (Eq. 3.10).

The associated paths are plotted in Figure 4.15, and the estimated parameters are listed in Table 4.6. As

a comparison, when the optimization is carried out directly without annealing, 100 distinct estimates are

returned, none of which even mildly mirror the accuracy found with variational annealing.

There are a few things of note about the estimated trajectories and parameters. The voltages and

gating variable r(tn) are estimated to excellent accuracy, while the calcium estimate appears to be a shifted

replica of the true trace. Recall that we fixed the background and extracellular calcium concentrations to

erroneous – thought not wholly unphysical – values. The shifted calcium estimate is a reflection of this

inaccurate prior, yet the precision of the other state variables, Vs(t), Vd(t) and r(t) suggests that the model

itself exhibits a degeneracy that cannot be probed by the measurements of somatic voltage alone. Inspecting

further, we see that the parameter estimates, most of which are estimated to excellent accuracy, exhibit a few

inconsistencies involving the calcium ions: φ , ks, and ḡCa-L are all off by factor of 2 or so.

The picture we should adopt is the following: there is a degenerate manifold in the φ -ks-ḡCa-L−

[Ca]out− [Ca]0 parameter subspace, whereby differing combinations of these parameters can produce identical

traces of Vs(t), Vd(t), and r(t), but [Ca](t) traces shifted to varying degrees. From the point of view of the

experimentalist, the degeneracy is invisible, and from the perspective of inference, it is problematic – the

degenerate subspace transforms point minima into valleys that may hinder the optimization from reliably

terminating. This is why Ca0 and Caout needed to be fixed in the first place (even at incorrect values), and

it comforting to see in this case that a biophysically plausible estimate emerges nonetheless. Momentarily,
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Figure 4.15: Estimates of a few select state variables of the reduced two-compartment HVCRA
model. The estimated trajectories are excellent; the calcium trace is slightly shifted due to a partial
degeneracy of the system.

we will look in a bit more detail at this degeneracy from the point of view of the bifurcations of the two-

compartment model.

4.4.5 Full model with slow parameters fixed

Having estimated the 17 slow parameters, we may now turn back on the sodium and potassium con-

ductances and estimate the remaining parameters of the full HVCRA model from a measured soma membrane

voltage trace. Let us use the same injected current (Fig. 4.12) to create a set of synthetic observations, again

found by infusing the true integrated trajectory with σ = 2 mV noise. The observed voltage trace is plotted

in Figure 4.16.

The parameters in Table 4.6 are fixed to their estimated values in Table 4.6, while the remaining pa-

rameters are optimized subject to the bounds listed in Table 4.7. Carrying out this variational anneal (with the

same algorithmic hyperparameters α and βmax as in the reduced model), the terminal estimate corresponding

to the lowest value of A(X̂q,βmax |Y) among the Q = 100 anneals is shown in Table 4.8 and Figure 4.17. These

estimated states and parameters producing this minimal A value are denoted by {x̂q0,βmax(tn)} and {p̂q0,βmax},
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Table 4.6: Estimated parameters of reduced HVCRA model, with only somatic voltage measured.
Most parameters are estimated correctly to high accuracy; discrepancies in the other parameters
are explainable via system degeneracies. θτ,r and στ,r are not relevant to the estimation since the
corresponding coefficients τr,0 and τr,1 are zero.

parameter actual estimated parameter actual estimated

ḡL 3.00 3.03 Cm 21.00 21.01
ḡCa-L 0.060 0.155 ks 3.5 2.1
ḡK/Ca 240 243 φ 8.67e-5 5.22e-5
ḡSD 5.00 4.96 τr0 1.00 0.99
EL -80.0 -80.1 τr1 0 0.00
EK -90.0 -89.9 τr2 0 0.08
θr -40.0 -39.9 τCa 33.0 33.1
σr 10.0 10.0 θτ,r - -50.0

στ,r - 5.00
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Figure 4.16: Trace of the synthetic voltage observations for the estimation of the full HVCRA
model, with slow parameters held fixed to their estimated values in Table 4.6.

respectively.

The parameter and state estimates are, for the most part, excellent, though there are some discrep-

ancies. The calcium concentrations Ca0 and Caout are still fixed at erroneous values (0.285 and 1000 instead

of 0.48 and 2500); further, some the slow parameters fixed from the estimation of the reduced model are now

held fixed at their incorrectly-estimated values. For this reason, the estimate of [Ca](t) is again shifted from

its true trace. Since the estimation of the fast components is still quite accurate, this is further indication that

the inaccuracy in these parameter estimates is not a deficiency in the variational anneal, but a true degeneracy

of the model description.

There are also a few parameters relevant to fast spiking that are inaccurate, ḡNa for example. The

juxtaposition of this inaccuracy with the extreme precision in the state estimates in Fig. 4.17 suggests that
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Table 4.7: Upper and lower bounds on the parameters for the constrained optimization in the
full HVCRA model. The remaining parameters of the full model are held fixed at those listed in
Table 4.6. Also listed are the upper and lower bounds and initializing Rf0 values for the seven state
variables.

parameter lower upper parameter lower upper

ḡK 0 5000 θm -50 -10
ḡNa 0 5000 σm 6.25 16.67
ENa 50 60 θτ,m -40 -20
τm0 0 1 στ,m -50 -5
τm1 0 1 θn -50 -10
τm2 0 1 σn 6.25 16.67
τn0 0 1 θτ,n -40 -20
τn1 0 1 στ,n -50 -5
τn2 0 1 θh -50 -10
τh0 0 1 σh -16.67 -6.25
τh1 0 1 θτ,h -50 -20
τh2 0 1 στ,h -50 -5

state lower upper Rf0

Vs(tn) -120 50 1e-3
Vd(tn) -120 50 1e-3
m(tn) 0 1 1e1
h(tn) 0 1 1e1
n(tn) 0 1 1e1
r(tn) 0 1 1e1

[Ca](tn) 0 1 1e1

the slow subsystem degeneracy may extend to the fast subsystem as well – a lower [Ca] may require a

lower sodium conductance to produce an identical spike excitability. On the other hand, it may point to a

fundamental insensitivity of the model behavior to these parameters.

Yet how do we verify the veracity of the parameters in real experiments, where we have no access

to their “true” values or to the time traces of the hidden variables? We have already seen that variational

annealing may produce very poor estimates of the hidden subspace even when estimates of the measured

variables closely mimic observations – recall the estimate of the 10-D Lorenz 1996 system with a single

measured variable in Figure 3.5a. What we require is some measure of cross-validation. Actually, this can

be done in a natural way for dynamical systems: since we have an estimate of the system’s state at the end

of the estimation window, we can then generate a future time trace prediction of the system for t > T by

integrating Eqs. 4.24 from T forward, incorporating the estimated parameters in the dynamical equations.

Since information is transferred from parameters to the measured variables via the dynamics, errors either in



87

400 450 500 550 600

t

100

80

60

40

20

0

20

40

V
s(
t)

400 450 500 550 600

t

90

85

80

75

70

65

60

V
d
(t

)

400 450 500 550 600

t

0.0

0.2

0.4

0.6

0.8

1.0

n
(t

)

400 450 500 550 600

t

0.0

0.2

0.4

0.6

0.8

1.0

m
(t

)

400 450 500 550 600

t

0.0

0.2

0.4

0.6

0.8

1.0

h
(t

)

400 450 500 550 600

t

0.2

0.3

0.4

0.5

0.6

0.7

[C
a]

(t
)

Figure 4.17: Time traces of estimated variables in the full HVCRA model, using the estimated
parameters of the reduced model estimation listed in Table 4.6. These parameters include those
that were erroneously set to incorrect values: [Ca]0 and [Ca]out. The estimates are excellent, with
[Ca](t) once again shifted due to the partial degeneracy of the model.
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Table 4.8: Estimations of remaining parameters of full HVCRA model, using only observations
of the somatic voltage. The parameters not listed are held fixed at their estimated values from
Table 4.6.

parameter actual estimated parameter actual estimated

ḡK 120 120.36 θm -30 -30.44
ḡNa 1050 757.81 σm 9.5 9.68
ENa 55.0 60.0 θτ,m - -29.92
τm0 0.01 7.23e-4 στ,m - -8.24
τm1 0 5.46e-3 θn -35 -34.28
τm2 0 0.00 σn 10.0 10.8
τn0 0.10 0.10 θτ,n -27 -32.41
τn1 0 0.10 στ,n -15 -12.41
τn2 0.50 0.42 θh -45 -43.43
τh0 0.10 0.12 σh -7.00 -7.05
τh1 0.00 0.04 θτ,h -40.5 -41.3
τh2 0.75 0.69 στ,h -6.0 -5.0

the final state estimation or in the parameters would be reflected in a predicted voltage trace Vs(t), t > T that

conflicts with observed voltage recordings under the same stimulus.

To mimic such a validation for the HVARA neuron model, let us generate a forward prediction by

integrating Eqs. 4.24 from x̂q0,βmax(T ) using the estimated parameters listed in Tables 4.6 and 4.8, under a

new injected current. We will generate “future observations” by integrating the true model from its final state

x(T ), using the original presumed variables from Table 4.4. Similar noise as above is added to this voltage

trace.

A comparison of these two traces is shown in Figure 4.18. The estimated voltage (blue) tracks the

synthetic observed voltage trace to excellent accuracy under the influence of this new somatic injected current.

This is further indication that the estimated parameters, however inaccurate, are an adequate representation

of this model behavior, and that the degeneracies only manifest in absolute [Ca] differences that pose no

restrictions on the observed voltage traces.

We should note however that since the stimuli is injected into the cell body, calcium bursts are more

difficult to evoke. The possibility remains that the particular stimulus used in these estimations has failed

to adequately probe the phase space of the full system, and that the discrepancies in the parameter estimates

seen in Tables 4.6 and 4.8 will manifest themselves in response to other stimuli, such as dendritically-injected

currents. We test this by repeating the forward prediction comparison illustrated in Figure 4.18 but now using

a dendritically-injected current stimulus consisting of pseudo-noisy waveform like that in Figure 4.8a. The
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Figure 4.18: Comparison of forward prediction of the somatic voltage of the full two-compartment
HVCRA model using parameter estimates listed in Table 4.6 and 4.8 against the synthetic observa-
tions. The prediction is excellent, despite some “incorrectly” estimated parameters. This precision
is due to the partial degeneracy of the model, suggesting that a reduced model description may
suffice in practice.
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Figure 4.19: As in Figure 4.18, a comparison of the forward prediction of the full HVCRA model
using estimated parameters against the synthetic observations, now in response to noisy dendritic
currents (mimicking synaptic stimuli). As before, the traces are estimated to excellent accuracy.

resulting trace is shown in Figure 4.19, and puts our worries to rest.

4.5 Degeneracies in the fast-slow HVCRA model: A bifurcation study

We have seen that the two-compartment HVCRA neuron model produces short, stereotyped bursts by

modulating fast, spiking dynamics with the slow movement of calcium ions. It is of interest to understand how

the apparent degeneracies in the parameter space of the HVCRA model manifest in its dynamical bifurcations,

since the latter are determined by the parameterization in the first place.

To get a handle on this, let us first plot the bifurcation diagram for the model with the original “true”

parameters listed in Table 4.4, used to generate the synthetic observations. As in Figure 4.5, we turn off

the calcium dynamics (d[Ca]/dt = 0) and treat [Ca] as a bifurcation parameter, assuming a constant injected
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Figure 4.20: Bifurcation diagram showing the somatic voltages of the fixed points of the HVCRA
model with [Ca] dynamics shut off, using the parameters listed in Table 4.4 that were used to gen-
erate the data. The bifurcation parameter is the fixed intracellular [Ca]. (b) Analogous bifurcation
diagram, now generated using the estimated parameters (Table 4.8). The diagram is identical to
that in (a), except shifted along the [Ca] axis, in accordance with the shifted calcium traces shown
in Figure 4.17.

current of 400 pA into the dendrite. The roots of the nonlinear system of equations, Eqs. 4.24, are found by

using a nonlinear solver with 100 different initial guesses. The nonlinear solver will generally converge to the

closest root. The stability is tested again by determining the eigenvalues of the Jacobian at these roots; purely

negative eigenvalues indicates stability. In addition, the limits of stable limit cycles for a particular [Ca] are

determined by integrating the system forward for a few seconds beginning at one of 100 random initial states

within the dynamical range of the model.

The resulting diagram shown in Figure 4.20a is a bit more involved than the simpler one-compartment

model, but still contains the salient features: a singly-stable spiking state at low [Ca], an intermediate bistable

region containing both a spiking limit cycle and a low-voltage stable hyperpolarized rest state, and a singly-

stable equilibrium at high [Ca].

How does the model parameterized by the estimated parameters compare? Repeating this procedure

with the values from Tables 4.6 and 4.8, we find a bifurcation diagram that appears identical. But note the

x-axis! The limit cycle bounds are essentially identical, the location of the hyperpolarized equilibria are

identical – the only distinction is that comparable features in the two diagrams occur in distinct [Ca] ranges.
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This is of course what was anticipated by the estimated trajectories, and it is comforting that global dynamical

picture has not fundamentally changed for this parameterization. Rather, it has merely shifted.

The message of this model, and its accompanying bifurcation structure, is that partial degeneracies

are not uncommon in neural models. To be sure, the degeneracy is not real – the calcium trace of the

estimated and true trajectories are distinct in Figures 4.15 and 4.17. The degeneracy is “partial” in the sense

that it occurs only in the measured subspace, and is therefore invisible to any inference procedure, no matter

how effective. The value of numerical experiments with synthetic data is that this can be uncovered initially,

and can be used to tailor experimental protocols accordingly.

4.6 Inference in neural networks and the challenges ahead

Intracellular voltage traces can be gathered from a handful of neurons at most in real brains, yet

these only represent one of millions to trillions of neurons. We expect the partial degeneracy issue from the

previous section to arise in a most deflating way: a massive number of combinations of synaptic weights

and inputs from the unmeasured neurons would yield the same measured voltage trace, giving us no real

information about how the neurons are connected, how quickly the synaptic neurotransmitters act and rectify

their inputs, etc. The natural solution is to reduce the complexity of the model description, sometimes down to

only a few variables that describe an entire population of neurons. This is, after all, the fundamental decision

in neural modeling – what is the correct balance of tractability and complexity?

The theoretical inference tools described in this and the previous chapter rely on a problem formu-

lation that is, while quite general, still not always realized. First, we assume a dynamical model described by

either a discrete forward mapping or a set of ordinary differential equations. Dynamics described via partial

differential equations in time and space would not readily fit in the framework demanded by the iterative

Bayesian integrals; or at least, would require some more thought. This also rules out neural models of the

integrate-and-fire (IF) type, which contain continuous dynamics in the subthreshold regime, but require ex-

ternal resetting and latent periods which cannot be described in the framework of differential calculus [Dayan

and Abbott, 2005,Izhikevich, 2007]. Yet these are ubiquitous in modeling due to their computational tractabil-

ity.

