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Coupling of vortex breakdown and stability in a swirling flow

San To Chan,1, ∗ Jesse T. Ault,2, ∗ Simon J. Haward,1 E. Meiburg,3 and Amy Q. Shen1, †

1Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
2Biomedical Sciences, Engineering, and Computing Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

3Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
(Dated: July 23, 2019)

Swirling flows are ubiquitous over a large range of length scales and applications including
micron-scale microfluidic devices up to geophysical flows such as tornadoes. As the viscous
dissipation, shear and centrifugal stresses interact, such flows can often exhibit unexpected fluid
dynamics. Here, we use microfluidic experiments and numerical simulations to study the flow
in a vortex T-mixer: a T-shaped channel with staggered, offset inlets. The vortex T-mixer flow
is characterized by a single dominant vortex, the stability of which is closely coupled to the
appearance of vortex breakdown. Specifically, at a flow Reynolds number of Re ≈ 90, a first vortex
breakdown region appears in the steady state solution, rendering the vortex pulsatively unstable.
A second vortex breakdown region appears at Re ≈ 120, which restabilizes the vortex. Finally, a
third vortex breakdown region appears at Re ≈ 180, which renders the vortex helically unstable.
Thus, a counter-intuitive flow regime exists for the vortex T-mixer in which increasing the flow
Reynolds number has a stabilizing effect on the steady state flow. The pulsatively unstable vortex
evolves into a periodically pulsating state with a Strouhal number of St ≈ 0.5, and the helically
unstable vortex evolves into a helically oscillating state with St ≈ 1.75. These transitions can be
explained within the framework of linear hydrodynamic stability. In addition, the vortex T-mixer
flow exhibits multi-stability; multiple flow states are stable over various ranges of Re, including a
narrow range of tri-stability for 160 ≤ Re ≤ 170 in which the steady state, the pulsatile oscillation,
and the helical oscillation are all stable. This study provides experimental and numerical evidence
of the close coupling between vortex breakdown and flow stability, including the restabilization of
the flow with increasing Reynolds number due to the appearance of a vortex breakdown region,
which will provide new insights into how vortex breakdown can affect the stability of a swirling flow.

I. INTRODUCTION

Swirling flows are flows which rotate about an axis; a
typical example is tornado. They exhibit a diverse range of
fluid dynamical behaviors as the viscous dissipation, shear
and centrifugal stresses interact. For instance, strong enough
centrifugal stress can trigger a phenomenon called vortex
breakdown, which corresponds to the sudden structural
change of vortex core of a swirling flow; for example, the
sudden divergence of stream surfaces [1,2].

Two predominant types of vortex breakdown exist: the
bubble-type and the spiral-type [3]. Bubble-type breakdown
is characterized by a nominally axisymmetric flow recircu-
lation zone that is bounded by upstream and downstream
internal stagnation points. If a tracer filament is injected on
the vortex axis, it will become trapped in the recirculation
zone and appear like a bubble [4]. Spiral-type breakdown is
instead characterized by a single internal stagnation point
followed by a helical motion of the vortex core downstream.
In this case, a tracer filament will kink at the location of
the stagnation point and flutter helically downstream [5].
Spiral-type breakdown can be further characterized into
the single and double forms. The single form has only one
fluttering helix; in contrast, the double form has two. Direct
numerical simulations [6–8] have revealed that spiral-type
breakdown is caused by a large pocket of absolute instability
that is located around the bubble-type breakdown region.
Thus, the bubble-type is the more basic form of vortex
breakdown.
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† amy.shen@oist.jp

Both types of vortex breakdown are of vital importance
to the understanding of natural phenomena and to the
performance of engineering systems. For example, vortex
breakdown observed in model tornadoes plays a crucial
role in inferring the internal structure and evolution of real
tornadoes [9,10]. In combustion systems, recirculation zones
due to bubble-type breakdown can help fuels burn more
effectively and create a compact, stable flame [11–13]. In
aerodynamics systems, such as flow over a delta wing, de-
pending on the angle of attack breakdown can occur in the
leading-edge vortices, which can drastically alter stability
of the aircraft [14,15]. Recently, vortex breakdown has seen
applications in microfluidics due to its ability to manipulate
micro-particles in a branching T-junction flow [16–21], in
which one inflow splits into two opposite outflows.

Here, we combine microfluidic experiments and numer-
ical simulations to study the mixing flow in a T-shaped
channel with staggered, offset inlets, which we will refer
to as a vortex T-mixer (Fig. 1). This flow geometry was
chosen for two main reasons. First, unlike the branching
T-junction flow which has four Dean vortices [16–21], the
vortex T-mixer flow has only one single dominant vortex,
which greatly simplifies the interpretation of the numerical
and experimental results. Second, it is easy to perform
measurements for the vortex T-mixer flow. For instance,
the flow field can be quantitatively measured directly at the
channel cross-section, allowing direct comparison between
the experimental and numerical results.

