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ARTICLE

Evaluating genomic polygenic risk scores
for childhood acute lymphoblastic leukemia in Latinos

Soyoung Jeon,1 Ying Chu Lo,1 Libby M. Morimoto,2 Catherine Metayer,2 Xiaomei Ma,3

Joseph L. Wiemels,1 Adam J. de Smith,1 and Charleston W.K. Chiang1,4,5,*
Summary
The utility of polygenic risk score (PRS) models has not been comprehensively evaluated for childhood acute lymphoblastic leukemia

(ALL), the most common type of cancer in children. Previous PRS models for ALL were based on significant loci observed in genome-

wide association studies (GWASs), even though genomic PRSmodels have been shown to improve prediction performance for a number

of complex diseases. In the United States, Latino (LAT) children have the highest risk of ALL, but the transferability of PRSmodels to LAT

children has not been studied. In this study, we constructed and evaluated genomic PRS models based on either non-Latino White

(NLW) GWAS or a multi-ancestry GWAS. We found that the best PRS models performed similarly between held-out NLWand LAT sam-

ples (PseudoR2 ¼ 0.086 5 0.023 in NLW vs. 0.060 5 0.020 in LAT), and can be improved for LAT if we performed GWAS in LAT-only

(PseudoR2¼ 0.1165 0.026) or multi-ancestry samples (PseudoR2¼ 0.1315 0.025). However, the best genomicmodels currently do not

have better prediction accuracy than a conventional model using all known ALL-associated loci in the literature (PseudoR2 ¼ 0.166 5

0.025), which includes loci fromGWAS populations that we could not access to train genomic PRSmodels. Our results suggest that larger

and more inclusive GWASs may be needed for genomic PRS to be useful for ALL. Moreover, the comparable performance between pop-

ulationsmay suggest amore oligogenic architecture for ALL, where some large effect loci may be shared between populations. Future PRS

models that move away from the infinite causal loci assumption may further improve PRS for ALL.
Introduction

Acute lymphoblastic leukemia (ALL) is the most common

type of childhood cancer worldwide, representing 20% of

all cancers in children in the United States.1 There are

few established environmental risk factors for ALL, and

genome-wide association studies (GWASs) have confirmed

the contribution of genetic variation to ALL risk. To date,

at least 19 loci have been discovered and replicated in pre-

vious GWASs, primarily performed with European ancestry

individuals, suggesting the polygenic nature of susceptibil-

ity to ALL.2–12 Yet, how these variants collectively

contribute to disease risk has not been fully characterized.

Polygenic risk scores (PRSs) can identify individuals at

significantly elevated risk for a disease, such as cancer, by

providing a quantitative measure of an individual’s in-

herited risk based on the cumulative impact of variants

shown to be associated with the disease of interest. More-

over, there has been growing evidence that the predictive

power of PRSs can be further increased by aggregation of

genotypic effects across all variants even if they do not

reach the commonly acknowledged genome-wide signifi-

cance threshold for association (p ¼ 5e-8).13,14 With ALL,

this genomic PRS approach may enhance the efficacy of

PRS models given the small number of known susceptibil-

ity loci.
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However, one of the biggest limitations of PRSs is the

lower predictive performance in non-European ancestry

populations.15 Part of this loss in efficacy may be due to

the over-representation of GWAS participants of European

ancestry,15,16 resulting in much more informative GWASs

for European ancestry individuals compared with that for

other ancestries. The poor transferability may also arise

due to differences between populations in terms of the pat-

terns of linkage disequilibrium (LD), and the number,

magnitude of effect, and the frequencies of the causal al-

leles.15,17,18 Such a limitation is particularly important

for ALL, since Latino children have a higher and faster-

increasing risk and poorer survival than non-Latino

Whites (NLWs) in the United States.19–23 Currently avail-

able PRS models for ALL are based only on a limited num-

ber of known risk alleles. One of the first PRS models for

ALL was one constructed with 11 single nucleotide poly-

morphisms (SNPs) known to be associated with ALL as of

2018, with effect sizes estimated from a European ancestry

cohort.24 Its efficacy in individual risk discrimination anal-

ysis may be over-estimated, and its transferability to non-

European cohorts has not been evaluated. A subsequent

PRS model reported in 2021 using again only SNPs from

known associated loci frommulti-ancestry GWASs showed

lower predictive performance than the earlier study,

though it demostrated similar performance between
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Latinos and non-LatinoWhite cohorts.2 No study has con-

structed genomic PRS models for ALL in any population

to date.

