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ABSTRACT OF THE DISSERTATION

Genomics of High Voluntary Running Behavior in Mice
by

David Anthony Hillis

Doctor of Philosophy, Graduate Program in Genetics, Genomics, and Bioinformatics
University of California, Riverside, December 2022
Dr. Theodore Garland Jr., Chairperson

Physical activity is an essential component of the life history for most animals,
and it also promotes both physical and mental health. Activity is a complex trait, affected
by both genetics and numerous environmental factors, and the result of both motivation
and physical ability. To elucidate the evolution of physical activity, the High Runner
selection experiment was begun with 4 lines of mice bred for high voluntary wheel
running (HR lines) and 4 non-selected control (C) lines. Although the HR lines evolved
to run ~3 times as much as C lines daily, and numerous physiological and morphological
differences have been documented, little is known about the genetic factors that
differentiate HR and C lines.

The first chapter utilizes whole-genome sequence data from 79 individuals from
the 8 lines at generation 61 to identify signatures of selection. Three analytical methods

agreed in identifying 13 genomic regions. These regions included genes associated with

Vi



reward pathways and neural development, limb development, and other intuitive
functions for wheel running.

The second chapter uses the same genomic data and performs similar analyses,
except dropping one line at a time. This identifies several new selection signatures and
highlights how the replicate HR lines have responded to selection via "multiple
solutions." The greatest change comes from dropping line HR3, which became fixed for
a gene of major effect (i.e., the mini-muscle allele) that substantially alters the genetic
background.

The third chapter analyzes generation 22 allele frequencies obtained from
sequencing pooled samples of approximately 10 males and 10 females from each line.
Analyses identified not only many more selection signatures than at generation 61, but
also very different genomic regions, with many of the strongest signatures in one
generation being only weakly supported in the other. Simulations demonstrated that a
hypothetical physiological constraint on wheel running reduces the power to detect
selection and increases the likelihood of detectable signatures changing as selection limits
are reached and passed.

Each chapter identifies candidate genes for wheel-running behavior, related to
both motivation and ability. Overall, these results enhance our understanding of the

genetics and evolution of complex traits.
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INTRODUCTION

Complex traits

One of the major fields of research in genetics is the study of inheritance of complex
traits. Complex traits are composed of various lower-level traits that may not always
contribute to the higher-level trait in an intuitive manner (Garland, Jr. ef al. 2016). For
example, a person’s sense of taste might influence their growth rate and body weight by
altering dietary choices. Moreover, lower-level traits, such as circulating concentrations
of hormones, may serve functions for multiple complex traits, which can lead to both
phenotypic and genetic correlations among traits. For example, circulating levels of
glucocorticoids may affect both motivation to perform certain behaviors and the ability of
muscles to carry out behavior (Garland, Jr. ef al. 2016). Additionally, complex traits are
controlled by numerous genetic and environmental factors that may interact in various
ways.

One example of a complex trait is human height. Underlying traits associated
with height will include the size of skeletal components (e.g., limb bones), as well as the
aspects of metabolism and the endocrine system that control growth rate. Environmental
contributing factors would include available diet or opportunities for physical exercise.
These factors can interact in various ways. For example, an individual’s diet choices will
dictate how much total energy they have available, and then that energy will be
partitioned among various components, including physical activity (Garland, Jr. et al.

2011a). Additionally, underlying these lower-level traits are thousands of genetic



components (Wood et al. 2014) that may influence, for example, bone development,
preferred diet and foods, or even the propensity to engage in physical activity, including

voluntary exercise.

Exercise behavior as a complex trait
Physical activity is a complex behavioral trait, controlled by various environmental
factors and biological factors (Lightfoot ef al. 2018). The environment can affect the
motivation for physical activity through such factors as the availability of food, the need
to avoid predators, etc. These can be further complicated by availability of resources,
social interactions with members of its own species or other species, and much more.
Numerous biological components contribute to physical activity behavior,
including various systems that affect motivated behaviors, such as dopamine and
serotonin signaling (Freed and Yamamoto 1985; Simonen et al. 2003; Mathes ef al. 2010;
Leinninger et al. 2011; Claghorn et al. 2016; Cordeiro et al. 2017). Aside from
motivation, the expression of any behavior, including physical activity, depends on
ability, which is determined by bone morphology, skeletal muscle physiology, aerobic

capacity (VOamax), metabolism, and more (Lightfoot ef al. 2018).

Evolutionary and medical relevance of physical activity
Physical activity is of particular interest due to its relevance for both the
behavioral ecology and evolutionary history of many species and human health and

wellbeing. Physical activity has notable implications for evolution in that new methods



of locomotion (e.g., flight) can avail new ways to forage, new landscapes to be traversed,
novel resources to be acquired, and more. Aside from the evolution of new modes of
locomotion, almost all animals, at some point during their lifecycle, need to move to
survive. The need for physical activity is expected to lead to strong selection on
locomotor behavior, ability, and all of the lower-level (subordinate) traits that are
involved. Indeed, Dickinson et al. (2000) claimed that "Locomotion, movement through
the environment, is the behavior that most dictates the morphology and physiology of
animals." Even within a given mode of locomotion, improved physical activity can
evolve by various mechanisms, thus allowing for the emergence of “multiple solutions”
to the same evolutionary need (Garland, Jr. et al. 2011b). For example, a predator could
evolve faster running to outrun its prey in a high-speed pursuit or more energy efficient
running to be able to catch the prey after a long-distance pursuit.

The medical implications of physical activity in humans are expansive. Physical
activity or exercise (physical activity for the purpose of recreation or health benefits)
promotes skeletal development, reduces the risk of heart disease and some cancers,
facilitates weight control, and positively affects mental health (Manley 1996; Booth et al.
2008, 2012; Lee et al. 2012). Despite the fact that many people know the numerous
benefits of exercise, few people get sufficient levels of exercise. Guthold et al. (2018)
conducted analyses of 358 surveys across 168 countries and found that many countries
had a large proportion of people who did not achieve sufficient levels of exercise. The

lack of sufficient exercise is predicted to have cost the United States more than 100



billion dollars annually between the years of 2006 and 2011 (Carlson et al. 2015), thus

adding economic incentives to the health benefits.

The High Runner (HR) mouse artificial selection experiment

To better understand physical activity and exercise behavior the High Runner
mouse selection experiment was began in 1993 (Swallow ef al. 1998a). This experiment
started with 224 outbred Hsd:ICR mice. These mice were randomly bred for 2
generations, after which individuals were randomly chosen to be part of one of 8 closed
lines, each with 10 breeding pairs. Of the 8 lines, four were randomly chosen to serve as
non-selected controls lines (C1, C2, C4, and C5) and four to serve as selected High
Runner lines (HR3, HR6, HR7, and HR8). With each generation, mice are weaned at 3
weeks of age and given wheel access (which they could interact with voluntarily) at ~6-8
weeks of age for 6 days with ad /ib food and water. Wheel running is measured daily in
terms of number of revolutions. For control lines, two males and females from each
family are chosen to breed independent of wheel running levels. In the High Runner
(HR) lines, the male and female from each family with the highest wheel running on days
5 and 6 are chosen as breeders (no sib-mating is allowed within either HR or control
lines). For logistical purposes, mice were measured in 3 (or more) batches, where a
mouse in any batch has a clean cage and bedding, with fresh food and water, but mice
after batch 1 have a wheel that has not been cleaned from the previous mouse or mice
(which could explain some results seen in all three chapters).

Statistically significant differences in wheel-running behavior were observed as

early as generation 6 (T. Garland, Jr. personal communication). Additionally, numerous



physiological and morphological differences between the HR and control lines have been
documented (Rhodes et al. 2005; Swallow et al. 2009; Garland, Jr. et al. 2011a; Wallace
and Garland, Jr. 2016). These include traits associated with motivation to run, such as
changes in dopamine (Rhodes ef al. 2001; Mathes et al. 2010), serotonin (Waters et al.
2013), and endocannabinoid signaling (Thompson et al. 2017), as well as changes in
brain size and structure (Kolb ef al. 2013a). Changes associated with ability to run have
also been demonstrated, including endurance capacity during forced treadmill exercise
(Meek et al. 2009), maximal aerobic capacity (VO2amax) (€.g., Swallow ef al. 1998b; Kolb
et al. 2010; Dlugosz et al. 2013; Cadney et al. 2021), heart size (Kolb et al. 2010, 2013b;
Kelly et al. 2017), skeletal muscle physiology (Dumke et al. 2001; Syme et al. 2005;
Guderley et al. 2008; Castro et al. in press), and bone morphology (Garland, Jr. and
Freeman 2005; Kelly et al. 2006; Middleton et al. 2008, 2010; Wallace et al. 2010, 2012;

Castro and Garland, Jr. 2018; Copes et al. 2018; Schwartz et al. 2018).

Previous genetic work on the High Runner mice

The HR and control lines have been the subject of several genetic analyses, using
various approaches, ranging from quantitative genetics, through line crosses, mapping of
QTL and eQTL, SNP chips to identify divergent chromosomal regions, and whole-
genome sequencing. For example, Careau et al. (2013) applied the "animal model" to the
first 31 generations and estimated the generation at which each HR line reached a
selection limit (plateau) for wheel running (1-27, depending on sex and line). They also

estimated selection differentials and selection showed that although narrow-sense



heritability declined across generations in the HR lines, this decline was not sufficient to
explain the selection limits in all of the HR lines. Among other results, they also
documented strong seasonal variation in running, which suggests the presence of an
endogenous annual clock.

Another study identified the mini-muscle locus on the Myo4 gene (Kelly et al.
2013), which is associated with a rare recessive point mutation that causes a drastic
reduction in Type IIB muscle fibers among other pleiotropic effects in mice homozygous
for the allele (see Chapter 2). Other genetic studies include identification of e€QTLs in the
brain (Kelly et al. 2012) and right triceps surae (Kelly ef al. 2014) using advance
intercrossed lines between one HR line and C57BL/6J. These studies by Kelly et al.
(2012, 2014) identified various candidate genes for expression in the brain (/nsig2, Socs?2,
DBY, Arrdc4, Prcp, IL15) and in skeletal muscle (/nsig2, Prcp, Sparc). Additionally,
these eQTL studies found that much of the gene regulation was via trans-acting
regulators (regulator >10 mbp away from affected gene).

The first study that explored differentiation in allele frequencies between the HR
and control lines was performed by Xu and Garland (2017). This study used
MegaMUGA technology to determine individual mouse genotypes for 25,318 SNPs
(single nucleotide polymorphisms) for each of 80 mice (10 mice for each of the 8 lines)
from generation 61. With the individual mouse data, more powerful statistical tests could
be performed to identify the differentiated loci between the two linetypes, as compared
with pooled sequence data. This study showed that the mixed model analyses with

mivque (minimum variance quadratic unbiased estimation) estimation method was more



powerful than regularized T-tests implemented on pooled sequence data. However, Xu
and Garland (2017) did not go into detail regarding the biological implications of the
genomic regions identified.

In this dissertation, I utilize whole-genome sequencing of individual mice at
generation 61 and pooled sequencing for each line at generation 22. With these data, |
identify numerous chromosomal regions differentiated between the HR and control
linetypes, and consider the biological significance of genes in these regions, which can
serve as targets for future functional studies (Chapter 1). Additionally, I use results of
analyses dropping individual lines to demonstrate divergent responses to selection among
the HR lines (Chapter 2). I also show how the regions detected as differentiated can
change over several generations, even with continued selection beyond a selection limit
(Chapter 3). Overall, this dissertation contributes to our understanding of the genetics

and evolution of a complex behavioral trait that is relevant for human health.
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ABSTRACT

The biological basis of exercise behavior is increasingly relevant for maintaining healthy
lifestyles. Various quantitative genetic studies and selection experiments have
conclusively demonstrated substantial heritability for exercise behavior in both humans
and laboratory rodents. In the “High Runner” selection experiment, 4 replicate lines of
Mus domesticus were bred for high voluntary wheel running (HR), along with 4 non-
selected control (C) lines. After 61 generations, the genomes of 79 mice (9-10 from each
line) were fully sequenced and single nucleotide polymorphisms (SNPs) were identified.
We used nested ANOVA with MIVQUE estimation and other approaches to compare
allele frequencies between the HR and C lines for both SNPs and haplotypes.
Approximately 85 genomic regions, across all somatic chromosomes, showed evidence
of differentiation. Twelve of these regions were differentiated by all methods of analysis.
Gene function was inferred largely using Panther gene ontology terms and KO
phenotypes associated with genes of interest. Some of the differentiated genes are known
to be associated with behavior/motivational systems and/or athletic ability, including
Sorll, Dachl, and Cdhl(. Sorll is a sorting protein associated with cholinergic neuron
morphology, vascular wound healing, and metabolism. Dachl is associated with limb
bud development and neural differentiation. Cdhl0 is a calcium ion binding protein
associated with phrenic neurons. Overall, these results indicate that selective breeding
for high voluntary exercise has resulted in changes in allele frequencies for multiple
genes associated with both motivation and ability for endurance exercise, providing

candidate genes that may explain phenotypic changes observed in previous studies.
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INTRODUCTION

Most traits of interest in biology are complex, modulated by numerous genetic and
environmental factors, and comprised of multiple lower-level (subordinate) traits that
often influence higher-level traits in nonintuitive ways (Garland, Jr. et al. 2016; Sella and
Barton 2019). Examples of complex traits include human height, which is influenced by
more than 9,500 quantitative trait loci (QTL) (Wood et al. 2014), as well as one’s
susceptibility to various psychological diseases (Horwitz et al. 2019).