We will show that the vortex T-mixer flow exhibits stabil-
ity characteristics that are tightly coupled to the appearance
and evolution of vortex breakdown regions. In particular,
at a flow Reynolds number (which quantifies the relative
inertial and viscous effects of a flow) of Re ≈ 90, a single
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FIG. 1. Microfluidic T-mixer with staggered, offset inlets (vortex
T-mixer). (a) Coordinate system and schematic of the vortex T-
mixer. (b) Experimental devices are fabricated in glass using a
LightFab 3D-printer. Both inflows enter the junction tangentially,
resulting in the development of a swirling flow characterized by a
single, dominant vortex structure.

bubble-type vortex breakdown region appears in the steady
state flow. The appearance of this region destabilizes the
flow to pulsative perturbations and triggers the transition of
the steady state flow to a stable periodically pulsating state
with a Strouhal number (which is the dimensionless fre-
quency of an oscillation) of St ≈ 0.5. At Re ≈ 120, a second
vortex breakdown region appears that restabilizes the steady
state flow. Thus, the vortex T-mixer flow exhibits counter-
intuitive stability characteristics in this Reynolds number
range in which increasing the Reynolds number actually
has a stabilizing effect on the flow. Finally, a third vortex
breakdown region appears at Re ≈ 180 that renders the
flow unstable to helical perturbations, triggering the steady
state to undergo spiral-type breakdown and resulting in a
stable helical oscillating state with St ≈ 1.75. In addition,
the vortex T-mixer flow shows a strong history dependence.
That is, depending on how Re is varied, multiple flow states
can be stable over different Re ranges, including a narrow
range of 160 ≤ Re ≤ 170 in which the steady, pulsatile and
helical states are all stable.

In the following sections we present experimental and
numerical evidence of this close coupling between the for-
mation of vortex breakdown in the vortex T-mixer and the
stability characteristics of the flow, which will point to new
research directions for the study of vortex breakdown. In §II
we describe the experimental and numerical methodologies
used in this analysis, in §III we present results and discus-
sion, and in §IV we present conclusions and ideas for future
work.

II. METHODOLOGY

In this section, we describe the experimental methodology
used to fabricate our devices and perform the experiments,
we introduce the notations that will be used throughout,
and we describe the numerical approach used to simulate
the T-mixer flow.

A. Microfluidic device

All experiments were performed in a vortex T-mixer as
shown in Fig. 1(a). Such channel geometry contains a Z2

symmetry [22], as it is invariant to a rotation of angle π

about the y-axis. The choice to offset the inlets in this ge-
ometry was originally proposed as an approach to enhance
the mixing performance of a simple T-shaped microchan-
nel [23,24]. In this vortex T-mixer, both inflows enter the
outlet channel tangentially, resulting in a swirling flow
characterized by one dominant vortex structure that decays
downstream in the channel outlet.

The vortex T-mixer was fabricated in glass using a Light-
Fab 3D-printer (LightFab GmbH, Germany), which utilizes
Selective Laser-induced Etching (SLE) technology [25,26].
The LightFab 3D-printer employs ultrafast laser pulses to
print channels inside a piece of fused silica. The channels
are then etched with potassium hydroxide (KOH) in an
80◦C ultrasonic bath at an approximate rate of 100 µm/h.
Etching of the channels is about 1000 times faster than that
of the bulk glass. The final product is a transparent, rigid
piece of glass with embedded channels that can endure both
organic solvents and high pressure (see Fig. 1(b)). Four
of the six outer surfaces of the etched device are opaque;
however, optical access can be gained by adding a thin
film of water onto those surfaces. The outlet channel has a
length of 20 mm and a square cross-section with side lengths
of L = 1 ± 0.06 mm. It is sufficiently long such that the
flow is insensitive to the outlet conditions [27,28]. The inlet
channels have square cross-sections with side lengths of
0.5 ± 0.01 mm and lengths of 8 mm, which ensures that the
flow is fully developed before reaching the junction.

B. Notations

Here, we briefly summarize our notations. We define
the flow Reynolds number as Re = UL/ν, where U is the
mean flow speed in the outlet channel, ν is the kinematic
viscosity of the fluid, and L is the side length of the chan-
nel outlet. The coordinates, flow velocities and time are
non-dimensionalized by L, U and L/U , respectively. Those
dimensionless variables are denoted as x = (x, y, z), u =
(ux, uy, uz) and t. For flows that oscillate periodically, the
Strouhal number St = fL/U is used to non-dimensionalize
the oscillation frequency f . The term flow state refers to the
set of Re for which the flow oscillation can be approximately
characterized by a single St.

C. Flow rate control

The flow was driven by three individually controlled
neMESYS syringe pumps (Cetoni GmbH, Germany)
equipped with 25 ml glass syringes (Hamilton Gastight,
Reno, NV). The pumps operate at a minimum of 5× (typ-
ically 50×) the specified pulsation-free flow rate in order
to eliminate pump-induced vibrations. The microfluidic
device and syringes were connected by rigid polyethylene
tubing to minimize hydraulic compliance. As the flow state
depends on how Re is varied, two different approaches were
used to initialize a desired Re in an experiment. The first
is to directly increase Re from zero to the desired value in
approximately 0.1 s, which corresponds to a dimensionless
rate of O(10). The second is to slowly vary Re at a rate of
approximately 1 s−1, which corresponds to a dimensionless
rate of O(0.01), from a reference value Re1 to the desired
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value Re2. With these two different initialization strategies
we can demonstrate the multi-stability in which multiple
stable solutions exist for a given Re.

D. Fluorescent dye visualization

Fluorescent dye visualization was performed on the chan-
nel cross-section at y = 2. To achieve this, one of the T-mixer
inflows was supplied with pure water, while the other was
supplied with a 0.05 g/L sodium fluorescein solution, which
was illuminated by a metal hallide lamp with a 488 nm
excitation filter. Videos were captured by an inverted micro-
scope (Nikon ECLIPSE Ti) equipped with a spinning-disk
confocal imaging system (DSD2, Andor Technology Ltd)
and a 0.10 NA, 30 mm WD, and a 4× objective (Nikon CFI
Achro 4X) with an exposure time of 20 ms.

