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Abstract

With growing environmental consciousness, biomaterials (BMs) have garnered attention as 

sustainable materials for the adsorption of hazardous water contaminants. These BMs are 

engineered using surface treatments or physical alterations to enhance their adsorptive properties. 

The lab-scale methods generally employ a One Variable at a Time (OVAT) approach to analyze 

the impact of biomaterial modifications, their characteristics and other process variables such as 

pH, temperature, dosage, etc., on the removal of metals via adsorption. Although implementing 

the adsorption procedure using BMs seems simple, the conjugate effects of adsorbent properties 

and process attributes implicate complex nonlinear interactions. As a result, artificial neural 

networks (ANN) have gained traction in the quest to understand the complex metal adsorption 

processes on biomaterials, with applications in environmental remediation and water reuse. This 

review discusses recent progress using ANN frameworks for metal adsorption using modified 

biomaterials. Subsequently, the paper comprehensively evaluates the development of a hybrid-
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ANN system to estimate isothermal, kinetic and thermodynamic parameters in multicomponent 

adsorption systems.

1. Introduction

Growing population, urbanization, and changing climate cycles stress water resources and 

public water supplies. The United Nations reported that 2.3 billion people live in water-

scarce zones worldwide.1 Public health and economic tensions from water scarcity will be 

exacerbated in regions with water tainted with metal contaminants. Such water-scarce areas 

deserve and need solutions to remove metal contaminants and enable water remediation and 

reuse.2

The literature has proposed physicochemical technologies like reverse osmosis, ion 

exchange, electrodialysis and adsorption to eliminate metallic ions from water resources 

and industrial effluents.3–14 Among these technologies, adsorption is the best-suited method 

for treating water and wastewater due to its high efficiency with low economics.15–23 The 

selection and fabrication of sustainable adsorbents for the eradication of water pollutants 

include the following criteria: (1) it should be inexpensive and (2) simple to synthesize in 

large quantities, (3) it should demonstrate high adsorption capacity and most importantly, 

(4) it should cause no harm to the environment. Nature-inspired biomaterials have gained 

attention as decontamination media owing to their non-toxic, biodegradable, and inexpensive 

features.24–30 Further, many biomaterials exhibit chemical stability and structural integrity 

throughout repeated adsorption and desorption cycles, enabling their use for heavy metal 

ions removal.31 The porous texture of biomaterials speeds up the transport of metal 

ions, while the presence of phenolic, carbonyl, amide and amine-containing functional 

groups in biomaterials facilitate metal ion adsorption through surface complexation.32,33 In 

addition, biomaterial systems have been engineered using various surface functionalization 

and physical alterations to tailor their surface chemistry and enhance their adsorptive 

capacity. For instance, our research team has prepared eco-friendly cellulose beads 

impregnated with nano iron oxide for thorium and arsenic retrieval;34,35 synthesized cost-

effective cellulose nanofibers and functionalized with camphor soot carbon nanoparticles for 

uranium extraction;36 crosslinked starch with polyvinyl alcohol for oil–water separation;37 

electrospun nano fibres for adsorption of metal ions;38–41 developed composites from agro-

wastes for removal of metal and dyes.42 The details of distinct physical and chemical 

modifications of biomaterials are illustrated in Fig. S1.†

The BMs’ performance is greatly affected by environmental conditions (pH, temperature), 

initial metal concentration, and the structure of the biomaterial. Laboratory experiments 

have been used to discover high-performing BMs; however, these studies are costly for time 

and resources. Accordingly, modelling techniques could offer time- and resource-saving 

efficiency in predicting the performance of BMs for full-scale application.43,44 Mathematical 

models based on multiple linear or nonlinear regression (MLR, MNLR) and response 

surface method (RSM) have been proposed to assess the removal potential of metallic 

contaminants using experimental data from isotherm and kinetic studies.45–48 The joint 

role of spectroscopic analysis and RSM has been applied to enumerate the adsorptive 
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removal of zinc (Zn(II)), cobalt (Co(II)) and nickel (Ni(II)).49 Since these adsorption systems 

exhibit nonlinear adsorptive behaviours, it would be inappropriate to characterize them 

using conventional statistical models. In this sense, the ANN learning principles are 

potent means to optimize the metal adsorption process on biomaterials by establishing a 

nonlinear relationship between independent (pH, temperature, dose, time of contact, the 

concentration of metal ions, biomaterial characteristics, etc.) and dependent variables (metal 

uptake capacity, % adsorption efficiency, etc.) for single and multi-metallic wastewater 

systems.50–53

Studies in the past stipulated the removal efficiency of metals using various artificial 

intelligence (AI) models. For example, Bhagat et al., 2020 examined the application of 

distinct AI models like kernel, evolutionary, black box, fuzzy and hybrid models for 

optimizing heavy metal removal.206 Rather than illustrating the mathematical concepts 

necessary for automation, the author highlighted treatment procedures such as flocculation, 

coagulation, membrane filtration, biosorption, proposed prediction models, input and output 

variables, and distinct metrics for comparing model performance. Alam et al., 2022; Reynel-

Ávila et al., 2022 categorized AI technologies and reported their use in the remediation 

of organic and inorganic contaminants.207,208 Whereas Yaseen et al., 2021 discussed 

the utility of AI in simulating soil and water bodies contaminated with metals.209 The 

utilization of classical adsorption models, multicomponent adsorption, sensitivity analysis, 

and progression in ANN frameworks were not discussed earlier in detail for evaluating 

kinetics, isotherms, and thermodynamic parameters of adsorption.

This review briefly explains the main biomaterial alteration processes and discusses 

conventional adsorption investigations in conjunction with ANN modelling. Then, we 

address the pre- and post-processing methods involved in constructing ANN models and 

show statistics of datasets considered for optimizing metal adsorption on biomaterial 

systems. We describe current advancements in the ANN framework for single and multi-

metal adsorption process optimization and related improvements in hybridizing isotherm, 

kinetics, and breakthrough curves. Next, advances in thermodynamic parameter estimations 

are reported to understand the nature of the adsorption process. The sensitivity analysis 

of ANN has also been described to comprehend the relative influence of individual 

and group of adsorption factors on anticipated efficiency. Towards the end, the review 

highlights significant challenges and advancements in the field of ANN technology for metal 

remediation.

