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Light scattering from an amplifying medium bounded by a randomly rough

surface: A numerical study

Ingve Simonsena,b, Tamara A. Leskovac, Alexei A. Maradudinb,
aDepartment of Physics, The Norwegian University of Science and Technology, Trondheim, Norway

bDepartment of Physics and Astronomy and Institute for Surface and Interface Science,

University of California, Irvine, CA 92697, USA
cInstitute of Spectroscopy, Russian Academy of Sciences, Troitsk 142092, Russia

(May 7, 2000)

We study by numerical simulations the scattering of s-polarized light from a rough dielectric
film deposited on the planar surface of a semi-infinite perfect conductor. The dielectric film is
allowed to be either active or passive, situations that we model by assigning negative and positive
values, respectively, to the imaginary part ε2 of the dielectric constant of the film. We study the
reflectance R and the total scattered energy U for the system as functions of both ε2 and the angle
of incidence of the light. Furthermore, the positions and widths of the enhanced backscattering and
satellite peaks are discussed. It is found that these peaks become narrower and higher when the
amplification of the system is increased, and that their widths scale linearly with ε2. The positions
of the backscattering peaks are found to be independent of ε2, while we find a weak dependence on
this quantity in the positions of the satellite peaks.

I. INTRODUCTION

In the first half of the 1990’s and subsequently, amplifying volume disordered media received a great deal of attention
from theorists [1,2] and experimentalists [2,3] alike. This attention was partly motivated by the suggestion of using
random volume scattering media to construct a so-called random laser [4]. For scattering systems possessing surface
disorder in contrast to volume disorder, the overwhelming majority of theoretical and experimental studies have been
devoted to scattering from passive (i.e. absorbing) media. Only recently has the surface scattering community begun
on studies of surface disordered amplifying systems. The only literature on the scattering of light from amplifying
surface disordered media known to us is the theoretical study by Tutov et al. [5] and the experimental investigation
by Gu and Peng [6]. In the theoretical work by Tutov et al. [5] the authors conducted a perturbative study of the
scattering of s-polarized light from an amplifying film deposited on the planar surface of a perfect conductor, where
the vacuum-film interface was a one–dimensional random interface characterized by a Gaussian power spectrum. In
this work we consider the same scattering system, but apply a numerical simulation approach for its study. The
numerical approach is based on the solution of the reduced Rayleigh equation that the scattering amplitude for the
system satisfies. The use of a numerical simulation approach enables us to study possible non-perturbative effects [7]
that could not be accounted for by the perturbative technique used in Ref. [5]. Furthermore, we also use a different
power spectrum of the surface roughness. In particular, a West-O’Donnell (or rectangular) power spectrum [8] is used
in this work, in contrast to the Gaussian power spectrum used by Tutov et al. Such a power spectrum allows for the
suppression of single scattering over a range of scattering angles and, more important, it opens the possibility for a
strong coupling of the incident light to guided waves supported by the film structure.
In this work we calculate the reflectivity when a system consisting of vacuum in the region x3 > ζ(x1), an amplifying

medium in the region−d < x3 < ζ(x1), and a perfect conductor in the region x3 < −d, is illuminated from the vacuum
side by s-polarized light of frequency ω. The surface profile function ζ(x1) is assumed to be a single-valued function
of x1 that is differentiable as many times as is necessary, and constitutes a zero-mean, stationary Gaussian random
process characterized by a West–O’Donnell height autocorrelation function. The amplifying medium is modeled by
a dielectric medium whose dielectric constant ε has an imaginary part ε2 that is negative, while its real part ε1 is
positive. The values of ε2 are chosen so that they include gains (g = 2π|ε2|/(λ

