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Abstract

With growing environmental consciousness, biomaterials (BMs) have garnered attention as
sustainable materials for the adsorption of hazardous water contaminants. These BMs are
engineered using surface treatments or physical alterations to enhance their adsorptive properties.
The lab-scale methods generally employ a One Variable at a Time (OVAT) approach to analyze
the impact of biomaterial modifications, their characteristics and other process variables such as
pH, temperature, dosage, efc., on the removal of metals via adsorption. Although implementing
the adsorption procedure using BMs seems simple, the conjugate effects of adsorbent properties
and process attributes implicate complex nonlinear interactions. As a result, artificial neural
networks (ANN) have gained traction in the quest to understand the complex metal adsorption
processes on biomaterials, with applications in environmental remediation and water reuse. This
review discusses recent progress using ANN frameworks for metal adsorption using modified
biomaterials. Subsequently, the paper comprehensively evaluates the development of a hybrid-
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ANN system to estimate isothermal, kinetic and thermodynamic parameters in multicomponent
adsorption systems.

1. Introduction

Growing population, urbanization, and changing climate cycles stress water resources and
public water supplies. The United Nations reported that 2.3 billion people live in water-
scarce zones worldwide.! Public health and economic tensions from water scarcity will be
exacerbated in regions with water tainted with metal contaminants. Such water-scarce areas
deserve and need solutions to remove metal contaminants and enable water remediation and
reuse.2

The literature has proposed physicochemical technologies like reverse osmosis, ion
exchange, electrodialysis and adsorption to eliminate metallic ions from water resources
and industrial effluents.3-14 Among these technologies, adsorption is the best-suited method
for treating water and wastewater due to its high efficiency with low economics.1-23 The
selection and fabrication of sustainable adsorbents for the eradication of water pollutants
include the following criteria: (1) it should be inexpensive and (2) simple to synthesize in
large quantities, (3) it should demonstrate high adsorption capacity and most importantly,
(4) it should cause no harm to the environment. Nature-inspired biomaterials have gained
attention as decontamination media owing to their non-toxic, biodegradable, and inexpensive
features.24-30 Further, many biomaterials exhibit chemical stability and structural integrity
throughout repeated adsorption and desorption cycles, enabling their use for heavy metal
ions removal.3! The porous texture of biomaterials speeds up the transport of metal

ions, while the presence of phenolic, carbonyl, amide and amine-containing functional
groups in biomaterials facilitate metal ion adsorption through surface complexation.32:33 In
addition, biomaterial systems have been engineered using various surface functionalization
and physical alterations to tailor their surface chemistry and enhance their adsorptive
capacity. For instance, our research team has prepared eco-friendly cellulose beads
impregnated with nano iron oxide for thorium and arsenic retrieval;343> synthesized cost-
effective cellulose nanofibers and functionalized with camphor soot carbon nanoparticles for
uranium extraction;38 crosslinked starch with polyvinyl alcohol for oil-water separation;3’
electrospun nano fibres for adsorption of metal ions;38-41 developed composites from agro-
wastes for removal of metal and dyes.*? The details of distinct physical and chemical
modifications of biomaterials are illustrated in Fig. S1.t

The BMs’ performance is greatly affected by environmental conditions (pH, temperature),
initial metal concentration, and the structure of the biomaterial. Laboratory experiments
have been used to discover high-performing BMs; however, these studies are costly for time
and resources. Accordingly, modelling techniques could offer time- and resource-saving
efficiency in predicting the performance of BMs for full-scale application.*344 Mathematical
models based on multiple linear or nonlinear regression (MLR, MNLR) and response
surface method (RSM) have been proposed to assess the removal potential of metallic
contaminants using experimental data from isotherm and kinetic studies.*>~48 The joint

role of spectroscopic analysis and RSM has been applied to enumerate the adsorptive
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removal of zinc (Zn(n)), cobalt (Co(ir)) and nickel (Ni(i1)).4° Since these adsorption systems
exhibit nonlinear adsorptive behaviours, it would be inappropriate to characterize them
using conventional statistical models. In this sense, the ANN learning principles are

potent means to optimize the metal adsorption process on biomaterials by establishing a
nonlinear relationship between independent (pH, temperature, dose, time of contact, the
concentration of metal ions, biomaterial characteristics, efc.) and dependent variables (metal
uptake capacity, % adsorption efficiency, etc.) for single and multi-metallic wastewater
systems.50-53

Studies in the past stipulated the removal efficiency of metals using various artificial
intelligence (Al) models. For example, Bhagat et a/., 2020 examined the application of
distinct Al models like kernel, evolutionary, black box, fuzzy and hybrid models for
optimizing heavy metal removal.2%8 Rather than illustrating the mathematical concepts
necessary for automation, the author highlighted treatment procedures such as flocculation,
coagulation, membrane filtration, biosorption, proposed prediction models, input and output
variables, and distinct metrics for comparing model performance. Alam et al., 2022; Reynel-
Avila et al., 2022 categorized Al technologies and reported their use in the remediation

of organic and inorganic contaminants.297:298 Whereas Yaseen et a/., 2021 discussed

the utility of Al in simulating soil and water bodies contaminated with metals.2%° The
utilization of classical adsorption models, multicomponent adsorption, sensitivity analysis,
and progression in ANN frameworks were not discussed earlier in detail for evaluating
kinetics, isotherms, and thermodynamic parameters of adsorption.

This review briefly explains the main biomaterial alteration processes and discusses
conventional adsorption investigations in conjunction with ANN modelling. Then, we
address the pre- and post-processing methods involved in constructing ANN models and
show statistics of datasets considered for optimizing metal adsorption on biomaterial
systems. We describe current advancements in the ANN framework for single and multi-
metal adsorption process optimization and related improvements in hybridizing isotherm,
kinetics, and breakthrough curves. Next, advances in thermodynamic parameter estimations
are reported to understand the nature of the adsorption process. The sensitivity analysis

of ANN has also been described to comprehend the relative influence of individual

and group of adsorption factors on anticipated efficiency. Towards the end, the review
highlights significant challenges and advancements in the field of ANN technology for metal
remediation.