2. Experimental studies and dataset of metals adsorption on BMs

A given biomaterial’s interaction with metal adsorbates depends on its functional groups, the 

engineered surface of biomaterials, pH and temperature conditions, and physical or chemical 

changes in the configuration that influence biomaterials’ morphology, pore size distribution, 

and elemental compositions. However, biomaterials without modification have constraints 

regarding recovery and recycling. Because of their poor porosity and limited adsorption 

sites, pristine biomaterials exhibit low adsorption efficacy.54
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Thus, the engineered modifications and surface alterations of the biomaterial matrix become 

necessary to achieve greater adsorption capacities. Research reports the conversion of 

natural biomaterials into beads, foams, and nanofibers to attain better pore size distribution 

and durability. The surface area of biomaterials has also been enhanced via their conversion 

to nanoscale structures and activated carbon.55–62 The surface treatment of biomaterials with 

acids and alkalis improved their interactions with metals, which resulted in faster adsorption 

rates and increased uptake capacity.63–66 The reutilization of saturated biomaterials into 

value-added products has been reported in detail by authors in their earlier research.7 The 

experimental adsorption studies that depict various aspects of metals adsorption relevant for 

ANN modelling are given below:

2.1 Adsorption kinetics

Adsorption kinetics gives vital information about the associated mechanism and equilibrium 

time required to sequester maximum metal impurities from an aqueous solution. The 

period of contact (CT) between the biomaterial and metal adsorbate and equilibrium 

time (te) corresponding to specific metal concentrations (Co) are listed in Table 1. 

The kinetics adsorption data using modified biomaterials fitted best with the pseudo-

second-order equation, where the values of kinetic model parameters differ regarding 

when the equilibrium time is reached. The experimentally obtained details (initial metals 

concentration, contact time and equilibrium time) will aid in developing ANN-driven kinetic 

models for predicting the significant kinetic parameters and uptake capacity detailed further 

in Section 5.

2.2 Adsorption isotherms

Adsorption isotherm models describe the maximum adsorption capacity at equilibrium 

adsorption conditions. Table 2 displays the adsorption isotherm data for modified 

biomaterials for different metal ions. The Langmuir isotherm best characterized the 

adsorbent–adsorbate interactions for biomaterials, suggesting monolayer adsorption of metal 

ions on the biomaterial surface. In general, the use of linear empirical models to evaluate 

the isotherm parameters of the nonlinear adsorption process is becoming obsolete as it 

does not explicitly describe the simultaneous adsorption pattern over a wide range of 

operating temperatures and metal ion concentration.82 Furthermore, because most industrial 

wastewaters contain numerous metal pollutants, single-species models do not adequately 

reflect the complex propensity of multicomponent adsorption. For this purpose, the isotherm 

parameters evaluation using hybridizing isotherms with ANN, as discussed in Section 5, is 

gaining popularity.

2.3 Thermodynamics

Thermodynamic parameters offer insights into the impact of changing environmental 

conditions (i.e. temperature) on the nature of the adsorption process using modified 

biomaterials. Table 3 details the adsorption process’s temperature range, feasibility, 

and nature. The data will aid in modelling thermodynamic conditions for predicting 

thermodynamic parameters (e.g., Gibbs free energy changes) across a wide range of 

adsorption conditions, as discussed in Section 5.
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2.4 Adsorption data set based on BMs and pre-processing

The biomaterials in the current review included cellulosic, alginate and chitosan-based 

biomaterials. Compared to other polysaccharides, plant and agriculture-based biomaterials 

have been extensively modelled for metal remediation purposes (refer to ESI, S2†). 

The standards for modifying the biomaterials mentioned above are found in the 

literature.55,59–61,70,71,80,81,83,84 The physicochemical features of the reviewed modified 

biomaterial systems were determined by different analytical techniques such as BET, FTIR 

and SEM-EDS. The morphology of some of the modified BMSs under a scanning electron 

microscope is shown in Fig. S2.†

Experimental data is an essential prerequisite in processing the ANN framework. The details 

of the diverse dataset, including the characteristics of biomaterials, environmental conditions 

(temperature, pH) and process variables, are given in Section S2.† The experimental 

dataset contained 15 variables, including initial concentration (C0), pH solution (pH), 

temperature (T), biomaterial characteristics (surface area, particle size), contact time (CT), 

bed depth (BD), flow rate (FR), agitation speed (AS), the volume of solution (V), pyrolysis 

temperature (PT), effluent concentration (EC), medium of solution (MS), bias (B), metal 

pollutant efficiency (MPE%) and adsorption capacity (AC). MPE % and AC were the output 

variables; the remaining variables were applied as input variables. A few studies used final 

concentration (FC), final pH (FpH), and change in Gibbs free energy (dG) as the output 

variable in conjunction with MAE% and AC. The frequency of individual variables used by 

researchers is illustrated in Fig. S3.†

Pre-processing experimental data using Pearson’s correlation matrix is carried out to 

analyze the relationship among adsorption variables. In the cellulose-based biomaterials, 

the correlation matrix showed a complex correlation between process variables.85 However, 

in the case of carbon-enriched BMSs, it was worth mentioning that the oxygen to carbon 

ratio (O:C) and the sum of oxygen and nitrogen to carbon content (O + N : C) showed an 

absolute correlation.86 Hence, one of these two variables was eliminated as they represented 

the same data from the database. The (O + N : C) variable had a better connection with the 

output variable over O : C; thus, it becomes a strong contender to increase the precision of 

the models and explain the characteristics of the dataset employed. As illustrated in Fig. 2, 

the boxplot shows the range of key variables considered for modelling metal adsorption on 

biomaterial systems.

Post–pre-processing, the complete dataset is taken and randomly divided at 70 : 30.58 70% 

of the data is used for training the ANN model, while 30% is used for validating and testing 

the performance efficiency of ANN. The distribution of the attributes (ESI, S2†) shows a 

skewness in data distribution which can significantly affect the stability and accuracy of 

the ANN predictive models. Therefore, the features of the dataset are normalized using the 

Minmax function.
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3. ANN for modeling for metal adsorption

3.1 Layman’s guide to ANN

Artificial Neural Networks are inspired from a biological brain conceptual model to solve 

complex problems.87 Consider how a human brain distinguishes between different people: 

every human has a similar overall structure (e.g., two eyes, two ears, one nose, etc.), yet 

we can recognize people easily because learnings in the brain are intuitive. Instead of 

learning the face structure to identify people, it discovers the deviation of the face from 

a reference face, for example, ‘how different one’s nose is from the generic nose, which 
is then quantified as a signal with a specific strength’. Likewise, it learns the deviations 

from all parts of the face from a reference base case, combines these variations into a new 

dimension, and finally gives an output, which is the recalled identity of the good-looking 

person in front of you. All these steps in the brain occur in a fraction of a second. A neural 

network uses a similar algorithm, but the artificial neurons process the information using a 

mathematical approach (Fig.S4†).

