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ABSTRACT

We review and discuss various'iethods for obtaining low energy
theoréms for photon processes; (1) Low's method (2) the tensor method and
: (3) the S-matrix approach. The purely kinematical nature.of these theoféhs
is emphaéized for they are found to follow primarily from the identification
of the correct kinematical singularity and zero free amplitudes. Gaﬁge
. invariance serves to inform us of the pfesence'of additional kinematical zerosv
in cexrtain physiéal amplitudes so that the unlnmown continuum contributioh is .
surpressed relative to the known singular Born terms arising from single
particle exchange at the physical threshold. Besides the well known low |

energy theorems specifying Compton amplitudes to first order in the photon
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frequency one can show that some pieces of the amplitude.satisfy higher order
theorems; in fact all 2J+1 multiﬁoies of a spin J target have an associated
low egergy théorem. We explicitly establish a low energy theorem for the
quadrupole moment of a J=1 térget to supplément the known theorems for the
total change and magnetic moment. _An additional theorem for photoplon pro-
~duction is obtained along with the well known Kroll-Ruderman theorem.apd

serves to specify the E_-multipole at threshold.

2

I. INTRODUCTION
Low energy theorems specifying the exact behavior of scattering
amplitudes in thé low energy region have been of iﬁterest since the original
work of Thirring,l Gell~Mann, Goldbérger and Low2 on_thé Compton scattering :
of low fréqﬁency photons from spin 0 and spin % Systéms._ This early work,

proceeding from the standpoint of field theory, demonstrated that the Compton

amplitudes to first order in the frequency of the incident photon was completely

specified in terms of the renormalized change and possible magnetic moment of
- the target particle. The immediate application of this exact low ehergy

information is that it specifies the threshold behavior of the electric and

magnetic multipole excitations of the target which admit of direct experimental

comparison. Secondly if one assumes the scattering amplitude has sufficiently
mild behavior at high energy the threshold theorem can be converted into a
sum rule establishing a constraint on the inelastic spectrum. Subsequently

low energy theorems have been obtained for a variety of processes involving

3

photons~ and general methods of obtaining them discussedh.

The purpose of this present investigation is to reexamine and review

the derivation of lcw energy theorems for photon processes and the specific

P e

i A ST,
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assumptioné which enter their‘proof.. In thg next section we discuss three
methods generally used to establish the low energy behavior of.amplitudes:
1) Low's method 2) the tensor method 3) S-matrix method. We emphasize the
>almost purely kinematical nature of these theorems, not to suppose_they are
devoid of dynamical content but rather to indicate the crucial importance of
establishing the kinematical singularitj freeramplitudes,‘tﬁe‘kinematical
constraints imposed by gauge invariance and analyticity properties in establish-
ing these theorems, It is our conviction that once the purely kinematical

factors have been separated from the amplitude by including the content of

- gauge invariance then simple spectral assumptions such as pole dominance

suffice to establish the low energy theorems. The primary task is to separate

out the kinematical factors from the amplitudes correctly by khowing which

!amplitudes are kinematical singularity free (XSF) and kinematical zero free

(KZF).

We apply the tenéor method to Compton scattering and photopion pro-
duction. What emerges from-this inVestigation is the recognition that for
Compton scattering processes, besides the usuval low energy theorems valid to |
‘first order in the photon frequency, there are additional threshold theorems
imposed by the general requirements of analyticity and gauge invariance.
Examples of such théqrems are provided by the spin non flip piece of the
Compton amplitude Fl(s,t) (to be defined 1n Section III)‘ which satisfies

2

Fl(mg,t) =e (1.1)

' where s and t© are the usual Mandelstam variables and e is the total change Of\

the target.' At t=0 (forward direction) this is just the Themson limit; howevey

letting s —>m2 with
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. t=- iﬁégilgﬁ(licose)
and with.fixed cose yiélds additionalrinformation. Quite generally, there are
‘threshold conditions on the invariant amplitudes of the same form as Eq. (1.1)
and hence impose an infinite set df constrdints on the.physical multipoles,
This conclusion has been anticipated ahd explicitly demonstrated by‘V. Singh5
whose work has motivated the present inveStigation. |

Although it is well known§ that to sécond order in the photon

frequency the unknown polarizability of the target particle influences the
scattering, it can be shown that to this order and higher ordérs‘certain specific
pieces of the amplitude do not dépend on the polarizability and do admit of
low energy theorems.i Furthermqre one may conclude that in Compton scatferihg
from a spin = J system all 2J+1 static mulﬁipoles of the target enter a low
energy theorem, a conclusion independently established by A. Pais.7 For
example for a spin = i system characterized by charge e, magnetic mdment 1L inz
units e/2m and quadrupole moment Q in units e/2m2 we find the following

threshold theorem

. | |
baP = (ghe) (- 2 AMeAr S BQ et R RY))
v-0 m 2m '