One complex trait of great interest to medicine is exercise behavior. Exercise has
been linked to numerous health benefits, including muscle and bone strength, weight
control, reduced cardiac disease, and improved mental health(Manley 1996; Lightfoot et al.
2018). Nonetheless, the majority of Americans are not getting sufficient exercise and this
problem is common world-wide (Guthold et al. 2018). Not only does insufficient
exercise contribute to such health issues as obesity and diabetes (Booth et al. 2002;
Cornier et al. 2008; Myers et al. 2017), but it also increases healthcare costs in the United
States, e.g., by more than $100 billion annually between the years of 2006-2011 (Carlson
et al. 2015). Conversely, higher levels of physical activity promote physical fitness and
cardiovascular health, while lowering risk for depression, anxiety-related disorders,
obesity, Type 2 diabetes, and mortality (Blair and Morris 2009; Matta Mello Portugal et
al. 2013; Mok et al. 2019).

A variety of human studies have been conducted to determine the genes or
chromosomal regions that modulate various components of exercise behavior, including

both motivation and/or capability to exercise (Lightfoot et al. 2018). Many of these
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studies use observational methods to compare humans who engage in either frequent
and/or strenuous exercise with those who are less active (Kostrzewa and Kas 2014; Lin et
al. 2017). Historically, the most common approach to measuring human exercise levels
was by use of questionnaires, which can be of dubious reliability, but an increasing
number of studies use accelerometers (Prince et al. 2008; Dyrstad et al. 2014). Detecting
QTL in these studies is generally done with genome-wide association studies (GWAS),
which rely on phenotypic and genetic data from many individuals within a population
and can identify particularly strong correlations between the phenotype and key genetic
markers and loci.

Various QTL identified in humans are associated with motivation, e.g.,
dopaminergic regulation. Dopamine is a well-established modulator of exercise
motivation or reward (Garland, Jr. et al. 2011b). Various genes associated with the
dopamine pathway are associated with exercise behavior in humans (Simonen et al.
2003; Loos et al. 2005; De Moor et al. 2009). The large body of evidence that dopamine
signaling is a major component of exercise motivation dwarfs other motivational systems
that have been associated with exercise, including serotonin and endocannabinoids
(Dietrich 2004; Cordeiro et al. 2017), though serotonin has been implicated in GWAS of
hyperactivity disorders (Aebi ef al. 2016).

Other human studies have detected QTL associated with physical traits related to
exercise abilities, including maximal oxygen consumption (VOazmax) (Williams et al.
2017), bone density (Herbert ef al. 2019), and more (Lin ef al. 2017). The list of possible

biological traits affiliated with exercise and their associated QTL is extensive (Sarzynski
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et al. 2016; Lightfoot ef al. 2018).

Observational studies of human exercise behavior are limited by measurement
error and environmental cofactors that cannot always be accounted for in statistical
models (Garland, Jr. et al. 2011b; Lightfoot ef al. 2018). An alternative way to study
this is to use animal models in selective breeding experiments. Use of animal models in
selective breeding experiments (Garland, Jr. and Rose 2009) can alter proportions of
alleles that affect a trait of interest, thus allowing for easier detection of such alleles
(Britton and Koch 2001; Konczal et al. 2016).

To elucidate the biological basis of voluntary aerobic exercise behavior, a
selection experiment was begun in 1993 using a base population of outbred Hsd:ICR
mice. Four replicate lines have been bred for high voluntary wheel-running behavior and
another four bred without regard to their wheel running as controls for founder effects
and random genetic drift (Swallow et al. 1998). Since the beginning of this experiment,
over 150 papers have been published that document a variety of phenotypic differences
between the High Runner (HR) and Control (C) lines. These previous studies establish
morphological and physiological differences in bone, kidney, heart, skeletal muscle,
brain, and other organs and systems (Rhodes et al. 2005; Swallow et al. 2005; Kolb et al.
2013b; Wallace and Garland, Jr. 2016) and, more generally, reaffirm the diversity of the
systems involved in voluntary exercise behavior (Garland, Jr. ef al. 2011b; Lightfoot et
al. 2018). The previous studies also give potential directions for informed analyses of the
genome. For example, we would expect divergence in allele frequencies related to the

reward system in the brain and to muscle function. The HR selection experiment is the
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world’s "largest" involving a behavioral trait in rodents in terms of the number of lines
and generations. Therefore, addressing the genomic differences between the HR and C
mice is expected to provide novel insights into the underpinnings of exercise behavior.

Previously, Xu and Garland (2017) used a mixed model (nested ANOVA) with
minimum variance quadratic unbiased estimation (MIVQUE) to analyze medium-density
single nucleotide polymorphism (SNP) data for the HR and control lines sampled from
generation 61 (Xu and Garland 2017). This statistical method proved more powerful than
the commonly used regularized F test and Generalized Linear Mixed Model (GLMM)
methods when incorporating permutation-based multiple testing correction. The data
used included 7-10 females from each of eight lines (four HR and four C). Genotypes
were determined with the MegaMUGA SNP-chip (Morgan and Welsh 2015). After
removing markers with missing data, 25,318 markers were analyzed with the mixed
models, finding 152 markers to be significantly differentiated between the HR and C
linetypes (i.e. test group). Although Xu and Garland (2017) demonstrated numerous
differentiated SNP loci between the HR and control lines, biological interpretations were
not presented. Additionally, as demonstrated by the whole-genome sequence (WGS)
data addressed in this paper, various differentiated loci were not detected in the previous
SNP-chip analysis.

Here, we apply the mixed model with MIVQUE estimation method to WGS data
obtained from the same individuals as in Xu and Garland (2017). We analyze both SNP
and haplotype data to take full advantage of the information provided by each data type

(Shim et al. 2009; Taliun et al. 2016). We also use simulations to explore some of the
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statistical properties of the MIVQUE estimation method for this application, and we
implement procedures aimed at improving model fit and potentially statistical power.
We detect numerous differentiated SNP and haplotype loci between the HR and C lines.
Many of these can be tied to specific lower-level traits that should influence exercise
behavior, through use of gene ontology terms and KO phenotype analyses of nearby
genes.

Using information on known morphological and physiological differences
between the HR and control lines, we were able to perform both broad and directed
strategies to detecting significantly differentiated loci. We show that the method of Xu
and Garland (2017) can be improved by allowing for different among- and within-line
variance structures. We identified several differentiated genes associated with bone,
heart, and brain morphology. We also identified a few candidates with potential large-

scale influences on the HR mice, including Sor/I, Dachl, and Cdhl0.
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MATERIALS AND METHODS

High Runner Mouse Model

As described previously (Swallow et al. 1998; Careau et al. 2013), 112 males and 112
females of the outbred Hsd:ICR strain were purchased from Harlan Sprague Dawley in
1993. These mice were randomly bred in our laboratory for 2 generations. Ten males
and 10 females were then randomly chosen as founders for each of 8 closed lines
(generation 0). Four of these lines were randomly picked to be “High Runner” (HR)
lines, in which mice would be selected for breeding based on voluntary wheel running.
The remaining 4 lines were used as Control (C) lines, without any selection. At
approximately 6-8 weeks of age, all mice were given access to wheels for six days. The
amount of running (total revolutions) on days 5 and 6 was used as the selection criterion.
For the non-selected C lines, one male and one female from each of 10 families were
chosen as breeders to propagate the line. For the HR lines, the highest-running male and
female from within each of 10 families were chosen as breeders (within-family

selection). Sib-mating was disallowed in all lines (Swallow et al. 1998).

Whole-genome Sequencing

80 xx ~male mice (10 from each line), from generation 61, were subject to whole genome
sequencing and reads were trimmed and aligned to the GRCm38/mm10 mouse genome
assembly as described in Didion et al. (2016). This generated an average read depth of
12X per mouse. SNPs were filtered based on genotype quality ("GQ") >5, read depth >3,

MAF < 0.0126 for all samples, and Mapping Quality ("MQ") > 30. One of the 80 mice
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was excluded due to likely contamination (as in Xu and Garland 2017), leaving 79 for the
following analyses. SNPs not found to be present in at least two of the 80 mice were also

removed from analysis.

Heterozygosity Calculations

Individual mouse heterozygosity (multi-locus heterozygosity) was calculated by dividing
the number of heterozygous loci for each mouse by the total number of segregating loci
across all 80 mice (n=5,932,124). Heterozygosity per line is the average of the

heterozygosity of all sequenced mice within that line.

SNP Analysis

Individual Single Nucleotide Polymorphisms (SNPs) were initially analyzed using a
mixed model approach with the Minimum Variance Quadratic Unbiased Estimation of
variance (MIVQUE) method of estimating variance parameters as described in Xu and
Garland (2017). However, rather than removing loci or mice with missing data, code was
modified to remove only the missing values themselves. The MIVQUE analysis provides
a p-value for each locus for rejecting the null hypothesis of no differentiation between the
HR and C lines. Xu and Garland had performed the analysis using two different
encoding schemes to represent genotypes as 0, 0.5 and 1 vs. as twin vectors of 0-0, 0-1
and 1-1. We have since determined that the twin vectors encoding was preferable, and

we report only those results (File S1.7).
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Multi-Model Analysis of SNP Data from Whole-genome Sequences

The analyses performed in Xu and Garland (2017) used a single statistical model in R for
all loci (our comparable SAS model being "Simple" in Table 1.1). This model did not
allow for several possibilities that might be expected a priori and that were in fact
observed, such as differing variances among the 4 replicate HR and C lines (designated
“SepVarLines” in Table 1.1), as is the case for wheel-running behavior (Garland, Jr. et al.
2011a). Beyond this, the amount of variation among individual mice within the replicate
lines might differ for the HR and C lines (“Full” model). Interpretation of these different
models is presented in the Discussion. In total, we applied four alternate models to the
data for each locus, and followed a model selection procedure for the one with the lowest
the Aikake Information Criterion, corrected for small sample sizes (AICc), and retained
the p-value for its linetype effect (differentiation between the HR and C lines). All Multi-
Model analyses were performed in SAS using PROCEDURE MIXED with the mivque0
method (File S1.10). We elected to prioritize SAS over R for its performance gains over
large number of loci. For a direct comparison, we reanalyzed the MegaMUGA data in Xu
and Garland (2017) the multi-model method (Figures S1.1 and S1.2).

Loci that contained no within-line variance (i.e. each line was fixed for one allele
or the other) could not be analyzed with the foregoing procedures. We analyzed these
loci by counting the net number of alternatively fixed lines among the HR and C
linetypes. Those loci with greater difference in allele frequency between the HR and C

linetypes are regarded as being more “significant.”
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Multiple Testing Correction

Permutations for MegaMUGA Data

This approach is based on the permutation method used by Xu and Garland (2017), but
modified to account for the multiple models. All permutations were performed using
SAS PROC MIXED as described above in the section on multi-model approach. The
mouse IDs, line, and linetype were randomly permuted as a block to break their original
associations with the allelic data but not with each other. The permuted data for each
locus were then analyzed with each of the four models listed in Table 1.1 (i.e., for the
MegaMUGA SNP data, 4 X 25,332 analyses were performed). For each of the four
models, the AICc was recorded, and the corresponding F-statistics were retained. From
these 25,332 loci (for the MegaMUGA data), the F-statistic corresponding to the model
with the lowest AICc was saved. The foregoing process was repeated 5,000 times, the
resulting F-statistics were sorted from largest to smallest, and the 250™ largest F-statistic

was used to establish the critical value for the 5% FWER.

Permutations for Haplotype Data

Permutations done for haplotypes were performed separately for 2-allele haplotype
blocks and 3-allele blocks, using 1,000 permutations to keep computational times
manageable. As in the unpermuted haplotype analyses, blocks with three alleles
(n=5,869) were analyzed with two dummy variables, each individual dummy variable
was tested using the multi-model method, and the two p-values generated were combined

using Fisher’s method (Fisher 1925). However, some permutations of the 3-allele blocks
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produced erroneous low p-values (apparently due to numerical issues), which, if included
in subsequent calculations would have caused an artifactual reduction of the critical value
needed to obtain the true 5% FWER. The permutations of the 2-allele blocks (n=11,032)
did not produce any artifactually low p-values. Given the problems with the 3-allele
haplotype permutations, we elected to apply the MeguMUGA permutation threshold
(P<0.00526) to the haplotype blocks because of their similar sample size
(MegaMUGA=25,332; Haplotypes=16,901) and the fact that they should be highly

correlated.

Local Maxima Selection for WGS Data

In the original paper, which analyzed 25,332 SNPs from a commercial chip, a
permutation procedure was used to control the family-wise Type I error rate (FWER) at
5% (Xu and Garland 2017). Those procedures were not computationally practical for the
5,932,124 SNPs from the whole-genome sequences, nor are linked SNPs within a
haplotype block truly independent from each other. Accordingly, significant loci were
chosen via a combination of -logP cutoff and local maximum (LM) determination, the
latter acting as a filter to focus on actual selected loci over their hitchhikers. Similar
methods have been previously described (Nicod et al. 2016). Briefly, suggestive loci
with -logP >3.0 were clustered with a maximum gap of 1 Mbp. For each such cluster, the
global peak, and a set of local maxima were determined for every 500 kbp spanned by the
cluster. The set of local maxima were chosen as peaks separated by dips in the signal

below the median -logP in the cluster. These LM SNPs were annotated using R libraries
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GenomicFeatures and VariantAnnotation, with the mm10 knownGene.sqlite database

provided by the Genome Browser team at the University of California, Santa Cruz.

