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Organic carbon (OC) association with soil minerals
stabilizes OC on timescales reflecting the strength of
mineral–C interactions. We applied ramped thermal
oxidation to subsoil B horizons with different mineral–
C associations to separate OC according to increasing
temperature of oxidation, i.e. thermal activation
energy. Generally, OC released at lower temperatures
was richer in bioavailable forms like polysaccharides,
while OC released at higher temperatures was more
aromatic. Organic carbon associated with pedogenic
oxides was released at lower temperatures and had
a narrow range of 14C content. By contrast, N-rich
compounds were released at higher temperatures
from samples with 2 : 1 clays and short-range ordered
(SRO) amorphous minerals. Temperatures of release
overlapped for SRO minerals and crystalline oxides,
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although the mean age of OC released was older for the SRO. In soils with more mixed
mineralogy, the added presence of older OC released at temperatures greater than 450°C from
clays resulted in a broader distribution of OC ages within the sample, especially for soils
rich in 2 : 1 layer expandable clays such as smectite. While pedogenic setting affects mineral
stability and absolute OC age, mineralogy controls the structure of OC age distribution within
a sample, which may provide insight into model structures and OC dynamics under changing
conditions.

This article is part of the Theo Murphy meeting issue ‘Radiocarbon in the Anthropocene’.

1. Introduction
Soils hold the largest terrestrial reservoir of organic carbon (OC) (1500 petagrams in the top
100 cm, [1]), and understanding the persistence of OC in soil is key to predicting soil feedbacks to
changing climate. Importantly, the role of soil minerals has been established as a key mechanism
for stabilizing soil organic matter (SOM) [2–4] in both top and subsoils. However, studies on
SOM stabilization in the subsoil are more limited [5,6] despite the predominance of mineral–OM
interactions [3,7], less saturation of mineral surfaces [8,9] and evidence of the reduced influence
of surface plant-derived C [10,11].

The reactive mechanisms linking mineral surfaces and SOM are diverse and include processes
such as sorption, complexation, ligand exchange and chelation, as well as stronger interactions
with minerals having permanent surface charge such as 2 : 1 clays [3,4]. The strength of these
interactions helps to determine how long OC persists. Total SOM storage has been linked to
(pedogenic) Fe and Al oxy-(hydr)oxides concentrations [12,13], even in mixed mineralogy and
clay-rich soils [14–17]. Soils rich in reactive short-range order (SRO) non-crystalline Al, Fe and
Mn oxides strongly complex large quantities of SOM via dissociated functional groups, forming
strong inner-sphere bonds [2,18,19]. Further weathering of these Fe and Al oxy-(hydr)oxides
to secondary minerals produces lower-entropy crystalline oxides (CO), such as haematite and
goethite, that are significantly less reactive and store less SOM.

SOM associations with silicate layer clay minerals depend strongly on the forms of clay
present. For example, high-surface area 2 : 1 clays can adsorb large molecules through cation
bridging (e.g. Ca2+) between negative charges on clay surfaces and negatively charged SOM
functional groups (particularly carboxyl groups) [20]. Aromatic SOM can form hydrophobic
microsites which may hinder decomposition and stimulate further accumulation of SOM through
OM–OM interactions [21]. In addition, positively charged edges of 2 : 1 clay minerals may directly
complex OM through rapid ligand exchange [22,23]. 1 : 1 layer silicate clays have much lower
surface area and primarily form complexes at edge sites [24]. They can, however, be coated
with more reactive Fe and Al oxides, as is typically observed in Oxisols [25,26]. Thus, multiple
stabilization pathways can exist on and between individual minerals, e.g. edge charges and
isomorphic substitutions in 2 : 1 clays, leading to a distribution of bond strengths and SOM
resiliency [4].

Reactive soil mineral surfaces and OC input to soil are spatially heterogeneous. Notably,
physical occlusion mechanisms can play a role in long-term persistence by isolating SOM
from decomposers and extracellular enzymes [27,28]. Stable microaggregates formed by a mix
of pedogenic (oxy)hydroxides, clay minerals and SOM present an efficient barrier for many
microorganisms leading to the preservation of otherwise readily available SOM. Thus, the age
of OC associated with the same minerals may differ depending on the stability of the structure in
which these minerals are embedded.

In addition to mineral stabilization, the persistence of OM in soil has been attributed to
chemical ‘recalcitrance’, or the difficulty with which soil microbes break bonds within an organic
molecule, e.g. differentiating low molecular weight fresh sugars from more stable biopolymers
such as lignin or poorly recognizable charred aromatic OM. The influence of chemical complexity
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along with the potential for one or more mineral stabilization mechanisms to select for organic
molecules with specific properties likely results in quantifiable differences in the distribution of
activation energies that control the time until a given organic molecule is made available for
decomposition and its C released from soil back to the atmosphere [29,30].

The OC in SOM is known to have a range of ages that are related to soil mineralogy. Recent
advances in multi-pool SOM models allow the calculation of the probabilistic 14C distribution for
bulk SOM sampled at a given point in time [31]. This provides a method for comparison of models
with 14C observations directly against either time series of samples from the same site or the age
distribution of a single sample determined using laboratory physical or chemical fractionation.
Thermal fractionation, which measures SOM decomposition into CO2 under increasing energy
inputs (i.e. heat) can now be used to isolate the 14C signal of quantitatively and qualitatively
distinct parts of SOM that differ in thermal stability, molecular structure and bonding mechanisms
[32,33]. By using the temperature of thermal decomposition as a proxy for activation energy,
the 14C distributions of OC can be compared with other fractionation approaches [34], time
series [35] or model-predicted distributions [31]. Thus, thermal analysis results do not reflect just
resistance of organic molecules to withstand thermally induced decomposition, but aggregate the
strength of mineral sorption and complexes alongside thermal stability and chemical complexity.
For example, Feng & Simpson [36] showed that the same molecule can have different thermal
activation energies depending on the associated mineral matrix.