√
ε1)) in the medium that are physically

realizable. The assumption of a negative imaginary part to ε is the simplest way of modeling stimulated emission in
this system. The reflectivity is given by |R(k)|2, where R(k) is defined in terms of the scattering amplitude R(q|k)
by |〈R(q|k)〉|2 = L12πδ(q− k)|R(k)|2. In this relation the wavenumbers k and q are related to the angles of incidence
and scattering by k = (ω/c) sin θ0 and q = (ω/c) sin θs, respectively, L1 is the length of the x1-axis covered by the
random surface, and the angle brackets denote an average over the ensemble of realizations of the surface profile
function ζ(x1). The scattering amplitude R(q|k) is obtained by solving numerically the reduced Rayleigh equation it
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satisfies for a large number of realizations of ζ(x1), and 〈R(q|k)〉 is obtained by averaging the results. As expected,
the reflectivity of the amplifying medium with a random surface is larger than that of the corresponding absorbing
medium, viz. a medium with the same value of |ε2| but with ε2 positive, for all angles of incidence.

II. SCATTERING THEORY

A. Scattering system

The scattering system that will be considered in this paper consists of a dielectric film, with a randomly rough top
interface, deposited on the planar surface of a semi-infinite perfect conductor. In particular, it consists of vacuum in
the region x3 > ζ(x1), an amplifying or absorbing dielectric medium in the region −d < x3 < ζ(x1), and a perfect
conductor in the region x3 < −d. This geometry is depicted in Fig. 1. The rough surface profile function, denoted
by ζ(x1), is assumed to be a single-valued function of its argument, and differentiable as many times as needed.
Furthermore, it is assumed to constitute a zero-mean, stationary, Gaussian random process defined by

〈ζ(x1)〉 = 0, (2.1a)

〈ζ(x1)ζ(x
′

1)〉 = δ2W (|x1 − x′

1|), (2.1b)

where < · > denotes an average over the ensemble of realizations of ζ(x1), and δ is the rms-height of the rough surface.
Moreover, W (|x1|) denotes the surface height autocorrelation function, and is related to the power spectrum of the
surface roughness g(|k|) by

g(|k|) =
∫ ∞

−∞

dx1W (|x1|) e−ikx1 . (2.2)

In the numerical simulation results to be presented later, we will assume a rectangular power spectrum, also known
as the West-O’Donnell form,

g(|k|) = π

k+ − k−
[θ(k − k−)θ(k+ − k) + θ(−k− − k)θ(k + k+)] , (2.3)

where θ(k) is the Heaviside unit step function, and k± are parameters to be specified. This power spectrum has
recently been used in an experimental study of enhanced backscattering from weakly rough surfaces [8].

(x)

3

1

1

θ θ0

ζx =

x

ε=1

o

ε=1ε=1

ε(ω)

x3

3

x = -d 3

oε=−

S

FIG. 1. The scattering geometry considered in the present work.
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B. Scattering Equations

If the vacuum-dielectric interface x3 = ζ(x1) is illuminated from the vacuum side by an s-polarized electromagnetic
wave of frequency ω, the only nonzero component of the electric field vector in the region x3 > ζ(x1)max is the sum
of an incident wave and a scattered field:

E>
2 (x1, x3|ω) = eikx1−iα0(k,ω)x3 +

∫ ∞

−∞

dq

2π
R(q|k)eiqx1+iα0(q,ω)x3 . (2.4)

In this equation R(q|k) denotes the scattering amplitude, while we have defined

α0(q, ω) =







√

ω2

c2
− q2, |q| < ω/c

i
√

q2 − ω2

c2
, |q| > ω/c.