Haplotype Determination

From the whole-genome sequences, haplotypes were determined using JMP 11 and JMP
Scripting Language (SAS Institute Inc., Cary, NC). To construct haplotypes, we first
defined the genomic block segments as consecutive 20 kbp windows that did not
transition between homozygous and heterozygous states. For each block region, we
performed a hierarchical clustering analysis using SNP genotype data (of homozygous
regions only) as input. Preliminary haplotype analysis showed that the HR population at
generation 61 rarely had more than 3 alleles in a given haplotype. Therefore, the analysis

was restricted to a maximum of three clusters (haplotype alleles) per block (File S1.5).

Haplotype Analysis

As for the SNP data, haplotype data were analyzed using the multi-model method
described above. Haplotype blocks with only two alleles (n=11,032) were analyzed the
same way as for the SNP data (File S1.10). Blocks with three alleles (n=5,869) were
analyzed with two dummy variables, with the base allele chosen as the most common
one, and then two dummy variables coding for presence of the other two alleles. Each
individual dummy variable was tested using the multi-model method. The two p-values

generated from the two dummy variables were combined using Fisher’s method

26



(Fisher 1925). Different models potentially were used for each dummy variable based on
AICc, allowing for up to two models to contribute to the final p-value of a locus (File

S1.6).

SNPs Fixed in One Treatment but Polymorphic in the Other

As noted previously with the SNP chip data (Xu and Garland 2017), we observed no loci
that were fixed for one allele in all four HR lines while being fixed for the alternate allele
in all four C lines (see Results). We did, however, observe loci fixed for a given allele in
all 4 HR lines, which is symptomatic of a complete selective sweep (caused by
directional selection) as described by Burke (2012), while remaining polymorphic in all 4
C lines. All loci that were fixed in the HR mice and simultaneously polymorphic in all C
lines (FixedHR/PolyC) were extracted from the multi-model results and grouped such
that those fixed loci that were within 100,000bp of other fixed loci would be part of the
same group. This process was then repeated for loci fixed in the Control lines but

polymorphic in all HR lines (FixedC/PolyHR).

General Ontology Analysis

Transcribed regions (N = 56, as indicated in Table 1.2) found to contain LM based on the
whole-genome sequence analyses were analyzed using The Gene Ontology Resource
(GO). GO analyses were performed based on biological process, molecular function, and
cellular component. Ontologies reported as significant at raw P < 0.05 for any of these

three categories are reported here. Analysis of these genes was also performed using the
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Database for Annotation, Visualization and Integrated Discovery (DAVID). The results

of these analyses did not vary greatly from the GO results.

Targeted Ontology Analysis

Previous papers show that the HR lines of mice have diverged from the C lines for many
different phenotypes (reviews in Rhodes et al. 2005; Garland, Jr. et al. 2011b; Wallace
and Garland, Jr. 2016). Many of these phenotypes can be tied to specific neurobiological
or physiological functions. In such cases, a logical approach is to analyze separately
some candidate genes known to be affiliated with relevant functions and find
differentiated SNPs for those genes. We used this approach for several ontologies.
Specifically, lists of genes affiliated with dopamine, serotonin, brain, bone, cardiac
muscle, and skeletal muscle were extracted from the Mouse Genome Informatics website.
SNPs found within these genes were separated from the full WGS data and the most

differentiated among these were recorded.

Data Availability Statement

Any additional intermediary or results file are available upon request. Supplemental files
are available at FigShare (note that all filenames on FigShare will exlcude “1.” from the
numbering). File S1.1 contains supplemental figures and brief descriptions of all other
supplemental files and tables. File S1.2 contains allelic SNP data. File S1.3 contains
mouse data with line and lintype. File S1.4 contains all results for analyses of individual

SNPs. File S1.5 contains all haplotype data. Files S1.6 contains all results for analyses
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of haplotype data. File S1.7 contains justification for use of allelic coding of alleles. File
S1.8 includes simulations of Type I error rates for Mixed Model analyses using MIVQUE
variance estimation. File S1.9 expands on the discussion of genes in consistent regions
(see Results). File S1.10 includes all R and SAS code used for the SNP and haplotype
analyses. Table S1.1 includes local maxima associated genes. Table S1.2 contains
groups of loci fixed in all lines of one lintype but polymorphic in all lines of the other.
Table S1.3 includes heterozygosity for each individual mouse. Table S1.4 includes top
ten genes for each of the targeted ontologies analyses. Table S1.5 includes allele
frequency by line of each loci identified as a local maximum. Table S1.6 includes

genomic regions identified as suggestive (p<0.001) by the SNP analyses.
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RESULTS

Variation in Genetic Diversity

After 61 generations of the High Runner mouse selection experiment, and based on a
sample of 79 mice, we found SNPs segregating at 5,932,124 loci (~2.2 SNPs per kbp or
0.22%) across the entire set of lines (i.e., at least 2 mice containing an alternate allele
were found across the 79 mice sequenced) with at least 1.5% minor allele frequency.
Individual lines contained 2.04 — 2.82M SNPs (34—48% of the total diversity) (Table
1.3), with no appreciable loss in diversity for the HR lines compared to the Control
replicates (Mann-Whitney U-test, W=6; p-value=0.6857). SNP heterozygosity ranged
from 10.3% to 20.6% among individual mice (Table S1.3) and averaged 12.7% to 18.1%
per line (Table 1.3).

Initial haplotype analysis demonstrated that there were rarely more than three
alleles for any given haplotype block (region with little to no discernable recombination
events within the 79 mice analyzed). Therefore, for the final haplotype analysis,
hierarchical clustering was performed with a limit of 3 clusters. 16,901 of these blocks
remained variable across the 8 lines in generation 61. As would be expected, the number
of haplotypes that have not gone to fixation in each line appears to be proportional to the
number of SNPs that have not gone to fixation (Table 1.3). Heterozygosity for the
haplotypes ranged from 12.2% to 25.5% for individual mice (Table S1.3), and 14.7% to
19.6% when averaged per line (Table 1.3). Heterozygosity for the haplotype data were
not significantly different between HR and C lines (Mann-Whitney U-test, W=8; p-

value=1.0 and W=6; p-value=0.6857, respectively).
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Multi-Model vs Single-Model Comparisons

As expected, we found that many, indeed most, loci were better fit by models other than
the "Simple" model used by Xu and Garland (2017). Generally, the “Full” model was the
most preferred, followed by the “Simple” model (Table 1.4). In general, differences
between the p-values determined by the single and multi-model methods were negligible
(Figure S1.2).

When analyzing data generated under the null hypothesis, the mixed models with
MIVQUE estimation for both single and multi-model produced a deflated Type I error
rate for o = 0.05 (File S1.8). The multi-model approach helped to correct this, but the
Type I error rate did not improve greatly with the multi-model approach alone. We
attempted to utilize the Kenward Rogers method of determining degrees of freedom to
correct this low Type I error rate, but this did not bring Type I error rate to 0.05 and
effectively dropped the nested line effect for many loci. We did not want to drop the
nested line effect because this ignores the fundamental experimental design of the
selection experiment. However, the permutation and local maxima methods of
determining loci of interest are robust to this deflated Type I error rate (File S1.8), so we
proceeded with our analyses using conservative results produced by the MIVQUE

variance estimation method.
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Three Major Analyses

Whole-Genome Haplotype

No haplotypes were identified as being fixed in all HR lines for one allele and fixed in all
C lines for the opposite allele. The multi-model haplotype analysis produced 102 blocks
of significant differentiation at the p<0.005 (permutations) level. Significant blocks
could be found on 13 chromosomes (Figure 1.1). We consider haplotype blocks within
1,000,000 bp of each other to be linked and therefore part of the same haplotype group:
28 such groups were determined (Table 1.5). These groups include a total of 154
transcribed sequences recognized by the Panther database for gene ontology. The largest

of these groups was found on chromosome 14:52,100,155-54,334,868 bp (Table 1.5).

Whole-Genome SNP

Similarly to haplotypes, no individual SNPs were identified as being fixed in alternative
alleles across all HR on one hand and all C lines on the other. At the p<8.4E-09 critical
level (Bonferroni-corrected), only two SNPs in chromosome 5 were identified to be
significantly differentiated across the entire genome (Figure 1.2), both in an intron of an
uncharacterized gene (GM34319). The syntenic/orthologous region of both the human
and cat genomes correspond to a coding region (exon 3) of the MYL5 gene (Myosin light
chain 5). Due to the small number of significant SNPs under Bonferroni and the
computational difficulties of using permutations with the multi-model method, we focus
on local maxima SNPs.

In the local maxima (LM) analyses, the suggestive cutoff (-logP>3.0) produced
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38,065 SNPs for analysis. 44 clusters were found, ranging in size from 1 SNP to 3,787
SNPs (Chr9: 41,303,824-42,478,817 bp). The largest single group in terms of genome
spanned is on chrl17: 17,846,983-23,586,163 bp (Table 1.6). From these groups, a total
of 84 LM were determined. 31 of these SNPs were associated with 27 unique transcribed
regions. 26 of the 27 genes could be utilized for GO analysis. Although chromosome 3
had no LM fall into specific genes (despite clear significance based on the Manhattan
plot), the cluster on chr3 (chr3:51,190,735-52,498,029 bp) includes about 10 validated
coding genes and various predicted genes, but none of the LMs fall in these. However,
all three LMs in this group are upstream of Setd7, a methyltransferase.

The most significant SNPs with no within-line variance fell into three regions.
One of these regions is on chromosome 5 (105-109 mbp), which is close to the LM
identified in this chromosome. Another is on chromosome 16 (44 mbp), about 2.5
million base pair from the LM on chromosome 16 containing Lsamp, a gene which codes
for a neuron-associated membrane protein. However, the last region falls in chromosome
7 (115 mbp), a chromosome which contained no LM. This location is downstream of
Sox6, a developmental regulator broadly associated with muscle fiber type composition
(van Rooij et al. 2009), hematopoiesis, bone growth and heart function (Smits et al.

2001).

SNPs Fixed in One Treatment and Polymorphic in the Other

SNPs that were fixed in all HR lines and polymorphic in all C lines (FixedHR/PolyC)

were combined into 95 regions, based on their being separated by at least 100kbp (Table
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S1.2). Some of these regions are probably not independently segregating (i.e. chrl7:
17,895,909-22,546,405 bp) and might therefore be combined further. Regions varied in
size from 1 to 1,626,783 bp. These regions include or are proximal to (in the case of 1 bp
regions) 135 transcribed regions, including genes, miRNA, and predicted genes. SNPs
that were fixed in all C lines and polymorphic in all HR lines (FixedC/PolyHR) were
combined into 64 regions. The size of each region varies from 1 to 753,066 bp. We
expect the 1 bp loci may be spurious but chose to include them in results for
completeness, especially given that the mini-muscle locus involves only a single base
pair (Kelly et al. 2013). These regions include or are proximal to 63 transcribed regions,
again including genes, miRNA, and predicted genes. FixedHR/PolyC regions were also
identified in haplotypes. These haplotype blocks overlapped with the SNP regions
identified by FixedHR/PolyC; however, some of the single unlinked loci that met these

criteria were not identified using haplotypes.

Ontology Analyses

General Ontology

GO analysis of biological process for the haplotype data reveal “sensory perception of
chemical stimulus” to be a major term of interest (Table 1.7). This appears to be caused
by various clusters of olfactory and vomeronasal genes. Many of the most prominent
terms (highlighted in green) appear to be correlated to these olfactory and vomeronasal
gene clusters. Although a single, large group of closely linked olfactory genes may

overrepresent olfactory’s role in selection, we were able to identify two distinct genomic
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regions of vomeronasal genes and three such regions of olfactory genes.

The biological process GO terms for LM include many results that are consistent
with our previous findings involving the HR mice, including cardiac and myoblast related
terms (Table 1.8). Regulation of locomotion is among the most statistically significant
GO terms.

The FixedHR/PolyC GO analyses indicate terms: complement receptor mediated
signaling pathway and response to pheromone. These terms were significant with a false
discovery rate correction (FDR<0.05), p=7.11E-04 and p=2.40E-07, respectively) (Table
1.9). For FixedC/PolyHR, no GO terms were significantly enriched with FDR correction,
some novel GO terms were deemed most significant. Included in these results is also
CDP-choline pathway, which had also been implicated in the haplotype data. The full list

of regions for both FixedHR/PolyC and FixedC/PolyHR can be found in (Table S1.2).

