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ABSTRACT OF THE DISSERTATION 

 

Recurrent Aneuploidy Patterns 

Enable Fitness Gains in Tumor Metabolism 

 

by 

 

Aspram Minasyan 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2015 

Professor Thomas G. Graeber, Chair 

 

Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of 

DNA amplifications and deletions. These patterns are indicative of conserved selection 

pressures, but cannot be fully explained by known oncogenes and tumor suppressor genes. 

Using integrative analysis of CNA data from patient tumors and experimental systems, we 

report that principal component analysis-defined CNA signatures are predictive of glycolytic 

phenotypes, including FDG-avidity of patient tumors, and increased proliferation. The primary 

glycolysis-linked CNA signature is associated with p53 mutation and shows coordinate 

amplification of glycolytic genes and other cancer-linked metabolic enzymes including TIGAR 

and RPIA. In contrast, alternative signatures involve both different mechanisms of tumor 

suppression loss (eg, MDM2 amplification) and different glycolysis enzyme isoforms. 

Furthermore, a cross-species CNA comparison identified 21 conserved CNA regions, containing 

13 enzymes in the glycolysis and pentose phosphate pathways in addition to known cancer 
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driving genes. In validation experiments, exogenous expression of hexokinase and enolase 

enzymes resulted in reduced propensities for amplifications at the corresponding endogenous 

loci. Our findings support metabolic stress as a selective pressure underlying the recurrent CNAs 

observed in human tumors, and further cast genomic instability as an enabling event in 

tumorigenesis and metabolic evolution. 
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CHAPTER 1 

Introduction 

 

“Healing is a matter of time, but it is sometimes also a matter of opportunity.” 

-Hippocrates 

 

1.1 Background 

A British historian and scientist June Goodfield has noted “Cancer begins and ends with 

people”. It is one of the most ancient diseases known to human kind. However, despite our 

tremendous gain in knowledge, cancer continues to pose questions. The first evidence of a 

human tumor was found among fossilized bone in an Egyptian mummy, while the first 

documented description of the disease dates back to 3000 BC. Approximately 2700 years later, 

the Greek physician Hippocrates gave the disease of uncontrolled division of abnormal cells a 

name, carcinos and carcinoma (Greek for crab), for the finger-like spreading projections of 

tumors. Later the Roman physician, Celsus, translated the word into cancer. Another commonly 

used name for cancer was given by Greek physician Galen. He termed it oncos, which translates 

to “swelling”. The first cancer surgery was documented in the 18th century, and by the 19th 

century, pathologists were able to determine whether tumor resection had completely removed 

cancer. With discoveries and breakthroughs in tumor diagnostics and non-surgical therapies, 

the 20th century was a time of major advancement in oncology. The various therapies that were 

developed during this time include but are not limited to: radiation therapy, which uses ionizing 

radiation to damage and kill cancer cells; chemotherapy, in which the growth of fast growing 

and quickly dividing cancer cells is stopped or slowed by drugs; hormone therapy, which affects 

http://www.brainyquote.com/quotes/quotes/h/hippocrate133222.html
http://www.brainyquote.com/quotes/quotes/h/hippocrate133222.html
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the ability of cancer cells to multiply by addition, blockage or removal of hormones; and 

immunotherapy, which uses the body’s immune system to fight cancer. 

 Nevertheless, despite our progress, cancer remains the second leading cause of death 

in the United States and other parts of the world, currently yielding only to heart diseases. 

However, the number of deaths caused by cancer in the U.S. is expected to surpass the number 

of deaths due to heart disease within the next few years (1). Moreover, the lifetime probability 

of developing an invasive cancer is 43% for men and 38% for women (1). It is evident from 

these statistics that better cancer treatments, resulting from a more thorough understanding of 

cancer progression, are greatly needed. In order to address these gaps in knowledge, the 

research project presented in this work is aimed at elucidating the underlying processes that 

either trigger or occur during tumorigenesis. 

Using an integrative analysis of copy number alterations (CNA) data from human 

tumors, cancer cell lines and an experimental immortalization system, in this work we show that 

the loci of metabolic genes impact the recurrent CNA changes observed in genomically unstable 

tumors. Our bioinformatic and experimental results support a tumorigenesis model in which 

copy number changes in metabolic genes contribute toward an enhanced glycolytic and 

proliferative state. 

 

1.2 The Hallmarks of cancer 

Cancer cells differ from normal cells in that they exhibit aberrant proliferation, resist 

apoptosis, and invade other tissues (2). Various mechanisms and properties of tumor cells have 

been discovered and described within the past few decades. By integrating this complex body 

of knowledge, Hanahan and Weinberg have proposed six hallmarks that are fundamental to 

most, if not all, neoplastic disease (2,3). First, all cancer cells need to find a way to sustain 
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proliferative signaling. Cancer cells can achieve this by overexpressing growth factors or by 

increasing growth factor receptor expression. Next, cancer cells also need to escape 

downregulated proliferation. Evasion of growth suppression can be accomplished by loss of 

tumor suppressor function such as retinoblastoma-associated, RB, or TP53. The third hallmark 

observed in oncological malignancies is activation of invasion and metastasis, which tumorigenic 

cells often achieve via the epithelial-mesenchymal transition (EMT). Another hallmark of cancer 

is replicative immortality. Malignant cells achieve this by maintaining long telomeric DNA. In 

addition, tumors must also induce angiogenesis in order to provide their quickly growing mass 

with necessary nutrients and oxygen. Finally, the above properties would not benefit the cancer 

cells in the event of cell death. Therefore, cancer cells find many mechanisms for resisting 

apoptosis, autophagy and necrosis. 

Nearly a decade after their initial review, Hanahan and Weinberg revised their 

understanding of tumorigenesis and proposed two new categories of hallmarks in addition to 

the original six (2). They defined ‘enabling characteristics’, or functions that are acquired by 

cancer cells during tumorigenesis. An example of this category is tumor-promoting inflammation 

that is driven by the cells of the immune system and genomic instability and mutation in cells 

that lead to exceptionally abnormal cancer cells. The other category of hallmarks, the ‘emerging 

hallmarks’, defines the properties that facilitate development and progression of tumors. For 

instance avoiding destruction by the immune cells and reprogramming of energy metabolism. In 

the context of the hallmarks of cancer, the work in this dissertation touches primarily on the 

interplay that allows genomic instability to enable the evolution of tumor metabolism. 
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1.3 Reprogramming of energy metabolism in cancer 

One of the fundamental and consequential differences between non-transformed and 

tumorigenic cells is the re-programming of cellular metabolism (2). Tumor cells consume 

glucose and glutamine at a surprisingly high rate and secrete most of the glucose-derived 

carbon as lactate rather than oxidizing it completely. First observed by Otto Warburg, this 

altered metabolism of tumors is thought to benefit transformed cells in several ways. 

Upregulation of glucose metabolism allows proliferating cells to meet their energy demand 

through synthesis of adenosine triphosphate (ATP), while increased flux through glycolysis 

branch pathways provides dividing cells with intermediates necessary for biosynthesis of 

nucleotides and fatty acids, as well as reducing agents such as NADPH (4,5). Moreover, in 

addition to glucose, cancer cells frequently upregulate consumption of other metabolites for 

energy and biomass generation, including glutamine, serine and glycine (6,7). Notably, several 

individual metabolic enzymes have been directly implicated in tumorigenesis (8–15) and/or 

immortalization (16–18), suggesting that altered metabolism is not a passive bystander, but 

rather a driving force of oncogenesis (19,20).  

Additional evidence has demonstrated that many oncogenes drive the high metabolic 

demands of cancer cells. A prime example is activation of Akt which is likely the most important 

signaling event in terms of cell metabolism, because Akt is sufficient to drive glycolysis and 

lactate production and to suppress macromolecular degradation in cancer cells (21). Finally, 

decreased oxygen availability (hypoxia) stimulates cells to consume glucose and produce lactate 

(22). Although these individual events are clearly important in the regulation of tumor 

metabolism, our analysis suggest that coordinated alterations of DNA copy number should be 

added to the list of causal mechanisms – thus expanding our systems-view of this classic 

phenomenon. 
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1.4 Genomic instability 

Modern cancer classification relies on molecular characterization, including examination 

of genomic DNA mutations and copy number alterations (CNA) (23). Although individual 

oncogenes and tumor suppressor genes are preferential targets of DNA amplifications and 

deletions, respectively, the recurrent CNA patterns in tumors cannot be fully explained by 

canonical cancer genes (24–26). Thus, the recurrent CNA patterns observed in human cancer 

subtypes are suggestive of additional, not yet fully defined, selective pressures that are 

conserved across patients and tumor types (27,28). 

In this study, we have extended transcriptional metabolic pathway analysis (29) to the 

analysis of DNA copy number patterns that are selected for during genomic instability. Genomic 

instability is an ‘enabling’ hallmark of cancer, with the cause and effect relationship between 

genomic instability and tumorigenesis highly intertwined. Here we describe coordinated copy 

number changes in a set of co-functioning metabolic genes that have not been previously 

reported. Our results indicate that the pattern of DNA alterations selected for by genomic 

instability are influenced by the linked metabolic function of the genes involved, offering a new 

variation on how genomic instability can promote tumor-beneficial metabolism.  