Given the wide range of potential physical and chemical interactions, SOM associated with
various soil minerals differs greatly in quality, quantity and mean age, represented by the time
OC has persisted in the soil. In order to predict SOM dynamics and parameterize SOM turnover
in models, it is crucial to accurately represent different timescales of SOM stabilization and
their patterns across soil types. Most models of SOM dynamics [37–39] require at least two
‘pools’ of SOM with different characteristic rates of decomposition to represent changes in SOM
dynamics following e.g. land use change [40–43]. These decomposition rates are often linked to
characteristics like soil clay content that provide a proxy for different timescales of mineral–OC
interactions.

Experimentally, 14C analyses provide one of the only tools to quantify the age and rate of
cycling of soil OC. However, relatively few studies have linked 14C to mineral stabilization
mechanisms directly [17,44,45]. While 14C measurements of bulk SOM are increasingly common,
mean values insufficiently describe SOM dynamics. This is evidenced by the rapid incorporation
of recent bomb 14C into SOM with mean 14C ages of hundreds to thousands of years, or the ability
of various chemical and physical fractionation methods to separate bulk SOM into fractions with
different mean ages (e.g. [46–49].

In this study, we explore the potential of thermal analysis to improve the description of 14C-
derived age distributions of mineral-associated organic matter (MOM) for geochemically and
pedogenetically distinct soils with a wide range of mineral stabilization mechanisms. To address
this, we proposed the following questions and hypotheses:

1. How does mineralogy control MOM age structure and thermal stability? We hypothesize
that variation in bonding mechanisms between SOM and minerals in different soils
corresponds to variation in activation energy required to mineralize SOM and this
will be reflected in the mean age of the OC oxidized at different temperatures. We
further predict that the oldest OC would be associated with minerals with the strongest
stabilization pathways—i.e. soils rich in amorphous short-range ordered (SRO) minerals
require the highest amount of activation energy (most stable organo-mineral bonds and
older C) followed by soils rich in expandable 2 : 1 clay minerals and pedogenic oxides.
Mineralizing SOM in soils rich in end-member minerals such as non-expandable 1 : 1
clays, quartz and highly crystalline pedogenic oxides should require only a low amount
of activation energy (least stable organo-mineral bonds and youngest C). Similarly,
soils rich in primary minerals where soil development has not yet created strong
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organo-mineral bonds with secondary minerals will show comparatively low activation
energy and younger C.

2. How does mineralogy control MOM chemistry? We hypothesize that the relationship
between thermal stability and mean age is driven primarily by the ability of soil minerals
to stabilize organic molecules, and only secondarily by their biochemical molecular
structure. As such, soils with the strongest mineral-related stabilization mechanisms will
also have the ability to stabilize potentially bioavailable organic molecules, whereas soils
with weak mineral-related stabilization mechanisms can be dominated by molecules that
show inherent resistance to decomposition.

To test these hypotheses, we selected mineral fractions from soil B horizons, where mineral–
organic interactions should dominate SOM dynamics. We chose soil B horizons because mineral–
OM interactions likely dominate there, and because of recent studies suggesting that a portion of
B horizon OM is cycling on timescales of decades [50] and is vulnerable to destabilization with
soil warming [51]. To maximize the variation of expected mineral–organic matter interactions,
we selected soils with previously quantified mineralogy that developed in different soil
environments on a range of parent materials. These samples included previously investigated
soils from a chronosequence study [52], and soils with similar age and climate but different
parent materials [16,53], as well as soils with unique mineral–OM stabilization mechanisms, e.g. a
Spodosol [54,55]. We subjected these samples to thermal fractionation, trapping the CO2 oxidized
in different temperature ranges to determine patterns in quantity, 14C, and 13C of released C.
The same samples also underwent Rock-Eval pyrolysis, an assessment of SOM evolution and
maturity, and pyrolysis gas chromatography and mass spectrometry (py-GC/MS) to characterize
the chemical composition of the MOM in each soil. By linking chemistry and 14C thermal
analysis to distinct thermal fractions of MOM, we provide new insights on characterizing MOM
composition and move beyond bulk 14C ages to better link soil minerals to the age structure
of SOM.

2. Methods

(a) Sample selection and site description
Samples were selected from well-characterized B horizons of soils representing a variety of
mineralogies, including those with single mineral classes and combined mineralogies to test
endpoints and mixtures (table 1). The influence of fresh plant inputs was minimized by removing
free particulate organic matter (FPOM) using density separation and analysing only MOM. No
soils contained carbonates, ensuring that all C released during thermal oxidation is derived
from MOM. For simplicity, each sample is named to express its dominant mineral(s). Soil
characteristics and relevant citations are presented in table 1. For example, ‘Quartz’ is from the
quartz-rich Bh horizon of a Podzol developed on aeolian dune sands since the last ice age [54].
All other soils analysed were developed on igneous parent materials of varying geochemical
composition to exclude 14C-free OC inherited from sedimentary mineral–OC associations. A
previous publication demonstrated the potential for inherited OC from sedimentary parent
material to influence the thermal analysis [34,59].

(i) Amorphous mineral-dominated soils

We selected a volcanic soil rich in amorphous minerals, with a high OC content. Site ‘SRO’
is dominated by reactive secondary SRO minerals. The ‘SRO’ soil was collected from site
Laupahoehoe of the LSAG parent material weathering chronosequence in Hawaii (montane
rainforests, MAT = 16°C, MAP = ∼2500 mm, parent material mixture of volcanic tephra and lava)
[2,52,60]. ‘SRO’ is classified as an Andisol (Aquic Hydrudand) developed on a 20 000-year-old
lava flow. The soil is composed of the weathering products of olivine, pyroxene and plagioclase
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that are dominated by amorphous meta-stable SRO minerals like ferrihydrite, nanogoethite and
poorly crystalline forms of oxides and aluminosilicates including allophane [2].