E. Micro-particle image velocimetry (µPIV)

Time-resolved micro-particle image velocimetry
(µPIV) [29] was performed on the channel cross-section
at y = 2. Red fluorescent polystyrene particles of diameter
2 µm and density 1.05 g/cm3 were seeded in deionized water
and illuminated by a 527 nm dual-pulsed Nd:YLF laser
(Terra PIV, Continuum Inc., CA) with an average power
of 60 W and a pulse duration δt < 10 ns. Depending on
the considered Re, the laser repetition ranged from 500 to
1630 Hz, and the time separation between two laser pulses
ranged from 5 to 100 µs. The µPIV images were captured
by an inverted microscope (Nikon ECLIPSE Ti-S) equipped
with a 1280 × 800 pixels high-speed CMOS camera (Phan-
tom Miro M310, Vision Research Inc., NJ) and a 0.15 NA,
23.5 mm WD, 5× objective (Nikon CFI Plan Fluor 5X).
The measurement depth [30] over which the fluorescent
particles contribute to the determination of the flow field
was approximately 0.1L. To accurately compute St for the
flow oscillation, at least 400 µPIV images were captured for
each Re. Dye visualization videos were also captured by the
same high speed camera at 4000 and 10000 Hz to ensure
that the µPIV measurements satisfied the Nyquist-Shannon
sampling criterion [31].

F. Numerical simulation

Simulations were performed using the open source com-
putational fluid dynamics software OpenFOAM [32]. Steady
state simulations were performed using the built-in solver
simpleFoam, and transient simulations were performed using
a modified version of the icoFoam solver. Fully-developed
inlet velocity profiles were implemented using the groovyBC
boundary condition utility provided by the swak4Foam pack-
age, which corresponds to the experimental inflow condition.
The selected solvers are second-order accurate in both space
and time. A simulation domain that corresponds to the mi-
crofluidic device was generated using the built-in blockMesh
utility. All simulations were performed using the same mesh
with inlet channels of length 4L and an outlet channel of
length 15L. The outlet channel was determined to be suf-
ficiently long such that the fluid dynamics of the system is

insensitive to the outlet boundary condition [27,28], and the
outflow is approximately fully developed up to the maximum
Re used in this study, which correspond to the experimental
outflow condition.

The boundary conditions imposed on the fluid velocity in-
clude a fully developed inflow condition at each channel inlet,
no-slip conditions on all channel walls, and a zero-normal-
gradient condition at the channel outlet. This implicitly
assumes that the flow is fully developed when it reaches the
channel outlet. Boundary conditions on the fluid pressure
were selected to be zero-normal-gradient at the channel
inlets and at the channel walls, as well as a fixed uniform
outlet pressure of p = 0. This inlet boundary condition on
the pressure, while not analytically correct, is helpful for the
stability of the solvers, and the errors introduced by it are
confined to a narrow region within one or two cell lengths of
the channel inlets. Additional descriptions of the simulation
domain, mesh design and inflow condition, as well as the
results of a numerical convergence study are presented in
Appendix A.

G. Stability of steady state solutions

Steady state simulations were performed for Re ranging
from 10 to 250 by increments of 10. Residual tolerances
were set to 10−6 for both the fluid pressure and velocity;
relaxation factors of 0.3 and 0.7 were respectively chosen
for the pressure and velocity. Using this setup, the steady
state solutions up to Re = 220 successfully converged in
less than one hour while running on 64 cores on the Titan
supercomputer. These simulations were initialized using
initial conditions of u = 0 and p = 0 everywhere. To test
the flow stability, converged steady state solutions were
imported as initial conditions into a transient solver. These
simulations were carried on until velocity measurements at
probed locations were confirmed to be steady or until they
achieved stable periodic orbits. Subsequently, additional
simulations were performed to determine the Re limits of
transition between states using the steady state and the
stable oscillating solutions as initial conditions with incre-
mentally varied Re until a new periodic orbit was achieved
or the flow transitioned back to steady.

III. RESULTS AND DISCUSSIONS

A. Unstable-stable transition

To motivate a systematic analysis of the fluid dynamics in
a vortex T-mixer, we first present an unexpected experimen-
tal observation that for the same geometry and with steady
inlet conditions, the laminar steady state base flow, which
is unstable for approximately 80 < Re < 120, can be resta-
bilized by increasing the Reynolds number. Experimentally,
this effect was observed using dye visualizations as described
in the previous section and initializing the flow rate on the
syringe pumps directly to the target Reynolds number. For
each Re, a dye visualization video with at least 100 frames
was time-averaged to form a single image as shown for Re =
80, 100, 130, and 180 in Fig. 2(a).
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FIG. 2. Example experimental results on the channel cross-
section y = 2. (a) Time-averaged fluorescent dye visualizations
at different Reynolds numbers. A clear spiral between the two
inflows of water and dye indicates a steady flow, as labeled by
check marks, and a blurry spiral indicates an unsteady flow, as
labeled by a cross. A corresponding video can be found in the sup-
plemental information [33]. (b) A snapshot of the time-resolved
micro-particle image velocimetry (µPIV) results at Re = 100.

