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ABSTRACT OF THE DISSERTATION

Advancing Rapid Infectious Disease Screening Using a Combined
Experimental/Computational Approach

by

Lennart Langouche

Doctor of Philosophy in Nanoengineering

University of California San Diego, 2021

Professor Stephanie I. Fraley, Chair
Professor Jesse Vincent Jokerst, Co-Chair

Outbreaks of infectious diseases are rising around the world. In addition to outbreaks,

several known infectious diseases have a significant impact on mortality in the US and around the

world. In this doctoral work we use a combined experimental/computational approach to study

the performance and limitations of digital High Resolution Melt (dHRM), an infectious disease

screening platform that was previously established in the Fraley lab. This allows comparisons

with other microbiological technologies and helps shine some light on its potential use-cases.

First, we developed a computational framework for estimating the resolving power of dHRM
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technology for defined sequence profiling tasks. By deriving noise models from experimentally

generated dHRM datasets and applying these to in silico predicted melt curves, we enable the

production of synthetic dHRM datasets that faithfully recapitulate real-world variations arising

from sample and machine variables. Second, we present an advancement in universal microbial

high resolution melting (HRM) analysis that is capable of accomplishing both known genotype

identification and novel genotype detection. Specifically, this novel surveillance functionality is

achieved through probabilistic modeling of sequence-defined HRM curves, which is uniquely

enabled by the large-scale melt curve datasets generated using our high-throughput digital HRM

platform. Our hope is that in the future, the dHRM platform can translate into a near-point of

care, cost-effective tool for infectious disease screening.
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Chapter 1

Introduction

1.1 Infectious Disease: Overview

Infectious disease outbreaks are rising around the world [1]. Outbreaks occur when

the number of disease cases increases above what would statistically be expected in a defined

geographical area, season or community. Figure 1, adapted from [1], shows that the number

of outbreaks and variety of causal diseases exhibit a significant increase since 1980, as do the

number of outbreaks and variety of causal diseases for each subcategory of pathogen taxonomy

(viruses, bacteria, fungi, parasites or protozoa), pathogen transmission mode (vector transmitted

or non-vector transmitted) and host type (human specific or zoonotic) [1].

Besides outbreaks, infectious diseases have a significant impact on mortality in the US

and around the world. There are many different types of infections, including but not limited to

the bloodstream, urinary tract, gastrointestinal tract, respiratory tract and central nervous system.

One example we will briefly discuss is sepsis. Sepsis occurs when an infection is accompanied by

organ dysfunction from a dysregulated host response to that infection [2]. The CDC reports that

each year, at least 1.7 million adults in America develop sepsis, nearly 270,000 Americans die

as a result of sepsis and 1 in 3 patients who dies in a hospital has sepsis [3, 4]. Sepsis survivors
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Figure 1.1: Global number of human infectious disease outbreaks and richness of causal diseases
1980 – 2010. Outbreak records are plotted with respect to (a) total global outbreaks (left axis,
bars) and total number of diseases causing outbreaks in each year (right axis, dots), (b) host
type, (c) pathogen taxonomy and (d) transmission mode. Figure and caption adapted from [1].

often suffer long-term physical, psychological, and cognitive disabilities [5]. Despite the high

mortality rate, there is no approved diagnostic test, and the diagnosis requires clinical judgment

based on evidence of both infection and organ dysfunction [5].

Generally, the microbiology laboratory plays a critical role in infectious disease detection,

as the clinician seeks the aid of a clinical microbiology laboratory to help with diagnosis [6].

1.2 Infectious Disease Diagnostics

The microbiology laboratory tries to answer three basic questions, i.e., whether the patient

is infected, if so, with which pathogen(s) and third, what will treat it [7]. Often, broad empirical

antimicrobials are given to a patient during the window of time it takes for specimen collection,

pathogen identification and antimicrobial susceptibility testing. Because of this, many patients
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are overtreated with antimicrobials that afterwards turn out to be inappropriate, which in addition

has led to the phenomenon of antimicrobial resistance. Molecular diagnostic technologies have

enabled the microbiology lab to provide answers to these questions more accurately and faster

than ever before. Rapid diagnostic technologies are able to decrease the window of time needed,

which in turn enables providing faster, effective and targeted antimicrobial treatment while also

decreasing the use of unnecessary empirical treatment.

Microorganisms such as bacteria, viruses, fungi, and parasites can now promptly be

identified using molecular technologies, to diagnose causative pathogens in infections of the

bloodstream, respiratory tract, urinary tract, gastrointestinal tract, and central nervous system [8].

In parallel, new gene-based resistance detection methods are rapidly being developed to guide

antimicrobial use. Novel rapid diagnostic technologies include nucleic acid-based diagnostics

(e.g. single-target PCR testing and multiplex PCR panels) [9, 10, 11, 12, 13], microarray panels

[14], peptide nucleic acid fluorescent in situ hybridization (FISH) technologies [15], magnetic

resonance-based testing [16], matrix-assisted laser desorption ionization-time of flight mass

spectrometry (MALDI-TOF MS) [17], and next-generation sequencing (NGS) [18]. These

technologies span the range from single-target pathogen-specific or gene-specific antimicrobial

resistance testing to syndromic panels [19] containing many common pathogens causing a disease

process, to unbiased sequencing with the ability to detect unsuspected or novel pathogens [20].

1.3 Universal Digital High-Resolution Melt (U-dHRM)

HRM rapidly analyzes a DNA sequence by measuring how the bonds between double-

stranded DNA break in response to heating. The readout of HRM analysis is based on the

fluorescence of a generic DNA intercalating dye, which binds to double-stranded DNA and

fluoresces, but loses fluorescence as the DNA unwinds to become single-stranded (Fig. 1.2A).

This heating and unwinding process, which takes about five to ten minutes, produces a melt

3



curve that can be plotted as a fluorescence versus temperature graph (Fig. 1.2B). Melt curves are

sensitive to the content and order of nucleotides, as well as heating rate during the melt process

[21, 22, 23]. This allows melt curves to serve as unique signatures for DNA sequences. As

such, machine learning classification algorithms can be used to identify DNA sequences based

on their melt curve signatures [24, 25, 26]. For example, we previously generated a database

of melt curves for a variety of bacterial organisms using their hypervariable 16S rRNA gene

sequence. Machine learning enabled us to identify the organisms by their melt curve with 99%

accuracy [25]. We recently developed a high-throughput digital HRM (dHRM) analysis system

[23, 22] with robust temperature control [22] that uniquely enables the reliable generation of

thousands of melt curves from a DNA sequence in a single experiment (Fig. 1.2C). This advance

has a 200-fold increase in throughput compared to traditional well-plate formats, enabling rich

data-driven analyses. Using universal primers on a dHRM system (Universal or U-dHRM [27])

enables the detection of a large number of pathogens using a single primer set.

Given its simplicity and speed, dHRM is a promising technique for diagnostic applications.

The main limitation of dHRM is the run-to-run and well-to-well variation in melt curves due to

sample and machine variables [22].
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Figure 1.2: dHRM Overview. A Intercalating dye (green), which binds to double-stranded
DNA (top and bottom strands) and fluoresces. The dye loses fluorescence as the temperature
increases and DNA unwinds to become single-stranded. B Loss-of-fluorescence curve (top)
and its negative derivative (bottom). C Diagram of high-throughput digital HRM workflow
to generate thousands of melt curves simultaneously to enable data-driven analysis. Top left:
digital PCR chip with 20,000 picoliter-sized wells.

1.4 Thesis

In this doctoral work we use a combined experimental/computational approach to study

dHRM’s performance and potential limitations. This allows comparisons with other microbiologi-

cal technologies and helps shine some light on its potential use-cases. In Chapter 2 we investigate

the resolving power of dHRM and discuss the implications. In Chapter 3 we discuss novelty

detection and investigate whether dHRM can be used to detect unsuspected or novel pathogens,

similar to unbiased NGS.
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Chapter 2

Data-driven Noise Modeling of Digital DNA

Melting Analysis Enables Prediction of

Sequence Discriminating Power

2.1 Abstract

Motivation: The need to rapidly screen complex samples for a wide range of nucleic

acid targets, like infectious diseases, remains unmet. Digital High-Resolution Melt (dHRM) is

an emerging technology with potential to meet this need by accomplishing broad-based, rapid

nucleic acid sequence identification. Here, we set out to develop a computational framework for

estimating the resolving power of dHRM technology for defined sequence profiling tasks. By

deriving noise models from experimentally generated dHRM datasets and applying these to in

silico predicted melt curves, we enable the production of synthetic dHRM datasets that faithfully

recapitulate real-world variations arising from sample and machine variables. We then use these

datasets to identify the most challenging melt curve classification tasks likely to arise for a given

application and test the performance of benchmark classifiers.
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Results: This toolbox enables the in silico design and testing of broad-based dHRM

screening assays and the selection of optimal classifiers. For an example application of screening

common human bacterial pathogens, we show that human pathogens having the most similar

sequences and melt curves are still reliably identifiable in the presence of experimental noise.