Targeted Ontology

The gene search for specific ontologies produced 45-820 genes and 7,315-143,507 SNPs
associated with each search (Table 1.10). The top ten genes were chosen based on the
most significant SNP within the gene (Table S1.4). The most significantly differentiated
SNPs were generally found in genes associated with the brain, followed by bone and
muscle related genes. Surprisingly, the reward-related ontologies (dopamine and

serotonin) did not contain as strong evidence for differentiation as the others.
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Consistent Regions Identified Across Multiple Analyses

The major analyses (LM, haplotype, and FixedHR/PolyC) individually implicate about
80, 24, and 46 differentiated genomic regions, respectively. Combined, 85 unique
regions across the genome are indicated, including at least one region on every
chromosome. Of these 85 regions, 12 are found in all three analyses (Table 1.11). These
12 consistent regions span just over 27.4 MBP and include 300 validated and predicted
genes. Of the 300 genes, 77 are either olfactory or vomeronasal genes, which are
predominantly located in two large regions on chromosomes 14 and 17. Surprisingly,
many of these regions do not contain many of the most differentiated SNPs according to
the multi-model MIVQUE analyses, but do have at least one SNP with p<0.001 by the

LM criteria.
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DISCUSSION

Variation in Genetic Diversity

For the present sample of 79 mice from generation 61, based on the polymorphic SNPs
within each line (Table 1.2), each of the lines continues to retain approximately 34-48%
of the total diversity across all 8 lines. Such a drop in genetic diversity would be
expected after 61 generation with ~10 breeding pairs per generation per each line. We
found no evidence that HR and C lines had differing levels of genetic diversity, averaged

across the whole genome.

Consistent Regions from Multiple Analyses
Many of the identified regions span too many genes to allow ready identification of a
candidate. However, a few of the regions contain a limited number of genes for which
the reported functions make sense in the context of directional selection for high
voluntary wheel-running behavior (from first principles of physiology and neurobiology)
and/or given previously identified differences between the HR and C lines (see
Introduction). Given the rich phenotyping literature on the HR mouse selection
experiment (more than 150 publications), we discuss a relatively large number of genes.
Additional regions are covered in supplemental material (File S1.9).

The region identified on chromosome 5 includes 16 genes (excluding predicted
and non-coding), three of which were previously identified as differentially expressed in
the striatum of the HR and C mice (Saul ef al. 2017). These genes include Tmed5, Gak,

and Mfsd7a. Tmed5 is a trafficking protein associated with cell proliferation and
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WNT7B expression in HeLa cells (Yang et al. 2019). Mice knockouts in Gak are
generally lethal to adult and developing mice causing various abnormal symptoms,
including altered brain development (Lee et al. 2008). Mfsd7a (aka Slc49a3) has been
associated with ovarian cancer, but much remains unknown about this gene (Khan and
Quigley 2013).

The region on chromosome 6 includes 7rpv5 and Kel, both of which are
associated with KO phenotypes that may be tied to known differences between the HR
and C lines. Trpv5 KO is associated with phenotypes related to structural changes in the
femur and kidney physiology (Hoenderop et al. 2003; Loh et al. 2013), both of which
differ between HR and C lines (Swallow et al. 2005; Castro and Garland, Jr. 2018).
Trpv3 is also associated with calcium homeostasis (Hoenderop et al. 2003; Loh et al.
2013). Kel is a blood group antigen with KO phenotypes affiliated with weakness, gait
and motor coordination, neurological development, and heart function (Zhu et al. 2009,
2014). Previous experiments have shown the HR and C mice to have differences in heart
physiology (Kolb ef al. 2013a), gait and motor coordination (Claghorn et al. 2017), and
brain development (Kolb et al. 2013b).

The region on chromosome 9 contains various predicted genes and miRNA, but
also one large gene of interest, Sor/l (aka Sorl4). This gene is also implicated in our
targeted search for genes related to the brain (Table 1.10). Sor/I codes for a sorting
receptor that has been associated with various neural and metabolic diseases (Schmidt et
al. 2017). Although some of the associated phenotypes, such as obesity, may have some

correlation to phenotypic differences between HR and C mice, such as difference in body
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fat (Swallow et al. 2001; Vaanholt et al. 2008; Hiramatsu and Garland, Jr. 2018), this
does not directly answer the question of how Sor// influences running behavior. Mouse
knockouts in this gene have not shown changes in running gait (Rohe 2008), whereas
differences in gait do exist between HR and C mice (Claghorn ef al. 2017). However,
these treadmill tests do not address exercise motivation, which might be influenced by
such a neurobiologically relevant gene. Additionally, a more significantly differentiated
haplotype can be found over 150,000bp downstream of Sor/I, containing various
predicted genes and miRNA. Therefore, further studies will be required to determine
precisely the elements of this region that modulate wheel running. Although 7hcel is
near this consistent region rather than included in it, it is the most differentiated gene in
the genome (based on median p-value of included SNPs, p=4.01E-07). This gene is
known to regulate tubulin activity in sperm and the nervous system (Nuwal et al. 2012;
Frédéric et al. 2013).

One region on chromosome 11 contains numerous genes of potential interest.
One LM within this region is proximal to a handful of genes that may be influencing the
HR phenotype, including: Tefim, Adap2, Crlf3, and SuzIl2. These genes are associated
with KO phenotypes including enlarged heart and decreased body weight (Jiang ef al.
2019), blood cell concentration (White et al. 2013), and brain morphology (Miro ef al.
2009). All of these phenotypes have been found to differ between HR and C mice (Kolb
et al. 2013b; Thompson 2017; Singleton and Garland, Jr. 2019).

One region on chromosome 14 includes almost exclusively Dachl, which is an

important regulator for various early developmental genes. Dachl is a regulator of
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muscle satellite cell proliferation and differentiation (Pallafacchina et al. 2010).
Although knockouts of Dachl in mice do not appear to disrupt limb development (Davis
et al. 2001), Dachl mutants sometimes have stunted leg development in Drosophila
(Mardon et al. 1994). Furthermore, Dachl has been shown to localize around limb
budding regions and interact with known limb patterning genes in both mice and poultry
(Horner et al. 2002; Kida 2004; Salsi et al. 2008). Studies of skeletal muscle (Garland,
Jr. et al. 2002; Bilodeau ef al. 2009) and of the peripheral skeleton show several
differences between HR and C lines of mice (Garland, Jr. and Freeman 2005; Kelly ef al.
2006; Castro and Garland, Jr. 2018; Schwartz ef al. 2018). This gene has also been
implicated in the development and function of the kidneys (Kottgen ef al. 2010), which
have been shown to be larger in the HR lines than C lines in some studies (Swallow et al.
2005).

A region on chromosome 15 includes Cdhl0 among a few predicted genes. GO
links Cdh10 to both “calcium ion binding” and “glutamatergic synapse,” terms that
occasionally produced suggestive p-values for enrichment searches in our differentiation
analyses (Table 1.7, Table 1.9). These terms could have various implications for the HR
mice. Cdhl0 specifically is a cadherin with extensive expression in the brain (Liu et al.
2006; Matsunaga et al. 2015). This gene has been shown to have increased expression in
phrenic neurons (Machado et al. 2014), potentially modulating diaphragm movement,
and increased functionality of the diaphragm could partly underlie the elevated maximal
rate of oxygen consumption during exercise (VO,max) observed in HR lines (Kolb et al.

2010; Hiramatsu ef al. 2017; Singleton and Garland, Jr. 2019). Cdhi0 is also known to
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have increased expression of genes associated with olfactory system development (Akins
et al. 2007), which could be corroborated by the other two consistent regions associated
with olfactory and vomeronasal (see Results, General Ontology). The other region
detected on chromosome 15 currently only contains Fam135b among its annotations.
Few studies have been conducted involving the function of Fam135b, but evidence
indicates it has an important role in spinal motor neurons based on a > 10,000-fold

decrease in expression in spinal and bulbar muscular atrophy models (Sheila et al. 2019).

Ontology

General Ontology

The GO analyses in this paper serve two functions. The first includes determining
pathways that have been influenced by the selective breeding protocol. Additionally, the
vast publications and data on various morphological and physiological differences
between the HR and C lines provide insight into differentiated biological processes.

The Haplotype and Fixed/Poly methods of identifying differentiated genes had
considerable overlap between genes and regions identified, which seems to result in
similar GO terms for these analyses. The term “sensory perception of chemical stimulus”
is expected, given the large number olfactory and vomeronasal genes present in some of
these regions. Selection for such genes is likely in response to how the mice are tested
for wheel running. For logistical reasons, approximately 2/3 of the mice tested in a given
generation were measured on wheels that had not been washed since the previous mouse

was on that same wheel, although the attached cages were fresh (Dewan et al. 2019).
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The scent of the previous mouse would potentially elicit different running behavior,
dependent on these vomeronasal and olfactory genes (e.g., see Drickamer and Evans
1996). GO terms related to postsynaptic neurotransmitters were largely incited by three
genes (Cplx1, Dlgl, and Shisa6). Such terms would be expected due to observations of
the HR mice having larger brain and altered reward mechanisms (Belke and Garland, Jr.
2007; Mathes et al. 2010; Garland, Jr. ef al. 2011b; Keeney et al. 2012; Kolb et al.
2013b; Thompson et al. 2017).

The local maxima GO results are generally quite different from the haplotype and
Fixed/Poly analyses. This is partially attributable to less overlapping of identified
genomic regions. Additionally, LM is useful for gene culling to reduce influence of
hitchhiking genes in the GO analyses. Many of the top terms for LM genes are
associated with heart development and function. Heart ventricle mass is greater in the
HR mice (Kolb ef al. 2013a; Kelly et al. 2017; Kay et al. 2019) and correlates with
VOomax in both HR and C mice (Rezende ef al. 2006). The genes most associated with
cardiac development include Pkp2, Myhll, and Thx5 (also a forelimb regulator).
Forelimb development may be altered in the HR mice, while humerus sizes do not seem
to differ (Copes et al. 2018), differences have been found in metatarsal and metacarpal

lengths (Young ef al. 2009).

Targeted Ontology

As the target ontologies were chosen based on structures and systems known to have

been altered by the selection experiment, we would expect to find at least one gene of
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each ontology that would contain a differentiated SNP. Of these ontologies, “serotonin”
and “dopamine” are associated with some of our less impressive p-values (Table 1.10),
with many of the top dopamine-related genes (Fpri, Fpr2, Fpr3, and Fpr-rs4) being
present likely because of linkage to highly differentiated vomeronasal genes (Table 1.10).
The most significantly differentiated loci in a dopamine-related gene are in Gnbl, part of
the GBy complex, which activates Girk2 in dopamine neuron membranes (Wang et al.
2016). We are surprised not to have found more impressive results for dopamine-related
genes, given clear differences in dopamine function between the HR and C mice (Rhodes
et al. 2001, 2005; Rhodes and Garland, Jr. 2003; Bronikowski et al. 2004; Mathes et al.
2010). A possible explanation for is that trans-regulating sites for these genes have been
more influenced by the HR selection regime (Kelly et al. 2012; Nica and Dermitzakis
2013).

The remaining ontologies (bone, cardiac, skeletal muscle, and brain) all have at
least one gene containing a SNP with p <0.0001 (Table 1.10). Some of these are
included with our LM genes, such as Myhll (a myosin gene affiliated with the “cardiac”
tag) and Sorll (“Brain” tag). However, some of these are not present among the LM list.
Kel, described above as influencing various phenotypes relevant for high running
behavior, may appear to be a confusing “miss” for the LM detection process, with a p-
value = 1.49E-05. However, the region does have two local maxima, neither of which
land in genes, but one is about 15,000 bases upstream of Kel. This might be taken as
evidence that the LM approach to determining affected genes ought to be modified to

better catch nearby genes that could be affected.
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Comparison with Previous Studies

Exercise behavior and the QTL that help to modulate it have been studied in various
other GWA and gene expression studies of mice, as well as comparisons of inbred
strains. Below are some examples of the listed in chronological order.

A study involving a cross between high- and low-running inbred strains located
several markers on chromosome 9 (Lightfoot ez al. 2008). Although none of these
markers correspond to our significant region (about 41,000,000 to 42,000,000), one of
them is only about 500,000bp from the gene Leol. However, with only one significant
locus (raw p-value = 0.00186) in the region, evidence for this gene being a modulator of
exercise in the HR mice is not strong.

The findings of Lightfoot et al. (2010), which identified loci associated with
wheel running levels among 38 inbred strains of mice, suggested very few QTL similar to
our findings. The best example of similarity includes a region on chromosome 8 that
includes Galntl6, which was found as suggestive in the current study. Additionally,
Lightfoot et al. (2010) identify a region on chromosome 12 very close to Nrxn3. Both
LM and FixedHR/PolyC methods indicated this gene as a strong candidate. This was not
listed as a consistent region because the haplotype results did not produce a significant
haplotype near Nrxn3. Nrxn3 creates particular interest in that it is associated with
various addictive behaviors (Zheng et al. 2018), which is consistent with evidence that
the HR mice are to some extent addicted to running (Rhodes et al. 2005; Kolb et al.

2013b). Exercise addiction is not a new concept, but remains controversial (Nogueira et

44



al. 2018).

QTL mapping of the G4 intercross of C57BL/6J with one of the four HR lines of
mice from the present selection experiment paper produced a region implicating
olfactory/vomeronasal influence on chromosome 7 (Kelly et al. 2010). The current study
also identifies vomeronasal (though different from our region on Chr 17).

Muscle and brain gene expression studies have been utilized to better understand
the molecular basis of exercise. Using the same G4 intercross mice as previously
described (Kelly ef al. 2010), Kelly et al. (2012, 2014) identified and highlighted /nsig2
(brain and muscle), Socs2 (brain), Dby (Brain), Arrdc4 (Brain), Prcp (brain and muscle),
1115 (brain), and Sparc (muscle). However, none of those genes were determined by the
present study to be local to differentiated SNPs.