2(u~-e/2m) (e/m)v (A"« (¢"xe)

BV ((9R)x(e'k"))

Sy (o) (4)+ (RMxg! )- (g7 R) (A1) (Bxe)]

+ O(vg) X (tensors_not'included in above) . - (L.2)

' Here v = frequency of photon in barycentric system and (g,N,R) and (¢',N,RY)

are unit vectors denoting the initial and final polarization of the photon
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and target and direction of photon.
We have examined photopion production from nucleons in the same way

and found in addition to the Kroll-Ruderman theorem3

& new theorem. In the
notation of CGLN8 we write the production amplitude as

g 39 (i)

> B 7
b = igre s, + Y 2
igkag 19-99°%
+ +
k 2 L
ql 3 q

where S’% and q are the polarization, momentum of the photon and the momentum

of the pion. As (q) - 0 we £ind neglecting term of O(m)

'vhn}in) = eg/2M

lmjj(_"':o) =0

) 2 2
L g m m
7= (e+—5e=7 (b '-n"))
(0
Gy T g (é'i“&é’;fm(' v i))““
. 'q2 )-{-Mem'-‘,..‘. ,2M P ‘}_lp : “n o

vhere m = pion mass, M = nucleon mass, -g.=.pion-nucleon coupling constant

(ga/hn 2 14) and u£ n &re the anomalous nucleon moments. The first two condi-
: sn Rahatatheld®

3

tions are the old result of Kfoli énd Rﬁdérman and the second two are new.

o+ and

E2_ multipoles. Wevwiii'ai$cuss thé;#inématical features of photopion pro-

Taken together these results stipulate the threshold behavior of the E

duction which give rise to these results. .
In the next section_we.will discuss the various methods fof.establiﬁr

ing low energy theorems followed by a section applying these techniques.
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II. WMETHODS

Here we will déscribe'three methods for establiéhing the low energy
behavior of photon processes. The first, Low's method, has been the tfaditional
‘ method of proving threshold theorems and contalns all of the féquisite physical
assumptions. This method is not manifestly Lorentz invariant and this feature
can make it difficult to abstract the full content of Lorentz plus gauge
invariance. The subsequently developed tensor method, much utilized in current
algebra calculations, has the advantage of manifest covariance without loss of
generality, Moreover it is easy to see how the additional low eﬁergy theorems
arise. Different in spirit if not detail from both Low's method and the tensor
- method is the S-matrix approach to proving threshoid theorems. In this
approach first applied to nucleon Compton scattering by Goldberger and
Abarbanel9 one utilizes the helicity decomposition of the physical amplltude
~ from the start. By using the standard crlter;on for removing kinematic zeros
from the heliclty amplitudes and the crossing properties of the amplitudes it
is possible to establish the XSF and KZF amplitudes and then the low energy
theorem follows directly from the dispersion integral representation of the

amplitude.

| A. Low's Method

To be explicit we will éonsider the proéesses of Compfon scattering.
from a target of‘mass M to illustrate the method (see.Fig. 1) although it can
be generally applied to any photon process.h We introduce the usual Mandelstam
variables s = (p+k)° = (p'+k')%, u = (p-k')2 = (p'-x)%, & = (k'-k)? setistying

stutt = 2M?. We denote the scattering amplitude by

F = GueviTpV C (291)
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where the Lorentz tensor THV-admits of a general decomposition in terms of
KSF invariant amplitudes consisten£ with the requirements of Lorentz invariance,
parity and time‘reversal invariance. Differential current conservation and the
obsefvation that the chahge densities commute at equal times then imposes the

additional requirement of gauge invariance k’vTuv = 1”'J_‘pvvg 0 or

t — 1
k.Xk 'T kikj T; (2.2)

070 T00 J

" To proceed further it is essential to make assumptions regarding the spectrum

of intermediate states. If it is assumed that there iscne state degenerate:

10

in mass with the target™ and all excited states have higher mass that the

target then one can make the explicit separation

T, =B, *L, > ' (2.3)

where Buv is the éingular Born term which can beiprecisély computed in
Schrodinger perturbation theory and depends on the change and current distri; _
butions in the target and E“v represents the contribution of the éxéited 
states. The assumed analyticity requirements of the full amplitude.plus fhe

spectral assumption then permit the expansion of Epv about threshold in powers

 of the frequency of the photon. Evidently to compute Tij from Eq. (2.2) to

same order v® of the frequency of the photon what is required is knowledge of

T . or equivalently E.. to O(v?). Once this is established one may use Eq.