Further, we find that ensemble methods outperform whole series classifiers for this task and are

in some cases able to resolve melt curves with single-nucleotide resolution.

Availability: Data and code available on https://github.com/lenlan/dHRM-noise-modeling

2.2 Introduction

HRM rapidly analyzes a DNA sequence by measuring how the bonds between double-

stranded DNA break in response to heating. The readout of HRM analysis is based on the

fluorescence of a generic DNA intercalating dye, which binds to double-stranded DNA and

fluoresces, but loses fluorescence as the DNA unwinds to become single-stranded (Fig. 2.1A).

This heating and unwinding process, which takes about five to ten minutes, produces a melt

curve that can be plotted as a fluorescence versus temperature graph (Fig. 2.1B). Melt curves are

sensitive to the content and order of nucleotides, as well as heating rate during the melt process

[21, 22, 23]. This allows melt curves to serve as unique signatures for DNA sequences. As

such, machine learning classification algorithms can be used to identify DNA sequences based

on their melt curve signatures [24, 25, 26]. For example, we previously generated a database

of melt curves for a variety of bacterial organisms using their hypervariable 16S rRNA gene

sequence. Machine learning enabled us to identify the organisms by their melt curve with 99%

accuracy [25]. We recently developed a high-throughput digital HRM (dHRM) analysis system

[23, 22] with robust temperature control [22] that uniquely enables the reliable generation of

thousands of melt curves from a DNA sequence in a single experiment (Fig. 2.1C). This advance

has a 200-fold increase in throughput compared to traditional well-plate formats, enabling rich

8



data-driven analyses. Using universal primers on a dHRM system (Universal or U-dHRM [27])

enables the detection of a large number of pathogens using a single primer set.

Given its simplicity and speed, dHRM is a promising technique for diagnostic applications.

The main limitation of dHRM is the run-to-run and well-to-well variation in melt curves due to

sample and machine variables [22]. This has led us to ask: what is the resolving power of dHRM?

This will be affected by two main factors: the noise inherent to dHRM and the classification

approach used to discern the melt curves. This work takes a combined experimental/computational

approach to predict the resolving power. We hope to provide insight into further scalability and

enable comparisons with other technologies that are emerging for use in infectious disease

diagnostics, such as next-generation sequencing (NGS).
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Figure 2.1: dHRM Overview. A Intercalating dye (green), which binds to double-stranded
DNA (top and bottom strands) and fluoresces. The dye loses fluorescence as the temperature
increases and DNA unwinds to become single-stranded. B Loss-of-fluorescence curve (top)
and its negative derivative (bottom). C Diagram of high-throughput digital HRM workflow
to generate thousands of melt curves simultaneously to enable data-driven analysis. Top left:
digital PCR chip with 20,000 picoliter-sized wells.
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2.3 Materials and Methods

2.3.1 Melt Curve Generation

Digital High Resolution Melt data was collected as detailed previously [23]. It consists

of melt curves from the 16S rRNA gene (regions V1 to V6) of ten different bacterial organisms,

which are listed along with their amplicon length in Table 2.1. The melt curves have been cropped

to 160 datapoints, a datapoint every 0.1◦C with a temperature range between 75.6◦C and 91.5◦C

(Fig. 2.2). The melt curves have been smoothed (using the Matlab function imgaussfilt with σ =

3) and their derivative is taken with respect to temperature to obtain -dF/dT. An average of 1828

melt curves were generated for each organism (the lowest is 843). Fig. 2.2 provides a snapshot of

the data collected from the ten species described in Table 2.1, where each subplot shows all melt

curves originating from a single chip and single organism with the mean melt curve superimposed.

Fig. 2.3 shows the residuals from the mean and their variance for the same dataset.

Table 2.1: Overview of experimental data set.

Nr. Species Amplicon Length Melt Curves (Nr.) Mean Peak (◦C) Std. Peak (◦C) Median DTW
1 Citrobacter koseri 969 2052 89.06 0.42 2.31
2 Enterococcus faecium 978 1137 88.53 0.10 1.68
3 Escherichia coli 981 843 88.49 0.13 2.60
4 Haemophilus influenzae 967 2265 88.29 0.10 2.14
5 Listeria monocytogenes 994 2244 87.79 0.08 2.23
6 Staphylococcus aureus (MSSA) 981 2028 87.43 0.19 1.51
7 Streptococcus gallolyticus 978 2006 88.43 0.78 3.83
8 Streptococcus ‘group B’ (GBS) 978 2249 88.90 0.10 2.37
9 Streptococcus pneumoniae 978 1255 88.71 0.15 1.62
10 Streptococcus sanguinis 972 2202 88.45 0.09 3.00

Average 977 1828 88.41 0.21 2.33
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Figure 2.2: dHRM Melt curves with superimposed mean (black) for ten bacterial pathogenic
organisms.

Figure 2.3: dHRM Melt curve residuals with superimposed mean (black). The dotted line at any
temperature T is the variance of the melt curve at that T, calculated over all the wells associated
with that species.
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2.3.2 Characterization of Melt Curve Noise

Due to well-to-well and run-to-run variation [22], each chip has a distinct noise envelope

as shown in Fig. 2.2. A shift or distortion along the temperature axis can be seen in some

chips, here most clearly shown for MSSA (Fig. 2.2). This is an indicator that Dynamic Time

Warping (DTW) might be successful at classifying these curves. DTW is an elastic distance

measure that was introduced initially to deal with temporal distortions in the context of speech

recognition [28], and has been used at least once for classifying HRM curves, which can exhibit

a similar temperature distortion [29]. We used DTW as an investigative tool to obtain more

insight into well-to-well variation in melt curve shapes. Figure 2.4. shows an example of how the

DTW distance between melt curves is calculated. Table 2.1 shows the median DTW distance

per chip (this is the median pairwise DTW distance between all curves from that chip). This

can be interpreted as the amount of well-to-well variance in shape. We employ DTW without a

window constraint here, which means the curves can be freely warped along the temperature axis.

Focusing on MSSA again as an example, it can be observed that despite a seemingly broad noise

envelope (Fig. 2.2), it has the second lowest median DTW or well-to-well variance in shape.

2.3.3 U-dHRM Classification

We have chosen to compare four classification methods on our data in this work. This

selection is informed by a recent review comparing methods for time series classification (TSC)

on the ‘The UCR Time Series Classification Archive’ [30, 31]. The authors recommend 1-nearest

neighbor with Euclidean distance (1-NN ED) as a starting point on any new dataset, as this is

generally a low benchmark that is easily beaten by other benchmark classifiers. Rotation Forest

(RotF), Random Forest (RandF) and 1-nearest neighbor with Dynamic Time Warping (1-NN

DTW) with a warping window set through cross validation [32] make up the review’s top three

benchmark classifiers whereas 1-NN ED comes in sixth place [30].
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Figure 2.4: Example of dHRM melt curve DTW alignment. Left: warping path to align two melt
curves. Right: dotted lines show which points get aligned under DTW (no window constraint).
DTW forces end points to align, which can be seen in the right figure. ψ-DTW can be used to
relax that constraint.

1-NN ED and 1-NN DTW are straightforward ‘whole series classifier’ algorithms, which

try to find the distance between two time series using either inelastic (Euclidean distance) or

elastic (DTW) measures. The other two methods are both ensemble classifiers, which have proved

popular in recent TSC research and are highly competitive on general classification problems [30].

Random forest, introduced by Breiman in 2001 [33], consists of a large number of individual

decision trees that operate as an ensemble. Each individual tree in the random forest produces a

class prediction and the class with the most votes becomes the model’s prediction. Node splitting

in a random forest model is based on a random subset of features for each tree.

Rotation Forest, introduced by Rodríguez et al. in 2006 [34], is another ensemble classifier

based on feature extraction. Here, Principal Component Analysis (PCA) is applied to each subset

of features. All principal components are retained in order to preserve the variability information

in the data (which is equivalent to a rotation of each subset of futures). The idea of the rotation

approach is to encourage simultaneously individual accuracy and diversity within the ensemble

[34].

We used Python’s scikit-learn [35] for RandF (50 trees) and the nearest neighbor classifiers,
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with the DTW distance measure from dtaidistance [36] which includes psi-relaxation [37]. We

used cross validation to determine the optimal window (w), relaxation parameter psi (ψ) and

number of neighbors (k). For RotF (50 trees), we used the implementation from [38].

