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Small planets, 1–4× the size of Earth, are extremely common
around Sun-like stars, and surprisingly so, as they are missing in
our solar system. Recent detections have yielded enough informa-
tion about this class of exoplanets to begin characterizing their
occurrence rates, orbits, masses, densities, and internal structures.
The Kepler mission finds the smallest planets to be most common,
as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital
periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4×
the incident stellar flux that warms our Earth. These Earth-size
planets are sprinkled uniformly with orbital distance (logarithmi-
cally) out to 0.4 the Earth–Sun distance, and probably beyond. Mass
measurements for 33 transiting planets of 1–4 R⊕ show that the
smallest of them, R < 1.5 R⊕, have the density expected for rocky
planets. Their densities increase with increasing radius, likely caused
by gravitational compression. Including solar system planets yields
a relation: ρ=2:32+ 3:19R=R⊕  [g cm−3]. Larger planets, in the
radius range 1.5–4.0 R⊕, have densities that decline with increasing
radius, revealing increasing amounts of low-density material (H and
He or ices) in an envelope surrounding a rocky core, befitting the
appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferen-
tially around stars that are rich in heavy elements, while rocky
planets occur around stars having a range of heavy element abun-
dances. Defining habitable zones remains difficult, without benefit
of either detections of life elsewhere or an understanding of life’s
biochemical origins.

extrasolar planets | astrobiology | SETI

NASA’s Keplermission astonishingly revealed a preponderance
of planets having sizes between 1 and 4 times the diameter of

Earth (1–5). Our solar system has no planets larger than Earth and
smaller than Neptune (3.9 R⊕ ). As such, these new planets are
poorly understood. Uranus and Neptune provide clues: they have
rocky cores of ∼10 M⊕ , enveloped by modest amounts of H and
He gas. However, the clues are limited by the difficulty in explaining
only modest amounts of gas with standard models of runaway gas
accretion in the protoplanetary disk (6–9). Planet formation models
face another challenge, as they predicted very few planets with final
sizes 1–4 R⊕ (10–12).
This great population of sub-Neptune-mass exoplanets had first

been revealed by precise Doppler surveys of stars within 50 par-
secs (pc) (13, 14), a finding that Kepler ’s discoveries confirm.
While most of the over 3,000 1–4 R⊕ planets found by Kepler are
officially only ‘‘candidates,’’ 90% of those candidates are real
planets (5, 15, 16). After accounting for detection efficiencies, one
may calculate the occurrence rate of small planets, which reveals
that the majority of planets orbiting within 1 AU (the distance
from Sun to Earth) of solar-type stars, both those near (RV
surveys; i.e., radial velocity surveys that measure the wobble of the
star by the Doppler effect) and far (Kepler survey), are smaller
than Uranus and Neptune (i.e., <∼ 4 R⊕ ), as described below.

Occurrence Rates of 1–4 R⊕ Planets
Kepler is superior to RV surveys for measuring occurrence rates
of planets down to 1 R⊕ because it is better at detecting those

planets. The Doppler reflex velocity of an Earth-size planet
orbiting at 0.3 AU is only 0.2 m s−1, difficult to detect with an
observational precision of 1 m s−1. However, such Earth-size
planets show up as a ∼10-sigma dimming of the host star after
coadding the brightness measurements from each transit.
The occurrence rate of Earth-size planets is a major goal of

exoplanet science. With three years of Kepler photometry in
hand, two groups worked to account for the detection biases in
Kepler planet detection caused by photometric noise, orbital in-
clination, and the completeness of the Kepler transiting-planet
detection pipeline (4, 5, 17). They found that within 0.25 AU of
solar-type stars, small planets of 1–3× the size of Earth orbit ∼30 ±
5% of Sun-like stars. In contrast, only 2 ± 1% have larger planets
of Neptune size (4–6 R⊕ ), and only 0.5% have Jupiter-size planets
(8–11 R⊕ ) orbiting that close (4, 17). Intriguingly, the occurrence
rate of close-in Jupiter-size planets found around stars in the Kepler
field of view seems to be about half that found around nearby stars,
a difference not understood (18).
A new planet search of nearly 4 y of Kepler photometry