 

1.5 FDG-avid tumors  

FDG-avid tumor types with highly recurrent CNA patterns often show bad prognosis in 

cancer patients. Cancer is a heterogeneous disease consisting of multiple subtypes defined by 

molecular signatures in addition to morphological characteristics. PET imaging with metabolic 

tracer 18F-deoxyglucose (18F-FDG) is widely used in many tumors for detecting, staging and 

characterizing malignancies across different cancer types (30). For example, the study of lung 
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cancers concluded that the presence of any tumor suppressor gene abnormality is associated 

with an expected augmentation of 18F-FDG accumulation (31). Similarly, higher 18F-FDG 

accumulation has been shown to reflect the metastatic propensity in the breast tumors as well 

as predict their poor response to neoadjuvant chemotherapy. On the other hand, the recent 

advent of microarray technology has revealed that many tumor types share similarity in the 

patterns of the DNA copy number alterations. Moreover, high genomic instability and high 

aneuploidy tumors are some of the most difficult to treat tumors that have high mortality rates. 

The work of our lab has shown that basal-like breast tumors (that are characterized by genomic 

instability, like BRCA1/2 mutation (32)) also generally have higher uptake of 18F-FDG compared 

to other breast-cancer subtype (29). In addition, basal-like breast cancers are often refractory 

to targeted therapeutics because they typically lack expression of hormone receptors and HER2. 

In general, metabolic alterations and genomic instability in tumor cells are common to 

neoplastic cells. Higher FDG-uptake and higher aneuploidy reflects tumors at the later stage and 

with worse prognosis.  

 

1.6 Redox selective forces during tumorigenesis 

Carcinogenesis is often described as Darwinian process where traits are thought to arise 

as adaptive mechanisms to environmental proliferative constraints depending on their 

contribution to individual fitness. We hypothesized that the genomic DNA copy number 

alterations recurrently observed in human cancers are a result of the oxidative stress-based 

selective pressures encountered as tumor cells undergo tumorigenesis, e.g. while overcoming 

senescence checkpoints. Cells undergoing high oxidative stress prior to substantial mutation in 

oncogenes and tumor suppressor genes are prone to undergo the high genomic instability 

associated with genomic crisis (Fig. 1.6-1). It was shown that hypoxic tumors, which require 
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increased glycolysis to survive, are often more invasive and metastatic than those with normal 

oxygen levels (22). Also, deriving cells from tumors often preserves their metabolic phenotypes 

in culture even under normoxic conditions (22). This indicates that aerobic glycolysis is 

constitutively upregulated through stable genetic or epigenetic changes. 

 

1.7 Significance 

Our lab has implicated the amplification and deletion of glycolysis and redox metabolism 

genes as a driving force underlying the recurrent pattern of DNA copy number alterations 

observed in cancer patients using microarray-based genome-wide profiling (see Fig. 1.7-1 for 

a schematic of our overall approach). Despite of the long appreciation of the role of each 

individual selective event during the tumorigenesis, we are addressing the question whether 

redox stress and a corresponding need for increased glycolysis (Warburg effect) are one of the 

major selective forces for the highly recurring patterns in human tumors that were only recently   

Figure 1.6-1. Model for redox selective forces selection. Genomic CNA patterns of 

a tumor reflect its past tumorigenesis path. 
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Figure 1.7-1. Schematic of bioinformatic and experimental analysis. 
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observed due to the advent in technology. We show that: 

o Copy number alterations (CNA) of energy metabolism genes provide a selective 

advantage during tumorigenesis, namely by promoting glycolytic metabolism.  

o Recurrent copy number patterns observed in patient tumors are in part determined by 

the coordinated selection of amplifications and deletions of metabolic genes due to 

oxidative stress. 

Overall, our findings offer a new category of how oxidative stress-based genomic instability can 

enable tumor progression.  
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CHAPTER 2 

Analysis of copy number alterations in primary tumors 

implicates glycolysis genes in shaping recurrent DNA 

amplification and deletion patterns. 

2.1 PCA-defined CNA signatures in human cancers 

To develop an unbiased understanding of DNA copy number alterations (CNA) in cancer, 

we performed principal component analysis (PCA) of gene-based CNA data from 16 tumor types 

available from The Cancer Genome Atlas (TCGA). This pan-cancer analysis revealed a high  

Figure 2.1-1. Principal component analysis (PCA) of 16 tumor types. PCA reveals a shared CNA 

signature in breast, lung, ovarian and uterine carcinomas. PCA of copy number data from a balanced, 

random sampling of tumors of 16 tumor types from The Cancer Genome Atlas (TCGA). The average 

tumor PC scores for each tumor subtype are shown. PC2 distinguished GBM from the other tumor types 

(not shown). Four tumor subtypes with similar PC scores are labeled as ‘Signature +’. Tumor type 

abbreviations are as defined by TCGA and listed in Chapter 8.2.6. 
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Figure 2.1-2. PCA-defined shared signature. PCA reveals a shared CNA signature in breast, lung, 

ovarian and uterine carcinomas. (A-D) Copy-number profiles of 873 breast invasive carcinomas (BRCA) 

(A), 359 lung squamous carcinomas (LUSC) and 368 lung adenocarcinomas (LUAD) (LU) (B), 583 

ovarian serous cystadenocarcinoma (OV) (C), and 492 uterine corpus endometrial carcinomas (UCEC) 

(D). Tumors (rows) sorted by tumor-specific principal component 1 (PC1) score with genomic locations 

listed across the top. PCA identified and distinguished two signatures with similar degrees of variance in 

the first component. In panel A, The triangle marks the transition from signature A through diploid 

samples to signature B. PC1-ranked tumors were analyzed for enrichment of known mutations or clinical 

sub-types (eg, basal/luminal in breast, proliferative/mesenchymal in ovarian, serous/non-serous in 

uterine). Normalized enrichment score and permutation p-value for each significantly enriched mutation 

or clinical sub-type are shown below the tick plots. 

Figure 2.1-3. Consistency of PCA-defined shared signature. PCA reveals a shared CNA signature 

in breast, lung, ovarian and uterine carcinomas. Signature A summary profiles for breast (BRCA), lung 

(LU), ovarian (OV) and uterine (UCEC) tumor types. Summary signatures are normalized gene loci 

signal-to-noise ratios (SNRs) of the top 10% of PC1-based signature A tumors compared to patient-

matched normal (non-tumor) samples. Consistency signatures of conserved amplification and deletions 

(consistent regions) are non-zero when all CNA summary signatures have the same sign across all tumor 

types, and are derived from the absolute value-based minimum summary metric, then re-signed positive 

for amplification or negative for deletion. In the bar graph, red and blue denote consistently amplified 

and deleted regions, respectively. The number or percentage of consistent regions, genome coverage, 

and percent gene loci are indicated.  



13 
 

degree of similarity in CNA profiles between basal breast invasive carcinoma (BRCA basal), lung 

squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV) and serous uterine 

corpus endometrial carcinoma (UCEC serous) (Fig. 2.1-1). 

Analyzing these four tumor subtypes revealed two PCA-based CNA signatures, termed 

signatures A and B, in each subtype. Signature A was highly consistent across all four tumor 

types (Fig. 2.1-2 and 2.1-3). In BRCA, signature A tumors were enriched for the basal 

subtype, p53 point mutations, high numbers of genomic breakpoints, and sub-chromosomal 

alterations (Fig. 2.1-2A and 2.1-4). Signature B BRCA tumors, in contrast, were enriched for 

luminal type tumors and amplifications of the oncogenes MYC and MDM2. In the other tumor 

types, signature A tumors were enriched for lung squamous cell carcinomas, the proliferative 

subtype of ovarian cancer (33), and the serous subtype of uterine cancer. Overall, signature A 

tumors demonstrated enrichment of p53 mutations and more genomic breakpoints (BRCA, LU  

Figure 2.1-4. Characteristics of PCA-defined shared signatures. PCA-defined signature A tumors 

exhibited more genomic breakpoints (D) and a higher degree of copy number alterations (integrated 

CNA score) (E) than signature B tumors. The exceptions are ovarian (OV), which exhibited similar 

numbers of genomic breakpoints in signature A and B tumors, and breast (BRCA), which exhibited 

similar levels of copy number alterations in signature A and B tumors. T-test p-values are shown for each 

Sig. A versus Sig. B comparison. Data is presented in box (median, first and third quartiles) and whisker 

(extreme value) plots. 
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and UCEC) and a higher degree of copy number alterations (LU, OV and UCEC) than signature 

B tumors (Fig. 2.1-4). Unlike signature A tumors, the signature B tumors identified in each 

tumor type were quite distinct, although some commonalities were observed including point 

mutations in oncogenes such as KRAS (LU and UCEC) and amplification of MYC (BRCA, LU and 

OV). 

 

 

 

 

 

 

 

 

 

Since the four CNA-defined signature A tumor types are associated with high glycolysis 

and increased avidity for the positron emission tomography (PET) tracer 18F-fluorodeoxy-  

Table 2.1-1. Metabolic pathway enrichment analysis of shared PCA-defined signature. 

Metabolic pathway enrichment analysis based on consistent CNA patterns in the signature A  

tumors of Fig. 2.1-3. The combined glycolysis-gluconeogenesis (glycolysis) and pentose phosphate 

pathway was included based on our prior mRNA work identifying the predictive value of this gene 

set (27). Core glycolysis is a KEGG-defined gene subset (M00001).  

Figure 2.1-5. CNA differences in PCA-defined signatures. (A) Gene copy number alteration 

distributions of selected core glycolysis genes, TIGAR, and of the tumor suppressor p53 and its negative 

regulator MDM2 in BRCA tumors. (B) Signature B tumors amplify HK3 (BRCA, LU, OV) and HK1 (UCEC) 

showing alternative HK amplification as compared to signature A tumors (which amplify HK2). 
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glucose (FDG) (34–37), we tested whether the shared CNA signature A was enriched for genes 

from metabolic pathways. Using rank-based gene set enrichment analysis, we found that the 

signature A profile shared across breast, ovarian, uterine and lung tumors (Fig. 2.1-3) was 

significantly enriched for DNA amplifications of core glycolysis pathway genes (Table 2.1-1). 