2.3.4 U-dHRM Resolving Power

It has been shown that HRM is able to distinguish single-nucleotide polymorphisms

(SNPs) under certain conditions [39, 40]. Two factors play a role here: amplicon size and type of

mutation. Generally, SNPs are easier to differentiate in short amplicons as the melting temperature

differences among genotypes increase as the amplicon size decreases [39]. The second factor that

determines whether a SNP can be differentiated is the type of mutation, e.g. C/T, C/A, G/A or

G/T substitutions are generally easier to differentiate than C/G or T/A substitutions [39], because

%GC-content has a strong effect on melt temperature.

In order to differentiate pathogenic species, we select a specific barcoding region and

desired amplicon length. Within the context of using clinical samples, we target longer am-

plicons (around 1000bp) to overcome the challenges of high background and environmental

contamination relative to pathogen level (3). In this work, we have used the primers V1F:

5’-GYGGCGNACGGGTGAGTAA-3’ and V6R: 5’-AGCTGACGACANCCATGCA-3’ corre-

sponding to amplicons including barcoding regions V1 to V6. The usage of such long amplicons

typically results in having multiple sequence variations differentiating two species instead of a

single SNP. We selected 58 clinically relevant bacterial pathogens, including category A and B

biothreat agents and their surrogates from [41]. We adapted code from the primerTree package

[42] to automate primer-BLAST [43] searching and return all matching amplicons given a speci-

fied primer pair and a list of species. We then used uMelt software [44] which allows prediction

of high-resolution melting curves and dynamic melting profiles of PCR products.
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uMelt

uMelt uses existing models of DNA melting that utilize nearest neighbor thermodynamics

and recursive calculations using statistical mechanics [45, 46, 47, 48] to do fluorescent melting

analysis of PCR products in a web application [44]. Instead of treating a DNA double helix as a

string of separate interactions between base pairs, the nearest-neighbor model treats a DNA helix

as a string of interactions between ’neighboring’ base pairs [49]. It means that the interaction

between bases on different strands depend to some extent on the neighboring bases. So, for

example, have a look at the DNA shown below.

5’ G-C-T-T-C-A 3’

3’ C-G-A-A-G-T 5’

The free energy of forming this DNA from the individual strands, ∆G, is represented (at 37

◦C) as

∆G◦37(predicted) = ∆G◦37(G/C initiation)+∆G◦37(GC/CG)+∆G◦37(CT/GA)

+∆G◦37(T T/AA)+∆G◦37(TC/AG)+∆G◦37(CA/GT )+∆G◦37(A/T initiation).

First you have the G/C initiation term, representing the free energy of the first base pair, GC, in

the absence of a nearest neighbor. The second term includes both the free energy of formation

of the second base pair, CG, and stacking interaction between this base pair and the previous

GC base pair. The remaining terms are constructed in a similar manner. In general, the free

energy of forming a nucleic acid duplex is the sum of the initiation terms and the nearest neighbor

interaction terms. Each ∆G◦ term has enthalpic, ∆H◦, and entropic, ∆S◦, parameters. Values of

∆H◦ and ∆S◦ have been determined for the ten possible pairs of interactions and can be found in
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thermodynamic tables.

We tried both low- and high-resolution settings of 1.0◦C and 0.1◦C to assess which melt

curves would be most comparable to the experimentally obtained curves. Our experimentally

obtained data is collected at a resolution of 0.1◦C, so this was our first choice, but as shown in

Figure 2.5, these curves have much narrower peaks than our experimentally obtained data. We

decided to start with the 1.0◦C resolution, and then smooth (Savitzky–Golay filter, window = 25,

polynomial order = 2) and interpolate these curves to a 0.1°C resolution. This way, we obtained

synthetic melt curves with shapes similar to our experimental data (Fig. 2.5). Since uMelt has

its limitations, e.g. the algorithm does not account for the thermodynamics of dye binding and

current libraries do not account for the rapid melting rates [44], the obtained melt curves are not

exactly the same (neither in shape nor position) as our experimentally obtained data. However, for

the purposes of this model, this is not necessary, as we are only interested in obtaining melt curves

with realistic shapes and will not be comparing synthetic data with experimentally obtained data.

We calculated the Euclidean distance matrix for these 58 synthetic melts and selected

the top 15 pairs with the smallest Euclidean distance between them (Table 2.2), as these will

be the most difficult to differentiate. To create a fair and meaningful classification challenge,

we applied the noise from our experimental dHRM data to these synthetic uMelts. We did this

by calculating the residuals to the mean for each of the ten chips (Fig. 2.3) and applying those

residuals to the synthetic uMelts. The residuals are shifted so that the noise at the peak location

of the experimental data aligns with the peak of the uMelts. The residuals are also scaled by the

ratio of the peak heights from the experimental data and the uMelts.

Fig. 2.6 outlines the complete workflow. The collection of residuals from one organism

is randomly split in half and each half is applied to one uMelt from a pair. The resulting three

sets are randomly split into test/training sets with a 2/3-1/3 split. This random splitting in half

and random train/test splitting is both done three times to ensure consistency. The result is nine

17



Table 2.2: Generated uMelt pairs and similarity measures.

Pair Organism 1 Organism 2 Euclidean distance Sequence similarity (%) Nucleotide mismatches
1 Yersinia pestis Yersinia pseudotuberculosis 1.10 99.79 2
2 Bacillus anthracis Bacillus cereus 1.11 99.69 3
3 Proteus vulgaris Pseudomonas aeruginosa 1.55 87.62 120
4 Streptococcus sanguinis Yersinia enterocolitica 1.66 84.74 148
5 Proteus mirabilis Proteus vulgaris 1.76 98.56 14
6 Bordetella parapertussis Bordetella pertussis 1.86 99.90 1
7 Staphylococcus epidermidis Staphylococcus lugdunensis 1.93 98.27 17
8 Staphylococcus lugdunensis Staphylococcus saprophyticus 2.00 98.37 16
9 Mycobacterium gordonae Mycobacterium kansasii 2.03 98.34 16

10 Yersinia enterocolitica Yersinia pestis 2.16 96.70 32
11 Micrococcus luteus Mycobacterium fortuitum 2.25 90.87 87
12 Staphylococcus aureus Staphylococcus epidermidis 2.32 98.57 14
13 Yersinia enterocolitica Yersinia pseudotuberculosis 2.52 96.49 34
14 Proteus mirabilis Pseudomonas aeruginosa 2.71 87.82 118
15 Acinetobacter calcoaceticus Aerococcus viridans 2.82 81.31 183

train/test splits per pair and noise model. This is implemented for all 15 pairs and 10 noise models.

Fig. 2.7 gives some examples of pairs and noise models. The classification task at hand consists

of distinguishing the light from the dark gray curves.

We chose to apply one noise model at a time (all residuals coming from the same chip),

as we found that mixing noise models can enable the classifiers to learn the noise model, rather

than the actual underlying melt curves (data not shown). Finally, we also investigated to which

extent the choice of noise model affects the classification result.
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Figure 2.5: Comparison of experimental dHRM mean melt curves with synthetic uMelts (high
resolution and smoothed low resolution). The smoothed low-resolution curves are more similar
in shape to the experimental data than the high-resolution ones.

Figure 2.6: Workflow to obtain classification challenge to study dHRM resolving power.
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Figure 2.7: Examples of dHRM noise applied to pairs of synthetic uMelts. The classification
challenge consists of differentiating the light from the dark gray curves.

2.4 Results

2.4.1 U-dHRM Classification

A comparison of the four classification methods applied to the melt curves from the top-10

sepsis causing pathogens (which account for at least 63% of cases) [50] listed in Table 2.1 is

shown in Fig. 2.8 (left). All four classifications methods perform extremely well (accuracy >

99.5%) on this dataset and variation was limited between the five train-test splits. For the nearest

neighbor classifiers, parameters were chosen after cross validation (Fig. 2.8 right and figures 2.9

and 2.10).
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Figure 2.8: Left: Classification results of four classifiers on experimental dHRM data (5
train/test splits). Right: Cross validation to determine optimal window size (w), number of
neighbors (k) and relaxation parameter psi (ψ). For this dataset, increasing the relaxation
parameter psi or the number of neighbors does not improve performance. Best performing ED
and DTW parameters are indicated by arrows.

2.4.2 U-dHRM Resolving Power

A comparison of the four classification methods tested on the 15 pairs of synthetic melts

is shown in Fig. 2.11. First of all, it is important to notice how the whole series classifiers (1-NN

ED and 1-NN DTW) struggle with this classification problem, only scoring >90% in 6/15 (1-NN

ED) and 3/15 (1-NN DTW) cases (Fig. 2.12). This confirms we have not created a trivial model.

Next, the ensemble methods (RotF and RandF) outperform the optimized whole series classifiers

(50-NN ED and 50-NN DTW) across the board (Fig. 2.11 left and Fig. 2.13). The only pair

which cannot be resolved with a desirable accuracy (>90%) by any of the classifiers is the first

and most challenging pair. The sequences of pair 1 differ by two insertions, an extra G and C

in Yersinia pestis compared to Yersinia pseudotuberculosis. To our surprise, pair 6, which only

has a single SNP, a C/T substitution, can be resolved with an average accuracy >99% (across ten

noise models) by both RotF and RandF. This shows that, according to this model, in some cases

resolving melt curves with single nucleotide resolution can be achieved in dHRM.