) 00

(2;2) to identify the contributions to the various invariant amplitudes-in
Tij

ing the low energy theorem.

It has long been known that E Qanishes to first order in the

co

frequency of the photon and hence there is a low energy theorem for the full

- amplitude to this order. Most of the "classical" low energy theorems are of

invoking the known crossing properties of the amplitudes and thus conStrugt#_



-8- S UCRL-17857

this type; Moreover it has also been knoﬁh thafvté second order the unknown
polarizability structure of the targét must éntérkthe expansion of the ampli-
tude in freQuency.s Recently.it has beéh pointed out by Singh5 thaf this
polarizability contribution to the total»amplitude can be isolatéd and

second and higher order theorems be established for just those pieces of the
amplitude to which it does not contribute. Singh's formal observation is that
the excited state contribution has a definité structure imposed by Lorentz

invariance and current conservation in the zero frequency limit e.g.

Co

,‘
ko,ko s O

. -— 3 :
E = kikj’[aﬁij+ﬁ(sisj+sjsi)] + o(ko ) (2.k)

where o and B are unknown constants charactérizing the low energy polariza-
bility of the target and sgab) is the spin vector of the particle. That the
requirement Eq. (2.1:) lends to "higher" order low energy theorems has been

557

demonstrated.

B. Tensor Method

The evident content of Low's method even when supplemented with
Singh's lemma on the spin structure of the excited state contribution is
, abstracted from the general requirements on the scattering amplitude of
(1) rLorentz invariance and discrete conservation laws (2) analytiéity, Cross=
ing and spectral assumptions (3) gauge invariance. With the development of
current algebra the tensor method has émerged as a manifestly covariant.formu—
lation of Low's method which implements the above assumptions and is perfectly
géneral; |
To begin one utilizés Loréntz invariance and the assumed discfete

symmetries of the system to decompose the amplitude into its general form in

ey g pn e

g
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terms of a tensor basis and invariant amplitudes. ' The tensor method'eséentially
requires the construction of a KSF and KZF gauge invariant tensor basis. Since.
- there appears fo be no general solution tothis problem in the literature in
the case of mass zero particlesll we indicate a general method in what follows
and apply‘it in the next section to speéial cases. |

The fundamental lemma,12 suggested by perturbation theory, says that
if one takes all possible tensors constructed of external momenta and spin
‘matrices allowed by relativistic invariance and other discrete conservation
laws, thelr scalar coefficients can be chosen to be XSF. In establishing a
XSF basis it is important to construct the tensors for the amplitudes with the_
external wave functions removed -- that is one considers the general ﬁensor
form before sandwiching between Dirac spinors or polarization vectors. Since
e basis so chosen is not in general linearly independent, one has to reduvce
it to a linearly independent basis,taking care that no kinematical singu-
larities are introduced in this processes. A rule of thumb is to always ieduce
tensors that contain higher powers of momenta in terms of the ones that éontain
lower powers of momenta, since this appears not to iﬁtroduée kinematical singu-
larities while the inversion does.

There is one simélification worth noting. The only singularities
relevant to the_low energy theorems are the ones that occur at k = 0, k¥ 0
~(or s —aM?, t - 0)s Singularities that occur elsewhere are harmless. There-
fore, one should reduce terms containing higher powers of the four vectoré k
and_k' into terms containing lower powers of k and k'. -

Now expand the aﬁplitude for the scatteriné of photon from an

arbitrary target into a KSF and linearly independent tensor basis as follows:
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A% _ MV T t kv, 1
T}'Clﬁ}". L - AO:BY. .e +ki BQ’BY. L] o+ki chaif' L4

+ kikj ng’lj_ + +eo + (terms of higher power
Veor in k and k') (2.5)

The indices p and v go with photons of momenta k and k' respectively; .
and 0BY... etc. are the indices of the initial and final targets. A,B,C etc.

are linearly independent Lorentz tensors which do not depend on k or k'; they

are constructed from momenta independent of I and k'. In accordance with the
_previous discussion, we assume that such a representation is always possible.

