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ABSTRACT OF THE DISSERTATION 
 

 

Frameworks for Univariate and Multivariate Non-Stationary        

Analysis of Climatic Extremes 

 

by 

 

Linyin Cheng 

 

Doctor of Philosophy in Civil Engineering  

 

University of California, Irvine, 2014 

 

Professor Amir AghaKouchak, Chair 

 

 

 
Numerous studies show that climatic extremes have increased substantially in the second half of 

the 20th century. For this reason, analysis of extremes under a non-stationary assumption has 

received a great deal of attention. In this dissertation, a methodology is developed for deriving 

non-stationary return levels, return periods, and climate risk assessment using a Bayesian 

approach. The methodology is presented in the Non-stationary Extreme Value Analysis 

(hereafter, NEVA) software package. The methodology offers the confidence intervals and 

uncertainty bounds of estimated non-stationary return levels using both constant and time 

varying exceedance probability methods. Both stationary and non-stationary components of 

NEVA are validated for a number of case studies, and have been validated using empirical return 

levels. The results show that NEVA reliably describes extremes and their return levels. The 

methodology has been applied for assessing non-stationary extreme return levels in CMIP5 

multi-model simulations. Furthermore, the model has been applied for non-stationary 

precipitation Intensity-Frequency-Duration (IDF). Beyond univariate non-stationary analysis, a 

novel framework named empirical Bayes conditional extreme value analysis model has been 
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developed for modeling concurrent and conditional extremes. The methodology has been used 

for detecting potential changes in the hydrological cycle, and assessing joint occurrences of 

extreme events.  



1 

 

CHAPTER 1:    Introduction 
 

1. Problem Statement 

 

Climate change and variability are likely to affect physical and hydrometeorological conditions  

and  to  interact  with,  and  possibly  exacerbate,  ongoing  environmental  change  (IPCC  2007; 

Barnett et al, 2006; Schmidli et al., 2005; Solomon et al., 2007; Frich et al., 2002). Climatic 

extremes including heavy precipitation events and extreme hot days, have substantially increased 

in the past few decades (Alexander et al 2006; Vose et al. 2005). A recent study shows that even 

concurrent extremes (e.g., warm-dry and warm-wet conditions) have increased significantly in 

the second half of the 20
th

 century (Hao et al., 2013). Therefore, there exists a strong need to 

study extreme weather and climate events across different spatio-temporal scales and to examine 

potential changes in their frequency and intensity. In the past decades, numerous methods and 

models have been developed for the analysis of extremes in a changing climate (AghaKouchak et 

al., 2013).  However, there are still major research gaps including:  

(1) modeling non-stationarity processes in space and time (e.g., seasonal, interannual time 

scales). Engineering and hydrologic design considerations have long relied on analyses of 

extreme-rainfall return intervals. The fundamental assumption behind design concepts is the 

so-called stationary assumption that indicates frequency of extremes do not change 

significantly over time. Recent studies have demonstrated that extremes have changed or are 

likely to change mainly due to climate change (e.g., Milly et al. 2008). Heavy-rainfall events 

have become more frequent since the middle of the last century, not only in the United States 

(Karl and Knight 1998), but also in regions across the globe. Warming of the climate system 

is unequivocal, as is now evident from observations of increases in global average air and 

ocean temperatures, widespread melting of snow and ice and rising global average sea level 
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(e.g., IPCC 2007: Synthesis Report). Of course, ignoring time-variant (non-stationary) 

behavior of extremes could potentially lead to underestimating extremes and failure of 

infrastructures and considerable damage to human life and society.  

(2) modeling concurrent, consecutive, and conditional extremes and their dependencies. The 

combination or sequences of climate extreme events may have a significant impact on the 

ecosystem and society, though the individual events involved may not be severe extremes 

themselves. Current multivariate extreme value models are designed for modeling the 

dependence between two sets of extremes. However, an extreme event (e.g., extreme 

heatwave) can happen concurrently with an another non-extreme event (e.g., moderate 

drought) whose combination could lead to an extreme climatic condition. Current models 

cannot assess joint occurrence of an extreme event with an event that is only a moderate 

departure from the mean.  

(3) deriving the climate response of the multi-model projections as well as the uncertainty of 

climate simulations.  Climate models have been widely used to derive projections of climate 

change, climate extremes and their frequency of occurrence over various time scales and 

emission scenarios. Several national and international efforts, such as the Intergovernmental 

Panel on Climate Change (IPCC 2007), provide data sets of plausible changes for the future. 

However, climate projections are subject to significant uncertainties arising from 

uncertainties in boundary, initial conditions, parameters and model structure (de Elia and 

Cote 2010; Deque et al. 2007; Kjellstrom and Ruosteenoja 2007). In order to analysis 

extreme climate variables from multi-model climate simulation, one needs to derive the 

climate response of the multi-model projections as well as the uncertainty of climate 

simulations. 
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The overarching goal of this study is to address the above mentioned research gaps. This study 

will  lead  to  a  better understanding  of  hydrologic  extremes  in  a  changing  climate,  and  will  

provide valuable tools and techniques for analyzing extreme events. In the following section, the 

objectives of the project are discussed in details.  

 

2. Objectives 

(1) Non-stationary Extreme Value Analysis in a Changing Climate 

This study introduces a framework for estimating stationary and non-stationary return levels, 

return periods, and risks of climatic extremes using Bayesian inference. This framework is 

implemented in the Non-stationary Extreme Value Analysis (hereafter, NEVA) software 

package, explicitly designed to facilitate analysis of extremes in the geosciences. In a Bayesian 

approach, NEVA estimates the extreme value parameters with a Differential Evolution Markov 

Chain (DE-MC): a genetic algorithm Differential Evolution (DE) for global optimization over 

the parameter space with the Markov Chain Monte Carlo (MCMC) approach. NEVA includes 

confidence intervals and uncertainty bounds of estimated return levels through Bayesian 

inference, with its inherent advantages in uncertainty quantification. The software presents the 

results of non-stationary extreme value analysis using various exceedance probability methods. 

We evaluate both stationary and non-stationary components of the package for a case study 

consisting of annual temperature maxima for a gridded global temperature dataset. The results 

show that NEVA can reliably describe extremes and their return levels. 
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(2) Non-stationary Return Levels of CMIP5 Multi-Model Temperature Extremes using 

NEVA 

 

The NEVA model discussed above is used to evaluate to what extent the CMIP5 climate model 

simulations of the climate of the 20
th

 century can represent observed warm monthly temperature 

extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 

100-year return levels of the annual maxima of monthly mean temperatures (hereafter, annual 

temperature maxima) from CMIP5 simulations are compared with those of Climatic Research 

Unit (CRU) observational data considered under a non-stationary assumption. The results show 

that CMIP5 climate models collectively underestimate the mean annual maxima over arid and 

semi-arid regions that are most subject to severe heat waves and droughts. Furthermore, the 

results indicate that most climate models tend to underestimate the historical annual temperature 

maxima over the United States and Greenland, while generally disagreeing in their simulations 

over cold regions. Return level analysis shows that with respect to the spatial patterns of the 

annual temperature maxima, there are good agreements between the CRU observations and most 

CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima 

differ substantially across individual models. Discrepancies are generally larger over higher 

latitudes and cold regions. 

(3) Non-stationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure 

Design in a Changing Climate 
 

Extreme climatic events are growing more severe and frequent. This observation calls into 

question how prepared our infrastructure is to deal with these changes. Current infrastructure 

design is primarily based on precipitation Intensity-Duration-Frequency (IDF) curves with the 

so-called stationary assumption, meaning extremes will not vary significantly over time.  

However, climate change is expected to alter climatic extremes, a concept termed non-
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stationarity. Using NEVA (Objective 1), we show that given non-stationarity, current IDF curves 

substantially underestimate precipitation extremes and thus, they may not be suitable for 

infrastructure design in a changing climate. We show that a stationary climate assumption may 

lead to underestimation of extreme precipitation by as much as 60%, which increases the flood 

risk and failure risk in infrastructure systems. We then use the generalized framework outlined 

above for estimating non-stationary IDF curves and their uncertainties using Bayesian inference.   

(4) Empirical Bayes Estimation for the Conditional Extreme Value Model 

 

A methodology is developed for modeling multivariate extreme values through a conditional 

distribution framework that does not require a priori knowledge of the dependence structure of 

the variables. Also, this methodology does not require that two extremes to happen at the same 

time. This conditional extreme value model can be used to assess one extreme value (e.g., an 

extreme heatwave) conditioned on another non-extreme event (e.g., moderate drought). The 

main science contribution of this component is an estimation strategy for modeling multivariate 

extreme values using an empirical Bayesian approach. The approach is tested on different types 

of synthetic extreme dependence structures, as well as for two real observations consisting of 

precipitation conditioned on extreme temperature. The simulated data consist of numerous 

repeated trials in order to gauge the coverage of credible intervals for the parameters. The 

presented model can be potentially applied in a wide variety of science fields including finance, 

earth science, environmental science, and biology.  

(5) An Empirical Bayes Conditional Extreme Value Model for Detecting Changes in 

Hydrological Cycle 

 

Greenhouse gases in the atmosphere have been increasing since the industrial revolution, leading 

to the warming of the Earth through an increase in downwelling infrared radiation. Warming of 
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the atmosphere increases its water holding capacity and could intensify the hydrological cycle. 

Several methods have been developed for evaluating changes in climatic variables. On the other 

hand, numerous indices have been developed for monitoring changes in climate. Most change 

detection methods, indices, and trend studies focus on changes in one variable at the time. 

However, hydrologic variables are dependent, and a change in one variable can alter extreme and 

non-extreme values of other variables. In this study, a new approach for modeling multivariate 

extreme values through a conditional distribution framework using the empirical Bayes approach 

is proposed. This chapter highlights the value of empirical Bayes conditional extreme value 

analysis as a tool for simulating and assessing conditional extremes (e.g., changes in the 

distribution of precipitation conditioned on extreme temperature). The model has been applied to 

several locations across the world. This presentation will summarize the findings on changes in 

the hydrological cycle over the United States and Australia.  

(6) A Methodology for Deriving Ensemble Response from Multi-model Simulations 

 

Multi-model ensembles are widely used to quantify uncertainties of climate model simulations. 

Previous studies have confirmed that a multi-model ensemble approach increases the skill of 

model simulations. However, one may need to know which ensemble member is more likely to 

be true, particularly when the ensemble is spread out over a wide area. Typically, ensemble 

response (climate response) is derived by taking the mean or median of ensemble members. 

However, strong similarities exist between models (members of an ensemble), which may cause 

biased climate response toward models with strong similarities. In this study, a model is 

proposed for deriving the climate response (ensemble response) of multi-model climate model 

simulations. The approach is based on the concept of the Expert Advice (EA) algorithm that has 

been successfully applied to the financial sector. The goal of this methodology is to derive an 
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ensemble response such that every time step is equal or better (less error) than the best model. 

The methodology is tested using the CMIP5 historical temperature simulations (1951-2005) and 

Climatic Research Unit observations, and the results show that the EA algorithm leads to smaller 

error compared to the ensemble mean. 

 

3. Organization of the Dissertation 

This dissertation is organized as follows: Chapter 2 presents a model for non-stationary extreme 

value analysis (NEVA) in a changing climate. In Chapter 3 and Chapter 4, NEVA is used to 

study non-stationary return levels of CMIP5 multi-model temperature extremes, and non-

stationary precipitation Intensity-Duration-Frequency curves for infrastructure design in a 

changing climate, respectively. Chapter 5 describes the empirical Bayes estimation for the 

conditional extreme value analysis. Chapter 6 shows the application of the empirical Bayes 

conditional extreme value model as a tool for detecting changes in the hydrological cycle. 

Chapter 7 outlines a methodology for deriving ensemble response from multi-model simulations 

with applications on CMIP5 multi-model temperature data. The last chapter provides a summary 

of the findings and offers some avenues for further research. 
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CHAPTER 2:   Non-stationary Extreme Value Analysis in a Changing 

Climate 

2.1  Introduction  

 

The Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks 

of Extreme Events and Disasters (Field et al. 2012) stressed that continuation of the observed 

Earth warming would change the frequency, severity and spatial pattern of climatic extremes. 

Recently, climatic extremes have been widely studied at a range of spatial and temporal scales 

(Wehner 2013; Jacob 2013; AghaKouchak et al., 2013; Schubert and Lim 2013; Diffenbaugh 

and Giorgi, 2012; Kharin et al. 2007; Easterling et al. 2000). Climatic extremes, including heavy 

precipitation events and extreme hot days, have substantially increased in the past few decades 

(Alexander et al 2006; Vose et al. 2005). A recent study shows that even concurrent extremes 

(e.g., warm-dry and warm-wet conditions) have increased significantly in the second half of the 

20
th

 century (Hao et al., 2013).  

Under the assumption of a stationary climate, the concepts of return level and return period 

provide critical information for design, decision-making, and assessing the impacts of rare 

weather and climatic events (Rosbjerg and Madsen 1998). For example, the return level with a T-

year return period represents an event that has a 1/T chance of occurrence in any given year 

(Cooley 2007). Infrastructure design concepts have long relied on stationary return levels, which 

assume no change to the frequency of extremes over time (Klein et al. 2009). However, the 

frequency of extremes has been changing and is likely to continue changing in the future 

(Easterling et al. 2013; Milly et al. 2008; IPCC 2007). Therefore, concepts and models that can 

account for non-stationary analysis of climatic and hydrologic extremes are needed (e.g., Cooley 

2013; Salas and Obeysekera 2013; Parey et al. 2010).  
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Katz et al. 2002 present non-stationarity in extremes in terms of changing quantiles (termed 

“effective return levels”), which vary as a function of time to keep the occurrence probability of 

an extremal event constant. Alternatively, Rootzén and Katz 2013 introduced the concept of 

Design Life Level to quantify the probability of exceeding a fixed threshold during the design 

life of a project. A recent study describes an R-package developed for analysis of extremes based 

on the concept of effective return levels (extRemes 2.0). Another available R-package (GEVcdn: 

Cannon 2011) supplies a framework for a conditional density estimation network, and can be 

used to perform non-stationary extreme value analysis. However, these packages do not provide 

any non-stationary generalization of the concepts of return period and return level frequently 

used in hydrology. 

The concept of return period can also be extended to a non-stationary framework (e.g., Rootzén 

and Katz 2013; Salas and Obeysekera 2013). In this study, we introduce a framework for non-

stationary extreme value analysis for practical and effective analysis of climate extremes under 

both stationary and non-stationary conditions using Bayesian inference. The methods presented 

are available through a software package called Non-Stationary Extreme Value Analysis 

(NEVA). Under the non-stationary assumption, NEVA provides three different methods for 

estimation of return levels: (a) standard return levels (commonly used in hydrologic design) in 

which the exceedance probability is constant for any given return period during the life of the 

design (hereafter, design exceedance probability); (b) constant thresholds with time varying 

exceedance probability; and (c) effective return levels. A unique feature of NEVA is that it offers 

the associated confidence intervals and uncertainty bounds for the return level estimates under 

non-stationarity. These features make NEVA a practical and attractive tool for users from across 
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different fields, especially climatology and hydrology, to analyze extremes under both stationary 

and non-stationary assumptions.  

2.2 Extremes in a Non-Stationary Climate: Theory 

Extreme Value Theory (EVT) provides a rigorous framework for analysis of climate extremes 

and their return levels (Katz et al. 2002; Coles 2001). Under a wide range of conditions, the 

distribution of the maxima or minima converges to one of the three limiting distributions: 

Gumbel, Fréchet, or Weibull (Katz et al. 2002; Leadbetter et al. 1983; Gumbel 1958). The 

combination of these three distributions into one family is referred to as the Generalized Extreme 

Value (GEV) distribution. A variety of studies apply the GEV to analyze extremes (Katz 2013; 

Towler et al. 2010; AghaKouchak and Nasrollahi 2010; Beniston et al. 2007; El Adlouni et al. 

2007; Frei, et al. 2006; Kharin and Zwiers 2005; Zhang et al. 2001; Smith 2001; Kharin and 

Zwiers 2000; Gumbel 1942). This technique is often referred to as the block maxima approach 

(e.g., Coles 2001). Another form of the EVT is known as the peak-over-threshold (POT) 

approach, in which extreme values above a high threshold are analyzed using a generalized 

Pareto distribution (Coles 2001; Smith 1987). Both annual maxima and POT are widely applied 

in studying climatic extreme events (Villarini et al. 2011; Li et al. 2005; Davison and Smith 

1990).  

The cumulative distribution function of the GEV can be expressed as (Coles 2001): 

0))(1(,))(1(exp)(

1















 













  xx

x                                                             (2.1) 

The GEV distribution is flexible for modeling different behavior of extremes with three 

distribution parameters ),,(   : (1) the location parameter (  ) specifies the center of the 

distribution; (2) the scale parameter (σ) determines the size of deviations around the location 
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parameter; and (3) the shape parameter ( ) governs the tail behavior of the GEV distribution. 