revealed planets as small as 1 R⊕ and orbital periods up to 200 d
(19). In this tour de force, found 603 planets were found, in-
cluding 8 planets having sizes 1–2 R⊕ that receive 1–4× the in-
cident stellar light flux that the Earth enjoys. This new search
accounted for detectability efficiency of the smallest, Earth-size
planets by injecting into the Kepler brightness measurements
synthetic dimmings caused by fake planets, and noting the de-
tection success rate. This ‘‘injection and recovery’’ of fake Earth-
size planets yields a quantitative correction for efficiency, allowing
determination of the true occurrence rate of Earth-size planets.
Fig. 1 shows the resulting fraction of Sun-like stars having

planets of different sizes (19) with orbital periods of 5–100 d. The

Significance

Among the nearly 4,000 planets known around other stars, the
most common are 1–4× the size of Earth. A quarter of Sun-like
stars have such planets orbiting within half an Earth’s orbital
distance of them, and more surely orbit farther out. Measure-
ments of density show that the smallest planets are mostly
rocky while the bigger ones have rocky cores fluffed out with
hydrogen and helium gas, and likely water, befitting the term
‘‘mini-Neptunes.’’ The division between these two regimes is
near 1.5 R⊕. Considering exoplanet hospitality, 11% of Sun-like
stars have a planet of 1–2× the size of Earth that receives be-
tween 1.0–4.0× the incident stellar light that our Earth enjoys.
However, we remain ignorant of the origins of, and existence of,
exobiology, leaving the location of the habitable zone uncertain.
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lowest two bins show that 26.2% of Sun-like stars have a planets of
size, 1–2 R⊕ , with orbital periods under 100 d. Planets as large as
Jupiter (11.2 R⊕ ) and Saturn (9.5 R⊕ ) are more rare, occurring
around less than ∼1% of Sun-like stars in such orbits. We do not
know if the drop-off for the smallest planets is real, a statistical
fluctuation, or an incomplete bias correction.
Fig. 2 shows the resulting occurrence rate of planets around

Sun-like stars as a function of orbital period. The rate is about
15% at all orbital periods, within bins of multiples of orbital
period (i.e., 10–20 d, 20–40 d, 40–80 d), as shown in Fig. 2. This
constant planet occurrence with increasing orbital distance, in
equal logarithmic bins, surely informs planet formation theory.
Indeed, we know of no theoretical cause of major discontinuities
in planet formation efficiency inside 1 AU. No phase changes of
major planet-building material occur in that region. A smoothly
varying occurrence rate, both observed and theoretically, sup-
ports mild extrapolations of planet occurrence rates beyond or-
bital periods of 100 d where the measured rates are empirically
secure (19).
Spectroscopy of the host stars of the Earth-size planets yields

their luminosities, providing a measure of the incident stellar
light fluxes falling on the planets. This analysis shows 11% of
Sun-like stars have a planet of 1–2 R⊕ that receives 1–4× the
incident stellar flux that warms our Earth. We note that all 10
such planets detected in Petigura et al. (19) orbit stars with sizes
0.5–0.8 solar radii, i.e., smaller than the Sun. The occurrence of
Earth-size planet for Sun-size stars may be somewhat different. It
is likely that a similar number of Sun-like stars (11%) have 1–2
R⊕ planets that receive 1/4–1× the incident flux that Earth
enjoys. Thus, if one were to extrapolate to planets receiving 1/4–
1× the incident flux of Earth, ∼22% of Sun-like stars have a 1–2
R⊕ planet that receives warming starlight within a factor of 4 of
that enjoyed by our Earth, yielding similar surface temperatures,
depending on surface reflectivity and greenhouse effects.