For example, BRCA signature A tumors exhibited DNA amplification of most genes from the 

glycolytic pathway, as well as amplification of lactate dehydrogenase B, deletion of pyruvate 

dehydrogenase subunits A and B, and amplification of the glycolysis-regulating metabolic 

enzyme TIGAR (human gene C12orf5;) (Fig. 2.1-5A).  

Notably, this shared CNA signature was defined by genome-wide patterns, rather than by single 

gene loci, which were not consistently altered in all tumors with a strong signature (Figure 

2.1-6). 

  

Figure 2.1-6. Genome-wide patterns of PCA-defined signatures. The PCA-identified signatures 

were defined by genome-wide patterns, as single gene loci were not consistently altered in all tumor 

cases with a strong signature score, here shown for glycolysis-related genes in the PC1-sorted signature 

A breast tumors from Fig. 2.1-2A. 
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Interestingly, Signature A summary profiles from breast, 

ovarian, uterine and lung tumors all exhibited hexokinase 2 

(HK2) amplification (Fig. 2.1-5A and 2.1-7), whereas 

signature B profiles had primarily either HK3 (BRCA, LU, OV) or 

HK1 (UCEC) amplification (Fig. 2.1-5B). Thus, PCA identified 

a shared signature from breast, lung, ovarian and uterine 

carcinomas that was enriched for p53 mutations, higher 

numbers of genomic breakpoints, and CNA of genes from the core glycolysis pathway.  

  

Figure 2.1-7. Signal-to-noise ratios of genes in core 

glycolysis pathway. Schematic showing average signal-to-noise 

(SNR) metrics of core glycolysis pathway genes plus 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB and 

TIGAR), lactate dehydrogenase (LDH) and pyruvate 

dehydrogenase (PDH) in signature A tumors from Figure 2.1-3 

and Table 2.1-1. The top 10% of tumors from each indicated 

signature based on PC1 scores were used in the analysis. 
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2.2 CNA signatures are predictive of glycolysis 

In that the CNA-defined signature A is enriched for core glycolysis genes, we next tested  

whether signature A patient tumors were associated with functionally increased tumor 

glycolysis. To assign a signature A score to a set of FDG-PET-imaged tumors (37), we projected 

CNA data from these tumors onto a PCA analysis of the four Signature A tumor types. Indeed, 

we found a strong correlation between the strength of CNA signature A and the measured FDG-

PET standardized uptake values (SUV) (Fig. 2.2-1). Thus, the CNA-defined signature A is 

associated with increased FDG uptake in human primary tumors in vivo. 

  

Figure 2.2-1. PCA-based signature is predictive of glycolysis in vivo. PCA-based CNA signatures 

are predictive of breast cancer glycolytic metabolism in vivo. (A) PC1-sorted copy-number profiles of a 

balanced, random sampling of tumors from 4 CNA-consistent tumor types (breast, lung, ovarian and 

uterine carcinomas, Fig. 2.1-1) along with copy-number profiles from primary breast carcinoma tumors 

with glycolytic levels imaged in vivo by 18F-fluorodeoxy-glucose-positron emission tomography (FDG-

PET). On the right, red and green values indicate high and low FDG standardized uptake values (SUV), 

respectively, for FDG-imaged tumors. (B) FDG uptake values in FDG-PET measured tumors are highly 

correlated with CNA Signature A PC1 score (ρ, Pearson correlation).  
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Next, we asked which metabolic gene sets were most predictive of glycolytic 

phenotypes. We performed a CNA-based weighted gene voting (WGV) (38) analysis to predict 

the glycolytic phenotypes of breast tumors and breast cancer cell lines (39) using individual 

gene sets from the KEGG metabolic pathways database (40). Gene weights were calculated 

from each of our four tumor type CNA “training” signatures. Specifically, we tested the ability of 

individual metabolic pathways to predict i) FDG uptake in patient primary breast tumors and ii) 

the lactate secretion of a panel of 32 breast cancer cell lines. Averaging results across these two  

  

Table 2.2-1. Predictive power of PCA-defined signatures. CNA values for genes from 

glycolysis and pentose phosphate pathways have stronger predictive power of FDG-PET SUV in 

breast tumors and of lactate secretion (sec.) in breast cancer cell lines than other metabolism 

pathway-based sets of genes. The table indicates the correlation between weighted gene voting 

(WGV)-based predictions on the test sets and the measured metabolic phenotypes. WGV was 

performed with individual training on signature A tumors from each of the four tumor types (breast 

(BRCA), lung (LU), ovarian (OV) and uterine (UCEC); top 10% signature A compared to patient-

matched normal samples), the voting predictions were averaged, and compared to the measured 

metabolic phenotype.  
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test cases revealed that genes from the glycolysis-gluconeogenesis (henceforth called 

glycolysis) and pentose phosphate pathway were most predictive of these metabolic 

phenotypes (Table 2.2-1). Moreover, Signature A-based predictions were more predictive of 

lactate secretion for basal cell lines than for luminal lines (Fig. 2.2-2), consistent with the 

observed basal tumor enrichment in signature A samples (Fig. 2.1-2B). Thus, the glycolysis 

and pentose phosphate pathway DNA copy number alterations from signature A are predictive 

of glycolytic phenotypes of primary human breast tumors and cancer cell lines. 

  

Figure 2.2-2. PCA-based signature is predictive of glycolysis in vitro. (A-B) Signature A-based 

WGV predictions and signature A-based PC1 projections (as in Fig. 2.2-1B) have stronger correlation 

with measured lactate secretion for basal-like breast cancer cell lines than for luminal-like lines (A). The 

breast cancer-based glycolysis and pentose phosphate pathway (G & PP) WGV predictions are shown as 

a representative case (A-B). Previously published basal and luminal designations are based on gene 

expression profiles (37). 
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2.3 Methods summary of chapter 2 

Copy-number profiles for 16 tumor types were obtained from The Cancer Genome Atlas 

(TCGA). The types and subtypes used for the principal component analysis, PCA, are: BLCA, 

LGG, BRCA (as well as BRCA basal and BRCA luminal), COAD, GBM, HNSC, KIRC, LUAD, LUSC, 

OV, PRAD, READ, SKCM, STAD, THCA, UCEC (as well as UCEC serous).  

Principal component analysis (PCA) was performed using the mean-centered matrix of 

CNA values per gene locus. To test for enrichment of mutations within CNA-defined PC scores, 

tumors were queried for mutations in the most frequently mutated genes using the cBioPortal 

for Cancer Genomics (41). Tumors with known mutational status were then sorted by their PC1 

score, and a Kolmogorov-Smirnov statistic against the expected distribution of mutations was 

calculated.  

Consistency signatures of conserved amplification and deletions (consistent regions) 

were defined as non-zero when all CNA summary signatures had the same sign across all tumor 

types. Metabolic pathway enrichment analysis, and weighted gene voting (WGV) prediction 

analysis (38), were performed using 74 metabolic pathways defined by the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) database (40). CNA changes were visualized in the context of 

metabolic pathway structure using Cytoscape (42). A genomic instability score termed 

‘integrated CNA’ was calculated by integration of the absolute mean copy-number of segments 

multiplied by the length of each segment.  

Ten patient breast cancer samples with imaged FDG-uptake within 4 weeks prior to 

surgery, excluding patients with secondary breast cancers and recurrent disease, were collected 

surgically and processed as previously described (37). 

More detailed descriptions of these methods can be found in Chapter 8.  



21 
 

CHAPTER 3 

Experimental mouse immortalization system 

recapitulates genomic instability patterns observed 

during tumorigenesis. 

3.1 Experimental recapitulation of tumor CNA signatures  

 

The conservation of CNA signature A across several tumor types suggests one or more 

shared selective pressures. To better define genomic regions with candidate driver genes within  

these recurrently altered regions, we reasoned that a cross-species comparison of CNA data 

from human tumors and murine tumorigenesis models would eliminate passenger genes via   

Figure 3.1-1. Representative growth curves of MEFs. Growth curves showing that protection of 

CD1 MEF lines from oxidative stress rescues cells from replicative senescence. Single protection: cells 

were cultured under physiological oxygen conditions (3% O2) or by media supplementation with 250 

U/ml of the ROS scavenging enzyme catalase. Double protection: cells were cultured at 3% O2 and 

supplemented with catalase. Exogenous MYC expression also resulted in rescue from replicative 

senescence (not shown) and did not exclude evolution towards either signature A or B (Fig. 3.1-2). 



22 
 

 

synteny mapping. We thus derived a panel of immortalized mouse embryo fibroblasts (MEFs) 

using the classical 3T9 protocol (43). In this experimental system, diploid cells undergo 

spontaneous genomic instability during senescence resulting in immortalized cells (Fig. 3.1-1)  

Figure 3.1-2. Copy-number profiles of MEFs. Copy-number profiles of 59 samples from 42 

independent mouse embryonic fibroblasts (MEF) sublines before, during and after senescence 

recapitulate the two signature CNA patterns observed in human tumors. PC1 scores for analysis of only 

signature A MEFs (Sig A), only signature B MEFs (Sig B), or all MEFs (Sig AB) are indicated on the left. 