In this study, we set out to construct and evaluate

genomic PRS models derived using NLW cohorts and test

their transferability to Latino (LAT) individuals. We evalu-

ated two genomic PRS approaches—Pruning and Thresh-

olding (P þ T) and LDPred2—in parallel to PRS models

constructed based on only genome-wide significant loci

from the literature. We also aimed to examine whether

effect sizes estimated from ethnic-specific GWASs or

multi-ancestry meta-analysis, and whether training with

matched ancestry LD reference panel, could improve the

efficacy of the PRS.
Material and methods

Study cohort
The California Childhood Cancer Record Linkage Project (CCRLP)

includes all children born in California during 1982–2009 and

diagnosed with ALL at the age of 0–14 years per California Cancer

Registry records from 1988 to 2011. Children who were born in

California during the same period and not reported to California

Cancer Registry as having any childhood cancer were considered

potential controls. Detailed information on sample matching,

preparation, and genotyping has been previously described.4

Because ALL is a rare childhood cancer, to increase statistical po-

wer of a genetic study we followed previous practice4 and incorpo-

rated additional controls using adult individuals from the Kaiser

Resource for Genetic Epidemiology Research on Aging Cohort

(GERA; dbGaP accession: phs000788.v1.p2). The GERA cohort

was chosen because a very similar genotyping platform had been

used.4 Both studies included data on self-reported race/ethnicity

from birth certificate or upon cohort entry, which were used to

perform stratified multi-ancestry GWASs.

The imputation and quality control (QC) of SNP array data were

carried out in each study population, as previously described in a

multi-ancestry meta-analysis GWAS of ALL.2 After QC filtering,

the LAT GWAS included 1,878 cases and 8,441 controls, the

NLWGWAS included 1,162 cases and 57,341 controls, the African

American GWAS included 124 cases and 2,067 controls, and the

East Asian GWAS included 318 cases and 5,017 controls.

Another GWAS was performed with individuals from the Chil-

dren’s Oncology Group (COG; dbGAP accession: phs000638.v1.p1)

as cases and from the Wellcome Trust Case-Control Consortium

(WTCCC) as controls.25 We generally followed the same QC pipe-

line, but because self-reported race/ethnicity was not available to

us, we performed global ancestry estimations using ADMIXTURE

and the 1000 Genomes populations as reference. We removed indi-

viduals with <90% estimated European ancestry from the analysis,

resulting in a total of 1,504 and 2,931 NLW cases and controls,

respectively. This dataset was previously used as a replication cohort

of European ancestry in our earlier study,2 but here we combined it

with CCRLP NLW to increase the sample size of the discovery

GWAS (below). We note that filtering based on genetically inferred

ancestry for COG/WTCCC was due to a logistical constraint. We

would expect that enriching for European ancestry through an arbi-

trary threshold may artificially increase genetic differentiation be-

tween the discovery GWAS (in NLW) and the targeted validation
2 Human Genetics and Genomics Advances 4, 100239, October 12, 2
cohort (in LAT), thereby potentially overestimating any difference

of performance for PRS models between populations.

The California Childhood Leukemia Study (CCLS),12,26 a non-

overlapping California case-control study with controls selected

from California birth records (1995–2008), was used as our valida-

tion dataset. In total, 306 NLW cases, 258 NLW controls, 592 LAT

cases, and 509 LAT controls, based again on self-reported race/

ethnicity at birth, were available for analysis. The QC procedures

and imputation were performed in accordance with the discov-

ery/training dataset.

This study was approved by institutional review boards at the

California Health and Human Services Agency, University of

Southern California, Yale University, University of California,

Berkeley, and the University of California, San Francisco. The de-

identified newborn dried blood spots for the CCRLPwere obtained

with a waiver of consent from the Committee for the Protection of

Human Subjects of the State of California. The CPHS IRB Project

number is 2018-118.
Overall study design
A PRS of an individual j is defined as a weighted sum of SNP allele

counts:

PRS ¼
Xm
i¼1

bbi gij;

where m is the number of SNPs to be included in the predictor, bbi
in the per allele weight for each SNP, gij is the allele count (0,1,2) or

dosage of the allele of SNP in individual j.

For each step of score derivation, optimization, and evaluation,

we used three non-overlapping datasets to (1) perform discovery

GWAS to estimate variant effect sizes, (2) optimize parameters

for the best predictive score, and (3) evaluate the predictive perfor-

mance of the resulting scores (Figure 1). Following the convention

previously suggested,27,28 we refer to the datasets used in each of

the three steps as ‘‘GWAS,’’ ‘‘testing,’’ and ‘‘validation’’ datasets.

We randomly selected and held-out 360 cases and 1,200 con-

trols from each of CCRLP NLW (�13.5% of the total cases

and �2.0% of the total controls) and LAT (�19.2% of the total

cases and �14.3% of the total controls) as the testing datasets to

identify the best PRS models, and used the remaining sample

from CCRLPþGERA cohort as the GWAS dataset in the three

different discovery GWASs: (1) NLW-only meta-analysis (com-

bined with COGþWTCCC sample), (2) LAT-only GWAS, and (3)

multi-ancestry meta-analysis. For each GWAS, we constructed

PRS using two established approaches: Pruning and Thresholding

(P þ T) and LDPred2.
Discovery GWAS
We used PLINK (version 2.3 alpha) to test the association between