To compare the performance of the noise models, we performed a Z-test using the mean

error rates of each classifier for each noise model and adjusting for the number of curves in the
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Figure 2.9: Generalization of 1NN ED and 1NN DTW to kNN. A Average classification
accuracy for experimental dHRM data (5 train/test splits). Increasing the relaxation parameter
psi (ψ) does not increase performance, increasing the number of neighbors (k) does not either.
Best performing ED and DTW settings indicated by arrows. B Increasing k beyond 3 does not
improve performance for kNN ED. C Increasing k beyond 3 does not improve performance for
kNN DTW either.
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Figure 2.10: Generalization of 1NN ED and 1NN DTW to kNN. A Average classification
accuracy across all noise models and synthetic melt pairs (9 train/test splits per noise model and
pair). Increasing the relaxation parameter psi (ψ) does not significantly increase performance,
increasing the number of neighbors (k) does. Best performing ED and DTW settings indicated
by arrows. B Increasing k beyond 3 improves performance even further. An optimum can be
found close to k=50. C Increasing k beyond 3 improves performance even further. An optimum
can be found close to k=50.
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Table 2.3: Standard deviation in classification accuracy for each pair and classifcation method
(averaged over 10 noise models)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Average
1NN ED 3.50 9.82 7.51 7.24 6.49 2.75 7.02 6.59 5.91 6.72 6.45 3.99 7.89 4.99 4.01 6.06
1NN DTW, w=1, ψ=1 3.64 7.46 6.61 7.52 7.63 4.47 6.97 6.24 5.96 7.23 6.57 6.41 7.61 6.54 6.91 6.52
50NN ED 5.38 8.27 5.85 5.44 4.20 2.68 3.99 3.78 3.70 3.74 6.03 3.45 4.59 3.07 2.56 4.45
50NN DTW, w=1, ψ=1 5.83 7.71 6.99 5.79 5.79 3.32 4.61 4.03 4.09 4.50 6.21 4.32 5.30 4.04 3.67 5.08
RandF (n=50) 5.88 4.78 2.95 1.86 1.19 0.84 1.01 0.99 1.09 1.36 2.31 0.80 1.66 0.86 0.69 1.88
RotF (n=50) 7.06 4.40 3.03 1.53 0.94 0.78 0.95 0.87 0.99 1.05 1.83 0.65 1.43 0.81 0.60 1.79

training sets of each of the noise models. Overall the results are very consistent, there is just one

noise model that performs significantly different from all others across all classifiers: model 7 (P

< 0.05 for RotF and P < 0.01 for all others, see Fig. 2.11 right). Model 7 corresponds to residuals

from Streptococcus gallolyticus, which has the highest well-to-well variance across all 10 species

(median DTW in Table 2.1). We will consider disregarding this noise model for future use.

Table 2.3 shows the standard deviation of the 9-fold cross validated classification results

(3 initial splits of the residuals times 3 train/test splits in each of these), averaged across the 10

noise models. The ensemble methods show smaller variation, but in general, classification results

are consistent across classifiers and noise models.
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Figure 2.11: Left: Classification results of the four classifiers on the fifteen pairs of noise-
augmented synthetic uMelts. The ensemble methods (RotF and RandF) perform with an accuracy
>90% for all but the most challenging pair (pair 1). They outperform optimized whole series
classifiers (50NN ED and 50NN DTW) across the board. Right: Comparison of noise model
performance. Outlier models for each classifier are marked with asterisks (*P < 0.05 and
**P < 0.01). Noise model 7, which corresponds to residuals from Streptococcus gallolyticus,
performs significantly different from all other noise models across all four classifiers, which can
be explained by its high DTW variability (Table 2.1).

A B

Figure 2.12: Generalization of 1NN ED and 1NN DTW to kNN. A 1NN Classification perfor-
mance. B A significant improvement can be seen for both ED and DTW when increasing the
number of neighbors to k = 50

25



Figure 2.13: Average classification accuracy across all noise models and synthetic melt pairs (9
train/test splits per noise model and pair). The ensemble methods (RotF and RandF) outperform
the whole series classifiers, even after generalizing them to kNN and selecting the optimum
number of neighbors k = 50.

2.5 Discussion

The experimental classification results confirm the potential that U-dHRM has as a

universal infectious disease diagnostic tool. The modeling results show great promise for using

dHRM as a cheaper, faster and less complex solution to any application that involves classifying

genetic sequences (infectious disease diagnostics, forensics, DNA data storage, etc.). Comparing

dHRM with other emerging screening technologies, there are two remaining challenges to be

overcome. First, until more accurate melt curve prediction models materialize, dHRM is only

able to recognize sequences it already has available in its database. Second, due to its inherent

variation, dHRM might be most useful in applications where single-nucleotide resolution is not

required, although our model suggests that even there, it could play a role. Limitations of this work

include: (1) We have not been able to find an underlying distribution that captures the variation in

noise across different chips and it is therefore possible that future data will have different noise

that could be more difficult to classify. Knowing the exact distribution of the noise might not be

as important though, as long as there are machine classifiers that are able to capture those nuances.
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(2) We have chosen to compare simple and readily available benchmark classification methods.

Other methods such as COTE [51], which uses a collective of transformation ensembles, have

been shown to significantly outperform the benchmark classifiers [30].

Reducing Noice

Having some level of noise is inherent to most technologies and this holds true for dHRM

as well. We’ll discuss some of the sources and potential mitigation strategies here:

• dPCR efficiency. A more efficient dPCR reaction will result in a higher number of ampli-

cons inside the well, which corresponds to a higher fluorescence base level (at room T).

Experience has shown that a high base level (above a certain threshold) is needed for the

melt peak to be observable as separate from the background noise.

• Differences in amplicon sequences. Caused by polymerase base substitution errors. Miti-

gated by using high-fidelity polymerase enzymes.

• Low resolution per well. A single digital well is captured by around a dozen pixels in our

dHRM setup. A higher pixel density could reduce variability.

• Different types of image noise such as Gaussian noise, Salt-and-pepper noise and shot

noise. These types of noise are difficult to reduce on the hardware side but can be mitigated

by using post-processing image filters at the chip level.

• Temperature variations between center and edge of chip can impact PCR efficiency and

introduce variations in melting temperature.

• Development of bubbles at higher temperatures, mainly caused by degassing of dissolved

gas within the reaction chamber. No easy solution is currently known but this can be

addressed by image processing, either at the chip- or individual well-level.
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Clinical Context

Mutations

Mutations in conserved regions do occur [52, 53], and if they coincide with primer re-

gions they can compromise any assay based on amplification through PCR. A technology like

whole-genome-NGS (WG-NGS) mitigates that risk, by providing non-targeted identification of

microbes using deep sequencing of biological samples without a priori [54]. WG-NGS does have

its own challenges with a time to results of 2–3 days and a high cost which makes it difficult to

repeat the assay as frequently as culture. Interpretation of the results by physicians is another

challenge for WG-NGS. It requires appropriate training and is certainly easier in normally sterile

samples, like blood, than in polymicrobial samples (respiratory samples, feces, etc.) [54].

Polymicrobial Samples

One can imagine a sample in which a benign microbe, perhaps part of the natural flora,

is present in excess of the pathogen causing symptoms. No matter how the sample is processed

or diluted, it might be impossible to avoid getting excess microbe in the same dPCR well as

the pathogen. The universal primers could anneal to the benign microbe and outcompete the

amplification reaction targeting the pathogen. In the best case we would observe a mixture of melt

curves and maybe with enhanced processing could try to subtract the melt curve attributed to the

benign microbe. In the worst, and perhaps more likely case, we wouldn’t observe that any mixture

happened at all and attribute the melt curve to the benign microbe. Again, non-targeted WG-NGS

could present a possible alternative [54], with the caveat that getting nucleic acid read-outs

comprising the entire sample biome will need additional specialist/physician interpretation.

Sepsis

Applications such as sepsis, where time-to-result is perhaps the most important require-

28



ment for a diagnostic test [22], is where dHRM could potentially outshine other technologies.

Blood culture analysis remains the gold standard for diagnosing sepsis despite advances in molec-

ular diagnostic technologies [22]. However, because blood culture is slow and inconvenient it

can’t significantly influence the initial treatment of patients. The rapid initiation of effective

antibiotic therapies depends on the capacity of a sepsis diagnostic test to capture clinically relevant

organisms along with antimicrobial resistance within 1 to 3 h [22]. Such a test would require

high sensitivity along with a high negative predictive value in order to be able to deliver the

appropriate, narrow-spectrum antibiotics. It should also utilize small sample volumes and be able

to detect polymicrobial infections and contaminants [22]. In this work we have only discussed

the accuracy of correctly identifying pathogens that are already present in the dHRM database.