For steady state flows, the time-averaged dye visualization
should contain a clear interface between the two inflows of
water and dye, whereas for unsteady flows this interface
will be blurry due to the averaging over the video frames.
In Fig. 2(a) we see that for Re = 80, a spiral with clear
winding can be observed at the channel center, signifying
a steady flow. Handedness of such spiral is solely deter-
mined by orientations of the two inlet channels. Hence, it
is independent to the initial condition applied. Increasing
the Reynolds number to Re = 100, the spiral blurs out,
suggesting that the flow has transitioned to unsteady. Sur-
prisingly, at Re = 130 a clear spiral is once again observed,

FIG. 3. St-Re flow state diagram. (a) Strouhal number St as a
function of Re. Experimental and numerical results are respec-
tively labeled as blue crosses and red lines. The vortex T-mixer
flow can be characterized into three states, with St = 0, St ≈ 0.5
and 1.75. (b) A schematic showing how the flow state changes
when Re is directly increased from zero to the desired value. (c)
A schematic showing how the flow state changes when Re is var-
ied from a reference value Re1 to a desired value Re2 linearly
at a slow rate. Black solid and gray dashed arrows respectively
indicate the increasing and decreasing of Re.

suggesting that the flow has regained its steadiness. Finally,
at Re = 180 the spiral almost completely disappears as the
flow transitions back to unsteady once again. Thus, the
vortex T-mixer flow demonstrates a counter-intuitive flow
regime within which increasing the Reynolds number can
restabilize the steady state base flow. A video corresponding
to the results presented in Fig. 2(a) can be found in the
supplemental information [33].

B. St-Re flow state diagram

Motivated by the experimental observation of this unex-
pected restabilization, we performed a systematic experi-
mental and numerical study of the different flow regimes,
stability characteristics, and flow transitions observed in
the vortex T-mixer flow. These results can be summarized
in a St-Re state diagram as shown in Fig. 3. For each Re,
the Strouhal number was obtained from a time series of uz
probed at the location x = (0, 2, 0.2). These results were
obtained using both time-resolved µPIV [Fig. 2(b)] and tran-
sient simulations as described in the methodology section.
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FIG. 4. The St ≈ 0.5 state. (a) Flow velocity ux oscillating out-of-phase at locations x = (−0.2, 2, 0) and (0.2, 2, 0). (b) Flow velocity
uz oscillating out-of-phase at locations x = (−0.2, 2, 0) and (0.2, 2, 0). The four locations correspond to the left, right, top and bottom
sides on the channel cross-section at y = 2. Blue crosses and red lines represent the experimental and numerical results, respectively.
(a) and (b) are results with Re = 100 and show that the flow is undergoing a non-axisymmetric pulsatile motion, which is analogous to
the compressing and stretching of a hula hoop along one direction. (c) Axial velocity uy on the channel mid-plane x = 0. Distributions
of uy are symmetric across the z = 0 plane. The dashed box contains representative 3D streamlines that show a recirculation zone
developing in the junction, which signifies bubble-type vortex breakdown. (d) A level set of the λ2 criterion [34,35] with λ2 = 85. As
can be seen, through each oscillation, a pocket of bubble-type vortex breakdown develops in the junction which is advected downstream
where it ultimately decays. (c) and (d) are results with Re = 170 and represent approximately one full cycle of the pulsatile motion
with ∆t = 0.2 between frames. A corresponding video can be found in the supplemental information [33].

Fig. 3(a) shows the experimentally and numerically observed
Strouhal numbers for the vortex T-mixer flow as a function
of Re. Fig. 3(b) shows the flow state that is achieved when
the flow rate is directly increased from zero to the target
Reynolds number, while Fig. 3(c) shows the flow state that
is achieved when the Reynolds number is gradually varied
at a slow rate.

The St-Re state diagram shown in Fig. 3 illustrates three
distinguishing features of the vortex T-mixer flow. First,
the vortex T-mixer flow can be characterized into three
states, each of which has a distinct St, as shown by the
three nominally horizontal red lines obtained by simula-
tion in Fig. 3(a). The steady state solution with St = 0 is
seen to be stable for 0 ≤ Re ≤ 80 and 120 ≤ Re ≤ 170,
the St ≈ 0.5 state is stable for 90 ≤ Re ≤ 170, and the
St ≈ 1.75 state is stable for Re ≥ 160. Second, the vortex
T-mixer flow exhibits multi-stability, that is, within certain
Re ranges multiple flow states are stable, including a region

of tri-stability. This regime appears in the Reynolds number
range 160 ≤ Re ≤ 170, where the steady St = 0 state, the
St ≈ 0.5 state, and the St ≈ 1.75 state are all stable. This
is illustrated by the gray area in Fig. 3(a).

Finally, the St-Re state diagram illustrates the history-
dependence, i.e. hysteresis, of the vortex T-mixer flow as the
Reynolds number is varied. When the flow rate is initialized
directly to achieve the desired Reynolds number, a single
flow state exists for each Re as shown in Fig. 3(b). Simi-
larly, if the numerically obtained steady state solutions are
used as initial conditions in a transient solver, the flow will
transition to the St ≈ 0.5 state for 90 ≤ Re ≤ 110 and will
remain in the steady state for 120 ≤ Re ≤ 170. However, if
Re is increased or decreased slowly from a reference value
Re1 to the desired value Re2 as shown in Fig. 3(c), the flow
states can persist for larger ranges of Re, giving rise to the
multi-stability. For example, slowly increasing Re for the
St ≈ 0.5 state can preserve this state up to Re ≈ 170.
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In the next sections, we will take an in-depth look at
the three different identified flow states and elucidate the
connection between the appearance of vortex breakdown
regions and the dynamical shifts in stability of the flow.