Properties: Masses, Radii, and Densities
Although 1–4 R⊕ planets are common, the theory of their
interior structures and chemical compositions is under active
investigation (20–28). The measured radii, masses, and densities
of small planets constrain the relative amounts of iron and
nickel, silicate rock, water, and H and He gas inside the planets.
However, the measurements of planet radius and mass leave

degeneracies in the interior composition. Even Uranus and Nep-
tune, which have precisely measured gravitational fields, have
compositional degeneracies (29). The interior compositions of
small exoplanets are similarly compromised by the possible dif-
ferent admixtures of the rock, water, and gas. Nonetheless, sys-
tematic correlations surely exist between planet mass, radius,
orbital distance, and stellar type (28, 30−32), making measure-
ments of exoplanet radii and masses useful for understanding the
key processes of their formation.
Radii of exoplanets are measured based on the fractional

dimming of host stars as planets transit and are known for all
Kepler objects of interest. Planet masses require additional obser-
vations, and stem from Doppler-measured reflex motion of the
host star or from variations in the cadence of the planet crossing in
front of the star each orbit (transit-timing variations, TTV) caused
by planets pulling gravitationally on each other.
To date, 33 planets of 1–4 R⊕ have measured radii and masses

with better than 2-σ quoted accuracy. The Kepler Team recently
announced the masses and radii of 16 small transiting planets,
doubling the number of such well-studied planets (16), and the
TTV of Kepler-11 planet system and other Kepler Objects of In-
terest (KOI) have provided additional measured masses (32−34).
Fig. 3 shows two representative applications of the Doppler

technique to determine planet masses for Kepler-78 and Kepler-
406. Each star reveals repeated dimmings in Kepler photometry
due to their transiting planets with orbital periods of 8.5 h and
2.43 d (2), giving planet radii of 1.20 and 1.41 R⊕ , respectively.
Doppler measurements exhibit periodicites in phase with the orbit,
yielding the reflex velocities of the star and hence the masses of
both planets, 1.69 and 4.71 M⊕ , respectively. The resulting den-
sities of the two planets are 5.3 ±1.8 g cm−3 and 9.2 ± 3.3 g cm−3,
respectively, both consistent with a purely rocky interior (16, 35,
36). (For reference, the Earth’s bulk density is 5.5 g cm−3.) These
Doppler measurements are expensive, requiring ∼45-min expo-
sures with the world’s largest telescopes on 50–100 different nights,
while maintaining a Doppler zero-point with a precision of 1 m s−1,
i.e., measuring wavelengths to nine significant digits.
In the analysis that follows, we include both Doppler-

determined and TTV-determined planet masses. It is worth
noting that the TTV planet masses are mostly lower than the
RV-determined masses for given radii (although Doppler and
TTV measurements of the same planets agree), for reasons not
understood (32). Perhaps multiplanet systems, which allow TTV

Fig. 1. The size distribution for planets around Sun-like stars. The fraction
of Sun-like stars (G- and K-type) hosting planets of a given planet radius are
tallied in equal logarithmic bins. Only planets with orbital periods of 5–100 d
(corresponding to orbital distances of 0.05–0.42 AU) are included. Together,
the lowest two bins show that 26% of Sun-like stars have planets of 1–2 R⊕

orbiting within ∼0.4 AU. The occurrences of Neptune-size planets (2.8–4 R⊕ )
and gas-giant planets (8–11 R⊕ ) are 5.9% and 0.9%, respectively, more rare
than Earth-size planets (19).

Fig. 2. The fraction of Sun-like stars having planets larger than Earth and
within ∼0.4 AU, as a function of the planets’ orbital periods (log scale). The
occurrence of planets is roughly constant, ∼15%, in period bins sized by
equal factors of 2 in orbital period between 12 and 100 d. Thus, planet oc-
currence is roughly constant with orbital distance, dN/dlog a = constant, in
the inner regions of planetary systems (19).
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measurements, survive dynamically only if the planet masses are
low enough to limit catastrophic dynamical chaos.
All 33 transiting 1–4 R⊕ planets with measured radii, (>2-σ)

masses, and densities were vetted in detail (32). We explore
the interdependencies among these three measured quantities for
1–4 R⊕ planets in Figs. 4 and 5. Fig. 4 shows planet density as
a function of radius for all 33 known exoplanets smaller than 4 R⊕
(dots). We also include Mars, Venus, and Earth (diamonds at left)
and Uranus and Neptune (diamonds at right) as touchstones. The
planets reveal a dichotomy in their densities: those larger than 2
R⊕ are, with one exception, lower density than Earth, indicating
their interiors contain substantial volumes of nonrocky, low-density
material. For planets larger than 1.5 R⊕ , density declines with
increasing radius; bigger planets have increasing amounts of low-
density gas.
By contrast, the smallest planets (1–1.5 R⊕ ) all have measured

densities above 5 g cm−3, consistent with interiors of rock (sili-
cate) and iron−nickel. Indeed, although the scatter is large, the
planets smaller than 1.5 R⊕ have measured densities that in-
crease with increasing radius (left side of Fig. 4). The highest
densities occur near a planet radius of ∼1.5 R⊕ , at which value
the average planet density is 7.6 g cm−3 (32, 37), indicating
purely rocky interiors.
Among the prominent examples of planets with size 1.5–4.0