Also indicated are a metric of the degree of senescence observed during immortalization (senescence 

score), protection by 3% O2-based hypoxia or catalase (+), or both (++) during immortalization, CNA 

profiling at passage 1 (P1), exogenous MYC expression which enabled cells to bypass senescence, and 

Trp53 sequencing status (*indicates a non-severe mutation p.183D>E, blank indicates not sequenced, 

additional p53 sequencing information in Table 3.1-1). Signature A MEF lines profiled at more than one 

passage number are indicated by the start (earlier passage) and end points of the upward ‘evolving 

signature A’ arrows. The indicated chromosome 6 region includes loci for Bpgm, Hk2, Rpia, Tigar, Eno2, 

Tpi1, Gapdh, Ldhb, and Kras.  
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Exons 

2 3 4 5 6 7 8 9 10 11 

H2 P25 B   wt nd wt wt wt wt wt wt wt wt 

E2 P54 B   wt nd wt wt wt wt nd nd wt wt 

A2 P25 B   wt wt wt wt wt wt wt wt wt wt 

A1 P25 B 
p.183 
D>E†‡ 

p.186 
D>E 

wt nd wt 
m.549 
T>A 

nd nd nd nd nd nd 

B7 P99 B   wt wt wt wt wt wt wt wt wt wt 

D10 
P36 m

ix
ed

 

p.131 
F>L 

p.134 
F>L 

nd nd wt 
m.393 
C>A 

wt wt wt wt wt nd 

F1 P23 A p.R178* p.R181* wt nd nd 
m.536

* 
nd nd nd nd nd Nd 

A6 P40 A 
p.156 
A>P 

p.159 
A>P 

wt nd wt 
m.466 
G>C 

wt wt wt nd nd nd 

C8 P40 A 
p.270 
R>C 

p.273 
R>C 

wt wt wt wt nd wt 
m.808 
C>T 

wt nd nd 

A3 P25 A 
p.277 
R>T 

p.280 
R>T 

wt wt wt wt wt wt 
m.830 
G>C 

wt wt nd 

H1 P25 A 
p.129 
K>T 

p.132 
K>T 

wt nd d 
m.385 
A>C 

wt wt nd nd nd nd 

C9 P42 A 
p.274 
C>F 

p.277 
C>F 

nd nd wt wt wt wt 
m.821 
G>T wt wt nd 

Table 3.1-1. Trp53 sequencing in immortalized CD1 MEFs. The cell lines and the passage 

number (P) at which p53 protein-coding exons were sequenced are indicated in the sample column. 

The homologous mutation in human p53 is indicated. †Non-severe mutation; ‡Heterozygous; 

*Nonsense mutation; wt, wild type sequence; nd, not determined.  
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with aneuploid genomes. This system has been used to study core cancer phenotypes such as 

proliferation, anti-apoptosis, and chromosomal instability (44–49) and is one of the few 

experimentally tractable cancer models involving spontaneous genomic instability (50). In 

addition, because this system is not driven by strong 

oncogenes (eg, KRAS mutation), it allows for complex 

CNA signatures to evolve from a combination of 

individual, presumably weaker, DNA alteration events.  

Figure 3.1-3. PCA signatures in MEFs. In order to obtain pure signatures for A and B lines, we ran 

PCA individually on either signature A only or signature B only MEF lines (PC1-Sig A and PC1-Sig B, 

respectively). Samples not run in a particular analysis were projected onto the rotated PCA axes to allow 

for a full comparison. Plotting Signature A against Signature B scores revealed that CNA patterns of 

these two groups were generally orthogonal, with the exception of a few ‘mixed’ signature samples that 

had CNA characteristics of both signature A and B. A less frequent CNA pattern involving chromosome 4 

amplification was also observed. 

Figure 3.1-4. Genomic instability of PCA-defined MEF 

signatures. Signature A MEFs have more DNA breakpoints 

and a larger degree of copy number alteration (integrated 

CNA score) than signature B MEFs.  
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We profiled the genome-wide copy number of 42 independent MEF sublines (Fig. 3.1-

2). Most samples were profiled after immortalization (post-senescence), with a few profiled 

before or during senescence. Analysis of this CNA data by PCA revealed that the MEF system 

recapitulated a two signature pattern (signatures A and B). These two signatures were 

generally orthogonal, with the exception of a few ‘mixed’ samples that had CNA characteristics 

of both signature A and B (Fig. 3.1-3). Importantly, the MEF-derived signature A resembled 

the shared signature A pattern derived from human breast, lung, ovarian and uterine tumors. In 

particular, the MEF-derived signature was characterized by p53 mutation and loss of   

Figure 3.1-5. Genomic instability relation to senescence in evolving MEFs. The senescence 

score tended to increase during wild-type MEF line derivation (reflecting accumulated sub-optimal 

growth) and correlated with higher degrees of copy number alterations (integrated CNA score) 

observed at later passages. In comparison, ROS protected sublines experienced less senescence and 

obtained lower degree of copy number alterations at later passages. Single protection indicates 

protection by 3% O2 culture conditions or by media supplementation with 250 u/ml Catalase. Double 

protection indicates that cells were cultured at 3% O2 with catalase. 
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heterozygosity, more genomic breakpoints, sub-chromosomal sized alterations, and a higher 

degree of copy number alteration (Fig. 3.1-2, 3.1-4 and Table 3.1-1). Additionally, this  

Figure 3.1-6. Paired analysis of evolving signature A MEF lines. (A-B) A paired t-test analysis 

of signature A MEF lines profiled at more than one passage number revealed genomic regions 

associated with mid- to late-passage CNA evolution (log10 t-test p-value signed positive for 

amplifications, negative for deletions; bottom row). The full genome (A) and chromosome 6 (B) are 

shown. As with the human tumor signatures A, this mid- to late-passage genomic signature was 

enriched for DNA amplifications of genes in the core glycolysis and glycolysis associated pathways 

(Table 4.1-1). We also observed a general co-evolution of higher growth rates and increased CNA 

signature strength of MEF lines profiled at more than one passage number (Fig. 6.1-3B). 
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experimental system allowed us to profile MEF lines at subsequent passages, and a paired 

statistical analysis of five evolving signature A lines revealed genomic regions changing from 

mid- to late-passage (Fig. 3.1-2, 3.1-5 and 3.1-6). 

 

Similar to the shared human tumor signature A, both the mouse signature A and the evolving 

MEF signature demonstrated DNA amplifications of glycolysis and glycolysis-related genes. In 

particular, both human and mouse CNA signatures A included amplification of Hk2, Bpgm, Rpia, 

Tigar (mouse gene 9630033F20Rik), Eno2, Tpi1, Gapdh, Ldhb, Kras (mouse chr. 6) and Pgk2 

(mouse chr. 17) (Fig. 3.1-2, 2.1-5A and 3.1-7). 

In contrast, the MEF-derived signature B was characterized by Mdm2 amplification and 

fewer overall copy number alterations. Mdm2 amplification is an alternative mechanism for 

inactivating p53 function in human tumors and in MEFs (50), but as found here results in a 

distinct CNA signature. Mdm2 amplification tends to co-occur with Hk1 amplification, both loci 

being located on mouse chr. 10. Thus, the signature B cases are associated with an alternate 

HK amplification, similar to our finding in human tumors (HK1 or HK3 rather than HK2) (Fig. 

2.1-5 and 3.1-7). Immunoblotting confirmed that signature A MEF and signature B MEF lines 

generally had increased expression of Hk2 and Hk1 protein, respectively (Fig. 3.1-8).  

Figure 3.1-7. CNA of selected glycolysis associated genes in MEFs. Gene copy number 

alteration distributions of selected core glycolysis genes, Tigar, and of tumor suppressor p53 (Trp53) 

and its negative regulator Mdm2 in MEF lines. 
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To further characterize the association between p53 loss and CNA signatures, we 

profiled the CNA patterns of 29 independent p53-/- MEF sublines. Comparison of the p53-/- 

MEFs CNA patterns to wild-type MEFs by PCA demonstrated that the CNA patterns of p53-/- 

MEFs resemble the wild-type MEF signature A pattern, with no signature B-like sublines 

observed (Fig. 3.1-9 and 3.1-10A). Thus, strong p53 functional loss (p53 mutation or genetic 

loss) tends to lead to the higher aneuploidy- and Hk2-associated CNA signature A pattern, while  

  

Figure 3.1-8. Immunoblot of representative MEF lines. (A) MEF lines representative of Signature 

A and Signature B (as defined by CNA profiles) were lysed and probed by immunoblotting for Hk1, Hk2 

and p53. Signature A is associated with higher DNA copy number and higher protein expression of Hk2, 

whereas Signature B is associated with higher CNA and protein levels of Hk1. Signature A cells, which 

are characterized by p53 mutation (Table 3.1-1), show higher expression of p53 protein than 

Signature B cells, which typically have wild-type p53. Mutations in p53 commonly lead to elevated 

protein levels via decreased degradation. Cell lines are arranged by their CNA-defined PCA signature 

strength, and actin was included as an equal loading control. (B) Correlation between CNA values and 

protein expression for both Hk1 and Hk2. Western blots were quantified using ImageJ. 
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weaker or less complete p53 functional loss (e.g. mediated by Mdm2 amplification) is 

associated with an alternative signature (signature B) (Fig. 3.1-10). 