2. Experimental studies and dataset of metals adsorption on BMs

A given biomaterial’s interaction with metal adsorbates depends on its functional groups, the
engineered surface of biomaterials, pH and temperature conditions, and physical or chemical
changes in the configuration that influence biomaterials’ morphology, pore size distribution,
and elemental compositions. However, biomaterials without modification have constraints
regarding recovery and recycling. Because of their poor porosity and limited adsorption
sites, pristine biomaterials exhibit low adsorption efficacy.>*
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Thus, the engineered modifications and surface alterations of the biomaterial matrix become
necessary to achieve greater adsorption capacities. Research reports the conversion of
natural biomaterials into beads, foams, and nanofibers to attain better pore size distribution
and durability. The surface area of biomaterials has also been enhanced via their conversion
to nanoscale structures and activated carbon.5>-62 The surface treatment of biomaterials with
acids and alkalis improved their interactions with metals, which resulted in faster adsorption
rates and increased uptake capacity.53-66 The reutilization of saturated biomaterials into
value-added products has been reported in detail by authors in their earlier research.” The
experimental adsorption studies that depict various aspects of metals adsorption relevant for
ANN modelling are given below:

2.1 Adsorption kinetics

Adsorption kinetics gives vital information about the associated mechanism and equilibrium
time required to sequester maximum metal impurities from an aqueous solution. The

period of contact (CT) between the biomaterial and metal adsorbate and equilibrium

time (&) corresponding to specific metal concentrations (C,) are listed in Table 1.

The kinetics adsorption data using modified biomaterials fitted best with the pseudo-
second-order equation, where the values of kinetic model parameters differ regarding

when the equilibrium time is reached. The experimentally obtained details (initial metals
concentration, contact time and equilibrium time) will aid in developing ANN-driven kinetic
models for predicting the significant kinetic parameters and uptake capacity detailed further
in Section 5.

2.2 Adsorption isotherms

Adsorption isotherm models describe the maximum adsorption capacity at equilibrium
adsorption conditions. Table 2 displays the adsorption isotherm data for modified
biomaterials for different metal ions. The Langmuir isotherm best characterized the
adsorbent-adsorbate interactions for biomaterials, suggesting monolayer adsorption of metal
ions on the biomaterial surface. In general, the use of linear empirical models to evaluate
the isotherm parameters of the nonlinear adsorption process is becoming obsolete as it

does not explicitly describe the simultaneous adsorption pattern over a wide range of
operating temperatures and metal ion concentration.82 Furthermore, because most industrial
wastewaters contain numerous metal pollutants, single-species models do not adequately
reflect the complex propensity of multicomponent adsorption. For this purpose, the isotherm
parameters evaluation using hybridizing isotherms with ANN, as discussed in Section 5, is
gaining popularity.

2.3 Thermodynamics

Thermodynamic parameters offer insights into the impact of changing environmental
conditions (7.e. temperature) on the nature of the adsorption process using modified
biomaterials. Table 3 details the adsorption process’s temperature range, feasibility,
and nature. The data will aid in modelling thermodynamic conditions for predicting
thermodynamic parameters (e.g., Gibbs free energy changes) across a wide range of
adsorption conditions, as discussed in Section 5.

Env Sci Adv. Author manuscript; available in PMC 2023 March 28.
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2.4 Adsorption data set based on BMs and pre-processing

The biomaterials in the current review included cellulosic, alginate and chitosan-based
biomaterials. Compared to other polysaccharides, plant and agriculture-based biomaterials
have been extensively modelled for metal remediation purposes (refer to ESI, S2t).

The standards for modifying the biomaterials mentioned above are found in the
literature.5559-61,70,71,80,81,83.84 The physicochemical features of the reviewed modified
biomaterial systems were determined by different analytical techniques such as BET, FTIR
and SEM-EDS. The morphology of some of the modified BMSs under a scanning electron
microscope is shown in Fig. S2.t

Experimental data is an essential prerequisite in processing the ANN framework. The details
of the diverse dataset, including the characteristics of biomaterials, environmental conditions
(temperature, pH) and process variables, are given in Section S2.T The experimental

dataset contained 15 variables, including initial concentration (), pH solution (pH),
temperature (7), biomaterial characteristics (surface area, particle size), contact time (CT),
bed depth (BD), flow rate (FR), agitation speed (AS), the volume of solution (V), pyrolysis
temperature (PT), effluent concentration (EC), medium of solution (MS), bias (B), metal
pollutant efficiency (MPE%) and adsorption capacity (AC). MPE % and AC were the output
variables; the remaining variables were applied as input variables. A few studies used final
concentration (FC), final pH (FpH), and change in Gibbs free energy (dG) as the output
variable in conjunction with MAE% and AC. The frequency of individual variables used by
researchers is illustrated in Fig. S3.t

Pre-processing experimental data using Pearson’s correlation matrix is carried out to
analyze the relationship among adsorption variables. In the cellulose-based biomaterials,
the correlation matrix showed a complex correlation between process variables.85 However,
in the case of carbon-enriched BMSs, it was worth mentioning that the oxygen to carbon
ratio (O:C) and the sum of oxygen and nitrogen to carbon content (O + N : C) showed an
absolute correlation.86 Hence, one of these two variables was eliminated as they represented
the same data from the database. The (O + N : C) variable had a better connection with the
output variable over O : C; thus, it becomes a strong contender to increase the precision of
the models and explain the characteristics of the dataset employed. As illustrated in Fig. 2,
the boxplot shows the range of key variables considered for modelling metal adsorption on
biomaterial systems.

Post—pre-processing, the complete dataset is taken and randomly divided at 70 : 30.58 70%
of the data is used for training the ANN model, while 30% is used for validating and testing
the performance efficiency of ANN. The distribution of the attributes (ESI, S2t) shows a
skewness in data distribution which can significantly affect the stability and accuracy of
the ANN predictive models. Therefore, the features of the dataset are normalized using the
Minmax function.

