
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Towards a Computational Model of Abstraction in Design Reasoning

Permalink
https://escholarship.org/uc/item/17197716

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Bruggeman, Ryan
Ciliotta Chehade, Estefania
Marion, Tucker J
et al.

Publication Date
2024

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/17197716
https://escholarship.org/uc/item/17197716#author
https://escholarship.org
http://www.cdlib.org/

Towards a Computational Model of Abstraction in Design Reasoning

Ryan Bruggeman, Estefania Ciliotta Chehade, Paolo Ciuccarelli
(bruggeman.r, e.ciliottachehade, p.ciccarelli@northeastern.ed)

Center for Design, Northeastern University, 11 Leon Street
Boston, MA 02115 USA

Tucker J. Marion (t.marion@northeastern.edu)
Entrepreneurship & Innovation, 370 Huntington Avenue

Boston, MA 02115 USA

Abstract

This paper seeks to understand designers’ abstraction in ill-
structured problem-solving. We utilize a protocol study with
expert designers to empirically analyze the abstraction process
in the latent need problem setting. A logic-based abstraction
schema is found to model the process the designers employed.
The study reveals how designers utilize this schema, detailing,
developing, and evaluating solutions for ill-structured
problems. It highlights the recursive nature of abstraction and
raises questions about the termination of the process in ill-
structured domains. We conclude by proposing a
computational model to further evaluate abstraction in
complex problem-solving scenarios.

Keywords: Abstraction; Reasoning; Ill-Structured Problems;
Computational Model; Design; Protocol

Design & Ill-Structured Problems
Studies of designers have been central to understanding the
problem-solving capabilities needed for ill-structured
problems (Hay, Cash, & McKilligan, 2020; Simon, 1977).
This is important because, unlike well-structured problems
with clearly defined solutions and modes of operations, such
as simple arithmetic, ill-structured problems do not have the
luxury of being clearly defined and knowable at the outset,
leading to open-ended outcomes. An ill-structured problem
domain is one where (a) the problem definition and (b) the
mode of operation for working within that space are not
known (Simon, 1977). This definition can be applied to a
group of reasoners who are not knowledgeable about the
problem definition or mode of operation and, as such, require
abstraction.

Such circumstances give rise to a search process (Hay et
al., 2017; Simon, 1977), where the reasoner accumulates
information about the open-ended solution using an abstract
knowledge structure containing both declarative knowledge
about the problem and procedural knowledge (Ball,
Ormerod, & Morley, 2004). The reasoner applies a schema,
not to elicit a problem solution per se, but a possible
combination of information to allow the solution to be known
(Simon, 1977). Simon states that when developing a schema
for ill-structured problems, the reasoner must create a plan
that moves them beyond the original problem space into an
abstract space to accumulate the best representation of
information. This is corroborated by Gentner & Hoyos
(2017), who define abstraction as “decreasing the specificity

(and thereby increasing the scope) of a concept.” Abstraction
develops a many-to-one mapping from the original problem
space to the abstract space to relate and categorize the key
characteristics of the problem.

The effort to perform this search involves a comprehensive
application of reasoning through multiple inference steps.
Mitchell (2023) describes the composing multiple steps of
inference as abstraction acting as an umbrella term that is not
limited to any one form of inference, i.e., inductive,
deductive, abductive, analogical, and case-based. Studies of
abstract reasoning have been performed on several types of
agents, namely children and primates (Gentner & Hoyos,
2017; Starkey, Spelke, & Gelman, 1990; Sampson et al.,
2018), and in contexts, namely language (Bransford &
Franks, 1971; Tomasello, 2001), mathematics (Koedinger &
Anderson, 1990), and physics (Shin & Gerstenberg, 2023).
Human infants, for example, who are unaware of rigorous
mathematics, demonstrate the ability to detect numerical
information (Starkey et al., 1990). Through several
experiments, the researchers found that infants expressed an
ability to abstract and form equivalence and non-equivalence
relations between numbers. Another group demonstrated that
rhesus monkeys in reverse-reward problems could
comprehend non-perceptual features, infer them from one
specific case, and use them to override the natural preference
to select the superior option (Sampson et al., 2018).