  

Figure 3.1-9. Copy-number profiles of p53-/- MEFs. Copy-number profiles of 36 samples from 28 

independent p53-/- and 1 pre-senescence p53+/+ (passage 2) mouse embryonic fibroblasts (MEFs) 

sublines. MEF sublines, PC1 scores from analysis of p53-/- MEFs, PC1 (p53-/-), and PC1 scores projected 

on PC1 scores of CD1 MEFs, PC1-Sig AB (CD1), are indicated on the left. Metrics indicated on the right: 

copy-number alterations (integrated CNA score, number of breakpoints), degree of senescence observed 

during immortalization (senescence score), CNA profiling at passage 2 (P2), and exogenous Myc 

expression. 
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3.2 Senescence-associated oxidative stress as a selective force for 

copy number alterations  

The MEF system allowed us to investigate the selective pressures driving copy number 

changes during immortalization. Because MEFs cultured under physiological oxygen conditions 

(3% oxygen) undergo little to no senescence and exhibit less DNA damage (51), we tested 

whether oxidative stress-induced senescence is a selective pressure for copy number 

alterations. To protect cells from oxidative stress, we cultured MEFs in 3% oxygen in media 

supplemented with or without catalase, an enzymatic scavenger of reactive oxygen species 

(ROS) (52,53). When doubly protected from oxidative stress, MEFs did not undergo senescence 

and maintained relatively diploid genomes (Fig. 3.1-2 and 3.1-1). In addition, we observed a  

  

Figure 3.1-10. Characteristics of PCA-defined shared MEF signatures. (A) CNA patterns of 37 

p53-/- MEF samples from 29 independent sub-lines resemble the wild-type MEF signature A CNA 

pattern, as demonstrated by positive PC1-Sig AB scores when projected onto the wild-type MEF PC1 

axis. (B) p53-/- MEFs exhibit a lower degree of copy number alterations (integrated CNA score) than 

signature A MEFs. p53-/- cells do not undergo senescence and thus tend to have less strong copy 

number alterations. 
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variation in the degree of senescence experienced by MEFs derived in atmospheric oxygen 

concentrations (21%) (Fig. 3.1-1). Upon  calculating the degree of senescence encountered by 

each subline, we found a correlation between senescence and the degree of copy number 

alterations (Fig. 3.2-1 and 3.1-5). Furthermore, p53-/- cells did not undergo senescence (54) 

and exhibited less strong copy number alterations than wild-type signature A MEFs (Fig. 3.1-9 

and 3.1-10). Taken together, our results implicate senescence-associated redox stress as one 

of the selective forces driving the copy number alterations recurrently observed in human 

tumors. 

  

Figure 3.2-1. Genomic instability relation to senescence in MEFs. The amount of senescence 

demonstrated during MEF line derivation (senescence score) is highly correlated with the degree of 

copy number alterations obtained (integrated CNA score). Single protection indicates protection by 3% 

O2 culture conditions or media supplementation with 250 U/ml catalase. Double protection indicates 

that cells were cultured at 3% O2 with catalase. 
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3.3 Methods summary of chapter 3 

CD1 mouse embryonic fibroblasts, E14.5, were purchased from Stem Cell Technologies. 

p53fl/fl MEFs were obtained at day E14.5 from p53fl/fl (FVB.129P2-Trp53tm1Brn/Nci) crossed with 

C57BL/6-129/SV mice. MEF cells were cultured using a 3T9 culturing protocol (43). To protect 

cells from reactive oxygen species (ROS), cells were cultured either at physiological oxygen 

concentrations (3% O2), with 250 U/ml catalase from bovine liver (Sigma-Aldrich), or with both 

3% O2 and catalase.  

Overexpression of the MYC oncogene or the control protein RFP in CD1 MEFs was 

accomplished by transduction of non-immortalized cells with pDS-FB-neo retrovirus, followed by 

selection in 600 μg/ml G418. Deletion of p53 in p53fl/fl MEFs was induced by infection of non-

immortalized cells with either retroviral Cre-GFP or Cre-ERT2 plus treatment with 1 μM 4-OHT.  

DNA from MEF lines and reference genomic DNA from C57BL/6J mouse tissue were 

hybridized to Agilent SurePrint G3 Mouse CGH 4x180k CGH microarray chips and processed 

using Bioconductor analysis tools.  

A summary senescence score for each MEF subline was calculated by subtracting the 

area under the growth curve from the area under an ideal growth curve (i.e. consistent growth 

at the fastest observed rate). 

More detailed descriptions of these methods can be found in Chapter 8. 
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CHAPTER 4 

Cross-species analysis further implicates an impact of 

metabolic gene loci on the recurrent copy number 

alterations observed in aneuploid tumors. 

4.1 Cross-species conserved CNA regions across human tumors 

and mouse in vivo and in vitro cancer models  
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While canonical oncogenes and tumor suppressor genes drive some recurrent DNA copy 

number alterations, many recurrent CNA regions cannot be fully explained by the presence of 

known cancer genes (24–26). To identify candidate driver genes for the cancer phenotypes 

shared by human tumors and mouse models, we used a cross-species comparison, and the 

presence of broken synteny between human and mouse genomes, to define conserved 

amplification and deletion loci. For human signatures, we used breast, lung, ovarian and uterine 

signature A tumors (Fig. 2.1-3). These four CNA signatures demonstrated consistent 

amplification or deletion in 54% of the genome (Fig. 2.1-3 and 4.1-1A). For mouse 

signatures, we used signatures defined from our wild-type MEFs (signature A), our p53-/- MEFs, 

Figure 4.1-1. Cross-species consistency of PCA-defined shared signature A. (A-B) Conserved 

amplification and deletion loci in copy-number profiles across four human tumor types with consistent 

signature A patterns, and three mouse cancer model signatures. The four human signatures are based 

on the top 10% of PC1-based signature A tumors for breast, lung, ovarian and uterine, individually, as 

in Fig. 2.1-3 (labeled as ‘TCGA, n=4’). In the human consistent regions, the 54.3% consistently altered 

gene loci include bona-fide tumor suppressor genes (p53), oncogenes (MYC, KRAS), telomere 

components (TERC, TERT), and core glycolysis genes (eg, HK2) (A, displayed on the human genome). 

Mouse CNA signatures are normalized PC1 loadings for signature A wild-type MEFs, p53-/- MEFs, and a 

mouse breast carcinoma (BRCA) model involving disruption of p53 and Brca1 genes (51) (B, displayed 

on the mouse genome). A cross-species analysis of conserved amplification and deletion loci (human 

and mouse consistent regions, defined as in Fig. 2.1-3) greatly reduces (4-fold) the percentage of 

consistent copy number alterations, thereby reducing the percentage of the genome implicated as 

candidate driver regions (displayed in both A and B). Genes listed in parenthesis (TERC, TERT, and 

TP53) are not copy number altered in the p53 genetic knockout models but are consistent otherwise. 

The synteny graph indicates the syntenic mouse chromosome number and thus the broken synteny 

regions between human and mouse genomes. The conserved regions have a median size of 

8.4 megabase pairs (sub-chromosomal arm resolution) and involve a median of 61 genes. A paired t-

test analysis of signature A MEF lines profiled at more than one passage number revealed genomic 

regions associated with mid- to late-passage CNA evolution (log10 t-test p-value signed positive for 

amplifications, negative for deletions; panel B, labeled ‘Evolv. MEFs’).  
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and a mouse model of p53-deficient and Brca1-deficent breast cancer (55). Together, these 

mouse signatures demonstrated consistent amplification or deletion in 30% of the genome 

(Fig. 4.1-1B). When the human and mouse signatures were combined via syntenic mapping, 

consistent genome regions dropped to covering only 10% of the genome, spread over 21 

conserved regions (Fig. 4.1-1). Thus, cross-species analysis strongly reduced the number of 

candidate driver gene loci that play a role in shaping a core set of recurrent tumor CNA 

patterns.  

Examination of the cross-species conserved genomic regions revealed consistent 

deletion of the regions containing the TP53 

and APC tumor suppressors and consistent 

amplification of the regions containing the MYC 

and KRAS oncogenes. The telomerase 

components TERC and TERT were also 

consistently amplified, except in the p53 

genetic knockout models. Notably, four of the 

cross-species conserved CNA genomic regions 

included genes from the glycolysis and pentose 

phosphate pathways: HK2 and RPIA (chr. 2),   

Figure 4.1-2. Schematic of the consistently 

altered genes in the core glycolysis 

pathway. Schematic of the consistently altered 

genes from Fig. 4.1-1 in the core glycolysis 

pathway plus PFKFB, TIGAR, LDH and PDH. 

Genes are colored according to their strength of 

CNA-based consistency across the 4 human 

TCGA tumor types and 3 mouse cancer models. 
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ENO2, TPI1 and GAPDH (chr. 12, region 1, which includes TIGAR), LDHB (chr. 12, region 2, 

which also includes KRAS) and PGK2 (chr. 6) (Fig. 4.1-1 and 4.1-2). In both human tumors 

and mouse models of cancer, the genomic region harboring TIGAR-ENO2-TPI1-GAPDH was 

separated from the LDHB-KRAS region by a deletion-prone region that includes the tumor 

suppressor CDKN1B (Fig. 4.1-3). 

We next repeated the metabolic pathway enrichment analysis using the cross-species 

conserved regions. The cross-species approach substantially increased the enrichment scores 

for glycolysis-related pathways due to the synteny-based elimination of passenger genes 

  

Figure 4.1-3. A positive-negative-positive selection pattern around CDKN1B. (A-C) A positive-

negative-positive selection pattern commonly observed around the tumor suppressor CDKN1B locus. In 

subsets of both human tumors and mouse models of cancer, the genomic region harboring TIGAR-

GAPDH-TPI-ENO2 was separated from the LDHB-KRAS region by a deletion region that includes the 

tumor suppressor CDKN1B. (A) TCGA breast, lung, ovarian and uterine signature A tumors, human 

Chr12p region. (B) TCGA rectum adenocarcinoma and glioblastoma tumors. (C) MEFs, wild-type and 

p53-/-, mouse Chr6 region. Tumor subsets are indicated by the expansion lines. 

Table 4.1-1. Metabolic pathway enrichment analysis based on consistent CNA patterns. 