The limiting case of    0 gives the Gumbel distribution,  < 0 the Weibull distribution and  > 

0 the Fréchet distribution.  

The extreme value theory for stationary random sequences has been extensively studied 

(Papalexiou et al. 2013; Li et al. 2005; Leadbetter et al. 1983). In this study, stationarity is 

defined as time invariance of extremes' properties (Leadbetter et al. 1983). For a non-stationary 

process, the parameters of the underlying distribution function are time-dependent (Renard et al. 

2013; Gilleland and Katz 2011; Katz 2010; Cooley 2009) and hence, the properties of the 

distribution would vary with time (Meehl et al. 2000).  In NEVA, the location parameter is 

assumed to be a linear function of time to account for non-stationarity (Equation 2.2), while 

keeping the scale and shape parameters constant:  

01)(   tt
                                                                                                                          (2.2) 

where t  is the time (in years), and ),,,( 01    are the parameters. Alternative models may 

be used, such as polynomial trends, step changes, trends on the scale or the shape parameter, etc. 

(Renard et al. 2013). The methodology presented in this study can be used with different types of 

trends in location parameter. In hydrology and climate literature, the linear or log-linear models 

are usually preferred when searching for trends in the occurrence of extreme events (Beguería et 

al. 2011). While NEVA allows non-stationary   and   (
01 )()(   tt , 

01 )()(   tt ), in 

this study, only non-stationarity with respect to   is discussed. The primary reason is that 

modeling temporal changes in   and   reliably requires long-term observations that are often 

not available for practical applications.  

NEVA detects the presence of trends and non-stationarity in extremes in historical data using the 

Mann-Kendall trend test (Kendall 1976; Mann 1945) at the user’s choice of significance level. 
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The default significance level is 05.0 , which is widely used in hydrological research (Zhang 

et al. 2004). This nonparametric rank-based test avoids making an assumption about the 

underlying distribution function (e.g., assuming the data is normally distributed) of hydrological 

variables (Kundzewicz and Robson 2004). The null hypothesis of no trend is rejected if the test 

statistic || SZ  is larger than the critical value
2/Z .  The test returns either 0 when || SZ  ≤ 

2/Z  

(the null hypothesis of no trend cannot be rejected) or 1 when || SZ  > 
2/Z  (the null hypothesis 

of no trend is rejected). If the null hypothesis is not rejected, NEVA will perform extreme value 

analysis under the stationary assumption. Upon detection of a trend at the 5% significance level (

05.0 ), the GEV distribution parameters will be estimated under the non-stationary 

assumption (Equation 2.2). This will allow estimating return values in a more realistic way 

consistent with the behavior of climatic extremes. 

NEVA uses a Bayesian technique to infer the GEV distribution parameters under stationary and 

non-stationary conditions. The Bayesian-based Markov chain Monte Carlo (MCMC) approach 

for obtaining the posterior distribution of parameters from an arbitrary distribution has become 

increasingly popular and used in several studies of extremes (Stephenson and Tawn 2004; Coles 

and Powell 1996). This approach combines the knowledge brought by a prior distribution (in 

NEVA, the default priors for location and scale parameters are non-informative normal 

distributions; the shape parameter is a normal distribution with standard deviation of 0.3 (Renard 

et al. 2013). The prior distributions for all parameters are assumed independently. Users can 

change the default to give informative priors or change the choice of distribution function) and 

the observation vector 
tNttyy :1)( 


 (Equations 2.4 and 2.5) into the posterior distribution of 

parameters ),,(   . Here, Nt denotes the number of observations (e.g., annual maxima) in 

the observation vector y


. Assuming independence between observations, the Bayes theorem for 
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estimation of GEV parameters under the non-stationary assumption can be expressed as (Renard 

et al. 2013, Coles 2001): 

)|(),|(),|( xpxypxyp 


                                                                                                 (2.3) 
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                                                              (2.4) 

where ),,,( 01    are the parameters. The stationarity can be treated as a special case of the 

above equation without )(tx :  

)()|()()|()|(
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                      (2.5) 

where )(tx  denotes the set of all covariate values under the non-stationary assumption. The 

resulting posterior distributions )|( yp


 and ),|( xyp


 provide information about parameters 

under stationarity ( ),,(   ) or non-stationarity ( ),,,( 01   ). The entire process for 

inferring distribution parameters in NEVA is summarized in Figure 2.1 and Figure 2.2 for 

stationary and non-stationary conditions, respectively. NEVA generates a large number of 

realizations from the parameter joint posterior distribution using the Differential Evolution 

Markov Chain (DE-MC) (Vrugt et al. 2009; Ter Braak and Vrugt 2008; Ter Braak 2006). The 

DE-MC utilizes the genetic algorithm Differential Evolution (DE) (Ter Braak 2006) for global 

optimization over the parameter space with the MCMC approach. The DE-MC's simplicity, 

speed of calculation, and convergence make it favorable over the conventional MCMC (Ter 

Braak 2006).  

The main motivation for combining DE-MC with Bayesian inference is that one can obtain the 

confidence interval and uncertainty bounds of estimated return levels taking into account the 

uncertainty in all model parameters (non-stationary:  ,   ,  ,  ; stationary:  ,  ,  ). It is worth 
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noting that NEVA assesses convergence of the sampling approach statistically. A method known 

as the criterion R̂ , suggested by Gelman and Shirley (2011), is built into NEVA as a 

convergence check. This method suggests that the R̂  values should remain below the critical 

value of 1.1 (see Gelman and Shirley 2011 for more details on computing R̂ ).  

In addition to the Mann-Kendall test, the likelihood-ratio test can be used to compare the fit of 

the two nested models: the null model is the stationary (no trend) case (LNull), whereas the 

alternative is the non-stationary (linear trend) case (LAlternative). The log-likelihood ratio can be 

expressed as (Coles 2001): 

eAlternativ

Null

L

L
D ln2                                                                        (2.6) 

This likelihood ratio can then be used to test (e.g., at the 05.0  significance level) whether to 

reject the null model in favor of the alternative. Based on the modes of the posterior of modeled 

simulations, the likelihood test returns either 0 when the non-stationary model does not fit 

significantly better than the stationary model or 1 when the non-stationary model fits 

significantly better than the stationary model. Note that the Mann-Kendall and likelihood ratio 

tests are both testing for trends, but under different assumptions: the Mann-Kendall test allows 

for non-linear trends in the location parameter and any form of distribution, while the likelihood 

ratio test assumes GEV distribution and only allows for a linear trend in the location parameter.  

In order to further evaluate the fit of the null model   (i.e., the stationary case), and the 

alternative model    (i.e., the non-stationary case) based on the posterior distributions of 

sampled parameters, the Bayes factor is computed as:  

  
          

          
 

∫                          

∫                          
                                                                                  (2.7) 

http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Alternative_hypothesis
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Alternative_hypothesis
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where    denotes input data, and   stands for model parameters. The term             can be 

expressed using a Monte Carlo integration estimation 

as           
 

 
∑                   

   

  
, where   is the sample size (see Kass and Raftery 

1995 for more details). A value of       indicates that the non-stationary model (  ) fits better 

than the stationary model (  ). Having multiple tests to detect stationarity or non-stationarity 

allows a more rigorous assessment of the goodness-of-fit. 

While the original NEVA is designed for analysis of maxima in time series, users can apply 

NEVA for analysis of time series minima using the following transformation (Coles 2001):  

),...,max(),...,min( 11 nn XXXX 
                                                                                          (2.8) 

where 
nXX ,...,1
 is a time series of i.i.d. random variables.  

Using the GEV distribution, NEVA computes the return periods and return levels of extremes 

(see Equations 2.9 and 2.10). In this approach, return levels are expressed as a function of the 

return period T  (Cooley 2013): 

p
T




1

1
                                                                                                                                    (2.9) 

where p is the non-exceedance probability of occurrence in a given year (assumed constant 

under stationarity). The p return level pq derived from the GEV distribution can be expressed 

as (Coles 2001):  

)0(,)1)
ln

1
((  





p
q p

                                                                               (2.10) 

In NEVA, the time-variant parameter ( )(t ) can be derived using different quantiles from the 

DE-MC. For example, in this dissertation, )(t  is computed as: (a) median of )(t  (refers to the 

effective return level for the year corresponding to the midpoint of the time series), and (b) 95 
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percentile of the DE-MC sampled )(t  values. The latter can be considered a low risk (more 

conservative) approach for extreme value analysis by taking the 95 percentiles of the )(t  

values in historical observation to be used for future analysis (e.g., the effective return level for a 

year near the end of the record). The model parameters will then be used to estimate the non-

stationary return levels as follows:  

))((),,...,,(~
0121   ttQ tnttk

                                                  (2.11)             

)0(,~)1)
ln

1
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p
q p

                                                                                 (2.12) 

where 5.0  returns the median of n location parameters ),...,,( 21 tntt  , and 95.0  

corresponds to the 95 percentile of location parameters (a high quantile ~ indicating low risk 

extreme value analysis). In this concept the exceedance probability is constant for any given 

return period during the life of the design. This concept is termed design exceedance probability 

in this dissertation. 

In a recent study, Salas and Obeysekera 2013, proposed another non-stationary counterpart of 

stationary return levels. In this approach, the probability that the first extreme event exceeding a 

given fixed threshold will occur at time 1x  is denoted by 1q , and the probability that it will 

occur at time 2x  is 21)1( qq , and so forth (exceeding probabilities 
tqqqq ,...,,, 321
 vary over 

time). With the time varying exceedance probabilities 
tq , a non-stationary concept determining 

the expected return period of the extreme event is outlined in Salas and Obeysekera 2013. This 

concept is based on the expected waiting time until the first exceedance of a fixed threshold, with 

the expected waiting time is calculated for time varying exceedance probabilities. In NEVA, the 

proposed DE-MC-Bayesian approach is integrated into Salas and Obeysekera 2013 to provide an 

alternative approach for non-stationary return level-return period analysis with time varying 
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exceedance probability. The parameter estimation, uncertainty assessment, and sampling 

approach, as well as the log-likelihood test and Bayes factor computation remain similar in both 

design exceedance probability and time varying exceedance probability methods. 

 

2.3 Results 

In the following, NEVA is used for stationary and non-stationary extreme value analysis of 

annual temperature maxima from the Climatic Research Unit (CRU, New et al. 2000) monthly 

temperature data (1901-2009). Figure 2.5 displays the global areas in which temperature block 

maxima exhibit a significant trend at the 5% level and hence, non-stationary behavior (see dark 

red pixels in Figure 2.5). The white land areas correspond to locations that do not show a 

significant trend in the annual temperature maxima. NEVA utilizes the suggested non-stationary 

extreme value analysis algorithm (Figure 2.2) for the dark red pixels in Figure 2.5, and the 

stationary algorithm (Figure 2.1) in the rest of the pixels. The appropriate type of GEV 

(stationary or non-stationary) is fitted to each grid of monthly temperature maxima.  

Figure 2.6 shows the global annual temperature maxima return levels for the 5-year (a) and 100-

year (b) return periods. As mentioned earlier, NEVA generates an ensemble of estimates based 

on DE-MC sampling. The median of the ensemble is used as the final return level values shown 

in Figure 2.6. The uncertainty bounds of the computed return levels can be derived based on 5% 

and 95% confidence intervals of the ensemble as discussed below.  

To further explore NEVA’s outputs, two pixels in the central (Latitude 40.02 °N, Longitude 

105.27 °W) and western (Latitude 34.05 °N, Longitude 118.24 °W) United States are selected 

for more detailed analysis (see green stars in Figure 2.4). The two locations are close to urban 

areas in Boulder, CO and Los Angeles, CA where long-term observation stations have been 
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available. The goodness-of-fit of the model at the local scale is assessed using the Quantile-

Quantile (Q–Q) plots of temperature maxima (see Figure 2.3). In both locations, the Mann-

Kendall trend test confirms presence of non-stationarity at the 5% significance level (see Figure 

2.2). The initial goodness-of-fit of the GEV model is assessed using Quantile-Quantile (Q–Q) 

plots of fitted and observed temperature maxima (see Figure 2.3). The plot of the return levels 

versus the corresponding return periods at the two selected locations under both stationary 

(ignoring the observed trend) and non-stationary assumptions are displayed in Figure 2.7 and 

Figure 2.8. In both figures, the top panels (a) show return levels under the stationary assumption, 

while panels (b) exhibit non-stationary return levels for the observation period (here, 1901-

2009). Panels (c) and (d) display non-stationary return levels for 100 years beyond observations 

(e.g., 2010-2109) using median and 95 percentile of sampled location parameters, respectively 

(see Equations 2.11 and 2.12). Consequently, panels (d) in Figure 2.7 and Figure 2.8 are more 

conservative estimates of future extreme return levels, and are termed as low risk (hereafter LR).  

In the central U.S. (Figure 2.7a), under the stationary assumption the confidence bounds do not 

encompass the empirical return levels, which indicates the assumptions for this model are not 

met. On the other hand, for the non-stationary model (Figure 2.7b), the confidence bounds 

enclose the empirical return levels, indicating reasonable simulations (see the zoom in Figure 

2.7b). The selected point in the western U.S. (Figure 2.8) exhibits a similar behavior. The non-

stationary envelope of simulations (Figure 2.8b) encompasses all of the empirical return levels, 

while the stationary ensemble (Figure 2.8a) does not enclose all the points, including few points 

at the beginning and the last observation.  

In the central U.S., the return levels under the stationary assumption (Figure 2.7a) are much 

lower than those under the non-stationary assumption (Figure 2.7c and 2.7d). For example, the 
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return levels corresponding to the 50-year annual temperature maxima (ensemble median - red 

dashed lines) are 14.3
。

C, 15.5
。

C and 16.1
。

C, under stationary, non-stationary, and LR non-

stationary, respectively. This result indicates that an unrepresentative assumption of stationarity 

would lead to misinterpretation (in this example, underestimation) of extreme climatic 

conditions. Another example is the pixel in the western U.S., where the positive trend is not as 

strong as the one in the central U.S. (compare Figure 2.4a and 2.4b). Nonetheless, if the observed 

linear trend continues in the future, the return levels will be underestimated under the stationary 

assumption. Considering a 50-year return level (ensemble median - red dashed lines), it is 28.5
。

C (stationary), 29.1
。
C (non-stationary), and 29.4

。
C (LR non-stationary). It should be noted, that 

the annual maxima is based on mean monthly temperature values and the daily maxima may 

exceed these values. 

Once the parameters are sampled and return levels are simulated, the non-stationarity assumption 

included in the location parameter is tested using the log-likelihood and Bayes factor approach 

discussed in Equation 2.6 and 2.7. In both the central and western U.S., the log-likelihood test 

and Bayes factor confirm that the simulations exhibit non-stationary behavior consistent with the 

Mann-Kendall test results (p-values smaller than the 0.05 significance level) – See Table 2.1.  

As shown in the model flowchart (Figure 2.2), NEVA can provide non-stationary return periods 

based on a time varying exceedance probability. Figure 2.9 presents return period vs. return level 

under stationarity and the corresponding non-stationary return periods for the two selected points 

in the central and western U.S. In this framework, the exceedance probability 
tq  varies through 

time. Since temperature extremes exhibit an upward trend at both locations, the exceedance 

probability 
tq  will increase over time. The probability distribution of the waiting time for the 

first extreme event to exceed a given threshold is a generalization of the geometric distribution, 
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which enables determining the expected return period. For instance, in the western U.S., the 50-

year return period under the stationary assumption corresponds to an approximate 30-year return 

period under a non-stationary condition (see Figure 2.9b). In other words, an exceedance 

probability of 0.02 will increase to around 0.03 in a non-stationary climate. Similarly, in the 

central U.S., a 50-year extreme changes to a 22-year event in a changing climate. This 

framework allows displaying stationary and non-stationary return periods against each other.  

As shown in the model flowchart (Figure 2.2), NEVA generates non-stationary return levels 

based on both the standard definition in hydrology and the concept of effective return level. As 

an example, Figure 2.10 demonstrates effective return levels for the two selected points in the 

central and western U.S. The figures show return levels versus the time covariate used in the 

linear regression (Equation 2.2). In this concept, the return levels vary over time such that the 

probability of occurrence remains constant. Basically, the effective return level indicates what 

return level should be used for all years to have the same risk. In the western U.S., the effective 

return level corresponding to a 50-year (0.02 probability of occurrence) event during 1901-1950 

is 28.5
。
C; whereas the same risk for a 100-year period (1901-2000) would be 28.8

。
C. Similarly, 

for another 100-year period (e.g., 2001-2100) the 50-year event would be different (here, 29.3
。

C). By providing both the standard and the effective return levels, as well as the integrated time-

varying exceedance probability non-stationary return periods, NEVA allows the users to use the 

one that fits their application.  