One step down the hierarchy of complexity are models that track only the rate of spike generation,

r(t), reducing the dimensionality of the model to one variable per neuron. The spike rate modulates via
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external and synaptic input and decays otherwise, typically described as

dri

dt
=−ri +

N

∑
j=1

Ji jφ(gr j), (4.33)

where i, j index distinct neurons, g is a “gain” constant for the synaptic input, φ(x) is some bounded function

to prevent runaway excitation. Typically φ(x) is chosen as the hyperbolic tangent. This simple framework

has allowed interesting theoretical results in the large N limit when the synaptic couplings Ji j are, rather than

precisely defined, Gaussian variables of mean 0 and variance J2/N. In this limit, it can be shown that stable

cycles give way to chaos at a critical value of g, a result that is independent of φ or the exact instantiation of

Ji j [Sompolinksy et al., 1988, van Vreeswijk and Sompolinsky, 1996].

Understanding the richness of animal behavior and consciousness will obviously require models

beyond this mean-field limit. Even the multi-layered deep, recurrent neural networks now being tested as

models of artificial intelligence will eventually exhaust their predictive power, leaving us no choice but to

contend with the true biophysical mechanisms of actual neurons. The information that we can gather from

the dynamical transients in this inverse problem will be of fundamental importance.



Chapter 5

Continuous time and the path integral of

nonlinear inference

We will spend the remainder of this thesis investigating a number of theoretical aspects of the gen-

eral Bayesian inference formulation in continuous time. In what follows, it will be necessary to adopt the

following perspective: that the estimate state vector is a dynamical system in its own right. This is not entirely

unlike the perspective taken by the sequential filter, where the mean of the conditional distribution evolves in

discrete time:

m0→m1→m2→ ... (5.1)

Yet our approach will be fundamentally different, instead deriving dynamical equations from the stationary

points of a functional integral that is global in time. In other words, while the evolution of mn in the the

filtering context relies on information from neighboring times alone, the stationary paths of a global functional

integral rely on information from the entire trajectory at once. It is the richness and subtlety of this resulting

dynamical system, describing the propagation of an estimate relying on both an underlying dynamical model

and on observed data, that gives this thesis its name.

93
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5.1 Stochastic path integrals and the Onsager-Machlup function

To proceed, we first cast the conditional expectation,

p(xN |YN) ∝ p(yN |xN)

[∫ N−1

∏
n=0

dxn p(xn+1|xn)p(yn|xn)

]
p(x0), (Eq. 2.5 revisited)

in continuous time. What results is a form presaged more than a half-century ago in the context of stochastic

systems; it was then that Onsager and Machlup showed that continuous stochastic processes can be written

equivalently as functional path integrals analogous to those in quantum field theory and statistical mechan-

ics [Onsager and Machlup, 1953]. In light of the high-dimensional Bayesian integrals that appear in Eq. 2.5

this seems reasonable – the continuous limit readily gives a path integral measure, and exponential forms for

the transition probabilities may produce a quantity akin to a classical action [Feynman and Hibbs, 1965,Abar-

banel, 2013].

Such a continuous stochastic process in and of itself is equivalent to the inference problem without

data – it is the forward evolution of x(t) via dynamical drift and stochastic fluctuations. So as a guide to the

path integral formulation of A(X|Y) in the estimation problem, let us first treat this no measurement case.

Specifically, we will derive the path integral for x(t) dynamics described by the Langevin equation

dx
dt

= f(x, t)+η(t), (5.2)

which is equivalent to the stochastic differential equation,

dx = f(x)dt +dw(t), (5.3)

where w(t) is a Wiener process whose statistics are governed by those of η(t) and are homogeneous,

namely [Gardiner, 1985]

η(t) ∼ N (0,Q). (5.4)

In writing the discrete Bayesian integral, Eq. 2.5, factors of the transition probabilities p(xn+1|xn)

appear when the distribution p(x0) is propagated forward. To move toward the continuous case, we must ex-
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ploit the properties of the Wiener process directly. The probability of transition between xn and xn+1 at times

tn and tn+1, respectively, is proportional to the Wiener measure of paths wi connecting these points [Gardiner,

1985, Chaichian and Demichev, 2001, Chow and Buice, 2015]:

p(xn+1|xn) ∝

∫
dwn exp

[
−(wn+1−wn)

2∣∣
(∆tQ)−1

]
. (5.5)

Extending this from t0 to tN , exploiting the Chapman-Kolmogorov equation, and formally taking the contin-

uous limit gives

p(xN |x0) ∝

∫
lim

N→∞
∆t→0

[
N−1

∏
n=0

dwn

]
exp

[
−

N−1

∑
n=0

(wn+1−wn)
2∣∣

(∆tQ)−1

]
(5.6)

where n indicates the discrete times tn, equally partitioning the interval such that ∆t = tn+1−tn. For notational

ease, we will write N→ ∞ only in the limit, the simultaneous limit ∆t→ 0 being implicit. Changing variables

from w to x demands a choice for discretization scheme which we parameterize by α:

xn+1−xn− [αf(xn+1)+(1−α)f(xn)]∆t = wn+1−wn, (5.7)

where α = 0,1/2 correspond to Ito and Stratanovich calculus, respectively. The Jacobian involved in this

change of variables is

∂wa
n

∂xb
m
= δmnδab−∆t

n

∑
i=1

[
α

∂ fa(xi)

∂xb
m

δm,i +(1−α)
∂ fa(xi−1)

∂xb
m

δm,i−1

]
, (5.8)

which is block lower triangular. Its determinant is therefore the product of the determinants of the diagonal

blocks:

det
∣∣∣∣∂wa

n

∂xb
m

∣∣∣∣= ∏
n

det
∣∣∣∣∂wa

n

∂xb
n

∣∣∣∣= ∏
n

det
∣∣∣∣δab−α

∂ fa(xn)

∂xb
n

∆t
∣∣∣∣

= ∏
n

det
∣∣exp[−αJ(xn)∆t]

∣∣+O(∆t2)

= ∏
n

exp [−Tr(αJ(xn)∆t)]+O(∆t2)

→ exp
[
−
∫

dt Tr(αJ(x))
]

as N→ ∞ (5.9)
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where Jab(x′) =
∂ fa(x)

∂xb
n

∣∣
x′ is the Jacobian of the vector field evaluated at x′. Under the change of variables

from the fluctuating variable w(t) to x(t), this term will contribute to the exponential in Eq. 5.6, and it

appears to impose a dependence of the continuous integral upon the discretization through the presence of α .

Interestingly, a careful derivation shows that this dependence actually cancels, so the path integral over Dx(t)

is independent of the discretization scheme [Dekker, 1978, Hunt and Ross, 1981]. Nevertheless, the correct

limit of Eq. 5.6 is not given by the naive limit of Eq. 5.3, ∆w/∆t → ẋ− f(x). Let us derive the correct

expression specifically for the Ito and Stratanovich cases, the exact details of more general cases can be

found elsewhere [Hunt and Ross, 1981].

For Ito discretization (α = 0), the change of variable determinant, Eq. 5.9, is unity, while the argu-

ment of the exponential in Eq. 5.6 is expressed in x as:

N−1

∑
n=0

(
xn+1−xn

∆t
− f(xn)

)2∣∣∣∣
Q−1∆t

. (5.10)

Expanding this quadratic, two of the terms have straightforward continuous limits, assuming additive noise:

lim
N→∞

N−1

∑
n=0

(
xn+1−xn

∆t

)T
∆tQ−1

2

(
xn+1−xn

∆t

)
=
∫

dtẋ2∣∣
Q−1 (5.11)

lim
N→∞

N−1

∑
n=0

fT (xn)
∆tQ−1

2
f(xn) =

∫
dtf(x)2∣∣

Q−1 (5.12)

The cross term, on the other hand, must be evaluated using Ito’s Lemma [Gardiner, 1985]:

lim
N→∞

N−1

∑
n=0

(xn+1−xn)
T Q−1f(xn) = lim

N→∞

N−1

∑
n=0

∆xT
n Q−1f(xn)

=
∫

dxT Q−1f(x)− 1
2

∫
dt Tr

(
Q1/2Q−1 ∂ f(x)

∂x
Q1/2

)
=
∫

dtẋT Q−1f(x)− 1
2

∫
dt Tr(J(x)) (5.13)

Combining Eqs. 5.11, 5.12, and 5.13, we see that the quadratic term in the continuous limit of Eq. 5.6 is

given by the naive expression plus an added divergence:

exp
[
−
∫
(wn+1−wn)

2∣∣
(dtQ)−1

]
→ exp

[
−
∫

dt(ẋ− f(x))2∣∣
Q−1 −

1
2

∫
dt∇· f(x)

]
, (5.14)
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using that the trace of the Jacobian is the divergence of the vector field.

The situation is reversed in the Stratanovich case: the fundamental theorem of Newtonian calculus

now holds, so the divergence terms disappears in the quadratic expansion; on the other hand, it appears in

the change of variables determinant Eq. 5.9 by virtue of the fact that α = 1/2, producing the exact same

expression as in the Ito case. Thus, irrespective of the discretization scheme, the stochastic system Eq. 5.3

can be expressed as the functional path integral

p(x(t)|x(0)) ∝

∫
Dxe−

∫
dtL (x,ẋ,t)) =

∫
Dxe−A[x(t)] (5.15)

L (x, ẋ, t) = (ẋ− f(x))2∣∣
Q−1 +

1
2
∇· f(x). (5.16)

The notation L (x, ẋ, t) is not incidental. Eq. 5.15 is analogous to a quantum propagation amplitude between

x(0) and x(t) in imaginary time, where A[x] is the action functional and L is the corresponding Lagrangian

known as the Onsager-Machlup function 1 [Onsager and Machlup, 1953,Feynman and Hibbs, 1965]. Before

turning to a similar action functional for the situation with measured data, let us first examine in detail the

Onsager-Machlup function L (x, ẋ, t) via the quantum analogy.

5.2 The Onsager-Machlup Euler-Lagrange equations

Recall from the discrete time Bayesian formulation that the overriding goal of the estimation prob-

lem is the calculation of expected values (and possibly higher moments) of functions defined within the

observation window. In the discrete case, we estimated the conditional expectation by working in the Laplace

approximation, producing solutions that contributed most heavily to the high-dimensional integral. The mes-

sage was that when the model precision Q−1 is appreciable, the exponential argument is fractal but there

exists a single, extremely dominant minimum. The continuous time analogue, Eq. 5.15, suggests the appli-

cation of analogous methodologies from classical mechanics and quantum theory, which contain the same

mathematical structures. For one, dominant contributions to the path integral arise from stationary points of

the action, just as in the discrete case. But here we are not minimizing functions A(X|Y) over a discrete set

of variables X, rather functionals A[x(t)] over functions x(t). The solutions to this variational problem are

described by the Euler-Lagrange equations, which for the Onsager-Machlup function in Eq. 5.16 produce a

1In their original paper, Onsager and Machlup did not include the divergence term
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set of D second-order ordinary differential equations:

d
dt

∂L

∂ ẋ
=

∂L

∂x

Q−1(ẍ−JT ẋ) =−Q−1(Jẋ−Jf)+
1
2
∇(∇· f(x))

ẍ = JT ẋ−Jẋ+Jf+
1
2

Q∇(∇· f(x)). (5.17)

More transparently, written in component notation, and as a system of first order ODEs:

ẋa = va

v̇a = ∂b fa(x)vb−∂a fb(x)vb +∂a fb(x) fb(x)+
1
2

Qab∂b∂c fc(x), (5.18)

These are Euler-Lagrange equations of the Onsager-Machlup function, which in theory be integrated forward

from an initial condition to produce what is effectively the “classical” motion of this stochastic system. There

is a fine point in all of this: the Euler-Lagrange equations depend on the vanishing of boundary terms that

arise from integration by parts (no sum over a):

δxa
∂L

∂ ẋa

∣∣∣∣
t=0,T

= 0 (5.19)

In the mechanical system, it is assumed that all possible paths pass through known locations at the bounds

of the observation window, or δxa(T ) = δxa(0) = 0. But these boundary conditions cannot be enforced in

the estimation problem since the system is only partially observed. Instead, we must enforce that the partial

derivative factor vanish, which for the Gaussian error approximation produces ẋ = f; the system obeys the

deterministic drift at its boundaries.

Note that since the stochastic system reduces to a deterministic system as the noise variance vanishes

(Q→ 0), we should expect that the deterministic limit of the stochastic dynamics would simply reproduce

the original dynamics ẋ = f(x) suggested by Eq. 5.3. Before turning to the case with both process noise

Q 6= 0 and observed data, let us first acquaint ourselves with some unexpected features of the Euler-Lagrange

equations for this case.
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5.2.1 Deterministic dynamics: The traceless Jacobian

On the one hand, the solutions of ẋ = f(x) are indeed integral curves of Eqs. 5.18 in the Q = 0 limit:

v̇a =
d
dt

fa(x) = ∂b fa(x)ẋb

= ∂b fa(x)vb−∂a fb(x)vb +∂a fb(x) fb(x)
∣∣∣∣
va= fa

(5.20)

On the other hand, the Euler-Lagrange equations reside in an augmented space {xa,va} of dimension 2D. The

path integral devoid of stochasticity has artificially embedded the original nonlinear system of dimension D

in a larger manifold. It is important to realize that this embedding is not a mere mathematical redundancy –

the enlarged space fundamentally affects the local stability of the original dynamics, ẋ = f(x). This can be

seen immediately via Jacobian of the Euler-Lagrange equations:

δ ẋa = δva (5.21)

δ v̇a = vb∂b∂c fa(x)δxc +∂b fa(x)δvb

− vb∂a∂c fb(x)δxc−∂aFb(x)δvb

+∂a fb(x)∂c fb(x)δxc +∂a∂c fb(x) fb(x)δxc

= (δxc terms)+(∂b fa(x)−∂a fb(x))δvb

= Kacδxc +Aabvb. (5.22)

Here, Kac and Aab are matrices, with the latter being antisymmetric. The structure of the Jacobian is therefore

JEL,Q=0 =

 ODxD 1DxD

Kac Aab

 (5.23)

which is traceless. Since the trace of the Jacobian is the sum of its eigenvalues, the fact that it vanishes

implies that every negative eigenvalue must be paired with a positive one – stable and unstable directions

coexist. For purely oscillatory systems, this has no negative ramifications, since the eigenvalues may well

all be imaginary. On the other hand, what was a stable limit cycle in the configuration space {x} could now

be rendered locally unstable in the Lagrangian coordinates {x,y}. Unless the eigenvalues recross imaginary

axis, this instability will persist.
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5.2.2 Instability in the classical motion

What is the consequence of the traceless Jacobian? Recall that our general formulation of the

nonlinear estimation problem assumes that the system is only sparsely observable – we cannot integrate

ẋa = fa(x) forward since the initial condition is incomplete. Instead, we may impose a boundary conditions,

ẋa(T ) = fa(x(T )) and attempt to perturb the initial conditions until the boundary conditions are met. In the-

ory, this could be done systematically – it the basis of the shooting technique which will arise again later

in this thesis – but in practice, the instabilities exposed by the local Jacobian in Euler-Lagrange coordinates

may produce huge changes in x(T ) from tiny nudges in x(0). In other words, the final state is hypersensi-

tive to changes in the initial state, and successful perturbation would ultimately require precision beyond the

limitations of reasonable computation.