These findings exemplify that abstraction is called upon
when a reasoner is (a) confronted with an unknown domain
and (b) how to operate in that domain. Yet, the reasoner must
execute some process to satisfy the problem. Gentner &
Hoyos (2017) suggest that we focus on the process the
reasoner applies to further understand how a reasoner
acquires and performs such abstractions. This design case is
of particular interest because the entirety of the discipline is
made to tackle ill-defined problems with unknown modes of
operation (Buchanan, 1992). We can think of the design of
experiments, systems, applications, and products as
outcomes that result from a process to accumulate
information, such as dimensions, structural limitations, and
form and functional preference, to resolve the problem. The
expert designer is of particular interest for two purposes: as a
reasoner, unlike the infant or rhesus monkey who forms an
abstraction where communication is limited, the expert
designer can verbally and visually communicate their
abstract reasoning (Koedinger & Anderson, 1990); and

1863
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

context; the development of the inference procedure is
performed in a complex setting where the end state is
unknown and therefore provides insight into the reasoning
necessary to perform meaningful abstraction.

Our Work
One such ill-structured problem that calls for abstraction by
designers is latent user need finding (Carlgren, 2013). When
looking at online user reviews, designers must elicit
information that will be meaningful for the design or redesign
of a product. Online user reviews provide such information
about the use and contentment of the user using that product,
implying that if that area of nuisance is corrected, the product
will improve. Such information is relayed explicitly by the
user as evidence of love or hate for a feature of a product.
Other information can be implicit, where the user has
purposefully omitted information, deeming it irrelevant to the
review, or they had been vague (Carlgren, 2013). This would
suggest the existence of latent user needs. Latent user needs
are demands, problems, or goals a user may have for a
product or service but are, until then, unforeseen by the user.
The user does not know that those “asks” exist of the product
and are left inactive and unexpressed as a desire by the user.
Therefore, a latent user need is a need that has the potential
to arise for a user but is, until then, unforeseen by the user.
Ill-structuredness becomes apparent because one can look at
the language syntax and propose the need for that user group,
but how do we know it is a latent need and not an explicit
one?

In this paper, we study designers' abstract reasoning for ill-
structured problems. We conduct a protocol study with expert
designers to empirically test and elicit the representations
developed when latent user need finding. We found that the
results of the visual and verbal protocols are predicted by a
proposed logic model by (Bruggeman, Ciliotta Chehade, &
Ciuccarelli, 2023), which symbolizes the relational
abstractions used by designers in ill-structured problems. We
discuss these results as a foundation for a cognitive
computational model to further study designer abstraction.

Abstract Reasoning in Design
Designers apply abstraction when the problem exhibits
multiple, interacting, complex behaviours, complex
boundaries and interactions between components, and many-
to-many relationships between behaviours and forms
(Hoover, Rinderle, & Finger, 1991). When confronting such
a problem, the designer will develop a model to predict the
potential solution's behaviour and help make refinements
while inferring the solution. During abstraction, designers do
not maintain the description of the solution at a uniform level
of detail throughout the process due to complexity but instead
focus on certain parts of the problem in detail and ignore
other parts irregularly, making refinements when new
information arises or an impasse towards the solution
emerges.

Gero (2000) proposes that the goal of the process is to
transform some function into a description so that the solution

being described can produce those functions. He uses the
example of windows, where some functions include the
provision of daylight, control of ventilation, and access to a
view. When the complexity of the problem increases, the
elicitation of functions and their translation into descriptions
becomes increasingly difficult, requiring the designer to
develop and search the space of the problem more
comprehensively.

Designer’s abstract models of the problem space have
additionally been discussed as mental models (Johnson-
Laird, 2010; Hay et al., 2017). The designer's reasoning
depends on some tacit form of mental logic to constructively
develop and search within the space. Goel (1995) describes a
designer’s abstraction via vertical and horizonal
transformations. Horizonal transformations develops the
problem from one stage to a slightly different stage,
“widening the space,” whilst vertical transformations
transition the problem to a more detailed version of itself,
“deepening the space.” These two transformations are
contrasted within an abstraction hierarchy, where the
horizontal transformation is the development of the type of
information being considered and the vertical deals with the
information’s generality or detail. Similar schemas have been
used to describe abstraction in mathematics, wherein
horizontal abstraction deploys diagrams and symbols to
represent the essential underlying relationships and identify
irrelevant aspects of the problem to ignore, whilst vertical
abstraction is a process that leads to the formation of one or
more new mental objects at a higher level of generality in the
form of hierarchy (Mitchelmore and White, 2012).