Env Sci Adv. Author manuscript; available in PMC 2023 March 28.
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3. ANN for modeling for metal adsorption

3.1 Layman’s guide to ANN

Artificial Neural Networks are inspired from a biological brain conceptual model to solve
complex problems.8 Consider how a human brain distinguishes between different people:
every human has a similar overall structure (e.g., two eyes, two ears, one nose, efc.), yet
we can recognize people easily because learnings in the brain are intuitive. Instead of
learning the face structure to identify people, it discovers the deviation of the face from

a reference face, for example, ‘ how different one’s nose is from the generic nose, which
1s then quantified as a signal with a specific strength’. Likewise, it learns the deviations
from all parts of the face from a reference base case, combines these variations into a new
dimension, and finally gives an output, which is the recalled identity of the good-looking
person in front of you. All these steps in the brain occur in a fraction of a second. A neural
network uses a similar algorithm, but the artificial neurons process the information using a
mathematical approach (Fig.S4t).

The ANN architecture is organized into 3 layers: (1) an input, (2) a hidden or intermediate
layer, and (3) an output layer. The information is first received by neurons in the input layer,
then passed on to a set of neurons associated with single or multiple hidden layers. The job
of a hidden layer is to process the information coming from input neurons using weighted
connection and activation functions to calculate the output of a neuron. The data is processed
from one neuron to the other, similar to the deviations learned by the human brain. The
greater the outcome of a neuron, the greater would be the influence of that input dimension.
These attributes are combined in the next layer using mathematical formulations to form
additional new details. When multiplied several times, this procedure develops a complex
network with several connections.

The neural network learns through intuitive wisdom with the help of a learning or training
mechanism. For a given set of input data, the output layer makes predictions by applying
a matrix multiplication series that could be either accurate or inaccurate. Based on the
output, the learning mechanism gives feedback for improving the prediction efficiency of
the network. The system uses a backpropagation algorithm as a feedback mechanism to
incrementally update the randomly initialized weights applied to the input data for correct
predictions.88

3.2 Generation of the ANN model

Fig. 2 illustrates the flow chart for modelling the metal adsorption process via ANNS.
Initially, the experimental adsorption variables containing independent and dependent
parameters are collected from lab experiments compiled from the literature. The acquired
database is generally divided into training, validation, and test sets. Since the adsorption data
of metal ions constitute many features (as shown in Fig. 1), the associated hyperparameters
of neural network function also increase, raising the model’s complexity. In such scenarios,
a larger proportion of data (~70%) is kept in the training subset to make the model learn

the patterns of the data, while the rest 30% of data is used for validating and testing the
model performance. The network is trained to find the optimal combinations of intermediate

Env Sci Adv. Author manuscript; available in PMC 2023 March 28.
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neurons and interior layers that minimize the prediction error or loss. The neural network
is trained using backpropagation (BP) algorithms which consist of the following steps,
corresponding to the steps listed in Fig. 2:

1.
2.

Selection of training data from the experimental data set.
Identification and division of input and output variables.

Forward propagation: it takes a weighted sum of inputs (by multiplying each
input variable with an assigned weight) and bias. This weighted output is then
passed through an activation or transfer function, which introduces nonlinearity
into the result. (For mathematical interpretation, refer to ESI, S.2.2t). Depending
on the activation function used, the outputs are normalized between either 0 and
1, -1to+1, or 0.1to 0.9. Table S37 lists activation functions applied for the
nonlinear transformation of adsorption data.

Backpropagation: the ANN calculates the difference in error between the
experimental observation and the expected model output using the gradient
descent method. When the error exceeds the acceptable value, the weights are
adjusted by multiplying the error by the input and the transfer function’s gradient
(e.g., tansig function, which is the most common) (ESI, S.2.27).

Optimization is achieved by reducing the error between observed and model-
predicted responses by varying neurons in hidden layers, transfer functions,
training algorithms and iterative modification of weights assigned to links
emerging from the input layer.87:89 Steps 5 and 6 (of Fig. 2) are repeated until
further weight changes do not reduce errors (refer to S5.2t).

The performance of the ANN for modelling adsorption is evaluated using
different statistical indices (Fig. 2 step 7, 8). The researchers most commonly
used the coefficient of determination (/2) and correlation coefficient () as
efficiency evaluators, whereas Root Mean Square Error (RMSE) and Mean
Square Error (MSE) are used for evaluating modelling error. The mathematical
formulations of these four statistical parameters are given in S5.3.1

The illustration of the feedforward neural network (FFNN) that modelled the adsorption of
the metal on biomaterials is presented in Fig. S5.1

4. Progressions in ANN frameworks for optimizing metal adsorption

process using BMs

4.1 Standalone ANN frameworks

The purpose of the optimization is to achieve the maximum metal removal efficiency

and uptake capacity of biomaterials used to recover metals and other contaminants from
industrial wastewater for environmental protection and water purification. The optimization
pathways reported in the literature are a compilation of variables influencing the design

of adsorption systems and the adsorption process.?? The variables affecting the adsorbent
modification or preparation conditions and the metal adsorption efficacy include biomaterial
dose, surface type and thermal treatments. Under the batch adsorption systems, the

Env Sci Adv. Author manuscript; available in PMC 2023 March 28.
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adsorption attributes that affect the process behaviour include the initial concentration of
metal pollutants, pH of the aqueous solution, volume and medium of adsorbate solution,
agitation or shaker speed, temperature and contact time. In continuous column set-up,
metal concentrations, bed and flow rate are of primary concern (Table S4t). Some

studies also included the influence of lingo-cellulosic functional groups, particle size, and
calcination temperature used to optimise biomaterial adsorbents’ fabrication.52:65.66.91,92
Table 4 illustrates recent developments of ANN-based optimization methods for modelling
biomaterial adsorption systems.

s described in Section 3.2, the ANN framework has been extensively implemented to
optimize the variables mentioned above to attain conditions for the maximum metal
adsorption efficiency or metal adsorption capacity. The details of optimal ANN architecture,
activation function and modelling error corresponding to each study are depicted in Table
S5.1 Itis to be noted that the ANN training parameters such as epoch size, learning rate,
momentum and gradient influence the optimal feedforward architecture. The data division
in training, validation and testing subsets and information on maximum epochs (iterations)
used is illustrated in Fig. 3 (taken from Table S5-S7t).