The ANN architecture is organized into 3 layers: (1) an input, (2) a hidden or intermediate 

layer, and (3) an output layer. The information is first received by neurons in the input layer, 

then passed on to a set of neurons associated with single or multiple hidden layers. The job 

of a hidden layer is to process the information coming from input neurons using weighted 

connection and activation functions to calculate the output of a neuron. The data is processed 

from one neuron to the other, similar to the deviations learned by the human brain. The 

greater the outcome of a neuron, the greater would be the influence of that input dimension. 

These attributes are combined in the next layer using mathematical formulations to form 

additional new details. When multiplied several times, this procedure develops a complex 

network with several connections.

The neural network learns through intuitive wisdom with the help of a learning or training 

mechanism. For a given set of input data, the output layer makes predictions by applying 

a matrix multiplication series that could be either accurate or inaccurate. Based on the 

output, the learning mechanism gives feedback for improving the prediction efficiency of 

the network. The system uses a backpropagation algorithm as a feedback mechanism to 

incrementally update the randomly initialized weights applied to the input data for correct 

predictions.88

3.2 Generation of the ANN model

Fig. 2 illustrates the flow chart for modelling the metal adsorption process via ANNs. 

Initially, the experimental adsorption variables containing independent and dependent 

parameters are collected from lab experiments compiled from the literature. The acquired 

database is generally divided into training, validation, and test sets. Since the adsorption data 

of metal ions constitute many features (as shown in Fig. 1), the associated hyperparameters 

of neural network function also increase, raising the model’s complexity. In such scenarios, 

a larger proportion of data (~70%) is kept in the training subset to make the model learn 

the patterns of the data, while the rest 30% of data is used for validating and testing the 

model performance. The network is trained to find the optimal combinations of intermediate 
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neurons and interior layers that minimize the prediction error or loss. The neural network 

is trained using backpropagation (BP) algorithms which consist of the following steps, 

corresponding to the steps listed in Fig. 2:

1. Selection of training data from the experimental data set.

2. Identification and division of input and output variables.

3. Forward propagation: it takes a weighted sum of inputs (by multiplying each 

input variable with an assigned weight) and bias. This weighted output is then 

passed through an activation or transfer function, which introduces nonlinearity 

into the result. (For mathematical interpretation, refer to ESI, S.2.2†). Depending 

on the activation function used, the outputs are normalized between either 0 and 

1, −1 to +1, or 0.1 to 0.9. Table S3† lists activation functions applied for the 

nonlinear transformation of adsorption data.

4. Backpropagation: the ANN calculates the difference in error between the 

experimental observation and the expected model output using the gradient 

descent method. When the error exceeds the acceptable value, the weights are 

adjusted by multiplying the error by the input and the transfer function’s gradient 

(e.g., tansig function, which is the most common) (ESI, S.2.2†).

5. Optimization is achieved by reducing the error between observed and model-

predicted responses by varying neurons in hidden layers, transfer functions, 

training algorithms and iterative modification of weights assigned to links 

emerging from the input layer.87,89 Steps 5 and 6 (of Fig. 2) are repeated until 

further weight changes do not reduce errors (refer to S5.2†).

6. The performance of the ANN for modelling adsorption is evaluated using 

different statistical indices (Fig. 2 step 7, 8). The researchers most commonly 

used the coefficient of determination (R2) and correlation coefficient (R) as 

efficiency evaluators, whereas Root Mean Square Error (RMSE) and Mean 

Square Error (MSE) are used for evaluating modelling error. The mathematical 

formulations of these four statistical parameters are given in S5.3.†

The illustration of the feedforward neural network (FFNN) that modelled the adsorption of 

the metal on biomaterials is presented in Fig. S5.†

4. Progressions in ANN frameworks for optimizing metal adsorption 

process using BMs

4.1 Standalone ANN frameworks

The purpose of the optimization is to achieve the maximum metal removal efficiency 

and uptake capacity of biomaterials used to recover metals and other contaminants from 

industrial wastewater for environmental protection and water purification. The optimization 

pathways reported in the literature are a compilation of variables influencing the design 

of adsorption systems and the adsorption process.90 The variables affecting the adsorbent 

modification or preparation conditions and the metal adsorption efficacy include biomaterial 

dose, surface type and thermal treatments. Under the batch adsorption systems, the 
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adsorption attributes that affect the process behaviour include the initial concentration of 

metal pollutants, pH of the aqueous solution, volume and medium of adsorbate solution, 

agitation or shaker speed, temperature and contact time. In continuous column set-up, 

metal concentrations, bed and flow rate are of primary concern (Table S4†). Some 

studies also included the influence of lingo-cellulosic functional groups, particle size, and 

calcination temperature used to optimise biomaterial adsorbents’ fabrication.52,65,66,91,92 

Table 4 illustrates recent developments of ANN-based optimization methods for modelling 

biomaterial adsorption systems.

s described in Section 3.2, the ANN framework has been extensively implemented to 

optimize the variables mentioned above to attain conditions for the maximum metal 

adsorption efficiency or metal adsorption capacity. The details of optimal ANN architecture, 

activation function and modelling error corresponding to each study are depicted in Table 

S5.† It is to be noted that the ANN training parameters such as epoch size, learning rate, 

momentum and gradient influence the optimal feedforward architecture. The data division 

in training, validation and testing subsets and information on maximum epochs (iterations) 

used is illustrated in Fig. 3 (taken from Table S5–S7†).

Table 4 lists the recent developments in ANN frameworks for simulating metal adsorption 

on biomaterials. While backpropagation (BP) algorithms are prominently reported in 

the literature for the optimization of various adsorption variables, algorithms based on 

experimental designs such as the Taguchi method which use orthogonal arrays to identify 

critical variables that can affect the adsorption process.93 Algorithms based on 2-level 

factorial design (FFD) have also been employed with ANN to reduce the burden of 

laboratory experiments and determine the optimum process variables that can maximize 

metal adsorption on the biomaterials. For example, Popoola, 2019 used 2k FFD to evaluate 

the optimal preparation condition of carbon-enriched biomaterial that can boost cadmium 

removal efficiency.94 The authors used magnetite loading, walnut shell: rice husk ratio, 

calcination temperature and time as variables to conduct 24 = 16 i.e. 16 sets of experiments. 