A Logic-Based Schema of Design Abstraction
A logic-based schema enables a representation of abstract
reasoning without limiting the possible type of inference
being made within (Hummel & Doumas, 2023). In the case
of design, the abductive-deductive formulation has been the
predominant model to detail designers' abstract reasoning
(Koskela, Paavola, & Kroll, 2018; March, 1972). Based on
the work of C.S. Pierce (1933), the creation of a solution does
not rely just on a deduction from previous facts but requires
a novel form of reasoning to arrive at a desirable outcome.
Abduction models are an explanatory hypothesis that the
reasoner can further rework their abstraction. Empirically,
Cramer-Peterson, Christensen, & Ahmed-Kristensen (2019)
found through 218 idea design activities that abductive-
deductive problem development dominates designer ideation
through a cycle of analysis-synthesis. Abduction proposes
frames or perspectives for addressing the problem, while
deduction, in turn, explores how such a frame can address the
problem.

Empirical developments suggest using an abductive-
deductive process is predominant in design to perform a
vertical and horizontal transformation to develop and search
the problem space (Kroll, Le Masson, & Weil, 2023). To
situate these findings, Bruggeman et al. developed an
abductive-deductive logic-based schema to model how an ill-
structured problem space is searched and developed when

1864

navigated by the designer. In the schema, the characteristics
of the ill-structured domain are captured as follows: the
problem space is defined using symbolic variables, whilst the
reasoner knowledge is represented by k, which indicates
epistemic operations performed by the designer.

Table 1: Inference rules used to develop ill-structured
search space.

Inference Rule Formalism
Induction: Th È F ⊦s A
Deduction: A È F ⊦s Th
Abduction: A È Th ⊦s F

Three variables and inference rules describe the designer’s
development of the problem space (Table 1). Known axioms
A are ontological truths or rules; facts F are established by the
reasoner; Th is a set of theorems/hypotheses that can be put
forth. In deduction, we may have A: Newton’s laws of
gravity; F: observation of planetary motion; Th: the theory of
universal gravitation. This would be done using an inference
rule ⊦s such as modes ponens.

Bruggeman et al. demonstrated that deduction was not
strong enough to develop the problem space when that space
is ill-structured. Via deduction alone, there are no logical
guarantees that the Th it provides offers a complete
representation of all information. Instead, it might be a
snapshot or component of the possible solution to the
problem. To expand the deductive approach, they conjoin Th
with an epistemic operator Th(k), and when unified with A
via abduction, model a new fact F(k),

(Eq. 1) A ∪ Th(k) ⊨ F(k)

 Furthermore, if there is a set Th(x), there is a delineation

that can be made between the reasoner's knowledge k(x) and
F(x). The two can be unified to infer the theory in terms of
their knowledge about x: Th(k(x)). As such, by abduction
Th(k(x)) can be unified with A, to abduce a F integrated with
knowledge about that fact: F(k(x)). This allows the reasoner
to develop a detailed account about the F(x)’s of the problem
based upon one’s knowledge about x and A.

The schema is made more robust depending on the
reasoners k. When they have met the limits of x, in what it
captures of the problem space, they can combine F(k(x)) with
a new set of Th(y) through k. This enables the modelling of a
multivariable representation F(k(x, y)), enabling horizontal
information development (Eq. 2 and 3).

(Eq. 2) (k(y) ∪ F(y)) ∪ F(k(x)) ⊦ Th(k(x, y))
(Eq. 3) A ∪ Th(k(x, y)) ⊨ F(k(x, y))

Bruggeman et al. provide an argument for the soundness

and completeness of this schema, but empirically, it is not
validated. Logically, soundness holds when k is modelled
with A on the condition of being conjoined with the deduced
Th; completeness holds when k is what unifies the multiple

dimensions of the problem. This suggests that to validate the
proposed schema of abstraction for ill-structured problems
empirically, we need to address the use of k when conducting
the search and development of the problem. In other words,
the model defines how space develops, but this depends on
how the k searches within the space.

Designer Protocol Study
We performed a protocol study with expert designers to
empirically validate k in the designer's abstract reasoning. A
protocol enables researchers to elicit verbal and visual
reasoning from participants conducting tasks (Ericsson and
Simon, 1993). This is ideal for understanding the designer's
reasoning in an unrestrictive manner with little interference
on the researcher's part.