Table 4 lists the recent developments in ANN frameworks for simulating metal adsorption
on biomaterials. While backpropagation (BP) algorithms are prominently reported in

the literature for the optimization of various adsorption variables, algorithms based on
experimental designs such as the Taguchi method which use orthogonal arrays to identify
critical variables that can affect the adsorption process.93 Algorithms based on 2-level
factorial design (FFD) have also been employed with ANN to reduce the burden of
laboratory experiments and determine the optimum process variables that can maximize
metal adsorption on the biomaterials. For example, Popoola, 2019 used 2% FFD to evaluate
the optimal preparation condition of carbon-enriched biomaterial that can boost cadmium
removal efficiency.94 The authors used magnetite loading, walnut shell: rice husk ratio,
calcination temperature and time as variables to conduct 24 = 16 /e. 16 sets of experiments.
It was observed that a small set of experiments were sufficient to predict the optimal
adsorbent conditions (/.e. carbonaceous biomaterial calcinated at 1000 °C for 5 hours and
loaded with 10 wt% magnetite coating) that will yield maximum cadmium removal (~97%)
from aqueous solution.

The RSM has been employed to conceptualize the interaction effects among independent
adsorption variables.9> RSM uses the Box—Behnken Design (BBD) to investigate the
interactions between different adsorption variables, for example, initial metal concentration,
pH and biomaterial dose. The BBD works as a second-order polynomial equation. Following
the solution of the BBD model, the analysis of variance (ANOVA) and regression
coefficients of the whole polynomial model is used to evaluate the contribution of each
process variable individually and collectively.47:63.96-98

The RSM approach is only confined to a quadratic equation; thus ANN-based model offers
broader competence to capture the complex and nonlinear behaviour of the metal adsorption
process from effluents with a wide spectrum of dependent factors.57:75.86.99.100 \whjle ANN
models for metal remediation call for advanced computing abilities, Narayana et a/., 2021
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proposed an ANN-based graphical user interface (GUI) for experimentalists or researchers
unfamiliar with computation to extract adsorption data for a particular dataset.8°

4.2 Ensemble ANN frameworks

The standalone ANN framework trains the adsorption data using the backpropagation

(BP) training algorithm. Given that BP uses the gradient descent approach to update

the network’s link weights, the network may converge prematurely or get stuck in

local minima.104.105 Because of such drawbacks, ANNs can fall short of expected
performance. To overcome such problems, ANN is bagged with metaheuristic algorithms for
efficient optimization.106-109 The flow chart illustrating any metaheuristic system’s general
framework is given in Fig. 4.

Hamidian et al,, 2019 used the Symbiotic Organisms Search (SOS) algorithm in conjunction
with ANN to optimize heavy metals removal (Fe(i)), Cu(ir), Co(ir), Cd(i) and Al(nr))

using chitosan-based nanomaterials.83 The authors applied adsorbent dose, pH and initial
concentration of metals as input parameters to the network. The symbiotic search algorithm
(SOS) is a recently developed algorithm based on SI (Swarm Intelligence) that simulates
the cooperative behaviour observed in nature among individuals. It generates a new

solution using three coexisting behaviour types between paired organisms in an ecosystem:
mutualism, commensalism, and parasitism. Mutualism is an interaction between two species
with mutual benefit, meaning both benefit from the relationship. Commensalism occurs
when one species forms a bond with another, and one species benefits while the other

is unaffected. When two species form a relationship in which one benefits and the other
hurts, it is referred to as parasitism. Both mutualism and commensalism focus on creating
new species for the next generation. The parasitic phase prevents the search process from
escaping the local minima. The ANN-SOS framework is illustrated in Fig.S6.1). The
integration of ANN with SOS predicted metal removal efficiencies with £2> 0.9 in short
computation time (50 runs) and fast convergence (<20). The SOS has drawn considerable
attention in several optimization fields as compared to differential evolution (DE) and
particle swarm optimization (PSO) due to its simple procedure and consistency in accurate
predictions,110-113

Moradi et al., 2020 used a hybrid of Bayesian regularization (BR) and Grey wolf optimizer
(GWO) with ANN to model Pb(i1) and Co(i1) adsorption on pistachio shells.1% The ANN
space was initially optimized using the BR algorithm, using principles of probability
distributions to prevent overfitting of the ANN. The three input parameters, /.e. temperature,
adsorbent dose and initial concentration of metals, were then further optimized by applying
GWO to the space of BR-ANN for maximum metal ions removal. The GWO is a new
global optimization approach that simulates grey wolf leadership and natural hunting.114

In GWOQ’s hierarchy, the alpha is considered the group’s dominant agent (best solution).
The next subordinate to alpha includes beta (second fittest solution) and delta (third fittest
solution), and omega wolf denotes the weakest solution. Additionally, three main phases

of hunting, 7.e. search for prey, encircle the prey and attack’, have been implemented for
optimization. The framework of BR-ANN-GWO is shown in Fig. S7.T The ANN-BR-GWO
framework predicted the metal adsorption with considerably improved accuracy (A2= 0.99,
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RMSE = 1.1) against ANN-GWO (R2 = 0.96, RMSE ~2.2. GWO’s robust search capability
prevents the algorithm from getting trapped in a local optimum. In GWO, achieving the right
balance between the ability to explore and exploit is easy, so it can effectively solve many
complex problems when coupled with ANN.115 ANN-GWO has also been successfully used
to predict the performance of desalination plants and crop yields,18 to globally predict
COVID-19 disease,11’ measure pan evaporation to compare irrigation water needs18 and to
prevent cyberattacks in our networks.119