R⊕ and subrocky densities are GJ 1214 b (38–41) with a radius
of 2.68 R⊕ and a mass of only 6.55 M⊕ , yielding a bulk density
of 1.87 g cm−3. For comparison, Uranus and Neptune have
densities of 1.27 and 1.63 g cm−3, respectively, well below Earth’s
(5.51 g cm−3). Similarly, the five inner planets around Kepler-11,
as well as the exoplanets GJ 3470 b, 55 Cnc e, and Kepler-68 b,
all have densities less than 5 g cm−3, with some under 1 g cm−3

(33, 42–46). Thus, as shown in Fig. 4, planets of 2–4 R⊕ have
densities too low to be mostly rock by volume.
Even larger planets, 4–6 R⊕ , have densities that are even

lower, near 1.0 g cm−3 (47, 48). Jupiter and Saturn in our solar
system similarly have densities near unity, due to large amounts
of gas. Similarly, the sub-Earth bulk densities of planets larger
than 2 R⊕ indicate that they contain significant amounts of H
and He and probably some water (49–52).
In contrast, the following planets with radii less than 2 R⊕ all

have 2-σ measured densities over 5 g cm−3: CoRoT 7b, Kepler-
10b, Kepler-36b, KOI-1843.03, Kepler-78b, Kepler 406b, Kepler
100b, Kepler 113b, and Kepler 99b (16, 35, 36, 53–57). These are
the known rocky exoplanets, all validated as real at the 99%
confidence level. All of them are smaller than 1.5 R⊕ .
Thus, we find a density dichotomy, with the dividing radius

being near 1.5 R⊕ . Planets smaller than 1.5 R⊕ have densities
consistent with a predominantly rocky interior, while those larger
than 1.5 R⊕ appear to contain increasing amounts of gas with
increasing radius (28, 30, 31, 37, 52).

Structure: Core-Envelope Model of 1–4 R⊕ Planets
The two domains of 1–4 R⊕ planets, separated at 1.5 R⊕ , mo-
tivate separate treatment of the mass−radius relationship in each
domain. An empirical fit to the density−radius relation provides
a way to explore the ratio of rocky to low-density material in
some detail. We fit a linear relation to density as function of
radius for all planets smaller than 1.5 R⊕ . We restrict ourselves
to a linear relation in this domain because the density mea-
surements have large errors and because of the modest com-
pressibility of rock.
In performing the weighted fit, we include all 22 exoplanets

with radius and mass measurements, regardless of the quality of
the mass measurement, to mitigate any bias in mass (32). This
linear fit includes the four solar system rocky planets with uncer-
tainties of 10% in density so that they do not dominate the fit. We
note that both the exoplanets and solar system planets exhibit an
increase in density with increasing radius. The mass−density de-
pendence for exoplanets is anchored with Kepler-78b having R =
1.2 R⊕ and ρ=5.3–5.6 g cm−3 while the other exoplanets between
1.4–1.5 R⊕ have mostly higher densities between 7 and 14 g cm−3,
albeit with large uncertainties (Fig. 4).
By including exoplanets having measured masses that are

marginally significant, we promote a statistically useful repre-
sentation of planets of all masses at a given planet radius (16, 32,
37). For all planets smaller than 1.5 R⊕ , a linear fit to density as
a function of radius yields