The logic-based schema of Bruggeman et al. was derived
in the context of latent user need-finding, and as the
researcher’s state, designers are best equipped to identify
latent user needs. The protocol study we have conducted is
interested in the use of k as it is suggested to perform by the
schema, not in validating the outcome itself ¾ this is because
ill-structured problems can have many representations, as is
the case with latent user needs, and cannot be known to be
“best” until further user research is conducted. The validity
of the outcome is self-contained by the model's logic, and
validating the use of k will, in part, validate the outcomes it
produces. As such, the protocol aims to identify k as it (1)
vertically details the variables in the problem and (2)
horizontally combines information to create a more detailed
representation of the solution.

Experiment
The protocol was conducted with 10 expert designers with 5+
years of user experience research as part of their design
practice. Nielson & Landaur (1993) found that the optimal
sample size for qualitative testing was 5 participants. As such,
we divided the participants such that 5 performed the exercise
on Protocol 1: a set of 10 reviews/annotations for a distinct
shoe, while a control group of 5 performed the same exercise
on Protocol 2: another 10 reviews/annotations for a distinct
shoe. None had any prior experience with latent user need
elicitation. Each protocol happened individually over a 2-
hour period, where the participant's screen and video were
recorded and transcribed through Microsoft Teams. The
protocol took place on Miro, an online whiteboard software
that allows for live visualization and alteration of
information. The objective of the think-aloud was for
designers to elicit the latent user needs from online user
reviews for the redesign of a shoe. We pulled reviews from
2500 online products and found that the average number of
reviews on a product was 10. The average length of a review
ranged from 3-5 sentences. We created two separate Miro
boards, each for a different shoe, where the participants were
presented with 10 user reviews ranging from 3-5 sentences.

With each review, the designer received an annotated
version of each review. Han et al. (2023) developed an
annotation model for sentiment analysis that can

1865

automatically partition user reviews at a sentence level into
terms representing the category (CAT), aspect (ASP),
opinion (OP), and sentiment (SEN) of the review. The ASP
is the objective target of the sentence, usually a noun or verb,
ex. shoelace, run, house. OP is the user’s subjective statement
in the sentence, such as ‘I like…’ or ‘They felt…’. SEN tags
the positive, negative, or neutral sentiment of the OP term.
CAT is the ontological category the ASP belongs to; ex.
leather is part of the Appearance#Material category. A
sentence would be annotated as follows: “The leather is a
nice look.”; {ASP: “leather”; CAT: Appearance#Material;
OP: “looks good”; SEN: Positive}.

The purpose of the annotated reviews was to provide
workable parts of the review to streamline reasoning, though
they were not restricted from working directly from the
review itself. The ASP and OP represent F as the user
establishes contingent observations. SEN and CAT represent
A, as these necessarily hold ontologically. We observe their
use to construct Th by the designer’s use of k.

Results
We used thematic analysis to develop the mapping between
the designer’s protocols and the logical schema (Saldaña,
2009). Each protocol produced a transcript of the designer’s
verbal thinking and screen recording videos of visual
reasoning ¾ some designers leaned towards one or the other
form of thinking aloud or utilized both evenly. The coding
names and definitions to identify Th development and k in the
data are drawn from previous literature in design cognition,
specifically, the actions found to be most common in design
reasoning (Hay et al., 2017).

Each researcher went through an initial coding phase where
they coded only explicit verbal or visual actions taken by the
designers. This required identifying verbal or visual actions
that supported the designer's reasoning about the problem.
For example, a designer stated, “I'm ignoring a lot of the
positive like what I deem is just kind of almost like flowery
statements because to me, and this is the first goal or problem
I have is there's some performance and usage issues and
those might need to be what I focus on and later I'll
acknowledge that like look or design was fine.” This
epistemic action was encoded as a rule application, where the
designer would form a rule to delineate between symbols to
build their representation. When such actions were observed,
the time would be marked, and we would encode how the
designer used ASP, OP, CAT, and SEN. For the above,
instantiation followed rule application, where the designer
saves symbols as part of the problem representation, i.e., SEN
∪ OP ⊦ SEN(OP):

Negative ∪	 “very loud as your walking as they bend” ⊦
Negative(“very loud as your walking as they bend”).