Prabhu et al., 2021 successfully used a Genetic algorithm (GA) to determine the recovery of
chromium from alginate immobilized Sargassum in a fixed bed column. GA works on the
principles of Darwinian biological evolution from natural selection, where individuals are
chosen from the population to serve as parents, after which they are employed to bear the
future generation’s offspring.%3 The population “evolves” to the best option through future
generations. In Fig. S9,T the ANN-GA framework is displayed. In their study, the authors
tuned the chromium concentration, bed length and flow rate to maximize the adsorption of
chromium metal. ANN-GA showed better productivity (RMSE = 0.07) against Boltzmann
statistical thermodynamics (Simulating Annealing (SA), RMSE = 0.8) (van Laarhoven &
Aarts, 1987). The development response of ANN-GA for predicting metals adsorption
showed a better statistical quality compared to traditional statistical models.#>78.210 The
ability of evolutionary GA to address any optimization problems by tuning the selection
mechanism and varying the values of genetic operators as per the problem makes these
techniques superior to classic numerical optimizations. GA-ANN has attracted significant
attention due to its multiple advantages (/.e. simple method, robust response to changing
conditions and flexibility efc.) in solving real-world problems. These include predicting
energy consumption in buildings,20 detecting fatal heart disease, 2! solving hydrogeology
problems22 and optimizing machine parameters to reduce surface roughness'23 erc. The
ability of GA to incorporate domain-specific knowledge into the algorithm results in a more
efficient exploration of the state space of possible solutions.

Further, the two-step method for self-adapting parameters that govern evolutionary search
relieves the human operator from the requirement to manually create solutions, which either
consumes time or it is difficult.124 Evolutionary algorithms can be hybridized with other
models to address particular real-world problems.125

More recently, Zheng and Nguyen, 2022 have implemented Queuing Search Algorithm
(QSA) to update the weights of ANN using the three main activities of humans in queuing:
(i) prefer following the customer queue with prompt service. (ii) Effect of customers or
employees on customer service. (iii) Impact of not maintaining the queue on customer
service.103 The QSA model stimulates the queening system, as described in ref. 126, to
optimize the adsorption of metals, 7.e. arsenic (As(I1)), cadmium (Cd(I1)), nickel (Ni(ll)),
copper (Cu(Il)), lead (Pb(11)) and zinc (Zn(1l)) on carbon-enriched biomaterial. The model
used initial concentration, total carbon content, pH of the solution and pyrolysis temperature
as input and metals adsorption efficiency as the output. The details of the ANN-QSA
optimization procedure is illustrated in Fig.S10.T The adsorption efficiency predicted by the
ANN-QSA model was closer to the metal adsorption efficiency of metals (#.e. RMSE =
0.051 and RMSE = 0.074 for the training and testing datasets, respectively). The standalone
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ANN model predicts adsorption efficiency (#.e. RMSE = 0.076 and RMSE = 0.097 for

the training and testing datasets, respectively). The QSAs have been used to optimize
mechanical design problems (e.g. spur gear drive systems),127:128 pyt its hybridization with
ANN has been reported first time for wastewater treatment applications.

Besides combining metaheuristic algorithms with ANN, a fuzzy model has been coupled
with ANN to capture the nonlinearity of the metal adsorption process. The ANFIS structure
consists of five layers with two types of nodes: fixed and adaptable (details, refer to
S5.9.31). Nodes in the membership function layer and the next layer are tuneable, while the
rest nodes are fixed. The neuro-fuzzy arrangement uses ANN learning principles and logical
reasoning to map input parameters through membership functions to generate output(s).

The details of ANFIS architecture can be seen in S5.9.3.11 Sadeghizadeh et a/., 2019
integrated a fuzzy system with ANN to predict Pb(Il) adsorption on hydroxyapatite/chitosan
nanocomposite.50 The authors considered hydroxyapatite (Hap) concentration, temperature,
time, pH, agitation speed, adsorbent dose and initial Pb(l1) concentration as input model
parameters and lead removal efficiency as model output response. ANFIS models the

Pb adsorption process by combining fuzzy “if-then” logic with neural networks’ superior
learning capabilities (I1). The anticipated model outcomes and the experimental findings
were remarkably consistent, with a correlation coefficient (/) close to unity and negligible
model error. The ANFIS modelling results for metals remediation using various biomaterials
have outperformed results obtained using standalone ANN frameworks and conventional
statistical models.52:84.91.129 Despite its acceptance in many other fields, including, e.g.
medicine, 130 energy, 131 sports132 and passenger demand forecasting,133 ANFIS suffers from
the curse of dimensionality and computational cost. The complicated structure and gradient
learning in ANFIS add to the computation cost of ANFIS.

4.3 Assessment of conventional, ANN and ensemble-ANN models

ANN is a data-driven modelling approach that addresses adsorption prediction and
interpretation issues by employing dataset knowledge particular to an adsorbent—adsorbate
combination. The standalone ANN frameworks extensively used Levenberg—Marquardt
(LM) backpropagation training algorithm and hyperbolic tangent-linear activation functions
to optimize the metal adsorption process on biomaterials systems (ESI, S2t). The LM
algorithm incorporates the fast convergence ability of the Gauss—Newton algorithm and
inherits the steepest descent method’s stability to minimize the modelling error.134 The role
of activation function is critical in tuning the ANN model. The researchers have applied
mainly hyperbolic tangent (tansig) activation function at the hidden layer as it centres each
layer’s output more or less around 0, which frequently aids in accelerating convergence.13
The current developments in the field of machine learning demonstrate the potential of
scaled exponential linear unit (SELU), rectified linear unit (ReLU) and exponential linear
unit (ELU) to overcome the problems of overfitting and huge training dataset.136 Since the
experimental adsorption data set are not very big (<500 data points), scholars have usually
selected classical activation functions for nonlinear mapping of data points. Future research
can investigate the impact of varying dataset sizes, training algorithms, and activation
functions on the quality of interactions and model performance.
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The performance of standalone and ensembled ANN systems for simulating adsorptive
eviction of metal ions using biomaterial adsorbents has also been studied along with
traditional mathematical models (e.g. RSM, MLR, MNLR) as tabulated in Table 5. It
was also reported that the ANN successfully optimized the metal adsorption process for
datasets beyond the studied ranges.#8:57:62.98,99,137.138 Thege results validate their true
generalization capability. In the case of a smaller dataset (<50 data points), the results
predicted by ANN models very well matched the actual data points, demonstrating the
ANN’s suitability to decrease reagent use, which would impact the economic aspect of
wastewater treatment.138.139 The integration of evolutionary algorithms and fuzzy models
with ANN has improved the predictive ability of ANN systems. This behaviour can

be attributed to the knowledge of search algorithms to create multiple solutions to a
given problem.140 Each solution holds various parameters that can aid in enhancing the
ANN efficiency. Fig. 5 sums up the predictive power of ensemble ANNs over standalone
frameworks and traditional statistical models.