Metabolic pathway enrichment analysis based on consistent CNA patterns in the mouse and human 

signatures from Fig. 4.1-1, including the indicated cross-species combinations of signatures. 
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(Table 4.1-1 and Fig. 4.1-4A). Improved enrichment results were obtained using human 

tumor-defined signatures combined with either i) individual mouse in vitro-derived signatures, 

or ii) the in vivo-derived signature from a mouse model of p53- and Brca1-deficent breast 

cancer (Fig. 4.1-1 and 4.1-4B). The strongest enrichment scores were observed when all 

human and mouse signatures were combined (Fig. 4.1-4C). Taken together, these results 

support a model in which the selection pressures shared during immortalization and 

tumorigenesis result in cross-species conservation of the glycolysis-related copy number 

alterations (Fig. 4.1-1).  

Figure 4.1-4. NES of combined consistency signatures. (A-B) Consistency-signature based 

normalized enrichment scores (NES) for the core glycolysis gene set improve when CNA signatures from 

mouse models are combined with the 4 TCGA-based human signatures (breast, lung, ovarian, uterine). 

For the case when multiple combinations are possible, the box plot representation is shown, (A). 

Nominal permutation p-values corresponding to the mean NES values are shown. (C) Consistency-

signature based normalized enrichment scores (NES) for the core glycolysis gene set improve as 

additional human and/or mouse CNA signatures are included. Signatures used in this analysis are the 4 

human and 4 mouse signatures from Fig. 4.1-1B. For each indicated number of signatures (n), 

averages and standard deviations of all possible combinations using n signatures are shown. The 

nominal permutation p-value corresponding to the NES value using 8 signatures is shown. 
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4.2 Cross-species regions are conserved across many tumor types 

Although the signature A subtypes of breast, lung, ovarian, and uterine tumors were 

most similar in their genome-wide CNA patterns (Fig. 2.1-1), almost all tumor types analyzed 

demonstrated consistent amplification of the cross species-defined conserved alteration regions 

from Fig. 4.1-1 (Fig. 4.2-1). In regards to glycolytic genes, 15 of 17 tumor types shared the 

cross-species conserved region containing HK2 and RPIA, and 16 of 17 tumor types shared the 

two genomic amplification regions containing TIGAR-ENO2-TPI1-GAPDH and LDHB-KRAS. Thus, 

our cross-species and pan-cancer CNA analysis revealed conserved amplification regions shared 

by the majority of tumor types studied that are enriched for genes involved in core glycolysis. 

To aid others in pan-cancer and cross-species CNA signature comparisons, we have created an 

interactive web-interface resource available at 

http://systems.crump.ucla.edu/cna_conservation/. 

 

4.3 Methods summary of chapter 4 

Cross-species consistency signatures of conserved amplification and deletions 

(consistent regions) were defined as non-zero when all CNA summary signatures had the same 

sign across top 10% from the four human signature A tumor types (BRCA, LUSC, OV and UCEC) 

and three mouse signatures (CD1 MEF signature A, p53-/- MEFs and published data of mouse 

model of breast cancer). Consistent regions defined by cross-species analysis of the base seven 

signatures (four human tumor types and three mouse models) were further analyzed for 

consistency with the CNA summary from other tumor types/subtypes (HNSC, BLCA, LUAD, 

COAD, READ, SKCM, LGG, GBM, KIRC, STAD, PRAD, THCA, BRCA luminal).  

More detailed descriptions of these methods can be found in Chapter 8.  

http://systems.crump.ucla.edu/cna_conservation/
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Figure 4.2-1. Cross-species regions are conserved across many tumor types. The 

consistently altered regions defined by cross-species analysis across 4 human tumor types (breast, 

lung, ovarian and uterine) with consistent signature A and three mouse cancer model signatures (Fig. 

4.1-1) are also amplified or deleted in many additional tumor types. After the first two rows, each 

subsequent row shows the consistent regions profile upon inclusion of the additional tumor type 

indicated. Tumor type abbreviations are as defined by TCGA and listed in Chapter 8.2.6. Here basal 

and luminal breast cancer are treated as separate tumor types. The numbers of human tumor types 

consistently amplifying or deleting each region are indicated. 
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CHAPTER 5 

Exogenous expression of metabolic enzymes reduces the 

propensities for amplification of the corresponding 

endogenous loci. 

5.1 Alteration of CNA signatures by exogenous expression of 

metabolic enzymes 

The presence of core glycolysis genes in cross-species conserved amplification regions 

suggests that these metabolic gene loci drive the amplification of these regions. To test this 

hypothesis, we transduced pre-senescent MEFs with either wild-type HK2 or HK1, kinase-dead 

HK2 (D209A/D657A) (56) or wild-type ENO2 and allowed the cells to senesce and immortalize 

in the presence of these exogenously expressed proteins (Fig. 5.1-1). Analyzing the signature 

A set of sublines, we found that the endogenous Hk2 locus (chr. 6) was less amplified in cells 

expressing exogenous wild-type hexokinase (p = 0.048) (Fig. 5.1-2 and 5.1-3A).  

Figure 5.1-1. Exogenous HK1, HK2 and ENO2 expression of representative MEFs. Exogenous 

HK1, HK2 and ENO2 expression. MEF lines expressing exogenous RFP, wild-type HK1, wild-type HK2, 

kinase-dead HK2 (D209A/D657A), or wild-type ENO2 were lysed and probed by immunoblotting for Hk1 

(A), Hk2 (B) and Eno2 (C).  Actin was included as an equal loading control.  
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In contrast, a signature A MEF cell line expressing kinase-dead hexokinase did not show 

reduced amplification of the Hk2 locus (p = 2 x 10-4). In that MEF lines exogenously expressing 

hexokinase still demonstrated positive selection for the centromere-proximal half of chr. 6 (Fig. 

5.1-2), we examined the ratio of Hk2 gene locus copy number to the maximal amplification on 

chromosome 6 (Hk2:Chr6 max). In this analysis, we found that cells expressing exogenous 

hexokinase demonstrated significantly reduced Hk2:Chr6 max ratios (p = 3 x 10-3) (Fig. 5.1-2  

  

Figure 5.1-2. Signature A MEFs expressing exogenous HK1/HK2 or ENO2. CD1 MEFs 

expressing exogenous HK1/HK2 or ENO2 exhibit reduced amplification of the endogenous Hk2 or Eno2 

loci, respectively. Chr. 6 copy-number profiles from control signature A MEFs (untransduced or 

expressing red fluorescent protein (RFP)) compared to signature A MEFs expressing either wild-type 

HK1 or HK2, kinase-dead HK2 (HK2 KD, D209A/D657A), or wild-type ENO2. The positions of 

endogenous Hk2 and Eno2 are indicated. MEF lines profiled at more than one passage number are 

indicated by the start (earlier passage) and end points of the arrows under ‘Evolving MEFs’. 
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and 5.1-3B). Additionally, a MEF subline expressing exogenous ENO2 exhibited deletion rather 

than amplification of the Eno2 locus on chr. 6 (p = 0.02) (Fig. 5.1-2 and 5.1-3C). Analyzing 

the signature B set of sublines, we found that the endogenous Hk1 locus (chr. 10) was copy 

number neutral, rather than amplified, in a cell line expressing exogenous hexokinase (p = 

0.17), whereas a signature B MEF cell line expressing kinase-dead hexokinase did not show 

reduced amplification of the Hk1 locus (Fig. 5.1-4). Taken together, these results demonstrate 

that exogenous expression of metabolic enzymes can alter the copy number status of the 

endogenous genomic loci, supporting these metabolic genes as drivers within the conserved 

amplification regions observed in human tumors and mouse models.  

Figure 5.1-3. CNA of signature A MEFs expressing exogenous Hk1/Hk2 or Eno2. (A-C) 

Boxplots of Hk2 copy number (A), ratio of Hk2 copy number to maximum amplification of chromosome 

6 (defined operationally as the 5th percentile CNA value across chr. 6 to avoid outlier effects) (B), and 

Eno2 copy number (C). (Control MEFs: untransduced (squares) or expressing RFP (diamonds); test 

MEFs expressing wild-type HK1 (upside-down triangles), HK2 (triangles in A-B), kinase-dead HK2 (HK2 

KD, D209A / D657A, circles), or wild-type ENO2 (triangle in C).) Indicated p-values are one-tailed 

Student’s t-test for normally distributed data, Mann-Whitney otherwise, and z-score for data with a 

single data point in one comparison group). Copy number data from samples profiled at multiple 

passages were averaged to prevent overrepresentation of these cell lines. 
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5.2 Methods summary of chapter 5 

Overexpression of HK1, HK2, kinase-dead HK2 (D209A/D657A) or ENO2 glycolysis 

enzymes or the control protein RFP in CD1 MEFs was accomplished by transduction of non-

immortalized cells with pDS-FB-neo retrovirus, followed by selection in 600 μg/ml G418.  

Primary antibodies used for western blot analysis included Hexokinase 1 (2024, Cell 

Signaling Technology), Hexokinase 2 (2867, Cell Signaling Technology), p53 (NB200-103, Novus 

Biologicals), and Enolase 2 (8171, Cell Signaling Technology). 

More detailed descriptions of these methods can be found in Chapter 8.  

Figure 5.1-4. Signature B MEFs expressing exogenous HK2. (A) Signature B MEFs expressing 

exogenous HK2 exhibit less amplification of the Hk1 locus  Chr. 10 copy-number profiles from control 

signature B MEFs (untransduced or expressing RFP) compared to signature B MEFs expressing wild-type 

HK2 or kinase-dead HK2 (HK2 KD). The positions of endogenous Hk1 and Mdm2 are indicated. (B) 

Boxplot of the Hk1 copy number with indicated p-value (z-score).  