ρ= 2:32+ 3:19R=R⊕ ðfor R< 1:5R⊕ Þ

as described in (32). This linear relation is displayed as the
dashed line in Fig. 4, and is translated into a mass−radius re-
lation in Fig. 5. The linear relation reveals a modest increase in
density with increasing planet size up to 1.5 R⊕ , likely due to
gravitational compression. Among the exoplanets alone (without
the solar system planets), the apparent rise in density with radius
hinges precariously on the smallest exoplanet, Kepler-78b. We
emphasize that the two constants in this linear relation are heavily
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Fig. 3. Doppler measurements made during the orbits of the exoplanets
Kepler-78 (Left) and Kepler-406 (Right), stars that harbor planets with radii
of 1.20 and 1.41 R⊕ , respectively. The Doppler measurements show a sinu-
soidal periodicity, yielding masses corresponding to densities of 5.3 ±
1.8 g cm−3and 9.2 ± 3.3 g cm−3, implying rocky compositions (16, 36).

Fig. 4. Planet density vs. radius for all 33 known exoplanets smaller than 4
R⊕ that have 2-σ mass determinations. Venus, Earth, Mars, Uranus, and
Neptune are included (diamonds). The radius of ∼1.5 R⊕ has the highest
densities, and marks the transition between rocky planets (smaller size, at
left) and planets with increasing amounts of low density material (larger
size, at right) (28, 32, 37). For radii 0–1.5 R⊕ , density increases with planet
radius, consistent with a purely rocky constitution. In the radius range of 1.5–
4.0 R⊕ , density decreases with radius, indicating increasing amounts of H
and He gas or water. The transition radius at 1.5 R⊕ has a density maximum
near ∼7.6 g cm−3(weighted average). A linear fit including all planets (in-
cluding sub-2-σ densities, not shown) for R< 1:5 R⊕ (dashed line) yields:
ρðRÞ= 2:32+ 3:19R=R⊕ in units of g cm−3. A fit for R> 1:5 R⊕ (solid line)
yields a density law: ρðRÞ= 2:69ðR=R⊕ Þ0:93 in g cm−3, consistent with a char-
acteristic core mass of roughly 10 M⊕ (28, 32).
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influenced by the terrestrial planets in our solar system that reside
at larger orbital distances. This linear relation thus stems from
a mélange of small planets orbiting both close in and farther out.
For all planets larger than 1.5 R⊕ , a power-law fit to mass as

a function of radius is adequate to accommodate the apparent
curvature in the mass−radius measurements. The resulting power-
law fit yields

M=M⊕ = 2:69ðR=R⊕ Þ0:93 ðfor  R> 1:5R⊕ Þ

as described in (32). This mass−radius relation for 1.5–4.0 R⊕
planets is shown as the solid line in the right half of Fig. 4. Planet
density apparently declines with radius, indicating increasing
amounts of low-density material as planet radius increases. The
solid curve in the right half of Fig. 4 ðR> 1:5R⊕ Þ resides system-
atically below the plotted points because the curve represents
a power-law fit to all known exoplanets in that domain, while
we have elected to plot only those points having mass measure-
ments better than 2 σ for visual clarity.
Fig. 5 shows measured planet mass vs. radius for all 33 planets

having a mass measurement better than 2 σ. As in Fig. 4, the
dashed line shows the previously described linear fit to density vs.
radius for all planets smaller than 1.5 R⊕ , likely composed of
mostly rocky material. We consider the existence of an envelope
of low-density material on top of a rocky core by extending the
dashed line to radii greater than 1.5 R⊕ .
With such a linear extrapolation of the density relation, we can

make an approximate prediction of the interior structure of
planets larger than 1.5 R⊕ . At a given mass, the dashed line
represents an estimate of the size of the planet’s rocky core. The
size of a planet’s low-density envelope, therefore, is represented

by the horizontal distance between the dashed line and the plotted
point for that planet. Consider the two examples of GJ 1214b and
Kepler-94b, with dotted lines drawn from the planet’s location in
mass−radius space back to the radius representing their rocky
cores (dashed line). The lengths of the dotted lines represent the
additional radius, on top of any rocky core, that must consist of
low-density material to explain the enlarged radius at a given mass.
Thus, cloud of planets residing to the right of the ‘‘rocky’’

dashed line in Fig. 5 support a model of exoplanet structure with
both rock and volatiles. These planets have larger radii (and
volumes) than can be explained by a purely rocky interior.
Therefore, these planets surely contain large amounts of gas and
ices to account for their large size, given their mass. Clearly, the
planets larger than 2 R⊕ are composed of large contributions of
gas in addition to any rocky core.
A core-envelope model follows from the expectation that the

more dense material will sink (differentiate) toward the center of
the planet. The argument presented here for large amounts of
low-density material on a rocky core does not make use of any
theoretical equation of state. The low-density material, pre-
sumably H and He gas, must exist in the planets larger than 2 R⊕
on observational grounds alone.