This instability exists across a broad range of dynamical systems f(x) – even along stable limit cycles

and equilibria! As an illustration of this, consider the Van der Pol oscillator, a nonlinear system containing a

stable limit cycle and an unstable fixed point at the origin [Jordan and Smith, 1999]:

ẋ = f(x) =


µ(x1− x3

1/3− x2)

1
µ

x1

(5.24)

with µ = 0.3. Integrating this system forward from the random initial condition x(0) = xinit = {2.30,−0.81}

generates the phase plot and time trace shown in Fig. 5.1. The stability and periodicity of the limit cycle are

evident.

Casting the Van der Pol oscillator into the 4D Euler-Lagrange coordinates via Eq. 5.20 produces the

following nonlinear differential system:

ẋ =


v1

v2

v̇ =


−v2(µ +1/µ)+µ2(1− x2

1)(x1− x3
1/3− x2)+ x1/µ2

v1(µ +1/µ)−µ2(x1− x3
1/3− x2)

(5.25)

To integrate the system forward in this 4-D space, we initialize the system such that the initial velocities v(0)



101

3 2 1 0 1 2 3

x1(t)

8

6

4

2

0

2

4

6

8

x
2
(t

)

(a)

0 10 20 30 40 50 60

t

3

2

1

0

1

2

3

x
1
(t

)

(b)

Figure 5.1: (a) Phase plot of the Van der Pol oscillator; the stable limit cycle is indicated by the
black dotted line. (b) Associated time trace of x1.

are chosen to place the system precisely on the integral curve of the original system:

x(0) = xinit (5.26)

v(0) = f(xinit) (5.27)

Since, as argued above, ẋ = f(x) solves the enlarged dynamical system, then projecting the integral curves of

Eq. 5.25 to the original space x(t) should in principle reproduce Fig. 5.1a identically.

The issue is that due to discretization errors in numerical integration, the integral curve x = f(x)

may not be followed exactly, even from the same initial state. Figures 5.2a and 5.2b show such a numerical

integration using a fourth-order integrator with timestep ∆t = 0.01. The system tracks the limit cycle for

some time, but eventually leaves the attractor via motion in the augmented directions v1 and v2. This motion

is shown explicitly in Fig. 5.3, where the phase portrait now includes a third axis showing the discrepancy

between the original system’s vector field x-component f1(x(t)) and the Lagrangian system’s independent

velocity variable v1(t). We see v1(t) slowly deviate from the true dynamical vector field; as the 4D system

contracts in the stable x1-x2 plane towards its limiting attractor, it must expand in the v1-v2 directions as

a consequence of the traceless Jacobian we found in Eq. 5.23. We cannot precisely satisfy the continuous

dynamics, and the system succumbs to the instability in the v manifold.
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Figure 5.2: (a) Phase plot of the Van der Pol oscillator as in Figure 5.1, but now in Lagrangian
phase space. The limit cycle is indicated by the black dotted line; however, by casting the system
into the Lagrangian coordinates and deriving the dynamics from Hamilton’s principle, the stability
of the limit cycle only exists in the reduced x coordinates, with associated instability along the v
directions. When the system is initialized at the same point as in Figure 5.1, it attracts to the limit
cycle, but eventually succumbs to these instabilities and diverges. (b) Associated time trace of x1.

5.3 The dynamical formulation of nonlinear inference

Hypersensitivity and persistent instability are expected in chaotic systems. Yet we have seen that

this behavior can be artificially concocted in stable, dissipative systems by casting the original dynamics

within a variational principle. In the noiseless deterministic system without measurements, this procedure

is a formality – the dynamics are already known (ẋ = f(x)), so couching the dynamics in a functional path

integral is an artificial construct. But what is the implication of the Euler-Lagrange equations for the actual

itestimation problem, in which there is both stochasticity and data?

Proceeding as before, let us cast the estimation dynamics into a path integral via the same discretiza-

tion procedure. We first formally promote the observations to a continuous vector, yn→ y(t) and express the

conditional integrals p(yn|xn) in the appropriate continuous limit, as was done for the noiseless case. The

conditional expected value of functionals G(x(t)) defined in the observation window from [0,T ] is expressed,

in analogy to Eq. 2.5, as:

〈G(x(t))|y(t)〉 ∝ lim
N→∞
dt→0

∫ N−1

∏
n=0

dwnG(xn)p(xn+1|xn)p(yn|xn) (5.28)

Incorporating i) the Wiener transition probability Eq. 5.5, ii) the change of variables Jacobian Eq. 5.7, and
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Figure 5.3: Three-dimensional plot showing the unstable manifold of the Van der Pol oscillator
when integrated in Lagrangian coordinates. The z-axis is the deviation of the velocity variable
v1 from the value of f1(x1,x2); in x-space, these quantities are identified, but are independent in
Lagrangian coordinates. While the deviation begins small as the system converges to the limit
cycle, numerical errors compound and eventually succumb the system to unstable directions along
v1 and v2, producing a deviation of these variables from the vector field of the original system.

iii) the assumption of iid normally-distribution observations, y(t)∼N (x(t),R(t)), the conditional expecta-

tion in the Gaussian error approximation can be written as the path integral

〈G(x)|y〉=
∫

DxG(x)e−
∫

dtL (x,ẋ,t)∫
Dxe−

∫
dtL (x,ẋ,t) (5.29)

where

LI(x, ẋ, t) = (ẋ− f(x))2∣∣
Q−1 +(x−y)2∣∣

R−1 +
1
2
∇· f(x), (5.30)

and LI is notation for the Lagrangian of nonlinear dynamical Inference. For completeness, the corresponding

Lagrangian in the case of direct observations and uncorrelated process noise, in analogy to Eq. 2.44, is

LI(x, ẋ, t) =
D

∑
d=1

Rf(t,d)
2

(ẋd− fd(x))2 +
D

∑
d=1

Rm(t,d)
2

(xd− yd)
2 +

1
2

∂ fd(x)
∂xd

, (5.31)
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This expression is the continuous path integral analogue of Eqs. 2.35 and 2.44; it is the naive continuous

limit plus a divergence. The quantities x = x(t) and y = y(t), in contrast to Eq. 2.34, are not ND-dimensional

vectors but D-dimensional functions, and the associated Lagrangian L (x, ẋ, t) now contains explicit time-

dependence through the continuous stream of measurements, y(t) 2.

As before, we can derive the corresponding Euler-Lagrange equations and investigate the stability

of the linearized system. The calculation is straightforward, adding only linear observation terms to the

Onsager-Machlup dynamics of Eq. 5.18:

ẋa = fa(x,v) = va

v̇a = ∂b fa(x)vb−∂a fb(x)vb +∂a fb(x) fb(x)

+QabR−1
bc (xc− yc)+

1
2

Qab∂b∂c fc(x), (5.32)

subject to the boundary conditions:

va(0) = fa(x(0))

va(T ) = fa(x(T )). (5.33)

Since v̇a is augmented only with xa terms, the corresponding Jacobian for the linearized dynamics retains the

same structure of the matrix Eq. 5.23 – in particular, it is still traceless:

JEL =

 ODxD 1DxD

K̃ac Aab

 , (5.34)

2There is a further, subtle discrepancy between the discrete and continuous time Lagrangians, Eqs. 2.44
and 5.31; the Rf factor is rescaled by

√
∆t, and so Rf is now an inverse covariance density.
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with

Aab = ∂b fa(x)−∂a fb(x)

K̃ac = vb∂b∂c fa(x)− vb∂a∂c fb(x)

+∂a fb(x)∂c fb(x)+∂a∂c fb(x) fb(x)

+QabR−1
bc +

1
2

Qab∂c∂b∂d fd(x) (5.35)

Thus by combining a stochastic Markov model with a continuous stream of observed data, we have generated

a dynamical model of nonlinear inference. Put another way, the Euler-Lagrange equations Eq. 5.32 produce

an infinite set of integral curves that describe the propagation of the estimate through the observation window.

This perspective – an estimate propagating forward in time – is of course familiar: as we have

seen, the Kalman filter also provides a prescription for determining optimal estimates iteratively from t =

0. We found that the downside of the filter in nonlinear models was its susceptibility to multimodality in

the conditional distributions, compounded even further by the presence of a weakly informative prior. The

estimation dynamics arising from the variational solutions exhibit instead hypersensitivity, manifested as

persistent instability of integral curves.

There is a finer point in the classical analogy: classical equations of motion derived within a varia-

tional principle are almost always formulated as initial value problems in practice. Uniqueness of solutions

then follow under certain assumptions on smoothness and continuity [Tenenbaum and Pollard, 1985]. On the

other hand, the nonlinear inference equations constitute a boundary value problem, which contain no such

requirements. Not only are the dynamics hypersensitive to errors in the initial state, but may possess many

distinct solutions {x̂(t)}, which must then be compared on the basis of their associated action functional

values, {A[x̂(t)]}.

Together, these subtleties illustrate that while nonlinear inference can be cast formally as a me-

chanical system with well-defined equations of motion, the usual avenues of approach are far from useful.

Chapter 6 is devoted to exploring the stationary solutions of the nonlinear inference action functional in a

Hamiltonian formulation, where we will uncover some unexpected features of underlying symmetries and

invariants of motion. We will propose an annealing method in canonical coordinates similar to that of Chap-

ter 3, which may offer a partial solution to the issue of persistent stability by leveraging the freedom of motion
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in a momentum submanifold. Before doing so, we will end this chapter with a brief (and as yet unresolved)

analogy with classical electromagnetism.

5.3.1 The electromagnetic analogy

When the state space x is 3-dimensional, the Lagrangian of nonlinear inference, Eq. 5.30, is fa-

miliar from another context in classical physics: a charged particle under the influence of electromagnetic

forces. This Lagrangian, for a particle of charge q and mass m moving within electric and magnetic fields

is [Goldstein et al., 2002]

LEM =
ẋ2

2m
+qẋT A(x)−qφ(x) (5.36)

where the fields are derived from the potentials A and φ :

E(x, t) =−∇φ − ∂A
∂ t

B(x, t) = ∇×A (5.37)

Identifying LEM and LI creates the following correspondence 3:

A = AI(x, t) =−Q−1f(x, t)

φI = φI(x, t) =−f(x, t)2∣∣
Q−1 − (x−y(t))2∣∣

R−1 −
1
2
∇· f(x, t), (5.38)

with the charge equal to unity and the mass matrix given by Q−1.

The classical solutions of the path integral of nonlinear inference are equivalent to a charge under the

influence of electric and magnetic fields. Interestingly, these fields are not arbitrary: A and φ – and therefore

E(x, t) and B(x, t) – are interdependent, both functions of the drift dynamics f(x, t). The electromagnetic

analogy will not be explored further in this thesis, being introduced primarily to suggest future work in

applying methods of particle tracking and stabilization utilized in plasma physics. In particular, one may

exploit the notion of guiding centers, which separate the slow drift in non-uniform B-fields from the fast

3The dependence of f upon time is noted explicitly here to indicate how it may lead to explicit time
dependence in the potentials.
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surrounding oscillations [Northrop, 1961]. Perhaps there is a natural way to separate these fast and time scales

in the inference dynamics – to incorporate the faster oscillations in a systematic way, the idea being that these

may contribute mostly strongly to estimate destabilization. The beauty of the electromagnetic-inference

correspondence is that it reveals the origin of this instability from the action of quantities familiar from

classical electrodynamics. The physical picture we should keep in our mind is a delicate balance between

magnetic and electric forces, either one of which could rapidly destabilize the motion.

5.3.2 E-M dynamics of the two-dimensional linear system

In a moment, we will revisit all the aspects of the inference problem noted in this chapter in a

parallel formalism – Hamiltonian dynamics. Before doing so, let us end this chapter with an illustration of

the electromagnetic-inference correspondence in the simplest nontrivial case – linear drift dynamics in two

dimensions:

f1 = x2

f2 =−x1

f3 = 0 (5.39)

Assuming uniform model precision Q = RfI and both components directly observed to a precision of Rm, the

associated potentials from Eq. 5.38 are:

A =−Rfx2i+Rfx1j

φ =−Rf

2
(x2

1 + x2
2)−

Rm

2
(x1− y1(t))2− Rm

2
(x2− y2(t))2 (5.40)

corresponding to an upward uniform B-field with planar, outwardly electric fields perturbed in time by ob-

served data – the associated ’Inference Lorenz force’ fI is:

fI = fB + fE = [Rf(2vy + x1)+Rm(x1− y1(t))]i+[−Rf(2vx + x2)+Rm(x2− y2(t))]i (5.41)

This system is only oscillatory in the unobserved limit Rm = 0, and only along curves initiated at the exact

dynamics fi = vi. Otherwise, it contains unstable spirals; that is, motion in the radial direction via the E-field
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causes oscillatory motion directed by the upward B-field. This is in stark contrast to the estimate propagation

in the sequential filter, which is under appropriate assumptions continuously corrected by incoming data in a

stable and convergent manner.



Chapter 6

A Hamiltonian formulation of nonlinear

dynamical inference

6.1 Boundary value problems in optimal control

The previous chapter uncovered connections between estimate propagation and mechanical systems.

Let us pursue the analogy a bit further. In classical mechanics, Lagrangian and Hamiltonian formulations

equivalently solve a mechanical problem. Equivalently in the sense that the integral curves of the N second-

order E-L equations corresponds to those of 2N first-order Hamiltonian equations. In the Chapter 5, we

developed a path integral and Lagrangian theory for the nonlinear dynamical inference problem, but found

that while the integral curves may be well-defined, they may not be solvable in practice due to persistent

instabilities – even if instability is absent in the dynamical model itself. The central distinction between

mechanics and dynamical inference is that the former is naturally framed as an initial value problem, for

which solutions are unique and well-posed, while the latter can only be framed as a boundary value problem

since the initial conditions are incomplete.