2.4 Conclusions 

 

Substantial evidence shows that the climate is non-stationary, possibly due to anthropogenic 

climate change. The assumption of stationarity in extreme value analysis is therefore 

questionable and statistical models that explicitly allow for non-stationarity are much needed. 
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Specifically, statistical models that can provide estimates of return levels under non-stationary 

conditions are essential for design and risk assessment purposes. In this study, a practical 

package named Non-stationary Extreme Value Analysis (NEVA) package is introduced for 

assessing extremes in a changing climate.   

NEVA offers a framework for estimating non-stationary return levels, return periods, and risks 

of climatic extremes using Bayesian inference. In this approach, the model parameters are 

estimated using a Differential Evolution Markov Chain (DE-MC) for global optimization over 

the real parameter space with the Markov Chain Monte Carlo (MCMC) approach. NEVA also 

provides the confidence interval and uncertainty bounds of estimated return levels by combining 

DE-MC with Bayesian inference. A unique feature of the model is non-stationary extreme value 

analysis using both design exceedance probability and time varying exceedance probability 

methods.   

The features and capabilities of NEVA can be summarized as follows: (a) the framework 

assesses trends in the observations; (b) depending on the trend, it performs stationary or non-

stationary analysis of extremes and can test which model describes the data more appropriately 

based on the model outputs; (c) it provides non-stationary return levels based on three methods 

including one that resembles the standard approach in hydrology under stationarity, one based on 

expected waiting time with time varying exceedance probability, and effective return levels; and 

(d) NEVA includes a sampling framework that leads to uncertainty bounds of simulations. The 

return level and return period estimates can be used in hydrology and climate studies to assess 

the risk (probability of occurrence) of extremes.  

By providing confidence intervals (e.g., 5% and 95% quantiles), NEVA offers a range of return 

levels, and the user can select the upper bound (low risk) or the lower bound (high risk) 
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depending on the application at hand.  Users can change the upper and lower bound quantiles of 

the simulated ensembles and also the significance level of the trend analysis component. Both 

stationary and non-stationary components of the package are evaluated using Climatic Research 

Unit (CRU) observations. The results indicate that NEVA simulates GEV-based return levels 

consistent with empirical observations.  While the focus of this dissertation is on climate extreme 

value analysis, the methodology can potentially be used in different areas (hydrology, ecology, 

and economics) and with different data sets.  

 

 
 

Figure 2.1 NEVA’s stationary GEV framework for extreme value analysis. The outputs are return levels 

versus return periods. 
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Figure 2.2 NEVA’s non-stationary GEV framework for extreme value analysis. The model outputs include: (1) 

standard return levels with  constant  exceedance  probability;  (2)  standard  return levels  with  time  

varying  exceedance probability; and (3) effective return levels.   
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Figure 2.3 Model quantiles vs. empirical quantiles of the annual monthly temperature maxima (

o
C) in the 

central (a) and western (b) United States. 

 

 

 
 

Figure 2.4 Trends in annual monthly temperature maxima in the central (a) and western (b) United States. 
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Figure 2.5 Global Mann-Kendall Trend Analysis (Significant trend in red; No significant trend in white). The 

Star-marked locations are the pixels selected for time series analysis.   

 

 

 
Figure 2.6 5-year (a) and 100-year (b) annual monthly temperature maxima return levels (

o
C) under the non-

stationary assumption, derived using the standard return levels with constant exceedance probability. 
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Figure 2.7 Annual monthly temperature maxima return level vs. return period in the selected point in the 

central U.S. under stationary (a), non-stationary during the period of observations 1901-2009 (b), non-

stationary based on median of sampled parameters (c), and non-stationary based on the 95 percentile of the 

sampled parameters or LR non-stationary (d). 
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Figure 2.8 Annual monthly temperature maxima return level vs. return period in the selected point in the 

western U.S. under stationary (a) non-stationary during the period of observations 1901-2009 (b), non-

stationary based on median of sampled parameters (c), and non-stationary based on the 95 percentile of the 

sampled parameters or LR non-stationary (d). 
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Figure 2.9 Annual monthly temperature maxima return levels vs. return period under stationary (bottom 

axes) and the corresponding non-stationary (top axes) assumption at the selected points in the central (a) and 

western (b) United States. 
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Figure 2.10 Effective return levels under the non-stationary assumption at the selected points in the central (a) 

and western (b) United States. 
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Table 2.1 Results of the Likelihood Ratio Test and Bayes Factor at the selected pixels in the central and 

western United States. H-statistics = 1 indicates that the null hypothesis (i.e., stationary model) is rejected (p-

value less than the significance level α=0.05), while H-statistics = 0 means that the null hypothesis cannot be 

rejected. Bayes Factor     means the null hypothesis (i.e., stationary model) is not in favor. 

 

 

Location 

Likelihood Ratio Test 

D p -value 
H-

statistics 
Test Interpretation 

Central U.S. 29.06 7.00e-8 1 Reject Stationary Model 

Western U.S. 5.16 0.02 1 Reject Stationary Model 

Location 
Bayes Factor 

K Interpretation 

Central U.S. 1.18e-6 Reject Stationary Model 

Western U.S. 0.01 Reject Stationary Model 
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Table 2.2 NEVA and extRemes 2.0 Comparison. 

 

Stationary extRemes 2.0 NEVA 

Western U.S.       
2.50% 26.06 0.84 -0.42 26.11 0.86 -0.39 

Mean 26.3 0.99 -0.29 26.3 0.98 -0.31 

97.50% 26.53 1.18 -0.14 26.5 1.12 -0.18 

R̂  NA 1.001 1.003 1.001 

Acceptance Rate 0.66 0.41 

Return Level (
。

C) 2-yr 20-yr 100-yr 2-yr 20-yr 100-yr 

2.50% 26.4 28 28.48 26.4 27.61 27.93 

Mean 26.65 28.28 28.84 26.64 28.22 28.73 

97.50% 26.89 28.67 29.55 26.9 29.09 30.03 

Central U.S.       
2.50% 11.61 0.78 -0.27 11.64 0.8 -0.26 

Mean 11.82 0.91 -0.18 11.81 0.89 -0.18 

97.50% 12.02 1.06 -0.05 11.98 0.98 -0.08 

R̂  NA 1.003 1.006 1.007 

Acceptance Rate 0.65 0.40 

Return Level (
。

C) 2-yr 20-yr 100-yr 2-yr 20-yr 100-yr 

2.50% 11.92 13.59 14.23 11.92 13.3 13.8 

Mean 12.14 13.91 14.67 12.12 13.86 14.59 

97.50% 13.91 14.36 15.5 12.34 14.58 15.77 

Non-Stationary extRemes 2.0 NEVA 

Western U.S.         
2.50% 0.84 -0.41 25.58 0.001 0.85 -0.39 25.83 0.003 

Mean 0.97 -0.28 25.98 0.006 0.96 -0.28 26 0.005 

97.50% 1.16 -0.13 26.31 0.01 1.09 -0.13 26.18 0.008 

R̂  NA 1.001 1.007 1.001 1.001 

Acceptance Rate 0.47 0.43 

Effective Return Level 

(
。

C) 
2-yr 20-yr 100-yr 2-yr 20-yr 100-yr 

t= 50 years (1901~1950) 26.61 28.22 28.77 26.6 28.19 28.72 

Central U.S.         
2.50% 0.69 -0.34 10.73 0.009 0.71 -0.3 10.88 0.011 

Mean 0.82 -0.23 11.08 0.014 0.79 -0.22 11.09 0.015 

97.50% 0.98 -0.11 11.42 0.020 0.89 -0.13 11.25 0.018 

R̂  NA 1.02 1.004 1.01 1.008 

Acceptance Rate 0.44 0.43 

Effective Return Level 

(
。

C) 
2-yr 20-yr 100-yr 2-yr 20-yr 100-yr 

t= 50 years (1901~1950) 12.09 13.57 14.13 12.09 13.52 14.07 

 

     

     

  0 1   0 1

  0 1   0 1
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CHAPTER 3:   Non-stationary Return Levels of CMIP5 Multi-Model 

Temperature Extremes  
 

3.1 Introduction 

 

Losses of life and economic damage due to extreme weather and climate events have been 

steadily increasing since the 1930’s in the United States (Easterling et al., 2000). During the 

period 1979 - 1992, for example, on average 384 people were killed by excessive heat each year 

(NOAA 1995; Kilbourne 1997). In fact, in this period over the United States, excessive heat 

accounted for more reported deaths annually than hurricanes, floods, tornadoes, and lightning 

combined (NOAA 1995). Furthermore, agriculture products such as wheat, rice, corn and maize 

can be significantly reduced by extreme high temperatures at key development stages (NOAA 

1980). Numerous studies indicate that climate extremes are likely to intensify in the future under 

different plausible climate scenarios (Alexander et al., 2006; IPCC 2007); AghaKouchak et al. 

2013). Therefore, there is a need to study extreme weather and climate events across different 

spatial and temporal scales.  

Currently, some 20 international climate modeling groups are providing Coupled Model 

Intercomparison Project Phase 5 (CMIP5) historical and projected climate simulations (Taylor et 

al., 2012). The scope of CMIP5 also is broader than previous model intercomparison projects 

(e.g. CMIP3), with carbon emission-driven Earth System Model (ESM) experiments now 

represented along with the typical concentration-driven atmosphere-ocean general circulation 

model (AOGCM) simulations (Meehl and Bony 2011). More than previous model 

intercomparisons, CMIP5 also includes AOGCM simulations incorporating aerosol chemistry, as 

well as time-slice experiments performed with high-resolution (approx. 25 km horizontal grid) 

atmosphere-only models (Meehl and Bony 2011). Thus, the multi-model gridded CMIP5 
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datasets provide an unprecedented opportunity to analyze and assess climate variability and 

change. 

In a recent study, Kharin et al. (2013) argued that the global warm temperature extremes in the 

late 20th century climate are reasonably simulated by the CMIP5 models (differences CMIP5 

models and reanalysis data were within a few degrees C over most of the globe). However, the 

inter-model differences of warm temperature extremes are generally large over land with a 

standard deviation of around 4 °C (Kharin et al., 2013). Kharin et al. (2013) concluded that 

upward trends of warm extremes exceed those of cold extremes over tropical and subtropical 

land regions. Morak et al. (2013) showed that there is a significant increase in the trend in warm 

temperature extremes during both boreal cold and warm seasons over the second half of the 20th 

century.  

Return periods and return levels (also known as return values) are often used to describe and 

assess risk (Cooley et al., 2007; AghaKouchak and Nasrollahi 2010; Katz 2010; Cooley 2013). 

In theory, the return period (T) of an event is the inverse of its probability of occurrence in any 

given year. That is, the n-year return level corresponds to an exceedance probability (by an 

annual extreme) of 1/n. In the statistical literature, there are different definitions for return period 

and return level; for alternative definitions, the interested reader is referred to Bonnin et al. 

(2004), Mays (2010), and AghaKouchak et al. (2013).  

In recent years, Extreme Value Theory (EVT) has been widely used for analysis of climate 

extremes and their return levels (Zwiers and Kharin, 1998; Clarke 2000; Katz et al., 2000); 

Kharin and Zwiers, 2005; Kunkel 2013; Parey et al., 2010; Cooley 2013). Fisher and Tippett 

(1928) introduced the concept of asymptotic theory in extreme value distributions and laid the 

foundation for a generalized approach to extreme value analysis. Gnedenko (1943) 
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mathematically proved that three families of extreme value distributions- namely Weibull, 

Gumbel and Fr échet can represent the limiting distributions of extremes in random variables. 

The Generalized Extreme Value (GEV) distribution is essentially a combination of these three 

distribution families, and has been applied in a variety of studies (Gumbel 1942; Smith 2001; 

Katz 2013). 

Numerous studies indicate that climatic extremes (e.g., hot days, heavy precipitation) have 

increased significantly, particularly in the second half of the 20th century (Karl and Knight, 1998; 

Easterling et al., 2000; Vose et al., 2005; Hansen et al., 2010; Villarini et al., 2011; Hao and 

AghaKouchak 2013; Wehner 2012; Field et al., 2012). In addition to the number, the frequency 

of extremes has been changing in the past, and it is likely to change in future (Milly et al., 2008; 

Easterling et al., 2000; IPCC 2007). Evidently, ignoring time-varying (non-stationary) behavior 

of extremes could lead to underestimation of extremes and considerable damages to human life 

and society (McMichael, 2003). Therefore, it is necessary to assess non-stationarity in the 

CMIP5 climate models simulations, and to document to what extend the patterns are consistent 

with observations. 

In this study, the GEV is used to investigate the return levels of annual monthly temperature 

maxima considering a changing climate. The primary objective of this dissertation is to evaluate 

to what extent the CMIP5 model simulations of the historical climate of the period 1901-2005 

can represent observed warm monthly temperature extremes under the non-stationary assumption. 

The return levels of temperature maxima estimated from the CMIP5 climate simulations are 

compared with those of Climatic Research Unit (CRU) temperature observations. The 

dissertation is organized as follows. After this introduction, the data sets and study area are 

discussed. Section 3.3 presents the same methodology for non-stationary extreme value analysis 
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in Chapter 2.2. The results including representation of annual maxima in their return levels are 

provided in Section 3.4. The last section summarizes the main results and offers concluding 

remarks. 

3.2 Study Area and Data Resources 

 

Monthly observations of temperature provided by the Climatic Research Unit (CRU, New et al., 

2000; Mitchell and Jones, 2005), available in a 0.5
o
 spatial resolution, are used as reference data. 

CRU observations have been validated and used in numerous studies of historical climate 

variability (e.g., Tanarhte et al., 2012). In this study, 41 CMIP5 historical monthly temperature 

simulations from 1901 to 2005 are subjected to extreme value analysis, and a subset of 17 of 

these simulations are investigated in more detail. These data sets represent the most extensive 

and ambitious multi-model simulations that contribute to the World Climate Research 

Programme’s CMIP multi-model dataset (Meehl and Bony, 2011; Taylor et al., 2012). For this 

extreme value analysis, the CMIP5 model simulations and CRU observations all are regridded to 

a common 2 × 2-degree resolution. This regridding entailed use of bilinear interpolation, with 

special attention given to appropriate use of model-specific land fraction masks so as to minimize 

data distortions along coastlines. The selected models (Table 3.1) include physical climate 

models (without a prognostic global carbon cycle), as well as earth system models (with the 

designation “ESM” appearing in the model title). The former are run in a standard “historical 

climate” configuration with prescribed historically increasing CO2 concentrations (i.e. with the 

prognostic carbon cycle turned “off”), and the latter are run either with prescribed atmospheric 

CO2 concentrations or with CO2 emissions (fluxes corresponding to the prescribed historically 

increasing CO2 concentrations–designated as  “esm” experiments in Table 3.1). 
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This study focuses on global land areas (excluding Antarctica) for which the CRU observations 

are provided. From CRU observations and CMIP5 simulations, pixel-based annual monthly 

temperature maxima (hereafter, annual temperature maxima) are extracted for estimation of 

extreme temperature return levels. It should be noted that the Hadley Centre has adopted an 

unconventional time model for all their CMIP5 outputs, with an endpoint in November rather 

than December of 2005, and thus HadGEM2 models have one month less data compared to the 

other models. This issue will not affect the results in the Northern Hemisphere since the annual 

maxima of monthly data do not often occur in December. However, it might slightly impact the 

analyses in the Southern Hemisphere. 

3.3 Methodology 

 

Refer to the Chapter 2.2. 

3.4 Results 

 

3.4.1 Representation of Annual Temperature Maxima 

 

In the first step, the annual maxima of CMIP5 temperature simulations, determined from 

monthly time series, are compared with those of the CRU observations. Figure 3.1 (top left) 

displays the mean annual temperature maxima from 1901 to 2005 as represented by CRU 

observations. The rest of the panels in Figure 3.1 demonstrate the differences between CMIP5 

climate simulations and CRU observations (CMIP5 model - observation). In this figure, positive 

(negative) values indicate overestimation (underestimation) of the annual temperature maxima. 

Figure 3.1 shows the results for the 17 CMIP5 models listed in Table 3.1. One can see that the 

climate models individually display different patterns of overestimation and underestimation. In 

most parts of the globe, the discrepancies between the model simulations and observations are 
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within ± 1 to 3 °C, indicating a reasonable overall agreement between model simulations and 

CRU observations. However, local errors for some regions may be as high as ±10 °C (see also 

the empirical cumulative distribution of the mean error in Figure 3.2).  

Figure 3.1 shows that over the United States most models (excepting HadGEM2-ES_esm, 

CCSM4, CSIRO-ACCESS1-0, CESM1-WACCM, MIROC-ESM and CanESM2) tend to 

underestimate the mean annual temperature maxima by 1 to 3 °C. Here, CanESM2 instead 

substantially overestimates the mean annual temperature maxima. Over Australia, on the other 

hand, several models (e.g. CSIRO-ACCESS1-0, HadGEM2-ES_esm, MPI-ESM-P and 

CanESM2) demonstrate little or no bias. Over Amazonia, the mean annual temperature maxima 

are underestimated in most models, except in few models (e.g., GFDL-CM3, CanESM2) where 

they are overestimated. 