Accuracy relates to sensitivity and specificity in the following way:

Sensitivity = TP/(TP + FN) = (Number of true positive assessment)/(Number of all positive

assessment)

Specificity = TN/(TN + FP) = (Number of true negative assessment)/(Number of all negative

assessment)

Accuracy = (TN + TP)/(TN+TP+FN+FP) = (Number of correct assessments)/Number of all

assessments)

Although not explicitly calculated in this work, accuracies over 99.5% in this work will

correspond to a very high sensitivity and specificity as well. We have not validated the requirement

of a high negative predictive value in this work, nor have we investigated the performance of

machine learning algorithms with novel or unseen pathogens. This last topic however will be

discussed in the next chapter.

Future work will include improving the hardware to decrease variation between chips,

improving the software to enable use of increasingly sophisticated algorithms, and experimentally
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validating the predictions we have made in this work. One key aspect will be estimating the

optimal amplicon length for use in U-dHRM, as this is expected to be a trade-off between resolving

power (shorter length equals higher resolving power) and overcoming background/environmental

contamination levels (longer length desired). Another interesting avenue that has yet to be

investigated is determining the extent to which amplicon %GC content plays a role.
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Chapter 3

A Probabilistic Approach to Melt

Curve-Based DNA Profiling Enables Novel

Genotype Detection

3.1 Abstract

Surveillance for genetic variation of microbial pathogens, both within and among species,

plays an important role in informing research, diagnostic, prevention, and treatment activities

for disease control. However, large-scale systematic screening for novel genotypes remains

challenging in part due to technological limitations. Towards addressing this challenge, we

present an advancement in universal microbial high resolution melting (HRM) analysis that is

capable of accomplishing both known genotype identification and novel genotype detection.

Specifically, this novel surveillance functionality is achieved through probabilistic modeling

of sequence-defined HRM curves, which is uniquely enabled by the large-scale melt curve

datasets generated using our high-throughput digital HRM platform. Taking the detection of

bacterial genotypes as a model application, we demonstrate that our algorithms accomplish
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an overall classification accuracy over 99.5% and perform novelty detection with a sensitivity

of 0.94, specificity of 0.96 and Youden index of 0.9. Since HRM-based DNA profiling is an

inexpensive and rapid technique, our results add support for the feasibility of its use in surveillance

applications.

3.2 Introduction

High Resolution Melting (HRM) analysis is a rapid, inexpensive, and powerful post-

amplification nucleic acid characterization technique that is increasingly being used to profile

DNA sequences for research and clinical diagnostic application [55, 39, 56, 57, 58, 59]. To

accomplish HRM analysis, a DNA-binding dye is added to a sample of DNA, where it fluoresces

upon intercalating into the double-stranded structure. Then the sample is heated. As the tempera-

ture increases, the double-stranded DNA denatures into single strands, releasing the intercalating

dye and losing fluorescence. This loss in fluorescence with heating is recorded as a function of

temperature, generating a melt curve.

Advances in HRM technology have taken this analysis from a simple check on amplifica-

tion product homogeneity to a tool for heterozygote detection [55]. Subsequently, heat transfer

and reaction engineering have improved HRM such that a melt curve could reliably be used as

a sequence-specific signature [60]. Efforts to harness the potential of HRM as a broad-based

sequence profiling tool have necessitated the use of machine learning for HRM curve analysis

and classification. Machine learning approaches that have been employed include Naïve Bayes

(NB) [26], Support Vector Machines (SVM) [24, 25], k-Nearest Neighbors using Dynamic Time

Warping [29], Random Forest (RandF) [61, 62], and Neural Networks [63].

As digital PCR has gained popularity in the previous decade, so has the transition from

regular HRM to digital HRM (dHRM) [64, 65]. Initially developed by our lab [23, 22, 66], our

dHRM platform uses a custom heat transfer and imaging system to reliably melt thousands of
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digital PCR (dPCR) reactions simultaneously. Universal primers are used to target con-served

sequences flanking hypervariable regions of the bacterial 16S rDNA gene in our dHRM system.

This enables broad-based amplification of bacteria, while relying on melt and ML to specify

organism identity based on the signatures of the hypervariable sequences. This approach also

offers the ability to detect individual organisms via the ‘digital’ design, wherein each reaction

contains only zero or one genome as template DNA. This development is accompanied by a large

increase in available melt curve data. Where a regular HRM experiment might be performed

on a 96-well plate, our digital HRM experiments make use of a commercial dPCR chip with

20,000 partitions. This means that one experiment can generate 20,000 HRM curves, as opposed

to the standard 96-well format, a 200-fold increase. This increase in data availability opens many

possible routes for further exploring this data using ML.

In the past, HRM analysis was focused primarily on SVM [24, 25], because of its ability

to perform well in high dimensional spaces and on small datasets. SVM entails finding the best

n-1 hyperplane in an n-dimensional space that maximizes the margin between the classes in the

data. Even with small amounts of representative melt curve data to ’learn’ from, SVM algorithms

show excellent performance [24, 25]. However, with the formulation of the one-versus-one SVM

(OVOSVM) applied to HRM analysis, a problem emerges when the melt curve to be predicted

has no representation in the database. For example, with a database containing melt curves from

known pathogens, the currently used OVOSVM algorithm will erroneously classify test melt

curves from an emerging pathogen (that is not represented in the database) into a known pathogen

class. For HRM to reach its potential as a broad-based surveillance tool, there is the need for

machine learning classification algorithms that enable the identification of such ’novel’, emerging

DNA melt curves that are not yet represented in the database.

Probabilistic classification methods are suitable for such tasks [67]. By outputting classifi-

cation probabilities in addition to class predictions, these methods allow for the assessment of the

degree of uncertainty of the classification, which can then be used for novelty detection. To our
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knowledge, there has only been one attempt at implementing novelty detection for HRM [26].

The suggested approach uses Naïve Bayes with a custom distance metric based on the Hilbert

Transformation. Useful information is lost in this approach as the melt peaks are aligned to a

single temperature. We have chosen to pursue a more broadly applicable strategy. Our approach

in the present study is to leverage the large-scale datasets generated using our dHRM platform

to evaluate the utility of several classification algorithms for novelty detection, as well as the

performance of these models in classifying bacteria-derived dHRM melt curves. This approach

requires a larger amount of melt curve data than previously reported.

In addition to experimentally generated melt curves, we also included melt curves derived

in silico using the uMelt tool [44]. We focus on one application as a test case: the detection of

known and novel bacterial pathogens relevant to the diagnosis of bacteremia in neonates. Although

a small number of bacterial organism species are implicated in the majority of neonatal bacteremia

cases, opportunistic infections and emerging pathogens can occur [68]. We demonstrate the

ability to automatically detect rare pathogens that are not represented in our library of organism

melt curves through their ’anomalous’ melt curve signatures.

3.3 Materials and Methods

3.3.1 Bacterial Strains

Table 3.1 lists the bacterial species included in the present study and the number of melt

curves for each species. Figure 3.1 shows examples of their melt curves. These organisms

make up the majority of the causative pathogens implicated in neonatal sepsis [68, 69]. The

organisms were isolated and shared by Dr. David Pride (University of California San Diego

School of Medicine) or purchased from the American Tissue Culture Collection (ATCC, Old

Town Manassas, VA). Bacteria were cultured in Lurie-Bertani (LB) broth or Tryptic Soy broth

(TSB), as required, and incubated overnight at 37◦C.
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Figure 3.1: Overview of dHRM datasets. Left: Experimentally obtained dHRM melt curves.
Right: Ten examples of synthesized melt curves using a combination of uMelts and real dHRM
melt curve noise. Full and short melt refer to using the entire length of the melt curve or a
shorter window around the melt peak location.

3.3.2 Bacterial Genomic DNA Extraction and PCR

Following overnight culture, bacterial genomic DNA was extracted using Wizard Genome

DNA Purification kit (Promega Corporation, Madison, WI). Spectrophotometric absorbance

measurements were used to assess the quality and concentration of the extracted DNA, and

sequencing was conducted to further confirm the identity of the species. Genomic DNA dilutions

were prepared for use with dPCR. Commercially available QuantStudio 3D Digital PCR 20K

chip v2 (Applied Biosystems, Foster City, CA) were used for amplification following the manu-

facturer’s recommended process, except for reagents. As described previously, the dPCR master

mix was optimized for the recommended loading volume of 14.5 µL per reaction, and contained

1X Phusion HF Buffer con-taining 1.5 mM MgCl2 (Thermo Fisher Scientific, Waltham, MA),

0.15 µM forward primer 5’-GYGGCGNACGGGTGAGTAA-3’ (Integrated DNA Technologies,

Coralville, IA), 0.15 µM reverse primer 5’-AGCTGACGACANCCATGCA-3’ (Integrated DNA

Technologies, Coralville, IA), 0.2 mM dNTPs (Invitrogen, Carls-bad, CA), 2.5X EvaGreen (Bi-

otium, Freemont, CA), 2X ROX (Thermo Fisher Scientific, Waltham, MA), 0.02 U/µL of Phusion

HotStart Polymerase (Thermo Fisher Scientific, Waltham, MA), 1 µL of sample, and ultrapure

PCR water (Quality Biological Inc., Gaithersburg, MD) to bring the total volume to 14.5 µL. To
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Table 3.1: Overview of species.