The authors acknowledged the capacity of the developed ANN models with metaheuristic
optimizers to simulate the adsorption of metal ions on biomaterials. Yet, there is a need

to explore these optimizers with a varied dataset on different metal pollutants with a

clear explanation of the methodological phase for developing the research knowledge and
comparing their capacity to deal with the stochastic, nonlinear complex data.

5. ANN frameworks for hybridizing classical adsorption models

5.1 Hybridized-ANN models

The process model development is an integral part of water treatment v/a adsorption. The
classical means of modeling adsorption include calculating parameters related to isotherm,
kinetics and thermodynamics through experimental values obtained at optimum conditions.
However, the One Variable At a Time (OVAT) approach is applied to independently optimize
the individual effect of adsorption variables such as contact time, pH, temperature, adsorbent
dose and initial metals concentration.178-181 Considering the impact of individual variables,
analytical error and uncertainty associated with the traditional experimental approach,
different Al models are used to improve the mathematical representations of adsorption
process models. In this regard, Rodriguez-Romero et al., 2020 hybridized the ANN with
classical isotherm and Kinetic equations to improve the arsenic adsorption capacity of
carbon-enriched biomaterial.211 The authors obtained the ANN-Langmuir model from the
classical Langmuir functionality using initial metal concentration, pH and temperature

as input parameters with sigmoid activation functions. Likewise, the other hybridized
models were also obtained. The hybridized ANNs outperformed the traditional kinetics

and isotherm models as portrayed in Fig. 6 where it is clear that the hybrid ANNs are less
susceptible to error.

Only a few studies report using such a modelling strategy to remove fluoride ions,
indicating a novel area of research.182-184 ANN tools are easily used because they can
establish dependencies and correlations between multiple variables. ANN architectures
with equilibrium concentrations of metal toxins and temperature as net entrance data and
metals adsorbed as the exit variables are processed to capture the best fit for the single
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and multicomponent adsorption process.>3 It is important to remark that similar ANN
frameworks can be used to design multicomponent adsorption processes for metal removal
at different operating conditions. The utility of Al has expanded with the hybridization of
ANN with isotherm or kinetic equations to acquire pertinent adsorption parameters that are
not possible using a standard model.185

Apart from isotherm and Kinetics, estimating thermodynamic parameters of the adsorption
process using ANN is an emerging field of research. Recently, Zaferani et al., 2019
implemented ANN to recognize the standard Gibbs free energy changes (AG) related to
Pb(1l) adsorption process based on the changing temperature and initial metal concentration.
The authors investigated different structures of ANN for modeling AG and metal removal
efficiency.52 The results revealed that the minimum value of AG (-6 kJ K1) occurred

at the highest temperature (55 °C) and the lowest initial Pb(l11) concentration (10 ppm).
The negative Gibbs free energy verified the spontaneity of the adsorption process. Limited
studies explored the possibility of analyzing thermodynamics aspects of the adsorption
process using ANN-framework. Much research is needed to create intelligent models that
can predict the nature and viability of the adsorption process.

It should be emphasized that the parameters of conventional adsorption models are
established by fitting specific experimental data. This indicates that the parameters of
conventional adsorption models are constant for a given range of experimental conditions
(Tables 1-3). On the other hand, ANN model parameters are derived through concurrent
regression of all experimental observations.18 Thus, hybrid adsorption model parameters
are treated as nonlinear functions of the input variables used to train the artificial neural
network, enhancing their adaptability and data correlation capabilities. These results
demonstrated that using ANNSs to estimate analytical adsorption equations parameters
significantly improved modelling results.

5.2 Multicomponent adsorption

Wastewater is a matrix of multiple pollutants; therefore, developing a single technique for
concurrent extraction of coexisting metallic impurities is critical. However, fabricating an
adsorbent that considers the characteristics of all contaminants whose removal is required
is challenging.100187 The process of multiple metal adsorption on biomaterials is usually
studied in the column set-up in the laboratory and analyzed using breakthrough curves; but
the existence of various metal pollutants in the feed makes modeling of breakthrough curves
complex due to the pollutants’ antagonistic, synergistic, and noninteractive tendencies.188
Advanced models that illustrate multicomponent adsorption and the associated physics are
part of the evolving research.189 In this context, for the first time, Pauletto et a/., 2020
implemented ANN with a Bayesian regularization algorithm to investigate the antagonistic
and synergistic effects during the adsorption of dye (MB) and metals (Co(lIl)), Ni(ll)) in
single, binary and ternary mixtures on ultrasound modified chitin.212 They optimized the
input parameters (/.e. temperature and initial pollutants concentration) to simultaneously
forecast the uptake capacity of individual adsorbates from a multicomponent system. The
ANN-based simulations indicated that the optimized network of single component systems
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can be applied to model the equilibrium adsorption of cobalt (Co(1l)), nickel (Ni(ll), and
methylene blue (MB) effectively (/2 = 0.99) in multicomponent systems.

Simulating biomaterial systems for multi-metals adsorption is an emerging field of

study that has the potential to computationally design cost-effective adsorbents with
tailored properties to effectively treat industrial effluents without the need for multiple
stages involved in adsorption system design. Other advantages of this technique include
cost reduction and time savings to generate high-efficiency adsorption systems that
simultaneously treat diverse water pollutants. The future studies can analyse the application
of ANN integrated with nature and human-inspired metaheuristic optimization algorithms
for the adsorptive eviction of multiple species from BMs.

