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Abstract 

This paper seeks to understand designers’ abstraction in ill-
structured problem-solving. We utilize a protocol study with 
expert designers to empirically analyze the abstraction process 
in the latent need problem setting. A logic-based abstraction 
schema is found to model the process the designers employed. 
The study reveals how designers utilize this schema, detailing, 
developing, and evaluating solutions for ill-structured 
problems. It highlights the recursive nature of abstraction and 
raises questions about the termination of the process in ill-
structured domains. We conclude by proposing a 
computational model to further evaluate abstraction in 
complex problem-solving scenarios. 

Keywords: Abstraction; Reasoning; Ill-Structured Problems; 
Computational Model; Design; Protocol 

Design & Ill-Structured Problems 
Studies of designers have been central to understanding the 
problem-solving capabilities needed for ill-structured 
problems (Hay, Cash, & McKilligan, 2020; Simon, 1977). 
This is important because, unlike well-structured problems 
with clearly defined solutions and modes of operations, such 
as simple arithmetic, ill-structured problems do not have the 
luxury of being clearly defined and knowable at the outset, 
leading to open-ended outcomes. An ill-structured problem 
domain is one where (a) the problem definition and (b) the 
mode of operation for working within that space are not 
known (Simon, 1977). This definition can be applied to a 
group of reasoners who are not knowledgeable about the 
problem definition or mode of operation and, as such, require 
abstraction. 

Such circumstances give rise to a search process (Hay et 
al., 2017; Simon, 1977), where the reasoner accumulates 
information about the open-ended solution using an abstract 
knowledge structure containing both declarative knowledge 
about the problem and procedural knowledge (Ball, 
Ormerod, & Morley, 2004). The reasoner applies a schema, 
not to elicit a problem solution per se, but a possible 
combination of information to allow the solution to be known 
(Simon, 1977). Simon states that when developing a schema 
for ill-structured problems, the reasoner must create a plan 
that moves them beyond the original problem space into an 
abstract space to accumulate the best representation of 
information. This is corroborated by Gentner & Hoyos 
(2017), who define abstraction as “decreasing the specificity 

(and thereby increasing the scope) of a concept.” Abstraction 
develops a many-to-one mapping from the original problem 
space to the abstract space to relate and categorize the key 
characteristics of the problem.  

The effort to perform this search involves a comprehensive 
application of reasoning through multiple inference steps. 
Mitchell (2023) describes the composing multiple steps of 
inference as abstraction acting as an umbrella term that is not 
limited to any one form of inference, i.e., inductive, 
deductive, abductive, analogical, and case-based. Studies of 
abstract reasoning have been performed on several types of 
agents, namely children and primates (Gentner & Hoyos, 
2017; Starkey, Spelke, & Gelman, 1990; Sampson et al., 
2018), and in contexts, namely language (Bransford & 
Franks, 1971; Tomasello, 2001), mathematics (Koedinger & 
Anderson, 1990), and physics (Shin & Gerstenberg, 2023). 
Human infants, for example, who are unaware of rigorous 
mathematics, demonstrate the ability to detect numerical 
information (Starkey et al., 1990). Through several 
experiments, the researchers found that infants expressed an 
ability to abstract and form equivalence and non-equivalence 
relations between numbers. Another group demonstrated that 
rhesus monkeys in reverse-reward problems could 
comprehend non-perceptual features, infer them from one 
specific case, and use them to override the natural preference 
to select the superior option (Sampson et al., 2018). 

These findings exemplify that abstraction is called upon 
when a reasoner is (a) confronted with an unknown domain 
and (b) how to operate in that domain. Yet, the reasoner must 
execute some process to satisfy the problem. Gentner & 
Hoyos (2017) suggest that we focus on the process the 
reasoner applies to further understand how a reasoner 
acquires and performs such abstractions. This design case is 
of particular interest because the entirety of the discipline is 
made to tackle ill-defined problems with unknown modes of 
operation (Buchanan, 1992). We can think of the design of 
experiments, systems, applications, and products as 
outcomes that result from a process to accumulate 
information, such as dimensions, structural limitations, and 
form and functional preference, to resolve the problem. The 
expert designer is of particular interest for two purposes: as a 
reasoner, unlike the infant or rhesus monkey who forms an 
abstraction where communication is limited, the expert 
designer can verbally and visually communicate their 
abstract reasoning (Koedinger & Anderson, 1990); and 
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context; the development of the inference procedure is 
performed in a complex setting where the end state is 
unknown and therefore provides insight into the reasoning 
necessary to perform meaningful abstraction. 