The results indicate that model simulations particularly diverge from one another over cold 

regions (e.g., northern Russia, and Canada) except for Greenland, where most models (but not 

MIROC-ESM and INMCM4_esm) underestimate the mean annual temperature maxima. Such a 

consistent underestimation could substantially impact model-based analyses of changes in ice-

sheets, and snow/glacier melt studies. Krabill et al. (2004) reported that Greenland is losing 

coastal ice sheets quite rapidly (see also Ren et al., 2011; Kjær et al., 2012). CMIP5 models’ 

underestimation of annual maxima climatology implies that the ice loss rate in Greenland might 

be greater than that reported in model-based studies. Similar to the modeling results by Alley et 

al. (2005) and Reeh (1989), rapid ice-marginal changes may indicate greater ice-sheet sensitivity 

to warming than has been considered previously. However, over other cold regions that are at 

most risk of accelerated ice melt (e.g. Alaska, Northern Canada, and Siberia), most models tend 
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to overestimate the mean annual temperature maxima relative to the CRU reference data (Figure 

3.1).  

It is also noteworthy that the model simulations collectively underestimate the mean annual 

maxima over arid and semi-arid regions (e.g., Sahara, southwestern U.S.), that are most subject 

to severe heat waves and droughts. Considering the magnitudes of deviations from the CRU, 

there is a better agreement between CMIP5 simulations and observations in such subtropical 

regions than in high-latitude cold regions. This is consistent with the findings reported in Kharin 

et al. (2007) based on CMIP3 climate model simulations.  

Figure 3.2 displays the ensemble mean (top left), inter-model standard deviation (top right), and 

range (bottom) of the annual temperature maxima in CMIP5 simulations. The figure shows that 

the inter-model variability and range of simulations are more variable over Siberia, the western 

United States, and parts of the Middle East and Sahara compared to other regions. 

3.4.2 Return Levels of Temperature Extremes 

 

Using the annual temperature maxima from CMIP5 multi-model simulations and CRU 

observations, temperature return levels are derived for different return periods by fitting the 

appropriate type of GEV (stationary/non-stationary) to the block maxima of temperature 

extremes. Return levels of annual temperature maxima are derived and reported for the return 

periods T of 2, 10, 25, 50, and 100 years.  

As an example, Figure 3.3 shows the 2-year temperature return levels based on CRU 

observations (top left) and on the selected subset of 17 CMIP5 climate model simulations. In 

Figure 3.3, the global temperature values range from -11 to 35 °C. Overall, Figure 3.3 indicates 

that there are good agreements between the observed and CMIP5 simulated spatial patterns of 2-
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year annual temperature maxima, but that the magnitudes of 2-year annual temperature maxima 

represented by the selected CMIP5 models differ substantially.  

Figure 3.4 presents the differences in CMIP5 simulated 2-year annual temperature maxima with 

respect to CRU observations. One can see that there are variations in both the magnitude and 

sign of the error of 2-year return levels across CMIP5 climate simulations. This implies that 

CMIP5 climate models capture the spatial patterns of temperature extremes well; however, 

individual models may be biased with respect to observations. As shown, over most parts of the 

world, the biases are within ± 4 °C. For a higher return level, one expects the differences in 

temperature simulations to increase relative to observations. For example, Figure 3.5 presents the 

differences in 25-year-return annual temperature maxima, as simulated by CMIP5 models with 

respect to CRU temperature observations. As shown, the patterns of differences remain similar, 

but the range of differences between simulated and observed annual temperature maxima 

increases at 25-year return level relative to the 2-year return level.  

As another example, Figure 3.6 displays the 100-year return levels for the CRU observations and 

the selected CMIP5 simulations. One can see that the patterns of annual temperature maxima are 

similar to those of Figure 3.3, but with higher magnitudes of annual temperature maxima (as 

expected). The figure shows that the warmest months across the globe typically occur over the 

Sahara, the Middle East, and Australia. The differences in CMIP5 100-year simulated and 

observed annual temperature maxima are presented in Figure 3.7. As shown, the biases of the 25-, 

and 100-year return temperature simulations are larger than those of 2-year-return simulations in 

Figure 3.4. However, the spatial patterns of temperature extremes are in a good agreement with 

CRU observations and consistent across different return periods (compare the model simulations 

with the upper left panels in Figure 3.3 and 3.6). Overall, the regional biases of simulated annual 
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temperature extremes at high return levels (e.g., 100-year) are consistent with those of the lower 

return levels (e.g., 2-year).  

Not shown here for brevity are the spatial patterns and biases of 10-, 25- and 50-year return 

levels of extreme temperature simulations by CMIP5 models, which are consistent with the 

results presented in Figure 3.3 to 3.7. For a quantitative evaluation of the extremal simulation by 

CMIP5 models, Figure 3.8 (top) summarizes the Mean Error (ME) for all the 41 CMIP5 climate 

model simulations of 2-, 10-, 25-, 50, and 100-year annual temperature maxima return levels 

with respect to CRU observations. As anticipated, ME values are larger at higher return levels. 

One can see that considering the global averages, most models overestimate the simulated return 

levels of the annual temperature maxima, while fewer models (e.g., FGOALS-g2, 

INMCM4_esm, NorESM1-ME) underestimate the temperature extremes. Among the models, 

FGOALS-s2, CanESM2 and MIROC5 exhibit the highest global averages of the ME of the 

annual temperature maxima. Most models either systematically overestimate or underestimate 

the extreme return levels, except the BCC model experiments in which the shorter return levels 

(2- and 10-year) are underestimated and the longer ones are overestimated. Figure 3.8 (bottom) 

displays boxplots of the differences between CMIP5 simulations and CRU observations. The 

figure shows medians, 25th and 75th percentiles, and whiskers (variability outside respective 

percentiles) of differences in Celsius degrees. Figure 3.8 (bottom) indicates that while local 

differences can be large, most differences (between 25th and 75th percentiles) fall within ±2 

Celsius degrees. 

The MCMC component of the DE-MC model used in this study allows the upper and lower 

bounds and confidence intervals of the temperature return levels to be derived. The uncertainty 

bounds would be different across either models or space (simulation grid boxes). As an example, 
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Figure 3.9 shows sample uncertainty bounds, median, and the 5% and 95% confidence bounds of 

the annual temperature maxima based on the DE-MC for CRU reference data and over grid 

boxes in two different locations in the western and central United States under the non-stationary 

assumption. The figure confirms that the inference uncertainty is larger at higher return levels 

(e.g., because of larger sampling errors). One can see that the uncertainties of the estimated 

return levels also vary over different regions. It should be noted that this approach provides 

uncertainties associated with the statistical analysis of extremes, but does not include 

uncertainties associated with model physics. 

 

3.5 Discussion and Concluding Remarks 

 

The objective of this study is to evaluate to what extent the CMIP5 climate model simulations 

can represent observed warm monthly temperature extremes under a changing climate. The 

biases of simulated annual temperature maxima are quantified for the selected CMIP5 models. 

Furthermore, the 2-, 10-, 25-, 50, and 100-year return levels of the annual temperature maxima 

from CMIP5 simulations are compared with those derived from CRU observations.  

The results show that most, but not all, CMIP5 climate models tend to underestimate the mean 

annual temperature maxima over the United States and Amazonia. The CMIP5 models 

particularly disagree with each other over cold regions (e.g., Russia, northern Canada), with the 

exception of Greenland where most climate models underestimate the mean annual temperature 

maxima. This underestimation of the annual temperature maxima is likely to affect model-based 

representations of changes in ice-sheets and snow/glacier melt. In contrast, over Alaska, 

Northern Canada and Siberia, most CMIP5 simulations overestimate the annual temperature 

maxima compared to those derived from the CRU reference data.  
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Over arid and semi-arid regions (e.g., the Sahara, southwestern U.S., and Middle East), most 

climate models also underestimate the mean annual temperature maxima. Considering the 

magnitudes of deviations from the CRU, however, there is a better agreement between CMIP5 

model simulations and observations in subtropical regions than in high-latitude cold regions.  

The return level analyses show that there are good agreements between the observed and CMIP5 

simulated spatial patterns of 2-, 10-, 25-, 50- and 100-year annual temperature maxima. While 

the simulated spatial patterns of the temperature extremes are similar, the magnitudes of the 

return levels of the annual temperature maxima represented by CMIP5 climate models are biased 

with respect to CRU observations. In addition, there are variations in both the magnitude and 

sign of the biases of the annual temperature maxima return levels across the CMIP5 simulations. 

The results reveal that most CMIP5 simulations overestimate the global averages of the annual 

temperature maxima at different return periods (see Figure 3.8).  

Given the state of the science in climate modeling, one would not expect the coupled 

Atmosphere/Ocean General Circulation Model (AOGCMs) and earth system models (ESMs) to 

reproduce the magnitudes of the observed historical extremes very accurately. Rather, one 

expects the models to reasonably simulate large-scale patterns of change in occurrences of 

climate extremes (Tebaldi et al., 2006). Overall, the results of this study indicate that the models 

capture the spatial patterns of temperature extremes well, but that individual models are biased 

relative to the CRU observations. 
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Table 3.1 List of 17 climate models whose simulations are displayed in Figures 3.1 to 3.7 and their related 

institutions and countries 
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Figure 3.1  Mean annual temperature maxima (in degrees Celsius) based on 1901-2005 Climatic Research 

Unit (CRU) observations (upper left panel), and the differences between selected CMIP5 climate simulations 

and CRU reference data (remaining panels). 
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Figure 3.2 Ensemble mean (top left), inter-model standard deviation (top right), and range (bottom) of the 

annual temperature maxima in CMIP5 simulations. 
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Figure 3.3 2-year return level (in degrees C) of the annual temperature maxima based on the CRU 

observations (upper left panel), and on selected CMIP5 climate model simulations (remaining panels). 
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Figure 3.4 2-year return level (in degrees C) of the annual temperature maxima based on the CRU 

observations (upper left panel), and return-level differences between selected CMIP5 climate simulations and 

CRU reference data (CMIP5 - CRU; remaining panels). 
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Figure 3.5 25-year return level (in degrees C) of the annual temperature maxima from CRU observations 

(upper left panel), and return-level differences between selected CMIP5 climate simulations and CRU 

reference data (CMIP5 - CRU; remaining panels). 
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Figure 3.6 100-year return level (in degrees C) of the annual temperature maxima based on the CRU 

observations (upper left panel), and on selected CMIP5 climate model simulations (remaining panels). 
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Figure 3.7 100-year return level (in degrees C) of the annual temperature maxima from CRU observations 

(upper left panel), and return level differences between selected CMIP5 climate simulations and CRU 

reference data (CMIP5 - CRU; remaining panels). 
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Figure 3.8  (top): Mean Error (ME) of the 2-, 10-, 25-, 50-,and 100-year temperature maxima (Degree Celsius) 

simulations based on 41 CMIP5 simulations relative to Climatic Research Unit (CRU) observations; (bottom): 

boxplots of differences (degrees C) between CMIP5 2-and 100-year return levels relative to CRU observations. 
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Figure 3.9 Sample uncertainty bounds, median, and the 5% and 95% confidence bounds of the annual 

temperature maxima based on the DE-MC model for CRU reference and over two pixels in the a. western 

and b. central United States. 
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CHAPTER 4:    Non-stationary Precipitation Intensity-Duration-Frequency 

Curves for Infrastructure Design in a Changing Climate 
 

4.1 Introduction 

 

Human activities during the past 50 years have caused an increase in global temperature (IPCC 

2013; Karl et al. 2009; Hao et al., 2013). The rising temperatures boost in atmosphere’s water 

holding capacity by about 7% per 1°C warming, thus directly affecting precipitation (Trenberth 

2011). Higher atmospheric water vapor creates more intense precipitation events (Kunkel et al. 

2013). Consequentially, global warming increases the risk of extreme floods and damage to 

infrastructure such as dams, roads and sewer and storm water drainage systems (Jongman et al., 

2014). Indeed, ground-based observations in the U.S. show an increase in extreme rainfalls by 

around 20% (Karl et al. 2009). Global-scale studies also show increased precipitation in northern 

Australia, central Africa, Central America and parts of southwest Asia (Damberg and 

AghaKouchak, 2013). Due to rising temperatures, subsequent increases in atmospheric moisture 

content and moisture transport into storm, expected extreme precipitation, or probable maximum 

precipitation (PMP), may increase globally (Kunkel et al. 2013) and will likely lead to more 

frequent and severe catastrophic floods (Das et al. 2011; Groisman et al. 2005; Roger Few 2003).  

Current infrastructure design concepts to deal with flooding and precipitation are based on local 

rainfall Intensity-Frequency-Duration (IDF) curves (Chen et al. 2013). These curves are widely 

used in municipal storm water management and other engineering design applications across the 

world (Endreny and Imbeah 2009).  The IDF curves are based on historical rainfall time series 

data and designed to capture the intensity and frequency of precipitation for different durations. 

Rainfall intensities corresponding to particular durations (e.g., 1-hr, 2-hr, 6-hr, 24-hr) are 

obtained by fitting annual extreme rainfall to a theoretical probability distribution. However, 
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current IDF curves are based on the concept of stationarity, which assumes that the occurrence 

probability of extreme precipitation events is not expected to change significantly over time 

(Simonovic and Peck 2009). 

Given the observed increase in heavy precipitation events and the expected increase in PMP, we 

argue that the IDF curves should be updated to account for a changing climate (Simonovic and 

Peck 2009). Although some studies evaluate changes in precipitation intensity or frequency, the 

methods for assessing changes in precipitation intensity, duration and frequency and their 

uncertainty in a non-stationary climate are limited (Chen et al. 2013; Cooley 2013; Salas and 

Obeysekera 2013; Hassanzadeh et al, 2013; Yilmaz and Perera 2013; Park et al. 2011; Endreny 

and Imbeah 2009; Zwiers and Kharin 1998).  

In this study, we assess the effect of non-stationarity on IDF curves and the occurrence of 

extremes using NEVA. We also outline a generalized framework for constructing IDF curves 

under non-stationary conditions. The fundamental concept is based on the Generalized Extreme 

Value distribution (GEV) combined with Bayesian inference for uncertainty assessment (see 

Methods Section). Our analyses are based on ground-based observations of precipitation 

extremes (here, annual maximum) from the United States National Oceanic and Atmospheric 

Administration Atlas 14, the basis for IDF curves in the United States (Bonnin et al. 2006). 

Following the NOAA Atlas 14 approach, the annual maxima series is constructed by extracting 

the highest precipitation amount for a particular duration in each successive water year. 

Historical rainfall data (1949-2000) from five stations are used to assess IDF curves under non-

stationarity (Table 4.1). In the selected stations and based on the Mann-Kendall trend test 

(Kendall 1976), precipitation extremes exhibit non-stationary behavior over different durations at 
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95% confidence level (see Figure 4.4). The presence of a statistically significant increasing trend 

in precipitation extremes violates the basic assumption of stationary IDF curves. 

Given detection of a statistically significant trend, the IDF curves should be derived based on the 

non-stationary model presented in Method Section (Equations 2.1 and 2.2). A unique feature of 

this modeling framework is that it offers uncertainty bounds of IDF estimates (see Equations 2.3 

and 2.4).  

4.2 Methodology 

 

Refer to the Chapter 2.2. 

4.3 Results 

 

To illustrate, the stationary and non-stationary IDF curves for different return periods (2-, 10-, 

25-, 50- and 100-year) and durations for the White Sands National Monument Station in New 

Mexico are presented in Figure 4.1. As discussed in Method Section, the confidence interval and 

uncertainty bounds of IDF curves can be obtained simultaneously in the proposed framework.  

The gray lines show the uncertainty bound of the non-stationary IDF estimates based on the 

Differential Evolutionary Monte Carlo algorithm built into the generalized extreme value 

distribution (refer to Chapter 2.2). We found that the stationary assumption delivers IDF curves 

that substantially underestimate extreme events. If such a stationary IDF curve is used for an 

infrastructure design, the project may not be able to withstand more extreme events, which are 

shown by non-stationary estimates for the same return period. 

For example, for a 2-year 2-hr storm (i.e., an event with a return period of 2 years and duration 

of 2 hours), the difference between the non-stationarity (14.7 mm/hr) and stationarity (9.1 mm/hr) 

extreme precipitation is about 5.6 mm/hr (+61.5%); while for a 10-year 1-hr event, the difference 

between non-stationarity (35.0 mm/hr) and stationarity (25.9 mm/hr) extreme precipitation is 
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over 9.1 mm/hr (+35.1%). Even for a small watershed, this extra 9.1 mm/hr (+35.1%) 

precipitation would lead to a significant increase in flood peak. In other words, a stationary 

assumption will underestimate the peak flood and as a result the actual flood risk will be higher 

than what the system or infrastructure is designed for.  

The differences between the non-stationary and stationary estimates decrease for longer 

durations (e.g., 168-hr precipitation). This implies that in this station, shorter precipitation events 

have been intensified more in the past decades, while longer events have not changed as much. 