Such boundary value problems are well-known in the theory of optimal control [Liberzon, 2012,

Betts, 2010]. Optimal control problems seek a control vector u(t) that optimally drives a dynamical state

vector x(t) from an initial point to a final point subject to boundary constraints, while also minimizing a

functional J[x(t),u(t)] along the full path trajectory. Consider, for example the problem of attempting to

109
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drive between San Diego and Los Angeles using the least amount of gas, given that mpg ratings and viscous

air drag are strongly speed-dependent, and given that by some miracle the I-5 is clear. In this scenario, i) the

control variable u(t) to be determined is our weight on the accelerator pedal, ii) the dynamical equations

connects the speed x(t) to this force and others, and iii) the cost J depends on the instantaneous fuel usage

rate, which is in turn a function of the speed x(t). This problem is expressed mathematically as

minimize J[x(t),u(t)] = Φ[x(ti),x(tf), ti, tf]+
∫ tf

ti
L (x(t),u(t))dt (6.1)

subject to

ẋ = f(x,u, t)

gi = φi(x(ti),u(ti)) and gf = φf(x(tf),u(tf)). (6.2)

The extremization of the functional J is carried out by defining an augmented performance functional

H[x,u,λ], which incorporates the dynamical equations ẋ = f via Lagrange multipliers λ, and then solve for

stationary variations δH = 0. The notation H is no accident, as the variational principle produces a set of

Hamilton’s equations, one of which is a restatement of the state dynamics, the other of which is dynamics of

the Lagrange multipliers (or adjoints, or momenta). There is a final equation expressing the optimality of the

control in terms of H. In some cases, this expression can be used to express, explicitly, u as a function of x

and λ. When this is true, the result is a fully Hamiltonian problem in x and λ.

6.1.1 Instabilities in Hamiltonian dynamics and the shooting method

Finer details and complications of the optimal control formulation, particularly for non-smooth con-

trols, will not be discussed in this thesis. What is critical for now is that the mathematical structure of this

problem resembles that of dynamical inference; even if the x(ti) are specified, the set of coupled ODEs still

form a boundary value problem since the initial values of λ are unknown [Betts, 2010].

A common and intuitive method to solve this boundary-value problem is the so-called shooting

technique and its variants [Betts, 2010]. In this scheme, the unknown initial conditions are guessed (λ (ti))

and Hamilton’s equations are solved forward in time. The error in the presumed boundary conditions at the

final point, ε ≡ gf−φf, is evaluated. When ε is above some tolerance, the guessed initial condition is adjusted,

and the integration is repeated. This procedure is continued accordingly until the error falls below a specified
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threshold.

This reasonably logical process is complicated by the presence of instabilities entirely analogous to

those encountered in the previous chapter. These instabilities are a direct consequence of the fact that the

problem is Hamiltonian. Explicitly, for Hamiltonians systems,

q̇ =
∂H
∂p

ṗ =−∂H
∂q

, (6.3)

whereby the Jacobian matrix is

J =

 ∂ q̇
∂q

∂ q̇
∂p

∂ ṗ
∂q

∂ ṗ
∂p


=

 ∂ 2H
∂p∂q

∂ 2H
∂p∂p

− ∂ 2H
∂q∂q − ∂ 2H

∂q∂p

 , (6.4)

whose trace vanishes. That is, since differential area projections |dpa×dqa| are conserved along Hamiltonian

flows, any initial small ball of initial conditions that contracts over time in one direction must expand in

another – exactly what we found in the dynamics of nonlinear inference [Betts, 2010].

6.1.2 Multiple shooting

Obviously the problems associated with hypersensitivity to initial conditions compound as the time

window lengthens. One way to minimize the effect of initial-state sensitivity is by partitioning tf interval into

N smaller segments, called phases, each individually subject to a shooting requirement. The resulting trajec-

tories are then strung together to a continuous trajectory by identifying the resulting state of the k−1 segment

and the initializing state of the k segment. In practice, these N conditions (N−1 for the the inner phases, plus

the terminal boundary condition φf) are incorporated into a nonlinear program as constraints [Betts, 2010].

This procedure often eliminates or reduces many of the issues with hypersensitivity found in shooting, albeit

at the introduction of extra variables to be optimized – each phase now needs its own free state vector xk.

In multiple shooting, the optimization cost function consists of the original cost function A plus

Lagrange multiplier terms enforcing the constraints and boundary conditions. Assuming that a Newton-type
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nonlinear programming algorithm is used to minimize this function iteratively, the associated Hessian will

include second derivatives of A, as well as the Jacobian of the constraint equations. However, multiple shoot-

ing requires distinct state vectors in each phase, so the associated Hessian has ballooned from D2 elements,

in the case of indirect single-pass shooting, to (ND)2 elements.

Fortunately, the constraint equations ck at the phase boundaries are only functions of the state vari-

ables on either side of the boundary, xk−1 and xk. The Jacobian J jk = ∂ jck is therefore block tridiagonal

at most, with blocks of size DxD. Thus, the number of nonzero elements in the Hessian scales not with

N2 but rather linearly with N. This reduces the runtime of the optimization protocols considerably, an as-

pect exploited by modern methods in nonlinear optimization for efficient calculation, permitting applications

with 105−106 variables and constraints. For this reason, multiple shooting is a preferred method in optimal

control applications where sensitivity and nonlinearity are common [Betts, 2010].

Yet, for heavily nonlinear or chaotic dynamics, there is the matter of spurious minima: if the opti-

mization procedure begins with a poor initial guess, then the extremum satisfying the constraint conditions

may only be local in the space of candidate paths. This is essentially a consequence of the lack of general

uniqueness theorems for two-point boundary value problems of nonlinear ODEs. It is something we have

also seen play out several times through the course of this thesis.

As a simple illustration, consider the following Hamiltonian system ż = f(z) = f(x1,x2, p1, p2):

ẋ1 = p1

ẋ2 = p2

ṗ1 =−x1−2x1x2
2

ṗ2 =−x2−2x2x2
1, (6.5)

which is a 2D harmonic oscillator with nonlinear coupling, known to be chaotic for a wide array of initial

conditions [Sprott, 2010]. As a numerical experiment, let us integrate the system forward for 2001 timesteps

of ∆t = 0.01, beginning from a given {x(0),p(0)} to generate the “known” partial boundary condition x(T ).

Then we attempt to re-estimate this system given only the initial and final states x(0) and x(T ), using multiple

shooting with N = 200 partitions of size 10∆t. The variables Z ≡ {z1, ...zN} are the arguments of the cost

function A(Z) which quantifies the square error between zn+1 and the forward shooting of zn, in addition to
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Figure 6.1: (a) Estimated trajectory (orange) versus true trajectory (black) of two variables of
the the four-dimensional chaotic system, Eqs. 6.5, using multiple shooting. Despite satisfying the
boundary conditions and returning a low value of the cost function A(Z), near machine precision,
the estimate is poor. (b) Another estimated trajectory satisfying the boundary conditions with low
error cost. The estimate is worse than (a).

satisfying the boundary conditions:

A(Z) =
N−1

∑
n=1

(zn+1−F10
E (zn))

2 +(x1−x(0))2 +(x(T )−PxF10
E (zN))

2, (6.6)

where Px is the projection matrix onto the x components, FE is the Euler step approximation of the dynamics

f, and F2
E(xn) = (FE ◦FE)(xn), etc. Running this nonlinear program with a randomly chosen initialization of

the optimization often produces the “true” trajectory first generating the boundary conditions. Yet, as seen in

Figure 6.1, along with this trajectory are found several other “spurious” trajectories nevertheless satisfying

the boundary conditions, minimizing A to the same level of error near machine precision. Though this model

is chaotic, it is small – only four dimensions – and the shooting windows are brief; even for this relatively

benign case, the lack of a strong prior holds demonstrable consequences.
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6.1.3 Collocation

Multiple shooting is often used within a formulation of optimal control known as the indirect

method. Here, the variational equations solving the optimal control problem – typically a set of Hamil-

ton’s equations – are solved. The general idea in indirect methods, as noted in [Betts, 2010] is “optimize then

discretize”: Hamilton’s equations are explicitly derived from a variational principle, the control is inverted

into a function of x and p, and these equations are discretized and solved in a nonlinear program. An alter-

nate formulation, more amenable in the presence of state and control constraints are direct methods, which

optimize a discretization of the cost function itself. In direct methods, neither Hamilton’s equations nor an

explicit equation for optimum control is found. As such, these methods are typically much more robust when

the state or control constraints are active and/or the optimal control condition cannot be inverted.

One such method is direct collocation, or direct transcription. The cost function is discretized at

collocated points with interpolating polynomials, these interpolating variables then used as the free variables

in the optimization search. Clearly, variational annealing fits in this class. Due to the local manner in which

the dynamical equations are discretized, the resulting Jacobian and Hessian matrices in collocation schemes

are again sparse and banded, making them rather attractive for higher-dimensional problems.

Direct collocation is mentioned here only for sake of completeness, and further discussion of the

compromises inherent in various methods in the context of optimal control can be found elsewhere [Kirk,

1970,Betts, 1998,Betts, 2010,Rao, 2010,Liberzon, 2012]. Let us now turn to the formulation of the nonlinear

inference problem in the Hamiltonian picture, returning to appropriate methods of solution following a careful

discussion of the issues at hand.

6.2 Toward a Hamiltonian formulation of nonlinear inference

The optimal control theory and methods of solution have thus far not been described mathemati-

cally in any heavy detail. Nonetheless, the primary takeaway is the following: boundary value problems in

optimal control can often be cast explicitly as Hamiltonian systems, which are inherently unstable. To some

extent hypersensitivity can be addressed with multiple shooting techniques, though a good initial guess is still

required. Collocation offers a further avenue of approach, though it is not without its limitations.

In Chapter 4, we found that the nonlinear dynamical inference problem admits a natural Lagrangian
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function, thereby casting it as a dynamical system in its own right. But the resulting differential system

was not amenable to practical computation, even with known initial conditions. It is of interest to see if the

Hamiltonian formulation, though equivalent in the continuum limit, is perhaps more benign in a practical

sense.

To this end, let us begin with the continuous Lagrangian of the inference formulation that we derived

in Chapter 4,

LI(x, ẋ, t) = (ẋ− f(x))2∣∣
Q−1 +(x−y)2∣∣

R−1 +
1
2
∇· f(x). (5.30 revisited)

The Hamiltonian is derived from LI through a Legendre transformation,

H(x,p) = p · ẋ−L (x, ẋ, t)
∣∣∣∣
ẋ(p,x)

, (6.7)

where p is defined by p≡ ∂L
∂ ẋ . An explicit representation of H requires that this expression can be inverted to

express ẋ explicitly as a function of p and x. In practice, this may not always be possible if L is sufficiently

nonlinear in its velocity variables.

In the Gaussian error approximation, this inversion poses no issues. Applying the Legendre trans-

form to LI gives the Hamiltonian of nonlinear Inference:

HI(x,p) = p2∣∣
Q− (x−y)2∣∣

R−1 +p · f(x)− 1
2
∇· f(x), (6.8)

or in component form, assuming direct observations and uncorrelated, constant process noise (in analogy to

Eq. 5.31),

HI(x,p) =
p2

a

2Rf(a)
− Rm(t,a)

2
(xa− ya)

2 + pa fa(x)−
1
2

∂ fa(x)
∂xa

. (6.9)

We will use the component notation exclusively from here forward, as the vector notation is somewhat opaque

when writing the equations of motion. The dynamics are then governed by the associated Hamilton’s equa-
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tions of motion:

dxa

dt
=

∂HI

∂ pa
= fa(x)+

pa

Rf(a)

−d pa

dt
=

∂HI

∂xa
= pb

∂ fb(x)
∂xa

−Rm(a, t) · (xa− ya)−
1
2

∂ 2 fb

∂xa∂xb
. (6.10)

In this problem, the indeterminacy of the initial state, partially on the measured subspace and certainly on

the unmeasured one, implies that boundary conditions cannot be enforced on x. Conversely, having enforced

ẋ(ti) = f(x(ti)) and ẋ(tf) = f(x(tf)) in the Lagrangian formulation, Eqs. 6.10 suggest the vanishing of p as the

natural analogue in the Hamiltonian formulation:

pa(0) = pa(T ) = 0 (6.11)

As discussed above, while multiple shooting may solve some of the sensitivity issues of single-

pass shooting, spurious trajectories may still arise. We have seen fractal cost surfaces arise in the context

of variational annealing with chaotic dynamics, so the appearance of several paths satisfying this two-point

Hamiltonian boundary value problem would not be wholly unexpected.

In time, we will present a method to partially address this problem in the variational context. Before

doing so, let us first investigate a fundamental invariant of Hamiltonian systems, and the subtleties therein.

This invariant is the symplectic bilinear form, whose preservation is responsible for Liouville’s Theorem.

Somewhat less well known in the physics community are the failings of this symmetry in numerical compu-

tation, which will be central in the dynamical problem of nonlinear inference.

6.3 Symplectic invariants in Hamiltonian systems

Phase space volume ∏d dqdd pd is conserved along Hamiltonian flows as a consequence of Liou-

ville’s Theorem. In fact there is a more fundamental conserved quantity, the symplectic bilinear form, which

for a 2D Hamiltonian space is

ω =
D

∑
d=1

dqd ∧d pd , (6.12)
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Figure 6.2: (a) Evolution in phase space of a small region of initial conditions of a 2D harmonic
oscillator, solved using the forward Euler step numerical scheme. The phase space areas grow in
time, contradicting Liouville’s Theorem for Hamiltonian systems. (b) Similar forward integration
using forward Euler step, now for a nonlinear oscillator system. While the deformation of phase
space areas is consistent with Liouville’s Theorem, the increase in area magnitude is not.

where the wedge product ω between two differential one forms is the signed area vector of the parallelogram

they span. Phase space conservation follows from Eq. 6.12, simply by taking D wedge products of ω with

itself.