imputed genotype dosage at each SNP and case-control status in

logistic regression, after adjusting for the top 20 principal compo-

nents (PCs) to control for potential confounding due to fine-scale

structure and variation in genetic ancestry within each ethnic

group. For NLW and multi-ancestry GWAS meta-analysis, the re-

sults from each study and/or racial/ethnic group were combined

via the fixed-effect meta-analysis with variance weighting using

METAL.29 For CCRLP/GERA, after excluding 360 cases and 1,200

controls each for NLW and LAT (as the held-out/testing samples),

we included 802 cases and 56,141 controls in NLW, 1,518 cases

and 7,210 controls in LAT, 318 cases and 5,017 controls in East

Asian, and 124 cases and 2,067 controls in African American for
023



Figure 1. Summary of study design and analysis
The flowchart details different cohorts used for each step of PRS derivation with different discovery GWAS, optimization cohort, and
evaluation in either non-Latino White or Latino populations. In PRS evaluation, comparison (1) focused on evaluating the transfer-
ability of PRS models optimized in non-Latino White cohort. Comparison (2) focused on different strategies for improving the PRS ef-
ficacy by optimizing in a Latino cohort (2a), using a Latino-only discovery GWAS (2b), using a multi-ethnic discovery GWAS and opti-
mized in non-Latino White (2c) or Latinos (2d). NLW, non-Latino White; LAT, Latino American; CCRLP, California Childhood Cancer
Record Linkage Project; GERA, Genetic Epidemiology Research on Aging Cohort; COG, Children’s Oncology Group;WTCCC,Wellcome
Trust Case-Control Consortium; CCLS, California Childhood Leukemia Study.
discovery GWAS. For NLW meta-analysis, CCRLP/GERA GWAS

was meta-analyzed with a separate GWAS conducted with 1,504

cases and 2,931 controls from a COG/WTCCC cohort, for a total

sample size of 2,306 cases and 59,072 controls. Multi-ethnic

meta-analysis was conducted with CCRLP/GERA NLW, LAT, East

Asian (EAS), African American (AFR), and COG/WTCCC individ-

uals, totaling 4,266 cases and 73,366 controls. While a single

pooled multi-ancestry GWAS may be more powerful, in this study

we opted for a multi-ancestry meta-analysis in part because the

GERA subcohorts were genotyped on different versions of

ancestry-specific Axiom arrays,30 necessitating QC processing

stratified by self-reported race/ethnicity and the genotyping plat-

form. The total sample size for each discovery GWAS design can

be found in Table S1.
PRS derivation/optimization
For each ancestry-specific ormulti-ancestry GWAS, we constructed

the PRS using two different methods: Pruning and Thresholding

(P þ T) and LDPred2. Both methods used the GWAS summary sta-

tistics as the starting point, but each makes different choices for

which SNPs to include in the predictor and the weight values as-

signed to each SNP.

Pruning and Thresholding (P þ T) uses a p value threshold and

LD-driven clumping procedure to construct scores. The scores us-

ing P þ T approach were constructed using PLINK (version 1.9). In

brief, given a user-defined threshold for associated p value and

clumping parameters, the algorithm forms clumps around the in-

dex SNPs with all SNPs within a specified distance (kb) that have
Human
p value and pairwise LD (measured by r2) at levels greater than a

specified threshold. The algorithm greedily and iteratively cycles

through all index SNPs, beginning with the SNPwith themost sig-

nificant p value, only allowing each SNP to appear in one clump.

The most significant SNPs for each LD-based clump across the

genome are used to build the PRS with associated estimated effect

sizes, bb, as weights. We constructed PRS using a range of p values

(1.0, 0.5, 0.05, 5 3 10�4, 5 3 10�6, and 5 3 10�8), r2 (0.2, 0.4, 0.6,

and 0.8), and kb (250, 500) thresholds for a total of 48 PRS models

to optimize under this approach.

LDPred2 uses a Bayesian approach to calculate posterior mean

effect size for each variant given a prior and subsequent shrinkage

based on the extent to which the variant is correlated with simi-

larly associated variants.31,32 The underlying Gaussian distribu-

tion additionally considers the proportion of causal variants (r).

LDPred2 uses a grid of values for hyper-parameters/tuning param-

eter - r, h2 (the SNP heritability), and sparsity (whether to fit some

variant effects to exactly zero) to construct PRS. We used r from a

sequence of 17 values from 10�4 to 1 on a log-scale, a range of h2

within (0.7, 1, 1.4) 3 estimated heritability, and a binary sparsity

option of either on and off (LDPred2-grid models). In addition,

we tested a model assuming infinitesimal causal effects, where

each variant is assumed to contribute to disease risk (LDPred2-

inf model). In total, we evaluated 103 PRS models using LDPred2.

Once the variants and weights for each PRS model were esti-

mated, the scores were generated in the testing sample (360 cases

and 1,200 controls in NLW or LAT) using PLINK (version 2.3

alpha), and then standardized to have a mean of 0 and variance

of 1. For each strategy, the score with the best predictive
Genetics and Genomics Advances 4, 100239, October 12, 2023 3



Table 1. Performance of the best model for NLW_NLW strategy across different testing datasets