For the same station shown in Figure 4.1, the boxplots of differences between the non-stationary 

and stationary precipitation extremes are presented in Figure 4.2. The figure shows that for all 

durations and return periods, the quantile boxes are above zero, indicating underestimation of 

extremes in a stationary assumption. In all durations, the uncertainty increases as the return 

period increases. Consequently, the uncertainties in the stationary and non-stationary 

precipitation differences increase at higher return periods.   

By examining storm durations, we found that the shorter the duration the larger the differences 

between the non-stationary and stationary extremes. As an example, for the 100-year return 

period, the differences between non-stationary and stationary IDF curves of 1-hr and 2-hr events 

reduce from 4.7-15.6 mm/hr to 1.4~7.3 mm/hr, while for a 168-hr storm, the difference 

approaches zero (see Figure 4.2). Similar behavior is observed in the other stations and as a 

result we have focused on shorter durations. For the other stations in Nevada (NV), California 

(CA) and North Carolina (NC), Figure 4.3 summarizes the differences between the stationary 

and non-stationary precipitation extremes for different return periods and durations (upper panels: 

1-hr duration; lower panels: 2-hr duration). The boxplots show the median (center mark), and the 

25th (lower edge) and 75th (upper edge) percentiles of the differences between stationary and 
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non-stationary estimates. Similar behavior emerges in different stations, indicating that non-

stationary estimates are larger than their corresponding stationary values. Such difference in 

underestimation raises the risk of extreme floods and damage to infrastructure if non-stationarity 

is ignored.  

4.4 Summary and Conclusion 

 

Infrastructure health and safety during precipitation extremes is closely related to human health 

and security, particularly downstream of major structures (e.g., dams, spillways, reservoirs). For 

this reason, methods that can account for changing precipitation extremes are essential for 

updating engineering standards and design codes. Potential non-uniform and climate-induced 

changes on heavy rainfall events calls into question the accuracy and adequacy of current 

infrastructure design concepts, which rely on an assumption of climate stationarity. We show 

that ignoring the stationary assumption could lead to substantial underestimation of extremes, 

especially at sub-daily durations (e.g., 1-hr, 2-hr). We also outline a novel framework to create 

the next generation of IDF curves to be incorporated into infrastructure design. However, 

infrastructure design and construction requires substantial investment over a long period of time 

and effective integration of this methodology as well as development of adaptive design 

frameworks will require collaborative and interdisciplinary research with engineers, policy 

makers, economists, climate scientists and decision makers.  
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Figure 4.1  Non-stationary vs. stationary IDF Curves for different return periods and durations at the 

selected station in White Sands National Monument Station, New Mexico. The stationary assumption 

consistently underestimates the IDF curves over different durations. The gray area shows the uncertainty 

bound of non-stationary IDF estimates.  
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Figure 4.2 Differences between the non-stationary and stationary precipitation extremes for different return 

periods and durations in White Sands National Monument Station, New Mexico. The boxplots show the 

median (center mark), and the 25th (lower edge) and 75
th

 (upper edge) percentiles. 
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Figure 4.3 Difference between the non-stationary and stationary precipitation extremes for different return 

periods and durations (upper panels: 1-hr duration; lower panels: 2-hr duration). The boxplots show the 

median (center mark), and the 25
th

 (lower edge) and 75
th

 (upper edge) percentiles. 
 
 

 

Table 4.1 Selected stations for analysis of Intensity-Duration-Frequency curve analysis under stationary and 

non-stationary assumptions. 

 

Station Name State Latitude Longitude 

White Sands National Monument NM 32.7817 106.1747 

Battle Mountain NV 40.6167 116.8667 

Beaumont CA 33.9292 116.9750 

Idyllwild Fire Dept CA 33.7472 116.7144 

Wilmington WSO Airport NC 34.2683 77.9061 
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Figure 4.4 Significant trends in annual maxima precipitation over different durations in the selected station 

in White Sands National Monument, New Mexico (latitude 40.62
o
, longitude 116.87

o
). 

 

 
 

Figure 4.5 Posterior distribution of the regression parameter μ1 in the selected station in White Sands 

National Monument Station, New Mexico (latitude 40.62
o
, longitude 116.87

o
). 
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Figure 4.6 Posterior distribution of the regression parameter μ0 in the selected station in White Sands 

National Monument Station, New Mexico (latitude 40.62
o
, longitude 116.87

o
). 
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CHAPTER 5:   Empirical Bayes Estimation for the Conditional Extreme 

Value Model 

5.1 Introduction 

 

Heffernan and Tawn (2004) introduced new methodology for modeling multivariate extreme 

values through a conditional distribution framework that does not require a priori knowledge of 

the dependence structure nor that the variables be simultaneously extreme. For positively 

associated random variables, the model is quite simple, and has primarily two parameters   and 

  that describe the dependence. Heuristically,   describes the strength of dependence and   the 

variability in the dependence (e.g., Keef et al., 2009a); although special cases make such a 

precise description less straightforward. For negatively associated parameters, the form is more 

complicated, but can be avoided using an appropriate transformation so that the simpler form 

will hold (Keef et al., 2013a). 

A drawback to the approach concerns the estimation procedure for the model as no simple, 

closed-form distribution exists in general (i.e., without assuming a specific dependence structure) 

for the conditional distribution. To quote Richard L. Smith in his comment to Heffernan and 

Tawn (2004): 

“The authors use maximum likelihood for estimating the generalized Pareto margins, Gaussian 

estimation for the conditional means and standard deviations and pseudolikelihood estimation for 

combining the various conditional distributions into a multivariate family, a veritable witches’ 

soup of estimation methods, all nicely stirred up with the bootstrap as seemingly the only means 

of keeping control of all the estimation errors. Although I applaud the authors’ eclecticism, 

would it not be better to have a more coherent estimation strategy?”  

The aim of this dissertation is to provide a “more coherent estimation strategy” by using a 

Bayesian estimation approach. 
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The most difficult hurdle in developing an estimation strategy for the Heffernan and Tawn 

(2004) model concerns the lack of a distribution function for the conditional likelihood. To 

circumvent this issue, we employ an empirical estimation strategy. Owen (1988) developed 

empirical likelihood techniques as a robust alternative to classical likelihood approaches or the 

bootstrap (Owen, 1990; Mengersen et al., 2013). He demonstrated that, for some categories of 

statistical models, when the likelihood function is numerically unavailable or not entirely known, 

empirical likelihood methods can be used to bypass simulations from the model while 

converging in the number of observations. Empirical likelihood has been shown in a wide range 

of situations to have properties analogous to a real likelihood (Li, 1995; Jing, 1995; Chen, 1994; 

Qin and Lawless, 1994; Hall and La Scala, 1990). Although further investigation of this 

methodology is needed, it appears to be a valuable approach in distribution-free contexts. 

Therefore, empirical likelihood provides another route in this study to tackle the difficulty in the 

conditional likelihood estimation. 

5.2 Model and Estimation Methodology 

5.2.1 The Conditional Extreme Value Model 

 

We describe the Heffernan and Tawn (2004) conditional extreme value model (henceforth, the 

HT model) using the approach of Heffernan and Resnick (2007). That is, suppose  and  are two 

suitably transformed random variables, and assume that 

  {      
      

    
  |   }                                                                  (5.1) 

where   is a non-degenerate distribution and      and      are normalizing functions for  

     . Through examing a wide class of copula dependence models, using Gumbel margins for 

  and  , Heffernan and Tawn (2004) found that the forms for      and      fell into the simple 

class: 
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                                                                                                                          (5.2) 

For positively associated variables   and  ,         and         . For the more 

complicated form of negatively associated   and  , Keef et al. (2013a) used a Laplace 

transformation to ensure Equation 5.2 was valid and         . The parameters   and   are 

interdependent and control the dependence between the variables   and  . With the Laplace 

transformation,      implies negative dependence, and       implies positive dependence. 

Weakly dependent   and   are possible as     , but it is also possible that strong dependence 

exists even when     (Gilleland et al., 2013; Heffernan and Tawn, 2004). The parameter   

measures the variability of the dependence with highly negative values indicating lower 

variability. Let, 

                                                                                                                               (5.3) 

Equation 5.1 implies conditional independence between   and   given       . As mentioned, 

no simple, closed-form expression exists for   (the most difficult hurdle in developing Bayesian 

statistical inference). The primary contribution of this article is to apply the empirical likelihood 

approach to circumvent this issue. From Equations 5.1, 5.2 and 5.3, define 

                                                                                                                               (5.4) 

Subsequently, the key role in estimating the joint distribution function (df) of   and  , 

conditional on        for   large, is to know the parameters   and    and the df   . Estimation 

for the parameters   and   is an active area of research (Keef et al., 2009a,b; Lamb et al., 2010; 

Jonathan et al., 2013), and estimation of   is performed through resampling from the empirical 

df of the “residual” vectors    in the HT model after achieving reasonable estimates for   and  . 

The estimation method from the HT model is semi-parametric and involves the following steps: 

1. Estimate the marginal df’s for each variable separately. 
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2. Transform each variable in order that they each follow a Laplace df (following Keef et al., 

2013a). 

3. Estimate the parameters of the parametric model conditional on large values of the 

conditioning variable. 

4. Information about   (e.g., functions such as the mean and variance, etc.) can be simulated 

using the empirical df of the estimated standardized residuals. Back transformation can be used 

to put these estimates onto the original scale. 

Heffernan and Tawn (2004) suggested using a hybrid, semi-parametric, model for step 1 of the 

following form that accounts for both the extreme and non-extreme values (Coles and Tawn, 

1991) 

 ̂  
     {

      ̃  
               

      
                     

 

 ̃  
                                                                                     

                                (5.5)  

where  ̃  
     is the empirical df of the    values;    is the shape parameter and        is the 

scale parameter for each individual variable, fitted with the generalized Pareto (GP) df as a 

model for the upper tail of the univariate extremal exceedances over a high threshold (i.e.,    
 in 

Equation 5.5). The threshold excess probability is 

                                                                                                                   (5.6) 

which is approximately equivalent to the GP df for a sufficiently large threshold,  , given by 

          
  

 
  
    

                                                                                                          (5.7) 

with             . In particular, it is                                 for   large, 

that is of primary concern. Note that the limit       yields the exponential df,          . In 

the HT model,   is assumed to follow a standard exponential df (i.e.,         in Equation 5.1) 

without loss of generality because it can be obtained through a simple transformation. 
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In step 2, the original data are first transformed to    using the Laplace transformation with the 

estimated df described by Equation 5.5 in order to maintain both the marginal and dependence 

features of the multivariate data. Specifically, 

    {
   {  ̂  

    }                                                                              ̂ 
  

(
 

 
)

    { (   ̂  
    )}                                                          ̂ 

  
(
 

 
)

                      (5.8) 

where  ̂  is estimated according to Equation 5.5 using maximum likelihood estimation for the GP 

portion and empirical estimation for  ̃ .  

Heffernan and Tawn (2004) used non-linear least squares estimation in Equation 5.4 to estimate     

   and      for each    under the working assumption that   follows a normal df. Obviously, the 

assumption of a normal df for   is inappropriate as it implies that        is also normally 

distributed, which generally may not be the case. To counteract the inherent estimation bias from 

this approach, Keef et al. (2013a) imposed joint constraint on the dependence parameters       

in order to limit the upper quantiles of         to be less than or equal to   , the value that would 

be observed under asymptotic dependence. From these estimates in step 3, Heffernan and Tawn 

(2004) obtain new estimates   ̂             ̂        ̂      from which simulations from  ̂ are 

obtained. 

To incorporate the uncertainty inference at each stage of the estimation procedure, a bootstrap 

procedure is proposed by Heffernan and Tawn (2004). Note that this approach differs from that 

of incorporating covariates into the parameters of a univariate extreme value df in that a 

distribution for values of one variate is conditional on only the extreme values of another 

variable. Therefore, the dependence is on the processes themselves rather than indirectly through 

distributional parameters (Gilleland et al., 2013; Jonathan et al., 2012). 
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5.2.2 Empirical Bayes Estimation 

 

In order to use empirical Bayes estimation, we need to infer  ̂,  ̂ and  ̂. 

However, because   does not have a simple, closed-form expression and we only need to 

simulate from  , only the estimates  ̂ and  ̂ are required. That is,                        is 

what we are, ultimately, seeking to estimate. The Bayesian approach for simulating data from an 

arbitrary distribution has become increasingly popular and used in numerous studies (Stephenson 

and Tawn, 2004; Coles and Powell, 1996). From Equation 5.1 and Equation 5.3, we have that 

                                                                                                         (5.9) 

where    and    are parameters in the marginal in Equation 5.5 and        is proportional to 

                 times a prior distribution. More specifically, 

                                                                                                                              

                                                                                    

                                                                                                                

                                                                                                                               (5.10) 

where               and                are the marginal GP df parameters for   and   , 

respectively, and   represents any additional hyper parameters pertaining to the prior df for  ,   

and  . For simplicity, let                                                     

                                                           . 

Reasonable choices for B, D and E are available by fitting the GP df (see Equation 5.5 and 

Equation 5.7), and additional hyper parameters   are not of great concern. It may be difficult to 

obtain a joint df for  , but we can make the reasonable assumption of conditional independence 

between   and   and follow the method introduced by Keef et al. (2013b), which is a fast 

estimate for   that does not rely on knowing anything about  , to help inform the priors. In 
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theory, the prior knowledge on parameters does not depend on the observations    , and should 

therefore be specified without using observations, but rather using any external source of 

knowledge (Renard et al., 2013). Thus, we suppose that prior information of parameters should 

not produce much effect on the simulation results. However, we found that in this specific 

problem, prior information does matter. Therefore, relatively informative priors are preferred 

here. Particularly, the informative initials are estimated by looking into different  th quantiles of 

      when    values are within two different intervals as     
                      and 

  
              

       , where the intervals are around the conditional threshold  , and 

      within the range of the observation of   
  . Then take the median of the estimated    s as 

the initial point   ̂. This initial estimation approach is systematically introduced by Keef et al. 

(2013b) with more details. An initial estimate for    is achieved through a linear regression on 

the log-transformed Equation 5.3; namely,  

                              ̂                                                                   (5.11)  

with   being some random residuals, the informative initial of    is obtained and subsequently, 

we have some knowledge about   . Given prior distributions specified in the above manner, the 

remaining problem, of course, is to estimate   . This is where an empirical estimation strategy is 

employed, by assuming   as a prior df for       in the following empirical likelihood 

estimation. Empirical likelihood provides likelihood ratio statistics for parameters by profiling a 

nonparametric likelihood; the approach is analogous to that used for parametric models (Qin and 

Lawless, 1994). Owen (1990) showed that for d-variate independent and identically distributed 

(henceforth, i.i.d.) random variables   (each variate as       ), with an unknown distribution 

density  , mean     and variance   
 , the approach applies to quite general parameters     , 

where   is the parameter associated with  . Rather than defining the likelihood from the density 
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  as usual, the empirical likelihood method starts by defining parameters of interest   as 

functionals of  , for instance as moments of  , and then profiles a nonparametric likelihood 

(Mengersen et al., 2013). More precisely, given a set of constraints of the form 

                                                                                                                                    (5.12) 

where the dimension of   sets the number of constraints unequivocally defining  , the empirical 

likelihood is defined as 

              ∏   
 
                                                                                                            (5.13) 

for   in the set 

           ∑      ∑                                                                                             (5.14) 

where        are nonnegative real numbers summing to unity. The validation of the empirical 

likelihood approximation is also provided by Owen (1988, 1990). He has proved under mild 

conditions, if   satisfies Equation 5.12, then        
      

       
  in distribution when       

and note that      is the maximum of        . 

In general, the basic idea in this approach is to maximize the empirical likelihood (see Equation 

5.13) subject to constraints provided by Equation (5.12) which reflect the characteristics of the 

quantity of interest. For instance, in the one-dimensional case when            , the empirical 

likelihood in   is the maximum of the product           under the constraint      

         . Solving Equation 5.13 is based on the Newton-Lagrange algorithm and more are 

derived with details in Mengersen et al. (2013), Qin and Lawless (1994) and Owen (1990, 1988). 

Due to its ability to conduct a nonparametric inference without knowledge of higher order 

moments of the distribution while implicitly taking them into consideration (according to Chen 

and Cui, 2003), when applying to the conditional likelihood estimation in this study, the first, 

                                                                                                                                   (5.15) 
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and second,  

             
                                                                                                               (5.16) 

statistical moments of “residual” vectors   (in Equation 5.3) and conditional vectors of     in 

the HT model are used as sufficient constraints to estimate the empirical likelihood of  . And if 

  has the mean vector   and vector of standard deviation  , the respective conditional mean and 

standard deviation vectors of       , for        , are            and      , respectively 

(see Keef et al., 2013a). Now we have all the components,  ,  ,  ,   and   in the Bayesian 

framework (see Equation 5.10), in order to derive the empirical Bayes estimation are clarified 

and put together. 