Experimentally obtained melt curves from: Synthesized melt curves from: (continued)
Citrobacter koseri (taxid:545) Moraxella catarrhalis (taxid:480)
Enterococcus faecium (taxid:1352) Mycobacterium fortuitum (taxid:1766)
Escherichia coli (taxid:562) Mycobacterium gordonae (taxid:1778)
Haemophilus influenzae (taxid:727) Mycobacterium kansasii (taxid:1768)
Listeria monocytogenes (taxid:1639) Mycoplasma hominis (taxid:2098)
Staphylococcus aureus (taxid:1280) Mycoplasma pneumoniae (taxid:2104)
Streptococcus agalactiae (taxid:1311) Neisseria gonorrhoeae (taxid:485)
Streptococcus gallolyticus (taxid:315405) Neisseria meningitidis (taxid:487)
Streptococcus pneumoniae (taxid:1313) Oligella urethralis (taxid:90245)
Streptococcus sanguinis (taxid:1305) Pasteurella multocida (taxid:747)

Propionibacterium acnes (taxid:1747)
Synthesized melt curves from: Proteus mirabilis (taxid:584)
Acinetobacter calcoaceticus (taxid:471) Proteus vulgaris (taxid:585)
Acinetobacter baumannii (taxid:470) Pseudomonas aeruginosa (taxid:287)
Aerococcus viridans (taxid:1377) Salmonella enterica (taxid:28901)
Bacillus anthracis (taxid:1392) Serratia marcescens (taxid:615)
Bacillus cereus (taxid:1396) Staphylococcus epidermidis (taxid:1282)
Bacillus subtilis (taxid:1423) Staphylococcus lugdunensis (taxid:28035)
Bacteroides fragilis (taxid:817) Staphylococcus saprophyticus (taxid:29385)
Bordetella parapertussis (taxid:519) Streptococcus pyogenes (taxid:1314)
Bordetella pertussis (taxid:520) Treponema pallidum (taxid:160)
Campylobacter jejuni (taxid:197) Yersinia enterocolitica (taxid:630)
Chlamydia pneumoniae (taxid:83558) Yersinia pestis (taxid:632)
Chlamydia trachomatis (taxid:813) Yersinia pseudotuberculosis (taxid:633)
Citrobacter freundii (taxid:546)
Clostridium difficile (taxid:1496)
Clostridium perfringens (taxid:1502)
Corynebacterium (taxid:1716)
Coxiella burnetii (taxid:777)
Enterobacter aerogenes (taxid:548)
Enterococcus faecalis (taxid:1351)
Enterococcus gallinarum (taxid:1353)
Francisella philomiragia (taxid:28110)
Francisella tularensis (taxid:263)
Helicobacter pylori (taxid:210)
Klebsiella pneumoniae (taxid:573)
Legionella pneumophila (taxid:446)
Micrococcus luteus (taxid:1270)

36



load the chip, a master mix reaction volume of 14.5µL was spread across following manufacturer’s

recommendation. After loading, the dPCR chip was cycled on a flatbed thermocycler with the

fol-lowing cycle settings: an initial enzyme activation (98 ◦C, 30 s), followed by 70 cycles (95

◦C, 30 s, 59 ◦C, 30 s, 72 ◦C, 60 s).

3.3.3 DNA Melt Curve Generation and Preprocessing

The U-dHRM device developed by our group has been previously described [22, 23].

Briefly, it comprises a copper plate on which the microfluidic dPCR chip is placed, thermoelectric

heater/cooler (TE Technology Inc., Traverse City, MI), proportional-integral-derivative (PID)

controller (Meerstetter Engineering GmbH, Rubigen, Switzerland), Class 1/3B resistance tem-

perature detector (RTD) (Heraeus, Hanau, Germany) embedded in the copper block, K-type

thermocouple (OMEGA Engineering, Stamford, CT), and heat sink. A thin layer of thermal

grease added between the dPCR chip and copper block ensures efficient heat transfer. A custom-

made adapter secures the device on-stage for optimal fluorescent imaging. With heat ramping,

simultaneous fluorescent images from the DNA-intercalating dye, EvaGreen (Ex/Em: 488 nm/561

nm) and the control dye, ROX (Ex/Em: 405 nm/488 nm) are acquired with a Nikon Eclipse Ti

microscope (Nikon, Tokyo, Japan). Melt curves are generated by implementing an automated

imaging processing algorithm in MATLAB. Background subtraction was performed similar to

the linear method described in [70]. This was done in order to align the tails of the melt curves

horizontally with the x-axis, so they are most similar to the theoretically predicted uMelt curves,

as can be seen in Figure 3.1 and Figures 3.2,3.3 and 3.4.
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Figure 3.2: Data preparation. Linear background is subtracted to make sure experimental melt
curves resemble synthetic ones. Top: mechanism. Left: experimental mean curves. Right:
experimental mean curves after background subtraction.

Figure 3.3: Comparison of experimentally obtained melt means and synthesized uMelt curves.

38



Figure 3.4: Overview of experimentally obtained and synthesized melt curves. Top: full melts.
Bottom: short versions. For the experimental curves (right), the mean curve is shown. For the
uMelts the original curve is shown (without applying dHRM noise). We wanted to assure these
looked similar as the noise residuals to the mean (from the experimental data) are added to the
uMelts.
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3.3.4 Machine Learning Models

Logistic Regression

Logistic Regression is a supervised machine learning method used to assign discrete

labels to observations. It returns a probability value by transforming its output using the ’logistic’

or ’sigmoid’ function [71]. Maximum Likelihood Estimation (MLE) is used in order to find

the parameters of the Logistic Regression that result in an accurate model with minimum error.

[72]. MLE consists of using gradient descent in order to find the parameters that maximize the

log-likelihood function. [71, 72].

Naïve Bayes

Like other supervised machine learning methods, Naive Bayes uses features to assign

labels to observations [73]. What is special about this method is that it assumes features are

uncorrelated or independent, which is why it is called naive [73]. The algorithm is based on

Bayes’ theorem which is defined by P(c|x) = P(x|c)P(c)
P(x)

, with P(c|x) the posterior probability of

class c given feature x, P(c) the prior probability of class c, P(x|c) the likelihood or the probability

of feature x given class c, and P(x) the prior probability of feature x [74].

Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised machine learning methods

that create lines (hyperplanes in higher dimensions) to separate data into classes [75]. The SVM

algorithm first finds support vectors, which are the points from both classes that are closest to the

line or hyperplane [75]. Then, the distance between the line and the support vectors, known as the

margin, is computed. The goal of SVM is to maximize the margin and the optimal hyperplane is

the one with the maximum margin [75]. Sometimes data is not linearly separable which means a

straight line cannot be used to classify the data. In that case, the data can be converted to data that
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is linearly separable in a higher dimension using kernel functions. Now that the data is linearly

separable, the data can be classified. [75].

Neural Networks (Multi-layer Perceptron)

Multi-layer Perceptron (MLP) is a supervised machine learning method that can learn

complex (non-linear) functions by training on a dataset [76]. The algorithm consists of at least

three layers: an input, an output, and one or more hidden layers. Each layer consists of neurons,

which transform the value from the previous layer with a weighted summation, followed by a

non-linear activation function like the hyperbolic tan function [76]. Finally, the values from the

last hidden layer are transformed into output values or labels by the output layer. The MLP used in

this chapter trains using gradient descent and the gradients are calculated using backpropagation

[76].

Random Forest

Random Forest is a supervised machine learning method that uses decision trees as

building blocks [77]. Decision trees split data at each node according to a feature ensuring that

the resulting roots are as different from each other as possible and the members of each root

are as similar to each other as possible [77]. A large number of decision trees that operate as

an ensemble make up a Random Forest. Each tree can predict a class outcome and the class

is chosen by majority vote. The random forest model performs well because a large number

of uncorrelated trees operating as an ensemble will outperform any of the individual trees [77].