Using gauge invariance in Eq. (2.5) gives

BV p.i/,iw 1,1
kuAOlBY. . .+k;J.kiBCZBY. . .+kuki BoszY. LT

ok MY gk ok pHYel

4 14 'J-V,i . - ‘
v aBY--o v 1 aBT-oo+kV ky B Foaee 0 (2'6)

| 1 TOBYeen

Differentiating this equation with respect to k (or k') and setting k=0, we _ :
get»the result that A must vanish. This is the tensor analogue.of Lcy's
classical result. In general, however, there are Born terms singular in the
limit - 0, k'= 0, which invalidate the representation given by (2.5). In

this case, we can write,

v _ v SRY uy,i
Tgsr... - TgaY-..(Born) * Aaﬁr... + kiBagr...,
+ oeee ' ‘ (2.7)

The previous conclusion is now changed to

uv _ alkv i .
%mna.“émwn.@““) | (2.8) : %

'~ where

ny 14
_AaBY...(Born) - lim
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There are, however, higher order low energy'theorems contained in
(2.7). TFor example, differentiating twice with respect to ka and k _, we obtain

VP pPViB L pann term. (2.9)

OBYses COBYeee

and this process can be continued toAhigher powers of k and k'. Equations of
the form of (2.9) clearly impose restrictions on the threshold ﬁehavior of |
multipoles of arbitrarily high order.

One disadvantage of the above procedure is that it is fairly laborious
to relate the tensors defined by Eq. (2.6) to the physical scattering para-
| meters. Some of them may not even contribute to observable amplitudes. .In
practice, a convenient procedure is to express these tensors in terms of the
scalafs s and t and the natural tensors constructed from the momenta. Using
the gauge conditions, one then goes to a gauge invariant tensor basis, withOu#
introducing any kinematical singularities or zeros at k=0, k'=0 in the scalar
coefficients. The amplitude, written in this fashion, satisfies the con--
straints given by (2.6) automatically. It is then fairly easy to relate this
néw tensor expansion to physical amplitudes like helicity amplitudes.

A few comments about the calculation of the sinéulér Born émpli-

tudes are in order. A typical term in the expansion of the Compton ampli-

v
t - [ :
tude TgBY--- appears as follows

pv _ ny S

Topye.. = f(s’t)ao@r._.. Toees | | (2'}0)
wherevaggyw ~is a guage invariaht tensor constructed out of varlous mgménta.»
The singular part of f is given by

PP L .  (e.11)

* . 2
s-Mz u--

‘The plus sign goes with a tensor a"V even under the photon crossing, and the
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minus sign with an odd tensor. For fixed cosf = l+2st/(2-M2)2, f_B becomes
sihgular as s —9M2. This singularity cannot, of course, appear in the physical

amplitude., The tensor HY

, dotted into the photon polarization vectors, must
develop a compensating zero at the same éoint. This kinematical zero suppresses
the non-singular continuum contribution at the threshold, and hence the ampli-
tude is exactly given by the uniquely determined residue of the Born pole.
The kinematical zero that destroys the pole singularity corresponds to the
well-known absence of O — 0 transitions. |

The even Born term f+B is not singular at the threshold, if (cos@)
is kept fixed. Henée, the Born term in general cannct dominate the continuum
contribution. However, for the amplitudés for which low energy theorems ére.

“valid, gauge invariance implies that f+ must contain a kinematical factor t.

We can, therefore, write
f+ = tf+, where f+ is XSF

and

?B«, 1

T (sMP) (uetdP)

The continuum is now suppressed by the factor of t; which vanishes at the physi-
cal threshold, and a low energy theorem holds. Ve stress agéin that the

result depends on the wnambiguous residve of the Born pole, and not on the
ambiguous finite part. For example, explicit inclusion efbthe non-singular
graphs like the sea'gull graph is not really necessary, since gauge invariance
takes carelof this problem automatically. In pion photoproduction and charged

13

photon Compton scattering,™ there are usuvally singular t-channel Born terms.

" Again, these terms can be obtained by gauge invariance requirements.
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C. S-Matrix Method

From the recognition of the central role played by kinematics in
the derivation of»lcw energy theorems, the possibility of a puie S-matrix
approaéh sﬁggests itself. As is well knownlh the requirement of gauge invar-
iance is implemented in S-matrix theory by the requirement of strictly zero
mass and two helicity states for the photon. These conditions if demanded in
every‘Lorentz frame are equivﬁlent to gauge ilnvariance.