(2.5)

From a knowledge of the scattering amplitude one can define the differential reflection coefficient (DRC) ∂R/∂θs.
It is defined such that (∂R/∂θs)dθs is the fraction of the total time-averaged flux incident on the surface that is
scattered into the angular interval dθs about the scattering angle θs, in the limit as dθs → 0. The contribution to the
mean differential reflection coefficient from the coherent (specular) component of the scattered field is given by [9,10]

〈

∂R

∂θs

〉

coh

=
1

L1

ω

2πc

cos2 θs
cos θ0

|〈R(q|k)〉|2 , (2.6a)

and the contribution to the mean differential reflection coefficient from the incoherent (diffuse) component of the
scattered field is given by [9,10]

〈

∂R

∂θs

〉

incoh

=
1

L1

ω

2πc

cos2 θs
cos θ0

[〈

|R(q|k)|2
〉

− |〈R(q|k)〉|2
]

. (2.6b)

In Eqs. (2.6), L1 is the length of the x1-axis covered by the random surface, and the wave numbers k and q are related
to the angles of incidence θ0 and the angle of scattering θs according to

k =
ω

c
sin θ0, q =

ω

c
sin θs. (2.7)

Both these angles are measured from the normal to the mean surface as indicated in Fig. 1.
From the definition of the mean differential reflection coefficient, we find that the reflectance of the surface is defined

according to

R =

∫ π

2

−
π

2

dθs

〈

∂R

∂θs

〉

coh

= |R (k)|2 , (2.8)

where k is given by Eq. (2.7), and R(k) is related to the scattering amplitude |R(q|k)|2 by | 〈R(q|k)〉 |2 = L12πδ(q −
k) |R(k)|2. Likewise, the total scattered energy (normalized to the incident energy) is defined by

U =

∫ π

2

−
π

2

dθs

〈

∂R

∂θs

〉

, (2.9)

where 〈∂R/∂θs〉 is the total mean DRC, i.e. the sum of the coherent and incoherent contribution as defined in
Eqs. (2.6a) and (2.6b), respectively.
So far we have not specified how to obtain the scattering amplitude entering into the above equations. It has

previously been shown that R(q|k) is the solution of the so-called reduced Rayleigh equation [11]. This single,
inhomogeneous integral equation for R(q|k) for our scattering geometry reads [10]

∫ ∞

−∞

dq

2π
M(p|q)R(q|k) = N(p|k), (2.10a)

where
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M(p|q) = eiα(p,ω)d

α0(q, ω) + α(p, ω)
I(α0(q, ω) + α(p, ω)|p− q)

− e−iα(p,ω)d

α0(q, ω)− α(p, ω)
I(α0(q, ω)− α(p, ω)|p− q) (2.10b)

N(p|k) = − eiα(p,ω)d

α(p, ω)− α0(k, ω)
I(α(p, ω)− α0(k, ω)|p− k)

− e−iα(p,ω)d

α(p, ω) + α0(k, ω)
I(−α(p, ω)− α0(k, ω)|p− k), (2.10c)

with

I(γ|q) =
∫ ∞

−∞

dx1e
iγζ(x1)e−iqx1 . (2.10d)

In writing Eq. (2.10) we have introduced

α(q, ω) =

√

ε(ω)
ω2

c2
− q2, (2.11)

where the branch of the square root is chosen so that the real part of α(q, ω) is always positive while the imaginary
part is positive when ε2 > 0, but is negative when ε2 < 0.
The simulation results to be presented in the next section were obtained by directly solving numerically the reduced

Rayleigh equation (2.10). This nonperturbative approach can treat much longer rough surfaces as compared to
a rigorous numerical simulation approach [9] with the same use of computer power and memory. An additional
advantage of a numerical approach based on the reduced Rayleigh equation is that R and U can be calculated to high
precision, whereas the same quantities calculated by a rigorous approach have been found to be less accurate for the
surface lengths typically used in such simulations. This difference in accuracy for R and U for these two numerical
approaches we believe is related to the difference in the length of the surface that can be handled practically with
today’s typical computer resources. The numerical solution of the reduced Rayleigh equation is done by converting
the integral equation into a set of linear equations obtained by using an appropriate quadrature scheme and solving
the resulting system by standard numerical techniques [12]. Due to increased numerical performance, the calculation
of the I(γ|q)-integrals was based on an expansion of the integrand in powers of the surface profile function. This
numerical method has recently been applied successfully to a similar scattering geometry [7], and the interested reader
is directed to this paper for details of the numerical method.