Dawes et al. (2014) found Actn2, Actn3, Casql, Drd2, Lepr, Mc4r, Mstn, Papss2,
and Glut4 to have differential expression in skeletal muscle and brain tissue based on a
comparison of two inbred strains, one high- and the other low-wheel running (C57L/J and
C3H/Hel, respectively). None of these genes were found by the present study to contain
significant SNPs. However, Drd2 is about 8 Mbp from of one of the most differentiated
regions of the genome (on chromosome 9).

Saul et al. (2017) performed expression analysis using the striatum of the HR and
C lines from generation 66. Some of the highlighted differentially expressed genes
include: Htrib, Slc38a2, Tmed5, 503143401 1Rik, Gak, Mfsd7a, and Gpr3. Tmed5, Gak,
and Mfsd7a are all found within a highly differentiated region in the SNP data (median

p=4.85E-04 for all three genes). Although 503743401 1Rik and the associated Setd7 are
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not found within the consistent regions, they both contain many of the most differentiated
loci of individual SNP analyses (median p=3.78E-05). Knockouts of Setd7 (aka Set9)
have been associated with altered lung development and morphology (Elkouris ef al.
2016). Lung differences in the HR and C lines have not been greatly explored. Three
studies have reported no statistical difference in lung mass (Meek et al. 2009; Kolb et al.
2010; Dlugosz et al. 2013), but an unpublished study of males from generation 21 found
that HR lines tended to have higher pulmonary diffusion capacity and capillary surface
area determined via morphometry (T. Garland, Jr., and S. F. Perry, personal
communication) and a study of females from generation 37 reported a trend for HR mice
to have higher dry lung mass (Meek et al. 2009; Kelly et al. 2017).

Overall, previous studies of mouse wheel-running behavior mostly disagree with
the current study results. Studies involving HR and C57BL/6J intercross (Kelly et al.
2010, 2012) did not find many similarities. This may be expected, considering the loci
whose frequencies have changed consistently across all four HR lines would not
necessarily be expected to correspond with those that affect wheel running in a
population derived from crossing one HR line with a distantly related inbred strain, nor
with those that differ between two other inbred strains, neither of which has a history of
experiencing selection for activity levels (Dawes ef al. 2014). Similarly, few agreements
exist between the present study and Lightfoot et al’s. (2008) findings. This is likely
because comparing “High Running” alleles to control alleles is not the same as
comparing these HR alleles to “Low Running” alleles, as a low-running phenotype may

be correlated to dysfunctions in running ability or motivation, or that are not directly
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associated with either motivation or ability. The greatest congruence is between the
present study and Saul et al. (2017). This agreement is encouraging because that study

compared the HR and C lines at a similar generation (66) to the present study (61).

Mini-Muscle Allele

The mini-muscle phenotype was discovered in the HR selection experiment and is
associated with alterations in various organs, especially skeletal muscle, but also
including heart, kidney, and overall body mass of the mice (Swallow et al. 2005; Meek et
al. 2009; Kolb et al. 2013a; Talmadge et al. 2014; Kay et al. 2019) as well as behaviors
(Kelly et al. 2006; Singleton and Garland, Jr. 2019). This phenotype is caused by a
single recessive SNP mutation located in an Myh4 (myosin heavy polypeptide 4) gene
(Kelly et al. 2013). Mice expressing the mini-muscle phenotype have often been found
to run faster and sometimes for longer distances than other HR mice (Kolb ef al. 2013a).
This polymorphism was lost, presumably via random genetic drift, from all lines except
for HR lines 3 (where it went to fixation) and line 6 (where it remains polymorphic with
the wildtype allele). Population-genetic analyses indicate that the allele was under
positive selection in the HR lines (Garland, Jr. ef al. 2002). The current WGS data show
(generation 61) that the mutation is still only present in lines 3 (fixed) and 6, with allele
frequency of 0.65 in line 6. As the mini-muscle phenotype appears to enable faster
overall running on wheels at the cost of running duration, it has been regarded as an
alternative “solution” to the selection criterion (Garland, Jr. et al. 2011a), not unlike the

concept of “private” alleles (Martin et al. 1996). Such a mutation is expected to change
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the genetic background of line 3 (and to a lesser extent, line 6) giving rationale to

analyzing these lines separately for possible QTL, in future studies.

Allele Frequency Implications

The general pattern of allele frequencies across the replicate lines can be used to infer
patterns of selection. Table 1.12 includes some of the potential profiles that could
possibly be observed and (for the most part) were observed in the WGS data.

Profile 1. No observed genetic variation. For our 79 mice, this accounts for about 99.8%
of the genome (Table 1.2).

Profile 2 Fixation for alternate alleles in the two selection treatments would imply
opposing directional selection, as might occur in experiments with replicate lines selected
for high versus low values of a trait. The HR mouse selection experiment includes high-
selected and control treatments, but not a low-selected treatment. Thus, fixation for
alternate alleles in the HR and C lines would not necessarily be expected, and indeed was
never observed for either the WGS data or the MegaMUGA data reported previously (Xu
and Garland 2017). Importantly, even data from selection experiments that include high-
and low-selected treatments are not showing much evidence of fixation for alternate
alleles (Burke et al. 2010; Lillie et al. 2019).

Profile 3. Stabilizing selection or random drift for one group and directional selection for
the other. This was the focus of the scans for loci fixed in all lines of one linetype and
polymorphic in all lines of the other (Fixed/Poly) in our own haplotype and WGS data

and produced several prospective regions of interest. The fixed allele can either be
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entirely the reference (0) or alternative (1).

Profile 4. Selection for test group 2 but evidence of drift for group 1 (likely caused by
little to no selection). Some of the loci of the WGS SNP data meet this profile. For
example, Chromosome 11: 96,332,082 (p=0.051).

Profile 5. Random genetic drift for both test groups. Such loci will be among those
analyzed, but this pattern of differentiation is unlikely to result from the selective
breeding regimen.

In general, as with any population that is relatively well adapted to the prevailing
environmental conditions, breeding colonies of laboratory house mice maintained under
standard vivarium housing conditions should experience continuing stabilizing selection
at many loci. Under standard housing conditions, an allele with a strong positive
influence on wheel running, or activity in cages without wheels, might be disfavored if it
were negatively associated with such aspects of the life history as litter size or maternal
care. In contrast, under the conditions of the HR mouse selection experiment, an allele
with a strong positive influence on wheel running might be expected to go to fixation
rapidly in all HR lines in a manner consistent with a "complete sweep" (Burke 2012).
Thus, to fix an allele, directional selection in the HR lines must be strong enough to
overcome a presumed prevailing background of stabilizing selection and possibly
negative selection. Regions that are FixedHR/PolyC (profile 3) should, therefore, be
indicative of relatively strong directional selection in the HR lines.

Alternatively, some loci may have come under stabilizing selection in the HR

lines, e.g., due to heterozygote advantage or epistatic interactions with other loci,
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preventing them from going to fixation. Hence, we also examined loci polymorphic in all
HR lines but fixed in all C lines (FixedC/PolyHR). Surprisingly, many of these are
immediately adjacent to FixedHR/PolyC regions (Table S1.2). The GO analyses of the
included genes in these regions were consistently less significant (raw p>0.0026 for all
implicated terms). However, such terms as “synapse assembly” and those related to

glycerolipids emerged may merit further exploration.

Interpretation of the Four Models

The four models in the multi-model analysis were included to allow for different variance
structures within and between the HR and C linetypes. The within-line variance is the
variability of allele frequency among the ~10 mice within each line. This variance is zero
when a line is fixed for one allele or another, but maximized when 5 mice within each
line are homozygous for one allele while 5 mice are homozygous for the other. The
among-line variance indicates how different the replicate lines within a linetype are from
each other. This variance component is minimized when all four lines within a linetype
are fixed for the same allele, but maximized when two lines are fixed for one allele while
two lines are fixed for the other.

In principle, both the within-line and among-line variances can differ between the
two selection treatments (linetypes); hence, the Full model includes separate estimates of
both within- and among-line variances. For wheel running in later generations of the
selection experiment, a full model has been shown to fit well (Garland, Jr. ef al. 2011a).

The SepVarInd model includes only the within-line variance. The SepVarLine model
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includes only the among-line variance. Lastly, the Simple model does not include either
of these two variances, and corresponds to the single model used by Xu and Garland
(2017).

As expected, we found many loci that were better fit by models other than the
Simple model used by Xu and Garland (2017) (Table 1.4). Figure 1.3 gives examples. In
A, the Full model is implemented because C lines exhibit very little within- and among-
line variance while HR lines exhibit both. In B, the SepVarInd model is used because C
lines have high within-line variance (while HR lines are comparatively low), but both
have similar among-line variance. In C, SepVarLines model is used because nearly all
lines contain very little within-line variance (6 are fixed for a single allele), but C lines,
being fixed for opposing alleles, creates different among-line variance. D identifies a
Simple model locus because these variances are roughly the same for the different
linetypes. E represents a locus with no within-line variance and thus could not be
analyzed with the mixed model ANOVA like other loci. However, use of multiple
models did not increase the number of loci identified as statistically significant based on

repeat analyses of the MEGAMuga data with both methods (Figure 1.1).
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CONCLUSIONS

Exercise, or the lack of exercise, has far-reaching medical and financial implications
(Manley 1996; Carlson et al. 2015). Numerous studies have provided strong evidence for
the existence of genetic underpinnings of exercise behavior and physical activity
(Kostrzewa and Kas 2014; Lightfoot et al. 2018), including in the High Runner mouse
selection experiment (Careau et al. 2013; Saul et al. 2017; Xu and Garland 2017). Here
we have used three different analytical methods with whole-genome sequence data to
address the genetic basis of the 3-fold increase in running observed in the four replicate
selectively bred HR lines of mice. These methods include haplotype and SNP statistical
analysis, as well as non-statistical analysis of fixation patterns in HR and C lines.

The intersection of multiple analyses indicated 61 genomic regions of
differentiation, with 12 regions identified as of particular interest. These regions include
genes known to influence systems that have already been demonstrated to differ between
HR and Control mice, such as response to conspecific odors, brain development, body
weight, and relative heart size. However, they also contain genes whose role in voluntary
running behavior is as yet unknown.

Importantly, none of the analytical approaches we used address the possibility of
"private alleles" (Martin et al. 1996) in one or more of the HR lines that may influence
exercise behavior, thus representing "multiple solutions" to the selective breeding regime
(Garland, Jr. et al. 2011a), but this will be an important possibility to consider in future
studies. We already know of one private allele of major effect (mini-muscle) that has far-

reaching effects on mouse muscle and organ development (Swallow et al. 2005;
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McGillivray et al. 2009; Kelly et al. 2013), as well as many other aspects of the
phenotype, and has been favored by the selection protocol (Garland, Jr. ef al. 2002).

Determination of such alleles will be an important area for future research.
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FIGURES

Figure 1.1

Manhattan plot for haplotype data. Red line indicates p-value <0.005 (see Methods and
Materials), which yielded 28 haplotype groups (see Table 5).
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Figure 1.2
Manhattan plot for WGS SNP data. Red dots represent local maxima (N = 84).
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Figure 1.3
These are images of different variance structures depicted by actual examples from the
MegaMUGA data (Xu and Garland 2017). This includes example data that were best fit
by the “Full” model (A), “SepVarInd” model (B), “SepVarLines” model (C), and the
“Simple” model (D). E shows a locus that had no within-line variance. P-values are
significance levels for comparing the HR and C lines.
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ABSTRACT

Replicate lines under uniform selection often evolve in different ways. Previously,
analyses using whole-genome sequence data for individual mice (Mus musculus) from
four replicate High Runner (HR) lines and four non-selected control (C) lines
demonstrated genomic regions that have responded consistently to selection for voluntary
wheel-running behavior. Here, we ask whether the HR lines have evolved differently
from each other, even though they reached selection limits at similar levels. We focus on
one HR line (HR3) that became fixed for a mutation at a gene of major effect
(Myh4Minimsey that, in the homozygous condition, causes a 50% reduction in hindlimb
muscle mass and many pleiotropic effects. We excluded HR3 from SNP analyses and
identified 19 regions not consistently identified in analyses with all four lines. Repeating
analyses while dropping each of the other HR lines identified 12, 8, and 6 such regions.
(Of these 45 regions, 37 were unique.) These results suggest that each HR line indeed
responded to selection somewhat uniquely, but also that HR3 is the most distinct. We
then applied two additional analytical approaches when dropping HR3 only (based on
haplotypes and nonstatistical tests involving fixation patterns). All three approaches
identified seven new regions (as compared with analyses using all four HR lines) that
include genes associated with activity levels, dopamine signaling, hippocampus
morphology, heart size, and body size, all of which differ between HR and C lines. Our
results illustrate how multiple solutions and "private" alleles can obscure general

signatures of selection involving "public" alleles.
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INTRODUCTION

By their very nature, complex traits can evolve in multiple ways. Thus, when a given
form of directional selection is applied to replicate lines, adaptive responses are likely to
be somewhat different (Mayr 1961; Cohan 1984a; b; Tenaillon et al. 2012; Wone et al.
2019), a phenomenon often termed multiple solutions (e.g., see Bock 1959; Bennett
2003; Garland, Jr. et al. 2011). These variable evolutionary pathways underscore the
versatility of the genome and also provide opportunities for insight concerning the
developmental and physiological mechanisms that underlie variation in complex traits.
The particular genomic and/or genetic features and processes that underlie a
complex trait may affect the likelihood of multiple adaptive responses to a given type of
selection. For example, duplications can create redundancy in genes, thus enabling
altered function in one or both copies without detrimental effect on the organism. This
has been seen in myosin MLC2 genes (Gerrits ef al. 2012) and in hemoglobin (Natarajan
et al. 2015; Storz 2016). Multiple solutions can also be modulated by highly impactful
single nucleotide polymorphisms (SNPs). A well-known example of this is malaria.
Here, infection by a parasitic Plasmodium invokes typical immunological responses
(Malaguarnera and Musumeci 2002), with a lethality rate of up to 30% in severe cases
(i.e., multi-syndromic and often manifesting as cerebral malaria, severe malaria anemia,
and respiratory distress) (Karlsson et al. 2014). However, the sickle cell mutation, which
is an A to T substitution causing glutamate to be substituted with valine in the B-globin
gene, is associated with substantial resistance to the disease in both heterozygotes and

homozygotes, but with notable health detriments in homozygotes (Aluoch 1997; Griffiths
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et al. 2015). Despite the deleterious pleiotropic effects of the sickle-cell mutation, this
allele has been favored by selection in populations where malaria is present (Karlsson et
al. 2014), thus providing an alternative solution to the typical immunological responses.