Goldberger and Abarbanel9 have applied this method.to Compton
scattering. One assumes that the helicity amplitudes in the s and t channel
are KSF and factors - the kinematical zeros from the spin flip.amplitudes
corresponding to their wvanishing in the forvard and backward direction. One
then assumes that the resulting s and t channel amplitudes are KSF and XZF in
"t and s respectively. Finally using the crossing properties relating s and t-
channel amplitgdes one can construct the KSF and XZF amplitudes in both s and
t.  We will exhibit this procedure in the simple case of Compton scattering
from a spin O target where it gives the same results as the tensor method.

In the S-matrix method the amplitude is constructed via a dispersion
integral and the unitarity conditions for the absorptive‘part. Hence in this
approach itlappears necessaxry to assume a high energy behavior sufficiently
damped to allow the dispersion integral to converge and also such that no
wnknown polynomial pieces are added to the amplitude. Such asymptotic
assumptions are completely foreign to the methods previouslchonsidered and
it isvnot clear why they play an important role in proving low energy theorem ‘
in S-matrix theory.

One may calculate the correct singular pole terms from unitarity

irrespective of the number of subtractions required in the dispersion integralt
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providing the subtraction terms do not introduce additional unwarranted
Xinematical zeros or'singularities. Then the low energy theorem can be
established and is independent of any unknown subtraction: terms depending as-:
it does only on the known residue of the pole term viece. This is certainly

true of spin zero Compton scattering and it is a matter of conjecture for more

complex systems.

IITI. APPLICATIONS

A. Compton Scattering

We now apply the tensor method described above to the process of
physical Compton scattering. The case of a spinless tafget is considered
first since it simply exemplifies all of the essential features of the methods.
'vTLater on we also consgider the case of a spin i target and also characterize
some qf the féatures of scattering for arbitrary spin targets.

Let the J=0 Compton amplitude be (see Fig., 1)

- [} ' t : .
F=epe, T“V(P,k,k ) (3.1)

and

2 2
P = (p'+p), s = (p+k)", t = (k-k')
. I | = Zlet? — n : . |
s+tdu=2m . If we set Ql_x, Q2-k B Q3—P‘the tensors guv,Qiquv.form a linearly
independent basis. However we can introduce further tensors like Qh“ = o '

e”eﬁykekB’PY and obtain a redundant system. Observe that Qh“th can be cxpreséed

in terms of Qi“Qﬁv with 1,j = 1,2,3 without introducing any denominators involv-
* ing the scalars s and t. Therefore Qh“th can be eliminated in favor of the

P
other tensors without introducing possible singularities and the resulting

B

linear independent basis of tensors is KSF. We therefore set

4
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= T + t !

Tpv flPqu kaukv + f3k“ kv

- - N T § . \
+ fl:.kqu + f5kqu 4+ 6‘£p. Pv + f'?kv P“'
t + 1w ¢ : .
+ f8kukv | f9dp kv + flognv | (3.2)
and find the fi(s,t,u) are XSF.
| Nexﬁ we meke the separation

fi(syt:u) = bi(syt)u)’mi(s:t;u) (3.3)

vhere bi containe the single particle piece and sy the continuum contribution
is assumed nonsingular near the elastic threshold s=m2. The singulk r contri-

bution to the bi 1s calculated to be
2 1 1
b, =D -e <:~——— b —— )
19 s_m2 u_m2

2 1 1 v
-e (-—-—2" - 5 > (3.)—#) .
S=nm u-m : v

. - — ' - )
The gauvge conditions kuTuV = kv Tuv Q imply

i

b6 = b5

(s-w)fy = tfg

(s--u)f7 = tf3

(s=u)fy + 2fy ) = bf

(s-u)fl = tf5 ' B

(s-u)f), = %1, ~ (3.5)

and we see that f. contains a kinematical zero proﬁortional to t so that

1 , ‘
A(s,t,u) = fl(s,t,u)/t is XSF. We also remark that the b, given by (3e4) will
satisfy (3.5) éutomatically providing we define blO = 2e2 corresponding to a

‘contact interaction (seagull)., Eliminating all scalar functions in favor of £,

and £, and dropping texrms proportional to k.pL or kv’ we obtain

9
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Tuy =hs, T B, L _ (3.6)

where

e =4tPP +tk 'k + (s-u)(Pk'+Pk)
uv nov v v Y,

+

2(s-n ) (oen)e,

b =tg  + 2k 'k
T8V v M v

and

A

i

fl/t

1 ' ' :

are XSF amplitudes. The singular part of these amplitudes is unambiguous and

given by -

H

AR = ee/(s—mé ) (u—me)

2% = 0 - | BN CH
and defining ' : Lo

Fy(s,t) = (s-n%) (u~m?)A

F2<S,t) = (s—me)(u-mz)B

" the low energy ‘-t_h.eorem is expressed as

I
¢]