To conclude the analysis, the researchers triangulated their

codes to categorize themes and subthemes. We found through
frequency analysis (Table 2) that the designer’s abstraction
occurs in three phases: Detail, Develop, and Evaluate. Below

Table 2: The percentage with which the 10 designers
employed the same action. The names and definitions of the

actions are adapted from Hay et al. (2017)

Action Frequency
(-/10)

Phase 1: Detail
Enquire – instantiate symbols to address a
need for information.

1.0

Generalize – associate a symbol to a
supra-symbol.

0.2

Goal Definition – define goals/subgoals. 0.1
Inference – hypothesize new symbol
relationship.

0.8

Integrate – further specify current solution
state.

0.8

Instantiate – save new symbol as part of
problem representation.

1.0

Represent – create external representation. 1.0
Rule Application – develop/use established
reasoning rule (arithmetic, logical,
assertion).

0.7

Phase 2: Develop
Generate – create connection between
information.

1.0

Modify – alter connections between
information.

0.9

Speculation – produce partial solution or
specification.

1.0

Case Based – compare information to
previous experience.

0.7

Analogy – use information about known
semantic concepts to understand newly
presented concepts in the information.

0.5

Inference – logical judgement based on
pre-existing information.

0.7

Affinity – mapped visual affinities between
created information to determine
relationships.

0.5

Contradiction – judge validity of
information based on compatibility with
other information.

0.2

Phase 3: Evaluate
Compare – determine compatibility of
proposal to constraints.

1.0

Calculate – infer new information by
combining existing information.

1.0

Patch – add/combine information without
making less abstract.

1.0

Evaluate – assess information. 0.7
Simulate – Represent information at proper
level of abstraction in order to relate it.

1.0

Accept – Add new information to solution
state.

1.0

Reject – Determine information
unsatisfactory.

0.8

Refine – Make information more specific. 0.9

1866

we discuss the three phases as they were found in the
protocols by outlining the patterns of operators used and their
mapping to the logic schema.

Detail The first phase of the designer’s abstraction saw a
vertical detailing of the user information. Each designer
would begin by processing the reviews to build a
representation of the problem. This required reading and
visualizing the information they deemed most relevant to the
problem: enquire. Each designer then built a representation
of the enquired information by classifying clusters k[ai, bi,
ci,…]. Each cluster k represented information about the user,
such as sizing/fit issues with the shoe. To further develop the
representations, designers would follow a recursive
application of instantiate–inference–integrate. Logically, the
pattern followed the map:

(Eq. 4) k(ai) ∪ SEN ⊦ SEN(ai)
(Eq. 5) k(ai) ∪ OP(ai) ⊦ SEN(OP(𝑘(ai)))
(Eq. 6) SEN(ai) ∪ SEN(OP(𝑘(ai))) ⊨ OP(𝑘(ai)).

Of course, this is only one such example. The designers
would utilize this schema to detail their k[ai, bi, ci,…] using
ASP, CAT, OP, and SEN from each respective review. The
goal for each designer was to relate parts found in the review
sentences, i.e., ASP and OP, to their knowledge k. As seen in
the above example, the logic was applied to relate the ASP
and OP to k through their axiomatic representations, i.e., CAT
and SEN.

Johnson-Laird’s (1983) procedure of syllogistic reasoning
describes the tableau the reasoner first details as organizing
elements that stand for members of sets. The designer would
represent members of sets through their relation to k. This is
substantiated by how the designer built their model of the
annotation variables, keeping track of the relations of the
terms in each review set to a specific cluster of k. This stage
is analogous to vertical abstraction, forming a hierarchical
generality in the information.

Develop In the second phase, the designers sought to connect
their detailed representations of k[ai, bi, ci,…] and their
respective annotations. The designers would begin by
generating a connection between a detailed representation of
k(ai) and k(bi), for example, the OP(k(ai)) and ASP(k(ai)) to
OP(k(bi)) and ASP(k(bi)). To validate the generated
connection, the designers would apply some reasoning rules
(case based, analogy, inference, affinity, contradiction) to
modify the information. Generation:

(Eq. 7) OP(k(ai)) ∪ ASP(k(bi)) ⊦ OP-ASP(k(ai, bi))

The temporary structure between ai and bj is then tested via
one of the rules, creating a specification. The newly specified
theory would then modify the model (Eq. 8).

