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Dark sectors charged under a new Abelian interaction have recently received much attention in the
context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A0),
connecting the dark sector to the standard model. We present a search for a dark photon in the reaction
eþe− → γA0, A0 → eþe−, μþμ− using 514 fb−1 of data collected with the BABAR detector. We observe
no statistically significant deviations from the standard model predictions, and we set 90% confidence level
upper limits on the mixing strength between the photon and dark photon at the level of 10−4 − 10−3 for dark
photon masses in the range 0.02–10.2 GeV. We further constrain the range of the parameter space favored
by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment
of the muon.

DOI: 10.1103/PhysRevLett.113.201801 PACS numbers: 13.66.Hk, 12.60.Cn, 14.80.-j, 95.35.+d

Dark sectors, which introduce new particles neutral
under the standard model (SM) gauge symmetries, arise
in many models of physics beyond the standard model [1].
These particles would only interact feebly with ordinary
matter, and could easily have escaped detection in past
experimental searches. Besides gravity, a few renormaliz-
able interactions provide a portal into dark sectors. One
of the simplest realizations consists of a dark sector
charged under a new gauge group Uð1Þ0. The correspond-
ing gauge boson, dubbed the dark photon (A0), couples to
the SM hypercharge via kinetic mixing [2] with a mixing
strength ϵ. This results in an effective interaction ϵeA0

μJ
μ
EM

between the dark photon and the electromagnetic current
JμEM after electroweak symmetry breaking. This idea has
recently received much attention in the context of dark
matter models, where weakly interacting massive particles
(WIMPs) reside in a dark sector charged under a new
Abelian interaction [3–5]. Within this framework, dark

photons would mediate the annihilation of WIMPs into SM
fermions. To accommodate the recent anomalies observed
in cosmic rays [6–8], the dark photon mass is constrained to
be in the MeV to GeV range.
Low-energy eþe− colliders offer an ideal environment to

probe low-mass dark sectors [9,10]. Dark photons could be
produced in association with a photon in eþe− collisions
and decay back to SM fermions if other dark sector states
are kinematically inaccessible. The dark photon width,
suppressed by a factor ϵ2, is expected to be well below the
experimental resolution. Dark photons could therefore be
detected as narrow resonances in radiative eþe− → γlþl−

(l ¼ e; μ) events. No unambiguous signal for a dark photon
has been reported so far, and constraints have been set on
the mixing strength between the photon and dark photon as
a function of the dark photon mass [11–22]. Searches for an
additional low-mass, dark gauge boson [23] or dark Higgs
boson [24] have also yielded negative results.
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We report herein a search for dark photons in the
reaction eþe− → γA0, A0 → lþl− (l ¼ e; μ) with data
recorded by the BABAR detector [25,26]. This search is
based on 514 fb−1 of data collected mostly at the ϒð4SÞ
resonance, but also at the ϒð3SÞ and ϒð2SÞ peaks, as well
as data in the vicinity of these resonances [27]. We probe
dark photon masses in the range 0.02 < mA0 < 10.2 GeV
[28]. To avoid experimental bias, we examine the data
only after finalizing the analysis strategy. About 5% of the
data set is used to optimize the selection criteria and
validate the fitting procedure, and is then discarded from
the final data sample.
Simulated signal events are generated by MADGRAPH

[29] for 35 different A0 mass hypotheses. The background
processes eþe− → eþe−ðγÞ and eþe− → γγðγÞ are simu-
lated using BHWIDE [30] (see below), and eþe− → μþμ−ðγÞ
events are generated with KK [31]. Resonance production
processes in initial state radiation, eþe− → γX ½X ¼ J=ψ ;
ψð2SÞ;ϒð1SÞ;ϒð2SÞ�, are simulated using a structure
function technique [32,33]. The detector acceptance and
reconstruction efficiencies are determined using a
Monte Carlo (MC) simulation based on GEANT4 [34].
We select events containing two oppositely charged