C. The St ≈ 0.5 state

First, we consider dynamics of the St ≈ 0.5 state. Repre-
sentative experimental and numerical results characterizing
this flow state are shown in Fig. 4 for (a,b) Re = 100 and
(c,d) Re = 170. Time series data of ux at x = (−0.2, 2, 0)
and (0.2, 2, 0), and uz at x = (0, 2, 0.2) and (0, 2,−0.2) are
presented in Fig. 4(a,b). These locations correspond to the
left, right, top and bottom sides of the channel cross-section
at y = 2. As can be seen, ux oscillates out-of-phase on
the left and right sides of the channel [Fig. 4(a)], and uz
oscillates out-of-phase on the top and bottom sides of the
channel [Fig. 4(b)]. The right/left oscillations are seen to be
out-of-phase with the top/bottom oscillations. Essentially,
the flow is undergoing a non-axisymmetric, pulsatile motion
analogous to the compressing and stretching of a hula hoop
along one direction, which preserves the Z2 symmetry of the
vortex T-mixer. As can be seen, there is close agreement
between the numerical simulations and the experimental
µPIV results.

In order to enable direct comparison between the different
flow states, we also present detailed numerical results for
the case of Re = 170 at which the flow exhibits tri-stability.
This will allow us to compare the steady state flow, the pul-
sating St ≈ 0.5 flow, and the helically oscillating St ≈ 1.75
flow under identical inflow conditions. Distributions of the
axial velocity uy on the channel mid-plane x = 0 are shown
in Fig. 4(c) as a function of time. Here, the flow fields are
symmetric about the z = 0 plane. In addition, bubble-type
vortex breakdown is evidenced by a recirculation zone as
shown by the 3D streamline visualization on the right side
of Fig. 4(c). Fig. 4(d) shows a level set of the λ2 criterion,
which is an algorithm for identifying vortices from three-
dimensional velocity fields [34,35]. Here, λ2 = 85. The
results in Fig. 4(c,d) both correspond to approximately one
full period of the stable oscillation. In each oscillation a
single pocket of recirculating flow (i.e. a vortex breakdown
bubble) is generated in the junction and then advected
downstream, where it ultimately decays due to viscous
dissipation.

D. The St ≈ 1.75 state

Next, we perform a similar characterization of flow for
the St ≈ 1.75 state and contrast it with the pulsating
state. Representative experimental and numerical results
characterizing this flow state are shown in Fig. 5 for (a,b)
Re = 180 and (c,d) Re = 170. Once again, we consider ux
at x = (−0.2, 2, 0) and (0.2, 2, 0), and uz at x = (0, 2, 0.2)
and (0, 2,−0.2) and plot the time series data in Fig. 5(a,b).
In contrast to the pulsating St ≈ 0.5 state, here ux os-
cillates in-phase on the left and right sides of the channel
[Fig. 5(a)], as does uz on the top and bottom sides of the
channel [Fig. 5(b)]. Furthermore, the right/left oscillations
here have a phase difference of π/2 with the top/bottom os-

cillations. Thus, the flow is undergoing a periodic oscillating
helical motion in the channel outlet, which breaks the Z2

symmetry of the vortex T-mixer flow.
As with the pulsating state, the experimental and numer-

ical results show good agreement. To facilitate direct com-
parison between the two oscillating states, we again include
detailed numerical results for Re = 170 that falls within the
regime of tri-stability. Fig. 5(c) shows the evolution of uy on
the x = 0 channel center plane throughout a single complete
oscillation of the flow. Unlike the St ≈ 0.5 state, here the os-
cillation clearly arises from a symmetry-breaking instability,
and the two-dimensional flow fields are no longer symmetric
about the z = 0 plane. Within the junction, the vortex core
is nominally axisymmetric, but this clearly breaks down and
the vortex oscillates helically downstream, as shown by the
streamline visualization in Fig. 5(c), signifying the onset of
spiral-type vortex breakdown [3]. Finally, Fig. 5(d) shows a
level set of the λ2 criterion again with λ2 = 85. These results
clearly distinguish the dynamics of the vortex breakdown
regions between the two oscillating states. Whereas with the
pulsating St ≈ 0.5 state the recirculation zone was produced
in the junction and advected downstream along the channel
outlet centerline, here several small pockets of recirculation
appear to oscillate around the channel outlet centerline
within a narrow range approximately 1.5L to 2.5L from
the channel bottom. Furthermore, the breakdown does not
appear to have any rotational symmetries, suggesting that
the spiral-type vortex breakdown seen here is of the single
form.

E. The steady St = 0 state

As we have shown, the steady state flow, the pulsating
St ≈ 0.5 flow, and the helically oscillating St ≈ 1.75 states
are all stable solutions within the range of tri-stability given
by 160 ≤ Re ≤ 170. This suggests that the St ≈ 0.5 and
1.75 states arise from the steady state base flow through
different instability mechanisms. In order to elucidate these
instability mechanisms, we consider the evolution of the
steady state base flow as a function of Reynolds number,
and we especially emphasize the qualitative dynamical shifts
that occur which are characterized by the appearance of
vortex breakdown regions.