Manifolds which contain such a conserved quantity are known as symplectic manifolds; equipping

these manifolds with an energy function, i.e. the Hamiltonian H(qa, pa), then naturally produces a vector field

v = (q̇a, ṗa) via Hamilton’s equations [Wendlandt and Marsden, 1997, Marsden and West, 2001, Goldstein

et al., 2002]. The symplectic form is then preserved along the integral curves of this vector field. Curiously,

this symmetry is quite generally violated outside of the continuum limit. If the Hamiltonian system is in-

tegrated forward numerically, bilinear forms and differential phase space area accrue errors, whatever the

integration timestep. This is not a side effect of nonlinearity, occurring even in linear dynamics. To illustrate

this, consider the simple harmonic oscillator in Hamiltonian coordinates with unit frequency,

ẋ = p , ṗ =−x, (6.13)
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integrated forward for N = 450 timesteps using an explicit Euler scheme with timestep ∆t = 0.04:

xn+1 = xn + pn∆t

pn+1 = pn + xn∆t. (6.14)

Figure 6.2a shows the evolution of a small region of initial conditions centered at [x(0), p(0)] = [0.62,0] with

this numerical integrator, plotted every 5th step for ease of visualization. Symplecticity dictates that while

the region may deform, its area should remain invariant; instead the expected circular orbit gradually gives

way to an unbounded spiral, the region steadily growing in size. Figure 6.2b shows the same phenomenon

for a nonlinear system with quartic potential, integrated for N = 270 steps of size ∆t = 0.05:

H(x, p) =
p2

2
+

x2

10
− x3

15
+

x4

4

ẋ = p

ṗ =− x
5
+

x2

5
− x3. (6.15)

These plots appear to contradict the fact that the time evolution of Hamiltonian systems is a symplectomor-

phism, the loss of this fundamental symmetry arising entirely from the discrete numerical integration scheme.

Thus, numerical integration by an explicit Euler scheme does not preserve the symplectic invariant ω . Is this

an unavoidable byproduct of numerical integration? Are there numerical integrators that can preserve these

invariants?

6.3.1 Symplectic integrators

Many, in fact. Such symplectic integrators preserve ω exactly at every step, despite the unavoidable

presence of errors in the trajectories themselves [Hairer et al., 2006]. One example, applicable to Newtonian

systems, is the leapfrog or Verlet method, of which one variant is:

pn+1/2 = pn +
dt
2

f(xn)

xn+1 = xn +dtpn+1/2

pn+1 = pn+1/2 +
dt
2

f(xn+1), (6.16)
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Figure 6.3: Evolution of the same systems as in Figure 6.2, now using the symplectic leapfrog
integration scheme. While the phase space areas deform in the nonlinear case, their magnitudes
are nonetheless preserved in accordance with Liouville’s Theorem.

assuming unity mass. Evolving the linear and nonlinear systems Eqs. 6.13 and 6.15 with the leapfrog in-

tegrator produces the trajectories shown in Figure 6.3 (The figures are plotted at larger increments than in

Figure 6.2 for better visualization). In both cases, the differential areas may contort, but are preserved step-

by-step.

Proving that an integrator such as the leapfrog method is symplectic is straightforward. To begin,

note that symplectomorphisms (canonical transforms in physics) are defined as transformations that leave

ω invariant, and within the language of differential forms, this invariance can be shown to follow naturally

from the particular form of Hamilton’s equations. In other words, if a coordinate transformation is shown to

preserve Hamilton’s equations, it is indeed canonical.

A more compact condition on canonical transformations can be derived using the invariance of

Hamilton’s equations. Consider the Jacobian matrix of transformation M from η = {x,p} to ξ = {x′,p′}.

This matrix is:

M≡ ∂ξ

∂η
=

∂ (x′,p′)
∂ (x,p)

. (6.17)

Expressing the time derivative of the new coordinates in terms of the old and using Hamilton’s equations in
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the latter:

ξ̇ = Mη̇

= MJ
∂H
∂η

, (6.18)

where Hamilton’s equations have been written compactly via J, which is the skew block matrix with I in the

upper right and −I in the lower left. Now, H could also be considered a function of ξ through the coordinate

transformation, whereby

ξ̇ = MJMT ∂H
∂ξ

(6.19)

under some smoothness and invertibility assumptions on the coordinate transformation. Note that the trans-

pose of the transformation appears in the coordinate change; in the language of tensors, this is a consequence

of gradients transforming as a dual vector [Goldstein et al., 2002].

On the other hand, if M represents a canonical transformation, then Hamilton’s hold in the trans-

formed coordinates ξ:

ξ̇ = J
∂H
∂ξ

. (6.20)

Identifying Eq. 6.19 and Eq. 6.20, the symplectic condition on M is therefore:

J = MJMT . (6.21)

Eq. 6.21 is the symplectic condition on a coordinate transformation M. In particular, flows along Hamilton’s

equations of motion are themselves canonical, and satisfy Eq. 6.21 in the infinitesimal limit [Goldstein et al.,

2002]. Conversely, Eq. 6.21 provides a simple check on whether evolution in discrete time – i.e. a given

numerical integrater – is canonical or not.

To this end, let use the symplectic condition to explicitly illustrate the breaking of symplectic sym-

metry in the Euler scheme. In the Euler scheme, the evolution of a Hamiltonian system in finite time ∆t is
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given by:

xn+1 = xn +∆t
∂H
∂p

∣∣∣∣
xn,pn

≡ xn +Hp∆t (6.22)

pn+1 = pn−∆t
∂H
∂x

∣∣∣∣
xn,pn

≡ pn−Hx∆t (6.23)

The transformation matrix is:

M =
∂ (xn+1,pn+1)

∂ (xn,pn)
=

I+Hxp∆t Hpp∆t

−Hxx∆t I−Hxp∆t

 , (6.24)

whereby

MJMT =

I+Hxp∆t Hpp∆t

−Hxx∆t I−Hxp∆t


 0 I

−I 0


I+Hxp∆t −Hxx∆t

Hpp∆t I−Hxp∆t

 (6.25)

=

 0 I+O
(
∆t2
)

−I+O
(
∆t2
)

0

 , (6.26)

where the second partials Hxp, Hxx, and Hpp are evaluated at (xn,pn) and O
(
∆t2
)

consists only of terms

proportional to ∆t2. Two things are apparent here: i) since Eq. 6.26 is not exactly equal to J, the Euler step

is not symplectic, and ii) the scheme violates symplecticity only to second order. The vanishing of terms first

order in ∆t indicates that symplecticity is preserved in the continuous limit (as shown above), however this

finite integrator will unavoidably accumulate errors, as we found in Figures 6.2.

We can use the same idea to illustrate that other integrators are exactly symplectic, such as leapfrog;

here, we show symplecticity in the midpoint method, as we will use this particular integrator later in this

chapter. The midpoint rule discretizes the time evolution via:

xn+1 = xn +∆t
∂H
∂p

∣∣∣∣
xn+1/2,pn+1/2

≡ xn +Hp∆t

pn+1 = pn−∆t
∂H
∂x

∣∣∣∣
xn+1/2,pn+1/2

≡ pn−Hx∆t (6.27)
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where the partials of H are evaluated at the midpoints

xn+1/2 =
xn +xn+1

2

pn+1/2 =
pn +pn+1

2
. (6.28)

Due to the symmetry of this integrator, it will be easiest to work with the combined coordinates z = {x,p},

whereby equation Eq. 6.27 can be written

zn+1 = zn +∆tJ∇H
∣∣
zn+1/2

. (6.29)

The transformation matrix is found by taking the gradient of this vector equation with respect to zn, and using

the fact that H depends on both zn and zn+1 through its argument zn+1/2. That is,

∂

∂zn

{
zn+1 = zn +∆tJ∇H

∣∣
zn+1/2

}
M = I+∆tJ(∇2H)

∂

∂zn
(zn+1/2)

M = I+
∆t
2

J(∇2H)(I+M)

M = (I− ∆t
2

J∇
2H)−1(I+

∆t
2

J∇
2H) (6.30)

To prove the symplectic condition, consider JM−T, where M−T is the inverse transpose:

JM−T = J(I− ∆t
2

∇
2HJ)−1(I+

∆t
2

∇
2HJ), (6.31)
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using that JT = J−1 =−J. The first two factors on the right hand side of this equation can be written:

J(I− ∆t
2

∇
2HJ)−1 =−J−1(I− ∆t

2
∇

2HJ)−1

=−((I− ∆t
2

∇
2HJ)J)−1

=−(J+ ∆t
2

∇
2H)−1

=−(J(I+ ∆t
2

J−1
∇

2H))−1

=−(I+ ∆t
2

J−1
∇

2H)−1J−1

= (I− ∆t
2

J∇
2H)−1J. (6.32)

Inserting this back into Eq. 6.31 and multiplying the middle J through the last factor gives:

JM−T = (I− ∆t
2

J∇
2H)−1(I+

∆t
2

J∇
2H)J

= MJ, (6.33)

from which the symplectic condition Eq. 6.21 immediately follows. Similar procedures can be used to show

that classical RK4 and the trapezoidal rule are not symplectic, while leapfrog, symplectic Euler, and other

classes of Runge-Kutta methods are [Hairer et al., 2006].

6.3.2 Exploiting symplecticity in nonlinear dynamical inference

The pitfalls of integrating Hamiltonian systems with arbitrary numerical schemes first became clear

through early computer simulations of celestial motion [Channell and Scovel, 1990, Yoshida, 1990, Wisdom

and Holman, 1991]. The divergent trajectories of these lengthly integrations, which should have produced

bounded orbits, indicated that fundamental conservation laws were somehow being violated. In light of the

instability and divergence we have seen in the Lagrangian formulation of nonlinear inference, it is of interest

to see if the Hamiltonian formulation, in which these symmetries can be explicitly enforced with symplectic

numerical integration schemes, may solve this problem – at least in part.

Since the Hamiltonian formulation underlies much of optimal control theory and dynamic program-

ming, it would seem curious that the idea of symplectic integration had not yet already been explored in these

contexts. There has been some work in applying symplectic integrators to optimal control, but they are careful
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to note the critical difference versus mechanics: this is a two-point boundary value problem which, if using

multiple shooting or collocation for example, does not demand long time integrations with free endpoints that

symplectic integration intends to address [Chyba et al., 2009]. Not surprisingly, it is found that the benefits

are fairly problem-dependent.

A further twist in the story comes in a recent exploration of symplectic invariants arising directly

from variations of the discrete action, which can be developed both in Hamiltonian and Lagrangian for-

mulations1 [Wendlandt and Marsden, 1997, Marsden and West, 2001]. In fact, it turns out that symplectic

structures are preserved quite readily in this way for a large class of classical actions. In this sense, preserving

symplecticity appears more natural in the setting of variational principles derived from these discrete actions

than in the Hamiltonian context, where integrators must be explicitly devised. Having already investigated

variational annealing in the framework of the least action principle, let us therefore proceed by investigating

the symplectic structure of discrete actions. Our hope is that the benefits of symplecticity can somehow be

melded with the idea of incremental annealing in the estimation of strongly nonlinear and chaotic models,

where the conditional distributions are far from Gaussian.

6.4 Symplecticity from discretized classical actions

6.4.1 Discrete Euler-Lagrange equations and symplectic flows

The conservation of phase space in Hamiltonian spaces is well-known in the physics literature; less

commonly noted is that Lagrangian spaces also admit symplectic bilinear forms that are conserved along

their integral curves. This bilinear form is [Marsden and West, 2001]:

ωL =
D

∑
a,b=1

∂ 2L (x, ẋ, t)
∂xa∂ ẋb

dxa∧dxb +
D

∑
a,b=1

∂ 2L (x, ẋ, t)
∂ ẋa∂ ẋb

dẋa∧dxb. (6.34)

Perhaps the reason that this invariant is omitted in the classical physics literature is that unlike the differential

area d pi∧dqi, it lacks an obvious physical interpretation. The correspondence to Hamiltonian mechanics is

simple to note, however, by using the definition of the canonical momenta pa = ∂/∂ ẋa.

It was recently found that in the Lagrangian formulation, integrators that preserve symplectic in-

1This dichotomy is somewhat reminiscent of that between direct and indirect methods in optimal control
– the former of which follows a notion of discretize then optimize, the latter optimize then discretize.
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variants arise almost automatically [Wendlandt and Marsden, 1997, Marsden and West, 2001, Hairer et al.,

2006]. In fact, invoking Hamilton’s principle directly on the discrete produces at once discrete analogues of

the integrator, the bilinear form, and the Euler-Lagrange equations. Being derived from Hamilton’s principle,

such schemes are naturally called variational integrators. Various works pointing to the connection between

variational principles and the conservations of symplectic invariants had appeared throughout the late 80s and

90s; the theory was formalized first in [Wendlandt and Marsden, 1997] and proceeded by many extensions

since [Marsden and West, 2001, Hairer et al., 2006, Lall and West, 2006, Leok and Zhang, 2011].

The formulation begins with the discrete analogue of Hamilton’s principle, called the Discrete Vari-

ational Principle (DVP). The DVP applies to a discrete Lagrangian Ld, which is a map Ld : Q×Q→ R,

where Q for our purposes is the state space of the dynamical system: xn ∈ Q = Rn. The discrete action

Sd : QN+1→ R is then defined as:

Sd =
∫ T

0
L (x, ẋ, t)dt→

N−1

∑
n=0

Ld(xn,xn+1). (6.35)

Defining a discrete Lagrangian based on a continuous functional form can be done in a variety of ways

concomitant with this definition, the only requirement being that Sd can be represented as a sum of discrete

Lagrangians Ld with homogeneous dependence on “adjacent” times and state vectors Ẇith this discrete action

in hand, the DVP state that the evolution of the state in discrete time extremizes Sd subject to fixed endpoints

q0 and qN . The derivatives are straightforward, resulting in the discrete Euler-Lagrange equations:

0 = D2Ld(xn−1,xn)+D1Ld(xn,xn+1) ; n = 1, ...,N−1 (6.36)

where the notation D1 in the second line indicates derivative with respect to the first argument.

However, we see that the DVP under with endpoints fixed is useless from the point of view of the

inference problem: q0 and qN cannot be held fixed because they are unknown. Employing instead the DVP

without assuming fixed endpoints gives:

0 =
N−1

∑
n=1

[D2Ld(xn−1,xn)+D1Ld(xn,xn+1)] ·δxn +D1Ld(x0,x1) ·δx0 +D2Ld(xN−1,xN) ·δxN . (6.37)

On integral curves of the Euler-Lagrange equations, the summed term vanishes. We can remove the boundary
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terms by demanding that, rather than fixed endpoints, the derivative terms vanish,

D1Ld(x0,x1) = D2Ld(xN−1,xN) = 0. (6.38)

These are the “natural boundary conditions” for the discrete Lagrangian of the inference problem.

It is apparent that the Euler-Lagrange dynamics, together with appropriate boundary conditions,

follow directly from the stationarity of the action when considered a function of x0, ...,xN . What’s more,

the flow of the discrete Euler-Lagrange equations preserves a discrete symplectic form. This bilinear form

essentially arises as the exterior derivative of the one-form comprising the boundary terms at n= 0 and n=N.