(ii) Clay-dominated soils

Soils that represent an array of clay mineral compositions were selected from previous studies
in Kruger National Park in South Africa [16,56,61,62], from sites with similar climate conditions
and savannah vegetation. These soils have very low SRO or primary mineral content, and the
main stabilization mechanisms are associated with crystalline clay minerals (table 1). Sites ‘1 : 1
Clay + Quartz’ and ‘Mixed Clay + Quartz’ were collected from a catena toposequence developed
on granitic parent material and represent the crest and toeslope positions, respectively, with a
midslope seep and leaching zone in between. ‘1 : 1 Clay + Quartz’ (crest position) is classified as
a lower productivity Entisol (Ustorthent) with a clay fraction (17% texture) dominated by non-
expandable 1 : 1 clays with some non-expandable 2 : 1 chlorite (table 1). ‘Mixed Clay + Quartz’
(toeslope position) is classified as a higher productivity Alfisol (Natrusalf) with higher clay
content (47% texture) and higher amounts of expandable 2 : 1 clays including smectite. ‘2 : 1
Clay + CO’ is classified as a Vertisol (Haplustert), developed on basalt parent material. It is a high-
clay (43% texture), low-oxide soil with relatively high SOM stocks. It is dominated by smectite
(93% of the clay-sized fraction), thus representing an expandable 2 : 1 clay-dominated soil.

(iii) Primary mineral-dominated soils

To contrast soils rich in secondary minerals with those in early development stages, we included
soils with varying parent material from a cooler climate transect site in the Sierra Nevada
mountains in California, USA [17,53]. These samples have significant concentrations of the
primary mineral feldspar and a large variation in mineral reactivity due to differences in the
geochemistry of soil parent material. ‘Felsic PM + Mixed Clay’ is classified as an Inceptisol
(Dystroxerept) developed on granite parent material and contains low levels of SRO and clay
minerals. ‘Int. PM + SRO’ is classified as an Andisol (Haploxerand) developed on andesite, an
intermediate igneous parent material. It contains high levels of SRO minerals and a small amount
of smectite. ‘Mafic PM + CO’ is classified as an Inceptisol (Haploxerept) developed on mafic basalt
parent material containing intermediate levels of SRO and comparably low clay content (11% by
texture).

(iv) Quartz sand-dominated soils

As a measure of OC stabilization and turnover in soils nearly devoid of reactive minerals
(including clays), we selected soil developed on post-glacial dune sands located in northern
Michigan, USA. ‘Quartz’ is classified as a Spodosol (Entic Haplorthod) where the only mineral-
derived stabilization mechanism is (oxy)hydroxides precipitated on sand particles. Although
classified as a Spodosol, the concentrations of extractable metals from this mineral B horizon are
low (table 1, [55]).

(b) Thermal analysis
(i) Thermal fractionation

For our analysis, we selected only the MOM fraction in the B horizons of the investigated soils
after density separation (1.9 g cm−2 sodium polytungstate (SPT) solution) for thermal analysis to
remove low-density particulate OM. Note that samples ‘1 : 1 Clay + Quartz’, ‘2 : 1 Clay + CO’ and
‘Mixed Clay + Quartz’ were not density fractionated, but were determined to have low (less than
5% of soil OC) FPOM concentrations in prior work [16]. Furthermore, since substantial amounts
of OC were lost from ‘Quartz’ via dissolution in SPT an unfractionated bulk sample was also
analysed for comparison (electronic supplementary material, figures S2–S5).
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Methods for thermal fractionation are described in detail by Stoner et al. [34] and elsewhere
[32,33]. First, temperature ranges of CO2 collection (approx. 200 to approx. 500°C) are selected by
producing an initial profile of OC release (thermogram) which is deconvolved and transformed
to a probability distribution of activation energy (Ea) based on the time-temperature relationship
of sample collection (below, [33]). Component peaks underlying the thermogram can then be
represented as Gaussian distributions, and thermal ‘fractions’ of OC can be isolated by trapping
CO2 released in specific temperature ranges(s). Using this methodology, a total of five thermal
fractions were collected for each sample. Briefly, a sample is heated at a constant rate (12°C min−1)
from 40°C to 900°C under carrier gas flow composed of 75% N2 and 25% O2 (650 ml min−1 total).
Any C released from the sample is fully oxidized to CO2 by a platinum catalyst held at 800°C.
The produced CO2 is then quantified by a non-dispersive infrared (NDIR) detector. Carrier gas
and CO2 then flow through a manifold consisting of parallel glass U-traps submerged in liquid
nitrogen (LN2) under vacuum (10−2 mBar) and CO2 is cryogenically frozen and removed from
the carrier gas. Once the sample reaches a desired upper-limit temperature, the first trap is sealed
to trap CO2 produced at this temperature interval before a second parallel trap is opened and the
next aliquot of CO2 is collected. The process is repeated for each subsequent temperature range.

The CO2 trapped at LN2 temperatures (−190°C) is then purified and quantified on a vacuum
line using an isopropanol and dry ice trap to remove water and additional LN2 traps. A small
CO2 subsample is collected for 13C measurement with a syringe and transferred to an He-flushed
vial. The remainder is frozen into borosilicate glass tubes containing Ag and CuO wire and flame-
sealed. Sample tubes are baked at 525°C for 1 h, during which the Ag and CuO remove additional
contaminant gases (mostly N oxides that form from the reaction of N2 and O2 in carrier gases
at high temperatures that freeze in the LN2 trap), necessary to avoid interferences with sample
graphitization before 14C analyses (see §2b(iv)).

(ii) Activation energy

Activation energy (Ea) distributions were calculated using the ‘rampedpyrox’ Python package
[33,63]. For this, thermograms are transformed using a time-temperature model to density
distributions of Ea. In this study, Ea distributions and means (μE) are used to describe the average
bond strength of OC released, and standard deviations (σE) to describe the heterogeneity of the
bonding environment, where greater σE indicates more diverse types and strengths of bonds.
While these values should not be compared with Ea metrics determined via other methods, they
can be used to compare samples measured under the same conditions.