6. Sensitivity analysis

The ANN frameworks’ limitations is their inability to comprehend the physico-chemistry
behind the adsorption behaviour; therefore, their uninformed application to a sorption
system without paying attention to the physicochemical characteristics could result in
dubious outcomes. To address this concern, researchers used a sensitivity analysis of ANN
to determine the impact of experimental factors on the adsorption of metal ions. A sensitivity
analysis of the developed ANN allows assessment of the input attributes as per their impact
on the output response. In the literature, the Weights method has usually been employed

to examine the sensitivity of the adsorption process and identify the most significant
parameters that influence the adsorption performance (ANN output).190 The mathematical
presentation of network weights for determining the relative weights of input parameters is
given in ESI, Section S6.1

In the biomaterial adsorption system, pH, initial concentration of adsorbate, and contact time
were the most critical process variables that impacted the metal adsorption on biomaterials.
Since the pH alters the ionic strength and affects the ionization of metals onto biomaterials,
the contact time between adsorbate and adsorbent affects the available active sites,213.214
whereas the concentration of metal affects the interaction of metal ions with the available
binding sites. Furthermore, it was found that the quantity and quality of the biomaterial
adsorbed significantly impacted the effectiveness of the adsorption process.” The medium
of aqueous solutions also affected the adsorptive removal of metal ions. For example, the
presence of organic matter and its derivatives or salinity might change the biomaterials’
surface characteristics and block the metals’ adsorption on biomaterials. Considering the
wastewater treatment plants, the quantity of biomaterial required for successful adsorption
of metal adsorbates at a fixed initial concentration serves importance from an economic
perspective. The process cost will be lowered when sufficient adsorption is attained with a
small biomaterial dose. Since the selling cost of natural biomaterials is very low, but their
excessive usage can increase their waste disposal costs, while inefficient use can increase
the process cost. Thus, understanding how operating variables affect the adsorption using
ANN approach will aid in the appropriate process design, scale-up and optimization of

an industrial adsorption process. In addition, implementing neural networks will process
monitoring and control, save time, and lower costs.
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Besides determining the contribution of single input parameters, researchers studied the
conjugate effects of multiple input parameters on ANN prediction. Fig. 7 shows the
significant decrement in the prediction error (MSE) for copper and mercury removal with
the increasing combinations of input parameters. Fig. 7 shows that as the number of input
variables in the group rose, the values of MSE decreased because of the strong effect

of all parameters on adsorption capacity. Although the influence of process variables has
been explored widely, the contribution of biomaterial characteristics in terms of their lignin—
cellulose-hemicellulose content, pore size distribution, particle size and surface area on the
predictive ANN response has not been fully explored. The information about the influence
of the above-mentioned attributes can benefit technologists and engineers in selecting and
designing adsorption systems.

The sensitivity analysis was primarily reported in studies focusing on standalone ANN
frameworks, which followed a gradient-based optimization scheme (details of studies in
Table 5). Thus a comparative analysis of metaheuristic-based ensemble models and ANN
can be carried out in future to predict the relative contribution of adsorption variables on

the metal adsorption efficacy of BMs. Apart from Weights methods, there are other methods
of calculating sensitivity and feature importance, e.g., partial derivate algorithm, 1% input
perturbation algorithm,192 profilel93 and stepwise method.194 There is a need to test the
sensitivity of ANN response using different approaches to determine the optimal sensitivity
criteria, which could be the focus of future studies.

7. Challenges and advancements in ANN technology for the removal of

metals

The main disadvantage of ANN is its black box and empirical character. The connection link
between neurons is denoted by weights, which are difficult to represent mathematically. The
contribution of a specific input variable to the outcome of ANN is identified based on its
numeric value and sign of the associated weight. The higher the weight value, the greater

the independent variable’s contribution to the expected response. The effects of negative
weights on neurons are conflicting. Thus, positive outcomes have a synergistic impact on the
neurons, boosting the value of the response, whereas negative outcomes have the opposite
effect and decrease the expected value of the output (Section 6).

Although the above-discussed sections demonstrate ANN as a superior approach to the
traditional models due to less formal statistical training requirements, detection of complex
nonlinear relationships and all possible interactions between the variables, there is a need
to develop novel strategies that can provide in-depth analysis of adsorption phenomena

in terms of surface interactions and associated adsorption energy. Recent research by
Fagundez et al., 2021 offered novel hybrid ANN-isotherms for simultaneous estimation

of isotherm and thermodynamics parameters to predict metal uptake capacity and associated
thermodynamic parameters of various zeolites under different temperature conditions.21°
The utility of molecular simulations combined with ANN has recently been reported

as a valuable modelling strategy to gain insights into the mechanism of heavy metal
adsorption on graphene nanocomposites with high accuracy.19° The computation models
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based on density functional theory (DFT) have been employed to determine the adsorption
energies on solid surfaces. However, developing a neural network-based scheme that can
predict surface energies on sorbents can assist in optimizing the relative stability of
adsorbent surfaces for spontaneous adsorption of targeted metal pollutants on available
active sites.196-199 |n addition to developing new computational strategies, the researchers
emphasize on meaningful experimental results to understand the equilibrium, saturation and
regenerative potential of adsorption systems from a chemical science point of view,56:200

The possibility of overfitting is the second major issue that needs to be addressed by
researchers while applying ANN algorithms to predict biomaterial systems’ efficacy for
wastewater treatments.91:92 To prevent the over-parameterization and over-training of the
ANN system, researchers have advocated the implementation of emerging activation
functions (e.g., SeLU, ReLLU).201.202 sing simple models (e.g., AdaBoost) ensures the
generalizability of output in the small dataset.203

It is commonly recognized that a smaller error value is better for optimum network learning;
however, it may be possible that the network training stops due to getting stuck in local
minima. Such situations call for hybridizing the ANN framework with novel evolutionary
algorithms. Recently, Ke et al., 2021 proposed novel ANN-based-surrogate models (/.e.,
BA-ANN, SVM-ANN, RF-ANN, M5Tree-GP, M5Tree-ANN and GP-ANN) for predicting
metal removal efficiency based on characteristics of carbonaceous materials, source of metal
and environmental conditions.197 The particle swarm optimizer (PSO) has been coupled
with ANN to predict the dye and copper removal efficiency using graphene oxide-based
nanocomposites and pomelo-peel-based carbonaceous material.204.205

8. Prospective scope

. Based on the reviewed literature on metal ion modelling using ANN, estimating
the absorption capability of biomaterials other than polysaccharide-derived
materials requires additional research.