Proper treatment in terms of the tangent bundles on which the Lagrangian is defined and the associate tangent

spaces of one forms is found in [Marsden and West, 2001], but briefly, these boundary one-forms sum to:

Θ
+(xN−1,xN)+Θ

−(x0,x1) =
∂Ld(x0,x1)

∂x0
dx0 +

∂Ld(xN−1,xN)

∂xN
dxN . (6.39)

These boundary terms arose from differentiating the discrete action Sd along Euler-Lagrange flows. Taking a

second exterior derivative gives:

d2Sd = dΘ
+(xN−1,xN)+dΘ

−(x0,x1)

= d
[

∂Ld(xN−1,xN)

∂xN
dxN

]
+d
[

∂Ld(x0,x1)

∂x0
dx0

]
=

∂ 2Ld(xN−1,xN)

∂xN−1∂xN
dxN ∧dxN−1 +

∂ 2Ld(x0,x1)

∂x0∂x1
dx0∧dx1

=−∂ 2Ld(xN−1,xN)

∂xN−1∂xN
dxN−1∧dxN +

∂ 2Ld(x0,x1)

∂x0∂x1
dx0∧dx1 (6.40)

using dx0∧dx0 = 0. Since d2Sd = 0, then the final line states that the following quantity is conserved between

t0 and tN (or more generally for any subinterval of [0,N]):

ωLd =
∂ 2Ld(xn,xn+1)

∂xn∂xn+1
dxn∧dxn+1, (6.41)

which is naturally identified with the discrete symplectic bilinear form. We say then that, in analogy to

the continuous case, the flow of the discrete Euler-Lagrange equations, Eq. 6.36, is discretely symplectic on

Q×Q.
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6.4.2 From discrete actions to variational integrators

Having shown that the Euler-Lagrange equations, boundary conditions, and the conservation of

symplectic invariants result automatically from the discrete variational principle applied to discrete actions

of the form Eq. 6.35, let us now construct these discrete actions from their continuous counterparts. This is

basically a matter of choosing discretization schemes for the position and velocity variables x and ẋ. The

corresponding discrete Euler-Lagrange equations then produce a variational integrator whose particular form

depends on this discretization.

In light of the fact that two of the most rudimentary numerical integration procedures – the explicit

Euler step and the trapezoidal rule – are not symplectic, while others such as midpoint rule are symplectic,

it appears remarkable that arbitrarily discretizing the Lagrangian iteratively as in Eq. 6.35 always produces

a symplectic map. At lower orders, the most natural methods of discretizing the position and velocity in the

windows [tn, tn+1] produce familiar schemes. Let us investigate two of these now.

First consider approximating the integral
∫

L dt by interpolating x(t) linearly between xn and xn+1,

whereby

Sd ≈
N−1

∑
n=1

∫ tn+1

tn
dtL (xn(1−α(t))+xn+1α(t),(xn+1−xn)/∆t), (6.42)

with α(t) = (t− tn)/∆t and ∆t = tn+1− tn. Approximating these integrals by the trapezoidal rule then gives:

Ld(xn,xn+1) =
∆t
2

L (xn,(xn+1−xn)/∆t)+
∆t
2

L (xn+1,(xn+1−xn)/∆t) (6.43)

Deriving the discrete Euler-Lagrange equations from Ld will produce an integration scheme from xn−1 to xn+1

whose symplecticity is guaranteed. Since symplectic integrators designed by directly discretizing Hamilton’s

equations are defined in canonical coordinates, the correspondence will be made easier with the following

definition of discrete momentum:

pn =−D1Ld(xn,xn+1) (6.44)
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Combining Eq. 6.44 with the discrete Euler-Lagrange equation gives

pn+1 = D2Ld(xn,xn+1). (6.45)

This procedure gives an iterative scheme for generating momenta and positions from xn, though the expres-

sions may of course be implicit. For Eq. 6.43 we get

pn =−
∆t
2

∂L (xn,vn)

∂x
+

1
2

∂L (xn,vn)

∂ ẋ
+

1
2

∂L (xn+1,vn)

∂ ẋ

pn+1 =
1
2

∂L (xn,vn)

∂ ẋ
+

∆t
2

∂L (xn+1,vn)

∂x
+

1
2

∂L (xn+1,vn)

∂ ẋ
(6.46)

where vn ≡ (xn+1 − xn)/∆t. For a Lagrangian with canonical kinetic energy and potential U(x), f(x) =

−∇U(x) this gives:

pn =−
∆t
2

f(xn)+vn

pn+1 = vn−
∆t
2

f(xn+1) (6.47)

Calling vn as the intermediate momentum pn+1/2, and combining its definition with the two equations above

gives

pn+1/2 = pn +
∆t
2

f(xn)

xn+1 = xn +∆tpn+1/2

pn+1 = pn+1/2 +
∆t
2

f(xn+1), (6.48)

which is the symplectic leapfrog method of Eq. 6.16. Similarly, it can be shown that approximating Eq. 6.42

instead by the midpoint method will generate the symplectic midpoint method.

If the basic Euler scheme is not itself symplectic, then which variational integrator does a first order
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approximation of the discrete action produce? Consider approximating Eq. 6.42 by a left Riemann sum:

Ld(xn,xn+1) = ∆tL (xn,(xn+1−xn)/∆t)

→pn =−∆t
∂L

∂x
+

∂L

∂ ẋ

pn+1 =
∂L

∂ ẋ
, (6.49)

and for the canonical Lagrangian with unity mass:

pn =−∆tf(x)+(xn+1−xn)/∆t

pn+1 = (xn+1−xn)/∆t, (6.50)

giving:

xn+1 = xn +∆tpn+1

pn+1 = pn +∆tf(xn). (6.51)

Comparing with Eq. 6.23, we see that to render the Euler scheme symplectic, the vector fields ∂pH and ∂xH

must be evaluated not at tn, but opposite both boundaries: xn and pn+1.

6.4.3 Discrete variational Hamiltonian mechanics

The discrete variational principle can also be developed in a Hamiltonian space to produce analogous

variational integrators in canonical coordinates [Wendlandt and Marsden, 1997, Lall and West, 2006]. These

essentially arise as discrete Legendre transforms of the discrete Langrangian Ld, thought there are two choices

corresponding to either the right or left Legendre transform. Either of these integrators could be derived for

the Gaussian error action. Though this formulation is mentioned for completeness, it will not be pursued

here; some details of the formulation can be found in [Kadakia et al., 2017].
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6.5 A Hamiltonian algorithm for nonlinear estimation

In the past several sections, we have encountered the existence of symplectic symmetry in Hamilto-

nian systems, its violation in discrete time, and its subsequent reinstatement either from carefully constructed

mappings of Hamilton’s equations, or directly via a discrete variational principle.

Let us now return to the discussion of nonlinear inference as a mechanical system. The intent of the

preceding sections was to suggest that geometric structures inherent in Hamiltonian flows may be leveraged to

address the problem of persistent instability. This is unlikely for two reasons. First, instability is a continuous

time issue that is a consequence of symplectic symmetry, not a byproduct of careless numerics. Second, the

development of variational integrators from the discrete variational principle means that symplectic invariants

are preserved in the Lagrangian formulation anyway, simply by satisfying the stationarity of A(X|Y) 2. As

mentioned, the variational principle produces not only the E-L equations, but the boundary conditions as well,

implying that minimizing A(X|Y) at once both preserves symplecticity and enforces the boundary conditions.

It is therefore unclear what more can be gained by moving to a Hamiltonian context.

On the other hand, the exposition of the inference problem is somewhat more natural in canonical

coordinates than in the discrete action space Q. For example, applying the terminal boundary condition of the

discrete action principle to the Gaussian error action Eq. 2.44 with gd(·) discretized by the trapezoidal rule

gives:

∂

∂xN
Ld(xN−1,xN) = Rf

[
xN−

∆t
2

(
f(xN−1)+ f(xN)+ xa(tN)

∂ fa(xN)

∂xN

)
+

∆t2

2

(
fa(xN−1)+ fa(xN)

)
∂ fa(xN)

∂xN

]
. (6.52)

This boundary condition and its analogous expression at t0 are i) dependent on Rf – which changes iteratively

over several orders throughout the variational annealing procedure, ii) sensitive to the discretization format

of the discrete action, thereby inheriting its error magnitudes and iii) not enforced explicitly, rather satisfied

as a byproduct of the optimization itself. Conversely, boundary conditions in the Hamiltonian formulation

of inference are trivial (pN = p0 = 0) and can be enforced more readily as constraints, so perhaps work-

2This is true for higher-order integrators as well. Though only first and second-order variational inte-
grators were presented above, the discrete action formulation Eq. 6.35 can be extended straightforwardly to
approximations with multiple stages in each time window [tn, tn+1], allowing naturally for quadrature schemes
that generate variational integrators of higher-order.
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ing in canonical coordinates could remove some ’unnaturalness’ of the description, better conditioning the

optimization process.

Certainly, we might carry out the nonlinear estimation with Hamilton’s equations, Eqs. 6.10, em-

ploying multiple shooting or collocation. But we would likely expect difficulties of the sort presaged by the

2D chaotic oscillator above: multiple solutions satisfying the boundary conditions Eqs. 6.11 may be uncov-

ered by the nonlinear optimization.

After all, recall that the equations of motion arose initially as the saddle point approximation of a

high-dimensional path integral, which technically sums an infinite number of contributing paths. Laplace’s

method solves this impossible calculation by retaining only those that contribute more than locally neighbor-

ing paths. If the action admits more than one stationary path, the individual weights must be compared, yet

the equations of motion contain no prescription for this comparison – the action values themselves must be

invoked. In this sense, the well-posed functional path integral could actually produce an ill-posed boundary

value problem through the method of stationary phase. In the context of nonlinear estimation of chaotic

systems, this is not just a possibility. It is ubiquitous.

In Ch. 3 we found that the issue of multiple minima could be often mitigated by incorporating

nonlinearities in a systematic and gradual way. It would be desirable if a similar annealing protocol could be

developed in canonical coordinates, the hope that the boundary value problem might be solved more reliably

in this space, particularly if the annealing is initialized with a tractable, convex cost function.

To this end, consider the continuous Lagrangian of nonlinear inference, expressed in canonical co-

ordinates:

LI,H(x,p, t) = p2∣∣
Q +(y−Hxn)

2∣∣
R−1 +

1
2
∇· f(x), (6.53)

for which the “action” is, in discrete time 3:

AH(Z|Y) =
N

∑
n=0

p2
n
∣∣
Qn

+
N

∑
n=1

(yn−Hxn)
2∣∣

R−1
n

(6.54)

where Z = {xn,pn}. Action is quoted here since this expression is, in and of itself, meaningful in neither

the Lagrangian nor Hamiltonian description: it represents essentially a time-integrated Lagrangian, but is ex-

3the divergence term arises only in the continuum limit of the Wiener integral
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pressed in canonical coordinates, which are meaningful only in the Hamiltonian picture. However, along the

integral curves of Hamilton’s equations, it is equivalent to the original action. It therefore provides a quan-

tification of the relative contribution to the expected value path integral, for distinct solutions of Hamilton’s

equations.

Of equal importance is the structure of Eq. 6.54: much like the discrete action in configuration space

in the Rf→ 0 limit, it is convex, though now for all Rf. The model nonlinearities, on the other hand, reside

entirely in Hamilton’s equations. We could exploit this decoupling much like in variational annealing if,

somehow, the equations of motion themselves could themselves be “annealed.”

In a nonlinear programming context, for example, we might optimize AH(Z|Y) with Hamilton’s

equations incorporated as inequality constraints. The iterative aspect of the algorithm would introduce the

effect of Hamilton dynamics by gradually decreasing the constraint slack on the Hamilton’s equations of

motion, slowly deforming the feasible region and transforming the constraints from inactive to active.

Specifically, let us consider the following Hamiltonian variational annealing algorithm, in which Rf

is fixed, and we perform the following optimization:

minimize AH(Z)

subject to

|φ(zn,zn+1, ...,zn+m−1)|< gH =
gH0

αβ
, (6.55)

where φ(·) is an mth-order discretization of Hamilton’s equations of motion. The constraint tolerance in

the annealing protocol starts at a relatively large value gH0 and is decreased by a factor 1/α at each step

β = 1,2, ... of the anneal, the idea being that as gH gets smaller, the dynamical equations are imposed more

strictly through Hamilton’s equations (see Algorithm 2).

Optimizing Eq. 6.54 in this iteratively constrained manner allows us to work entirely in canonical

coordinates and provides much the same functionality as the Lagrangian approach – by slowly introducing

the dynamical nonlinearities of the model – in a more direct way. A distinct difference is that in canonical

coordinates, natural boundary conditions may be enforced directly as a constraint on the initial and final

momenta, p(t0) = p(tN) = 0, since they are now independent variables in the optimization itself.
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Algorithm 2: Hamiltonian Variational Annealing (HA)
Input : Observations Y and annealing parameters βmax, α , gH0
Output: Estimated trajectories, parameters, and momenta {Ẑq,β}

1 for q = 1, ...,Q, in parallel do
2 Sample Zq

init uniformly from presumed dynamical range
3 end
4 for β ← 0 to βmax do
5 gH← gH0/αβ

6 for q = 1, ...,Q, in parallel do
7 Ẑq,β ← argmin [AH(Z|Y) subject to Eq. 6.55], with initial guess Zq

init
8 Zq

init← Ẑq,β

9 end
10 end

6.5.1 Symplecticity, boundary conditions, and degeneracies

A few words on the differences between variational and Hamiltonian annealing are in order. Though

both methods are similarly motivated, seeking stationary paths of the action through the gradual application

of model dynamics, they achieve this goal in fundamentally different ways. In the Lagrangian description,

iterative changes in the model precision Rf deform the action manifold from one that is quadratic in the

measured components and flat in the unmeasured components, to one rendered highly non-convex by the

nonlinearity of the vector field. The incremental way in which this is done tracks the local and global minima

of the action systematically, even if for large Rf they occupy tiny, deep corners in the action manifold. At

small Rf, due to the approximate flatness of the action in the unmeasured directions, the stationary paths

are highly degenerate, and this degeneracy is slowly lifted with increasing model precision. Meanwhile,

since the minimizing paths satisfy the Euler-Lagrange equations, by the arguments given in Section 6.4, the

symplecticity of every minimum action path is guaranteed.

On the other hand, in the Hamiltonian formulation, the path is embedded in a higher-dimensional

phase space of canonical coordinates. Part of the usefulness of this description is that the calculation can be

carried out in a way that preserves symplectic structure. To enforce the symplectic map, however, Hamilton’s

equations i) would need to be discretized with a symplectic scheme, and ii) enforced as equality constraints.