It was observed that a small set of experiments were sufficient to predict the optimal 

adsorbent conditions (i.e. carbonaceous biomaterial calcinated at 1000 °C for 5 hours and 

loaded with 10 wt% magnetite coating) that will yield maximum cadmium removal (~97%) 

from aqueous solution.

The RSM has been employed to conceptualize the interaction effects among independent 

adsorption variables.95 RSM uses the Box–Behnken Design (BBD) to investigate the 

interactions between different adsorption variables, for example, initial metal concentration, 

pH and biomaterial dose. The BBD works as a second-order polynomial equation. Following 

the solution of the BBD model, the analysis of variance (ANOVA) and regression 

coefficients of the whole polynomial model is used to evaluate the contribution of each 

process variable individually and collectively.47,63,96–98

The RSM approach is only confined to a quadratic equation; thus ANN-based model offers 

broader competence to capture the complex and nonlinear behaviour of the metal adsorption 

process from effluents with a wide spectrum of dependent factors.57,75,86,99,100 While ANN 

models for metal remediation call for advanced computing abilities, Narayana et al., 2021 
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proposed an ANN-based graphical user interface (GUI) for experimentalists or researchers 

unfamiliar with computation to extract adsorption data for a particular dataset.85

4.2 Ensemble ANN frameworks

The standalone ANN framework trains the adsorption data using the backpropagation 

(BP) training algorithm. Given that BP uses the gradient descent approach to update 

the network’s link weights, the network may converge prematurely or get stuck in 

local minima.104,105 Because of such drawbacks, ANNs can fall short of expected 

performance. To overcome such problems, ANN is bagged with metaheuristic algorithms for 

efficient optimization.106–109 The flow chart illustrating any metaheuristic system’s general 

framework is given in Fig. 4.

Hamidian et al., 2019 used the Symbiotic Organisms Search (SOS) algorithm in conjunction 

with ANN to optimize heavy metals removal (Fe(II)), Cu(II), Co(II), Cd(II) and Al(III)) 

using chitosan-based nanomaterials.83 The authors applied adsorbent dose, pH and initial 

concentration of metals as input parameters to the network. The symbiotic search algorithm 

(SOS) is a recently developed algorithm based on SI (Swarm Intelligence) that simulates 

the cooperative behaviour observed in nature among individuals. It generates a new 

solution using three coexisting behaviour types between paired organisms in an ecosystem: 

mutualism, commensalism, and parasitism. Mutualism is an interaction between two species 

with mutual benefit, meaning both benefit from the relationship. Commensalism occurs 

when one species forms a bond with another, and one species benefits while the other 

is unaffected. When two species form a relationship in which one benefits and the other 

hurts, it is referred to as parasitism. Both mutualism and commensalism focus on creating 

new species for the next generation. The parasitic phase prevents the search process from 

escaping the local minima. The ANN-SOS framework is illustrated in Fig.S6.†). The 

integration of ANN with SOS predicted metal removal efficiencies with R2 > 0.9 in short 

computation time (50 runs) and fast convergence (<20). The SOS has drawn considerable 

attention in several optimization fields as compared to differential evolution (DE) and 

particle swarm optimization (PSO) due to its simple procedure and consistency in accurate 

predictions.110–113

Moradi et al., 2020 used a hybrid of Bayesian regularization (BR) and Grey wolf optimizer 

(GWO) with ANN to model Pb(II) and Co(II) adsorption on pistachio shells.101 The ANN 

space was initially optimized using the BR algorithm, using principles of probability 

distributions to prevent overfitting of the ANN. The three input parameters, i.e. temperature, 

adsorbent dose and initial concentration of metals, were then further optimized by applying 

GWO to the space of BR-ANN for maximum metal ions removal. The GWO is a new 

global optimization approach that simulates grey wolf leadership and natural hunting.114 

In GWO’s hierarchy, the alpha is considered the group’s dominant agent (best solution). 

The next subordinate to alpha includes beta (second fittest solution) and delta (third fittest 

solution), and omega wolf denotes the weakest solution. Additionally, three main phases 

of hunting, i.e. search for prey, encircle the prey and attack’, have been implemented for 

optimization. The framework of BR-ANN-GWO is shown in Fig. S7.† The ANN-BR-GWO 

framework predicted the metal adsorption with considerably improved accuracy (R2= 0.99, 
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RMSE = 1.1) against ANN-GWO (R2 = 0.96, RMSE ~2.2. GWO’s robust search capability 

prevents the algorithm from getting trapped in a local optimum. In GWO, achieving the right 

balance between the ability to explore and exploit is easy, so it can effectively solve many 

complex problems when coupled with ANN.115 ANN-GWO has also been successfully used 

to predict the performance of desalination plants and crop yields,116 to globally predict 

COVID-19 disease,117 measure pan evaporation to compare irrigation water needs118 and to 

prevent cyberattacks in our networks.119

Prabhu et al., 2021 successfully used a Genetic algorithm (GA) to determine the recovery of 

chromium from alginate immobilized Sargassum in a fixed bed column. GA works on the 

principles of Darwinian biological evolution from natural selection, where individuals are 

chosen from the population to serve as parents, after which they are employed to bear the 

future generation’s offspring.93 The population “evolves” to the best option through future 

generations. In Fig. S9,† the ANN-GA framework is displayed. In their study, the authors 

tuned the chromium concentration, bed length and flow rate to maximize the adsorption of 

chromium metal. ANN-GA showed better productivity (RMSE = 0.07) against Boltzmann 

statistical thermodynamics (Simulating Annealing (SA), RMSE = 0.8) (van Laarhoven & 

Aarts, 1987). The development response of ANN-GA for predicting metals adsorption 

showed a better statistical quality compared to traditional statistical models.45,78,210 The 

ability of evolutionary GA to address any optimization problems by tuning the selection 

mechanism and varying the values of genetic operators as per the problem makes these 

techniques superior to classic numerical optimizations. GA-ANN has attracted significant 

attention due to its multiple advantages (i.e. simple method, robust response to changing 

conditions and flexibility etc.) in solving real-world problems. These include predicting 

energy consumption in buildings,120 detecting fatal heart disease,121 solving hydrogeology 

problems122 and optimizing machine parameters to reduce surface roughness123 etc. The 

ability of GA to incorporate domain-specific knowledge into the algorithm results in a more 

efficient exploration of the state space of possible solutions.