Random sampling of training data (Bagging) in combination with feature randomness (each tree

can only pick from a random subset of features to split nodes), are used to make sure the trees in

the Random Forest are uncorrelated. [77].
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3.3.5 Machine Learning Model Selection

Some ML methods are better suited than others for probabilistic classifications. SVMs for

example are inherently not probabilistic but have been adapted to provide probabilistic outputs

[78]. ML methods vary widely in how they assign probability values to classifications [79]. Naïve

Bayes for example, which makes unrealistic independence assumptions, pushes probabilities

towards 0 and 1. Other models, such as neural networks, do not have these biases and predict well

calibrated probabilities. Efforts have been made to correct these distorted probabilities to true

posterior probabilities using Platt Scaling and Isotonic Regression [79]. We set out to compare

five ML methods: Logistic Regression, Naïve Bayes (NB), Support Vector Machines (SVM),

Neural Networks and Random Forest (RandF). At the end of this work we briefly discuss how

calibrating the probabilities affects the results. We built and implemented all algorithms using the

scikit-learn package with-in Python programming language [35]. All data and code are available

on https://github.com/lenlan/dHRM-novelty-detection.

3.3.6 Leave-one-group-out (LOGO) Experiments

To assess the ability of a machine learning method to detect novel melt curves, i.e., melt

curves belonging to species not previously represented in our database, we carried out leave-one-

group-out experiments with a species being equivalent to a group. Using melt curves from all ten

bacterial species, we held out melt curves for each of the ten species in turn. Melt curves of the

remaining nine species were then randomly split into training and test sets (at a ratio of 80:20).

The left-out species was then added to the test set to make up the new test set. The machine

learning model was fit on the training set and evaluated on its ability to correctly identify the melt

curves belonging to the left-out species as novel from the mixture comprising the 20% split of the

remaining nine species and the withheld species. This was repeated ten times, for the ten species.

Figure 3.5 presents a schematic of the novelty detection experimental approach. We assessed the

42



Bacterial DNA 

extraction
Digital PCR

Melt curve 

generation 

(dHRM)

dHRM 

database

(10 species)

Melt curve 

preprocessing

Machine 

learning model 

selection

Leave-one-

species-out 

experiments

Threshold 

selection

Threshold 

validation
Novelty 

detection

Synthetic 

dHRM 

database

(50 species)

Logistic Regression

Naïve Bayes

Support Vector Machine

Neural Net

Random Forest

Figure 3.5: Workflow for probabilistic novelty detection.

performance of the novelty detection model using Youden’s index, which is a single statistic that

captures the performance of a dichotomous diagnostic test. It is the point on an ROC curve at

which sensitivity + specificity - 1 is maximized. A prerequisite for using any ML method for

novelty detection is that it can classify the non-novel data in our database with high accuracy. We

briefly discuss classification performance in the results section.

3.3.7 Threshold Selection

Figure 3.6(left) shows the results of one LOGO experiment for one ML method (RandF,

n=100). The optimal probability threshold can be found by plotting the ROC curve (Figure 3.6

(right)) and selecting its Youden index.

The next step is to find a threshold that works for all ten LOGO experiments combined.

After all, we are interested in finding a practical threshold that can be used to differentiate the

ten species in our dHRM database from any unknown or novel species. To find this ‘practical’

threshold, we accumulate the LOGO experiments and create their ROC curve to find the optimal

threshold for the accumulated LOGO experiments (Figure 3.7 (left)). We investigated weighting

each experiment (e.g. by number of left-out curves per LOGO experiment) but didn’t observe a

significant change in the selected threshold (data not shown). Having found the ’practical’ thresh-
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Figure 3.6: Leave-one-species-out cross validation to determine probability threshold. A.
Boxplot of the classification probabilities of each of the ten species. In this experiment C. koseri
is the left-out species, which means it is left out of the training set and added to the test set. This
experiment is repeated for each of the ten species, and an optimal threshold can be found for
each of them. This experiment is repeated for all ML methods (method shown here is RandF
(n=100)). B. ROC curve that is used to find the optimal threshold. Youden’s Index is chosen
as the optimal threshold, it is the point on the ROC curve where sensitivity + specificity – 1 is
maximized.

old, we can apply it to each of the ten LOGO experiments separately to see what performance

would be like if we would have picked this threshold as our initial choice. This means that each

LOGO experiment separately will be performing at a different (sub-optimal) operating point on

their ROC curve, which is shown in Figure 3.7 (right).

3.3.8 Threshold Validation with Synthetic Melt Curves

We selected 50 clinically relevant bacterial pathogens, including category A and B

biothreat agents and their surrogates from [41] (Table 3.1). We obtained their melt curves as

outlined in [62] and used a similar model to [62] to add real dHRM noise to these synthetic melt

curves (Figure 3.7). We chose to create 100 melt curves per species, with a different noise residual

applied to each individual melt curve, making sure no residual is used twice in this creation

process. Figure 3.1 (right) shows ten examples of the synthetic melt curves with added dHRM

noise. Figure 3.8 shows an overview of the synthetically created melt curves for all 50 pathogens.
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Figure 3.7: Accumulating the leave-one-group-out (LOGO) experiments results in a ’practical’
threshold. A. ROC curve for all ten LOGO experiments accumulated. The optimal threshold is
again found by Youden’s Index. We have named it the ‘practical’ threshold as one threshold
has to be chosen (as opposed to a separate threshold for each LOGO experiment) when further
validating the model on unseen ’novel’ melt curves. It is the optimal threshold for all ten LOGO
experiments combined. B. Choosing a practical threshold implies that each LOGO experiment
individually will be performing at a suboptimal thresh-old, which translates to a suboptimal
operating point on the ROC curve.
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Figure 3.8: Overview of all synthesized melts. Residuals to the mean from each experimental
melt curve are applied to the uMelts. The noise is scaled to the ratio of the peak heights (real
peak/uMelt peak) and shifted (position real peak – position uMelt peak) so the noise should be
in a similar position relative to the peak. No residual is used twice which means all the curves
shown are unique. Each uMelt uses ten residuals from each of the experimental melts, which
results in 100 curves per uMelt species.
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3.4 Results

3.4.1 Classification Performance

The ML methods show very similar classification accuracy, which is summarized in

Table 3.2. No significant difference can be observed between the ’full melt’ and ’short melt’

classification results, which implies there might not be any additional information in the tail of the

melt curve. These results do not provide any hint as to which method would be most suited for

novelty detection. The model fit time is provided to give the reader a sense of how these methods

compare to each other performance-wise and can be interpreted as a possible tiebreaker in cases

of similar classification or novelty detection performance.

3.4.2 Leave-one-group-out (LOGO) Experiments and Threshold Selection

Figure 3.9 summarizes the results of the LOGO experiments. The performance, as

measured by Youden’s index is shown as a function of classification method. Each bar shows the

average performance across ten LOGO experiments. ’Optimal thresholds’ means selecting the

best threshold for each LOGO experiment individual-ly. ’Practical threshold’ means selecting

the optimal threshold for the accumulated LOGO experiments and applying it to all LOGO

experiments separately. Random Forest outperforms the other methods, but Neural Nets and

SVMs still perform relatively well. This is not surprising, as random forests are known to be an

efficient way of performing outlier detection in high-dimensional datasets[80].
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Table 3.2: ML methods overview and classification results.

Full melt Short melt
Time (s) Accuracy Time (s) Accuracy

Logistic Regression 21.55 0.995 13.18 0.995
Gaussian Naïve Bayes 0.17 0.977 0.07 0.974
SVM (rbf) 125.68 0.996 31.34 0.996
SVM (linear) 29.34 0.995 6.75 0.995
Neural net (identity) 22.2 0.992 25.24 0.992
Neural net (logistic) 23.35 0.996 25.17 0.997
Neural net (tanh) 17.77 0.996 19.99 0.997
Neural net (relu) 14.74 0.995 14.83 0.997
RandF (n=100) 1.29 0.995 0.89 0.995
RandF (n=500) 5.3 0.996 3.53 0.996

Figure 3.9: Summary of LOGO novelty detection results. Average novelty detection perfor-
mance across ten species measured by Youden’s index as a function of classification method.
Optimal means selecting the best threshold for each leave-one-species-out experiment. Practical
means selecting one threshold and applying it to all leave-one-species-out experiments.
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Figure 3.10: Validation of practical threshold on synthesized set of melt curves. A. The practical
threshold, selected through the ten LOGO experiments, was validated on a new dataset consisting
of 50 species, each with 100 synthetic melt curves with real dHRM noise. The performance of
E. coli seemed to be an outlier, and this was confirmed using one-tailed t-tests. B. ROC curve.
When the practical threshold is close to the optimal threshold, it serves as a validation for the
threshold selection process. The ML method shown here is RandF (n=100).