2
Fl(m ,t) =

2 F2(m2,t)
| This first expreséion if differentiated with respect to t and then setting £=0
is Just the resulf gliven byv Sj'.ngh.5 The low energy‘ theorem is now merely the

statément that the KSF a.mpiitudes are déniinated by the éingﬁlar Born terms near

the physical threshold s — m-,

2,2 '
t = - -(E—;ig———)-— (l-cos@s) .
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At this pointvit is instructive to make contact with the S-matrix

9

approach.”  Here we introduce the s and t channel helicity amplitudes which

enjoy the simple crossing relation
F.  ==F F, =TF, . (3.10)

The first step in the procedure is to remove the known kinematical zeros in the

amplitudes corresponding to angular momentum conservation in the forward and

 backward direction by dividing by half angle factorsl5
-5 28 =t 6% 0t \-2_t
F+’+ = (cosBs/2) 2F+,+ F,_ = (sin ~5 cos =3 ) ZE‘_‘___
=83 . 05 \-2_8 =t %
Fy,. = (sin=5) 2F+,_ F,, =T, - (3.11)

Then F° and F° are assumed to be KSF and KZF in t and s respectively. Using

(3.10) and the expressions for the half angle factors one has

=5 _ gs-mz) 7

+,+ t(t-hmz) +,-

vz3
!

=S st =t (3 . 12 )

L I
g (s-m
so it follows that
. ' =5 =%
SR T S
(s-m°)2 £(t-lm?)
sF
oS 1 . |
o= S_mze"tF++ - Gan

are the amplitudes _that are XSF and XZF in both s and t. From thélpole term

contribute to a and b the low energy theorem follows immediately. The connec-

-

a = =2A

i}

b = peanA | (3.14)
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_introducesrno kinematical factors so the iesults of thé S-matrix method and
tensor method agree'aé to the correct KSF amplitddes.

As & final comment, one can pfove the absence of é kinematicél‘i/t.
singularity in A using the Hall-Wightman ﬁheorem.l6 If Tuv is assumed to be -.
an analyfic function in the Cartesian components of the veqtors X,k!,P then
Tuu must be an analytic function of the scalars in a corresponding domain.

From the identity
Tg“ = {t(hm?- %t)-(s~u)2}A+3tB

we have since B is KSF that a 1/t factor in A would clearly introduce the Samé'
factor in Tu“ contradicting the Hall-Wightman theorem.
One can carry out a similar procedure for Compton scattering Trom
v ;higher spih targets and we here consider explicitly the case J=l; Denotiﬁg
' é,k and e',A\' as the initial and final polarizations of thé photon end targetv‘h

oB
ok

~ and the kinematics as shown in Fig. 1 the relativistic amplitude A '

A
Hvhg

can be expressed in terms of a gauge invariant tensor basis according to

AI P! = (5 (AL () (1 ) (3]

.

+ 23 (MI) (VK )4y, (e YN K)o (25 (A7)
+ f6[(>\.‘°k)(?\.ok)+(?\.’»k')(?\-k‘-)]+f7(7\°k)(>\.“-k' )+f8(/\'-1<)(>»-1§_')}
+ f9{KuXV'(k-k’)*(k4k)ku'xv'-(h'°k')kvxu+(Ko§)(K’-k’)guv}
+ flop‘;}mv (keket )= (N? -1:)1cu'>»v- (Aex? )kvku’+(7\' k) (Aek! )gw} .
+ fll{huxvf (k°P)2—(k-)\.)Pu>\.v’ (keP)-(k*eN? )vau_(k-p)»r(k-?\)(k'oh* )PuPV} .

| + flg{kg'Kv(k'P)e- (keN? )Puxv(k-é)— (x? -v)\)P.vXu‘ (ke P)+ (kN ) (k! o?x.)PHI’v}

(3.15)
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1
f2 are KSF so that near threshold they approach their Born terms; in perti-

vhere auv and bpv are defined by Eq. (3.6). Our observation is that f, and

cular we have the low energy theorems on I 2(s,t) = (s—ma)(u-me)f1 2(s,t)
_ ’ ' - -3

which are

Hy (n°,t) = -

Hy(n,t) = ~ef0/af R | (3.16)
where Q is fhe quadrupole moment in uwnits of l/QM?.  The theorem on Hl is Jjust
the Thbmson iimiﬁ and the result on H, involving the quadrqpolevmoment is an

2

additional "higher" order theorem also independently obtained by A. Pais.