A summary of this systematic investigation of the steady
state base flow showing the outlet centerline axial veloc-
ity component, streamline representations of the vortex
breakdown regions, and the stability classification for a
range of Reynolds numbers is presented in Fig. 6. Specifi-
cally, Fig. 6(a) shows how the dimensionless axial velocity
component uy varies along the outlet channel centerline
for 30 ≤ Re ≤ 190. Here, uy is plotted against yRe for
visualization purposes; doing so nicely collapses the data
by effectively aligning the peaks of uy. Vortex breakdown
is indicated by the regions in which uy < 0 and is repre-
sented by the solid gray box. As can be seen, starting from
Re = 30, increasing Re results in a local minimum of uy
that first goes negative around Re = 90, representing the
onset of vortex breakdown. Varying the Reynolds number
also results in a qualitative dynamical shift in the number of
internal stagnation points. For example, for Re ≤ 80, there
are no internal stagnation points. However, at Re = 90,
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FIG. 5. The St ≈ 1.75 state. (a) Flow velocity ux oscillating in-phase at locations x = (−0.2, 2, 0) and (0.2, 2, 0). (b) Flow velocity
uz oscillating in-phase at locations x = (−0.2, 2, 0) and (0.2, 2, 0). The four locations correspond to the left, right, top and bottom
sides on the channel cross-section at y = 2. Blue crosses and red lines represent the experimental and numerical results, respectively.
(a) and (b) are results with Re = 180 and show that the left/right oscillations have a phase difference of π/2 with the top/bottom
oscillations, signifying that the flow is undergoing a periodic helical oscillation. (c) Axial velocity uy on the channel mid-plane x =
0. Distributions of uy are asymmetric over the z = 0 plane. The dashed box contains representative 3D streamlines that show that
the vortex core is nominally axisymmetric in the junction but undergoes non-axisymmetric helical motion downstream, signifying the
onset of spiral-type vortex breakdown. (d) A level set of the λ2 criterion [34,35] with λ2 = 85. As can be seen, within the junction a
single pocket of vortex, corresponding to the nominally axisymmetric vortex core, rotates around its own axis at a fixed position in the
junction. Downstream, several small pockets of vortex helically oscillate about the channel centerline. (c) and (d) are results with Re
= 170 and represent approximately one full cycle of the helical oscillating motion with ∆t = 0.058 between frames. A corresponding
video can be found in the supplemental information [33].

there are two internal stagnation points, also signifying the
onset of bubble-type vortex breakdown.

Corresponding to the results in Fig. 6(a), 3D streamline
visualizations of vortex breakdown regions in the outlet
channel are shown as a function of Re in Fig. 6(b). They
appear similar to those observed in a cylinder with a rotating
end wall [36–38], which is a classical system for studying
bubble-type vortex breakdown. At around Re = 90, a first
bubble-type vortex breakdown region appears. Around
Re = 120, a second region appears downstream of the
first. As the Reynolds number increases further, these re-
gions merge at around Re = 130. Finally, a third vortex
breakdown region appears around Re = 180, enlarging
and slenderizing the aforementioned second breakdown
region. This region also merges into the existing breakdown
structure at a slightly higher Reynolds number.

F. Stability of the steady state solutions

Finally, we consider the stability and transient evolu-
tions of the steady state base flow solutions, we document
the instability mechanisms that trigger transition, and we
emphasize the close connection between the stability and
vortex breakdown characteristics for the vortex T-mixer.
First, we test the stability of each of the steady state solu-
tions as described in the methodology section, the results of
which are shown in Fig. 6. As can be seen, every qualitative
dynamical shift in the stability of the base state corresponds
to a qualitative shift in the vortex breakdown characteristics
of the flow. The base state is stable up until around Re = 90,
where the first vortex breakdown region appears, triggering
a pulsative instability in the vortex that causes a transition
to the pulsating St ≈ 0.5 state. At around Re = 120, the
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FIG. 6. Stability of the steady state solutions. (a) Distributions of dimensionless axial velocity uy of the steady state solutions along
the channel centerline. Increasing Re changes the curvature and level of uy = uy(yRe), which in turn changes the number and positions
of the internal stagnation points. (b) 3D streamline visualizations of the vortex breakdown regions in the outlet channel as a function
of Re. The first bubble-type vortex breakdown region appears at around Re = 90. A second region then appears downstream of the
first one at around Re = 120. These merge and become a single larger structure at around Re = 130. Finally, a third region appears
further downstream at around Re = 180 and enlarges and slenderizes the aforementioned second breakdown region. Blue check marks
indicate stable solutions and red crosses indicate unstable solutions. Thus, the appearance of each subsequent vortex breakdown region
results in a dynamical shift in the stability of the base state. That is, with zero vortex breakdown regions the flow is stable. When
the first breakdown region appears, the flow becomes unstable. When the second breakdown region appears, the flow is restabilized.
Finally, when the third breakdown region appears, the flow becomes unstable again. To the best of our knowledge, this is the first
example of a flow in which the stability of the flow is so closely coupled to the appearance and dynamics of vortex breakdown.

second vortex breakdown region appears, which restabilizes
the steady state flow solution. At around Re = 180, the third
vortex breakdown region appears, triggering a helical insta-
bility in the vortex that causes a transition to the helically
oscillating St ≈ 1.75 state. Thus, in the vortex T-mixer flow,
stability characteristics of the flow are intimately coupled
with the emergence and evolution of vortex breakdown. To
the best of our knowledge, this is the first instance where
this relationship has been identified to such a convincing
extent.

Next, we seek to identify how and where the fluctu-
ations grow on the steady state solutions. To achieve
this, we probe the fluctuating velocity component |δuz| =
|uz(x, t) − uz(x, 0)| at x = (0, 2, 0) as a function of time;
for a linear instability, this perturbation velocity compo-
nent should grow roughly exponentially over time. We also
identify the location where the fluctuation originates by
visualizing a level set of |δu| = |u(x, t) − u(x, 0)|. For the
pulsating and helically oscillating states, we report results
for the cases of Re = 100 and 180, respectively, which are
unstable according to Fig. 6.