Further, the two-step method for self-adapting parameters that govern evolutionary search 

relieves the human operator from the requirement to manually create solutions, which either 

consumes time or it is difficult.124 Evolutionary algorithms can be hybridized with other 

models to address particular real-world problems.125

More recently, Zheng and Nguyen, 2022 have implemented Queuing Search Algorithm 

(QSA) to update the weights of ANN using the three main activities of humans in queuing: 

(i) prefer following the customer queue with prompt service. (ii) Effect of customers or 

employees on customer service. (iii) Impact of not maintaining the queue on customer 

service.103 The QSA model stimulates the queening system, as described in ref. 126, to 

optimize the adsorption of metals, i.e. arsenic (As(II)), cadmium (Cd(II)), nickel (Ni(II)), 

copper (Cu(II)), lead (Pb(II)) and zinc (Zn(II)) on carbon-enriched biomaterial. The model 

used initial concentration, total carbon content, pH of the solution and pyrolysis temperature 

as input and metals adsorption efficiency as the output. The details of the ANN-QSA 

optimization procedure is illustrated in Fig.S10.† The adsorption efficiency predicted by the 

ANN-QSA model was closer to the metal adsorption efficiency of metals (i.e. RMSE = 

0.051 and RMSE = 0.074 for the training and testing datasets, respectively). The standalone 
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ANN model predicts adsorption efficiency (i.e. RMSE = 0.076 and RMSE = 0.097 for 

the training and testing datasets, respectively). The QSAs have been used to optimize 

mechanical design problems (e.g. spur gear drive systems),127,128 but its hybridization with 

ANN has been reported first time for wastewater treatment applications.

Besides combining metaheuristic algorithms with ANN, a fuzzy model has been coupled 

with ANN to capture the nonlinearity of the metal adsorption process. The ANFIS structure 

consists of five layers with two types of nodes: fixed and adaptable (details, refer to 

S5.9.3†). Nodes in the membership function layer and the next layer are tuneable, while the 

rest nodes are fixed. The neuro-fuzzy arrangement uses ANN learning principles and logical 

reasoning to map input parameters through membership functions to generate output(s). 

The details of ANFIS architecture can be seen in S5.9.3.1† Sadeghizadeh et al., 2019 

integrated a fuzzy system with ANN to predict Pb(II) adsorption on hydroxyapatite/chitosan 

nanocomposite.60 The authors considered hydroxyapatite (Hap) concentration, temperature, 

time, pH, agitation speed, adsorbent dose and initial Pb(II) concentration as input model 

parameters and lead removal efficiency as model output response. ANFIS models the 

Pb adsorption process by combining fuzzy “if-then” logic with neural networks’ superior 

learning capabilities (II). The anticipated model outcomes and the experimental findings 

were remarkably consistent, with a correlation coefficient (R) close to unity and negligible 

model error. The ANFIS modelling results for metals remediation using various biomaterials 

have outperformed results obtained using standalone ANN frameworks and conventional 

statistical models.52,84,91,129 Despite its acceptance in many other fields, including, e.g. 
medicine,130 energy,131 sports132 and passenger demand forecasting,133 ANFIS suffers from 

the curse of dimensionality and computational cost. The complicated structure and gradient 

learning in ANFIS add to the computation cost of ANFIS.

4.3 Assessment of conventional, ANN and ensemble-ANN models

ANN is a data-driven modelling approach that addresses adsorption prediction and 

interpretation issues by employing dataset knowledge particular to an adsorbent–adsorbate 

combination. The standalone ANN frameworks extensively used Levenberg–Marquardt 

(LM) backpropagation training algorithm and hyperbolic tangent-linear activation functions 

to optimize the metal adsorption process on biomaterials systems (ESI, S2†). The LM 

algorithm incorporates the fast convergence ability of the Gauss–Newton algorithm and 

inherits the steepest descent method’s stability to minimize the modelling error.134 The role 

of activation function is critical in tuning the ANN model. The researchers have applied 

mainly hyperbolic tangent (tansig) activation function at the hidden layer as it centres each 

layer’s output more or less around 0, which frequently aids in accelerating convergence.135 

The current developments in the field of machine learning demonstrate the potential of 

scaled exponential linear unit (SELU), rectified linear unit (ReLU) and exponential linear 

unit (ELU) to overcome the problems of overfitting and huge training dataset.136 Since the 

experimental adsorption data set are not very big (<500 data points), scholars have usually 

selected classical activation functions for nonlinear mapping of data points. Future research 

can investigate the impact of varying dataset sizes, training algorithms, and activation 

functions on the quality of interactions and model performance.
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The performance of standalone and ensembled ANN systems for simulating adsorptive 

eviction of metal ions using biomaterial adsorbents has also been studied along with 

traditional mathematical models (e.g. RSM, MLR, MNLR) as tabulated in Table 5. It 

was also reported that the ANN successfully optimized the metal adsorption process for 

datasets beyond the studied ranges.48,57,62,98,99,137,138 These results validate their true 

generalization capability. In the case of a smaller dataset (<50 data points), the results 

predicted by ANN models very well matched the actual data points, demonstrating the 

ANN’s suitability to decrease reagent use, which would impact the economic aspect of 

wastewater treatment.138,139 The integration of evolutionary algorithms and fuzzy models 

with ANN has improved the predictive ability of ANN systems. This behaviour can 

be attributed to the knowledge of search algorithms to create multiple solutions to a 

given problem.140 Each solution holds various parameters that can aid in enhancing the 

ANN efficiency. Fig. 5 sums up the predictive power of ensemble ANNs over standalone 

frameworks and traditional statistical models.

The authors acknowledged the capacity of the developed ANN models with metaheuristic 

optimizers to simulate the adsorption of metal ions on biomaterials. Yet, there is a need 

to explore these optimizers with a varied dataset on different metal pollutants with a 

clear explanation of the methodological phase for developing the research knowledge and 

comparing their capacity to deal with the stochastic, nonlinear complex data.

5. ANN frameworks for hybridizing classical adsorption models

5.1 Hybridized-ANN models

The process model development is an integral part of water treatment via adsorption. The 

classical means of modeling adsorption include calculating parameters related to isotherm, 

kinetics and thermodynamics through experimental values obtained at optimum conditions. 