7

There are also theorems involving the magnetic moment which are well known for

3

targets of arbitrary spin” and including these we obtain with (3.16) the result

Eq. (1.1) quoted in the introduction.

Let us sketch the proof that fl 2(S',’c) are KSF. We will consider
' b4
B

only those pieces of the general decomposition of the amplitude Tg uv (vefore
the application of gauge invariance) needed for the discussion. In the case.

of fl and f2 it is clear that we need only show that the scalars multiplying

1 e t ooy 3 k! = - .
the tensors Pqug R P“kaa&ﬁ, Pquka mﬁ are all proportional to k+k t/2
If we set

B .
T, =8BPkk + bRkl

! ! ] e e
+ aEPvaka kﬁ + bEPu.cvkakB + v

. . . _ A4 OB,_ s . Tre : v.V' .. ‘z
crossing implies aq =8, and k Tuv = 0 1mp;1es k Pal+k k bl =0 hence Ry’ t
so that f, = al/t is KSF. A similar argument works for £ (but not for f3 1)

. P
The low energy theorem then follows by calculating the singular part of the
Born term.l7
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The low energy theorem on the quadrupole moment is of interest since
it implies that the quadrupole moment, like the change and magnetic moment,
is uniquely defined in terms of the threshold behavior of the Compton ampli-
tude. If Hz(s,t) - 0 a8 s =« then one can write a sum rule for the quadrupole-

moment in terms of total photoabsorption amplitudes,

2 |
8.1 [ m2<s,t>[ L1 ] . (3.17)
2n 1 sS=m s-m +t

We emphasize that-unlike the change and magnetic moment the gquadrupole moment
does not admit of a low energy theorem for strictly forward scattering (k'=k)

since in this limit the tensors corresponding to f I are dentical and there

2,3

are no low énergy theorems for T L (they are related to the polarizability
_ b N

3
. of the particle). Nonetheless, we may still extrapolate fe(s,t) defined for
t%o to t=0 with a unique result. It is of practical interest to apply this
sum rule Eg. (3.17) to nuclear systems with J=1, in particular the Deuteron.

| These theorems can be generalized to higher spin targets in an

obvious way. Consider an integer spin target represented by an J index

“tensor M 50 the relativistic Compton amplitude is
arae...aJ \ .

Gy Qe o0 By Bpe = oBy

A T .
‘ 041052. . .CZJ 1357 alﬁzo . .BJ
+ i i i G *sew
Then the J+1 scalar amplitudes multiplying the tensors agvsa 8 6& 8 6& B.?
171 7272 JJ
a B B eask .y ess & Kk K. _ cenk where kX =k k +k 'k ! are
I8V alBl By onaJ uv ozlal o:2f32 ochsJ op OB B .

all KSF and the Born terms receive contributions from the J+1 even multipoles
50 there are low energy theorems for these multipoles. The J odd multipoles
can aléo be shown to have associsted low energy théorems so that all 2J+1
multipoles are defined in terms of the Compton amplitude. These theorems have>

been extensively studied by Pais.?
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B. Photopion Production

As a final illustration we derive a new low energy theorem for paoto=
pion production. In the barycentric system this process is described in terms

of the four CGLN8 amplitude

R oqae (kxe )
(£,0) _ 4gu0 7.(£,0) , £82 ) 5 (4,0)
o e
io*kgee _ ., .iG'QQ°€ N '
~ A A x ~e vy N ey o .
R A A RO
. q . ' : :

3

It is well known” that as g = pion momentum — O the production amplitude is

specified by the Kroll-Ruderman theorem

lhr;?l(-) ; eg/2M

w300 S (a9)
néglecting terms of the order m. To the same order in m one has at thresholz_i_l8
It -g n m-
. = (e + —5e === (u '=u))
q2 2Mm2 8MZ &M Y'p "n
hn.31(+’o) g me
— = (e = 5= = mu_'#u_)) (3.20)

vhere up',pn are the anomalous moments of the nucleons in units of e/2M..
These results can be used to derive conditions on the standard multipole
moments.8 Using the definition of the multipole coefficients in terms of the

;;i(l9) it is straightforward to show that Eq. (3.19) implies as g » 0

lmEg;) = eg/21
MnEéi’o) =0 (3.21)

corresponding to the observed isotropic production of charged pions at threshold.
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Using Eq. (3.20) one also obtains the result valid to O(m) as g » O

(-) -
E 2
- _egl(TyM 1
120n —5= = =3 <2> T
qa - M m
o8 (u_*
- =5 (ute)
e PR
5{*:0) L - |
Ol e = - 28y ——-(35 + gl T )> (3.22)
| q° afm  wf N 2 TP TR . |

At présent there is insufficient experimental information on the Ee-multipole
at threshold to test this prediction.