Our Work 
One such ill-structured problem that calls for abstraction by 
designers is latent user need finding (Carlgren, 2013). When 
looking at online user reviews, designers must elicit 
information that will be meaningful for the design or redesign 
of a product. Online user reviews provide such information 
about the use and contentment of the user using that product, 
implying that if that area of nuisance is corrected, the product 
will improve. Such information is relayed explicitly by the 
user as evidence of love or hate for a feature of a product. 
Other information can be implicit, where the user has 
purposefully omitted information, deeming it irrelevant to the 
review, or they had been vague (Carlgren, 2013). This would 
suggest the existence of latent user needs. Latent user needs 
are demands, problems, or goals a user may have for a 
product or service but are, until then, unforeseen by the user. 
The user does not know that those “asks” exist of the product 
and are left inactive and unexpressed as a desire by the user. 
Therefore, a latent user need is a need that has the potential 
to arise for a user but is, until then, unforeseen by the user. 
Ill-structuredness becomes apparent because one can look at 
the language syntax and propose the need for that user group, 
but how do we know it is a latent need and not an explicit 
one? 

In this paper, we study designers' abstract reasoning for ill-
structured problems. We conduct a protocol study with expert 
designers to empirically test and elicit the representations 
developed when latent user need finding. We found that the 
results of the visual and verbal protocols are predicted by a 
proposed logic model by (Bruggeman, Ciliotta Chehade, & 
Ciuccarelli, 2023), which symbolizes the relational 
abstractions used by designers in ill-structured problems. We 
discuss these results as a foundation for a cognitive 
computational model to further study designer abstraction. 

Abstract Reasoning in Design 
Designers apply abstraction when the problem exhibits 
multiple, interacting, complex behaviours, complex 
boundaries and interactions between components, and many-
to-many relationships between behaviours and forms 
(Hoover, Rinderle, & Finger, 1991). When confronting such 
a problem, the designer will develop a model to predict the 
potential solution's behaviour and help make refinements 
while inferring the solution. During abstraction, designers do 
not maintain the description of the solution at a uniform level 
of detail throughout the process due to complexity but instead 
focus on certain parts of the problem in detail and ignore 
other parts irregularly, making refinements when new 
information arises or an impasse towards the solution 
emerges. 

Gero (2000) proposes that the goal of the process is to 
transform some function into a description so that the solution 

being described can produce those functions. He uses the 
example of windows, where some functions include the 
provision of daylight, control of ventilation, and access to a 
view. When the complexity of the problem increases, the 
elicitation of functions and their translation into descriptions 
becomes increasingly difficult, requiring the designer to 
develop and search the space of the problem more 
comprehensively.  

Designer’s abstract models of the problem space have 
additionally been discussed as mental models (Johnson-
Laird, 2010; Hay et al., 2017). The designer's reasoning 
depends on some tacit form of mental logic to constructively 
develop and search within the space. Goel (1995) describes a 
designer’s abstraction via vertical and horizonal 
transformations. Horizonal transformations develops the 
problem from one stage to a slightly different stage, 
“widening the space,” whilst vertical transformations 
transition the problem to a more detailed version of itself, 
“deepening the space.” These two transformations are 
contrasted within an abstraction hierarchy, where the 
horizontal transformation is the development of the type of 
information being considered and the vertical deals with the 
information’s generality or detail. Similar schemas have been 
used to describe abstraction in mathematics, wherein 
horizontal abstraction deploys diagrams and symbols to 
represent the essential underlying relationships and identify 
irrelevant aspects of the problem to ignore, whilst vertical 
abstraction is a process that leads to the formation of one or 
more new mental objects at a higher level of generality in the 
form of hierarchy (Mitchelmore and White, 2012). 