One genomic feature that may promote multiple adaptive solutions is the presence
of so-called genes of major effect (GOMESs), also referred to as major QTL, which are
defined as genes whose allelic variants explain a large proportion of quantitative variation
(Tanksley 1993). GOMEs may enhance the probability of divergent genomic pathways
among replicate lines by affecting genetic variances and covariances (Agrawal et al.
2001; Garland 2003; Hannon et al. 2008; Stinchcombe et al. 2009). For example,
Stinchcombe et al. (2009) demonstrated the ERECTA allele in Arabidopsis thaliana had
a small but clear impact on the G-matrix structure, although without a discernable impact
on the response to selection. Epistatic genetic variance is also likely enhanced by the
presence of GOMESs. Thus, if some populations have a given GOME and others do not,
then they are likely to evolve genetically in somewhat different ways. (As noted in the
Discussion, founder effects and random genetic drift can also increase the likelihood of
multiple responses to selection.)

Replicated selection experiments offer excellent opportunities for discovering
multiple adaptive responses to a defined and reproducible selective regime (Garland
2003; Garland, Jr. and Rose 2009b). Here, we test for multiple genomic responses to
selection in the context of a replicated selection experiment that has a well-documented
GOME that causes a phenotype termed mini-muscle (Garland, Jr. et al. 2002: see below).

Specifically, the High Runner (HR) mouse experiment includes four replicate lines of
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mice that have been bred (within family) for long daily distances of voluntary running on
a wheel (HR3, HR6, HR7, and HRS) and four non-selected control lines (C1, C2, C4, and
C5) (Swallow et al. 1998). A statistically significant response to selection could be
detected by generation 6, and all lines reached selection limits around generations 17-27,
running on average 2.5-3 times more than the control line (Careau ef al. 2013). The four
replicate HR lines vary in the extent to which daily running distance has evolved via
increases in average speed versus duration of running, and a significant negative
correlation between average running speed and duration of daily activity had evolved
among the HR lines by generation 43 (Garland, Jr. ef al. 2011). For example, on average,
mice from line HR3 (which became fixed for the allele underlying the mini-muscle
phenotype) run faster but for fewer minutes per day than other HR lines, whereas the
opposite is true for HR8 (see Figure 3 in Garland, Jr. ef al. 2011).

Numerous differences among the HR lines have been identified at various points
during the selection experiment, although these results have yet to be synthesized or
approached from the perspective of a meta-analysis. These include pleiotropic effects
attributable to the mini-muscle allele (Myh4™™™s¢) when in the homozygous state, in
addition to differences that don’t involve the mini-muscle phenotype. Those non-mini-
muscle differences among the replicate HR lines have been documented for a variety of
traits at the level of behavior, whole-animal performance, morphology, and physiology.
For example, the HR lines have been shown to differ in both male-male (Klomberg et al.
2002) and maternal aggression (Gammie ef al. 2003), as well as behavior in an open-field

arena test (measuring aspects of exploration and risk-taking behavior) and in a plus maze
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(measuring aspects of anxiety) (Jonas et al. 2010). Among-line differences in
performance and physiology have been documented for daily energy expenditure
(Rezende et al. 2009), basal metabolic rate (Kane et al. 2008), endurance capacity during
forced treadmill exercise (Meek et al. 2009), the ability to clear a parasitic nematode
species (Nippostrongylus brasiliensis) from the small intestine (Malisch et al. 2009), and
circulating corticosterone levels under both baseline conditions and after 40 minutes of
restraint stress (Malisch et al. 2007), among other traits. Body mass differs among the
HR lines (e.g., Klomberg et al. 2002; Hiramatsu et al. 2017), as do the masses of
individual hindlimb muscles (controlling statistically for variation in body mass and even
excluding those with the mini-muscle phenotype)(Houle-Leroy ef al. 2003). Muscle
fiber-type composition differs among lines and, at the level of muscle biochemistry, HR
lines differ in the mass-specific activities of various metabolic enzymes (e.g., palmitoyl
transferase, citrate synthase, cytochrome C oxidase) (Guderley et al. 2008). As these
differences are in traits of functional relevance for endurance running, they suggest
multiple solutions.

The mini-muscle phenotype noted above is caused by the recessive Myh4Minimse
allele (a single base pair replacement) at the Minimsc locus in the eleventh intron of the
Myosin heavy polypeptide 4 gene (chr11:67,244,850, GRCm38/mm10 assembly) (Kelly
et al. 2013). The mini-muscle GOME was serendipitously discovered relatively early in
the High Runner mouse selection experiment, based on systematic muscle dissections
(Garland, Jr. et al. 2002). The Myh4™i"ms¢ a]lele was uncommon in the base population

(frequency ~7%) and the phenotype has only been observed in two of the HR lines and in
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one control line (Garland, Jr. et al. 2002; Syme et al. 2005). Of these lines, C5
apparently lost the allele to drift by generation 36 (Syme et al. 2005), HR3 become fixed
for the Myh4Minimse a]lele by generation 36 (Garland, Jr. et al. 2002; Syme et al. 2005),
and HR6 has remained polymorphic for the allele through generation 98 (unpublished
data; Cadney et al. 2021). Population genetic modeling indicated positive selection on
the allele in the HR lines and either neutrality or negative selection in the C lines
(Garland, Jr. et al. 2002).

When present in the homozygous condition, the Myh4imsc a]lele causes a 50%
reduction of the mass of the triceps surae (calf) muscle, as well as total hindlimb muscle
mass, earning it the name mini-muscle allele or phenotype (Garland, Jr. et al. 2002;
Hannon et al. 2008; Bilodeau et al. 2009; Kelly et al. 2013). The Myh4Mnimse allele has a
variety of pleiotropic effects when in the homozygous condition, such as increasing the
mass of several organs, including the heart, spleen, liver, kidney, lung, stomach, and
soleus muscle (Garland, Jr. ef al. 2002; Swallow et al. 2005; Syme et al. 2005; Guderley
et al. 2006; Hannon et al. 2008; Kelly et al. 2017; and references therein), and altering
the size and/or shape of various skeletal elements (Castro ef al. 2021b; a). Possible
effects in heterozygotes have not yet been studied. Perhaps most relevant for the concept
of multiple responses to selection, mice from line HR3 (fixed for mini-muscle) and mini-
muscle individuals in general tend to run faster but for fewer minutes per day as
compared with the other HR lines (Kelly ef al. 2006; Hannon et al. 2008; Dlugosz et al.

2009; Garland, Jr. ef al. 2011).
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Loci with such far-reaching pleiotropic effects as mini-muscle have great
potential to result in non-additive epistatic effects with other genes, which may enhance
their benefits or compensate their detriments (Pavlicev and Wagner 2012). Thus, we
expected that the genomic basis of high voluntary wheel running in HR3 -- beyond the
change in frequency of this one underlying allele -- would differ from that of the other
three HR lines. Although previous analyses involving all HR lines detected signatures of
selection at various genomic regions (Hillis ef al. 2020), we hypothesized that fixation for
the Myh4™inimse alele in HR3 may mask additional signatures when this genetically
divergent line is included in the analyses. To test this, we have repeated analyses using
single nucleotide polymorphism (SNP) data, dropping each of the HR lines. After
confirming that dropping HR3 produced more novel selection signatures than when
dropping any other HR line, we incorporated additional analyses used by Hillis et al.
(2020) to highlight signatures of selection. Overall, our results illustrate how multiple
solutions and “private” alleles (those unique to one or two lines) can obscure general
signatures of selection involving “public” alleles (those present in all lines)(cf. Partridge

and Gems 2002).
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MATERIALS AND METHODS

High Runner mouse model

As described previously (Swallow et al. 1998; Careau et al. 2013; Hillis et al. 2020), 112
male and 112 female mice were obtained from Harlan Sprague Dawley (outbred Hsd:ICR
strain) in 1993. Following 2 generations of random mating, 10 breeding pairs were
randomly chosen to be founders for each of eight closed lines (generation 0). Four of
these lines were randomly designated as High Runner (HR) lines (lab designated HR3,
HR6, HR7, and HRS), which would undergo selection based on voluntary wheel running.
The remaining four lines would serve as unselected control (C) lines (lab designated C1,
C2, C4, and C5) (Figure 2.1). Each generation, all mice were given access to wheels at
6—8 weeks of age for 6 days. The highest-running (total revolutions on days 5 plus 6)
male and female of each HR family were used to propagate the line (within-family
selection, no sib-mating). This selection criterion was continued even after reaching
selection limits at around generation 17-27 (Careau ef al. 2013). The male and female

from each C family were chosen randomly with respect to wheel running.

Whole-genome sequencing

As described previously (Hillis et al. 2020), DNA was collected from 80 mice (10 from
each line), from generation 61, via phenol-chloroform extraction and sequenced on an
[Mlumina HiSeq 2500 1T platform. Libraries were constructed using Nextera kit and
reads were trimmed and aligned to the GRCm38/mm10 mouse genome assembly as

described in Didion et al. (2016). This generated an average read depth of 12X per
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mouse. SNPs were filtered to keep those with genotype quality (“GQ”) >5, read depth
>3, MAF>0.0126 for all samples (as done by Hillis et al. 2020 to preserve all variable
loci in data set), and Mapping Quality (“MQ”) >30. Of the 80 mice, 1 was excluded due
to likely contamination, as in Xu and Garland (2017), leaving 79 for the following
analyses. SNPs not found to be present in at least 2 of the 80 mice were also removed
from analysis. This leaves 5,932,148 SNPs for analyses involving all 8 lines. The
number decreased when dropping certain lines due to the remaining seven lines being
fixed for the same allele. Although Xu and Garland (2017) had identified these 80 mice
from generation 61 as females, they were in fact all males with exception of one female

from line C5.

Principal Components Analysis

Principal components analysis (PCA) was performed in R with the SNPRelate
library (Zheng et al. 2012). Of the 5,932,148 SNPs variable across all lines (HR and C),

we used 4,679,533 variable SNPs across the 9-10 mice within each of the HR lines.

SNP Analyses Excluding Individual HR Lines

To assess the hypothesis that fixation of the mini-muscle allele would cause HR3 to
differentiate from the other HR lines in genomic regions relevant to wheel-running
behavior, a mixed model ANOVA was used to calculate differentiation between C and
HR lines while dropping each of the other HR lines. The mixed model ANOVA used

minimum variance quadratic unbiased estimation (mivque) method of variance
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estimation (Rao 1971; Xu and Garland 2017). Additionally, p-values and the Aikake
Information Criterion corrected for small sample sizes (AICc) were calculated for four
models with different variance structures (equal within-line variance for HR and C lines,
equal among-line variance, both variances equal, and both variances different) and we
then used AICc scores to choose the best model (following Hillis et al. 2020). The
results of each of these analyses were then compared, with the expectation that more
selection signatures would be present after dropping HR3 as compared with dropping any
other HR line. “Differentiated regions” were defined by the following three-step process.
First, we identified all SNPs differentiated with p-value < 0.001. Second, we considered
that any two such SNPs within Imbp of each other were part of the same region. Finally,
we considered any gap between SNPs (with p <0.001) larger than 1mbp as delineating

separate regions.

Power and Type I Error Simulations

All else being equal, dropping one of the eight lines from the analyses would be expected
to reduce the power to detect differentiation between the HR and C lines, due to the loss
of a denominator degree of freedom. To estimate this expected drop in power, we
performed simulations. Data reflecting the alternative hypothesis were simulated by
taking a region from chromosome 17 that had been shown to be differentiated by Hillis et
al. (2020). Approximately 22,700 SNP loci in this region (chr17:17,846,983-23,586,163)
were variable and were differentiated across the region for the 8-line analyses (mean p-

value = 0.104, median = 0.137, lowest = 7.54E-05, highest = 0.952). To generate
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simulated data, a variable locus was randomly sampled from the region, then the alleles
for each line were created by randomly sampling (with replacement) from the alleles at
that locus for that line. This was done for each of the 8 lines and the whole process was
repeated to produce 100,000 simulated loci. Membership of each line within the set of
either HR or C lines was always retained. Simulated data were analyzed using the multi-
model ANOVA method (Hillis et al. 2020), first with all eight lines and then dropping
each of the HR lines one at a time.