To prove the statements Egs. (3.19)-(3.22) we expand the covariant
'amplitude into the following tensor basis withodt taking into account gauge

invariance (we omit isotopic indices)

— 3 s 'y
Tu = u(p )1Y5{B1ka YngPu+2B3qu‘

+ B2k +BoY + —]2‘—B6Puk- Y3,k I+ 1-Bgq k- Y)u(p)

'wherezp,p',k,q are the initial and final nucleon momenta, photon and pion
momentea, respectively and P = %(p'+p).i In this form the Bi(s,t) are known to

" be KSF as shown by Ball.l9 The gauge condition k“TH = 0 imposes the following

conditions
(s-u)B2~2(t-m2)B3 =0 (3.24a)
1 vt~m2
B+ E(s~u)B6+ 5~ Bg =0 | ~(3.24p)

~In this case it is convenient to separate out the singular Born terms

explicitly by writing

B, =3By +B o (3.25)
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where §i has no one particle singularity in s,t or ﬁ. If one calculates the
BiB by including only the s and u channel nucleon poles then the gauge'condi-
tions Eq. (3.24) force the presence of the t channel pion pole in sqme.of the
B§~)B amplitudes, We will include this pole in the BiB so that the Born terms
are assumed to be calculated in a gauge invariant way. We stress, however,
that the low energy theorems are independent of the details of the separation
made. in Eg. (3.25) and they only depend on the ﬁnambiéuous singular part of
the Born terms.

The gauge conditionsvgiven by (3.24) must be satisfied by Ei since

the Born terms already satisfy them. We can eliminate B. from the second

)
equation and §3 from the first. However since both Eé and §é are pole free
in s,t and u §é must contain the factor t-m° so that Ee(s,t) = ﬁe(s,t)(tém?)

where ﬁe(s,t) is KSF and XZF.
Once the conditions (3.24) have been imposed the B, are related to

the physical CGLN amplitudesti(8) according to

Al = Bl"MB6 A3 = "‘BB

il

A = 2B2/(t-m2) Ay = - %BG | (3.26)

2

‘and the A, are then directly related to the_}i appearing in Eq. (3.18). If we

B

make the separation A=A+ Ki where AiB are obtained from BiB using (3.26)

then our observation is that all the Ki in particular A, = 2B, are XSF. The

2 2

contribution of the continuum pieces Xi to_}l a,nd_;(l‘~ (and to E . and E are.

02 2-)

- easily calculated to be higher order in the pion mass at the physical threshold

than the singular Born terms and this establishes the low energy theorems

Egs. (3.19)-(3.21).
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From the connection between the Ai an one sees that the

Kroll-Ruderman theorem Eq. (3.19) follows from the fact that A are KSP

1,3,k
and from the known residue of the dynamical poles. ‘The edditional theorem on
_3L Eq. (3.20) incorporates in an essential way the fact that Kz_is KSF. The

fact that the pion mass appears in the denominator of_}L arises from the

l/(t-me) pole in A2B and the divergence in_;'-l/q2 as m - 0 is characteristic

~ of the long range nature of the force ass001ated with the exchange of a mass =

0] partlcle.
Recently Jones and Frautchieo have given a complete helicity and

Regge analysis of the photopion process. The low energy theorem in their

notation, is essentially the fact that the following combination of t channel.

helicity amplitudes has the indicated kinematical factor

2%, 2 :
® o, -7 1L~(“‘M)_L_(’°m) (3.27)
01,53 0l,-3-3 £2

where the f's are related to the helicity amplitudes by half angle factors

t - Ot Ny
foa,ap = (sin 57 (co

l%ml—t
cd ab*

The extra factor of t-M2 in Eq. (3.27), compared to what Jones and Frautchi

have, only correct for the continuum part of the combination fgl 11- Ig
)22

The ¢ channel Born term cleafly does not have this kinematical zero because

].

1.
-2
: N :
of the Feynmen propagatorl/(t-m ), However since the singular part of this
graph is well known its contribution can be explicitly calculated. The con-
tinuum piece does have the factor'(t7m2), which near the physical threshold,
suppresses the continuum contribution by a factor proportional to the pion

- mass. Hence the low energy theorem can be easily expressed as

=t
G~ 01,44

near the physical threshold.

) - (Born tgrm) faO(m)
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