tracks and a single photon having a center-of-mass
(c.m.) energy greater than 0.2 GeV. Additional low-energy
photons are allowed if their energies measured in the
laboratory frame do not exceed 0.2 GeV. At least one
track is required to be identified as an electron, or both
tracks as muons, by particle identification algorithms. The
cosine of the muon helicity angle, defined as the angle
between the muon and the c.m. frame in the A0 rest frame,
must be less than 0.95. To further suppress the contribution
from radiative Bhabha events, we also require the cosine
of the polar angle (the angle with respect to the electron
beam axis) of the positron in the c.m. frame to be larger
than −0.5, and that of the electron to be less than 0.5. The
γlþl− system is then fit, constraining the center-of-mass
energy of the candidate to be within the beam energy spread
and requiring the tracks to originate from the interaction
point to within its spread. Finally, we require the χ2 of the
fit to be less than 30 (for 8 degrees of freedom). These
criteria are chosen to maximize the signal significance over
a broad mass range.
A large contribution from converted photons produced

in eþe− → γγ, γ → eþe− events is still present at low eþe−
invariant mass. A neural network is trained to further
reduce this background using the following variables:
the flight length of the eþe− pair in the plane transverse to
the beam, and the corresponding flight significance, the
electron helicity angle, the polar angle of the eþe− system,
and the angle between the photon and the plane formed
by the two tracks. We apply a requirement on the neural
network output that selects approximately 70% of the
signal in the low-mass region and rejects more than
99.7% of the photon conversions. The uncertainty

associated with this selection criterion, estimated from a
sample of π0 → γeþe− decays, is at the level of 2% at
mA0 ∼ 20 MeV, and decreases rapidly to negligible levels
above mA0 ∼ 50 MeV.
The resulting dielectron and reduced dimuon mass

distributions are displayed in Fig. 1, together with the
predictions of various simulated SM processes. The

reduced dimuon mass, mR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

μμ − 4m2
μ

q
, is easier to

model near threshold than the dimuon mass. The dielectron
(reduced dimuon) mass spectrum is dominated by radiative
Bhabha (dimuon) production, with smaller peaking con-
tributions from ISR production of J=ψ ;ψð2SÞ, ϒð1SÞ, and
ϒð2SÞ resonances. The contribution from ϕ → KþK−,
where both kaons are misidentified as electrons or muons,
is found to be negligible. The mass distributions are
generally well described by the simulation, except in the
low eþe− mass region, where, as expected, BHWIDE fails
to reproduce events in which the two leptons are separated
by a small angle. Since the signal extraction procedure
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FIG. 1 (color online). Distribution of the final dielectron (top)
and reduced dimuon invariant masses (bottom), together with the
predictions of various simulated SM processes and ISR produc-
tion of J=ψ , ψð2SÞ, ϒð1SÞ, and ϒð2SÞ resonances (collectively
labeled as R). The fit to the ratio between data and simulated
events is described in the text.
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does not depend on the background predictions, this
disagreement has little impact on the search.
The signal selection efficiency, typically 15% (35%)

for the dielectron (dimuon) channel, is determined from
Monte Carlo simulation. The difference is mostly due to
trigger efficiencies. For electrons, this is lowered in order
to suppress the rate of radiative Bhabha events. Correction
factors to the efficiency, which vary between 0.5% to 3%,
account for the effects of triggers, charged particle iden-
tification, and track and photon reconstruction. These are
assessed by fitting the ratios of the measured and simulated
eþe− → eþe−γ and eþe− → μþμ−γ differential mass dis-
tributions, as shown in Fig. 1. For the dielectron channel,
we fit the ratio only in the region meþe− > 3 GeV, where
the simulation is expected to provide reliable predictions,
and extrapolate the corrections to the low-mass region. The
entire mass range is used for the dimuon final state. Half of
the corrections are propagated as systematic uncertainties
to cover statistical variations between neighboring mass
points and the uncertainty associated with the extrapolation
procedure.
The signal yield as a function of mA0 is extracted by