. Models discussed were prepared and assessed based on metals present in
synthetic solutions. The natural wastewater or water system is a complex matrix
where various pollutants coexist. The influence of co-existing metal pollutants
in natural systems on the adsorption behaviour via ANN has not been fully
explored. Thus, there is a greater scope of research in this domain.

. Although ANN-based models provided a better fit than static adsorption models,
the literature lacked sufficient research on the development of ANN systems that
can best describe the breakthrough curves against dynamic adsorption models
such as Thomas, Bohart-Adams and Yoon-Nelson models. Future research
should demonstrate the performance of neural networks against dynamic
adsorption models to forecast breakthroughs.

. As per the principles of circular economy, the reuse and recyclability of
biomaterial systems are essential. A vast development of ANN models has
predicted pollutant removal efficiency; however, little attention has yet been
given to developing intelligent systems that can optimize the dose of eluting

Env Sci Adv. Author manuscript; available in PMC 2023 March 28.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Nighojkar et al.

Page 17

agents for maximum regeneration of adsorbent materials. Modelling desorption
processes can allow further utilization and effective management of spent
adsorbent materials.

. ANNSs have been chiefly applied to model the removal of heavy metals and dyes.
But the potential of bioadsorbents to treat emerging contaminants such as per-
and polyfluoroalkyl substances (PFAS) and rare earth metals (e.g., neodymium,
cerium, and lanthanum) v/a adsorption needs attention for advancements in
adsorption systems design.

. Environmental remediation occurs in different climate conditions. Also, the
wastewater being processed for reuse can be at varying temperatures. In such
situations, modelling thermodynamic aspects of the adsorption process can give
crucial information related to the efficacy of biomaterials and the feasibility of
adsorption phenomena for a broad spectrum of temperatures.

. ANN results need to be compared with the latest machine learning models,
which are not yet explored for simulating adsorption processes such as super
learning, decision tree, deep learning, and data mining. These models have
provided promising solutions for various problems related to environmental
engineering; however, they are yet to be assessed for wastewater treatment
applications.

9. Conclusion

Metal pollution treatment is essential to prevent waste metals’ bioaccumulation,
environmental pollution, and soil degradation. Biomaterials act as a versatile and cost-
effective system for removing metals from wastewater. Different chemical and physical
modification methods of natural biomaterials can improve their metal adsorption efficiency,
but conventional laboratory-based research has yet to describe multicomponent adsorption
systems comprehensively. An artificial neural network can automate the adsorption process
to optimize process variables and adsorbent fabrication pathways for increasing metal
removal efficiency. Furthermore, ANN frameworks can generate hybrid isotherm and kinetic
models that minimize error and accurately model an efficient, rapid, and cost-effective
multicomponent system for metal removal. The application of ANN-based models leads

to a better understanding of biomaterials’ efficiency, energy, time and economic benefits.
The thermodynamic aspects of metal adsorption to improve environmental water quality
and applications in water reuse is a burgeoning field of research. The challenges of ANN
can be briefly summarized as a) collecting experimentally characterized data to filter and
identify specific metal contaminants in the complex matrix of water; and b) establishing
ensemble models to assist in solving local minima problems, thereby improving the
prediction efficiency of ANN. The intervention of ANN demonstrated robustness and rigour
in simulating adsorptive eviction of metal ions using BMs, which could be expanded for
other organic and emergent pollutants.
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Environmental significance

With growing environmental consciousness, biomaterial systems (BMS) have garnered
attention as a sustainable material for the adsorption of hazardous water contaminants.
These BMSs are engineered using surface treatments or physical alterations to enhance
their adsorptive properties. The lab-scale methods generally employ a One Variable

At a Time (OVAT) approach to analyze the impact of biomaterial modifications, their
characteristics and other process variables such as pH, temperature, dosage, efc., on the
removal of metals v7a adsorption. Although the adsorption procedure using BMSs seems
simple in implementation, the conjugate effects of adsorbent properties and process
attributes implicate complex nonlinear interactions. As a result, Artificial Neural Network
(ANN) have gained traction on the quest to understand the complex metal adsorption
processes on biomaterials, with applications in environmental remediation and water
reuse.
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The dataset before analyzing and processing (the box plots generated using data listed in
ESI, Tables S1 and S21) *AD = adsorbent dose, IC = initial concentration, CT = contact
time, T = temperature, PS = particle size, BD = bed depth, FR = flow rate, AS = agitation
speed, MPE = metal pollutant efficiency, AC = adsorption capacity. *The middle line in the
box represents the median, the center line represents the mean, while the bottom and top
lines of the box represent the 1st and the 3rd quartiles, respectively.
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Fig. 2.
Standalone ANN-framework for predicting metal adsorption onto biomaterials.
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Dataset, maximum epoch size and activation functions considered for ANN model
development with step size = 0.01, momentum = 0.7-1, minimum gradient = 0.062. (The
graphs were generated using data from ESI, Section S57).
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Modelling error occurred in conventional, standalone and ensemble models for simulating
adsorption on biomaterials (figure generated using the data from Section S5.6t).
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Percent error in hybrid-ANN and traditional adsorption models using (A) kinetics, (b)
isotherms (reproduced from ref. 102 with permission from [Elsevier], copyright [2020]).
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Fig. 7.

Influence of single and combinations of input variables on the ANN response. *AD =
adsorbent dose, IC = initial metal ion concentration, T = temperature, CT = contact time and
Sal. = salinity of aqueous medium. (A and B) were generated using the data obtained from
ref. 168 with permission from [Elsevier], copyright [2019], while (C and D) were generated
using the data obtained from ref. 77 with permission from [Springer Nature], copyright
[2018].
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