For all comparisons in this figure and in Figure 5.1-3, no significant differences were observed 

between untransduced and RFP-expressing MEFs. The Fisher’s combined p-values for the alteration of 

endogenous loci CNA by exogenous expression of metabolic enzymes is 3 × 10-5 (Fig. 5.1-3A,C and 

panel B) or 7 × 10-4 (Fig. 5.1-3B,D and panel B). 
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CHAPTER 6 

Metabolism and growth phenotypes scale with CNA 

signatures 

6.1 Characterization of metabolic and growth changes associated 

with copy number alteration signatures 

To test whether there exist phenotypic differences between signature A and signature B 

MEFs, we characterize ed 11 wild-type MEF lines representative of either signatures A or B and 

one mixed signature line. We found that signature A MEFs generally had higher rates of glucose 

consumption and lactate production than signature B MEF lines (Fig. 6.1-1). Plotting the PC1 

score versus glucose consumption, we found that CNA-based signature A was highly predictive 

of glucose consumption in the MEF signature A lines (Fig. 6.1-2A). In contrast, signature B    

Figure 6.1-1. Metabolic differences of PCA-defined signatures. PCA-defined signature A MEFs 

exhibit higher glucose consumption (A) and lactate production (B) rates than signature B MEFs. Glucose 

consumption and lactate secretion as measured by a bioanalyzer. Error bars indicate standard 

deviations of biological replicates. 
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Figure 6.1-2. PCA-based MEFs signature A is predictive of glycolysis. (A) PC1 scores of signature 

A MEFs are predictive of glucose consumption rates in signature A MEFs, while scores from signature B 

MEFs have weaker predictive power in signature B MEFs. Error bars indicate standard deviations of 

biological replicates. (B) In cross-prediction tests, signature A-based predictions of signature A MEF line 

metabolic phenotypes perform the best. Glucose consumption as measured by a bioanalyzer.  

Figure 6.1-3. Growth properties of PCA-defined MEFs signatures. (A) PCA-defined signature A 

MEFs exhibit higher average growth fold change, as observed in 3T9 culture, compared to signature B 

MEFs. Error bars indicate standard deviations of biological replicates. (B) Correlation and a general co-

evolution of higher growth rates and increased CNA signature strength. Arrowed lines indicate 

progressing MEF lines profiled at more than one passage number (Fig. 3.1-5 and 3.1-6). (C) In cross-

prediction tests, PC1 scores of signature A MEFs are more predictive of average growth fold change in 

signature A MEFs, while scores from signature B MEFs are more predictive in signature B MEFs. 
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was only moderately predictive of the glucose consumption of signature B lines, and was not as 

accurate as signature A in predicting the glucose consumption of signature A lines (Fig. 6.1-2). 

In addition, we noted that the signature A cell lines generally exhibited higher rates of 

proliferation than the cell lines in signature B (Fig. 6.1-3A). 



48 
 

 

Similar to glucose consumption, signature A was predictive of the growth rates of 

signature A MEFs and signature B was predictive of the growth rates of signature B MEFs, while 

cross-signature predictions had less power (Fig. 6.1-3B,C). Furthermore, we observed a 

general co-evolution of higher growth rates and increased CNA signature strength in MEF lines 

that were profiled at different passage numbers (Fig. 6.1-3B). As noted above, the evolving 

MEF CNA signature pattern was enriched for DNA amplifications of genes in the core glycolysis 

and glycolysis-associated pathways (Table 4.1-1), particularly due to amplification of 

chromosome 6, which contains multiple metabolic gene loci including Hk2 and Rpia (Fig. 3.1-2, 

4.1-1B, 3.1-6 and 3.1-7). 

To test whether signature A and signature B MEFs differentially use glucose, we cultured 

MEF cells with [1,2-13C]-labeled glucose and conducted metabolomic profiling by mass 

spectrometry (Fig. 6.1-4 and 6.1-6) (57). In all MEF lines tested, we observed a low 

percentage of single heavy labeled carbon [M1 isotopomer compared to M2] in pyruvate, 

Figure 6.1-4. Mass spectrometry-based intracellular metabolite measurements. Samples 

are arranged left to right from the strongest signature B (blue) PC1 scores to the strongest signature 

A PC1 (red) scores. Sample D10 (purple) is a mixed signature A/B line. (A) Relative intracellular 

metabolite levels. (B) Isotopomer distributions for intracellular metabolites (M0, monoisotopic 

molecular weight). (C) Percent label for intracellular metabolites defined as percent of metabolite 

molecules with isotopomer mass greater than the monoisotopic molecular weight. Note, the high to 

low range for percent metabolite molecules with incorporated label varies for each metabolite and 

generally does not extend from 0 to 100%. In panels B-C, the correlation of each metabolic 

parameter with glucose consumption (as measured by a bioanalyzer, and as a positive variable, Fig. 

6.1-1A) is indicated (Pearson correlation, ρ). In the isotopomer cases (B), the summary metric of 

percent label is used for the correlation determination. Notably, cells with high glucose consumption 

rates tend to exhibit high consumption of serine, glycine and glutamine; and high secretion of lactate 

(with concordant lactate secretion results obtained by bioanalyzer-based measurement of the same 

spent cell culture media). Error bars indicate standard deviations of biological replicates.  
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lactate, and alanine, indicating that the contribution of glucose-derived carbon from the 

oxidative arm of the pentose phosphate pathway to these metabolites was relatively low (Fig. 

6.1-4B). Nonetheless, the patterns of heavy isotope labeling revealed differences in nutrient 

utilization between signature A and B MEF cell lines. On average, metabolites of early glycolysis, 

the pentose phosphate and nucleotide synthesis pathways showed a higher percentage of 

glucose-derived heavy carbon labeling in signature A MEFs (Fig. 6.1-5 and 6.1-4C). 

 

 In contrast, signature A cells had a lower percentage of glucose-derived heavy carbon 

labeling in metabolites of the serine synthesis pathway and the TCA cycle. When compared to 

signature B MEFs, signature A cells also tended to exhibit increased consumption of serine, 

Figure 6.1-5. Signature-based metabolic pathway 

schematic of heavy labeled glucose in MEFs. 

Metabolomic profiling of 11 wild-type MEF lines 

representative of either signatures A or B cultured for 24 

h with [1,2-13C]-labeled glucose. The metabolic 

pathway schematic is colored based on differences 

observed in the percent heavy label for intracellular 

metabolites (defined as percent of metabolite molecules 

with isotopomer mass greater than the monoisotopic 

molecular weight, M0) between signature A and B MEFs. 

Red indicates a higher heavy carbon-labeling percentage 

in Signature A MEFs, and blue indicates a higher heavy 

carbon-labeling percentage in signature B MEFs. 

Signature A MEF lines incorporate more glucose-derived 

carbon in metabolites from the early glycolysis steps, 

the pentose phosphate pathway, and nucleotide 

synthesis; and a smaller fraction of glucose-derived 

carbon per molecule in metabolites from the later 

glycolysis steps, the serine synthesis pathway, and the 

TCA cycle.  
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glutamine, and other amino acids (Fig. 6.1-6). In general, the percentage of metabolites from 

the early glycolysis, the pentose phosphate and nucleotide synthesis pathways that 

incorporated heavy, glucose-derived carbon metabolites was positively correlated with glucose 

consumption (eg, fructose-1,6-bisphosphate and ATP, Fig. 6.1-7).  

Conversely, metabolites from the serine synthesis pathway and the TCA cycle showed a 

negative correlation between glucose consumption and the percentage of each molecule 

containing a heavy, glucose-derived carbon (eg, 3-phosphoserine and malate, Fig. 6.1-7).  

Figure 6.1-6. Mass spectrometry-based metabolite measurements of media relative levels. 

Samples are arranged left to right from the strongest signature B (blue) PC1 scores to the strongest 

signature A PC1 (red) scores. Sample D10 (purple) is a mixed signature A/B line. (A) Relative metabolite 

consumption from and secretion into media normalized to initial media levels (ie, cellular metabolite 

footprint). Here, positive and negative values indicate metabolite secretion into and consumption from 

the media, respectively. In panel A, the correlation of each metabolic parameter with glucose 

consumption (as measured by a bioanalyzer, and as a positive variable, Fig. 6.1-1A) is indicated 

(Pearson correlation, ρ). (B) Pathway schematics of differences in relative media levels (footprint, from 

panel A) between signature A and signature B MEFs. Each node is colored according the signal-to-noise 

ratio. Red indicates higher post-culture media levels (lower consumption or higher secretion rates) in 

signature A MEFs, and blue indicates higher post-culture media levels in signature B MEFs. Error bars 

indicate standard deviations of biological replicates.  
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Of note, differences between signature A and B lines were mainly in regards to scale, with the 

strongest signature B lines demonstrating similar glycolysis and proliferation rates, as well as 

similar metabolic profiles, as the weakest signature A lines.  

 

Taken together, these results demonstrate that signature A MEFs, which resemble 

signature A human tumors, exhibit increased glycolysis and proliferation, and have an increased 

Figure 6.1-7. Correlation of selected metabolites with glucose consumption. Correlation of 

fructose-1,6-bisphosphate (F1,6BP), adenosine triphosphate (ATP), 3-phosphoserine (pSer) and 

malate with glucose consumption. Note, the high to low range for percent metabolite molecules with 

incorporated label varies for each metabolite, but generally does not extend from 0 to 100%. 

Signature A and B MEFs are colored red and blue, respectively. Error bars indicate standard deviations 

of biological replicates. 
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relative proportion of glucose-derived carbon in metabolites of pentose phosphate-associated 

biosynthetic pathways such as nucleotide synthesis. These findings are consistent with 

published mouse model studies in which tumor cells that are channeling glucose towards 

nucleotide biogenesis achieve faster rates of proliferation (58,59).  