(Eq. 8) CAT(ai, bj) ∪	OP-ASP(k(ai, bj))
⊨		CAT(OP-ASP(k(ai, bj)))

This is repeated until a model is developed that has
integrated a representation with all variables and dimensions.
During this phase, if knowledge of certain variables were
seen to contradict one another or were false under the rules,
they would be rejected or partitioned. The Develop phase
adds second premises to the first premises, considering the
different ways this can be done (Johnson-Laird, 1983). The
horizontal transformation is embodied in this stage of the
designer's abstraction, which establishes underlying
relationships that connect different information found portent
to the problem. This is notable in the rules the designer uses
to modify facts and combine premises [a, b, c…] to
restructure their model.

Evaluate Develop saw the designer generate a robust,
multidimensional representation of the variables in a unified
model. The designer would then distinguish between parts of
the model for each latent and explicit user need. The designer
would compare parts of the model, calculate the differences
between different representations, and create a patch, adding
or combining the information they found in the calculation to
the latent need. The designer would conclude by simulating
the model at a proper level of abstraction to relate it to the
problem, evaluate the outcome by voicing their thoughts
about it, and then decide to accept, refine, or reject the
resulting simulation. If the designer is determined to refine,
they will repeat the compare-calculate-patch chain.

The Evaluation phase frames a conclusion to express the
relation, if any, between the end terms that hold in all the
models of the premises (Johnson-Laird, 1983). This is
elucidated by the participants' use of the compare-calculate-
patch chaining, which is used to develop the latent user
needs. Framing the conclusion first involved simulating and
then accepting, rejecting, or refining the simulation through
an additional compare-calculate-patch chain until the
premises held.

A Computational Model of
Design Abstraction

The logical reasoning schema is abstract and procedural,
“where knowledge elements do not correspond to any
particular situation or set of objects, but to large categories of
situations, and they prescribe an action” (Koedinger &
Anderson, 1990). In the ill-structured problem domain, using
k and the inference patterns exhibited by the designer is
pertinent to operating in an unknown domain. k was used to
substantiate the conceptual clusters of the user review data,
whilst inferential procedures (induction, deduction, and
abduction) enabled the development of those clusters in
relation to one another. Pierce (1933) characterizes this as
‘hypostatic abstraction’: the taking of a precept that has
propositional form in a judgment, “and in conceiving this fact
to consist in the relation between the subject of that judgment
and another subject.” He uses the example of transforming
the proposition “honey is sweet,” X is Y, to “honey has
sweetness,” X has the property of being Y. This is the act of
turning predicates that are signs we think through,

1867

Figure 1: The three phases of abstraction for a participant designer illustrate the proposed regression model below. Phase

1: Detail, the designer emphasized user OPs. They listed the user opinions under three main k clusters. An example density
map of the clustered opinions respective to each list is below. Phase 2: Develop, provides a snippet of the designer applying
affinity mapping to establish connections between the three clusters. Below is the proximity that can be calculated to each
cluster’s centroid using cosine similarity or Euclidian distance, for example. Phase 3: Evaluate, exemplifies the designer's

refined latent user need. Below illustrates the weighted sum that can be taken of the density + proximity evaluation to map a
score to the outputted statement.

to being subjects thought of. The process thus repeats,
allowing us to form propositions of second and third degree,
etc. By nature, recursive, this results in what Pierce calls a
‘continuous predicate.’ Given the nature of the ill-structured
problem, we do not know the outcome. So, the final output
during abstraction is continuous, wherein other relations can
be further made if facts or axioms become known. Although
designers followed the logic-based schema, they rarely
arrived at the same latent need (Protocol 1: 3/5 were the same;
Protocol 2: 2/5 were the same), let alone the same level of
detail.

We propose developing a computational model to further
evaluate abstraction in ill-structured problems (Figure 1). We
can conclude from our study that there is a relationship
between a model M that contains k, which the designer
established, and some targeted phenomenon P. Furthermore,
the logic schema demonstrates there is a relation L that
accurately models the relation between M and P, as in the
logic-based schema, such that,

 (†) L(M, P) « W

In a discrete setting W, if M exhibits an ability to predict P,
then there is a biconditional such that L is the relation map
constituting M’s prediction of P (Bringsjord, Giancola, &
Govindarajulu, 2023). Furthermore, if W is a setting where
we can check that M successfully predicted P, then successful
prediction must be correlated with L.