Testing dataset Sample size p value AUC SE_AUC PseudoR2 SE_PseudoR2

CCLS NLW 564 4.13E-09 0.667 0.045 0.086 0.032

CCLS LAT 1101 3.95E-12 0.652 0.032 0.060 0.020

CCRLP LAT (high EUR) 1300 3.59E-09 0.624 0.030 0.036 0.016

CCRLP LAT (medium EUR) 1301 2.68E-12 0.629 0.030 0.051 0.017

CCRLP LAT (low EUR) 1300 1.79E-09 0.617 0.030 0.037 0.016

p value denotes the evidence of association of the PRS in a logistic regressionmodel with additional covariates of 20 PCs and sex. AUC denotes area under the curve
from receiver operator characteristic analysis. PseudoR2 was calculated from the difference between a logistic regression model with PRS and one without PRS. SE
denotes standard error for both AUC and PseudoR2, which were computed using 1,000 bootstrap samples. high, medium, and low EUR denote the top, middle,
and bottom tertile, respectively, of CCRLP LAT individuals sorted by proportion of estimated European ancestries.
performance was determined based on the highest Negelkerke’s

pseudo R2 (the proportion of variance explained) which was calcu-

lated as the difference of R2 from a full model inclusive of the PRS

and the covariates and the R2 from a null model with covariates

alone. Covariates in the model included the first 20 PCs and sex.
PRS evaluation
After optimizing the PRS model in held-out testing samples of 360

cases and 1,200 controls, we computed the PRS score in the CCLS,

which is our validation dataset. The CCLS included 306 cases and

258 controls in the NLW subcohort, and 592 cases and 509 con-

trols in the LAT subcohort. We quantified the predictive perfor-

mance of PRS by Negelkerke’s pseudo R2 and area under receiver

operating characteristic curve (AUC; probability that a case ranks

higher than a control). We assessed the transferability of a PRS

model between populations by testing for statistical differences

in its performance measures between populations.33 AUC was

computed for the full model with covariates to account for popu-

lation stratification. AUC for the null model (ALL�10 PCsþ sex) is

0.593 and 0.577 in CCLS LAT and NLW, respectively. AUCs were

calculated using pROC package in R.34 Standard errors and tests

for statistical differences in these measures of model performance

were computed with 1,000 sets of bootstrap samples across indi-

viduals and populations.

In the case for evaluating transferability of the best PRS model

for NLW_NLW strategy to LAT, we additionally used CCRLP LAT

as a validation sample, stratified by global European ancestries.

Local ancestry inference was first performed on CCRLP LAT cases

and controls using RFMix,35 using a reference panel consisting

of 671 non-Finnish European individuals for European ancestry,

716 African individuals for African-ancestry, and 94 Admixed

American individuals (7 Colombian, 12 Karitianan, 14 Mayan, 4

Mexican in Los Angeles, 37 Peruvian in Lima, Peru, 12 Pima,

and 8 Surui) for Indigenous American (IA) ancestry from gnomAD

v3.1 release,36 as previously identified to be enriched with indige-

nous ancestry.37 We then summed the local ancestry estimates

across the genome to derive the global ancestry estimates. We

stratified Latino individuals into three tertiles of global European

ancestry, and in each group evaluated the predictive performance

of the best PRS model for NLW_NLW strategy.
Results

To develop PRSmodels, we used three non-overlapping da-

tasets to (1) perform discovery GWAS to estimate variant
4 Human Genetics and Genomics Advances 4, 100239, October 12, 2
effect sizes, (2) optimize parameters in held-out samples

for the best predictive score, and (3) evaluate the predictive

performance of the resulting scores in external validation

cohort (Figure 1). We explored multiple strategies

to develop PRS models. We labeled the different strategies

using the convention of ‘‘POPGWAS_POPtesting’’, where

POPGWAS is the population in which the discovery GWAS

was conducted, and POPtesting is the population in which

the optimization for the best model was performed (mate-

rial and methods).

Transferability of genomic PRS for ALL

We first evaluated a genomic PRS model derived from

GWAS summary statistics of an NLW cohort and its trans-

ferability to the LAT cohort. We performed a GWAS in

2,306 cases and 59,072 controls in NLW (Table S1) after

holding out individuals for testing and validating the PRS

models. Our first design is termed NLW_NLW, for the dis-

covery GWAS was performed in NLW, and the model was

optimized also in held-out NLW samples (strategy 1,

Figure 1). This is a typical scenario where GWAS and PRS

model optimizations were both completed in European

ancestry populations.

The best model with the highest Negelkerke’s Pseudo R2

in the NLW_NLWapproach was based on LDPred2, a non-

sparse model with r ¼ 0.0032 and h2 ¼ 0:22. This model

consisted of approximately 1.08M SNPs across the genome

and is significantly associated with case/control status in

both CCLS NLW and LAT cohorts (p ¼ 4.1e-9 and 3.9e-12

for NLW and LAT, respectively). The resulting PRS ex-

plained 8.6% 5 3.2% of the variance in the CCLS NLW

cohort, after accounting for covariates, as measured by

pseudo R2 (Table 1). The same PRS model explained

6.0% 5 2.0% of the variance in the CCLS LAT cohort

(Table 1 and Figure 2), suggesting minimal loss of transfer-

ability in efficacy after taking into account the standard er-

rors of these estimates. The AUC in both NLWand LAT are

also similar (0.6675 0.045 and 0.6525 0.032 in NLWand

LAT, respectively), in the full prediction model, including

PRS as well as sex and 20 PCs (Table 1).