To estimate the parameters using Bayesian inference, a large number of realizations is generated 

from the parameters’ posterior distributions, using the Differential Evolution Markov Chain (DE-

MC; Ter Braak, 2006). The DE-MC utilizes the genetic algorithm Differential Evolution (DE; 

Ter Braak, 2006; Storn and Price, 1997) for global optimization over real parameter space with 

Markov Chain Monte Carlo (MCMC) approach (Ter Braak, 2006; Gilks et al., 1996). The 

advantages of simplicity, speed of calculation and convergence makes DE-MC favorable over 

the conventional MCMC (Ter Braak, 2006). In this model, for example, five Markov Chains are 

constructed in parallel, and are allowed to learn from each other by generating candidate draws 

based on two random parent Markov Chains (rather than to run independently - (see ter Braak, 

2004; Gelman and Shirley, 2011)) such that the equilibrium distribution is the target posterior 

distribution. Meanwhile, the uncertainty of each parameter in Equation 5.10 is estimated. 

5.3 Simulation Experiment 

 

In this study, the results of the conditional extreme value analysis (henceforth, conditional EVA) 

simulated by the proposed empirical Bayes estimation approach are compared with the HT 
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model using the R (R Core Team, 2013) package texmex developed by Southworth and 

Heffernan (2010), which allows for the constrained estimation of the dependence parameters 

with the Laplace transformation on the marginal variables following Keef et al. (2013a). 

5.3.1 Background 

 

Ledford and Tawn (1996) identified four classes of extremal dependence. The first class is that of 

asymptotically dependent distributions. The other three classes comprise distributions with 

asymptotically independent dependence structures exhibiting positive extremal dependence, near 

extremal independence and negative extremal dependence for a d-dimensional variable  . These 

three classes correspond respectively to joint extremes of   occurring more often than, 

approximately as often as or less often than joint extremes if all components of the variable were 

independent (see Ledford and Tawn, 1996, for more details). In this study, the focus is to clarify 

the performance of interpreting dependence structure (see Equation 5.2) by the empirical Bayes 

estimation approach for different types of dependence derived in detail in Section 8 of Heffernan 

and Tawn (2004). We choose the extremal dependent types below to be simulated, which are 

also described in Keef et al. (2013a). 

Independence. Here           and   factorizes into Laplace distribution functions. 

Asymptotic dependence. Here        (with +1 indicating positive dependence and −1 

implying negative dependence) and        and   takes a range of forms. 

Asymptotic independence. Variable   is asymptotically independent of variable   if       

  . 

The simulated data for analyzing these three types are randomly generated from bivariate 

extreme value distributions using the R (R Core Team, 2013) package POT (Ribatet, 2006). 

Mainly two types of models are used as listed in Table 5.1. The experiment is particularly 
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designed to see the performance in estimating dependence parameters   and   with different 

exceedance sizes based on the proposed empirical Bayesian approach. Initially, sample sizes of 

1000, 3000, 5000, 10000 are generated and the high threshold of 99% quantile is selected for all 

cases to keep independence between   and   , thus exceedence sizes of 10, 30, 50 and 100 are 

left to be experimented on (see an example in Figure 5.1 and Laplace-transformed results in 

Figure 5.2). All simulation cases are repeated for 800 trials, to see the percentage of times (over 

800 trials) that the true parameter(s) fell within the estimated 95% credible interval (henceforth, 

95% CI), and to explore how the sample sizes (i.e., 10, 30, 50 and 100) might affect estimation 

inference. Ideally, the percentage of fall-in times for the true parameter(s) should be 

approximately 0.95 when considering a 95% CI. Another aspect of this experiment also 

compares simulations given vague priors (uniform distributions with wide support and random 

initials) for dependence parameters with relative informative ones to check the consequential 

effect from initials and priors. 

5.3.2 Simulation Results 

 

The selected three different forms of dependence structures described in section 5.3.1 (Figure 5.1 

and 5.2) are tested with the proposed empirical Bayes estimation approach. For the simulation 

experiment, with exceedance sizes of 10, 30, 50 and 100, the percentage of times that the true 

parameter(s) fell within the estimated 95% CI are shown for parameters   and   individually, as 

well as for when both parameters fell within the bounds simultaneously in Table 5.2 and 5.3. 

Table 5.2 summarizes the simulation results associated with vague priors for dependence 

parameters, while Table 5.3 displays the results having used informative priors. In both tables, it 

is clear that results improve, if only slightly, with increasing sample sizes, except for the 

asymptotic dependence case, where the estimation performs relatively poorly for the parameter, 
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 . This inefficiency may be caused by the fact that it is a special case of estimating a single point 

in a continuous parameter space (at least for one type of exact dependence). By comparing Table 

5.2 and Table 5.3, with Informative Priors, the performance of hit percentage (the true 

parameter(s) fell within the estimated 95% CI over 800 trials) for either   or  , or both are much 

better. For example, in the Independence case, with exceedances of 50, Table 5.3 shows that the 

individual parameter as well as both have the hit percentage over 0.9, while in Table 5.2 the 

inference performance is 0.5 on average. That is, over 800 trials, the true parameter(s) fell within 

the estimated 95% CI with Informative Priors over 720 times, while it fell in the interval 

approximately only 400 times, on average, when using Vague Priors. In some cases, such as in 

the asymptotic independence case with exceedances over 10 (e.g., exceedance size of 50 and 100, 

then the percentage for both is around 0.914 and 0.915), or in the independence simulation with 

larger sample size (e.g., same exceedance sizes, the percentage for   is about 0.961 and for   is 

approximately 0.958), the percentage even reaches over the ideal situation which is around 0.95. 

The identifiability issue with   may be because the model at some point is actually 

                   , where   and   are the mean and standard deviation vectors of  , 

respectively, and as noticed, it is not possible to differentiate   from   and    

We feel that it is reasonable to obtain prior information for    so that this issue is not a major 

concern. Overall, simulation results show that the proposed approach performs fairly well for 

most types of dependence structures, but strong and reasonable prior information for   is 

generally necessary. And the benefit from increasing samples is not so obvious as using 

Informative Priors. 
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5.4 Temperature and Precipitation Test Case 

 

5.4.1 Background 

 

In this study, the proposed empirical Bayes estimation approach is further applied on two real 

data cases, and simulated results are compared with the (slightly modified) HT estimation 

strategy as implemented by the R (R Core Team, 2013) package texmex (Southworth and 

Heffernan, 2010). Monthly observations of precipitation and temperature from the Climatic 

Research Unit (CRU; New et al., 2000; Mitchell and Jones, 2005) regridded in a common 2 × 2-

degree spatial resolution, are used to provide the test case data. Historical monthly precipitation 

and temperature records are available from 1901 to 2009. CRU observations have been validated 

and used in numerous studies of historical climate variability (e.g. Tanarhte et al., 2012; Hao et 

al., 2013). To identify extreme conditions, two grid points in the central (Latitude 40.02 °N, 

Longitude 105.27 °W) and western (Latitude 34.05 °N, Longitude 118.24 °W) United States are 

selected for conditional extreme dependence structure analysis in Figure 5.3. The two locations 

are close to urban areas in Boulder, Colorado and Los Angeles, California where long-term 

observation stations have been available. In both cases, we consider the precipitation conditional 

on the temperature’s being extreme, i.e., precip | temp    , for   large. The marginal threshold 

level (i.e.,  ) of temperature at the two locations is corresponding to the 0.97 quantile. For the 

upper tail of precipitation data, the threshold level Los Angeles is taken to be the 0.97 quantile, 

and for Boulder, the 0.99 quantile. The proposed empirical Bayes approach is applied to infer the 

dependence structure parameters,   describing the dependence strength between precipitation 

and extremal temperature and   outlining the dependence variability, along with the scale and 

shape parameters for the upper tail of precipitation and temperature distributions. 
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5.4.2 Test Case Results 

 

Using the CRU precipitation and temperature monthly data (see Figure 5.3), analyzing precip | 

temp    , for   large, the dependence structure controlling parameters,   and  , and 

distribution parameters of   and   fitted with the GP df for each variable at two locations 

(Boulder and Los Angeles) are presented in Table 5.4. The parameters derived by the empirical 

Bayes estimation approach and the HT model are simulated with informative priors for the   and 

 . In both locations, the dependence relationship of precipitation given extreme temperature 

tends to show asymptotic independence, and in Los Angeles, it is near extremal independence, 

while in Boulder, it is towards negative extremal dependence. Looking at the parameter   , it 

appears that the variability of the dependence is relatively lower in Los Angeles than that in 

Boulder. Parameters    and     describe the scale and shape of temperature data which indicates 

a bounded upper tail distribution, while    and     stand for the precipitation distribution. In Los 

Angeles, the precipitation distribution shows a heavy tail property (indicated by       ), while 

in Boulder, it shows a bounded upper tail (see        ). Table 5.4 also compares results using 

the empirical Bayes estimation approach and the R (R Core Team, 2013) package texmex for the 

HT method. In general, from the table, we can see that all the parameters, including dependence 

structure parameters   and   , and GP df parameters   and  , inferred by the two approaches are 

consistent with each other. 

5.5 Summary, Conclusions and Discussion 

 

The conditional EVA approach introduced by Heffernan and Tawn (2004) is an important new 

methodology for modeling multivariate extreme values through a conditional distribution 

framework. Although this approach does not require a priori knowledge of the dependence 

structure nor that the variables be simultaneously extreme, a difficulty for estimating the 
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parameters is that no simple, closed-form distribution exists in general for   . Therefore in the 

original approach, several estimation methods and constraints are mixed together to evaluate the 

  df and counteract the inherent bias. This disadvantage motivates the development of the 

empirical Bayes estimation approach proposed in this study. 

Simulations are employed to reproduce known dependence structures with 800 repeated trials for 

each of three types of dependence and sample sizes, and to test how well the estimation 

procedure performs. Additionally, precipitation data conditional on having extreme temperature 

is also analyzed and compared to the (slightly modified) estimation strategy proposed by 

Heffernan and Tawn (2004). Simulations show generally good coverage of credible intervals. 

However, the parameter   is relatively hard to infer precisely, and sometimes it is not unique, so 

strong prior information for   is generally necessary, which is the primary hold-back in this 

approach and might require further refinement. 

The identifiability issue with   may result from the model at some point falling into the function 

of                    , where   and   are the mean and standard deviation vectors of  , 

respective, and as noticed, it is difficult to differentiate   from   and  . To possibly solve this 

issue, one may include   and   as parameters of interest in the empirical likelihood estimation by 

imposing other prior knowledge for those parameters, but still, the identifiability problem might 

not disappear. Another possibility is that one may explore and include higher order moments 

(other than first and second moments in this study) of the conditional distribution as empirical 

likelihood constraints, which may also be difficult to identify without any additional assumption 

because the conditional distribution is generally, numerically unknown. As for the inefficiency to 

estimate a single point in a continuous parameter space (at least for one type of exact 

dependence), a possible extension for the estimation model would be to use a reversible jump 
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Markov Chain to include probability terms for special cases (i.e.,                       

  ) analogously as proposed in the univariate setting by Stephenson and Tawn (2004) for the 

shape parameter,       versus       . Such a scheme might help with the estimation in the 

asymptotic dependence case and will be explored in a future study. 

The presented model can be potentially applied in a wide variety of science fields including 

finance, earth science, environmental science, and biology. Particularly, this model can be used 

for assessing spatial climatic extremes (see Gilleland et al., 2013). A myriad of papers show 

climatic extremes have been changing and are projected to change in the future (e.g. Wehner, 

2013; AghaKouchak et al., 2013; Field et al., 2012; Schubert and Lim, 2013; Easterling et al., 

2000; Alexander et al., 2006). Even concurrent extremes (e.g., joint precipitation and 

temperature extremes) have been reported to have increased/changed over time (Hao et al., 2013). 

The proposed methodology allows assessing one extreme variable conditioned on another and 

hence, we expect it to be a useful tool for conditional extreme value analysis. 

 

Table 5.1 Dependence models for bivariate extreme value distributions used in this study 

 

Dependence Models Negative Logistic (nlog) Logistic (log) 

Formula 
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Table 5.2 Results from fitting the conditional extreme value model to simulated data using the empirical 

Bayes estimation approach with Vague Priors proposed here. For each (exceedance) sample size, the 

percentage (of 800 trials) given is the percentage of times that the true parameter(s) fell within the estimated 

95% CI’s. Results are shown for parameters individually, as well as for when both parameters fell within the 

bounds simultaneously.  

 

 Exceedance Size 10 30 50 100 

Asymptotic Independence   0.796 0.666 0.745 0.701 

   0.821 0.883 0.938 0.874 

 both 0.661 0.588 0.713 0.630 

Independence   0.800 0.639 0.773 0.695 

   0.499 0.409 0.396 0.349 

 both 0.433 0.301 0.336 0.296 

Asymptotic Dependence   0.674 0.518 0.585 0.278 

   0.685 0.674 0.633 0.484 

 both 0.439 0.331 0.345 0.135 

 

 
Table 5.3 Results from fitting the conditional extreme value model to simulated data using the empirical 

Bayes estimation approach with Informative Priors proposed here. For each (exceedance) sample size, the 

percentage (of 800 trials) given is the percentage of times that the true parameter(s) fell within the estimated 

95% CI’s. Results are shown for parameters individually, as well as for when both parameters fell within the 

bounds simultaneously.  

 

 Exceedance Size 10 30 50 100 

Asymptotic Independence   0.941 0.708 0.946 0.923 

   0.941 0.991 0.960 0.993 

 both 0.890 0.704 0.914 0.915 

Independence   0.965 0.975 0.961 0.940 

   0.781 0.786 0.934 0.958 

 both 0.764 0.768 0.901 0.905 

Asymptotic Dependence   0.844 0.585 0.741 0.995 

   0.956 0.929 0.980 0.636 

 both 0.823 0.560 0.730 0.634 
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Figure 5.1 Scatter plots of randomly generated data of sample size 1000. The marginal threshold level, 

corresponding to the 0.99 quantile is shown in grey lines. Data are shown on original scales. Asymptotic 

Independence (upper), Independence (middle), Asymptotic dependence (lower).  
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Figure 5.2 Scatter plots of randomly generated data of sample size 1000. The marginal threshold level, 

corresponding to the 0.99 quantile is shown in grey lines. Data are shown on Laplace transformed scales. 

Asymptotic Independence (upper), Independence (middle), Asymptotic dependence (lower). 
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Figure 5.3 Scatter plots of Precipitation and Temperature data at Boulder, Colorado, U.S.A. (left), and Los 

Angeles, California, U.S.A. (right). The marginal threshold level for temperature, corresponding to the 0.99 

quantile at both locations; quantile of 0.99 at Boulder and quantile of 0.97 at Los Angeles for the precipitation, 

respectively, are shown in grey lines. 

 

 
Table 5.4 Comparison results from fitting the conditional extreme value model to real data using the 

empirical Bayes estimation approach and texmex 

 

 

 

 

Los Angeles Exceedance                  

Empirical Bayes 40 -0.065 -0.559 0.733 -0.367 0.820 0.193 

 Std. Dev 0.070 0.214 0.028 0.043 0.044 0.046 

texmex 40 -0.071 -0.568 0.688 -0.338 0.849 0.140 

Boulder Exceedance                  

Empirical Bayes 39 -0.230 -0.270 0.683 -0.143 0.890 -0.251 

 Std. Dev 0.074 0.334 0.033 0.027 0.842 0.060 

texmex 39 -0.249 -0.284 0.648 -0.149 0.802 -0.143 
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CHAPTER 6:   An Empirical Bayes Conditional Extreme Value Model for 

Detecting Changes in the Hydrological Cycle 
 

6.1 Introduction 

 

Atmospheric greenhouse gases have been increasing since the industrial revolution, leading to 

the Earth warming through an increase in downwelling infrared radiation (Trenberth 1999). The 

warmer atmosphere’s greater water holding capacity will likely intensify the hydrological cycle 

(Huntington 2006; ACIA 2004; Ding et al., 2001; NAST 2001). The Clausius–Clapeyron 

relation, which characterizes transition between two phases of single-constituent matter, 

indicates that specific humidity increases approximately exponentially with temperature (Joshi et 

al., 2008; Willett et al., 2007; Trenberth et al., 2003). Therefore, climate warming is theoretically 

expected to cause increases in evaporation and precipitation (Allen and Ingram, 2002) and 

ultimately acceleration in water cycle processes (McCarthy et al., 2001; Held and Soden, 2000; 

Trenberth, 1999; Loaciga et al., 1996; Del Genfo et al., 1991). This is already shown in some 

studies; for example, one modeling study suggests that precipitation could increase by about 

3.4% per degree Kelvin (Allen and Ingram, 2002).   