We seek to map the relationship between M, which the
model developed during the Detail, Develop and Evaluate

phase, to P, which is the proposed solution state, a latent need
statement in our circumstance. L represents the
characteristics that accurately model P. We can split M into
Detail: a; and Develop: b. In Detail, designers established
clusters of OP and ASP related to k. We can use M(a) to
evaluate the density of each k[ai, bi, ci,…] to determine the
detail (i.e., the presence of OP and ASP in each cluster).
During Develop, designers established connections between
each cluster; as such, we propose using a proximity metric for
M(b) to evaluate the similarity between each cluster.
Furthermore, each designer weighted phases differently in
terms of importance, as such weights w1 and w2 can be
attributed to M(a,b), respectively. Finally, for Evaluate, we
can take a weighted sum of our clusters to establish L(M, P):

 (‡) P = w1M(a) + w2M(b)

Conclusion
This study focuses on expert designers who can communicate
their abstract reasoning verbally and visually. We conducted
a protocol study with expert designers to test and elicit
representations developed from reasoning about an ill-
structured problem. The results align with the proposed logic-
based schema, symbolizing relational abstractions used by
designers. However, we found that the logic-based schema
only accounted for the development and search of the ill-
structured problem space. It remained unclear why the
abstraction process was terminated during the Evaluation
phase. To conclude, we propose a computational model to
evaluate designer abstraction in a future study.

1868

Acknowledgments
This material is based upon work supported by the National
Science Foundation under the Engineering Design and
System Engineering (EDSE) Grant No. 2050052. Any
opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation. Thank you to Mohsen Moghaddam and Lu
Wang.

References
Ball, L. J., Ormerod, T. C. & Morley, N. J. (2004)

Spontaneous analogising in engineering design: a
comparative analysis of experts and novices. Design
Studies, 25(5), 495–508. doi:10.1016/j.destud.2004.05.-
004.

Bransford, J. D., & Franks, J. J. (1971). The abstraction of
linguistic ideas. Cognitive Psychology, 2(4), 331–350.
https://doi.org/10.1016/0010-0285(71)90019-3.

Bringsjord, S., Giancola, M., & Govindarajulu, N. S. (2023).
Logic-Based Modeling of Cognition. In R. Sun (Ed.), The
Cambridge Handbook of Computational Cognitive
Sciences, 173–209. chapter, Cambridge: Cambridge
University Press.

Bruggeman, R., Ciliotta Chehade, E., & Ciuccarelli, P.
(2023). Expanding User Need Finding Through Abductive
Reasoning. Proceedings of the Design Society, 3, 1745–
1754. doi:10.1017/pds.2023.175.

Buchanan, R. (1992). Wicked Problems in Design Thinking.
Design Issues, 8(2), 5-21. http://www.jstor.org/stable/-
1511637.

Carlgren, L. (2013). Identifying latent needs: Towards a
competence perspective on attractive quality creation,
Total Quality Management & Business Excellence, 24(11-
12), 1347–1363. https://doi.org/10.1080/14783363.2013.-
776762.

Cramer-Petersen, C. L., Christensen, B. T., & Ahmed-
Kristensen, S. (2019). Empirically analysing design
reasoning patterns: Abductive-deductive reasoning
patterns dominate design idea generation. Design Studies,
60, 39–70. https://doi.org/10.1016/j.destud.2018.10.001.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis.
MIT Press. https://doi.org/10.7551/mitpress/5657.001.-
0001.

Gentner, D., & Hoyos, C. (2017). Analogy and abstraction.
Topics in Cognitive Science, 9(3), 672–693. https://-
doi.org/10.1111/tops.12278.

Gero, J. S. (2000). Computational models of innovative and
Creative Design Processes. Technological Forecasting and
Social Change, 64(2–3), 183–196. https://doi.org/-
10.1016/s0040-1625(99)00105-5.

Goel, V. (1995). Sketches of thought. MIT Press.
Han, Y., Bruggeman, R., Peper, J., Ciliotta Chehade, E.,

Marion, T., Ciuccarelli, P., & Moghaddam, M. (2023).
Extracting Latent Needs From Online Reviews Through
Deep Learning Based Language Model. Proceedings of the
Design Society, 3, 1855–1864. doi:10.1017/pds.2023.186.