Results presenting the exponential growth of the fluctuat-
ing velocity components and the visualizations of the origins
of the fluctuations are shown in Fig. 7. As can be seen, for
both the pulsating and helically oscillating states, the per-

turbation velocity components grow exponentially in time,
indicating that the instability is in fact a linear instability.
For the Re = 100 case, in which a single vortex breakdown
bubble is present, the level set |δu| = 0.01 appears within
the junction of the vortex T-mixer, indicating that the fluc-
tuation originates around the first vortex breakdown region.
However, for the Re = 180 case, in which three vortex break-
down regions are present, the level set |δu| = 0.01 appears
further downstream in the outlet channel, indicating that
the fluctuation originates around the third vortex breakdown
region. As this fluctuation grows, it extends upstream, sug-
gesting that there is a pocket of absolute instability around
the third vortex breakdown region. This renders the steady
state solution globally unstable and triggers the helical
St ≈ 1.75 oscillation that corresponds to spiral-type vortex
breakdown [6]. Numerical results visualizing the growth of
both oscillating states with particle tracers are presented in
Appendix B.

As a final point of analysis, we apply the method of Ruith
et al. [6] to calculate the criticality of the base state and
demonstrate that, as expected, the appearance of vortex
breakdown in the vortex T-mixer does correspond to the
appearance of a pocket of subcriticality. This procedure
involves axisymmetrizing the vortex data near the vortex
core within a region where the flow is nominally axisymmet-
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FIG. 7. Instability on the steady state solutions. (a) Growth of the St ≈ 0.5 fluctuation at Re = 100. The fluctuation |δuz| =
|uz(x, t)−uz(x, 0)| at x = (0, 2, 0) grows exponentially with time t, indicating that the St ≈ 0.5 state is the result of a linear instability.
A level set |δu| = |u(x, t)−u(x, 0)| = 0.01 shows that the fluctuation originates around the first bubble breakdown region. (b) Growth
of the St ≈ 1.75 fluctuation at Re = 180. The fluctuation |δuz| = |uz(x, t)− uz(x, 0)| at x = (0, 2, 0) grows exponentially with time t,
indicating that the St ≈ 1.75 state is also the result of a linear instability. A level set |δu| = |u(x, t)− u(x, 0)| = 0.01 shows that the
fluctuation originates around the third bubble breakdown region. When |δuz| reaches its plateau at sufficiently large t, the level set
extends upstream, implying that there is a pocket of absolute instability around the third bubble breakdown region which generates
the fluctuation.

ric. For simplicity, we select a cylindrical region about the
vortex core with radius L/4. Next, the velocity is expressed
in cylindrical coordinates, and we seek solutions to the
differential equation given by [6]:[

d2

dr2
− 1

r

d

dr
+

1

r3u2y

d (ruθ)
2

dr
− r

uy

d

dr

(
1

r

duy
dr

)]
φc = 0,

subject to the boundary conditions φc(0) = 0 and
dφc(0)/dr = 1. Critical values are sought such that
φc(rcrit) = 0, and the procedure is repeated for each ax-
ial location along the channel outlet. Finally, subcritical
regions can be identified by plotting rcrit as a function of y
and comparing it with a certain threshold. Numerical results
for our data are presented in Fig. 8 for Re = 60, 90, and 120,
which correspond to Reynolds numbers for which we expect
zero, one, and two vortex breakdown regions. As can be
seen, for Re = 90, rcrit → 0 at the same axial location where
the first vortex breakdown region appears, and for Re = 120,
rcrit → 0 at approximately the same locations where the
first two vortex breakdown regions appear. Despite the fact
that several assumptions of the original theory presented
by Ruith et al. [6] are less valid for our specific data due to
the combination of flow geometry and Reynolds numbers,
nevertheless, the application of this approach and the inter-
pretation of vortex breakdown as due to the appearance of
a pocket of subcriticality both appear to be well validated
by this theory applied to the vortex T-mixer.

IV. CONCLUSIONS

The vortex T-mixer flow that we have studied here
demonstrates several fluid dynamical features. We have
identified a counter-intuitive flow regime in which increasing
the Reynolds number restabilizes an unstable flow state.
Critically, mechanism of this restabilization corresponds
exactly to the appearance of a second vortex breakdown
region that presumably restabilizes the flow through the
nonlinear vortex breakdown dynamics. More generally, we
have shown how the development and evolution of vortex
breakdown in the vortex T-mixer are exactly coupled with
the stability characteristics of the flow. The appearance of
the first vortex breakdown region around Re = 90 triggers
a pulsative instability in the flow that launches the growth
of a St ≈ 0.5 pulsating state. The appearance of a second
vortex breakdown region around Re = 120 restabilizes the
base state. Finally, the appearance of a third vortex break-
down region around Re = 180 triggers a helical instability
in the flow that launches the growth of a helically oscil-
lating St ≈ 1.75 state. Furthermore, the vortex T-mixer
flow demonstrates flow regimes of multi-stability, including
a regime of tri-stability for 160 ≤ Re ≤ 170 in which the
steady, pulsating, and helically oscillating states are all
stable. As future work, we plan to investigate in detail the
specific mechanism by which the second vortex breakdown
region stabilizes the flow using a global stability analysis.
Furthermore, preliminary simulations with a cylindrical out-
let suggest that the role of the corners may play a key role
in this restabilization. Finally, a third oscillating state with
St ≈ 3.0 was identified numerically, although its sensitivity
to initial conditions prevented us from studying this state
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FIG. 8. Numerical results computing the criticality of our flows using the approach presented by Ruith et al. [6]. As can be seen, the
appearance of a pocket of subcriticality corresponds to the appearance of vortex breakdown. Results correspond to (a) Re = 60, (b)
Re = 90, and (c) Re = 120, for which we expect zero, one, and two regions of vortex breakdown in the flow. In each case, the axial
locations where pockets of subcriticality appear correspond precisely with the locations of vortex breakdown.