III. RESULTS AND DISCUSSIONS

For the numerical simulations to be presented below we have considered the scattering of s-polarized incident light
of wavelength λ = 632.8 nm. The film was assumed to have mean thickness d = 500 nm, and its dielectric constant at
the wavelength of the incident light was taken to be ε(ω) = 2.6896+ iε2, where ε2 is allowed to vary over both positive
and negative values. The surface profile function was characterized by a power spectrum of the West-O’Donnell type
as defined in Eq. (2.3). For the parameters defining the power spectrum we used k− = 0.86ω/c and k+ = 1.97ω/c.
For these values of k±, single scattering should be suppressed for scattering angles in the range |θs| < 55.1◦. The
rms-height of the surface was taken to be δ = 30nm. Furthermore, the length of the surface was taken to be L = 160λ,
and the numerical results were all averaged over Nζ = 3000 realizations of the surface profile function.
In Fig. 2a we present the numerical simulation results for the contribution to the mean differential reflection

coefficient from the light that has been scattered incoherently, 〈∂R/∂θs〉incoh, for s-polarized light incident normally
on the mean surface (θ0 = 0◦). The values of the imaginary part of the dielectric function were (from top to bottom)
ε2 = −0.0025, 0, and 0.0025. From this figure we notice the enhanced backscattering peaks located at θs = θ0 = 0◦.
Moreover, two satellite peaks, located symmetrically about the position of the enhanced backscattering peak, are
easily distinguished from the background. Their positions as read of from Fig. 2a fit nicely with their positions,
θ± = ±17.7◦, calculated for the corresponding planar geometry in the limit of vanishing ε2 [7]. The choices made
for ε2 of the film in Fig. 2a correspond to an amplifying or active film (ε2 = −0.0025), a neither amplifying nor
absorbing film (ε2 = 0), and an absorbing or passive film (ε2 = 0.0025), respectively. This is reflected in Fig. 2a
where the contribution to the mean DRC from the light scattered incoherently from the amplifying medium is larger
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for all scattering angles then for the other two cases due to the extra energy gained by the scattered light from the
amplifying film. Moreover, it is interesting to notice that the differences between these curves are largest for small
scattering angles, and as one moves to larger scattering angles these differences are reduced. The main reason for this
is that for scattering angles |θs| < 55.1◦ the light has undergone multiple scattering which will increase the effects of
amplification and absorption as compared to a system that is dominated by single scattering events for such scattering
angles. In the wings of the angular dependence of the mean DRC, |θs| > 55.1◦, where single scattering gives the main
contribution, the differences between the curves corresponding to different values of ε2 is much less pronounced. In
order to obtain a more complete picture of how the incoherent component of the mean DRC depends on the imaginary
part of the dielectric function, in Fig. 2b we present a plot showing 〈∂R/∂θs〉incoh as function of ε2, as well as of the
scattering angle θs. The angle of incidence here was also chosen to be θ0 = 0◦. As seen from this plot, the positions
of the peaks are fixed, or close to fixed, while the overall amplitude of 〈∂R/∂θs〉incoh increases monotonically with
decreasing imaginary part of the dielectric constant.
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FIG. 2. The mean differential reflection coefficient for the incoherently scattered light for (a) ε2 = 0,±0.0025 and (b) as
a function of the same parameter. For both figures the angle of incidence was θ0 = 0◦, and the wavelength of the incident
light was λ = 632.8 nm. The dielectric function of the film of mean thickness d = 500nm was ε(ω) = 2.6896 + iε2, where ε2 is
as indicated in the figure. The randomly rough surface had an rms roughness of δ = 30nm. The power spectrum was of the
West-O’Donnell type defined by the parameters k− = 0.86ω/c and k+ = 1.97 ω/c.
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FIG. 3. The total scattered energy U (Eq. (2.9)) and the reflectance R(Eq. (2.8)) as functions of the imaginary part of the
dielectric constant (Figs. 3a and 3b) and of the angle of incidence (Fig. 3c). In Figs. 3a and b the angle of incidence was
θ0 = 0◦, while in Fig. 3c the imaginary part of the dielectric constant was ε2 = ±0.0025. The remaining parameters are as
given in Fig. 2.