(iii) Analytical pyrolysis (py-GC/MS)

The molecular structure of SOM was studied by analytical pyrolysis (pyrolysis gas
chromatography-mass spectrometry: py-GC/MS) using a double-shot micro-furnace pyrolyzer
(model 2020i; Frontier Laboratories Ltd., Fukushima, Japan) attached to a GC/MS system (Agilent
6890N/5973MSD, Agilent Technologies, Santa Clara, CA, USA). First, a general overview of
the sample pyrolyzate was obtained by direct pyrolysis of the samples at 400°C [64]. Then, a
sequential multishot pyrolysis approach was performed using the same five temperatures as
those used for the thermal fractionation described above.

Briefly, soil samples (15–25 mg, depending on OC content) were placed in stainless-steel
capsules (Frontier Laboratories Ltd. Eco-Cup LF) and introduced in a pre-heated pyrolysis micro-
furnace at the starting temperature for 1 min. For the direct pyrolysis, the furnace starting
temperature was set at 400°C and the pyrolysis was performed once in single shot mode. For
sequential pyrolysis analysis, the furnace was set at the lowest temperature for each fraction,
before a sample was introduced into the pre-heated furnace and thermal desorption was
performed for 1 min. The resulting gases were directly injected into the GC/MS system. The
sample in processing was immediately moved to a cold area of the pyrolyzer while the furnace
temperature increased to the next temperature and the sample was reintroduced to the pyrolyzer
hot area for 1 min. Following this procedure, the treatment was repeated for each temperature
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increment using the same sample. Thus, in total and using aliquots, six chromatograms per
sample were analysed; one for the direct pyrolysis at 400°C and five for the sequential analysis,
corresponding to each of the selected temperatures.

The GC was equipped with a low polar-fused silica (5% phenyl-methylpolysiloxane) capillary
column (Agilent J&W HP-5 ms UI), of 30 m × 250 µm × 0.25 µm film thickness. The carrier gas was
He with constant flow at 1 ml min−1. The oven temperature was held at 50°C for 1 min, increased
to 100°C at 30°C min−1, from 100°C to 300°C at 10°C min−1 and stabilized at 300°C for 10 min.
Mass spectra were acquired at 70 eV ionizing energy. The compound assignment was achieved via
single-ion monitoring for various homologous series, low-resolution mass spectrometry and by
comparison with published and stored (NIST and Wiley libraries) data. The relative abundance of
each pyrolysis product was calculated as a percentage of the chromatographic area of all identified
compounds.

(iv) C isotope analysis

In order to quantify the 14C in each sample, collected CO2 (see 2b(i)) was graphitized following
the method of Steinhof et al. [65] and measured on a MICADAS AMS system (Ion Plus,
Switzerland). Data were corrected for blank C contribution as described by Stoner et al. [34], and
are expressed as Fraction Modern 14C (Fm) [66]. For the reader, we have also expressed Fm as an
equivalent mean OC age by fitting the 14C data for the year of sample collection to a one-pool
model as described by Khomo et al. [56].

Analysis of δ13C was performed on an aliquot collected via syringe during purification (§2b(i))
using a modified gasbench inlet to a continuous flow isotope ratio mass spectrometer (IRMS) [67].

(v) Rock-Eval

To assess the relative degree of decomposition and thermal lability versus stability of MOM
and implied biogeochemical stability in soil [68], we applied Rock-Eval 6 pyrolysis analysis. In
addition to commonly reported OI and HI values representing the ratio of H:C and O:C in SOM
[69], we calculated I- and R-indices (‘immature’ and ‘refractory’, respectively) designed for SOM
comparison [70].

Briefly, approximately 60 mg of powder-ground sample was added to a Rock-Eval 6 Turbo
(Vinci Technologies, France, analysed by GEO-Data mbH, Garbsen, Germany) and underwent
two consecutive heating phases, first in a pyrolysis oven (200–650°C; thermal ramping rate of
25°C min−1; under N2 atmosphere) then in a combustion oven (300–850°C; thermal ramping
rate of 20°C min−1; under laboratory air atmosphere). At the beginning of pyrolysis, samples
underwent an isothermal step at 300°C for 180 s, during which the free hydrocarbons (HC) were
vaporized (S1 peak), before proceeding to higher temperatures as described above. The pyrolysis
effluents (mostly HC) were detected and quantified with flame ionization detection, while CO
and CO2 were quantified by infrared detection during both the pyrolysis and oxidation stages.

Rock-Eval 6 indices I (immature) and R (refractory) that better describe SOM were developed
by Sebag et al. [70]. These I and R indices were calculated by comparing the relative areas of the
pyrograms. Briefly, the I-index is equal to

log10

(
F1 + F2

F3

)
,

where F1, F2 and F3 are the relative areas of the deconvolution of Gaussian curves composing
the S2 pyrogram. I-index values of SOM range from +0.64 in organic horizons to −1.32 in Bh
horizons, although interquartile range is 0.11–0.34 for B horizons [70]. The R-index is defined as
the proportion of the S2 pyrogram integrated after 400°C (a range of increasing refractory nature
from 0.0 to 1.0). Note that low R-index values hereby indicate a low degree of thermal stability of
SOM. By contrast, low I-index values indicate a high degree of SOM maturity and decomposition.



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20230139

...............................................................

(vi) Caveats concerning pyrolysis versus oxidation

Thermal analysis techniques commonly measure soil characteristics with or without the presence
of oxygen as an oxidizing agent, depending on the theory and goals of the research [71]. In this
study, we employ both oxidative (thermal fractionation) and pyrolytic (py-GC/MS, Rock-Eval 6)
methods to describe MOM characteristics with regard to increasing Ea. The primary advantage
of oxidation in our study is in minimizing artefacts due to charring, or the conversion of OC
released at low temperatures to high-stability molecules rather than being released as a COX gas,
potentially misrepresenting SOM thermal stability. Although the mechanisms of decomposition
can vary between methods, previous studies have observed no significant difference in the Ea or
the 14C measured in thermal fractions collected under ramped pyrolysis and oxidation [35,72].
Thus, we are confident that comparisons can be drawn between OC released along Ea gradients
between both methods.