A Logic-Based Schema of Design Abstraction 
A logic-based schema enables a representation of abstract 
reasoning without limiting the possible type of inference 
being made within (Hummel & Doumas, 2023). In the case 
of design, the abductive-deductive formulation has been the 
predominant model to detail designers' abstract reasoning 
(Koskela, Paavola, & Kroll, 2018; March, 1972). Based on 
the work of C.S. Pierce (1933), the creation of a solution does 
not rely just on a deduction from previous facts but requires 
a novel form of reasoning to arrive at a desirable outcome. 
Abduction models are an explanatory hypothesis that the 
reasoner can further rework their abstraction. Empirically, 
Cramer-Peterson, Christensen, & Ahmed-Kristensen (2019) 
found through 218 idea design activities that abductive-
deductive problem development dominates designer ideation 
through a cycle of analysis-synthesis. Abduction proposes 
frames or perspectives for addressing the problem, while 
deduction, in turn, explores how such a frame can address the 
problem. 

Empirical developments suggest using an abductive-
deductive process is predominant in design to perform a 
vertical and horizontal transformation to develop and search 
the problem space (Kroll, Le Masson, & Weil, 2023). To 
situate these findings, Bruggeman et al. developed an 
abductive-deductive logic-based schema to model how an ill-
structured problem space is searched and developed when 
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navigated by the designer. In the schema, the characteristics 
of the ill-structured domain are captured as follows: the 
problem space is defined using symbolic variables, whilst the 
reasoner knowledge is represented by k, which indicates 
epistemic operations performed by the designer. 

Table 1: Inference rules used to develop ill-structured 
search space. 

 
Inference Rule Formalism 
Induction: Th È F ⊦s A 
Deduction: A È F ⊦s Th 
Abduction: A È Th ⊦s F 

Three variables and inference rules describe the designer’s 
development of the problem space (Table 1). Known axioms 
A are ontological truths or rules; facts F are established by the 
reasoner; Th is a set of theorems/hypotheses that can be put 
forth. In deduction, we may have A: Newton’s laws of 
gravity; F: observation of planetary motion; Th: the theory of 
universal gravitation. This would be done using an inference 
rule ⊦s such as modes ponens. 

Bruggeman et al. demonstrated that deduction was not 
strong enough to develop the problem space when that space 
is ill-structured. Via deduction alone, there are no logical 
guarantees that the Th it provides offers a complete 
representation of all information. Instead, it might be a 
snapshot or component of the possible solution to the 
problem. To expand the deductive approach, they conjoin Th 
with an epistemic operator Th(k), and when unified with A 
via abduction, model a new fact F(k), 

 
(Eq. 1) A ∪ Th(k) ⊨ F(k) 

 
 Furthermore, if there is a set Th(x), there is a delineation 

that can be made between the reasoner's knowledge k(x) and 
F(x). The two can be unified to infer the theory in terms of 
their knowledge about x: Th(k(x)). As such, by abduction 
Th(k(x)) can be unified with A, to abduce a F integrated with 
knowledge about that fact: F(k(x)). This allows the reasoner 
to develop a detailed account about the F(x)’s of the problem 
based upon one’s knowledge about x and A. 

The schema is made more robust depending on the 
reasoners k. When they have met the limits of x, in what it 
captures of the problem space, they can combine F(k(x)) with 
a new set of Th(y) through k. This enables the modelling of a 
multivariable representation F(k(x, y)), enabling horizontal 
information development (Eq. 2 and 3).  