performing a series of independent fits to the dielectron
and the reduced dimuon mass spectra for each beam
energy. The fits are performed in the range 0.02 < mA0 <
10.2 GeV (0.212 < mA0 < 10.2 GeV) for the dielectron
(dimuon) sample taken near the ϒð4SÞ resonance, and
up to 9.6 and 10.0 GeV for the data set collected near the
ϒð2SÞ and ϒð3SÞ resonances, respectively [28]. We search
for a dark photon in varying mass steps that correspond to
approximately half of the dark photon mass resolution.
Each fit is performed over an interval at least 20 times
broader than the signal resolution at that mass, with the
constraint meþe− > 0.015 GeV for the dielectron channel.
For the purposes of determining the mass steps, the signal
resolution is estimated by Gaussian fits to several simulated
A0 samples, and interpolated to all other masses. It varies
between 1.5 and 8 MeV. We sample a total of 5704 (5370)
mass hypotheses for the dielectron (dimuon) channel.
Example of fits can be found in the Supplemental
Material [35]. The bias in the fitted values is estimated
from a large ensemble of pseudoexperiments and found to
be negligible.
The likelihood function, described below, contains con-

tributions from signal, radiative dilepton background, and
peaking background where appropriate. The signal prob-
ability density function (PDF) is modeled directly from
the signal MC mass distribution using a nonparametric
kernel PDF, and interpolated between the known simulated
masses using an algorithm based on the cumulative mass
distributions [36]. An uncertainty of 5%–10% in this
procedure is assessed by taking the next to closest instead
of the closest simulated mass points to interpolate the
signal shape. Samples of simulated and reconstructed
eþe− → γJ=ψ , J=ψ → lþl− events indicate that the

simulation underestimates the signal width by 8% (4%)
for the dielectron (dimuon) channel. We assume that this
difference is independent of the dark photon mass, and we
increase the signal PDF width by the corresponding amount
for all mass hypotheses. We propagate half of these
correction factors as systematic uncertainties on the fitted
signal yields.
The radiative Bhabha background below 0.1 GeV is

described by a fourth-order polynomial, and elsewhere by a
third-order polynomial. The radiative dimuon background
is parametrized by a third-order polynomial, constrained
to pass through the origin for fits in the region below
0.05 GeV. Peaking contributions from the J=ψ , ψð2SÞ,
ϒð1SÞ, and ϒð2SÞ resonances for both final states are
included where appropriate. Their shapes are modeled as
Crystal Ball or Gaussian functions with parameters extrac-
ted from fits to the corresponding MC samples. Similarly
to the signal PDF, we increase their width by 8% (4%)
for the dielectron (dimuon) final states. The interference
between vector resonances with radiative dilepton produc-
tion is observed for the ω and ϕ mesons, and is fit with the
following empirical function:

fðmÞ¼ ðaþbmþcm2þdm3Þ
����1−Q

mω=ϕΓ
s−m2

ω=ϕ− imω=ϕΓ

����
2

;

wheremω=ϕ (Γ) denotes the mass (width) of the resonance,
Q the resonant fraction, and a, b, c, d are free parameters.
We fix the masses and widths to their nominal values [37],
and let their fractions float. We exclude the resonant
regions from the search, vetoing ranges of �30 MeV
around the nominal mass of the ω and ϕ resonances, and
�50 MeV around the J=ψ , ψð2SÞ, and ϒð1S; 2SÞ reso-
nances (approximately �5σR, where σR denotes the
experimental resolution of the resonances). An alternative
signal extraction fit, using parametric PDFs for signal [21]
and a different background parametrization, has been
performed for the μþμ− channel. The results of both
methods are statistically consistent with each other. The
uncertainty on the background modeling is estimated
by using an alternative description of the radiative
Bhabha and dimuon contributions based on a second- or
fourth-order polynomial, depending on the mass hypoth-
esis. This uncertainty is almost as large as the statistical
uncertainty near the dielectron threshold, and can be as
large as 50% of the statistical uncertainty in the vicinity
of the ϒð1S; 2SÞ resonances. Outside these regions, the
uncertainty varies from a few percent at low masses to
∼20% of the statistical uncertainty in the high-mass region.
In addition, we propagate half of the corrections applied
to the signal width, as well as the uncertainties on the ω
and ϕ masses and widths, as systematic uncertainties on
the fitted signal yields.
The eþe−→ γA0, A0 → eþe− and eþe−→ γA0, A0 → μþμ−