However, the One Variable At a Time (OVAT) approach is applied to independently optimize 

the individual effect of adsorption variables such as contact time, pH, temperature, adsorbent 

dose and initial metals concentration.178–181 Considering the impact of individual variables, 

analytical error and uncertainty associated with the traditional experimental approach, 

different AI models are used to improve the mathematical representations of adsorption 

process models. In this regard, Rodríguez-Romero et al., 2020 hybridized the ANN with 

classical isotherm and kinetic equations to improve the arsenic adsorption capacity of 

carbon-enriched biomaterial.211 The authors obtained the ANN-Langmuir model from the 

classical Langmuir functionality using initial metal concentration, pH and temperature 

as input parameters with sigmoid activation functions. Likewise, the other hybridized 

models were also obtained. The hybridized ANNs outperformed the traditional kinetics 

and isotherm models as portrayed in Fig. 6 where it is clear that the hybrid ANNs are less 

susceptible to error.

Only a few studies report using such a modelling strategy to remove fluoride ions, 

indicating a novel area of research.182–184 ANN tools are easily used because they can 

establish dependencies and correlations between multiple variables. ANN architectures 

with equilibrium concentrations of metal toxins and temperature as net entrance data and 

metals adsorbed as the exit variables are processed to capture the best fit for the single 
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and multicomponent adsorption process.53 It is important to remark that similar ANN 

frameworks can be used to design multicomponent adsorption processes for metal removal 

at different operating conditions. The utility of AI has expanded with the hybridization of 

ANN with isotherm or kinetic equations to acquire pertinent adsorption parameters that are 

not possible using a standard model.185

Apart from isotherm and kinetics, estimating thermodynamic parameters of the adsorption 

process using ANN is an emerging field of research. Recently, Zaferani et al., 2019 

implemented ANN to recognize the standard Gibbs free energy changes (ΔG) related to 

Pb(II) adsorption process based on the changing temperature and initial metal concentration. 

The authors investigated different structures of ANN for modeling ΔG and metal removal 

efficiency.62 The results revealed that the minimum value of ΔG (−6 kJ K−1) occurred 

at the highest temperature (55 °C) and the lowest initial Pb(II) concentration (10 ppm). 

The negative Gibbs free energy verified the spontaneity of the adsorption process. Limited 

studies explored the possibility of analyzing thermodynamics aspects of the adsorption 

process using ANN-framework. Much research is needed to create intelligent models that 

can predict the nature and viability of the adsorption process.

It should be emphasized that the parameters of conventional adsorption models are 

established by fitting specific experimental data. This indicates that the parameters of 

conventional adsorption models are constant for a given range of experimental conditions 

(Tables 1–3). On the other hand, ANN model parameters are derived through concurrent 

regression of all experimental observations.186 Thus, hybrid adsorption model parameters 

are treated as nonlinear functions of the input variables used to train the artificial neural 

network, enhancing their adaptability and data correlation capabilities. These results 

demonstrated that using ANNs to estimate analytical adsorption equations parameters 

significantly improved modelling results.

5.2 Multicomponent adsorption

Wastewater is a matrix of multiple pollutants; therefore, developing a single technique for 

concurrent extraction of coexisting metallic impurities is critical. However, fabricating an 

adsorbent that considers the characteristics of all contaminants whose removal is required 

is challenging.100,187 The process of multiple metal adsorption on biomaterials is usually 

studied in the column set-up in the laboratory and analyzed using breakthrough curves; but 

the existence of various metal pollutants in the feed makes modeling of breakthrough curves 

complex due to the pollutants’ antagonistic, synergistic, and noninteractive tendencies.188 

Advanced models that illustrate multicomponent adsorption and the associated physics are 

part of the evolving research.189 In this context, for the first time, Pauletto et al., 2020 

implemented ANN with a Bayesian regularization algorithm to investigate the antagonistic 

and synergistic effects during the adsorption of dye (MB) and metals (Co(II)), Ni(II)) in 

single, binary and ternary mixtures on ultrasound modified chitin.212 They optimized the 

input parameters (i.e. temperature and initial pollutants concentration) to simultaneously 

forecast the uptake capacity of individual adsorbates from a multicomponent system. The 

ANN-based simulations indicated that the optimized network of single component systems 
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can be applied to model the equilibrium adsorption of cobalt (Co(II)), nickel (Ni(II), and 

methylene blue (MB) effectively (R2 = 0.99) in multicomponent systems.

Simulating biomaterial systems for multi-metals adsorption is an emerging field of 

study that has the potential to computationally design cost-effective adsorbents with 

tailored properties to effectively treat industrial effluents without the need for multiple 

stages involved in adsorption system design. Other advantages of this technique include 

cost reduction and time savings to generate high-efficiency adsorption systems that 

simultaneously treat diverse water pollutants. The future studies can analyse the application 

of ANN integrated with nature and human-inspired metaheuristic optimization algorithms 

for the adsorptive eviction of multiple species from BMs.

6. Sensitivity analysis

The ANN frameworks’ limitations is their inability to comprehend the physico-chemistry 

behind the adsorption behaviour; therefore, their uninformed application to a sorption 

system without paying attention to the physicochemical characteristics could result in 

dubious outcomes. To address this concern, researchers used a sensitivity analysis of ANN 

to determine the impact of experimental factors on the adsorption of metal ions. A sensitivity 

analysis of the developed ANN allows assessment of the input attributes as per their impact 

on the output response. In the literature, the Weights method has usually been employed 

to examine the sensitivity of the adsorption process and identify the most significant 

parameters that influence the adsorption performance (ANN output).190 The mathematical 

presentation of network weights for determining the relative weights of input parameters is 

given in ESI, Section S6.†

In the biomaterial adsorption system, pH, initial concentration of adsorbate, and contact time 

were the most critical process variables that impacted the metal adsorption on biomaterials. 