To better quantify how the amplification or absorption depends on ε2, we have studied the total energy scattered
by the surface as well as its reflectance. These two quantities, denoted by U(θ0, ε2) and R(θ0, ε2) respectively, are
related to the mean differential reflection coefficient by Eqs. (2.8) and (2.9). The numerical results for these two
quantities for normal incidence are given in Figs. 3a and 3b. For small values of ε2 we find that these quantities are
linear in ε2. However, when the absolute value of the imaginary part of the dielectric constant increases, a deviation
from this behavior is observed. The numerical data in both cases are well fitted by a cubic polynomial in ε2. In
Fig. 3c we present the numerical results for U and R as a function of the angle of incidence θ0 for ε = ±0.0025. It is
seen that U(θ0) is a monotonically increasing or decreasing function of the angle of incidence for positive and negative
values of ε2, respectively, and the two curves for ε2 = ±0.0025 are symmetric with respect to the line U(θ0) = 1.
For negative (positive) ε2 the total scattered energy is larger (smaller) than unity. However, from the same graph
it is observed that R(θ0) is not a monotonic function of ε2. Instead it has a minimum in the vicinity of 25◦. Below
this value it is decreasing, while above it is increasing. The reason for this behavior is due to the excitation of a
leaky guided wave supported by the scattering geometry [5]. The minimum in R(θ0) occurs for an angle of incidence
corresponding to the wave number of the leaky guided wave, and the excitation of this mode will take away scattered
energy from the specular direction resulting in a minimum in R(θ0, ε2) for this angle of incidence.
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FIG. 4. Shifted plot for the mean DRC around the enhanced backscattering peak (Fig. 4a) and satellite
peaks (Fig. 4b). The quantities that are plotted is 〈∂R/∂θs〉incoh − 〈∂R/∂θs〉incoh

∣

∣

θs=θo
for the backscattering peaks and

〈∂R/∂θs〉incoh − 〈∂R/∂θs〉incoh
∣

∣

θs=θ+

for the satellite peaks, where θ+ is the (positive) angular position of the satellite peaks.

From Fig. 2a it can be observed that the widths of both the backscattering and satellite peaks, in contrast to their
positions, are sensitive to the value of the imaginary part of the dielectric function. Since the scattering geometry
supports (at least) two true guided modes, the widths of these peaks are expected to grow with ε2(ω) [5]. This is
much more apparent if we shift, but not scale, the tops of the enhanced backscattering peaks to the same height. We
have done so by plotting 〈∂R/∂θs〉incoh− 〈∂R/∂θs〉incoh|θs=θo

as a function of the scattering angle θs for various values

of ε2, and the results are shown in Figs. 4 for the backscattering peaks (Fig. 4a) and the satellite peaks (Fig. 4b).
Figure 4a clearly shows that the width of the enhanced backscattering peak increases as the imaginary part of the
dielectric constant increases. Or, in other words, the enhanced backscattering peak becomes narrower and taller when
the amplification of the medium is increased. This behavior is in qualitative agreement with the experimental results
reported recently by Gu and Peng [6]. This finding can theoretically be understood as follows: It can be shown that
the enhanced backscattering peak should have a Lorentzian form of total width [5]

∆T (ω) = ∆ǫ(ω) + ∆sc(ω), (3.1)

where ∆ǫ(ω) is the contribution to the width from the attenuation or amplification of the guided waves, while ∆sc(ω)
is the broadening due to the scattering of such waves by the surface roughness. Moreover, it can be shown that [5]