3.4.3 Threshold Validation and Novelty Detection

Figure 3.10 shows an example of a boxplot (Figure 3.10(left)) and ROC curve (Figure

3.10 (right)) used to validate the previously obtained ’practical’ threshold. The method shown in

Figure 3.10 is RandF (n = 100), which was one of the best performing methods, figures 3.13-3.22

in section 3.6 show all other methods for comparison. When the practical threshold is close to the

optimal threshold, the practical operating point on the ROC curve (Figure 3.10 (right)) will be

close to the optimal one (Youden’s index). When this is the case, it confirms that our proposed

method for obtaining a practical threshold for novelty detection, is indeed valid. Figure 3.11

(left) shows an overview of the results for all ML methods. The average difference between the

optimal and practically attained Youden index across the ten ML methods is just 0.015 with a

standard deviation of 0.013. This serves as a confirmation of our threshold selection process using

the accumulated LOGO experiments. Random Forest and SVM (rbf) perform the best, with the

Neural Nets a close third.
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Figure 3.11: Summary of practical threshold validation results. A. Average novelty detection
performance on 50 unseen species measured by Youden’s index as a function of classification
method. B. Dropping E. coli, an outlier group, results in im-proved performance for almost all
methods (results including E. coli are overlayed in gray). SVM (rbf) is more robust against this
outlier behavior and sees less improvement.

3.4.4 Further Improvements

We observed that the classification probabilities for the E. coli group of melt curves are

more spread out (Figure 3.10 (left)) and might be an outlier group compared to the other species.

This was apparent for multiple ML methods and was confirmed with one-tailed t-tests (e.g. for the

short melt curves: P < 0.01 for Logistic Regression, Gaussian NB, SVM (rbf and linear), Neural

Net (identity and relu) and RandF (n=100 and n=500)). As a result of this, we ran all steps again,

but this time leaving out E. coli, to see if we could further optimize our novelty detection method.

Figure 3.11 (right) shows that results do indeed improve when leaving E. coli out. Random Forest

and SVM (rbf) are the top performers, and their results are further summarized in Table 3.3. The

best performance achieved is a Youden index of 0.90, corresponding to a specificity of 0.96 and

sensitivity of 0.94.

We also investigated whether calibrating the probabilities using scikit-learn’s ’Calibrated-

ClassifierCV’ function would improve the outcome. We tested both the ’sigmoid’ method, which

corresponds to Platt’s method (i.e., a logistic regression model) or the ’isotonic’ method, which is
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Figure 3.12: Probability calibration results. Top: with E. coli. Bottom: dropped E. coli. Left:
full melt. Right: short melt. Calibrating probabilities improves novelty detection for Logistic
Regression and Naïve Bayes. None of the calibrated methods outperform the best results (SVM,
Neural Net, RandF) as outlined in Figure 3.11 and Table 3.3.

a non-parametric approach. Results are summarized in Figure 3.12. As expected, we see a large

improvement for Naïve Bayes. We also see a significant improvement for Logistic Regression.

None of the calibrated methods outperform the best results (SVM, Neural Net, RandF) as outlined

in Figure 3.11 and Table 3.3 though.
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Table 3.3: Overview of best results.

Optimal
specificity

Optimal
sensitivity

Optimal
Youden

Practical
specificity

Practical
sensitivity

Practical
Youden

Full melt
SVM (rbf) 0.93 0.94 0.87 0.94 0.92 0.86
RandF (n = 100) 0.98 0.93 0.91 0.96 0.94 0.9
RandF (n = 500) 0.98 0.93 0.91 0.93 0.95 0.89
Short melt
SVM (rbf) 0.94 0.97 0.91 0.96 0.94 0.9
RandF (n = 100) 0.97 0.93 0.9 0.92 0.95 0.88
RandF (n = 500) 0.98 0.93 0.91 0.96 0.94 0.9

3.5 Discussion

Our work demonstrates the utility of probabilistic classification algorithms in resolving

multiple bacterial organism melt curves, and in identifying previously unknown (novel) melt

curves that are not represented in the database. The large amount of dPCR chip-generated melt

curve data enabled the development of probabilistic classifier and novelty detection algorithms,

which distinguishes this study from previous studies applying non-probabilistic methods to small

datasets of melt curves [81, 82].

Previously used ML methods for dHRM analysis [81] are unsatisfactory for melt curve

novelty detection, i.e., detecting when test melt curves are not represented in the melt curve

database. The only other published method specifically aimed at melt curve novelty detection

[26] aligns the melt curves to one specific temperature, losing the useful melt peak location

information in the process. We have selected the most widely used ML methods in HRM analysis

and have shown that they are all able to classify our dHRM database with very high accuracy.

Interestingly, some drastically outperform others when it comes to novelty detection. We find that

Neural Nets, SVMs, and Random Forest outperform the other ML methods, even after calibrating

the probabilities. The SVM with the radial basis function (rbf) as a kernel outperforms the SVM

with a linear kernel, which shows that our data cannot easily be separated by linear hyper-planes.
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Random forests have been shown to perform well on classification tasks involving time series data

sets [30] and are known to be an efficient way of performing outlier detection in high-dimensional

datasets [80]. Here, we show that its well-calibrated probabilities are also particularly useful for

conducting HRM novelty detection. One of the limitations of this work is that we used the most

basic versions of each ML method and chose to not further optimize parameters for each one.

Optimizing parameters could result in further improved novelty detection performance. Further

improvements can be expected with more complex algorithms. It has been shown that the simplest

way to gain improvement on time series problems is to transform the data into an alternative data

space where discriminatory features are more easily detected [51]. The COTE classifier [51],

which stands for Collective of Transformation-Based Ensembles is a collective of ensembles of

classifiers using different data transformations. The collective contains classifiers constructed in

the time, frequency, change, and shapelet transformation domains. It has outperformed any other

previously published time series classification algorithm [51] and is expected to perform well

doing novelty detection too.

The performance of our approach was improved with the removal of data for the outlier

species E. coli. One reason for the lower performance of E. coli compared to the other species

could be that is has the lowest number of melt curves available (Table 3.1), which results in

a smaller amount of training data available for the ML methods. We do not expect E. coli to

inherently have more heterogeneity in its sequence compared to other species. Melt curve shape

variance might be another contributor to its outlier behavior as it has the third most variance in

shape (from the ten species) as measured by dynamic time warping (DTW), in our previous work

[62].

No major differences were found between using the full length and short version of the

melt curves, although for most methods the short version does outperform the full length, showing

that there might not be any additional information in the low-temperature tail of the curve, and

including it might even confound the novelty detection performance.
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There are several advantages of probabilistic classification methods over non-probabilistic

classifiers. First, unlike probabilistic classification models, with non-probabilistic models, un-

certainty in classification cannot be modeled. This is important in high-stake situations, such

as clinical disease diagnosis, where decisions rely strongly on the certainty of the classification

[83]. As interest in the utilization of HRM technology in the clinical set-ting grows, probabilistic

classification methods will likely also become increasingly necessary for these cost-sensitive

situations, where the certainty of classification has to be sufficiently high for clinical management

decisions to be made. Second, probabilistic classifiers can be more effectively combined with

other classifiers, within a large machine learning framework [84].

In conclusion, advances in machine learning and ’big data’ generation are opening up

more opportunities for the advancement of HRM, which due to its speed, low cost and simplicity

was already attractive. The opportunity to use HRM as a discovery tool as well as profiling

technology will further advance HRM technology towards its application in research and clinical

diagnostics.

3.6 Additional Figures

Figure 3.13: Gaussian NB.
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Figure 3.14: Logistic Regression.

Figure 3.15: Neural net activation=identity.
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Figure 3.16: Neural net activation=logistic.

Figure 3.17: Neural net activation=relu.
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Figure 3.18: Neural net activation=tanh.

Figure 3.19: RandF n=100.
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Figure 3.20: RandF n=500.

Figure 3.21: SVM kernel=linear.
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Figure 3.22: SVM kernel=rbf.
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Chapter 4

Conclusion

Rapid and precise molecular diagnostics are revolutionizing the clinical care of patients

with suspected infections. As increasing numbers of molecular diagnostic technologies emerge

from research laboratories into the clinical domain, it is essential to assess their clinical impact

and cost-effectiveness prior to adoption in the clinical setting. The goal of this PhD was to

explore the limitations of the dHRM platform, which allows it to be compared to other emerging

technologies, and directly affects its clinical potential.

First, we developed a computational framework for estimating the resolving power of

dHRM technology for defined sequence profiling tasks. We found that, despite noise inherent

to dHRM, single-nucleotide resolution can be achieved in certain cases. Having such a high

resolving power means that dHRM can potentially be used to differentiate closely related species

or screen for genotypic markers of antimicrobial resistance. Second, we presented an advancement

in universal microbial high resolution melting (HRM) analysis that is capable of accomplishing

both known genotype identification and novel genotype detection. Specifically, we achieved this

novel surveillance functionality through probabilistic modeling of sequence-defined HRM curves,

uniquely enabled by the large-scale melt curve datasets generated on our high-throughput digital

HRM platform. Our hope is that in the future, the dHRM platform can translate into a near-point
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of care, cost-effective tool for infectious disease screening.
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