3. Results

(a) Thermograms
Ramped thermal oxidation yielded distinct trends and differences between soils according to their
dominant minerals (figure 1). All samples released 99% of total OC below 600°C, confirming
the absence of calcium carbonate. All samples showed peak OC release around 320°C except
‘SRO’ with a peak at 285°C. The release of OC from the low-reactivity sample ‘Quartz’ and
the short-range order amorphous mineral-rich sample ‘SRO’ followed an approximately normal
distribution, with most OC released close to the temperature of peak release. Primary mineral-
and clay-dominated sample thermograms had ‘shoulders’ after the main peak, indicating a
smaller portion of SOM released at higher temperatures than the bulk of SOM in a sample. ‘Int.
PM + SRO’ showed a second smaller, but distinct peak at 420°C.

High-temperature releases (450–550°C) likely contain OC that may be strongly associated with
clay minerals, which is described by a thermal index (T450–550, figure 1 and table 2, [73]). In
this temperature range (T450–550) there was significantly less (t-test, p < 0.001) high-temperature
OC release in ‘Quartz’, and ‘SRO’ (2.8–4.2% total C, table 2) than the other samples (11.3–15.9%
total C).

(b) Activation energy
Similar grouping trends were observed in Ea, as ‘SRO’ and ‘Quartz’ yielded significantly lower
mean activation energies (μE) than other samples (138.8–139.4 kJ mol−1; t-test, p < 0.01; table 2).
Standard deviation of Ea distribution (σE), a proxy measure for the diversity of OC bonding
strengths, was also much lower in these samples (13.0–14.3 kJ mol−1; t-test, p < 0.01; table 2).
Here, the three primary mineral-dominated soils had the highest σE (‘Mafic PM + CO’ < ‘Felsic
PM + Mixed Clay’ < ‘Int. PM + SRO’), suggesting the most heterogeneous bonds. Samples
containing expandable 2 : 1 minerals and variable abundances of SRO and CO (‘2 : 1 Clay + CO’,
‘Felsic PM + Mixed Clay’, ‘Int. PM + SRO’) had significantly higher μE (148.9–152.1 kJ mol−1) and
high σE (17.2–19.1 kJ mol−1).

(c) Radiocarbon
Bulk soil mean 14C data (table 1) ranged from a low of 0.674 fraction modern (Fm) (one-pool
model mean age of approx. 3200 years) measured for ‘SRO’ to a high of 1.009 Fm (most OC fixed
in the last approx. 100 years) measured for ‘Mixed Clay + Quartz’. Most of the other soils had Fm
14C values between 0.85 and 0.99, indicating bulk mean ages of about 100–1500 years.

Despite the large range in mean MOM 14C, the difference in 14C between the thermal fractions
and respective MOM values varied consistently, with the highest Fm 14C (youngest C) released
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Figure 1. Thermograms of OC release as a function of temperature under oxidative conditions, heated at 12°C min−1. All
thermograms are normalized by setting the peak of C release to a value of 1 in order to better compare soils with varying
OC contents. Thermograms are grouped by dominant mineralogy (amorphous minerals, primary minerals, clays). The vertical
dashed line indicates 450°C, above which OC is quantified by the index T450–550 to describe the high-temperature OCwhichmay
be strongly bound to clay minerals (see text).

at the lowest temperatures, and the lowest Fm 14C (oldest C) released at highest temperatures
(figure 2 and table 2). For ‘SRO’ and ‘Quartz’, the samples with narrow thermograms with peak
OC release at relatively low temperatures and thus the presumed weakest thermal stabilization
mechanisms, the range in 14C age across thermal fractions was equivalent to a mean fraction age
difference (oldest to youngest) of 420–460 years (table 2). By contrast, the mean 14C age difference
between the oldest and youngest thermal fractions in samples with mixed mineralogies was
larger, equivalent to a mean age difference of 700–1 200 years between OC released at the lowest
and highest temperatures. In general, 14C content of thermal fractions decreased with increased
Ea (figure 2 and table 2). However, there were distinct differences in the rate of decrease. ‘SRO’,
‘Quartz’ and ‘Felsic PM + Mixed Clay’ (in order) decreased in Fm with Ea much less rapidly
(−0.0009 to −0.0014 Fm per kJ mol−1) than all other samples (−0.0018 to −0.0027 Fm per kJ mol−1).

(d) py-GC/MS
Pyrolysis gas chromatography and mass spectrometry (py-GC/MS) revealed divergent trends
in SOM quality and composition across mineralogies and temperatures (figure 3, electronic
supplementary material, figures S4–S12). Of the 222 compounds detected across all samples,
74 were aromatic in nature, and 48 were polycyclic aromatic hydrocarbons (PAH). No lignin
biomarkers (hydroxyphenyl, guaiacyl or syringyl subunits) were identified in any sample.
Notably, the highest variety of organic compounds was detected in soil samples that contain
various forms of SRO and CO. From those, the presence of SRO minerals had the strongest effect
on chemical diversity, with 127 unique components detected in ‘SRO’, 85 in ‘Int. PM + SRO’ and
58 in ‘Mafic PM + CO’. Other samples contained fewer distinct compounds: in order, 14 in ‘2 : 1
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Figure 2. Fm 14C content for thermal fractions, represented as the proportion of total OC on the x-axis. Positive or negative
height of bars indicates difference from the mean value (dashed horizontal lines). Fractions are ordered from low to high
temperature. Note that the y-axis is absolute Fm value, and y-axis ranges are consistent between plots to show relative
differences frommean values.