 
(Eq. 2)  (k(y) ∪ F(y)) ∪ F(k(x)) ⊦ Th(k(x, y)) 
(Eq. 3)  A ∪ Th(k(x, y)) ⊨ F(k(x, y)) 

 
Bruggeman et al. provide an argument for the soundness 

and completeness of this schema, but empirically, it is not 
validated. Logically, soundness holds when k is modelled 
with A on the condition of being conjoined with the deduced 
Th; completeness holds when k is what unifies the multiple 

dimensions of the problem. This suggests that to validate the 
proposed schema of abstraction for ill-structured problems 
empirically, we need to address the use of k when conducting 
the search and development of the problem. In other words, 
the model defines how space develops, but this depends on 
how the k searches within the space. 

Designer Protocol Study 
We performed a protocol study with expert designers to 
empirically validate k in the designer's abstract reasoning. A 
protocol enables researchers to elicit verbal and visual 
reasoning from participants conducting tasks (Ericsson and 
Simon, 1993). This is ideal for understanding the designer's 
reasoning in an unrestrictive manner with little interference 
on the researcher's part. 

The logic-based schema of Bruggeman et al. was derived 
in the context of latent user need-finding, and as the 
researcher’s state, designers are best equipped to identify 
latent user needs. The protocol study we have conducted is 
interested in the use of k as it is suggested to perform by the 
schema, not in validating the outcome itself ¾ this is because 
ill-structured problems can have many representations, as is 
the case with latent user needs, and cannot be known to be 
“best” until further user research is conducted. The validity 
of the outcome is self-contained by the model's logic, and 
validating the use of k will, in part, validate the outcomes it 
produces. As such, the protocol aims to identify k as it (1) 
vertically details the variables in the problem and (2) 
horizontally combines information to create a more detailed 
representation of the solution. 

Experiment 
The protocol was conducted with 10 expert designers with 5+ 
years of user experience research as part of their design 
practice. Nielson & Landaur (1993) found that the optimal 
sample size for qualitative testing was 5 participants. As such, 
we divided the participants such that 5 performed the exercise 
on Protocol 1: a set of 10 reviews/annotations for a distinct 
shoe, while a control group of 5 performed the same exercise 
on Protocol 2: another 10 reviews/annotations for a distinct 
shoe. None had any prior experience with latent user need 
elicitation. Each protocol happened individually over a 2-
hour period, where the participant's screen and video were 
recorded and transcribed through Microsoft Teams. The 
protocol took place on Miro, an online whiteboard software 
that allows for live visualization and alteration of 
information. The objective of the think-aloud was for 
designers to elicit the latent user needs from online user 
reviews for the redesign of a shoe. We pulled reviews from 
2500 online products and found that the average number of 
reviews on a product was 10. The average length of a review 
ranged from 3-5 sentences. We created two separate Miro 
boards, each for a different shoe, where the participants were 
presented with 10 user reviews ranging from 3-5 sentences. 

With each review, the designer received an annotated 
version of each review. Han et al. (2023) developed an 
annotation model for sentiment analysis that can 
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automatically partition user reviews at a sentence level into 
terms representing the category (CAT), aspect (ASP), 
opinion (OP), and sentiment (SEN) of the review. The ASP 
is the objective target of the sentence, usually a noun or verb, 
ex. shoelace, run, house. OP is the user’s subjective statement 
in the sentence, such as ‘I like…’ or ‘They felt…’. SEN tags 
the positive, negative, or neutral sentiment of the OP term. 
CAT is the ontological category the ASP belongs to; ex. 
leather is part of the Appearance#Material category. A 
sentence would be annotated as follows: “The leather is a 
nice look.”; {ASP: “leather”; CAT: Appearance#Material; 
OP: “looks good”; SEN: Positive}.  

The purpose of the annotated reviews was to provide 
workable parts of the review to streamline reasoning, though 
they were not restricted from working directly from the 
review itself. The ASP and OP represent F as the user 
establishes contingent observations. SEN and CAT represent 
A, as these necessarily hold ontologically. We observe their 
use to construct Th by the designer’s use of k.    