For calculating relative Type I error rate, data reflecting the null hypothesis were
generated with a method similar to that for the power analyses. Alleles were sampled
(with replacement) from a single line in the previously indicated chromosome 17 region,
but then assigned to any of the eight lines at random. This process was repeated for all
eight lines in sequence. 100,000 loci were thus created, and multi-model ANOVA was

performed with all eight lines as well as dropping each of the HR lines.

Haplotype and Non-statistical Analyses Excluding HR3 (mini-muscle)

Following Hillis et al. (2020), we performed two additional analyses to gauge
differentiation between the four C and three HR lines (excluding HR3). First, we used
the haplotype data that were used by Hillis et al. (2020) and applied the mixed model
ANOVA method used for the SNP analyses, dropping HR3. A critical threshold of p <
0.00526 was used for these haplotype analyses, following Hillis et al. (2020). Next, loci
that were fixed for a given allele (either reference or alternative) for all HR lines

(excluding HR3) and simultaneously polymorphic for all C lines, were identified as
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“FixedHR/PolyC” (as in Hillis et al. 2020). Any loci or genomic region identified as
differentiated in all three tests (SNP ANOVA, haplotype ANOVA, and FixedHR/PolyC)
are referred to as “consistent” regions and regarded as having the strongest evidence of
differentiation. Selection signatures implicated by these analyses were compared to those

implicated by analyses including all eight lines (as reported in Hillis et al. 2020).

Gene Annotations and Knockout Phenotyping
Gene annotations were determined using the University of California, Santa Cruz

Genome Browser for GRCm38/mm10 (http://genome.ucsc.edu/, accessed October 2021)

(Kent et al. 2002) and the Rat Genome Database for the GRCm38/mm10 mouse genome

browser (https://rgd.mcw.edu/, accessed May 2022) (Smith et al. 2019). Mouse Genome

Informatics’ Batch Query database was used for the knockout phenotyping

(http://www.informatics.jax.org/batch/, accessed November 2021) (Bult ez al. 2019).

Data Availability Statement

Original data were made available by Hillis et al. (2020) and can be found at

https://doi.org/10.25386/genetics.12436649. Supplemental files can be found at

https://academic.oup.com/genetics/advance-

article/doi/10.1093/genetics/iyac165/6777268 (note that filenames on the website will

exclude “2.”). File S2.1 contains brief descriptions of supplemental tables. Table S2.1
contains all regions with at least 10 SNPs with p <0.001 for any analyses where an HR

line was dropped. Table S2.2 contains results of power analyses performed by sampling
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from a locus in a differentiated region and sampling alleles from each line for that locus
with mixed model analyses used to produce a test statistic for each of 100,000 repetitions
of this sampling method (See Materials and Methods). Table S2.3 contains a list of
annotated genes in the new genomic regions identified only after dropping line HR3, with

content from Entrez database related to current understanding of the genes’ function.
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RESULTS

Principal Components Analysis

PCA across all lines (79 individuals) produced seven eigenvalues >1: PC1 =10.6 (13.6%
of variance), PC2 = 9.4 (12.0% of variance), PC3 = 8.8 (11.3% of variance), PC4 = 8.4
(10.7% of variance), PC5 = 7.9 (10.1% of variance), PC6 = 6.9 (8.9% of variance), and
PC7 = 6.8 (8.7% of variance). The 3D scatterplot of eigenvectors for PC1, PC3, and PC5
demonstrates a clear differentiation between the HR and C lines, and also that HR3
differs from other HR lines (Figure 2.2A).

PCA of the 39 individuals in the HR lines included 4,679,533 variable SNP loci
and produced three eigenvalues >1: PC1 = 10.0 (26.3% of variance), PC2 = 8.8 (23.1%),
and PC3 =7.7 (20.2%). Line HR3 was remarkably different from the other three HR

lines for scores on PC2 (Figure 2.2B,C,D).

SNP Analyses Excluding Individual HR Lines

Each of the analyses dropping one of the HR lines produced some new peaks, as
compared with the original analyses (Figure 2.3). However, dropping HR3 produced
generally lower p-values across the genome than dropping any of the other HR lines
(paired t-test, t =-149.91, -126.2, and -163.56, when comparing results after HR3 to
dropping lines HR6, HR7, and HRS, respectively). The overall reduction in p-values
when dropping HR3 is due largely to the increase in SNPs with p<0.001, which is 4-fold

greater than in the analyses including all 4 HR lines (Table 2.1). More specifically, this
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difference is attributable mainly to a large increase in loci with p-values in this range in
two genomic regions (chr3:46,438,071-52,624,971 and chr10:101,652,005-106,038,129).
Both regions contain some loci with p-values < 1e-03 after dropping any of the other
lines; however, dropping HR3 produces about 40,000 additional loci with low p-values in
these two regions (Table 2.2). Dropping HR8 resulted in a notable increase in loci with
p-values in the 1e-06 to 1e-08 range (Table 2.1), largely due to a single region containing
1,414 loci with uniquely low p-values (chr7:115,169,726-116,129,821) (Table 2.2). This
region contains Sox6, a gene whose knockout phenotypes include abnormal skeletal
muscle fiber type ratio (van Rooij et al. 2009), and was also identified in the original 8-
line analyses (Hillis ef al. 2020).

Although Table 2.1 seems to generally show that dropping HR3 produces more
differentiated regions (N = 75) than dropping any other HR line (N = 63-70), some of
these regions will contain only one or a few SNPs, which may be a result of sampling
error and thus a Type I error (see section on Type I error, below). Therefore, Table 2.2
and Table S2.1 concentrate on those regions with at least 10 SNPs with p <0.001.

Table S2.1 contains all regions with at least 10 SNPs with p <0.001 for any
analyses where an HR line was dropped. Dropping HR3 from the analyses resulted in 34
such regions, which is more than those identified after dropping any of the other HR lines
(noHR6 = 23 regions, noHR7 = 27 regions, and noHR8 = 19) and also more than the 21
regions that were produced when analyzing all eight lines.

The 45 regions listed in Table 2.2 are a subset of those shown in Table S2.1,

excluding regions where similar numbers of SNPs with p <0.001 were produced when
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dropping any HR line. The regions in Table 2.2 are highlighted because they are where
the HR lines responded differently from each other to the selection protocol. This leaves
regions with (1) at least 10 SNPs with p < 0.001 after dropping only one specific HR line
(e.g., chrl:155,052,375-157,767,127, see Figure 2.4 for illustration) or (2) a substantial
increase in significant loci when dropping a specific line (e.g., chr3:46,438,071-
52,624,971). Of the 45 regions listed in Table 2.2, dropping the line fixed for Myh4Minimse
(HR3) produced more of these unique regions than dropping any other line (19 regions
for HR3, 8 regions for HR6, 12 regions for HR7, and 6 regions for HRS).

Although none of the SNPs were fixed for opposite alleles between all 4 HR and
4 C lines (Hillis et al. 2020), dropping individual lines did produce some loci where the
remaining C and HR lines were fixed for opposite alleles (Table 2.3). When dropping
HR3, 155 SNPs are fixed for opposite alleles between the C and HR lines, clustered in 4

regions. Dropping any other HR line produces 0-3 such regions (Table 2.3).

Power and Type I Error Simulations

Dropping any one of the eight lines generally reduced the number of p-values lower than
0.05 and lower than other relevant significance thresholds, although the difference was
sometimes negligible (Table S2.2). Overall, these comparisons suggest that, as would be
expected, the statistical power to detect differentiation between the HR and C lines is
reduced when an HR line is excluded from the analyses.

The relative change in p-value appears to increase as the p-value decreases. For

example, those loci whose 8-line analyses produced a p-value in the 0.05 <p <0.01
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range, had an average increase in p-value by about 0.045-fold when a line was dropped,
whereas loci whose 8-line analyses produce a p-value < 1.00E-05 had an average increase
of about 0.366-fold in p-values when a line was dropped.

Table 2.4 illustrates that Type I error rates for a = 0.05 are deflated in the 8-line
analyses, as was noted previously (Hillis ef al. 2020), and a similar deflation occurs for a
=0.01. Dropping an HR line from the analyses increases the Type I error rate for both a
=0.05 and o =0.01 (Table 2.4). For a =0.001, the Type I error rates were inflated for
both the 8-line analyses (0.00319) and when dropping a line (range = 0.00276 to
0.00286), and even more so for o = 0.0001 (range = 0.00060 to 0.00078). For some of
the p thresholds (e.g., p <0.001), the increase was quite large relative to the Type I error
rate for the 8-line analyses (Table 2.4).

To compare Type I error rate to the p-values for the real data, total p-values below
each of these thresholds (found in Table 2.1) were scaled to be out of 100,000 to match
the simulation. When the estimated Type I error rate (Table 2.4) is subtracted from the
frequency of calculated total positives (scaled from Table 2.1), many signatures of

selection remain, particularly when dropping HR3 (Table 2.4).

Haplotype and Non-statistical Analyses Excluding HR3 (mini-muscle)

Hillis et al. (2020) had identified 13 “consistent” regions (i.e., differentiated in SNP
ANOVA, haplotype ANOVA, and FixedHR/PolyC) when performing analyses using all
8 lines. All 13 of those regions are listed in Table 2.5, including one region

(chr16:40,742,298-41,357,426) that was inadvertently not identified as consistent by
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Hillis et al. (2020). When dropping HR3 from the analyses, 17 regions were identified as
consistent, 7 of which were not identified in the 8-line analyses by any of the three
analytical methods (Table 2.5). These seven regions included genes associated with
systems known to be different in the HR lines as compared with the C lines, including
skeletal, heart, and neuronal development (see Discussion). For completeness, Table 2.5
also lists 15 additional regions identified by at least two of the three analytical approaches

when dropping HR3.
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DISCUSSION

In the present study, we took advantage of the serendipitous discovery of a gene of major
effect, named mini-muscle, which is part of the adaptive response to selection for high
voluntary wheel running (see Introduction). Given its major effect on muscle mass and
fiber type composition, the observation that mini-muscle mice (and line HR3 in general)
tend to run faster but for fewer minutes per day, as well as its pervasive pleiotropic
effects on other behaviors, physiological traits, and organ sizes, we hypothesized that line
HR3, which became fixed for the Myh4™™¢ allele, would show evidence of multiple
solutions at the genomic level, as compared with the other three HR lines. Our results
provide substantial support for this hypothesis, and encourage the application of similar

analytical approaches to other replicated selection experiments.

SNP Analyses Excluding Individual HR Lines

Much of the increase in significant SNPs that we see when dropping HR3 can be
attributed to two regions, chr3:46,438,071-52,624,971 and chr10:101,652,005-
106,038,129 (Table 2.2), which had been identified by the 8-line analyses (Hillis et al.
2020). Because these regions were also detected with the 8-line analyses, it stands to
reason that they responded to selection in all four HR lines. However, the wider areas
implicated by the other three HR lines may correspond to stronger selection and hence a
faster response to selection, as compared with HR3, thus not allowing sufficient time for
recombination to break the haplotype in the other three HR lines (Smith and Haigh 1974;

Kaplan ef al. 1989; Kim and Stephan 2002).
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Multiple Solutions among the HR Lines
A new genomic region that emerges as statistically significant only after dropping one of
the HR lines (i.e., 4 C lines vs 3 HR lines) implies: (1) the region is likely relevant to
wheel-running behavior (though not as strongly supported as genomic regions identified
with all 4 HR lines) and (2) the HR line that was dropped does not show the same
response to selection as the other 3 HR lines (Figure 2.5). Therefore, each of the 37 new
regions listed in Table 2.2 may be thought of as relevant to voluntary wheel running in 3
of the 4 HR lines, thus providing evidence of “multiple solutions” at the genomic level.
Possible explanations for different responses to selection among the HR lines
include:
e Founder effects. Different starting allele frequencies (i.e., founder effects, sensu
Mayr 1942) could alter the response to selection (James 1970; Simdes et al.
2008). For example, if certain biologically significant loci were already fixed or
close to fixed in a given line, then that line would be forced to respond to
selection via changes at other loci. The Myh4Minimse a]lele was present in the base
population at a frequency of ~7%, and so may have been absent in some lines
(Garland, Jr. et al. 2002), although the probability is low even for lines that were
not observed to have the phenotype (~0.07, based on calculation of posterior
probabilities). Indeed, the phenotype was only ever observed in one C line and in

two HR lines (e.g., see Figure 1 in Garland, Jr. et al. 2002).
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Random genetic drift. Following the founding of a small population, if the
effective population size remains low, then drift may eliminate an allele despite
some positive selection (or fix an allele despite some negative selection). This
would be especially likely to occur for an allele that was present at a low
frequency when the experiment began, such as Myh4Mnimse  Thus, drift can
exacerbate founder effects and constrain the genetic options available to a given
population.

Epistatic effects. If an allele with large epistatic effects (non-additive interactions
with alleles at other loci) increases in frequency within a given line, then
substantial changes in allele frequencies at the epistatically related loci would be
expected. For example, if allele A at the A locus positively affects wheel running,
then alleles at other loci that increase wheel running only when allele A is present
will be favored by selection only when allele A is present. If allele A were
present in only some populations under uniform selection, then the likelihood of
multiple adaptive response would be increased.