∆ǫ(ω) ∝ ε2. (3.2)

Depending on the geometrical and dielectric parameters of the film the total width ∆T (ω) can be dominated by either
∆ǫ(ω) or ∆sc(ω). For the parameters considered in this study, however, it is expected [5] that ∆sc(ω) > |∆ǫ(ω)| > 0.
Therefore the width should increase with increasing values of the imaginary part of the dielectric constant.
We will now examine how the full width, W (ε2), of the backscattering peak depends on ε2. In Fig. 5 we present

W (ε2) vs. ε2 as obtained from the numerical simulation results shown in Fig. 2. The width of an enhanced backscat-
tering peak was defined as its full-width at half maximum above the background at the position of the peak. Here
the background was defined to be located at the minimum value of the 〈∂R/∂θs〉incohr between the backscattering
and satellite peaks. Even though the data in Fig. 5 are somewhat noisy a linear dependence (solid curve) on ε2, as
predicted by Eq. (3.2) is easily seen.
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FIG. 5. The full-width W (ε2) (filled dots) at half maximum above the background at its position of the backscattering peak
as a function of the imaginary part ε2 of the dielectric constant of the film as obtained from the numerical simulation results
of Figs. 2. The solid line represents a linear fit in ε2 to the numerical data.

In Fig. 4b we present the same kind of plot as in Fig. 4a, but now for a satellite peak. One sees the that the width
of the satellite peaks increases with increasing ε2, the same behavior found for the enhanced backscattering peak.
However, more interesting is the apparent change in the position of the satellite peaks with the value of the imaginary
part of the dielectric constant. To the precision of the numerical calculations, the positions of the satellite peaks for an
absorbing film (ε2 > 0) seem to shift to larger scattering angles as compared to the position of the satellite peaks when
ε2 = 0. The opposite seems to hold true for an amplifying film (ε2 < 0). There are two reasons for this behavior of the
satellite peaks. First, the real part of the self–energy has a linear in ε2 contribution, thus, in the presence of surface
roughness the values of the wavenumbers of the guided waves acquire a linear in ε2 contribution. The second reason
is a strong dependence of the background intensity on the values of ε2. The increase of the background intensity also
shifts the visual positions of the satellite peaks to smaller scattering angles. For the widths of the satellite peaks, the
quality of the numerical data, unfortunately, did not allow us to obtain reliable results.

IV. CONCLUSIONS

By numerical simulations we have studied light scattered from an absorbing or amplifying dielectric film deposited
on the planar surface of a semi-infinite perfect conductor where the vacuum-dielectric interface is randomly rough. It
has been shown that the reflectance, R(θ0, ε2), as well as the total scattered energy, U(θ0, ε2), are decreasing functions
of the imaginary part of the dielectric function of the film for a fixed angle of incidence. Furthermore, it has been
demonstrated that U(θ0, ε2) is a monotonically increasing or decreasing function of the angle of incidence for fixed
positive and fixed negative values of the imaginary part of the dielectric function, respectively. However, for the
reflectance we find that R(θ0, ε2) first decreases to a minimum near θ0 = 25◦ and then increases. This minimum is
a result of the leaky guided wave supported by the scattering structure. Moreover, for an amplifying surface both
R(θ0, ε2) and U(θ0, ε2) are smaller then their absorbing equivalents for all angles of incidence.
The width of the enhanced backscattering peaks as well as the satellite peaks supported by the scattering system

are found to increase with increasing ε2. While the location of the enhanced scattering peaks seems to be unaffected
by the value of the imaginary part of the dielectric constant of the film, the corresponding positions for the satellite
peaks are found to be shifted towards larger (smaller) scattering angles for positive (negative) values of the imaginary
part of the dielectric function, respectively. Finally, it is found that the width of the enhanced backscattering peak
scales linearly with ε2.
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