An alternative approach to evaluate the transferability of

the genomic PRS model is to assess if the prediction effi-

cacy differs by proportion of European ancestry in the
023



Figure 2. PRS efficacy based on the best-performing model for
each strategy, as validated in CCLS Latinos
The PRS efficacy, as measured by pseudo R2, of the best-performing
model for each strategy aimed to improve the efficacy of
PRS models for LAT is summarized and compared with a baseline
model. Each strategy is labeled by the convention we used in this
study, POPGWAS_POPtesting, where POPGWAS is the population in
which discovery GWAS was conducted, and POPtesting is the pop-
ulation in which the optimization of the model was performed.
Each model is also numbered (1, 2a–2d) according to the strategy
design in Figure 1. In all cases the PRS models were validated in
CCLS LAT. *Strategy 2b (LAT_LAT) is significantly better than
the baseline model (p ¼ 0.0019). **Strategies 2c and 2d
(META_NLW and META_LAT, respectively) are both better than
the baseline model as well (p < 1e-4). Standard errors and statisti-
cal significance is computed by 10,000 rounds of bootstrap sam-
ples across individuals. No other comparisons produced statisti-
cally significant results.
Latino individuals. Because the CCRLP has the largest

collection of LAT individuals and has not been used in

the NLW_NLW model, we can evaluate the prediction ac-

curacy in CCRLP LAT individuals (N ¼ 3,901; 1,878 cases).

In tertiles of LAT individuals, each with approximately

1,300 individuals, we found little evidence of differences

in performance across strata of ancestry proportions

(Pseudo R2 ¼ 0.036, 0.051, 0.037 across the highest, mid-

dle, and lowest tertiles by European ancestries in LAT;

AUC ¼ 0.624, 0.629, and 0.617, respectively; Table 1).

Taken together, we identified little evidence that there is

a substantial difference in transferability between NLW

and LAT populations or ancestries.

Improving the prediction accuracy of genomic PRS for

Latinos

We first evaluated a scenario where the LATwas used as the

cohort to identify the optimal PRS model, even though the

discovery GWAS was still from NLW (NLW_LAT, strategy

2a in Figure 1). We found that in this case, the best model

was a LDPred2 sparse model with parameters r ¼ 0.01 and

h2 ¼ 0.1826. This model did not appear to improve the per-

formance of the PRS in CCLS LATover the best NLW_NLW
Human
model (Pseudo R2 ¼ 0.041 5 0.018, compared with

0.060 5 0.020 under NLW_NLW approach; Figure 2 and

Table S2).

We also evaluated a scenario where the LAT were used

both for the discovery GWAS and PRS model optimization.

In this case, 1,518 cases and 7,210 controls of LAT individ-

uals from CCRLPþGERA were used in the discovery GWAS

(LAT_LAT strategy; 2b in Figure 1). The best PRS model

from this approach was a LDPred2 sparse model with pa-

rameters r ¼ 0.001 and h2 ¼ 0.1764. When validating

this model in CCLS, the performance was significantly bet-

ter than when the NLWhad been used for discovery GWAS

(Pseudo R2 ¼ 0.116 5 0.026, compared to 0.060 5 0.020

under the NLW_NLW strategy, p ¼ 0.0019; Figure 2 and

Table S2).

Finally, as discovery GWAS based in NLWor LATare both

potentially underpowered, we also evaluated the multi-

ancestry meta-analysis design that combined all four co-

horts from CCRLPþGERA as well as the COGþWTCCC

samples (Table S1). In total, the GWAS contained 4,226

cases (2,306, 1,518, 318, and 124 in NLW, LAT, EAS, and

AFR, respectively) and 73,366 controls (59,072, 7,210,

5,017, and 2,067 in NLW, LAT, EAS, and AFR, respectively).

We then trained the best genomic PRS model in either

NLW (META_NLW; strategy 2c in Figure 1) or LAT

(META_LAT; strategy 2d in Figure 1), both using a held-

out sample of 360 cases and 1,200 controls. Likely due

to the increased sample sizes, the meta-analysis designs

produced the best-performing genomic PRS models.

Under the META_NLW design, the best model was a

LDPred2 sparse model with parameters r ¼ 0.0032 and

h2 ¼ 0.1376. Under this model, the prediction accuracy

in CCLS LATwas better than the naive NLW_NLW strategy

(Pseudo R2 ¼ 0.131 5 0.025 vs. 0.060 5 0.020, p < 1e-4;

Figure 2 and Table S2), and slightly though not signifi-

cantly higher than the LAT_LAT strategy (Pseudo R2 ¼
0.116 5 0.026; p ¼ 0.15). The best META_LAT strategy (a

non-sparse model with parameters r ¼ 0.001 and

h2 ¼ 0.1127) also appeared to perform similarly compared

with the META_NLW approach (Pseudo R2 ¼ 0.130 5

0.024; Figure 2 and Table S2). The AUC for the full model

including PRS, sex, and PCs were 0.700 and 0.701 for

META_NLWandMETA_LAT strategies, respectively. Our re-

sults thus suggest that given the currently available data,

combining the largest multi-ethnic sample for discovery

GWAS will lead to the best genomic PRS model in terms

of prediction accuracy.