experimentally. We hope to improve the sensitivity of our
experimental approach in the future in order to verify and
study this state. Ultimately, the vortex T-mixer flow that we
have described here has demonstrated novel fluid dynamical
features, the most important of which appears to be the
close coupling between the vortex breakdown phenomenon
and the stability characteristics of the flow, which to the
best of our knowledge has not been documented elsewhere.
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Appendix A: Simulation domain and convergence

Here, we briefly describe the simulation domain and
mesh design used throughout our simulations as well as the
boundary conditions used and the results from our numer-
ical convergence test. Several representative views of the
numerical simulation domain and mesh are presented in
Fig. 9. All simulations were performed with approximately
two million grid cells with inlets of length 4L and an outlet
of length 15L, where the outlet channel cross section is L by
L. At the inlets to our system, we specify the well-known
fully developed velocity profile for a rectangular duct. With
the coordinates defining the cross-section of a square channel
given by y, z ∈ [−1, 1] and nondimensionalized by h1 and h2,
respectively, the fully developed axial velocity profile along
a rectangular channel is given by [39,40]

ux(y, z) =
−1

1
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[
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2
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)
, for n odd. (A2)

Here, the axial velocity profile is nondimensionalized by
the average axial flow speed. In order to set the Reynolds
number, we scale the magnitude of this inlet velocity profile
and adjust the kinematic viscosity in the solver.

A numerical convergence study was also performed to
ensure that the flows were fully resolved. The results of this
study are presented in Fig. 10. For the one million and two
million grid cell cases, relative difference between the two
peak velocities is less than 5%. We consider this as a nice
enough convergence due to the large amount of transient
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simulations needed for the current study. The convergence
study was performed at the highest Reynolds number used
in this study of Re = 250. At this Reynolds number, a third
oscillating flow state appears with St ≈ 3.0. However, we
did not include this state in the main text because a sensi-
tivity to initial conditions prevented us from identifying it
experimentally. Nevertheless, since this corresponds to the
highest Reynolds number from our study, we selected it for
the numerical convergence study.

Appendix B: Flow transitions

Here, we present numerical results demonstrating the
transient fluid dynamics as the steady state flow transitions
to the different oscillating states. Point particle tracers are
generated near the origin x = (0, 0, 0) and integrated forward
in time as the flow evolves. Results demonstrating the tran-
sition from the steady state to the pulsating St ≈ 0.5 state
are shown in Fig. 11, and results showing the transition from
the steady state to the helically oscillating St ≈ 1.75 state
are shown in Fig. 12. For the pulsating St ≈ 0.5 state, the
oscillation begins to develop near the first vortex breakdown
region in within the junction and propagates downstream
as it grows, whereas for the helically oscillating St ≈ 1.75
state, the oscillation begins to develop downstream near the
third vortex breakdown region and propagates upstream
into the junction as it grows. For each case, the oscillation
grows slowly at first so that even at t = 60 the flows are
still apparently steady visually. This is why time begins at
t = 60 in both figures.
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FIG. 9. Simulation domain visualized from (a) front view, (b) perspective view, (c) perspective view focused on the junction with
outlined grid cells, and (d) bottom view. Grid cells have been purposefully coarsened by a factor of four in each direction for visualization
purposes. High resolution simulations were performed with approximately two million grid cells with inlets of length 4L and an outlet
of length 15L, where the outlet channel cross section is L by L. Cell lengths were graded towards the junction by factors of five and
ten in the inlets and outlet, respectively.

FIG. 10. Convergence test results show the oscillating velocity component uz at (-0.2,2,0) for the St ≈ 3.0 state at Re = 250. The
estimated Strouhal numbers are 3.47 with 1.0×105 cells, 3.00 with 2.5×105 cells, 3.04 with 5.0×105 cells, 3.14 with 1.0×106 cells, and
3.18 with 2.0× 106 cells. The relative error in the Strouhal number prediction with 2.0× 106 cells is less than 1.3%. Note that a third
oscillating state with St ≈ 3.0 was identified numerically at higher Reynolds numbers, although it was not found experimentally due to
sensitivity to the initial conditions. However, in order to ensure convergence of all the numerical results, we perform our convergence
test on that state since it corresponded to the highest Reynolds number.
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FIG. 11. Growth of the pulsative instability in the steady state solution at Re = 100 as the flow transitions to the pulsating St ≈ 0.5
state. Fluid particles originating near x = (0, 0, 0) are visualized over time t. Because the perturbation grows slowly, at t = 60, the
flow is still visually steady. However, with increasing t, the pulsative instability develops upstream and propagates downstream in the
outlet channel. At t = 140, the flow has approximately transitioned fully to the pulsatile St ≈ 0.5 state.

FIG. 12. Growth of the helical instability in the steady state solution at Re = 180 as the flow transitions to the helically oscillating
St ≈ 1.75 state. Fluid particles originating near x = (0, 0, 0) are visualized over time t. Because the perturbation grows slowly, at t
= 60, the flow is still visually steady. However, with increasing t, the helical instability develops downstream around the third vortex
breakdown region and propagates upstream in the outlet channel. At t = 105, the flow has approximately transitioned fully to the
helically oscillating St ≈ 1.75 state.
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