However, other important research questions remain regarding whether increases in global 

temperatures have actually changed the hydrological cycle significantly in the past century and 

whether the cycle will intensify in the future (Ohmura and Wild, 2002). Empirical trends in 

observed precipitation, temperature, snow-water equivalent, and soil moisture at regional to 

continental scales confirm climate changes over time (Huntington 2006; Robock et al., 2000; 

Brown 2000). Observations show increased precipitation in northern Australia, central Africa, 

Central America and parts of southwest Asia, and drying trends in western United States and the 

Mediterranean region (Damberg and AghaKouchak 2013). Due to rising temperatures and 
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subsequent increases in both atmospheric moisture content and moisture transport into storms, 

the probable maximum precipitation (PMP) is expected to increase globally (Kunkel et al., 2013). 

Even concurrent extremes (i.e., warm-dry and warm-wet conditions) have increased significantly 

in the second half of the 20
th

 century (Hao et al., 2013). Such changes in the hydrological cycle 

will affect water availability, frequency and intensity of tropical storms, floods, droughts, and 

potentially amplify warming through water vapor feedback (Wu et al., 2013; Wehner, 2013; 

Schubert et al., 2013; Brekke and Barsugli, 2013; Huntington 2006; Deardorff 1978).  For this 

reason, methods for assessing and predicting potential changes in the hydrological cycle have 

received a great deal of attention recently (e.g., Wu et al., 2013; Trenberth et al., 2007; Zhang et 

al., 2007; Huntington 2006; Trenberth 1999). 

Several methods for evaluating changes in climatic variables have been developed, including the 

forest machine-learning approach (Loosvelt et al., 2012; Liaw and Wiener, 2002), fingerprint, 

multivariate and multi-fingerprint techniques (Marvel and Bonfils, 2013; Santer et al., 2013), the 

generalized Bayesian approach based on subjective probabilities (Schnur and Hasselmann, 2005; 

Hasselmann 1998) and others (see also, Lee et al., 2005; Barnett et al., 1999; Hegerl et al., 1996). 

Numerous indices for monitoring changes in climatic extremes have also been developed (e.g., 

Zhang and Zwiers, 2013; Zhang et al., 2011). Most of these methods, indices, and trend studies 

focus on changes in one variable at a time. However, hydrologic variables are dependent and a 

change in one variable can alter extreme and non-extreme values of other variables (Leonard et 

al., 2014). Temperature, for example, drives the hydrologic cycle and has a profound effect on 

rainfall (Gyasi‐Agyei 2013). Concurrent climatic extremes have been evaluated using both 

empirical methods (e.g., Hao et al., 2013; Beniston, 2009) and multivariate extreme value 

analysis (Salvadori and De Michele, 2013). The latter can analyze two or more concurrent 
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extremes (e.g., concurrent extreme precipitation and temperature). However, it cannot assess 

changes in one full distribution conditioned on extremes of another variable (e.g., changes in the 

full distribution of precipitation including non-extreme values conditioned on extreme 

temperature). To address this major research gap in current available methods, we present a 

generalized statistical framework for assessing conditional extremes.  

Heffernan and Tawn (2004) introduce a new approach for modeling multivariate extreme values 

through a conditional distribution framework, which has been used in economics and finance 

literature. A drawback of this methodology however, is that without assuming a specific 

dependence structure, there is no simple closed-form conditional distribution. Therefore, we 

offer an empirical Bayes estimation strategy for modeling conditional multivariate extremes 

based on the previous model. Our proposed methodology circumvents the prior method’s 

drawback, quantifies uncertainty of all parameters involved simultaneously, computes statistics 

of extremes efficiently, and is applicable across different spatial scales.  

The proposed methodology uses the empirical likelihood technique developed and proved by 

Owen (1988) as a robust alternative to classical likelihood approaches or the bootstrap 

(Mengersen et al., 2013; Owen 1990). This concept is different from how empirical Bayes has 

been used in previous studies — to define an appropriate prior distribution (e.g., Smith, 

Marshall, and Sharma, 2014; Goodman 2010). When the likelihood function is numerically 

unavailable or not entirely known, empirical likelihood method appears to be a valuable 

approach even for limited observations (Li, 1995; Jing, 1995; Chen, 1994; Qin and Lawless, 

1994; Hall and La Scala, 1990). Therefore, empirical likelihood provides a unique avenue to 

tackle the difficulty in the conditional likelihood estimation. This chapter highlights the value of 

empirical Bayes conditional extreme value analysis as a tool for simulating and assessing 
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conditional extremes (e.g., changes in the distribution of precipitation conditioned on extreme 

temperature).     

6.2 Methodology 

 

Refer to the Chapter 5.2. 

6.3 Data and Study Areas 

 

In this study, we propose the empirical Bayes estimation approach to explore changes in the 

precipitation given extreme temperatures. Monthly observations of precipitation and temperature 

from the Climatic Research Unit (CRU; Mitchell and Jones, 2005; New et al., 2000) regridded to 

a common 2 × 2-degree spatial resolution are used. CRU observations are validated and used in 

numerous climate studies (e.g., Hao et al., 2013; Tanarhte et al., 2012). To investigate changes in 

precipitation conditioned on extreme temperature, the proposed framework is first applied to five 

selected locations in the central and western U.S., northern China, Europe and Australia. The 

methodology is also applied to the continental United States and Australia to show example 

applications of the presented method at large spatial scales. The five selected locations are close 

to urban areas in Austin, Texas (Latitude 30.25° N, Longitude 97.75° W), Los Angeles, 

California (34.05° N, 118.25° W), Beijing (39.91° N, 116.39° E), Paris (48.86° N, 2.35° E) and 

Canberra (35.31° S, 149.12° E), near long-term observation stations. In both local scale and 

continental scale applications, the data from 1910 to 2009 is used and separated equally into two 

periods: 1910-1959 (first 50 years) and 1960-2009 (second 50 years).   

6.4 Results 

 

Using our approach, the observed precipitation and temperature during 1960-2009 are evaluated 

against the baseline period (1910-1959). The conditional distributions (i.e., precip. | temp    , 
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with   being 0.95 quantile) simulated by the proposed model, for the five selected points are 

presented in Figure 6.1. The 0.95 quantile (i.e.,  ) of monthly temperature in the five selected 

locations are approximately 29.53°C (Austin), 26.32°C (Los Angeles), 24.85°C (Beijing), 

19.30°C (Paris), and 20.85°C (Canberra). Figure 6.1 shows the univariate distributions of 

precipitation (1
st 

column), temperature (2
nd

 column), and the distribution of precip. | temp      

(3
rd

 column) for the two fifty-year periods: 1910-1959 (blue) and 1960-2009 (red).  The figure 

shows how distributions have changed in the target period relative to the baseline.  

The t-test is applied to the distributions in Figure 6.1 to examine whether the distributions have 

changed significantly (at the 05.0  significance level) in the two periods. The test examines 

the null hypothesis of no change between the two distributions (i.e., no statistically significant 

changes in the means and standard deviations). While there are differences between the 

univariate precipitation and temperature distributions, the t-test results do not reject the null 

hypothesis of no change in the univariate distributions (1
st
 and 2

nd
 columns in Figure 6.1) at the 

95% confidence level ( 05.0 ). In other words, the test indicates no statistically significant 

change in the univariate distributions of recitation and temperature in the selected locations. 

However, the t-test rejects the null hypothesis of no change for the distributions of the 

precipitation conditioned on high temperature (i.e., precip. | temp    ) indicating a statistically 

significant change at the 95% confidence level – 3
rd

 column in Figure 6.1. The five examples 

show that while the entire distributions of precipitation has not changed significantly in the 

selected areas, the distribution of precipitation conditioned on high temperature has changed 

significantly. This is consistent with the theoretical expected change in precipitation in a 

warming climate (Trenberth, 1999; Allen and Ingram, 2002). The results show that the presented 
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methodology reveals information that otherwise cannot be obtained from univariate statistics of 

individual variables.  
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Figure 6.1 Distributions of precipitation (left), temperature (middle) and precipitation conditioned on high 

temperature (right) for 1910 to 1959 (blue) and 1960 to 2009 (red) over the selected five locations: Austin, TX, 

Los Angeles, CA, Beijing, China, Paris, France, and Canberra, Australia. 
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To demonstrate example applications over large spatial scales, the presented methodology is 

applied over the United States and Australia. The results are cross-checked with the commonly 

used Mann-Kendall (Kendall 1976; Mann 1945) trend analysis, which is widely used in 

hydrology (Zhang et al. 2004). For the two periods, mentioned in Figure 6.1, changes in 

precipitation, temperature and precipitation conditioned on high temperature are evaluated over 

summer and winter separately. In the Mann-Kendal test, the null hypothesis of no trend is 

rejected if the test statistic is significantly different from zero. Figure 6.2 and 6.3 present the 

Mann-Kendal trend test results for summer and winter, respectively. In these figures, a positive 

trend (blue) means an increasing pattern in precipitation, while a negative trend (red) indicates a 

decreasing precipitation pattern. The white areas in both figures do not show a statistically 

significant trend at the 95% confidence level. Overall, in summer, more areas exhibit a 

statistically significant trend in precipitation (Figure 6.2) compared to winter (Figure 6.3). In 

Figure 6.2, the western U.S. exhibits a decreasing trend (red), whereas part of southern U.S. and 

western Mexico show an upward trend. More importantly, comparing the trends in the two 

periods (left and right panels in Figure 6.2) indicates that a similar trend appears in both periods.  

On the other hand, winter data (Figure 6.3) shows an increasing trend in precipitation in the 

second 50-year period (compare the two panels in Figure 6.3).  

Considering the precipitation conditioned on high temperature reveals substantially different 

patterns of change in summer and winter (Figure 6.4). Using the t-test, the significance of 

changes in precipitation conditioned on high temperature is evaluated for summer and winter in 

Figures 6.4 (left) and 6.4 (right), respectively. In these figures, the blue pixels indicate that the 

mean of the conditional rainfall distribution has changed significantly, and that the rainfall has 

increased in the second period compared to the baseline. On the other hand, red pixels 
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correspond to areas where precipitation conditioned on high temperature has decreased 

significantly at the 95% confidence level. Unlike Figure 6.2 and 6.3 where trends are evaluated 

for the entire distribution of precipitation, Figure 6.4 only focuses on precipitation during warm 

months. One can see that there are substantial differences between spatial patterns of univariate 

statistics (Figure 6.2 and 6.3) and the presented conditional extremes (Figure 6.4). For example, 

while the entire distribution of precipitation shows a decrease in the overall precipitation in the 

western U.S., precipitation during warm months has increased significantly in the target period 

relative to the baseline. This can be explained by potentially more moisture transport in the warm 

months from the Pacific Ocean toward the western United States. On the contrary, the areas 

around the Rocky Mountains exhibit and increase in the overall precipitation. However, 

precipitation conditioned on high temperature has decreased substantially relative to the baseline.   

Figure 6.4 also highlights opposite signs of change in summer and winter around Midwest 

United States. The patterns indicate more precipitation during summer and less during winter in 

the latter 50 years of the observations. It is worth pointing out the opposite sign of change in 

Midwest winter precipitation in Figure 6.3 that shows the entire distribution of data. Finally, 

Figure 6.4 indicates opposite signs of change in conditional precipitation over the southeastern 

United States that is dominated by hurricanes and tropical storms.  

Both the Mann-Kendall trend test and the presented conditional extreme value model have been 

applied to Australia to evaluate changes in precipitation. The Mann-Kendall trend analyses 

results are presented in Figure 6.5 and 6.6, for summer and winter, respectively. One can see that 

the trends in the two periods are similar over Australia. In both winter and summer, most of 

Australia exhibits a drying trend with respect to the full distribution of precipitation (Figure 6.5 

and 6.6), except the southern part of Australia where an upward trend can be observed.  The 



92 

 

proposed empirical Bayes conditional framework, however, reveals significantly different spatial 

patterns of change for precipitation conditioned on high temperature (Figure 6.7). The results 

show that precipitation conditioned on high temperature increases in eastern Australia while it 

decreases in the western part. Separated by the Macdonnell Ranges and the Great Victoria 

Desert, most areas on the eastern part including Queensland, New South Wales and Victoria 

exhibit a wetting pattern during warm months, while the areas around the Western Plateau 

exhibit opposite patterns of change in the conditional distribution of precipitation. Unlike the 

United States, in Australia the precipitation distributions conditioned on high temperature are 

relatively similar in both summer and winter.  
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Figure 6.2 Summer (June, July and August) precipitation trends in 1910-1959 (left) and 1960-2009 (right) 

over United States. 

 

Figure 6.3 Winter (June, July and August) precipitation trends in 1910-1959 (left) and 1960-2009 (right) over 

United States. 

 
Figure 6.4 Changes in precipitation conditioned on temperature higher than its 95th quantile in summer 

(June, July and August) (left) and winter (December, January and February) over United States. In blue 

pixels, during 1960-2009, the mean of the conditional rainfall distribution has increased, whereas in red pixels 

it has decreased relative to 1910~1959.  
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Figure 6.5 Summer (June, July and August) precipitation trends in 1910-1959 (left) and 1960-2009 (right) 

over Australia. 

 
 

Figure 6.6 Summer (June, July and August) precipitation trends in 1910-1959 (left) and 1960-2009 (right) 

over Australia. 

 

 

Figure 6.7 Changes in precipitation conditioned on temperature higher than its 95th quantile in summer 

(June, July and August) (left) and winter (December, January and February) over Australia. In blue pixels, 

during 1960-2009, the mean of the conditional rainfall distribution has increased, whereas in red pixels it has 

decreased relative to 1910~1959. 
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CHAPTER 7:   A Methodology for Deriving Ensemble Response from Multi-

model Simulations 
 

7.1 Introduction 

 

Several national and international efforts, such as the Intergovernmental Panel on Climate 

Change (IPCC; IPCC 2007), provide data sets of historical and future climate. However, climate 

simulations are subject to uncertainties arising from uncertainties in boundary, and initial 

conditions, parameters and model structure (Reichler and Kim, 2008; Feddema et al., 2005; 

Brekke and Barsugli, 2013; Foley 2010; Deque et al., 2007; Liepert and Previdi, 2012; Wehner 

2012; AghaKouchak et al., 2013; John and Soden, 2007). Multi-model ensembles have been 

widely employed to quantify uncertainties of climate simulations (Meehl et al., 2007; Yun et al., 

2003; Tebaldi and Knutti, 2007). Model simulations are also used to force hydrologic and land-

surface models to derive hydrology projections. Previous studies have confirmed that a multi-

model ensemble approach increases the skill of model simulations (Doblas-Reyes et al., 2003; 

Cantelaube and Terres, 2005). Regardless of the method of estimation, an ensemble consists of a 

number of realizations (individual climate simulations), each of which representing a probable 

climate condition that can occur. While a multi-model ensemble approach increases the skill of 

model simulations, one may need to know which ensemble member is more likely to be true, 

particularly when the ensemble is spread out over a wide area. It is customary to derive the 

ensemble response or prediction quantity (hereafter, climate response) of multi-model ensembles 

by taking the arithmetic mean of simulated ensemble members (Min et al., 2007) where an equal 

weight is given to each ensemble member. Masson and Knutti (2011) stressed that strong 

similarities exist between several models (members of an ensemble) which may cause biased 

climate response toward models with strong similarities. One way to combine simulations of 
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climate models is to weight ensemble members based on their performance in simulating past 

and present climate (e.g., Krishnamurti et al., 2000). Knutti et al. (2010) argues that while the 

ensemble mean provides useful information, there exist the need for more quantitative 

approaches to assess model simulations in order to maximize the value of multi-model ensemble 

climate simulations. In recent years, Bayesian model averaging has also been used to derive the 

climate response of multi-model ensembles (e.g., Smith et al., 2009; Robertson et al., 2004; 

Tebaldi et al., 2004; Min et al., 2007). Limitations of the Bayesian methodology, when applied to 

climate projections, are addressed in Tebaldi and Knutti (2007). For a weighted average 

approach, quantifying the weights requires an index of model skill in order to estimate the 

weights accordingly. Several studies have tackled this issue and contradicting results are 

presented on the best method to combine climate model projections (see Tebaldi and Knutti 

(2007) and references therein). Among many reasons, the choice of model skill, and strong 

dependencies and similarities of ensemble members are the main challenges in deriving a 

meaningful climate response. In order to resolve this limitation, a model is proposed for deriving 

the climate response of climate model simulations. In the proposed method, ensemble members 

are weighted based upon their performance in simulating observations using the so-called Expert 

Advice algorithm (Cesa-Bianchi and Lugosi, 2006). The goal of this methodology is to derive 

the weights (predicting models) such that at every time step the climate response is equal or 

better (less error) than the best model. In most studies that rely on climate model simulations, 

simulated anomalies are used instead of the absolute values to remove biases in individual model 

simulations (e.g., Collins et al., 2011). However, in hydrology and water resources studies, often 

the absolute values of model simulations are necessary. For example, to run a hydrologic model 

with climate simulations as forcing (e.g., Ficklin et al., 2009), the original model simulations are 
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used and not the anomalies. Similarly, when temperature and/or precipitation simulations are 

used for multivariate analysis (Hao and AghaKouchak, 2013), climate impact assessment 

(Madani and Lund, 2010), drought analysis (Madadgar and Moradkhani, 2011), etc. The 

suggested algorithm can be applied to both original ensemble simulations and their anomalies. 

