UC Irvine UC Irvine Previously Published Works

Title

Results of ITER test blanket module mock-up experiments on DIII-D

Permalink https://escholarship.org/uc/item/16t7q5z5

Journal 37th EPS Conference on Plasma Physics 2010, EPS 2010, 1

ISBN 9781622763313

Authors

Snipes, JA Schaffer, MJ Gohil, P <u>et al.</u>

Publication Date

2010-12-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Results of ITER Test Blanket Module Mock-Up Experiments on DIII-D

J.A. Snipes¹, M.J. Schaffer², P. Gohil², P. de Vries³, M.E. Fenstermacher⁴, T.E. Evans², X. Gao⁵, A.M. Garofalo², D.A. Gates⁶, C.M. Greenfield², W.W. Heidbrink⁷, G.J. Kramer⁶, S. Liu⁵, A. Loarte¹, M.F.F. Nave⁸, N. Oyama⁹, J-K. Park⁶, N. Ramasubramanian¹⁰, H. Reimerdes¹¹, G. Saibene¹², A. Salmi¹³, K. Shinohara⁹, D.A. Spong¹⁴, W.M. Solomon⁶, T. Tala¹⁵, J.A. Boedo¹⁶, R. Budny⁶, V. Chuyanov¹, E.J. Doyle¹⁷, M. Jakubowski¹⁸, H. Jhang¹⁹, R.M. Nazikian⁶, V.D. Pustovitov²⁰, O. Schmitz²¹, T.H. Osborne², R. Srinivasan¹⁰, T.S. Taylor², M.R. Wade², K-I. You¹⁹, L. Zeng¹⁷, and the DIII-D Team²

 ¹ITER Organization, Cadarache, France, ²General Atomics, San Diego, USA, ³Culham Centre for Fusion Energy, Culham, UK, ⁴Lawrence Livermore National Laboratory, Livermore,USA, ⁵ASIPP, Hefei, China, ⁶Princeton Plasma Physics Laboratory, Princeton, USA, ⁷University of California, Irvine, USA, ⁸Associação EURATOM/IST, Lisbon, Portugal, ⁹JAEA, Naka, Japan, ¹⁰IPR, Gandhinagar, India, ¹¹ Columbia University, New York, USA, ¹²Fusion for Energy, Barcelona, Spain, ¹³Helsinki University of Technology, Helsinki, Finland, ¹⁴Oak Ridge National Laboratory, Oak Ridge, USA, ¹⁵VTT, Association Euratom-Tekes, Finland, ¹⁶University of California, San Diego, USA, ¹⁷University of California, Los Angeles, USA, ¹⁸Max Planck Institute for Plasma Physics, Greifswald, Germany, ¹⁹NFRI, Daejon, Korea, ²⁰ 'Kurchatov Institute' Moscow, Russian Federation, ²¹FZ Juelich, IEF-4, Juelich, Germany

Abstract A series of experiments was performed on DIII-D to mock-up the field that will be induced in a pair of ferromagnetic Test Blanket Modules (TBMs) in ITER. A set of coils producing both poloidal and toroidal fields was placed inside a re-entrant horizontal port close to the plasma. These experiments investigated the effects of the resulting localized error field on plasma startup, plasma equilibrium, H-mode access, H- and L-mode particle and energy confinement, plasma rotation, energetic particle loss, and interaction with rotating and locked MHD modes. The coil currents were varied to produce locally up to 700 G toroidal field and 200 G poloidal field at the plasma edge. The localized ripple due to the TBM defined by (B_{max} $-B_{min}/(B_{max} + B_{min})$ on the last closed flux surface at the outboard midplane was varied up to 4.8%, exceeding the value of $\sim 0.8\%$ expected from a pair of representative 1.3 ton TBMs in ITER. The direct effects of TBM error fields increased with localized ripple. The largest effects were on plasma rotation, which dropped by 10% at 1.2% ripple and by 40 to 50% above 2.4% ripple. The TBM effects depended on the global plasma normalized β , β_N , with very little effect for $\beta_N < 1.5$ (e.g., plasma initiation, L-mode, H-mode threshold). The effects increased with β_N , leading to drops of up to 15 – 18% in H98(y,2), β_N , and n_e for β_N up to 2.6 and local TBM ripple > 3%. The interaction with existing MHD modes also caused mode locking and disruptions at high ripple and β_N values. Detailed measurements indicate no more than a small fast ion loss due to the TBM error field under all conditions. Error field tolerance to locked modes was reduced in L and H-mode by the additional torque from the TBM error field, but re-optimization of the standard error field correction recovered the previous error field tolerance in L-mode. Recommendations for the ITER TBM program will be discussed.