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COMMENT

The human microbiome in the
21st century
Elze Rackaityte1,2 & Susan V. Lynch 2✉

The human body supports a thriving diversity of microbes which comprise a
dynamic, ancillary, functional system that synergistically develops in lock-step
with physiological development of its host. The human microbiome field has
transitioned from cataloging this rich diversity to dissecting molecular
mechanisms by which microbiomes influence human health. Early life micro-
biome development trains immune function. Thus, vertically, horizontally, and
environmentally acquired microbes and their metabolites have the potential to
shape developmental trajectories with life-long implications for health.

Our recent understanding that the human body supports a thriving diversity of microbial life has
led to a greater appreciation of the expanded functional gene capacity of the human super-
organism. Over the past several years, the field of human microbiome research has transitioned
from cataloging the diversity of these microorganisms to the view that they comprise a dynamic
ancillary functional system that synergistically develops across spatial and temporal gradients in
parallel with physiological development and decline1–5. For centuries, we have observed how
human health is influenced by microbes and that interactions between microbial and host cells
govern infectious diseases. What is becoming more apparent is that a wide array of conditions
ranging from chronic inflammatory6,7 and metabolic8–10 diseases to neurological disorders11,12

and cancer13 have now been associated with microbiome functional perturbations. These may
occur either locally at the site of disease manifestation or at remote mucosal sites or organ
systems, which stimulate metabolic and immunologic changes in the host.

Insights from germ-free mice
In 1885 Louis Pasteur speculated that gnotobiotic or germ-free (GF) animals would not be able
to survive due to the extensive co-evolutionary history with microbes14. While GF animals can
indeed be reared, studies using such animals have been instrumental in illustrating the crucial
role of microbes in mammalian development and health. GF mice exhibit shorter lifespans,
heavily enlarged caeca15, lack natural antibodies16,17, and are severely deficient in vitamin K and
B1215. GF mice generated in genetically susceptible backgrounds enable investigation of rela-
tionships between host genetics and the microbiome. For example, conventional IL-10 deficient
mice develop spontaneous colitis, but their GF counterparts neither develop colitis nor immune
system activation18 pointing to the microbiome as a disease trigger in a system poised for
inflammation. However, conventionalization of GF mice does not always rescue the observed
defects. Upon experimental conventionalization in adults, previously GF mice display increased
susceptibility to pathogens19. Supporting these findings, GF mice exhibit aberrant invariant
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natural killer T-cell function and increased morbidity in models
of IBD and allergic asthma, which can only be rescued by con-
ventionalization in the neonatal period but not in adulthood20.
Thus, age-sensitive microbial programming appears critical to the
establishment and training of immune function and subsequent
health outcomes. Evidence that microbiomes and their products
are responsible for human disease has also been provided using
GF mice, in which transfer of patient microbiomes confers fea-
tures of the disease phenotype on the recipient animal21–25.

Microbial metabolites influence physiology
A large number of extrinsic and intrinsic factors, including diet,
antimicrobials and immunity influence human microbiomes, in
particular the gut microbiome which houses the largest number
and diversity of microbes. In turn, the bioactive products of the
microbiome shape human cell function locally26,27 and at remote
sites. In studies of mono-colonized GF mice, members of the
intestinal microbiome were shown to strongly influence mam-
malian energy harvest and metabolism28,29 and produce a suite of
microbial-specific metabolites in physiologically relevant con-
centrations, a large number of which enter the circulation30.
Thus, microbial activities at one body habitat may influence
physiological conditions and cell function at a remote site. For
example, increased concentrations of trimethylamine N-oxide
(TMAO) associate with arthrosclerosis and is dependent on gut
bacterial metabolism of dietary phosphatiylcholine31,32, providing
the first evidence for a diet by gut microbial interaction governing
cardiovascular disease.