But since the solutions to Hamilton’s equations coincide with the action minima in the first place, require-

ment (ii) would render the action redundant entirely. So it is clear that by relaxing Hamilton’s equations, we

are also relaxing the requirement that the stationary paths contain symplectic invariants – despite these paths

residing in a Hamiltonian manifold.
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Instead, by using the constraints as an annealing device to gradually impose the model dynamics, two

things occur. First, in analogy to variational annealing, the degeneracies related to the partial observability of

the system are slowly removed. In addition, a separate degeneracy in the momenta variables is also lifted: at

low β , all p(n)≈ 0. These degeneracies are both broken by gradually enforcing the model dynamics through

the application of Hamilton’s equations as constraints. Further, in contrast to variational annealing, they exist

for arbitrary Rf, which has been demoted from its status as an algorithmic parameter altogether.

Second, symplecticity is imposed gradually through the enforcement of Hamilton’s equations; this

is in contrast to variational annealing, where the stationary paths are symplectic at each β . At the cost of a

higher-dimensional space, we have gained more control over how the underlying symmetries of this inference

dynamics are enforced.

It is of course still not certain that these aspects will actually increase the accuracy or reliability

of the estimation. After all, we have magnified the complexity of the problem – not only has the search

dimension doubled, but we have traded an unconstrained optimization procedure for a more computationally

costly constrained one. Yet there may be some benefit to carrying out a search in the joint space of x and p. We

found in Section 5.2.2 that embedding the Van der Pol oscillator into a higher-dimensional canonical space

inverted its attractive basins into saddles. Yet these same augmented momenta directions that compromised

stability in forward integration might be exploited in the optimization context. These directions may furnish

alternative paths out of what are otherwise stable local minima in configuration coordinates xa(tn), increasing

the likelihood that the global minimum of the action is found.

6.6 Numerical experiments of a chaotic attractor

Having motivated the Hamiltonian formulation of nonlinear inference, let us now compare it to

variational annealing in estimating a chaotic dynamical system with partial observations. The implementation

of each of these formulations will be as follows.
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6.6.1 Implementation details

Variational annealing

Variational annealing will be carried out as described in Section 3.1, with Rf0(n,d) = Rf0 = 1e-4,

α = 101/4, and βmax = 40, whereby the final Rf value is 106 (Table 6.1). Since the second-order symplectic

integrators are much easier to implement than higher order ones, we will work to this order of approximation

in both formulations. The dynamical model ẋ = f(x, t) is therefore discretized with a second-order Lagrange

polynomial, giving

f (x(t))≈
2

∑
j=1

f (x(t j))
2

∏
k 6= j

t− tk
t j− tk

=
(t− tn+1)

−∆t
f (xn)+

(t− tn)
∆t

f (xn+1) (6.56)

whose integral yields the trapezoidal rule:

∫ tn+1

tn
fd(x(t))dt ≈ ∆t

2
[ fd(xn)+ fd(xn+1)] (6.57)

Thus the following discrete action will be minimized at each stage of the anneal:

AL(X = xn|Y) =
N−1

∑
n=0

Ld(xn,xn+1)

Ld(xn,xn+1) =
L

∑
d=1

Rm(n,d)
2

(yd(tn)− xd(tn))2

D

∑
d=1

Rf

2

(
xd(tn+1)− xd(tn)−

∆t
2
[ fd(xn)+ fd(xn+1)]

)2

. (6.58)

Note that there is a subtlety in this particular discretization – it is not the variational integrator that

corresponds to leapfrog integration derived in Section 6.4.2, despite ostensibly utilizing a trapezoidal rule.

Here, we are instead approximating the “integral within” the action integral by the trapezoidal rule; in the
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previous case, we would approximate the full action integral directly from Eq. 5.31, giving:

Ld(xn,xn+1)∼
1
2
LI(xn,(xn+1−xn)/∆t)+

1
2
LI(xn+1,(xn+1−xn)/∆t)

=
L

∑
d=1

Rm(n,d)
2

(yd(tn)− xd(tn))2 +
L

∑
d=1

Rm(n+1,d)
2

(yd(tn+1)− xd(tn+1))
2

+
D

∑
d=1

Rf

2

(
xd(tn+1)− xd(tn)

∆t
− fd(xn)

)2

+
D

∑
d=1

Rf

2

(
xd(tn+1)− xd(tn)

∆t
− fd(xn+1)

)2

. (6.59)

The expressions in Eqs. 6.58 and 6.59 differ by i) a couple of boundary terms involving the data, ii) a renor-

malization of Rf, and iii) cross terms coupling f(xn) and f(xn+1). Items (i) and (ii) are minor issues not

expected to affect the performance of the optimization (the stationary paths do not change at large Rf, so

even a factor of ∼ 104 given by 1/∆t2 would not affect the limiting result). Despite (iii), the beauty of vari-

ational integrators is that any discretization of the continuous action which can be written symmetrically as

in Eq. 6.35 furnishes a symplectic map. Thus, despite the somewhat distinct way in which we implement the

trapezoidal rule in this case, the stationary paths of Eq. 6.58 are indeed discretely symplectic.

At each β , the optimization will be performed again with the constrained interior point method

IPOPT [Wächter and Biegler, 2006]. As in the example calculation in Section 3.2.2, there are inequality con-

straints on the state variables to ensure that they stay within the dynamical range of the model, |xd(n)|< 15,

but again this condition is not met in practice anyhow, so the constraints are effectively inactive. Analytical

derivatives ∇A and ∇2A, computed symbolically using the SymPy package in Python, are also provided.

Table 6.1: Algorithmic parameters for comparison of variational annealing with symplectic and
non-symplectic Hamiltonian variational annealing.

Variational method Annealing
parameter

α β Initial Value Other

Variational annealing Rf = Rf0αβ 101/4 0,1,...40 Rf0 = 10−4 –

Symplectic Hamiltonian
annealing

gH = gH0/αβ 101/6 0,1,...36 gH0 = 102 Rf = 106,
gp = 10−4

Non-symplectic
Hamiltonian annealing

gH = gH0/αβ 101/6 0,1,...36 gH0 = 102 Rf = 106,
gp = 10−4
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Symplectic Hamiltonian annealing

We will compare two variants of Hamiltonian annealing, one symplectic and one non-symplectic.

In the symplectic variant, the following cost function will be minimized:

AH(zn) =
N

∑
n=0

D

∑
d=1

pd(tn)2

2Rf
+

N

∑
n=0

L

∑
d=1

Rm(n,d)
2

(yd(tn)− xd(tn))2, (6.60)

where zn = {xn,pn}, subject to the following constraints,

∣∣∣∣zd(tn+1)− zd(tn)−∆tJcd
∂HI

∂ zd
(z∗d , t

∗
n )

∣∣∣∣< gH (6.61)

|pd(t0)|< gp

|pd(tN)|< gp, (6.62)

with continuous Hamiltonian

HI(z = {x,p}, t) =
p2

2Rf
− Rm(t,d)

2
(x−y(t))2 +p · f(x)− 1

2
∇ · f(x), (6.9 revisited)

whose partials in Eq. 6.61 are evaluated at the midpoints

t∗n = tn +∆t/2

z∗d =
zd(tn)+ zd(tn+1)

2
. (6.63)

Note that here, Jcd is the symplectic matrix J and the partials of HI are given in Eqs. 6.10. The optimization

will be carried out at each annealing step, the result of the prior being used for the initialization point in the

subsequent step, as in variational annealing. The difference here is that Rf is held fixed at Rf = 106, while gH

is multiplicatively decreased, from an initial value of gH0 = 102 to a final value of 10−4 in steps of α = 101/6

(Table 6.1).
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Non-symplectic Hamiltonian annealing

This variant of the Hamiltonian algorithm is identical to the symplectic one, except the discretization

of Hamilton’s equations is chosen as the trapezoidal rule, which we have seen to be non-symplectic:

∣∣∣∣zd(tn+1)− zd(tn)−
∆t
2

Jcd

(
∂HI

∂ zd
(zd(tn), tn)+

∂HI

∂ zd
(zd(tn+1), tn+1)

)∣∣∣∣< gH (6.64)

The annealing procedure is identical to the symplectic case, using the algorithmic parameters listed in Ta-

ble 6.1.

Details of model and data generation

We will compare these three methods with a systematic study of the chaotic 10-dimensional Lorenz96

model:

fd(x) =−xd−2xd−1 + xd−1xd+1− xd + f (2.29 revisited)

with forcing parameter f = 8. To create synthetic data, first P = 100 trajectories are generated by choosing

random initial conditions from the dynamical range of the attractor and integrating each forward using an

explicit fourth order Runge-Kutta scheme (∆t = 0.01). Initial transients of length Ttransient = 5 are removed

from each of these trajectories to ensure that the estimation is occurring on the attractor alone. The resulting

100 “true” trajectories {X∗p} will then be used as a benchmark to compare the accuracy of the estimates. By

choosing several paths in this way, we investigate the effect of differing degrees of local instability, thereby

giving a comprehensive assessment of the full attractive manifold.

“Observed” datasets {Yp} are then generated by corrupting each X∗p with additive Gaussian noise of

mean zero and unity variance. To consider the effect of nonlinearities, we consider separate cases with data

sampled at either ∆t = 0.01 and ∆t = 0.05, through a total data collection window [0,T ], T = 4. To investigate

the effect of sparse observations, we will consider the case when only L = 1, 2, 3, 4, or 5 components of the

full 10-dimensional space are observed.

The optimization at the first annealing stage (β = 0) must also be initialized. Distinct initializations

are chosen by sampling xd(tn) uniformly across the dynamical range of the attractor, roughly [−20,20]. For

the Hamiltonian methods, pd(tn) is also sampled uniformly from a wide range, ±103. For each Yp, the
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optimization is performed in parallel for these Q = 100 initializations (the same initializations are used for

each Yp), producing a set of estimated trajectories Xβ
q,p, and the accuracy of the annealing method is assessed

by investigating the resulting estimates at the end of the annealing procedure, Xβmax
q,p . We denote for each p

the path among for which AL or AH is maximal as the “optimal estimate” x̂p(tn). This path gives the largest

contribution to the expected value integral Eq. 2.5.

In sum, for each unique data trajectory Yp we produce a progression of βmax path estimates Xβ
q,p

for each of the Q initial guesses of the annealing protocol. The Q initializations quantify the reliability of

the algorithm, while the P distinct datasets give statistical information across the entire attractor. The former

allows us address questions like: given no prior information about the system state, how often is an algorithm

able to find the lowest action level? The latter provides confidence that our conclusions about a particular

method are not sensitive to local properties such as model instability or system observability.

6.6.2 Results

Metrics

The accuracy and reliability of the inference methods will be quantified in two ways. The first is the

pointwise accuracy of the inferred trajectories, during both the estimation window and prediction (forward

integration). To generate these error estimates, only the lowest action paths x̂p(tn) will be used, their mean-

square-error then compared to the true trajectory:

E(tn) =
1

DP

P

∑
p=1

(x∗p(tn)− x̂p(tn))2 (6.65)

This point-wise statistic, which is averaged over all dimensions and datasets, provides a global estimate for

how the algorithm performs within the observation window, at its boundaries, and during prediction.

The second metric will assess the reliability of the algorithm, counting, for each data set, the number

of initializing guesses that achieve an action value within a range of three standard deviations of the expected

minimum of A (Eq. 3.10):

A∼ 1± 3√
(N +1)L/2

. (6.66)

(Note that this metric normalizes Eq. 3.10 to unity). This metric quantifies the sensitivity of the algorithms to
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distinct data sets, i.e. to particularly unstable sections of the attractor.

Lowest action levels and prediction errors

The lowest action levels for each of the P data sets are shown first for the case of ∆t = 0.05 in

the far left panel of Figure 6.4a. Each algorithm produces a plethora of different levels, suggesting that

corresponding forward predictions are probably unreliable. This is indeed corroborated by the error metric

in Figure 6.4b: the MSE at t = T is ∼ 10, much larger than the observational noise σ2 = 1. Thus, while it

appears the Lagrangian approach has the advantage L = 1, the estimation effectively fails for all three cases.

As expected, the reliability and errors improve with more measurements (middle and right panels

of Figures 6.4a and 6.5b). Though the Lagrangian method gives slightly better estimates, the differences are

small. For L = 5, only a few datasets are unable to produce the global minimum, and all annealing methods

give similar quality estimates at t = T , thereby producing no discernible disparities in prediction errors.

Figure 6.5 repeats these same calculations with a smaller time step ∆t = 0.01. While the low ob-

servability case (far left panels) presents no conclusions beyond that of the results for ∆t = 0.05, the situation

changes for more measurements, where a distinct advantage of the Hamiltonian method emerges. For suffi-

cient observability, the Lagrangian method is unable to find the lowest action level for several paths along the

chaotic attractor manifold. The Hamiltonian methods on the other hand consistently return lowest minima

near unity for all but a few data sets. This is most pronounced for L = 5, where the Hamiltonian methods are

essentially equivalent, with mean squared errors smaller by nearly two orders of magnitude over variational

annealing.

Probability of finding global minimum

In the previous sections, the estimation and prediction errors were determined by using only paths

corresponding to the lowest action level among the Q different initializations. We also compute the average

proportion of the runs that produce these lowest values, providing a further measure of the reliability of our

methods when given no prior information, Eq. 6.66.

These percentages averaged over the 100 datasets, are shown in Table 6.2 and Table 6.3 (for L = 1

these ratios are small for all three anneal types, on the order of 1 percent). By this metric, the Lagrangian

method consistently outperforms both Hamiltonian methods. Between the two Hamiltonian methods, the
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Figure 6.4: (a) Lowest action levels among the Q initial guesses, for each dataset p. The three
estimation methods are distinguished by color. Here, the observation time step is ∆t = 0.05, and
the number of observed variables is L = 1,4, and 5, for the three plots, respectively. While all
methods perform better with more observations, there are a few datasets for which the global
minima precludes detection. (b) Corresponding error magnitudes as a function of time, calculated
by Eq. 6.65. The errors are close to the observation noise when only a single variable is measured
(left panel), but reduce below the observation noise for L = 4 and L = 5. However, all three
methods produce largely equivalent forward estimations when averaged over all datasets.

Table 6.2: Likelihood of finding the global minimum, averaged over all p, for the three annealing
methods, for L = 4 measured variables.

Annealing method ∆t = 0.01 ∆t = 0.05

Variational annealing 76 67
Non-symplectic Hamiltonian annealing 34 34

Symplectic Hamiltonian annealing 43 42
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Figure 6.5: Same plots as in Figure 6.4, but now with a smaller observation timestep ∆t = 0.01.
While the averaged errors are again large for a single measured variable, the symplectic Hamilto-
nian variational annealing method substantially outperforms the other methods for L = 4, and both
Hamiltonian methods outperform variational annealing by two orders of magnitude for L = 5. The
large errors in the variational annealing methods arise from the overt failure to detect the global
minimum for a number of datasets.