As the multi-ancestry meta-analysis GWAS is the most

powerful discovery GWAS currently available, we also eval-

uated the transferability of the PRS model from the

META_NLW strategy by comparing the PRS performance

in CCLS NLW vs. LAT samples. The Pseudo R2 remains

comparable between the two cohorts (e.g., under the

META_NLW strategy, Pseudo R2 ¼ 0.153 5 0.034 for

NLW vs. 0.131 5 0.025 for LAT; Figure 3 and Table S3).

This result is consistent with the attempt described above

(NLW_NLW strategy; Table 1).
Genetics and Genomics Advances 4, 100239, October 12, 2023 5



Figure 3. Predictive performance of best-performing genomic
PRS model (META_NLW) vs PRS model constructed with 23
known ALL risk SNPs
Both models were tested in CCLS NLW and LAT, which were not
used in the discovery GWAS for genomic PRS. CCLS was also not
used in the identification of the 23 known loci in literature,
although it had been used as replication cohort. *In CCLS LAT,
the pseudo R2 for PRS model based on 23 known loci is signifi-
cantly better than that from our best-performing genomic PRS
model (p < 1e-4) based on 10,000 sets of bootstrapping.
Genetic architecture of ALL

LDPred2 has two different modes of inference, LDPred2-

grid and LDPred2-inf, where the former assumes some pro-

portions of the variants are causal and parameters need to

be optimized in a grid, while the latter assumes an infini-

tesimal model where every variant have a mean effect of

0 with some small variance. In our META_NLW and

META_LAT approaches, where we have the most powerful

discovery GWAS to guide PRS model constructions,

we noticed that LDPred2 models consistently outper-

formed the LDPred2-inf models (e.g., Pseudo R2 ¼
0.130 5 0.025 in LDPred2 vs. 0.013 5 0.016 in

LDPred2-inf when model under the META_LAT strategy

was evaluated in CCLS LAT; Figure S1 and Table S3). Our re-

sults are thus consistent with a more oligogenic architec-

ture of ALL, while LDPred2-inf is more appropriate for

traits with highly polygenic inheritance.

Genomic PRS vs. PRS based on genome-wide significant

loci

Generally speaking, genomic PRS models, whether

through P þ T, LDPred2, or other similar approaches, are

expected to bemore accurate in risk prediction or stratifica-

tion over a simple PRS model based solely on the set of

known GWAS loci (i.e., those that have been shown to

reach a p value less than 5e-8 in one or more GWAS for a

particular trait).31 Indeed, in each of the strategies that

we have examined, the best genomic PRS models tend to

be better than P þ T model with p value threshold of

5e-8, a special case that is equivalent to building a PRS

model with the genome-wide significant loci. For instance,

under the META_LAT strategy, the best PRS model
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achieved a pseudo R2 of 0.130 5 0.024, while the best

P þ T model with p value threshold of 5e-8 only attained

a pseudo R2 of 0.088 5 0.021.

However, the genomic PRS requires a held-out sample to

optimize the parameters for building the PRS. This necessi-

tates a reduction in the sample sizes available for GWAS.

While this may not be a huge obstacle for common dis-

eases, it could be a concern for a rare disease such as ALL.

In order to evaluate the genomic PRS, we had to reduce

our case proportions by 16% (from 2,666 cases to 2,306

cases and from 1,878 cases to 1,518 cases after removing

360 cases each for NLW and LAT respectively from

CCRLP/GERA as training sample). Thus, an alternative

approach could have been constructing a simple PRS

model based on only genome-wide significant variants,

and subsequently test this PRS model in independent

cohorts.

We built a PRS model using 23 SNPs previously associ-

ated with ALL, identified across 11 studies.2–12 These 23

SNPs were derived from 19 loci, including conditionally in-

dependent secondary associations at four loci (Table S4).

These associated SNPs were identified in one or more inde-

pendent cohorts in the literature, including the full

CCRLP/GERA datasets that were used for constructing

and evaluating genomic PRS models above. Because there

is no need to optimize the PRS model in held-out samples,

we directly tested this ‘‘conventional’’ PRS in the indepen-

dent CCLS cohort that were not used in the discovery of

any of these 23 loci (although they had been used as part

of the replication cohort in previous studies). This strategy

produced better prediction accuracy than the best-per-

forming genomic PRS models in CCLS LAT (Pseudo R2 ¼
0.166 5 0.025; AUC ¼ 0.726 compared with Pseudo

R2 ¼ 0.131 5 0.025 from genomic PRS derived using the

META_NLW strategy, p < 1e-4; Table 2 and Figure 3), a dif-

ference that was not seen between the conventional PRS

and genomic PRS tested in CCLS NLW (Pseudo R2 ¼
0.151 5 0.034; AUC ¼ 0.706 compared with Pseudo

R2 ¼ 0.153 5 0.034 from genomic PRS derived using the

META_NLW, Table 2 and Figure 3).
Discussion

In the current study, we leveraged the largest available

multi-ancestry meta-analysis GWAS to investigate strate-

gies to build and evaluate PRS models for ALL across pop-

ulations. We evaluated the extent of loss in efficacy for

PRS models trained solely in NLW populations but applied

in LAT populations, explored approaches to improve PRS

models for LAT through different optimization strategies,

and compared the genomic PRS models against a simple

model that used all previously reported genome-wide sig-

nificant ALL-associated variants with no optimization.