Since the pH alters the ionic strength and affects the ionization of metals onto biomaterials, 

the contact time between adsorbate and adsorbent affects the available active sites,213,214 

whereas the concentration of metal affects the interaction of metal ions with the available 

binding sites. Furthermore, it was found that the quantity and quality of the biomaterial 

adsorbed significantly impacted the effectiveness of the adsorption process.73 The medium 

of aqueous solutions also affected the adsorptive removal of metal ions. For example, the 

presence of organic matter and its derivatives or salinity might change the biomaterials’ 

surface characteristics and block the metals’ adsorption on biomaterials. Considering the 

wastewater treatment plants, the quantity of biomaterial required for successful adsorption 

of metal adsorbates at a fixed initial concentration serves importance from an economic 

perspective. The process cost will be lowered when sufficient adsorption is attained with a 

small biomaterial dose. Since the selling cost of natural biomaterials is very low, but their 

excessive usage can increase their waste disposal costs, while inefficient use can increase 

the process cost. Thus, understanding how operating variables affect the adsorption using 

ANN approach will aid in the appropriate process design, scale-up and optimization of 

an industrial adsorption process. In addition, implementing neural networks will process 

monitoring and control, save time, and lower costs.
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Besides determining the contribution of single input parameters, researchers studied the 

conjugate effects of multiple input parameters on ANN prediction. Fig. 7 shows the 

significant decrement in the prediction error (MSE) for copper and mercury removal with 

the increasing combinations of input parameters. Fig. 7 shows that as the number of input 

variables in the group rose, the values of MSE decreased because of the strong effect 

of all parameters on adsorption capacity. Although the influence of process variables has 

been explored widely, the contribution of biomaterial characteristics in terms of their lignin–

cellulose–hemicellulose content, pore size distribution, particle size and surface area on the 

predictive ANN response has not been fully explored. The information about the influence 

of the above-mentioned attributes can benefit technologists and engineers in selecting and 

designing adsorption systems.

The sensitivity analysis was primarily reported in studies focusing on standalone ANN 

frameworks, which followed a gradient-based optimization scheme (details of studies in 

Table 5). Thus a comparative analysis of metaheuristic-based ensemble models and ANN 

can be carried out in future to predict the relative contribution of adsorption variables on 

the metal adsorption efficacy of BMs. Apart from Weights methods, there are other methods 

of calculating sensitivity and feature importance, e.g., partial derivate algorithm,191 input 

perturbation algorithm,192 profile193 and stepwise method.194 There is a need to test the 

sensitivity of ANN response using different approaches to determine the optimal sensitivity 

criteria, which could be the focus of future studies.

7. Challenges and advancements in ANN technology for the removal of 

metals

The main disadvantage of ANN is its black box and empirical character. The connection link 

between neurons is denoted by weights, which are difficult to represent mathematically. The 

contribution of a specific input variable to the outcome of ANN is identified based on its 

numeric value and sign of the associated weight. The higher the weight value, the greater 

the independent variable’s contribution to the expected response. The effects of negative 

weights on neurons are conflicting. Thus, positive outcomes have a synergistic impact on the 

neurons, boosting the value of the response, whereas negative outcomes have the opposite 

effect and decrease the expected value of the output (Section 6).

Although the above-discussed sections demonstrate ANN as a superior approach to the 

traditional models due to less formal statistical training requirements, detection of complex 

nonlinear relationships and all possible interactions between the variables, there is a need 

to develop novel strategies that can provide in-depth analysis of adsorption phenomena 

in terms of surface interactions and associated adsorption energy. Recent research by 

Fagundez et al., 2021 offered novel hybrid ANN-isotherms for simultaneous estimation 

of isotherm and thermodynamics parameters to predict metal uptake capacity and associated 

thermodynamic parameters of various zeolites under different temperature conditions.215 

The utility of molecular simulations combined with ANN has recently been reported 

as a valuable modelling strategy to gain insights into the mechanism of heavy metal 

adsorption on graphene nanocomposites with high accuracy.195 The computation models 
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based on density functional theory (DFT) have been employed to determine the adsorption 

energies on solid surfaces. However, developing a neural network-based scheme that can 

predict surface energies on sorbents can assist in optimizing the relative stability of 

adsorbent surfaces for spontaneous adsorption of targeted metal pollutants on available 

active sites.196–199 In addition to developing new computational strategies, the researchers 

emphasize on meaningful experimental results to understand the equilibrium, saturation and 

regenerative potential of adsorption systems from a chemical science point of view.56,200

The possibility of overfitting is the second major issue that needs to be addressed by 

researchers while applying ANN algorithms to predict biomaterial systems’ efficacy for 

wastewater treatments.91,92 To prevent the over-parameterization and over-training of the 

ANN system, researchers have advocated the implementation of emerging activation 

functions (e.g., SeLU, ReLU).201,202 Using simple models (e.g., AdaBoost) ensures the 

generalizability of output in the small dataset.203

It is commonly recognized that a smaller error value is better for optimum network learning; 

however, it may be possible that the network training stops due to getting stuck in local 

minima. Such situations call for hybridizing the ANN framework with novel evolutionary 

algorithms. Recently, Ke et al., 2021 proposed novel ANN-based-surrogate models (i.e., 
BA-ANN, SVM-ANN, RF-ANN, M5Tree-GP, M5Tree-ANN and GP-ANN) for predicting 

metal removal efficiency based on characteristics of carbonaceous materials, source of metal 

and environmental conditions.107 The particle swarm optimizer (PSO) has been coupled 

with ANN to predict the dye and copper removal efficiency using graphene oxide-based 

nanocomposites and pomelo-peel-based carbonaceous material.204,205

8. Prospective scope

• Based on the reviewed literature on metal ion modelling using ANN, estimating 

the absorption capability of biomaterials other than polysaccharide-derived 

materials requires additional research.

• Models discussed were prepared and assessed based on metals present in 

synthetic solutions. The natural wastewater or water system is a complex matrix 

where various pollutants coexist. The influence of co-existing metal pollutants 

in natural systems on the adsorption behaviour via ANN has not been fully 

explored. Thus, there is a greater scope of research in this domain.

• Although ANN-based models provided a better fit than static adsorption models, 

the literature lacked sufficient research on the development of ANN systems that 

can best describe the breakthrough curves against dynamic adsorption models 

such as Thomas, Bohart–Adams and Yoon–Nelson models. Future research 

should demonstrate the performance of neural networks against dynamic 

adsorption models to forecast breakthroughs.

• As per the principles of circular economy, the reuse and recyclability of 

biomaterial systems are essential. A vast development of ANN models has 

predicted pollutant removal efficiency; however, little attention has yet been 

given to developing intelligent systems that can optimize the dose of eluting 
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agents for maximum regeneration of adsorbent materials. Modelling desorption 

processes can allow further utilization and effective management of spent 

adsorbent materials.