Interiors, Formation, and Evolution
The range of sizes of rocky planets is visible in Figs. 4 and 5 as
the observed rise in density and mass with increasing radius for
planets smaller than 1.5 R⊕ . It is an extraordinary accomplish-
ment in planetary astrophysics that the accurately determined
radii, masses, and densities of planets smaller than 1.5 R⊕ reveal
increasing mass with radius, signaling their rocky interiors and
associated gravitational compression. A linchpin is Kepler-78b
that has radius 1.2 R⊕ and density 5.3 g cm−3, compared with the
handful of exoplanets of radius 1.4–1.5 R⊕ that all have higher
densities, displaying gravitational compression and supporting
the linear relation for ρðRÞ in Figs. 4 and 5. Of course, Mars,
Venus, and Earth also exhibit increasing density with radius,
offering further support.
For those planets larger than 1.5 R⊕ , the dramatically decreasing

density with increasing radius, visible in Fig. 4, clearly indicates
increasing amounts of volatiles. Extrapolating the mass−radius re-
lation for purely rocky planets gives an approximate division of the
core and envelope for these ‘‘mini-Neptunes.’’ The dotted lines in
Fig. 5 give an example of this division. However, that division is
certainly too simple: Planets of a given radius must also have a di-
versity of rocky core masses and radii (28, 32). Because most of the
mass resides in the core, not the gaseous envelope, only a diversity
of rocky core sizes can explain, at a given radius, the observed
spread of planets’ masses. Thus, the cloud of points in the right
halves of Figs. 4 and 5 represent planets with a range of both core
masses and volatile content.
The existence of two planet domains on either side of 1.5 R⊕

is consistent with planet formation models that suppose an ac-
cumulation of rocky material up to some critical rocky core mass,
followed by accretion of H and He gas. The sequence of planets
from 1 to 4 R⊕ is then interpreted as a sequence of various
amounts of iron−nickel and rocky material with either no or
increasing amounts of accreted gas (11, 52, 58–64).
The spread in planet bulk densities at a given radius or mass

may also be due to the subsequent photoevaporation of volatiles.
Such evaporation may be germane because nearly all of the 1–4
R⊕ planets described here orbit within 0.1 AU of a host FGKM-
type star, and therefore their envelopes would be subject to
heating, UV deposition, and atmospheric escape (52, 61, 62, 65).
These mechanisms for loss of envelopes, along with models of in
situ formation of mini-Neptunes, seem to predict the range of
sizes, masses, and densities that are observed for the 1–4 R⊕
planets (28). Detailed models of planet interiors, including the
range of chemical compositions, stratified differentiation, and

Fig. 5. Planet mass vs. radius, including both the 33 known exoplanets
smaller than 4 R⊕ with 2-σmass determinations (circles) and the solar system
planets (diamonds). Planet mass is correlated with radius in the domain R< 1:5
R⊕ . The dashed line marked ‘‘rocky’’ represents the linear density−radius re-
lation from Fig. 4, projected into mass−radius space. The points residing near
that dashed line represent planets that must be mostly rocky. The points re-
siding to the right of the ‘‘rocky’’ dashed line represent planets with radii too
large to be purely rocky. For such planets, the dashed line represents a simple
approximation of the dividing line between a rocky core and a low-density
envelope: The horizontal distance to the left of the dashed line (dark gray)
represents the radius of the rocky core, while the horizontal distance to the
left of the dashed line (light gray) represents the extra radius from the low-
density material (H and He or water) in the envelope, which contributes extra
size but negligible mass; see refs. 28, 30, 32, 37, 61, 62, and 65. As an example,
the additional size, on top of the rocky core, contributed by the H and He or
H2O envelopes for GJ 1214b and for Kepler-94b are indicated by dotted lines.
Planets of 1–4 R⊕ are well modeled by a rocky core containing most of the
mass plus a low-density envelope, if any, that enlarges the planet’s radius.
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equations of state, are needed to predict the plausible bulk den-
sities associated with planets with a given mass (8, 23, 24, 28, 37).