We found little evidence of a loss in efficacy when transfer-

ring the genomic PRS model between populations. We also

found that while leveraging multi-ancestry information to
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Table 2. Predictive performance of best-performing genomic PRSmodel vs. conventional model constructed with 23 known ALL risk SNPs

CCLS NLW CCLS LAT

PseudoR2 SE AUC PseudoR2 SE AUC

Conventional PRS 0.151 0.034 0.706 0.166 0.025 0.726

Genomic PRS 0.153 0.034 0.710 0.131 0.025 0.700

Conventional PRS is a model based on 23 SNPs in literature known to be associated with ALL, having passing the genome-wide significance threshold of 5e-8 in
GWAS. PseudoR2 was calculated from the difference between a logistic regressionmodel with PRS and one without PRS. SE denotes standard error, estimated from
1,000 bootstrap samples.
increase GWAS sample sizes and representation could lead

to much more effective genomic PRS models (pseudo R2 ¼
0.1315 0.025, AUC¼ 0.700), thismodel currently still has

lower prediction accuracy for Latinos compared with a

simple model of using only 23 known ALL-associated

SNPs (pseudo R2 ¼ 0.166 5 0.025, AUC ¼ 0.726) that

were derived from multiple independent cohorts in litera-

ture (including ones we do not have access to and not uti-

lized in this study for building genomic PRS).

We undertook multiple analytical approaches to eval-

uate the transferability of a PRS model for ALL, but gener-

ally found little evidence of loss in efficacy across popula-

tions. After determining the best predictive PRS models

in NLW, using either the CCRLP NLW (NLW_NLW

approach) or the meta-analysis (META_NLW) for the dis-

covery GWAS, we observed little difference in performance

in CCLS NLW and LAT subjects (66.7% in NLW vs. 65.2%

in LAT by AUC for the NLW_NLW strategy; 71.0% in NLW

vs. 70.0% in LAT by AUC for the META_NLW strategy;

Tables 1 and S3). We also did not observe differences in

the PRS predictive performance across strata of LAT indi-

viduals by estimated European ancestry proportions

(Table 1). If there had been overt transferability issues, we

would expect that strata with the highest European

ancestry would have higher prediction accuracy compared

with strata with lower European ancestry. It remains un-

clear whether the similar performance across populations

is driven by representation in GWAS, European ancestry

admixture in LAT samples, or sufficiently shared genetic ar-

chitecture between populations for ALL that is minimally

impacted by LD differences.

One possible explanation for comparable PRS efficacy

between LAT and NLW is shared genetic architecture.

That is, ALL may follow a more oligogenic architecture

where several large effect causal loci exist on top of a poly-

genic background of smaller effect causal loci. Our

previous study2 had demonstrated that the genetic correla-

tion between NLW and LAT is relatively high (rG ¼
0.714 5 0.13), though could be different from 1

(p ¼ 0.014). Here, we have shown that an LDPred2 model

for PRS assuming infinitesimal causal loci drastically

underperforms compared with one without this assump-

tion (Figure S1 and Table S3). Combining these two obser-

vations, we speculate that the disease architecture for ALL

may be driven by a few large effect loci that are shared

across ancestries. The lower genetic correlation between
Human
populations may then be driven by significant differences

in the polygenic background, or by other yet-undiscovered

population-enriched alleles. But as these loci may have

smaller effects, PRS efficacy, and hence transferability,

could be driven largely by the main effect loci, at least

within the resolution of the sample size of the current vali-

dation cohort (i.e., CCLS). Future studies, particularly if

focused on a single ethnic group such as NLW, that

continue to elucidate the polygenic background of the

ALL architecture may then both improve the accuracy of

PRS model performance as well as exacerbating the loss

of efficacy across populations that we are not currently

able to detect. For this reason we would advocate for

greater inclusion in GWAS representation despite currently

observing little evidence in the loss of transferability in PRS

model. With regards to the LAT population which has

higher risk for ALL, increasing sample sizes will likely

help improve PRS models in this population; indeed, using

a smaller GWAS solely from LAT already substantially

improved PRS prediction efficacy in out-of-sample LAT

cohort (Figure 1) and further discovery of LAT-enriched al-

leles will improve PRS models for this population. More

generally, diverse ancestries in multi-ancestry GWAS can

also help with better fine-mapping of causal loci, which

would improve both efficacy and transferability of PRS

models.15,17

A number of limitations in our study exist, which in turn

provide guidance for future designs to propose and eval-

uate PRS models for ALL. First, efforts to continue to in-

crease the sample size in GWAS is imperative. We have

shown that genomic PRS using LDPred2 outperforms

that based on just genome-wide significant loci (using

the same GWAS, i.e., P þ T models with p value threshold

of 5e-8). But this model currently does not outperform one

simply based on aggregating all known loci from the liter-

ature, effectively combining information across multiple

independent GWAS datasets. Therefore, an aggregation of

available GWAS through a consortium effort should pro-

vide the ideal dataset to train better genomic PRS models.