Clay + CO’, 10 in ‘Quartz’ and 7 in both ‘1 : 1 Clay + Quartz’ and ‘Mixed Clay + Quartz’. Note
that the sample ‘Felsic PM + Mixed Clay’ was not analysed due to late addition to the study and
COVID-19 laboratory staff access restrictions.

With the exception of the ‘SRO’ sample, aromatic molecules were the most prominent
group in all soils. Nitrogen-bearing compounds were detected in the ‘SRO’ soil, and soils
with expandable 2 : 1 clay minerals. These compounds were generally released in thermal
fractions of approximately 150 kJ mol−1 or more, but the two SRO soils (Int. PM + SRO
and SRO) released N-containing OM with lower Ea than non-SRO soils (132–150 kJ mol−1).
Polysaccharides, bioavailable compounds of potentially microbial origin, were detected in all
samples except for ‘2 : 1 Clay + CO’. No soil released polysaccharides above approximately
178 kJ mol−1. Alkane/alkene chains were detected at low temperatures in ‘2 : 1 Clay + CO’ and
‘SRO’, while ‘Int. PM + SRO’ and ‘Mafic PM + CO’ (primary mineral-dominated soils) released
alkanes with Ea > 175 kJ mol−1. The only strong lipid signals were detected in ‘Mafic PM + CO’
and a small amount in ‘Int. PM + SRO’, all below Ea of 178 kJ mol−1.

(e) Rock-Eval soil organic matter indices
Rock-Eval SOM indices for all samples were in the expected range for B horizons [58] and
followed the general trend of decreasing I-index values associated with increasing R-index values,
suggesting a higher degree of SOM decomposition and more refractory SOM, respectively. Clay-
dominated soils (‘2 : 1 Clay + CO’, ‘Mixed Clay + Quartz’, ‘1 : 1 Clay + Quartz’) showed the least
thermally stable (low R-index) C, that was at the same time least decomposed (high I-index).
Among the clay-dominated samples, ‘2 : 1 Clay + CO’, with high content of expandable clays, had
thermally stable SOM (high R-index) that was more mature (low I-index). Interestingly, primary
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mineral-dominated soils (‘Int. PM, + SRO’, ‘Felsic PM + Mixed Clay’, ‘Mafic PM + CO’) had more
stable SOM (high R-index) that was at the same time more decomposed (low I-index) than the
clay-dominated soils. Overall, the highest R-index values were observed for the amorphous
mineral-dominated soil ‘SRO’. Sample ‘Quartz’ was nearly centred for both indices and distinct
from all other groups of samples.

4. Discussion

(a) Mineral and organic controls on soil organic matter thermal stability, age distribution
and chemistry

Our data confirm that the abundance, biochemical characteristics and mean 14C values of MOM
can differ greatly depending on mineralogy and degree of mineral weathering. However, despite
a variety of soil settings in our samples, we find distinct relationships between mineral reactivity,
patterns of 14C distribution, and the type and number of chemical species in MOM. Following
the hypothesis that greater activation energy (Ea) corresponds to stability in soil, ‘labile’ forms
of OC should be oxidized at lower temperature, decompose more easily, and be younger than
the mean MOM 14C age, while high Ea OC should be older and more aromatic in nature [22].
This was generally observed across all samples (figure 3), with the additional observation that
the low Ea OC was associated with pedogenic oxide minerals (SRO and CO), while high Ea

OC was associated with clay minerals, especially 2 : 1 clays. Thus, fractionating MOM along a
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continuous Ea gradient allows us to describe which minerals tend to be associated with faster
cycling (younger) or slower cycling (older) OC. This helps define SOM model pool structures and
may have broad implications for assessing patterns of OC persistence across soil systems.

MOM forms through numerous types of interactions [4]. These include strong interactions
between reactive functional groups in dissolved OM with reactive mineral surfaces, through
weaker interactions between hydrophobic moieties in solution with surface-sorbed OM (e.g.
hydrophobic seclusion [21,74]), or through the incorporation of local microbial necromass and
exudates [75–78]. The thermogram and age structure of C oxidized thus reflects the overall
stability of an organic moiety in a specific setting. Below, we briefly discuss the different types
of mineral–OM interactions analysed (e.g. SRO, CO, clays and primary minerals) and patterns
of OC chemistry and relative age distributions associated with each. As most soils, even ones
predominantly consisting of clay minerals, can have substantial amounts of OC associated with
pedogenic oxides and oxyhydroxides, we also discuss patterns observed in mixed mineralogy
soils.

(i) Amorphous mineral (soil organic matter) rich samples

Reactive SRO minerals display the capacity to store large amounts of OC over long time spans and
can protect a diverse range of compounds from mineralization by creating energetic or physical
barriers that deter microbial decomposers [2,79,80]. Despite the majority (main thermogram
peak) of the MOM in ‘SRO’ being oxidized at relatively low Ea in mostly bioavailable forms,
it contained very old OC (Fm 0.63–0.67, figures 2 and 3, table 1). The narrow Ea range and 14C
distribution of MOM in ‘SRO’ (table 2) indicate homogeneous stabilization mechanisms, such
as OM–OM bonds or co-precipitation of metals and OM [81,82], that do not provide strong
protection under thermally oxidizing laboratory conditions. However, as indicated by the overall
age of the bulk MOM and high pyrolytic Rock-Eval R-index (figure 4), the thermal oxidation
method may bypass physical protection mechanisms that can be responsible for greater mean
OC ages. This interpretation is supported by the presence of more diverse organic compounds in
soils with expandable clays as well as amorphous SRO minerals, e.g. ‘Int. PM + SRO’ (figure 3).