cross sections as a function of the dark photon mass are
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obtained by combining the signal yields of each data
sample divided by the efficiency and luminosity. The cross
sections as a function of mA0 are shown in Fig. 2; the
distributions of the statistical significances of the fits are
displayed in Fig. 3. The statistical significance of each fit
is taken as S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logðL=L0Þ
p

, where L and L0 are the
likelihood values for fits with a free signal and the pure
background hypothesis, respectively. We estimate trial
factors by generating a large sample of MC experiments.
The largest local significance is 3.4σ (2.9σ), observed near
mA0 ¼ 7.02 GeV (6.09 GeV) for the dielectron (dimuon)
final state. Including trial factors, the corresponding p
value is 0.57 (0.94), consistent with the null hypothesis.
We extract the eþe− → γA0 cross section for each final

state using the expected dark photon branching fractions
A0 → lþl− from Ref. [9] and combine the results into a
single measurement. The uncertainties on the dark photon
branching fractions (0.1%–4%), the luminosity (0.6%), and
the limited MC statistics (0.5%–4%) are propagated as
systematic uncertainties. We derive 90% confidence level
(C.L.) Bayesian upper limits on the eþe− → γA0 cross

section, assuming a flat prior for the cross section. The
limits are typically at the level ofOð1–10Þ fb. These results
are finally translated into 90% C.L. upper limits on the
mixing strength between the photon and dark photon as a
function of the dark photon mass [10]. The results are
displayed in Fig. 4. The average correlation between
neighboring points is around 90%. Bounds at the level
of 10−4–10−3 for 0.02 < mA0 < 10.2 GeV are set, signifi-
cantly improving previous constraints derived from beam-
dump experiments [11,12,18], the electron anomalous
magnetic moment [13], KLOE [14,15], WASA-at-COSY
[16], HADES [17], A1 at MAMI [19], and the test run from
APEX [20]. These results also supersede and extend the
constraints based on a search for a light CP-odd Higgs
boson at BABAR [21,22] with a smaller data set. No signal
consistent with the excess reported by the HyperCP experi-
ment close to 214 MeV is observed [38,39]. We further
constrain the range of the parameter space favored by
interpretations of the discrepancy between the calculated
and measured anomalous magnetic moment of the muon
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FIG. 2. The eþe− → γA0, A0 → eþe− (top) and eþe− → γA0,
A0 → μþμ− (bottom) cross sections together with their respective
statistical significance (SS) as a function of the dark photon mass.
The gray bands indicate the mass regions that are excluded from
the analysis.
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FIG. 3 (color online). Distribution of the statistical significance
(SS) from the fits to the dielectron (left) and dimuon (right) final
states, together with the expected distribution for the null
hypothesis (dashed line).
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[39]. The remaining mass region of allowed parameters,
15≲mA0 ≲ 30 MeV will be probed by several planned
experiments in the near future (see, for example, Ref. [1]
for a discussion).
In conclusion, we have performed a search for dark

photon production in the range 0.02 < mA0 < 10.2 GeV.
No significant signal has been observed and upper limits on
the mixing strength ϵ at the level of 10−4 − 10−3 have been
set. These bounds significantly improve the current con-
straints and exclude almost all of the remaining region of
the parameter space favored by the discrepancy between
the calculated and measured anomalous magnetic moment
of the muon.
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