Table 6.3: Likelihood of finding the global minimum, averaged over all p, for the three annealing
methods, for L = 5 measured variables.

Annealing method ∆t = 0.01 ∆t = 0.05

Variational annealing 86 83
Non-symplectic Hamiltonian annealing 54 51

Symplectic Hamiltonian annealing 62 57
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Figure 6.6: Annealing plots for variational annealing (left panel) and non-symplectic and sym-
plectic Hamiltonian variational annealing (middle panel and right panels, respectively), for one of
the outlier data sets in Figure 6.5a. While the Hamiltonian annealing methods consistently un-
cover more local minima than variational annealing, they nevertheless find the global minimum
reliably. Variational annealing consistently converges to the same local basin, far above the global
minimum, for all Q initializations.

symplectic is slightly favored.

The fact that variational annealing in X appears more reliable than Hamiltonian annealing in X,P

by this metric, but less so by prediction errors, can be illuminated by the annealing plots corresponding to

the extreme cases in the middle and right panels of Figures 6.5a. In Figure 6.6, we show the annealing

plot for the 13th dataset from the rightmost panel of Figure 6.5a (∆t = 0.01, L = 5), corresponding to one

of the outliers in the Lagrangian calculation; for all of the Q = 100 initial paths, variational annealing only

identifies a single level, significantly above the expected lowest normalized value near unity. Meanwhile,

the Hamiltonian methods find this this and other local minima, in addition to the expected lowest value,

suggesting that searches in {X,P}, though more computationally demanding, may be beneficial nonetheless.

We may thus posit the following. Optimization in canonical coordinates opens up directions that

were essentially “integrated out” by working in X alone. Though this produces a richer cost manifold A with

more local minima, when couched in an annealing algorithm, the augmented momenta directions allow a

connecting path between the minima of A that is essentially suppressed in the lower-dimensional projection

down to configuration space.

As an aside, the idea of Hamiltonian annealing is similar in spirit to the method of Hamiltonian

Monte Carlo (HMC) [Neal, 1996]. Distribution samples are gathered in HMC by allowing motion in a

combined space consisting of both the original support and a fictitious momentum space. By alternating

i) samples from the momentum variables and ii) motion along integral curves of Hamilton’s equations in this
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space, broader swaths of the the distribution are opened up more quickly, rapidly reducing sample correlation

compared to the traditional Markov Chain method.

6.6.3 Discussion

The fact that variational annealing and Hamiltonian annealing return different solutions to the op-

timization is not surprising, given the distinct ways in which they lift the degeneracy associated with partial

system observability. In the former, the gradual deformation from a near-quadratic to non-convex action sur-

face can often track the global minimum, but may alternatively confine the search to a particular region of

state space around a local minimum with a strong basin of attraction. This deformation process may play a

role in collecting the admissible solutions to a small neighborhood of the high-dimensional action manifold

early in the annealing process, before the finer features of the action materialize at higher Rf.

On the other hand, Hamiltonian annealing minimizes a quadratic function at every value of β , and

the solution degeneracies are broken by shrinking the feasible region. The augmented momenta dimensions

decouple the minimization procedure from the application of the boundary conditions and the constraints of

Hamilton’s equations. This facilitates a more thorough exploration of the phase space, albeit at the cost of a

lower likelihood of success.

This fuller exploration of the solution space arises from the imposition of symplectic structure. This

relaxation is not easily achieved in variational annealing. Although one could perform a similar approach,

embedding the action in {x, ẋ} space and applying the Euler-Lagrange equations as constraints, symplectic

structure and the boundary conditions are more difficult to enforce in this representation. Furthermore, while

x and ẋ are fundamentally independent variables in the continuous Lagrangian, they are not so in the Euler-

Lagrange equations, which are equations only of x and its time derivatives. In this sense, it seems rather

artificial to treat ẋ as independent variables.

While the Hamiltonian annealing algorithm exhibits some limited benefits in nonlinear inference,

the nature and role of symplectic structure in nonlinear inference and data assimilation will obviously demand

further investigation. Several questions remain unanswered by this work. For instance, why does the benefit

of the Hamiltonian formulation disappear at larger ∆t? It could be related to the fact that the Lagrangian

formulation has the structure of a variational integrator, and it would be interesting to see an analogous

variational integrator derived in the Hamiltonian description that also anneals the constraints. This is likely
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possible with the machinery developed in [Lall and West, 2006]. On the other hand, this is a boundary

problem, not an initial value one, and recent work suggests that the benefit of symplectic integrators in the

former context is more problem-dependent [Chyba et al., 2009].

Another puzzle: Why is non-symplectic Hamiltonian annealing is nearly as accurate as the sym-

plectic form? This might be related to our choice of discretization: the non-symplectic trapezoidal integrator

is a conjugate symplectic integrator, which does not exactly conserve bilinear forms, but still bounds their

accumulating errors. Therefore, they produce high accuracy long-term integrations, and so in practice may

be as reliable as symplectic integrators even for the boundary value problem calculated here. Still, note that

the symplectic method consistently finds the global minimum at a higher rate than the nonsymplectic one

(Tables 6.2 and 6.3). It is not unreasonable that this difference may manifest itself more drastically in other

model systems.



Chapter 7

Final thoughts

We began this thesis with a look at a simple estimation problem: determining the frequency of an

ideal oscillator using time-resolved measurements of its position. We have since confronted various meth-

ods to estimate dynamical systems that possess the same generic ingredients – underlying dynamical models,

sparse observations – but are far more complex, nonlinear, or even chaotic. We saw that the filtering approach

– powerful and elegant in its own right – can exhibit limitations susceptible to agnostic priors and dynamical

nonlinearities. These two features together often rendered the sequential filter mathematically well-defined

but functionally divergent. This feature magnified when the model description contained unknown parame-

ters, which, lacking dynamics, do not fit as neatly into the sequential framework.

We then investigated the sequential Kalman filtering equations in the global, simultaneous time limit.

The structure of the resulting high-dimensional Bayesian integral naturally suggested the method of steepest

descent as a valid approximation, yet in practice this was hindered by the presence of nearly ubiquitous local

minima. We then developed the variational annealing algorithm to more systematically track the massively

dominant global minimum, relying on the fact that it will lie relatively close to a degenerate minimal valley

centered around the measured data. This was shown to very effectively pinpoint the global minima in sparsely

observed chaotic dynamical models.

An added benefit of the variational annealing approach is that parameters appear on equal footing

as dynamical states, which are collocated in time. The result is that estimations of neural systems, where

parameters dictating aspects such as the timescales of synaptic transmission, spiking frequencies, and neural
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excitability are of central interest. Variational annealing was thus shown to be very effective in determining

the underlying parameters of a biophysical model of bursting neurons in the avian vocal pathway.

The second half of the thesis explored the idea of the estimation as a dynamical system in its own

right, exhibiting subtle but important features when the underlying model is itself nonlinear or chaotic. The

resulting “dynamics of nonlinear inference” can be cast as a path integral whose classical solutions are de-

scribed by Euler-Lagrange or Hamilton’s equations of motion – the evolution of this system in time relies on

both i) the underlying stochastic dynamics and ii) the incoming observations. The downside of this formu-

lation is that it is persistently unstable and, being a boundary value problem, is not particularly amenable to

shooting methods.

We then explored a partial solution to this problem by utilizing the same notion exploited by vari-

ational annealing – that the dominant solutions to this ill-conditioned inverse problem can be tracked by

incorporating nonlinearities in a systematic, gradual way. In this method, the optimization was cast in a space

of canonical coordinates, with the nonlinearities residing entirely in Hamilton’s equations of motion, which

were enforced gradually as equality constraints.

Let us close with one proposition that may lead to some fruitful future research directions.

7.1 Hamiltonian variational annealing and chaotic synchronization

There is a notion, not yet explored in this thesis, that positive Lyapunov exponents of chaotic sys-

tems can be inverted by partially coupling to systems of similar dynamics. This idea is now known as

Pecora-Carroll synchronization, after its developers [Pecora and Carroll, 1990]. That is, two Lorenz systems

beginning at differing initial conditions can be synchronized together by directly substituting one component

of the second system for the corresponding state in the first. A related method of the same vain, more common

in the geophysical community, is to estimate the unmeasurable subspaces of a chaotic system by coupling

instead to the measured data – the observation stream effectively acts as the “driving” system [Abarbanel,

2013, Lakshmivarahan and Lewis, 2013]. This is known as the nudging technique, and inverts the positive

Lyapunov exponents in much the same way as the Pecora-Carroll method.

Both of these ideas function by simply integrated the nudged or synchronizing dynamics forward

in time. As with the sequential filter, it is unclear how these ideas could be used to probe static parame-

ters without adding them artificially as trivial dynamical states: ṗi = 0. A recent extension has taken the
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viewpoint that this idea could likewise be used for parameter estimation when couched in an optimization

context [Abarbanel et al., 2009]. In fact, this technique, dynamical state and parameter estimation or DSPE,

exhibits much of the same homotopy continuation-like aspects as variational annealing: the nudging cou-

plings, now promoted to time-dependent parameters, serve as a “smoother” of the cost surface, guiding the

estimate systematically to its narrow global minimum within a rough and nonconvex manifold.

Specifically, DSPE optimizes the following cost function:

ADSPE(xn,un) =
N

∑
n
(xn−yn)

2
∣∣∣∣
R−1

+
N

∑
n

u2
n, (7.1)

subject to the hard constraints:

xn+1 = g(xn,p)+uT
n H(yn−xn), (7.2)

where p are parameters, g(·) is some discretization of the continuous dynamics ẋ = f(x,p), and H is a pro-

jection operator onto the measured subspace, L < D. The control variables un are independent for each time

and have dimension equal to L. The idea of DSPE is that appreciable values of un smooth the cost function

surface in the parameter subspace when walking along the integral curves of the constraint equations. This

smoothing can localize the estimate around a single value of the unknown parameter, possibly inaccurate for

larger un, but as un are driven down by their quadratic penalty, the correct parameter is honed in on.

Interestingly, the idea that Lyapunov exponents can be made negative by coupling or synchronization

is somewhat opposed to the running theme in this thesis, where instability is universal. The tradeoff is that

stationary paths of the nonlinear inference path integrals are by definition the maximal contributions to a

conditional expectation that in theory accounts for all possible correlations, while the couplings in DSPE do

not represent, fundamentally, any optimal or dominant quantity, serving instead as a (powerful) numerical

tool to remove instabilities. Still, the similarity of the nudged dynamics to the Kalman filter – specifically,

a linear coupling to the residual (yn− xn) – suggests that Kalman filter is actually an “optimal nudging”

technique, where the coupling matrix maximally embodies statistical information about our confidence in the

data, the model, and the current estimate. If this were true, however, it would nevertheless only hold when

the dynamics are linear anyhow.

It would be interesting to ask what would occur if the constraint variables un in DSPE were de-
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manded to be optimal. In fact, the necessary conditions for this situation are given by the Pontryagin maxi-

mum principle, a central result in the theory of optimal control [Liberzon, 2012]. When the equations of the

maximum principle can be inverted in a proper way, what results is our old friend – the two-point Hamil-

tonian boundary value problem. It is peculiar that by beginning with control variables specifically designed

to stabilize the unstable manifolds, and then demanding that these controls be optimal, the stability is itself

compromised. Perhaps this is the price to pay for maximally incorporating global information across the

entire observation window in a time-simultaneous fashion.

Fortunately, since there is a natural associated convex cost function, Eq. 7.1, we might instead lever-

age Hamiltonian annealing to pinpoint this global minimum. Writing the equations of motion for this system

is in principle relatively straightforward, a direct application of the maximum principle to Eqs. 7.1 and 7.2.

The formulation of these equations bears resemblance to linear-quadratic Gaussian control (LQGC), except

that the dynamics are nonlinear [Liberzon, 2012]. There may be a correspondence in the linear limit. There

is also a distinction between what occurs in this formulation and in Hamiltonian variational annealing as

presented above: here, there is no stochasticity. If anything, the nudging terms now assumes the role of devi-

ations from the deterministic flow, and perhaps the maximum principle provides the equivalent of an “optimal

tuning” of the model precision Q−1. All this remains to be seen, but may provide a worthwhile direction for

future research.

7.2 Chaos and correlations in Monte Carlo sampling

The intimate connection with instability and optimality is a running theme in this thesis. Locally

unstable or globally chaotic trajectories may be of great use in numerical methods that rely on ergodicity.

As an example, consider Monte Carlo sampling, where fast convergence to the target distribution relies on

the quick decay of sample-to-sample correlations [Metropolis et al., 1953, MacKay, 2003]. One variant

of traditional Markov Chain Monte Carlo is Hybrid Monte Carlo, also called Hamiltonian Monte Carlo

(HMC) routine [Neal, 1996]. The idea of HMC is similar in spirit to Hamiltonian variational annealing: the

distribution support is augmented with an equal number of artificial momenta variables, and the sampling

routine alternates between i) evolution along the Hamiltonian flow in this joint x-p space and ii) random

walks in momentum space alone. This idea works because the acceptance probability is the exponential of

the “energy” of this system, which is nearly conserved along Hamiltonian flows, and that these flows are far
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less correlated than random walks.

An extension of HMC developed recently is to leverage the freedom in the momentum distribution,

which determines the “kinetic energy,” to enforce that the system moves along fully Hamiltonian chaotic

flows [Kadakia, 2016]. The correlations are designed to fall exponentially, which may not occur if the orig-

inal Hamiltonian dynamics follows a periodicity of the system. This Chaotic Hybrid Monte Carlo scheme

(CHMC) was shown to substantially improve convergence time in high-dimensional normal distributions

with non-sparse covariances.

Our experience in this thesis with Hamiltonian systems is that if they are not purely oscillatory,

instability is guaranteed. The degree of the instability, however, depends on the exact dynamics – the local

Lyapunov exponents still sum to zero, but may lie fairly close to the imaginary axis. The resulting dynamics

is then largely oscillatory, preserving long-time correlations and slowing the sample convergence. Further

extensions to HMC may exploit these ideas by designing acceptance probabilities reliant not just on energy

differences but on local Lyapunov spectrums, biasing the sample routine toward unstable directions. The bias

can then be removed, possibly at the cost of lower acceptance probability. Since HMC can move in relatively

large steps without appreciably sacrificing acceptance probability, there may be an effective compromise

between acceptance retention and correlation suppression [Beskos et al., 2013].
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