Results 
We used thematic analysis to develop the mapping between 
the designer’s protocols and the logical schema (Saldaña, 
2009). Each protocol produced a transcript of the designer’s 
verbal thinking and screen recording videos of visual 
reasoning ¾ some designers leaned towards one or the other 
form of thinking aloud or utilized both evenly. The coding 
names and definitions to identify Th development and k in the 
data are drawn from previous literature in design cognition, 
specifically, the actions found to be most common in design 
reasoning (Hay et al., 2017). 

Each researcher went through an initial coding phase where 
they coded only explicit verbal or visual actions taken by the 
designers. This required identifying verbal or visual actions 
that supported the designer's reasoning about the problem. 
For example, a designer stated, “I'm ignoring a lot of the 
positive like what I deem is just kind of almost like flowery 
statements because to me, and this is the first goal or problem 
I have is there's some performance and usage issues and 
those might need to be what I focus on and later I'll 
acknowledge that like look or design was fine.” This 
epistemic action was encoded as a rule application, where the 
designer would form a rule to delineate between symbols to 
build their representation. When such actions were observed, 
the time would be marked, and we would encode how the 
designer used ASP, OP, CAT, and SEN. For the above, 
instantiation followed rule application, where the designer 
saves symbols as part of the problem representation, i.e., SEN 
∪ OP ⊦ SEN(OP):  
 
Negative ∪	 “very loud as your walking as they bend” ⊦ 
Negative(“very loud as your walking as they bend”). 

 
To conclude the analysis, the researchers triangulated their 

codes to categorize themes and subthemes. We found through 
frequency analysis (Table 2) that the designer’s abstraction 
occurs in three phases: Detail, Develop, and Evaluate. Below 

Table 2: The percentage with which the 10 designers 
employed the same action. The names and definitions of the 

actions are adapted from Hay et al. (2017) 
 

Action Frequency 
(-/10) 

Phase 1: Detail 
Enquire – instantiate symbols to address a 
need for information. 

1.0 

Generalize – associate a symbol to a 
supra-symbol. 

0.2 

Goal Definition – define goals/subgoals. 0.1 
Inference – hypothesize new symbol 
relationship. 

0.8 

Integrate – further specify current solution 
state. 

0.8 

Instantiate – save new symbol as part of 
problem representation. 

1.0 

Represent – create external representation. 1.0 
Rule Application – develop/use established 
reasoning rule (arithmetic, logical, 
assertion). 

0.7 

Phase 2: Develop 
Generate – create connection between 
information. 

1.0 

Modify – alter connections between 
information. 

0.9 

Speculation – produce partial solution or 
specification. 

1.0 

Case Based – compare information to 
previous experience. 

0.7 

Analogy – use information about known 
semantic concepts to understand newly 
presented concepts in the information. 

0.5 

Inference – logical judgement based on 
pre-existing information. 

0.7 

Affinity – mapped visual affinities between 
created information to determine 
relationships. 

0.5 

Contradiction – judge validity of 
information based on compatibility with 
other information. 

0.2 

Phase 3: Evaluate 
Compare – determine compatibility of 
proposal to constraints. 

1.0 

Calculate – infer new information by 
combining existing information. 

1.0 

Patch – add/combine information without 
making less abstract. 

1.0 

Evaluate – assess information. 0.7 
Simulate – Represent information at proper 
level of abstraction in order to relate it. 

1.0 

Accept – Add new information to solution 
state. 

1.0 

Reject – Determine information 
unsatisfactory. 

0.8 

Refine – Make information more specific. 0.9 
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we discuss the three phases as they were found in the 
protocols by outlining the patterns of operators used and their 
mapping to the logic schema.  

Detail The first phase of the designer’s abstraction saw a 
vertical detailing of the user information. Each designer 
would begin by processing the reviews to build a 
representation of the problem. This required reading and 
visualizing the information they deemed most relevant to the 
problem: enquire. Each designer then built a representation 
of the enquired information by classifying clusters k[ai, bi, 
ci,…]. Each cluster k represented information about the user, 
such as sizing/fit issues with the shoe. To further develop the 
representations, designers would follow a recursive 
application of instantiate–inference–integrate. Logically, the 
pattern followed the map: 

 
(Eq. 4) k(ai) ∪ SEN ⊦ SEN(ai) 
(Eq. 5) k(ai) ∪ OP(ai) ⊦ SEN(OP(𝑘(ai))) 
(Eq. 6) SEN(ai) ∪ SEN(OP(𝑘(ai))) ⊨ OP(𝑘(ai)). 