(ii) Quartz sample

In Podzol B horizons, pedogenic Al and Fe oxides are the primary method of OC stabilization.
The ‘Quartz’ sample in this study was composed of wind-blown quartz sand (100% sand by
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texture, [54]), with only small amounts of extractable Fe (table 1). Limited stabilization pathways
resulted in the narrow thermogram and 14C distribution (figures 1 and 2). The simplistic
chemistry reflects stronger, aromatic accumulation in hydrophobic fractions via ligand exchange
(higher temperatures), and weaker, bioavailable polysaccharides in the hydrophilic fractions
(lower temperatures) [83,84], although the high sand content may have favoured carbohydrate
accumulation [85]. We can attribute the long transit times (845–1268 years, table 2) in this subsoil
to low OC and nutrient concentrations limiting microbial decomposition [86,87].

(iii) Clay mineral-rich samples

Compared to clay-poor samples ‘SRO’ and ‘Quartz’, clay minerals, even in low abundance,
increase the range of activation energies and ages (table 2) detected within a sample as observed
most strongly in ‘2 : 1 Clay + CO’, the most clay-rich soil analysed (47% clay by texture, 93%
of which is smectite, table 1). Clay content, as well as total N content, has been found to
correlate with thermal stability, with direct mineral–OC associations attributed to C release in
the temperature range of 450–550°C ([73,88,89]; figure 1). The 200–300°C temperature range
has previously been attributed to bioavailable SOM components, as the amount of C released
at low Ea decreased the most after soil incubation [90,91]. In our samples, most OC in clay-
dominated soils is released between 200 and 400°C, and is thus likely composed of OC released
from organo–organo bonds and organo-mineral bonds with co-occurring (oxy)hydroxides [92–94]
that may precipitate on clay surfaces [29,55], with older, clay edge-bound OC releasing at
higher temperatures [73,95]. Notably, among the clay-dominated and primary mineral-dominated
soils, we did not observe strong effects of clay type (1 : 1 versus 2 : 1) on thermal stability
(figure 1) despite evidence that different clays sorb very different SOM ([3,89,96,97]; figure 3).
The predominance of polysaccharides released at low temperature, and aromatics and N-bearing
SOM released at high temperature, respectively, suggests two distinct pools of SOM with different
pathways of clay-mineral stabilization: (i) younger, bioavailable polysaccharides associated with
greater microbial activity (root exudation and greater microbial enzyme activity [96,98]) on clays
[99] and (ii) dominantly aromatic OC bound to clays via hydrophobic exclusion, cation bridging
and hydrogen [3,4].

(iv) Organic matter quality patterns

Polysaccharides make up the majority of the main peak of OC release in most soils (figure 3)
and showed mean ages of approximately 200 up to approximately 1 000 years (albeit approx.
3 400 years for ‘SRO’) (table 2 and electronic supplementary material, table S1). However, N-
bearing compounds are a critical MOM pool that can persist on minerals for centuries, despite
N limitation in most soils (figure 2, [100–104]). Generally, proteins and amino sugars are strongly
amphiphilic [105] and bear one of the few SOM functional groups (–NHX) that may be positively
charged, thus forming strong bonds with negatively charged mineral surfaces, e.g. oxides and 2 : 1
clay minerals [106]. Even more importantly, they may act as the first ‘wetting’ layer upon which
subsequent OM can bind, although potentially more weakly [106–109]. Indeed, we observed
that only soils containing smectite (‘2 : 1 Clay + CO’, ‘Mixed Clay + Quartz’, ‘Int. PM + SRO’
and ‘Mafic PM + CO’) and SRO minerals (‘SRO’ and ‘Int. PM + SRO’) yielded N-containing C,
released at high Ea and in the oldest thermal fraction within each sample (figure 3). Following
a multi-layer model of MOM accumulation, the outer layers of MOM may be oxidized at lower
Ea, giving way to N-bearing and aromatic OC bound to mineral surfaces. However, the exact
processes of MOM oxidation that can disrupt OM–OM as well as OM-mineral bonds are still
unknown [109]. In the case of allophane soils (SRO), it is not clear if these N-bearing compounds
are preserved preferentially or included in the diverse MOM in sample ‘SRO’ that has at the same
time a low immaturity index and high 14C age (figures 2 and 4, table 2). We argue that if this OC
is of microbial origin, as evidenced by the lack of lignin biomarkers (figure 3), it indicates active
cycling of rather old C, highlighting the importance of considering pathways for pre-aged OC to
enter MOM when interpreting these 14C values.
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In summary, soils that were able to provide better protection for SOM (older 14C age and higher
mean Ea) were also able to stabilize bioavailable OC species against decomposition (figure 3).
While in general, our hypothesis held that greater Ea was associated with older and more aromatic
OC within a given soil, the overall bulk 14C did not follow the expected patterns. The overall
oldest OC was in the ‘SRO’ soil, yet it released OC with lower Ea than OC associated with clay
in other soils, which was younger (figures 1 and 2). Furthermore, the high R-index (figure 4,
electronic supplementary material, table S2) under pyrolytic Rock-Eval analysis, during which
allophane may degrade to more crystalline minerals at temperatures greater than 600°C [110],
likely provides a better indicator of the apparent long-term stability of MOM in ‘SRO’ than
oxidative thermograms alone. Thus, the pedogenic setting of samples plays the dominant role
in determining the absolute age of OC in B horizons, while mineralogy controls how OC age is
distributed around the mean 14C value.

(b) Mineral-associated organic matter as a heterogeneous 14C pool
(i) Implications for pool model structure

To explain observations that include the response of SOM over time to changes in vegetation
inputs, or to fit time series of 14C over the last decades has required models to represent SOM
using pools with different timescales of turnover, ranging from years to millennia. Thermal
analysis approaches help determine which mineral stabilization mechanisms may give rise to
different model structures. For example, in subsoils with mixed mineralogy (‘2 : 1 Clay + CO’,
‘Mixed Clay + Quartz’, ‘1 : 1 Clay + Quartz’, ‘Int. PM + SRO’, ‘Felsic PM + Mixed Clay’, ‘Mafic
PM + CO’, table 1) our results suggest that faster cycling SOM is more bioavailable and potentially
associated with more crystalline metal oxides and/or weaker OM–OM bonds, while older MOM
is associated either with amorphous SRO (reflecting potentially occlusion or physical isolation)
or expandable 2 : 1 clay minerals that have a larger reactive surface area and strong ionic
stabilization of OC (figures 2 and 3). By contrast, SOM turnover in soils dominated by a single
mineral (e.g. ‘Quartz’, ‘SRO’) could potentially be modelled as a single pool. Indeed, thermal
fractionation indicates that the range of 14C ages within a given thermogram feature can be
relatively narrow (figure 2), indicating that mixed mineral soils with clay can be modelled as
two homogeneous pools with different mean C ages. These pools also reflect different chemical
composition, with low-temperature OC reflecting microbial polysaccharides while OC released
at higher temperatures consists of slowly cycling aromatic and N-bearing OC (figure 3).

