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Genome analysis
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Abstract

Summary: Annotating genetic variants, especially non-coding variants, for the purpose of identifying

pathogenic variants remains a challenge. Combined annotation-dependent depletion (CADD) is an al-

gorithm designed to annotate both coding and non-coding variants, and has been shown to outper-

form other annotation algorithms. CADD trains a linear kernel support vector machine (SVM) to dif-

ferentiate evolutionarily derived, likely benign, alleles from simulated, likely deleterious, variants.

However, SVMs cannot capture non-linear relationships among the features, which can limit per-

formance. To address this issue, we have developed DANN. DANN uses the same feature set and

training data as CADD to train a deep neural network (DNN). DNNs can capture non-linear relation-

ships among features and are better suited than SVMs for problems with a large number of samples

and features. We exploit Compute Unified Device Architecture-compatible graphics processing units

and deep learning techniques such as dropout and momentum training to accelerate the DNN train-

ing. DANN achieves about a 19% relative reduction in the error rate and about a 14% relative increase

in the area under the curve (AUC) metric over CADD’s SVM methodology.

Availability and implementation: All data and source code are available at https://cbcl.ics.uci.edu/

public_data/DANN/.

Contact: xhx@ics.uci.edu

1 Introduction

Identifying the genetic variants responsible for diseases can be very

challenging. The majority of candidate variants lie in non-coding

sections of the genome, whose role in maintaining normal genome

function is not well understood. Most annotation methods can only

annotate protein coding variants, excluding >98% of the human

genome. Another annotation method, combined annotation–-

dependent depletion (CADD; Kircher et al., 2014), can annotate

both coding and non-coding variants. CADD trains a linear kernel

support vector machine (SVM) to separate observed genetic variants

from simulated genetic variants. Observed genetic variants

are derived from differences between human genomes and the

inferred human–chimpanzee ancestral genome. Because of natural

selection effects, observed variants are depleted of deleterious

variants. Simulated genetic variants are enriched for deleterious

variants.

CADD’s SVM can only learn linear representations of the data,

which limits its performance. To overcome this, we implemented a

deep neural network (DNN) algorithm that we have named deleteri-

ous annotation of genetic variants using neural networks (DANN). A

DNN is an artificial neural network with several hidden layers of

units between the input and output layers. The extra layers give a

DNN-added level of abstraction, but can greatly increase the

computational time needed for training. Deep learning techniques

and graphics processing unit (GPU) hardware can significantly reduce

the computational time needed to train DNNs. DNNs outperform

simpler linear approaches such as logistic regression (LR) and SVMs

for classification problems involving many features and samples.
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2 Methods

2.1 Model training
DANN trains a DNN consisting of an input layer, a sigmoid func-

tion output layer, and three 1000-node hidden layers with hyper-

bolic tangent activation function. We use deepnet (https://github.

com/nitishsrivastava/deepnet) to exploit fast Compute Unified

Device Architecture (CUDA) parallelized GPU programming on an

NVIDIA Tesla M2090 card and applied dropout and momentum

training to minimize the cross entropy loss function. Dropout re-

duces over-fitting by randomly dropping nodes from the DNN

(Srivastava, 2013). Momentum training adjusts the parameter incre-

ment as a function of the gradient and learning rate (Sutskever et al.,

2013). DANN uses a hidden node dropout rate of 0.1, a momentum

rate that increases from 0.01 to 0.99 linearly for the first 10 epochs

and then remains at 0.99, and stochastic gradient descent (SGD)

with a minibatch size of 100. As a baseline comparison, we trained a

LR model. For LR training, we applied SGD using the scikit-learn li-

brary (Pedregosa et al., 2011) with parameter a¼0.01, which we

found to maximize the accuracy of the LR model. LR and DNN are

sensitive to feature scaling, so we preprocess the features to have

unit variance before training either model. We also train an SVM

using the LIBOCAS v0.97 library (Franc and Sonnenburg, 2009)

with parameter C¼0.0025, closely replicating CADD’s training.

2.2 Features
There are a total of 949 features defined for each variant. The

feature set is sparse, and includes a mix of real valued numbers,

integers, and binary values. For example, amino acid identities

are only defined for coding variants. To account for this, we

include Boolean features that indicate whether a given feature is

undefined, and missing values are imputed. Moreover, all n-level

categorical values, such as reference allele identity, are converted

to n individual Boolean flags. See the Supplementary of

Kircher et al. (2014) for more details about the features and

imputation.