 
Of course, this is only one such example. The designers 
would utilize this schema to detail their k[ai, bi, ci,…] using 
ASP, CAT, OP, and SEN from each respective review. The 
goal for each designer was to relate parts found in the review 
sentences, i.e., ASP and OP, to their knowledge k. As seen in 
the above example, the logic was applied to relate the ASP 
and OP to k through their axiomatic representations, i.e., CAT 
and SEN. 

Johnson-Laird’s (1983) procedure of syllogistic reasoning 
describes the tableau the reasoner first details as organizing 
elements that stand for members of sets. The designer would 
represent members of sets through their relation to k. This is 
substantiated by how the designer built their model of the 
annotation variables, keeping track of the relations of the 
terms in each review set to a specific cluster of k. This stage 
is analogous to vertical abstraction, forming a hierarchical 
generality in the information. 

Develop In the second phase, the designers sought to connect 
their detailed representations of k[ai, bi, ci,…] and their 
respective annotations. The designers would begin by 
generating a connection between a detailed representation of 
k(ai) and k(bi), for example, the OP(k(ai)) and ASP(k(ai)) to 
OP(k(bi)) and ASP(k(bi)). To validate the generated 
connection, the designers would apply some reasoning rules 
(case based, analogy, inference, affinity, contradiction) to 
modify the information. Generation: 
 

(Eq. 7) OP(k(ai)) ∪ ASP(k(bi)) ⊦ OP-ASP(k(ai, bi)) 
 
The temporary structure between ai and bj is then tested via 
one of the rules, creating a specification. The newly specified 
theory would then modify the model (Eq. 8).  
 

(Eq. 8) CAT(ai, bj) ∪	OP-ASP(k(ai, bj))  
⊨		CAT(OP-ASP(k(ai, bj))) 

This is repeated until a model is developed that has 
integrated a representation with all variables and dimensions. 
During this phase, if knowledge of certain variables were 
seen to contradict one another or were false under the rules, 
they would be rejected or partitioned. The Develop phase 
adds second premises to the first premises, considering the 
different ways this can be done (Johnson-Laird, 1983). The 
horizontal transformation is embodied in this stage of the 
designer's abstraction, which establishes underlying 
relationships that connect different information found portent 
to the problem. This is notable in the rules the designer uses 
to modify facts and combine premises [a, b, c…] to 
restructure their model. 

Evaluate Develop saw the designer generate a robust, 
multidimensional representation of the variables in a unified 
model. The designer would then distinguish between parts of 
the model for each latent and explicit user need. The designer 
would compare parts of the model, calculate the differences 
between different representations, and create a patch, adding 
or combining the information they found in the calculation to 
the latent need. The designer would conclude by simulating 
the model at a proper level of abstraction to relate it to the 
problem, evaluate the outcome by voicing their thoughts 
about it, and then decide to accept, refine, or reject the 
resulting simulation. If the designer is determined to refine, 
they will repeat the compare-calculate-patch chain.  

The Evaluation phase frames a conclusion to express the 
relation, if any, between the end terms that hold in all the 
models of the premises (Johnson-Laird, 1983). This is 
elucidated by the participants' use of the compare-calculate-
patch chaining, which is used to develop the latent user 
needs. Framing the conclusion first involved simulating and 
then accepting, rejecting, or refining the simulation through 
an additional compare-calculate-patch chain until the 
premises held. 