Efforts like the Childhood Leukemia International Con-

sortium (CLIC)38 should provide the best resources in the

foreseeable future. CLIC meta- or mega-analysis will

include around 20,000 cases and 160,000 multi-ancestry

ALL cases and controls. Given a larger dataset, we can

ensure greater sample size for both the testing and valida-

tion dataset to iteratively assess the transferability of the
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PRS models. This is particularly important for Latino pop-

ulations, given the known heterogeneity in ancestry com-

positions and fine-scale structure of Latinos across the

United States and Latin America.39,40 Second, this con-

sortium effort will also begin to incorporate ancestrally

diverse populations that we could not properly evaluate

in this study, namely the African-ancestry and East

Asian-ancestry populations. Preliminarily, the consortium

will contain �3,400 African Americans (�700 cases) and

�11,000 East Asians (�1,300 cases), which could allow

similar investigations of PRS presented here to be conduct-

ed in these populations. Future aggregations of other

ancestrally diverse cohorts will also be needed.

Third, given the suspected oligogenic architecture of

ALL, alternative PRS strategies that incorporate informa-

tion from the distribution of effect sizes may also further

improve the performance from a methodological stand-

point. While LDPred2 controls somewhat the proportion

of the genome underlying a trait through optimization of

the r parameter, its prior is ultimately a ‘‘spike-and-slab’’

prior. A more direct modeling of the distribution of effect

sizes, on top of a polygenic background, may prove to be

a better model for ALL. Methods following these types of

models are emerging (e.g., see Spence et al.41), and will

likely become more mature in the near future. But even

without a unified framework to model effect size distribu-

tions, a simpler approach42 that combines weighted PRS

could also be more effective. In this case, one score would

be derived from sections of the genome known to be asso-

ciated with ALL that may also include multiple secondary

but independent causal variants, and the other score could

be derived from LDPred2 or similar approaches from the

rest of the genome. The weights between these two scores

can then be optimized in the training dataset as an addi-

tional parameter to derive a score that may outperform

any of the existing models evaluated here.

PRSs are intended tobe robust prediction tools thatwould

be utilized in research and clinical settings. In research set-

tings, PRSs would be applicable in defining the attributable

fraction of leukemia risk derived from common genetic

variationwhen examining other risks—either from low fre-

quency genetic alleles or environmental factors. In addi-

tion, inclusion of PRSs in environmental epidemiological

studies of ALL to account for the contribution of germline

variation may improve the power and specificity of envi-

ronment-ALL risk models, as well as increase the power to

detect gene-by-environment interactions.43 Ultimately,

PRSs may be incorporated with additional risk prediction

tools such as markers of early leukemia-promoting muta-

tions on a population scale in neonatal screening efforts

where interventions are available. Many barriers exist for

the deployment of PRSs in clinical settings. While it may

be premature to anticipate the clinical applications, any

deployment of PRS will require accurate tools across all

ancestral/ethnic groups, particularly for the Latino popula-

tion who harbor the greatest risk of ALL. Our study repre-

sents one of the first approaches toward this goal.
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Data and code availability

The analysis pipeline used for all analysis in this manu-

script is documented on github at http://www.github.

com/syjeoneli/grps_v2.0. CCRLP and CCLS genetic data

used in this manuscript are derived from the California

Biobank. We respectfully are unable to share raw, individ-

ual genetic data freely with other investigators since the

samples and the data are the property of the State of Cali-

fornia. Should we be contacted by other investigators who

would like to use the data, we will direct them to the Cal-

ifornia Department of Public Health Institutional Review

Board to establish their own approved protocol to utilize

the data, which can then be shared peer-to-peer. The State

has provided guidance on data sharing noted in the

following statement: "California has determined that re-

searchers requesting the use of California Biobank bio-

specimens for their studies will need to seek an exemption

from NIH or other granting or funder requirements

regarding the uploading of study results into an external

bank or repository (including into the NIH dbGaP or other

bank or repository). This applies to any uploading of

genomic data and/or sharing of these biospecimens or in-

dividual data derived from these biospecimens. Such activ-

ities have been determined to violate the statutory scheme

at California Health and Safety Code Section 124980 (j),

124991 (b), (g), (h) and 103850 (a) and (d), which protect

the confidential nature of biospecimens and individual

data derived from biospecimens. Investigators may agree

to share aggregate data on SNP frequency and their associ-

ated p values with other investigators and may upload

such frequencies into repositories including the NIH

dbGaP repository providing: a) the denominator from

which the data is derived includes no fewer than 20,000 in-

dividuals; b) no cell count is for <5 individuals; and c) no

correlations or linkage probabilities between SNPs are pro-

vided." Since our dataset is derived from fewer than

20,000 subjects, we are not able to upload the data to

dbGAP or another repository. GERA and COG datasets

are not derived from the California Biobank and are

available on dbGAP. The accession numbers for COG

and GERA are phs000638.v1.p1 and phs000788.v1.p2,

respectively.
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