2.3 Training data
CADD’s training data consist of 16 627 775 ‘observed’ variants and

49 407 057 ‘simulated’ variants. We trained all three models on this

dataset to differentiate the simulated variants from the observed

variants. To account for the imbalance between the two datasets, we

randomly sampled 16 627 775 simulated variants for training. These

33 255 550 variants are split into a ‘training set’, a ‘validation set’

and a ‘testing set’ in an�8:1:1 ratio. The three models are trained

on training set. For SGD, each gradient step is not guaranteed to

minimize the loss function; at 1/10 epoch intervals throughout the

20 epochs of training the validation set is evaluated to select the

‘best’ model that maximizes classification accuracy on the validation

set. The validation set is also used to fine tune hyperparameters such

as dropout rate, minibatch size, and so forth. Finally, the models are

regularly evaluated on the testing set to monitor for overfitting. In

contrast, Kircher et al. (2014) trained CADD using an ‘ensemble’

strategy that involves training SVMs on 10 different subsets of the

training data. We found little performance improvement when we

applied this strategy.

3 Results and discussion

To compare the performance of the three models, we generated

receiver operating characteristic (ROC) curves discriminating the

3 326 573 simulated and observed variants in the testing set and

calculated area under the curve (AUC) scores (Fig. 1a). We used the

discriminant values of the SVM and the sigmoidal function output

of the DNN and LR models as classifiers for the ROC curves. We

do not directly compare to CADD because it can only evaluate

100 000 variants at a time and CADD was already trained on testing

set variants; however, the SVM, we trained performs very similarly

to CADD despite being trained on a smaller dataset (data not

shown). The classification accuracies of the SVM, LR and DNN

models are 58.2, 59.8 and 66.1%, respectively. A few observations

emerge from our analysis. First, LR performs better than SVM, sug-

gesting that the max margin regularization used by SVM plays little

role in this particular dataset. Second, DNN performs significantly

better than both LR and SVM, leading to a 19% reduction in the

error rate and 14% improvement in the AUC relative to SVM. This

suggests the importance of accounting for nonlinear relationships

among features, likely due to the heterogeneity of features generated

in genome annotations. Third, although DNN improves on the lin-

ear methods, its accuracy is still unsatisfactory. We suspect a

few factors might contribute to this: (i) The training data are inflated

with mislabeled samples. Observed variants can be under positive or

weak purifying selection, and therefore be functional. Conversely,

many simulated variants can be nonfunctional since they are

randomly sampled from the genome. (ii) The features currently used

in genome annotation are insufficient for functional prediction.

(iii) The model training needs further improvement.

We also generated ROC curves showing the models discriminat-

ing pathogenic mutations defined by the ClinVar database (Baker,

2012) from likely benign Exome Sequencing Project (ESP; Fu et al.,

2013) alleles with a derived allele frequency (DAF) �5% (Fig. 1b,

n¼10 000 pathogenic/10 000 likely benign). Coding variants consti-

tute 85.6 and 43.0% of the ClinVar and ESP databases, respectively,

reducing the difficulty of annotation since many more informative

features are available in coding regions. For variants with multiple

gene annotations, we only selected the gene annotation that yielded

the highest score from each model. All three models greatly improve

on the AUC metric, with the LR and DANN models outperforming

SVM; however, the performance gap between the models is much

smaller than the gap in the testing set.

In conclusion, we have improved considerably on CADD’s SVM

methodology. We can even achieve better performance with LR,

suggesting that LR is the preferred linear classifier in this case.

DANN achieves the best overall performance, substantially improv-

ing on the linear methods in terms of accuracy and separation on the

testing set, which contains mostly non-coding variants. This makes

DANN the most useful annotation algorithm since the vast majority

of human variation is non-coding. When limited to a coding-biased

dataset, all three models perform well, but the performance gap

(b) (a) 

ClinVar and ESPTesting set

Fig. 1. ROC curves comparing performances of the neural network (DANN),

support vector machine (SVM), and logistic regression (LR) models in

discriminating (a) ‘simulated’ variants from ‘observed’ variants in the testing

set and (b) pathogenic ClinVar variants from likely benign ESP alleles

(DAF�5%)
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is small. Given DANN’s superior performance for annotating

non-coding variants, which comprise the overwhelming majority of

genetic variation, we expect DANN to play an important role in pri-

oritizing putative causal variants, such as those derived from

GWAS, for further downstream analysis.
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