7.2 Data  

 

Climate Model Simulations: In this study, 41 Coupled Model Intercomparison Project Phase 5 

(CMIP5) historical annual temperature simulations from 1951 to 2005 are used for analysis. 

These data sets represent the most extensive and ambitious multi-model simulations that 

contribute to the World Climate Research Programme’s CMIP multi-model dataset (Meehl and 

Bony, 2011; Taylor et al., 2012). For an overview of the climate models and the experiment, the 

interested reader is referred to Taylor et al. (2012). Ground-Based Observations: Annual 

observations of temperature provided by the Climatic Research Unit (CRU, Mitchell and Jones, 

2005; New et al., 2000), available in a 0.5
o 

spatial resolution, are used as reference data. The 

CRU gridded temperature data are based on an archive of monthly mean temperatures provided 

by more than 4000 weather stations distributed across the globe. CRU observations have been 

validated and used in numerous studies of historical climate variability (e.g., Tanarhte et al., 

2012). For consistency, the CMIP5 model simulations and CRU observations all are gridded to a 

common 2 × 2-degree resolution. This study focuses on global land areas (excluding Antarctica) 

for which the CRU observations are available. 

7.3 Methodology and Results 

 

The concept of estimation using Expert Advice (EA) algorithm (Cesa-Bianchi and Lugosi, 2006) 

has been successfully applied in the financial sector and game theory (e.g., DeSantis et al., 1988). 

The goal of the methodology is to weight the predictors (ensemble members) such that at any 
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given time, the composite climate response is superior to the best model. Let’s assume that   is a 

finite set of climate observations, and   is a set of climate simulations over the period for which 

observations are available. In other words,   is the set of all probability measures on   : 

                                                                                                                                          (7.1) 

After Vovk and Zhdanov (2009), an error (loss) function        is defined as the vector product 

of observations and climate simulations: 

        ∑              
                                                                                                 (7.2) 

where   = individual variables in observations space  ,   = individual variables in climate 

simulations space  ,             = probability measure concentrated at  ,         difference 

(  −   ),              for      , meaning          ,            for      , meaning 

         . 

Having a finite number (  time steps) of observations (    ), the objective of EA algorithm is 

to derive the best predictor (  , climate response) given               climate simulations 

(  
   ). Throughout this chapter, a common statistical convention is used in which uppercase 

and lowercase characters denote random variables and their specified variables, respectively. 

Figure 7.1 displays the flowchart of the proposed algorithm. As shown, first the loss function is 

computed (Equation 7.2). Then, the initial values of weights at the beginning are set to 1: 

  
      

   , where   
      

  are weights corresponding to              climate 

simulations (ensemble members). In other words, at the beginning of the analysis, the model 

assumes all climate simulations are as equally representative, and thus a similar weight will be 

assigned to each ensemble member. Then, the EA algorithm decreases the weights (  
 ) of 

ensemble members (             ) exponentially with the increase of error (loss) function 

(       
  ). The weight function  
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            ∑     
  

             
                                                                                     (7.3) 

where   
  and     

  refer to weights of ensemble member   at time steps   and      , 

respectively. Vovk (2001) mathematically proves that there is a unique   (Figure 7.1) that can be 

derived through optimizing      . Then, the weighting factors (  
 ) at time step n can be 

obtained for each ensemble member based on the performance of climate simulations with 

respect to observations up to time step      :  

  
       

           
                                                                                                             (7.4) 

This indicates that EA algorithm learns from the past and adjusts itself to derive the best 

ensemble response. In this approach, each ensemble member (e.g.,  th
 member of the ensemble) 

would have its own cumulative error function (  
 ). Having   expert advice (climate simulations 

or ensemble members), the objective of the algorithm is to obtain the best prediction at time step 

n with the least cumulative error over the past       time steps (    ) where observations are 

available.   

  
  =     

  +        
                                                                                                                (7.5) 

As shown in Figure 7.1 (right flowchart), the initial values of error (loss) functions are set to zero 

(i.e.,   
      

   ). The cumulative loss (error) for each ensemble member at time step n can 

then be obtained by accumulating the error (loss) function in the past       time steps (see 

Figure 7.1 (right flowchart)). The algorithm guarantees that for all            , the cumulative 

error function (   ) will be less or equal to the best model plus a constant - depending on the 

number of climate simulations (Vovk (2001)):  

               
                                                                                                              (7.6) 

The proposed methodology is used to derive the climate response of the multi-model CMIP5 

temperature simulations. Figure 7.2 displays the global annual mean temperature (1951-2005) 
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based on (a) EA algorithm; and (b) the multi-model ensemble mean. Both Figure 7.2a and 7.2b 

are derived using 41 CMIP5 historical temperature simulations. One can see the spatial patterns 

of both are very similar. However, the EA algorithms leads to smaller mean absolute error 

(MAE) compared to the ensemble mean (compare Figure 7.2c and 7.2d). As shown, the MAE of 

the ensemble mean exceeds 2 °C over certain regions, while the MAE of the EA algorithm 

remains primarily below 1 °C. In most climate change and variability studies, anomalies are used 

instead of the absolute values of, here, temperature, to account for biases in climate model 

simulations (e.g., Collins et al. (2011)). Figure 7.2e and Figure 7.2f display the MAE of the EA 

algorithm and ensemble mean, respectively. In these figures, CMIP5 temperature anomalies are 

derived based on CRU observations (1951-2005). As shown, even considering the temperature 

anomalies, the EA algorithm leads to a smaller error than the ensemble mean. Figure 7.3 shows 

the climate response of the global annual temperature based on the CMIP5 multi-model 

ensemble for three years: 1960, 1980, and 2000. The first and second rows in the figure display 

the results using the EA algorithm and the corresponding error, respectively. In Figure 7.3, the 

third and fourth rows show the same result for the ensemble mean. Similar to the results 

presented in Figure 7.2, at the three time steps, the EA algorithm leads to a smaller error 

compared to the ensemble mean. 

To further investigate the performance of the proposed climate response algorithm, the time 

series of the CMIP5 ensemble members, and the ensemble response based on the arithmetic 

mean and the EA algorithm are provided for the western United States, Europe, eastern China 

and eastern Australia (see the highlighted regions in Figure 7.4). In Figure 7.5, the solid black 

line represents the CRU annual mean temperature, whereas the gray lines show the individual 

CMIP5 ensemble members (41 models). The dashed blue and solid red lines respectively show 



101 

 

the ensemble mean and the EA algorithm. As shown, the EA algorithm is in much better 

agreement with the observed historical data compared to the ensemble mean, especially in the 

western United States and eastern China. In the EA algorithm, the ensemble members that are in 

better agreement with observations and lead to the smaller cumulative loss function receive 

higher weights in estimating the climate response. Figure 7.6 plots the mean absolute error 

(temperature 
o
C) values for the ensemble arithmetic mean and EA algorithm. The figure confirms 

that the EA algorithm leads to less error with respect to observed historical data. Technically, the 

proposed algorithm can be used with different data sets. Application of the algorithm to CMIP5 

precipitation data is also presented (Figure 7.7 to 7.9). As shown the behavior of the EA 

algorithm relative to the ensemble median is similar to temperature data (compare Figure 7.8 and 

7.9 with Figure 7.5 and 7.6). It should be noted that CMIP5 simulations are not forced with the 

observed sea surface temperature, and hence their monthly or annual values (especially 

extremes) are not expected to match with the observations. We do not claim that this method 

leads to a climate response that can represent the observed monthly or interannual variability. 

Neither do we claim that the proposed algorithm would remove the underlying biases. The 

suggested algorithm provides an ensemble response consistent with the average statistics of the 

observations. The final product should be used and interpreted the way climate model 

simulations are used in the literature. That is, understanding the long-terms means, statistics, 

trends, responses to changes in forcing, etc. Finally, the application of this algorithm is not 

limited to climate model simulations and is not designed for a specific data set or variable. It can 

potentially be applied to other applications including deriving ensemble response of multi-model 

streamflow simulations, hurricane tracks, etc. 
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7.4 Conclusions and Discussion  

In this dissertation, a methodology is proposed for deriving the climate response of multi-model 

climate simulations. The suggested approach is an alternative to the arithmetic mean of ensemble 

members. The methodology is based on the concept of Expert Advice (EA) algorithm that has 

been widely used in the financial sectors. The objective of the EA algorithm is to derive weights 

of predictors (here, individual ensemble members) such that at every time step the ensemble 

response (here, climate response) is equal or better than the best model. The model was tested 

using the CMIP5 historical temperature simulations (1951-2005), and the results showed that the 

EA algorithm led to smaller mean absolute error (MAE) values compared to the ensemble mean. 

The MAE values were smaller for both the original simulations and the temperature anomalies 

derived based on CRU observations. The suggested climate response model could also be used 

with climate projections, assuming that the performance of the models in future will be the same 

as in the past. That is, the final set of weights obtained based on historical data would be used for 

deriving ensemble response of projections. The authors acknowledge that modeling observed 

historical data accurately does not guarantee that the model can produce reliable climate 

response. Nonetheless, the importance of representing historical observations cannot be ignored. 

It is worth mentioning that the proposed methodology is more suitable when absolute values of 

climate model simulations are needed. Using anomalies one can avoid biases and look into 

relative changes simulated by individual models. However, for practical applications such as 

climate change impact assessment on the water cycle and ecosystem, one needs the absolute 

values of climate variables. It is well-known that the multi-model ensembles are not necessarily 

symmetrical around observations. The proposed algorithm can capture the asymmetries in the 

ensemble, leading to a response that matches the observations best rather than a response in the 
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center of the ensemble. In most studies, uncertainties of climate projections are 

described/quantified by a measure of spread across the ensemble mean (Furrer et al. (2007); 

Tebaldi and Knutti (2007); Masson and Knutti (2011); Lopez et al. (2006)). For example, in a 

review study, Knutti et al. (2008) describes the uncertainty of the global temperature projections 

as one standard deviation of the multi-model response ensemble around the ensemble mean. In 

other words, most uncertainty models, assume a symmetrical uncertainty space around the 

climate response.  However, there is no reason to believe that uncertainty space of future 

projections is symmetrical around a given ensemble mean (climate response). While the 

Gaussian assumption of uncertainty is widely being used mainly due to its simplicity, the 

distribution of uncertainty space is completely arbitrary. Current efforts are underway by the 

authors to use a non-Gaussian uncertainty model based on AghaKouchak et al. (2010) around the 

suggested climate response model (EA algorithm). This would allow deriving the probability of 

exceedance of a certain condition above/below the climate response given an asymmetrical 

spread of the uncertainty (ensemble). 
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Figure 7.1 The proposed algorithm for estimation of climate response weights (left), and cumulative error 

(right). 
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Figure 7.2 The global annual mean temperature (1951-2005) based on the EA algorithm (a) and the multi-

model ensemble mean(b), and their corresponding mean absolute error (MAE) maps relative to the CRU 

observations (MAE for absolute temperature values (c) and (d) and temperature anomalies (e) and (f)). 
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Figure 7.3 The climate response of the global annual temperature based on the CMIP5 multi-model ensemble 

for three years: 1960, 1980, and 2000 (the 1st and 2nd row are based on the EA algorithm, and the 3rd and 

4th rows are based on the ensemble mean). 

 

 



107 

 

 
Figure 7.4 Selected regions for time series analysis. 
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Figure 7.5 Time series of the CMIP5 annual mean temperature, and the ensemble response based on the 

arithmetic mean and the EA algorithm for the western United States, Europe, eastern China and eastern 

Australia. The solid black line represents the CRU annual mean temperature, whereas the gray lines show 

the individual CMIP5 ensemble members (41 models). The dashed blue and solid red lines respectively show 

the ensemble mean and the EA algorithm. 
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Figure 7.6 Mean absolute error (temperature 

o
C) values for the ensemble arithmetic mean and EA algorithm 

shown in Figure 7.5. 
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Figure 7.7 The global annual mean precipitation (1951-2005) based on the EA algorithm (a) and the multi-

model ensemble mean(b) in mm/day, and their corresponding mean absolute error (MAE) maps relative  to 

the  CRU observations  (MAE  for  absolute  temperature values  (c)  and  (d)  and  temperature anomalies (e) 

and (f)). 
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Figure 7.8 Time series of the CMIP5 annual mean precipitation, and the ensemble response based on the 

arithmetic mean and the EA algorithm for the western United States, Europe, eastern China and eastern 

Australia. The solid black line represents the CRU annual mean precipitation, whereas the gray lines show 

the individual CMIP5 ensemble members (41 models). The dashed blue and solid red lines respectively show 

the ensemble mean and the EA algorithm (similar to Figure 7.5 in the main dissertation, but for 

precipitation). 

 



112 

 

 
 

Figure 7.9 Mean absolute error (precipitation in mm/day) values for the ensemble arithmetic mean and EA 

algorithm shown in Figure 7.8 (similar to Figure 7.6 in the main dissertation, but for precipitation). 
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CHAPTER 8: Summary and Main Conclusions 
 

 In Chapter 2, substantial evidence shows that the climate is non-stationary, possibly due to 

anthropogenic changes in the environment. The assumption of stationarity in extreme value 

analysis is therefore questionable and statistical models that explicitly allow for non-

stationarity are much needed. Specifically, statistical models that can provide estimates of 

return levels under non-stationary conditions are essential for design and risk assessment 

purposes. In this study, a practical package named the Non-stationary Extreme Value 

Analysis (NEVA) package is introduced for assessing extremes in a changing climate. Both 

stationary and non-stationary components of the package are evaluated using Climatic 

Research Unit (CRU) observations. The results indicate that NEVA simulates GEV-based 

return levels consistent with empirical observations. While the focus of this chapter is on 

climate extreme value analysis, the methodology can potentially be used in different areas 

(hydrology, ecology, and economics) and with different data sets.  

 

 In Chapter 3, NEVA is applied to evaluate to what extent the CMIP5 climate model 

simulations can represent observed warm monthly temperature extremes under a changing 

climate. The biases of simulated annual temperature maxima are quantified for the selected 

CMIP5 models. Furthermore, the 2-, 10-, 25-, 50, and 100-year return levels of the annual 

temperature maxima from CMIP5 simulations are compared with those derived from CRU 

observations. Overall, the results of this study indicate that the models capture the spatial 

patterns of temperature extremes well, but that individual models are biased relative to the 

CRU observations. Considering the global averages, most models overestimate the 

simulated return levels of the annual temperature maxima, while fewer models (e.g., 
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FGOALS-g2, INMCM4_esm, NorESM1-ME) underestimate the temperature extremes. 

Among the models, FGOALS-s2, CanESM2 and MIROC5 exhibit the highest global 

averages of the mean error of the annual temperature maxima. Most models either 

systematically overestimate or underestimate the extreme return levels, except the BCC 

model experiments in which the shorter return levels (2- and 10-year) are underestimated 

and the longer ones are overestimated. The differences between CMIP5 simulations and 

CRU observations indicate that while local differences can be large, most differences 

(between 25
th

 and 75
th

 percentiles) fall within ±2 Celsius degrees.  

 

 In Chapter 4, we show that ignoring the stationary assumption could lead to substantial 

underestimation of extremes, especially at sub-daily durations (e.g., 1-hr, 2-hr). We also 

outline a novel framework using NEVA to create the next generation of IDF curves to be 

incorporated into infrastructure design. However, infrastructure design and construction 

requires substantial investment over a long period of time and effective integration of this 

methodology as well as development of adaptive design frameworks will require 

collaborative and interdisciplinary research with engineers, policy makers, economists, 

climate scientists and decision makers.  

 

 In Chapter 5 and Chapter 6, a methodology is presented for analyzing conditional extremes 

(i.e., one climatic event conditioned on another extreme event). The presented model can be 

potentially applied in a wide variety of science fields including finance, earth science, 

environmental science, and biology. Particularly, this model can be used for assessing 

spatial climatic extremes.  
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 In Chapter 7, a methodology is proposed for deriving the climate response of multi-model 

climate simulations. The suggested approach is an alternative to the arithmetic mean of 

ensemble members. The methodology is based on the concept of the Expert Advice (EA) 

algorithm that has been widely used in the financial sector. The objective of the EA 

algorithm is to derive weights of predictors (here, individual ensemble members) such that 

at every time step the ensemble response (here, climate response) is equal or better than the 

best model. The model was tested using the CMIP5 historical temperature simulations 

(1951-2005), and the results showed that the EA algorithm led to smaller mean absolute 

error (MAE) values compared to the ensemble mean. The MAE values were smaller for both 

the original simulations and the temperature anomalies derived based on CRU observations. 

The suggested climate response model could also be used with climate projections, 

assuming that the performance of the models in the future will be the same as in the past. 

That is, the final set of weights obtained based on historical data would be used for deriving 

the ensemble response of projections.  
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