(ii) Linking age distributions and model structures

Isolating fractions of varying thermal stability and Ea in combination with describing the chemical
quality of MOM from distinct thermal fractions proved to be a useful tool for separating SOM
according to the type of mineral with which it is associated and its relative age in distinct soils.
While the directional changes of processes in complex soil systems are not well understood and
are difficult to predict [89], thermal fractionation may have the potential to identify the proportion
of the MOM in subsoils that is more weakly stabilized and thus may be more vulnerable to
change on multi-decadal to multi-centennial timescales. We found that MOM contains molecules
with diverse chemistry, Ea, and age dependent on mineral composition (figures 2 and 3). More
research is needed to understand the evolution of soil age/depth distributions using gradients
that can track changes in minerals and OC age through time across soil of varying development
trajectories. Such studies are also needed to understand the potential vulnerability of different
mineral–OC associations to climatic or vegetation change.

(iii) Controls on absolute organic carbon age

While thermal oxidation clearly provided a distribution of 14C ages within a given sample,
we were not able to predict the mean 14C age of a sample from mineralogy or OM chemistry
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alone. For example, polysaccharides released at low Ea (<160 kJ mol−1) make up the majority
of OC release in most soils (figure 3) but had mean ages ranging from approximately 200 up to
approximately 1000 years (and approx. 3400 years for ‘SRO’, table 2 and electronic supplementary
material, table S1). The mean age of C can reflect a number of processes. For example, the pre-
ageing of OC in roots or plant stems, or in recycling of older C released from minerals by microbes
can provide ‘fresh’ substrates that were originally fixed from the atmosphere hundreds of years
previously. Another mechanism for pre-ageing of C inputs at depth reflects rates of vertical
transport from regions of high C input to lower C availability. For example, the 14C content of
SOM arriving in subsoil (e.g. Spodosol B horizons) reflects the mean time required for OC to arrive
in that horizon and is not necessarily a good measure for the in situ stability or decomposition
rate of B horizon SOM [111]. Thus, the age of OC in a given pool may not reflect its present
vulnerability to destabilization or decomposition.

Future climates may de-stabilize OC through enhanced microbial activity [51,112], enhanced
weathering [7,80,113,114] and changing redox conditions [80,115,116]. Combining the effects of
environmental, site-specific conditions with an improved understanding of the dynamics of soil C
stabilization dynamics and mineral stability may better constrain transit times of SOM and greatly
improve the predictive power of soil C turnover models. For example, a large fraction of OC in
our mixed mineralogy soils is associated with pedogenic oxides but situated in greatly different
bioclimatic settings. Future studies could test the degree to which the age and age distribution
of associated OM relates to the stability of minerals or the conditions that control C input and
turnover by studying gradients of redox cycling or changes in pH associated with root exudates
or microbial enzyme activities. Moving forward, MOM must be considered a large, dynamic pool
of OC that is not insensitive to changing environmental conditions.

5. Conclusion and future work
A direct comparison of diverse MOM using a variety of thermal oxidation and pyrolysis
methods successfully highlighted the distinct effects of soil minerals on MOM persistence.
Soils with singular mineral stabilization pathways and without clay minerals had narrower
14C and energy distributions and, excluding soils rich in amorphous SRO minerals, stored
generally less chemically diverse compounds with younger 14C ages. Soils containing a larger
variety of minerals offered multiple stabilization mechanisms leading to a much wider range of
activation energies, SOM ages, and generally greater diversity of organic compounds. Through
the combination of several thermal stability analyses and characterization of MOM molecular
structure, we were able to identify distinct timescales for MOM turnover and the biochemical
structure of MOM associated with different types of soil minerals. MOM in soils containing
2 : 1 clays had overall higher thermal stability and released older OC at higher temperatures
than soils dominated by non-expandable 1 : 1 clay minerals or highly crystalline minerals. In
all soils, the majority of MOM appears to be associated with (pedogenic) (oxy)hydroxides and
amorphous SRO minerals or weakly stabilizing OM–OM bonds. These minerals were able to store
abundant and diverse OC compounds, including potentially bioavailable and more accessible
SOM. Thus, our results support previous studies showing the role of oxides as dominant drivers
of total SOM storage, but also show a smaller but significant role of clays in strongly stabilizing
relatively old and chemically distinct C. Thermal oxidation demonstrated that it can successfully
distinguish OC associated with different minerals and provide predictable timescales and
chemical characteristics. We conclude that while the directional changes of processes in complex
soil systems are not well understood and remain difficult to predict, thermal fractionation may
have the potential to identify SOM that is more weakly stabilized and more likely to be vulnerable
to future change on multi-decadal to multi-centennial timescales. The mineralogical control on the
age structure of MOM has important implications for how soil SOM models need to account for
differences in soil mineralogy, and how specific portions of SOM may have distinct reactions to
changing environmental conditions that affect plant C input, microbial C turnover and mineral
OC stabilization to varying degrees and at varying timescales.



18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20230139

...............................................................

Data accessibility. Data and code will be maintained in this repository: https://github.com/ShaneStoner/
Mineralogy14C. It is also available with a DOI via Zenodo: https://zenodo.org/record/7998659 [117].
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