Hay, L., Duffy, A. H. B., McTeague, C., Pidgeon, L. M.,
Vuletic, T., & Grealy, M. (2017). A systematic review of
protocol studies on conceptual design cognition: Design as
search and exploration. Design Science, 3(10).
doi:10.1017/dsj.2017.11.

Hay, L., Cash, P., & McKilligan, S. (2020). The future of
design cognition analysis. Design Science, 6(20).
doi:10.1017/dsj.2020.20.

Hoover, S. P., Rinderle, J. R., & Finger, S. (1991). Models
and abstractions in Design. Design Studies, 12(4), 237–
245. https://doi.org/10.1016/0142-694x(91)90039-y.

Hummel, J. E., & Doumas, L. A. A. (2023). Analogy and
Similarity. In R. Sun (Ed.), The Cambridge Handbook of
Computational Cognitive Sciences, 451–473. chapter,
Cambridge: Cambridge University Press.

Johnson-Laird, P. M. (1983). Mental Models. Harvard
University Press.

Johnson-Laird, P. N. (2010). Mental models and human
reasoning. Proceedings of the National Academy of
Sciences, 107(43), 18243–18250. https://doi.org/10.1073/-
pnas.1012933107.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract
planning and perceptual chunks: Elements of expertise in
geometry. Cognitive Science, 14(4), 511–550.
https://doi.org/10.1207/s15516709cog1404_2.

Koskela, L., Paavola, S., & Kroll, E. (2018). “The role of
abduction in production of new ideas in Design”, In:
Vermaas, P.E. & Vial, S. (Eds.), Advancements in the
Philosophy of Design, Springer, Cham, Chapter 8.
https://doi.org/10.1007/978-3-319-73302-9_8.

Kroll, E., Le Masson, P., Weil, B. (2023). Abduction and
Design Theory: Disentangling the Two Notions to
Unbound Generativity in Science. In: Magnani, L. (eds)
Handbook of Abductive Cognition. Springer, Cham.
https://doi.org/10.1007/978-3-031-10135-9_47.

March, L. (1976). “The logic of design and the question of
value”, In: L. March (Ed.), The architecture of form,
Cambridge: Cambridge University Press, pp. 1–40.

Mitchell, M. (2023, September 10). Can large language
models reason?. https://aiguide.substack.com/p/can-large-
language-models-reason.

Mitchelmore, M.C., White, P. (2012). Abstraction in
Mathematics Learning. In: Seel, N.M. (eds) Encyclopedia
of the Sciences of Learning. Springer, Boston, MA.
https://doi-org.ezproxy.neu.edu/10.1007/978-1-4419-
1428-6_516.

Nielsen, J. & Landauer, T. K. (1993). A mathematical model
of the finding of usability problems. Proceedings of ACM
INTERCHI'93 Conference, Amsterdam, The Netherlands,
24-29 April 1993, 206-213.

Peirce, C. S. (1933). Collected Papers of Charles Sanders
Peirce, 2nd ed., edited by C. Hartshorne, P. Weiss, and A.
Burks, 1931–1958, Cambridge MA: Harvard University
Press.

Saldaña, J. (2009). The coding manual for qualitative
researchers. Sage Publications Ltd.

1869

Sampson, W. W. L., Khan, S. A., Nisenbaum, E. J., & Kralik,
J. D. (2018). Abstraction promotes creative problem-
solving in Rhesus Monkeys. Cognition, 176, 53–64.
https://doi.org/10.1016/j.cognition.2018.02.021.

Shin, S., & Gerstenberg, T. (2023). Learning What Matters:
Causal Abstraction in Human Inference. Proceedings of
the 45th Annual Conference of the Cognitive Science
Society. https://doi.org/10.31234/osf.io/br2vz.

Simon, H.A. (1977). The Theory of Problem Solving. In:
Models of Discovery. Boston Studies in the Philosophy of
Science, vol 54. Springer, Dordrecht. https://doi.org/-
10.1007/978-94-010-9521-1_13.

Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical
abstraction by human infants. Cognition, 36(2), 97–127.
https://doi.org/10.1016/0010-0277(90)90001-z.

Tomasello, M. (2001). First steps toward a usage-based
theory of language acquisition. Cognitive Linguistics,
11(1-2), 61-82. https://doi.org/10.1515/cogl.2001.012.

1870