Correlations with Heavy Element Abundance
The abundances of heavy elements in the protoplanetary disks
around young stars may influence the efficiency of formation of
the rocky cores made of such elements. Spectra of the brightest
Kepler host stars of transiting planets were analyzed by Buchhave
et al. (66) to yield their abundances of heavy elements relative to
the Sun (‘‘metallicities’’). The planets with sizes greater than 3.5
R⊕ orbit host stars that have, on average, high metallicity: They
are rich in heavy elements relative to the Sun. Fig. 6 shows the
metallicity on a log scale (zero being solar) of over 400 stars that
host ∼600 Kepler exoplanets (66). Fig. 6 shows that planetary
systems seem to fall into three populations defined by different
radii and associated stellar metallicities. The smallest planets
ðR< 1:7 R⊕ Þ have, on average, host stars with metallicities
slightly less than that of the Sun. The largest planets ðR> 3:4 R⊕ Þ
orbit stars having systematically higher metallicities than the Sun.
One possible explanation for this correlation between planet

size and the metallicity of the host star is that giant planets are
created from a rocky core that accretes H and He gas from the
protoplanetary disk. However, the gas in protoplanetary disks
dissipates quickly (within a few million years). The heavy ele-
ments in the protoplanetary disk must form a rocky core quickly
enough to accrete the gas before it vanishes. If so, the core can
accrete H and He gas to form the low-density, gaseous planet.
Those stars (and their protoplanetary disks) that have only
modest metallicity (or less) form rocky cores more slowly,
after most of the gas in the protoplanetary disk has vanished,
leaving only rocky cores that are devoid of a gaseous envelope
(66). If this explanation is roughly correct, the Earth resides
at a planetary sweet spot, coming from a protoplanetary disk
with inadequate heavy elements to grow quickly enough to
grab huge amounts of gas, but adequate to initiate complex
biochemistry.

Habitable Zone: Humility and Hubris
Scientific knowledge of complex systems is normally anchored
by, and repeatedly tested by, experimental evidence. The plane-
tary conditions necessary for biology certainly qualify as a complex
physical, chemical, and biological problem. A common construct
toward such discussions is the ‘‘habitable zone,’’ the orbital domain
around a star where life can arise and flourish. Unfortunately, we
have no empirical evidence of life arising, nor of it flourishing,
around any other star.
Such lack of experimental evidence of life has not slowed the

debate about the exact location of the habitable zone around
stars of different types. The passion exhibited in this debate is
worthy of some caution. We have no evidence of microbial life at
any orbital location within our solar system beside the Earth. We
have no empirical information about microbial life as a function
of orbital distance from our Sun or from any other star. We also
have no evidence of multicellular life around any other star, nor
evidence of intelligent life.
Thus, we have no empirical knowledge about the actual do-

main of habitable zones, for any type of life, around any type of
star. Moreover we have virtually no theoretical underpinnings
about exobiology. We still do not know how biology started on
Earth. We do not know the mechanisms that caused a transition
from chemistry to biology, nor do we know the biochemical steps
that spawn proteins, RNA, DNA, or cell membranes (67), al-
though there has been recent progress (68). Indeed, we still have
a poor definition of life (69).
Our ignorance about both the necessary planetary environ-

ments and the complex biochemical pathways for life should urge
caution in predicting, with multiple significant digits, the location
of the ‘‘habitable zones’’ around other stars. We can’t predict if
Mars, Europa, or Enceladus have habitable environments any
better than we can predict the weather in our hometown a week
in advance.
What is needed is a census of biology among a sample of

nearby stars, measuring the orbital locations and geological types
of planets where biologies exist. A door-to-door census of life
among stellar neighbors is needed to answer empirically and with
credibility the true domain of habitability around other stars.
That census can be carried out three ways: within our solar
system among water-bearing planets and moons, by space-borne
telescopes that perform chemical assays of resolved rocky plan-
ets, and by searches for transmissions from technological beings.
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