Selection limits and constraints. Suppose that mice are subject to a constraint on
wheel running caused by joint pain: they stop running when the pain becomes
intolerable. In this scenario, joint pain is sufficient to limit wheel running and it
serves as a “weak link” in the physiological and neurobiological systems that are
required for high levels of wheel running. Then suppose 10 alleles located at 10
independent biallelic loci, with entirely additive effects, are capable of increasing

wheel running. Suppose further that only five such alleles are needed to achieve
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the amount of wheel running that causes intolerable joint pain. In such a scenario,
fixation of the favorable allele at any five of the loci will coincide with a selection

limit, but these alleles may be different among replicate lines.

Signatures of Selection after Dropping One Line at a Time

Although no loci were fixed for opposite alleles between the HR and C linetypes in Hillis
et al. (2020) when considering all 8 lines, dropping any one HR or C line from the SNP
analyses usually produced loci fixed for opposite alleles between the different linetypes
(Table 2.3). These SNPs unsurprisingly tend to be clustered into specific regions
(separated by at least 1 mbp), some of which have been detected either in the present
study or by Hillis et al. (2020). Most of the regions listed in Table 2.3 were also
identified by the 8-line SNP analyses, which may suggest that the dropped line is not
drastically different from the others within its linetype. However, three new regions
emerge.

The first new region is seen after dropping C1 (Chr16:4,429,565-5,003,974) and
contains various genes whose knockouts have been associated with heart morphology
(Yoshida et al. 2005; Hayashi et al. 2006; Cota et al. 2006; The International Mouse
Phenotyping Consortium et al. 2016). Since all of the HR lines fixed for the same allele,
this would not be an example of different responses to selection, but an example of
variation among control lines disrupting our ability to detect selection signatures in the

HR lines.
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The second and third regions were identified by dropping HR3 and HRS,
respectively (Table 2.3). These regions might implicate different responses to selection
among the HR lines. One of these regions contains the Sox6 gene described above and
by Hillis et al. (2020) for its effect in regulating muscle fiber type, hematopoiesis, bone
growth and heart function (Smits ef al. 2001; van Rooij et al. 2009). While 3 of the HR
lines were fixed for the reference allele, HR8 became fixed for the alternate allele. The
region identified when dropping HR3 (Chr5:133,019,521-133,451,500) does not contain
any annotated sequences. Some possible explanations include: a relevant gene being
present but simply not yet annotated; this region serving an unknown regulatory role for
other genes; or this region having undergone this fixation pattern purely by drift (i.e., it
does not influence running behavior). One potential gene regulated by this region would
be Auts2 (approximately 480 kbp downstream of the region), which has been implicated
in neurodevelopment (Oksenberg and Ahituv 2013). Auts?2 is also thought to be
associated with the Runx/ pathway: an intriguing association when Runx2 is found in a

separate region identified when dropping HR3 (Table 2.6).

Variation in Olfactory Response to Selection

Olfaction is known to play an important role in some motivated behaviors (Nielsen
2017). Our previous 8-line analyses showed that several vomeronasal genes have
responded consistently to selection (Hillis et al. 2020; Nguyen et al. 2020). The
vomeronasal organ is part of the overall olfactory system and functions primarily to

detect non-volatile organic compounds. Table 2.2 includes regions with genes that have
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an olfactory, but not vomeronasal, function. These regions were identified when
dropping lines HR3, HR6 or HR7, with a different region appearing important after
dropping each of the lines (HR3 = chr11:73,267,237-74,873,424; HR6 =
chr9:38,651,820-39,097,109; HR7 = chr14:51,204,847-54,600,493). We interpret this as
evidence for multiple solutions occurring in a given physiological system, at two
different levels. In other words, olfaction seems to be important in the evolution of the
HR phenotype (Dewan et al. 2019), and this may occur by either vomeronasal or non-
vomeronasal pathways (or both). Although multiple vomeronasal genes in multiple
regions on multiple chromosomes were identified in the previous 8-line analyses, here we
did not find evidence of differences among the HR lines for these genes. However, we
did find that multiple non-vomeronasal olfactory genes seem to have been important in

the response to selection, and with different genes being important in different HR lines.

Power and Type I Error Simulations

An increase in Type I error rate when dealing with low sample size is not a new
observation for some types of genetic data (Baldi and Long 2001). In any case, the
inflated Type I error rate may draw into question some of our “significant” results for the
7-line analyses in Table 2.2. To gauge the magnitude of this problem, we subtracted the
expected false positives (Table 2.4) from our total positives (scaled from Table 2.1). As
shown in Table 2.4, dropping HR3 produces many more p-values of 0.001 or lower than

expected under the null hypothesis, and more than when dropping any of the other lines.
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This observation increases our confidence that the genomic response to selection by line

HR3 truly differs from that of the other three HR lines.

Chromosomal Regions Identified When Excluding HR3

Despite the many expected similarities between the 8-line analyses and analyses dropping
HR3, the present study identifies seven genomic regions implicated by all three tests
(SNPs, haplotype, and FixedHR/PolyC) that were not identified by any tests when
analyzed with all 8 lines (Table 2.6). These regions contained nearly 61 genes; however,
three in particular caught our attention, Ncaml, Drd2, and Minar2.

Ncaml codes for a cell adhesion protein whose knockouts are associated with
altered hippocampus, cerebellum, and olfactory bulb development (Tomasiewicz ef al.
1993; Holst et al. 1998), as well as shortened circadian period (Shen et al. 2001).
Differential circadian rhythms have been found by Koteja et al. (2003), who showed that
HR mice have a shorter free-running period (tau) under both constant dark and constant
light. Additionally, human GWAS have implicated Ncam! in playing a role in heel bone
mineral density (Kim 2018; 23andMe Research Team et al. 2019¢) and addictive
behaviors, specifically smoking (Kichaev ef al. 2019; 23andMe Research Team et al.
2019a; b). Several bone differences between HR and C lines have been documented
(particularly in limb bone size and shape). This includes a number of differences
between mini- and normal-muscled mice (Kelly et al. 2006; Middleton et al. 2008, 2010;
Wallace et al. 2010, 2012; Castro et al. 2021a). Moreover, HR mice show withdrawal

symptoms when wheel access is removed (Kolb et al. 2013).
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Hippocampal function in the HR lines has been explored through indirect
methods (Rhodes et al. 2003; Johnson et al. 2003; Bronikowski et al. 2004). For
example, Bronikowski et al. (2004) found some genes related to transcription and
translation that had increased expression in the hippocampus in HR versus C lines,
whereas some associated with neuronal signaling and immune function had decreased
expression in HR mice. The HR lines also had increased brain-derived neurotrophic
factor in the hippocampus after having access to wheels for 7 days (Johnson et al. 2003).
As for response to wheel running, the C lines showed a positive correlation between
wheel running and neurogenesis in the dentate gyrus of the hippocampus, whereas the
HR mice did not, with all HR mice having a high level of neurogenesis (Rhodes et al.
2003). Moreover, wheel access improved learning in the Morris water maze for C mice
but not for HR mice. With body mass as a covariate, Schmill (2021) found that the total
volume of the hippocampus is larger in HR than C mice, both for animals housed with
wheels for 10 weeks and those housed without wheels.

Drd? is a dopamine receptor that has been associated with a wide variety of
disorders, addictions, and compulsive behaviors (Blum et al. 1995; Hung Choy Wong et
al. 2000; Noble 2003; Bronikowski ef al. 2004; Munafo et al. 2004; Foll et al. 2009).
Drd? has also been tied to wheel running in mice based on differential expression in
high- and low-running lines (C57L/J and C3H/HeJ, respectively) (Dawes et al. 2014).
Additionally, Drd2 knockouts have altered wheel-running behavior (Roberts et al. 2017).

When line HR8 was compared to stock ICR mice, significant differences in

expression of Drdla and Drd?2 receptors (downregulated in HR8) were found in the
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dorsal striatum (Mathes et al. 2010). Additionally, HR and C mice in the wheel-running
response to cocaine (Rhodes et al. 2001). Though surprisingly, Drd2 receptor antagonist
does not appear to cause a different response in the HR lines than control (Rhodes and
Garland, Jr. 2003); however, this study did not separate HR3 or other mini-muscle mice
in the analyses.

Minar2 is a NOTCH2-associated receptor whose knockouts have been associated
with altered bone structure (The International Mouse Phenotyping Consortium et al.
2016), impaired coordination and gait (Ho et al. 2020), decreased body mass and length
(The International Mouse Phenotyping Consortium ef al. 2016), and loss of dopaminergic
neurons (Ho et al. 2020). Mice from the HR lines are generally smaller than the C lines,
and differ in bone properties (see above), dopaminergic function (see above), and some
aspects of gait during treadmill running (e.g., see Swallow et al. 1999; Rhodes et al.

2001; Girard et al. 2007; Garland, Jr. et al. 2011; Claghorn et al. 2017).

Limitations of the present study and concluding remarks

Given the complexity of voluntary wheel-running behavior, identical evolutionary
pathways in the 4 replicate HR lines would be highly unlikely. The fixation of the
Myh4Miimse gllele in just line HR3 is a clear example an alternative "solution" to selection
that favors high activity levels. Here we show that the other 3 HR lines also show
evidence of somewhat unique responses to selection (Table 2.2). However, HR3
seemingly stands out from the rest of the HR lines. As explained in the Introduction, a

plausible explanation for this is that the Myh4™™"ims¢ a]lele has such large direct and
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pleiotropic effects (particularly in systems relevant for wheel running) that much of the
rest of the genome has had to evolve differently in response. We would also note that
HR3 has higher heterozygosity than any other line (including C lines) (Hillis et al. 2020).

Although the Mixed Model method using multiple models and mivque variance
estimation seems to be a relatively powerful method of analyzing these data (Xu and
Garland 2017; Hillis et al. 2020), dropping lines negatively impacts power and inflates
Type I error rates (Table 2.4). More powerful analytical methods may need to be
developed to better identify signatures of selection. One possibility may be to
incorporate inferences similar to those described by Baldi and Long (2001) to offset the
low sample size. Genomic data from generations closer to when the selection limit was
reached may also reduce the Type I errors produced by drift, allowing for better detection
of true positive results. Additionally, the present study does not perform any functional
analyses of the suggested genes to establish a causal relationship between the gene and
wheel-running behavior or other phenotypes suggested by KO studies (see above).
Further studies are needed to establish these functional connections within the HR mice
or at least to demonstrate that KO mice for these genes differ from wildtype in wheel
running when measured under conditions similar to those used in the HR selection
experiment.

A noteworthy question that the present study does not address is: why did HR3
become fixed for the Myh4™imsc allele while HR6 has remained heterozygous despite
continued selection? Possible explanations for this include heterozygote advantage or

epistatic interactions with loci unique to HR6. These ideas could be tested by genomic
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analyses of current or historical (e.g., see Kelly et al. 2013) samples and associating
genotype with wheel-running and other relevant phenotypes. In addition, the differences
between mini-muscle and normal-muscled individuals for some muscle properties are
greater in HR3 than in HR6 (Guderley et al. 2006), suggesting that selection favoring this
phenotype may have been stronger in HR3.

Despite the limitations discussed above, the present study was able to identify
seven new genomic regions of differentiation in 3 of the lines bred for high voluntary
wheel running, as compared with the 4 non-selected Control lines. These regions contain
genes that are both intuitive for voluntary-exercise behavior and correlate to known
phenotypic differences between the High Runner and Control lines. These regions also
highlight some of the genomic differences between HR3 and the other HR lines, enabling
us to begin to address multiple solutions in response to uniform selection.

Selection experiments involving replicate lines have demonstrated both similar
and varying responses to selection (Garland, Jr. and Rose 2009a). Supporting the latter
possibility, Ernst Mayr (1961, p. 1505) once wrote that "Breeders and students of natural
selection have discovered again and again that independent parallel lines exposed to the
same selection pressures will respond at different rates and with different effects, none of
them predictable." On the other hand, replicates involving asexually reproducing bacteria
typically tend to implicate the same genes or pathways, although not necessarily the same
SNPs (Long et al. 2015). For example, Tenaillon et al. (2012) demonstrated that
evolving 115 populations of E. coli for survival at increased temperatures resulted in

replicates consistently implicating a limited number of genes. However, despite regular
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patterns in mutated genes, favorable mutations in the 7o gene deterred the mutations that
would normally have been favorable in the 7poBC gene, implicating a potential
alternative solution.

Evolution of replicate Drosophila lines commonly results in similar responses to
selection (Long et al. 2015). An example of this would be selection on Drosophila
melanogaster wing venation (Cohan 1984a). Conversely, Cohan and Hoffmann (1986)
identified different responses to selection for alcohol tolerance in Drosophila
melanogaster. The alcohol tolerance experiment began with different populations of flies
taken from different geographic areas and so differences in starting genetic background is
a potential explanation for these different responses. However, even with different
populations, Cohan and Hoffmann (1986) concluded that genetic drift was no less a
driving force in differential response to selection than genetic background. Furthermore,
Cohan et al. (1989) later showed that models assuming large epistatic interactions were
less consistent with response to selection than models assuming pure additivity. Epistatic
interactions have commonly been found to influence outbred populations, potentially
because recombination allows beneficial mutations to be found in a variety of alleles and
genetic backgrounds (Long ef al. 2015).

Given the large size of the commercial breeding colony from which our base
population of 224 mice derived and with two generations of random mating in our lab
before being divided into eight closed lines (Swallow et al. 1998; Carter et al. 1999;
Girard et al. 2002), the replicate HR and C lines should have started with largel