Development of the human microbiome
Microbiomes develop across body sites in early life, a process that
adheres to the principals of ecological succession33 and shapes
physiological and immunological function18. Indeed, bacteria
detected at 4 days of age in human neonates correlate with
community structure at 120 days of age34, indicating the
importance of founder organisms in microbiological successional
trajectories. Early-life microbiomes therefore may offer insights
into the origins of disease and the capacity to both identify those
at risk and intervene early to prevent disease development. For
example, gut microbiome and metabolic dysfunction in infancy is
characteristic of higher-risk for atopy and asthma development in
childhood7. Moreover, specific microbial-derived metabolites
found in elevated concentrations in the feces of high-risk for
asthma infants promote key features of immune dysfunction
characteristic of established disease7,35. For example, the oxylipin
12,13-DiHOME, elevated in the feces of high-risk babies, induces
allergic inflammation in both primary immune cell and murine
models35. Genes encoding bacterial epoxide hydrolases catalyzing
the production of 12,13-DiHOME were enriched in the feces of
high-risk babies. Introduction of these bacterial genes to the gut
microbiome of mice was sufficient to increase circulating con-
centrations of 12,13-DiHOME and exacerbate airway allergic
inflammation35. Moreover, in one month infant stool samples
increasing concentrations of this oxylipin or the copy number of
bacterial epoxide hydrolases capable of its production, significantly
increased the risk for atopy and/or asthma development in
childhood35, underscoring a role for early-life microbes and their
metabolic products in disease development. More recently, both
direct (electron microscopy) and indirect (molecular) evidence for
the presence of a sparse, but viable, bacteria in the human fetal
intestine by mid-gestation was reported in humans, and fetal
bacterial strains isolated only in the presence of pregnancy hor-
mones exhibited the ability to modulate fetal T-cell inflammatory
ability36. Independently, development of antigen-experienced
immune cell populations with the capacity to respond to

microbial stimuli has been demonstrated as early as the second
trimester of pregnancy in humans37–40 and continues post-natally.
Thus vertically, horizontally, and environmentally acquired early-
life microbes and their metabolites influence immune function
and physiological development in a manner that shapes trajec-
tories with life-long implications for health and an improved
understanding of interactions that govern this process is critical.

Outlook
Ecologically, low-abundance species and strain populations are
essential reservoirs of genetic and functional diversity41. Broader
understanding of primary and ancillary microbial functions
amassed during the microbiome assembly process in early life and
reassembly following perturbation in mature microbiomes is key
to understanding features of microbiome function, stability and
resilience. Critical also to this understanding is the role of
microbe–microbe and microbe–host interactions which govern
competitive colonization and niche specificity42,43 in the context
of nutritional substrate availability. Immunological immaturity is
observed in germ-free and laboratory mice, as compared to wild
mice44–46 and humans residing on farms exhibit greater micro-
bial functional diversity and a lower susceptibility to chronic
inflammatory disease47,48. Traditional hunter-gatherer popula-
tions possess dynamic lineages of microbes which exhibit seasonal
changes and include microbial species largely extinct in urban
dwellers49, while lifestyle changes including settled habitation
lead to depletion of disease protective microbes in nomadic
populations50. Thus, progressive loss of the most flexible and
responsive microbes to environmental exposures may occur at the
expense of lifestyle changes and modernization. Microbial eco-
system management, involving precision nutrition and rational
microbial supplementation to promote or reinstate microbial
functional networks eroded by Western lifestyles and urban
exposures may become increasingly important.

As we move into the next decade of human microbiome
research, forward momentum in the field requires an under-
standing of microbial function, productivity, and interaction with
the human host across spatial, temporal, and environmental
gradients. Integrative analyses of parallel high-resolution cellular
profiling approaches applied to longitudinally collected samples
capturing microbiome function, productivity, host response and
anthropologic measurements will lead to a broader appreciation
of our co-evolution with microbes and the forces that shape
microbe–microbe–host interactions. In addition to breadth, such
studies also require depth; interrogation across scales from the
ecosystem level to cellular and molecular networks that shape
human biology are necessary to facilitate mechanistic insights
necessary to leverage this field for precision diagnostics and
interventions. Determining how to successfully re-populate
depleted microbial functions and rationally and sustainably re-
engineer microbiomes across a range of developmental stages,
host genetic backgrounds and environmental exposures repre-
sents the next frontier in human microbiome research.
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