A Computational Model of  
Design Abstraction 

The logical reasoning schema is abstract and procedural, 
“where knowledge elements do not correspond to any 
particular situation or set of objects, but to large categories of 
situations, and they prescribe an action” (Koedinger & 
Anderson, 1990). In the ill-structured problem domain, using 
k and the inference patterns exhibited by the designer is 
pertinent to operating in an unknown domain. k was used to 
substantiate the conceptual clusters of the user review data, 
whilst inferential procedures (induction, deduction, and 
abduction) enabled the development of those clusters in 
relation to one another. Pierce (1933) characterizes this as 
‘hypostatic abstraction’: the taking of a precept that has 
propositional form in a judgment, “and in conceiving this fact 
to consist in the relation between the subject of that judgment 
and another subject.” He uses the example of transforming 
the proposition “honey is sweet,” X is Y, to “honey has 
sweetness,” X has the property of being Y. This is the act of 
turning predicates that are signs we think through,  
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Figure 1: The three phases of abstraction for a participant designer illustrate the proposed regression model below. Phase 

1: Detail, the designer emphasized user OPs. They listed the user opinions under three main k clusters. An example density 
map of the clustered opinions respective to each list is below. Phase 2: Develop, provides a snippet of the designer applying 
affinity mapping to establish connections between the three clusters. Below is the proximity that can be calculated to each 
cluster’s centroid using cosine similarity or Euclidian distance, for example. Phase 3: Evaluate, exemplifies the designer's 

refined latent user need. Below illustrates the weighted sum that can be taken of the density + proximity evaluation to map a 
score to the outputted statement.

 
to being subjects thought of. The process thus repeats, 
allowing us to form propositions of second and third degree, 
etc. By nature, recursive, this results in what Pierce calls a 
‘continuous predicate.’ Given the nature of the ill-structured 
problem, we do not know the outcome. So, the final output 
during abstraction is continuous, wherein other relations can 
be further made if facts or axioms become known. Although 
designers followed the logic-based schema, they rarely 
arrived at the same latent need (Protocol 1: 3/5 were the same; 
Protocol 2: 2/5 were the same), let alone the same level of 
detail. 

We propose developing a computational model to further 
evaluate abstraction in ill-structured problems (Figure 1). We 
can conclude from our study that there is a relationship 
between a model M that contains k, which the designer 
established, and some targeted phenomenon P. Furthermore, 
the logic schema demonstrates there is a relation L that 
accurately models the relation between M and P, as in the 
logic-based schema, such that, 
 

  (†) L(M, P) « W 
 

In a discrete setting W, if M exhibits an ability to predict P, 
then there is a biconditional such that L is the relation map 
constituting M’s prediction of P (Bringsjord, Giancola, & 
Govindarajulu, 2023). Furthermore, if W is a setting where 
we can check that M successfully predicted P, then successful 
prediction must be correlated with L. 

We seek to map the relationship between M, which the 
model developed during the Detail, Develop and Evaluate  

 
phase, to P, which is the proposed solution state, a latent need 
statement in our circumstance. L represents the 
characteristics that accurately model P. We can split M into 
Detail: a; and Develop: b. In Detail, designers established 
clusters of OP and ASP related to k. We can use M(a) to 
evaluate the density of each k[ai, bi, ci,…] to determine the 
detail (i.e., the presence of OP and ASP in each cluster). 
During Develop, designers established connections between 
each cluster; as such, we propose using a proximity metric for 
M(b) to evaluate the similarity between each cluster. 
Furthermore, each designer weighted phases differently in 
terms of importance, as such weights w1 and w2 can be 
attributed to M(a,b), respectively. Finally, for Evaluate, we 
can take a weighted sum of our clusters to establish L(M, P): 

 
 (‡) P = w1M(a) + w2M(b) 

Conclusion 
This study focuses on expert designers who can communicate 
their abstract reasoning verbally and visually. We conducted 
a protocol study with expert designers to test and elicit 
representations developed from reasoning about an ill-
structured problem. The results align with the proposed logic-
based schema, symbolizing relational abstractions used by 
designers. However, we found that the logic-based schema 
only accounted for the development and search of the ill-
structured problem space. It remained unclear why the 
abstraction process was terminated during the Evaluation 
phase. To conclude, we propose a computational model to 
evaluate designer abstraction in a future study.  
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