• ANNs have been chiefly applied to model the removal of heavy metals and dyes. 

But the potential of bioadsorbents to treat emerging contaminants such as per- 

and polyfluoroalkyl substances (PFAS) and rare earth metals (e.g., neodymium, 

cerium, and lanthanum) via adsorption needs attention for advancements in 

adsorption systems design.

• Environmental remediation occurs in different climate conditions. Also, the 

wastewater being processed for reuse can be at varying temperatures. In such 

situations, modelling thermodynamic aspects of the adsorption process can give 

crucial information related to the efficacy of biomaterials and the feasibility of 

adsorption phenomena for a broad spectrum of temperatures.

• ANN results need to be compared with the latest machine learning models, 

which are not yet explored for simulating adsorption processes such as super 

learning, decision tree, deep learning, and data mining. These models have 

provided promising solutions for various problems related to environmental 

engineering; however, they are yet to be assessed for wastewater treatment 

applications.

9. Conclusion

Metal pollution treatment is essential to prevent waste metals’ bioaccumulation, 

environmental pollution, and soil degradation. Biomaterials act as a versatile and cost-

effective system for removing metals from wastewater. Different chemical and physical 

modification methods of natural biomaterials can improve their metal adsorption efficiency, 

but conventional laboratory-based research has yet to describe multicomponent adsorption 

systems comprehensively. An artificial neural network can automate the adsorption process 

to optimize process variables and adsorbent fabrication pathways for increasing metal 

removal efficiency. Furthermore, ANN frameworks can generate hybrid isotherm and kinetic 

models that minimize error and accurately model an efficient, rapid, and cost-effective 

multicomponent system for metal removal. The application of ANN-based models leads 

to a better understanding of biomaterials’ efficiency, energy, time and economic benefits. 

The thermodynamic aspects of metal adsorption to improve environmental water quality 

and applications in water reuse is a burgeoning field of research. The challenges of ANN 

can be briefly summarized as a) collecting experimentally characterized data to filter and 

identify specific metal contaminants in the complex matrix of water; and b) establishing 

ensemble models to assist in solving local minima problems, thereby improving the 

prediction efficiency of ANN. The intervention of ANN demonstrated robustness and rigour 

in simulating adsorptive eviction of metal ions using BMs, which could be expanded for 

other organic and emergent pollutants.
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Abbreviations

AARE Absolute average relative error

AD Adsorbent dose

AI Artificial intelligence

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural networks

ANN-COA Cuckoo optimized hybridized neural network

ANN-GA Genetic algorithm hybridized neural network

ANN-GWOA Wolf optimized hybridized neural network

ANN-SA Simulated annealing hybridized neural network

ARPE Average relative percentage error

BD Bed depth

BR Bayesian regularization

C e Equilibrium concentration

COA Cuckoo optimization algorithm

CT Contact time

DA DIRECT algorithm

FFNN Feed forward neural network

FIS Fuzzy inference system

FR Flow rate

GA Genetic algorithm

GD Gradient descent

GWO Grey Wolf optimizer
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GWOA Grey Wolf optimization algorithm

IC Initial metal ion concentration

LM Levenberg-Marquardt

MAE Mean average error

MAPE Mean absolute percentage error

MNLR Nonlinear multiple linear regression

MRE Mean relative error

MSE Mean square error

NLR Nonlinear regression

PS Particle size

R Correlation coefficient

R 2 Coefficient of determination

r% Ads Correlation coefficient for % adsorption

R 2 Coefficient of determination

RMSE Root mean square error

Rprop Resilient backpropagation

RSM Response surface methodology

SA SIMPLEX algorithm

SCG Scaled conjugate gradient

SD Standard deviation

SDR Standard deviation ratio

SSE Sum of square error

T Temperature

TAAE% Total mean of absolute error%

VS Volume of solution

y m Predicted value

y e Experimental value
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Environmental significance

With growing environmental consciousness, biomaterial systems (BMS) have garnered 

attention as a sustainable material for the adsorption of hazardous water contaminants. 

These BMSs are engineered using surface treatments or physical alterations to enhance 

their adsorptive properties. The lab-scale methods generally employ a One Variable 

At a Time (OVAT) approach to analyze the impact of biomaterial modifications, their 

characteristics and other process variables such as pH, temperature, dosage, etc., on the 

removal of metals via adsorption. Although the adsorption procedure using BMSs seems 

simple in implementation, the conjugate effects of adsorbent properties and process 

attributes implicate complex nonlinear interactions. As a result, Artificial Neural Network 

(ANN) have gained traction on the quest to understand the complex metal adsorption 

processes on biomaterials, with applications in environmental remediation and water 

reuse.
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Fig. 1. 
The dataset before analyzing and processing (the box plots generated using data listed in 

ESI, Tables S1 and S2†) *AD = adsorbent dose, IC = initial concentration, CT = contact 

time, T = temperature, PS = particle size, BD = bed depth, FR = flow rate, AS = agitation 

speed, MPE = metal pollutant efficiency, AC = adsorption capacity. *The middle line in the 

box represents the median, the center line represents the mean, while the bottom and top 

lines of the box represent the 1st and the 3rd quartiles, respectively.
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Fig. 2. 
Standalone ANN-framework for predicting metal adsorption onto biomaterials.
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Fig. 3. 
Dataset, maximum epoch size and activation functions considered for ANN model 

development with step size = 0.01, momentum = 0.7–1, minimum gradient = 0.062. (The 

graphs were generated using data from ESI, Section S5†).
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Fig. 4. 
A general working scheme of a metaheuristic algorithm.
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Fig. 5. 
Modelling error occurred in conventional, standalone and ensemble models for simulating 

adsorption on biomaterials (figure generated using the data from Section S5.6†).
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Fig. 6. 
Percent error in hybrid-ANN and traditional adsorption models using (A) kinetics, (b) 

isotherms (reproduced from ref. 102 with permission from [Elsevier], copyright [2020]).
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Fig. 7. 
Influence of single and combinations of input variables on the ANN response. *AD = 

adsorbent dose, IC = initial metal ion concentration, T = temperature, CT = contact time and 

Sal. = salinity of aqueous medium. (A and B) were generated using the data obtained from 

ref. 168 with permission from [Elsevier], copyright [2019], while (C and D) were generated 

using the data obtained from ref. 77 with permission from [Springer Nature], copyright 

[2018].
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