 

6.2 Methods summary of chapter 6 

Lactate secretion rates of breast cancer cell lines were measured from the culture media 

using a colorimetric assay kit (BioVision). Glucose consumption and lactate secretion rates of 

MEFs were measured using a BioProfile Basic bioanalyzer (NOVA Biomedical). All samples were 

run as biological triplicates and in multiple independent experiments. 

For the mass spectrometry-based metabolomic analyses, MEF sublines were cultured in 

media containing 4.5 g/L [1,2-13C]-labeled glucose for 24 h. Cell culture media for footprint 

profiling was collected and metabolites were extracted with ice-cold 80% methanol. For 

intracellular metabolite analysis, cells were washed with cold 150 mM ammonium acetate pH 

7.3, and metabolites extracted in cold 80% methanol. Samples were run on a Q-Exactive mass 

spectrometer (MS) coupled to an UltiMate 3000RSLC UHPLC system (Thermo Scientific). The 

MS was run in polarity switching mode. Metabolites were separated on a Luna 3 μm NH2 100 Å 

(150 x 2.0 mm) (Phenomenex) column. Relative amounts of metabolites between various 

conditions, percentage of metabolite isotopomers (relative to all isotopomers of that 

metabolite), and percentage of labeled metabolite molecules (isotopomer M1 and greater, 

relative to all isotopomers) were calculated, and corrected for naturally occurring 13C 

abundance. All samples were run as biological triplicates and subjected to statistical tests across 

independent experiments as described in the extended experimental procedures.  

More detailed descriptions of these methods can be found in Chapter 8.  
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CHAPTER 7 

Discussion 

7.1 Overview 

Highly aneuploid and highly glycolytic tumors are some of the most aggressive cancers, 

and the complexity and plasticity of their genomes can hinder molecularly targeted therapies 

(35,60,61). While the glycolytic changes associated with tumorigenesis were one of the early 

defining phenotypes of cancer cells (62), they have not previously been linked to recurrent DNA 

copy number patterns. Taken together, our data support a model in which metabolism-linked 

selective pressures encountered during tumorigenesis (eg, redox stress and senescence) shape 

the highly recurrent DNA copy number alterations found in aneuploid human tumors (Fig. 7.1-

1). We found that CNAs in core glycolysis enzymes (eg, HK2) and other cancer-linked metabolic 

enzymes such as TIGAR and RPIA are coordinately enriched in tumors with distinct CNA 

signatures. These CNA signatures are predictive of glycolysis, including patient FDG-PET 

activity, and proliferation phenotypes. In that exogenous expression of hexokinase and enolase 

enzymes reduced the propensities for amplifications of the corresponding endogenous 

hexokinase and enolase loci, these metabolic genes empirically score as driver loci within the 

conserved amplification regions. Combined with the observation that metabolic genes can 

facilitate cellular immortalization (16–18), our results implicate tumor metabolism as an 

additional fitness measure linked to how genomic instability can enable tumorigenesis.  
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Figure 7.1-1. Genomic instability enables fitness gains in tumor metabolism. In human 

tumors, cancer cell lines, and an experimental MEF immortalization system, immortalization and 

tumorigenesis lead to multiple CNA signatures that are predictive of the tumor phenotypes of 

metabolism and proliferation. Senescence-associated redox stress and other tumorigenesis-related 

constraints select for stronger CNA signatures. A shared high glycolysis-associated signature A is 

observed in breast, lung, ovarian and uterine tumors and the MEF model system, and is linked with a 

stronger range of glycolysis and proliferation phenotypes. Genetic manipulation of glycolysis enzymes 

leads to alteration of corresponding CNA signature propensities. Signature A and B genomes reflect two 

distinct trajectories from diploidy to tumor aneuploidy. Signature A tumors are enriched for mutations 

in p53 and have smaller sized amplification and deletion genomic regions (ie, have a higher number of 

genomic breakpoints), potentially providing increased alternative genome options. Signature A involves 

amplification of several genes in glycolysis-related pathways (such as HK2, TIGAR, TPI1, GAPDH, 

PGK2, ENO2, LDHB and RPIA). Signature B CNA patterns occur in generally less glycolytic and 

proliferative samples and show more variation across different tumor types. In particular, signature B is 

enriched for MDM2 amplification, strong MYC amplification, and KRAS mutation; and involves alternate 

hexokinase isoforms (HK1, HK3). 
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7.2 Redox stress, biomass accumulation and associated glycolytic 

changes in tumorigenesis 

Tumorigenesis is a complex, multi-stage process during which cells must acquire the 

capability to maintain redox balance while accumulating the macromolecular precursors 

required for proliferation (2,4). Numerous stimuli, including RAS mutations, matrix detachment, 

altered metabolism and hypoxia, induce the accumulation of intracellular ROS (63–66). Because 

increased ROS levels can trigger replicative senescence and subsequent cell cycle arrest 

(66,67), tumors must maintain pools of reduced glutathione using NADPH in part produced via 

the pentose phosphate pathway. Additionally, increased levels of ROS can divert glycolytic flux 

into the pentose phosphate pathway through, for example, oxidation and inhibition of the 

glycolytic enzyme PKM2, thereby supplying cells with the reducing power and precursors for 

anabolic processes (63,59). Consistent with this published knowledge on the role of metabolism 

in tumorigenesis, our study suggests that the metabolic stress associated with senescence (Fig. 

3.1-2 and 3.2-1) and the metabolic demands of rapid proliferation (Chapter 6) are 

components of the selective pressures underlying recurrent CNA changes. 

 

7.3 Experimentally and computationally deciphering CNA patterns 

Our experimental and bioinformatic approaches complement existing approaches for 

testing hypotheses for the selection pressures underlying recurrent CNA patterns observed in 

human tumors. Other CNA-analysis approaches target different resolutions of the genome. 

Statistical algorithms such as GISTIC (Genomic Identification of Significant Targets in Cancer) 

have identified many strong individual driver genes and candidate regions (68). Integrating CNA 
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data with RNA knockdown screens and gene expression data has further identified driver genes 

missed by statistical analysis of CNA data alone (69). RNA knockdown-based analyses have also 

been used to support a more systems-level model in which the selection for amplification and 

deletion of particular DNA regions is based on the cumulative effects of many positive and 

negative fitness gains from multiple genes within a genomic region (70). Subsequent 

computational extensions have incorporated somatic mutation patterns to infer the cumulative 

impact of co-localized genes on fitness, and to successfully predict whole chromosome and 

chromosome-arm resolution level CNAs (24).  

Our experimental and bioinformatic approach using phenotypic data, functional gene 

sets, and cross-species syntenic mapping has yielded additional insight into the selective 

pressures shaping tumor CNA patterns, namely coordinated alteration of genes involved in 

glycolytic metabolism. To our knowledge, our approach is the first reported experimental 

system in which CNA and associated phenotypes have been followed and repeatedly sampled as 

non-immortalized cells undergo spontaneous genomic instability and proceed from a diploid 

state to an immortalized aneuploid state. Using this approach, we identified genomic regions 

that are (i) associated with increased glycolysis and proliferation and enriched for genes from 

the core glycolysis pathway, and that are (ii) conserved in both mouse models of cancer and 

human tumors. Metabolic pathways are known to be coordinately regulated by modest changes 

in mRNA expression of functionally related genes (37,71). The coordinated alterations of 

metabolic genes at the DNA level adds an additional mechanism, namely conserved sets of CNA 

changes, by which glycolysis is dysregulated to promote tumorigenesis.  

A strength of our PCA-based approach is the ability to unbiasedly reveal distinct CNA 

sub-signatures within a tumor type. Observed sub-signatures were found to be associated with 

previously known pathology- or profiling-defined tumor subtypes (eg, basal/luminal BRCA) (Fig. 
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2.1-2). In our experimental follow-up, the MEF system recapitulated a two signature pattern. 

Notably, the two signatures and their associated phenotype strengths were defined by the 

initiating loss of tumor suppression event, namely Trp53 mutation versus Mdm2 amplification. 

Thus, while the consequences of TP53 mutation and amplification of MDM2 are considered 

functionally similar and therefore mutually exclusive (72), our findings indicate they are not fully 

equivalent in terms of genomic instability and subsequent metabolic evolution. The tolerance of 

more highly disrupted and rearranged genomes upon p53 mutation appears to allow more 

flexibility in the evolution of aneuploid cancer genomes, thereby resulting in stronger glycolysis 

and enhanced proliferation. The specific combinations of CNA changes occurring in enzyme 

isoforms defining a metabolic pathway may be considered "onco-metabolic isoenzyme 

configurations” with differential potency, and the sets of combinations possible may be limited 

in part by the degree or specifics of tolerance to genomic re-arrangements. 

Our work illustrates the value of cross-species comparisons in the analysis of DNA copy 

number data, much as recent cross-tissue and integrated genomic approaches have uncovered 

novel cancer subtypes and driver genes (73,74). The broken chromosome synteny between 

human and mouse genomes reduced the size of potential driver regions by over 4-fold on 

average, and identified a relatively small number (21) of amplification and deletion regions 

highly conserved between mouse and human. These conserved regions are consistently found 

across 15 of 17 tumor types examined, have sub-chromosomal scale with a median size of 

10 megabase pairs, and include the glycolysis and pentose phosphate pathway enzyme CNAs 

observed in our experimental work. 
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7.4 Therapeutic and diagnostic implications 

The most copy number aberrant tumors tend to have fewer point mutations in canonical 

oncogenes (eg, KRAS, Fig. 2.1-2B – 2.1-2D) and less canonical oncogene amplification (eg, 

MYC, Fig. 2.1-2A). Hence, genomic instability and subsequent coordinate alterations in 

multiple genes within a functional pathway may provide an alternate, more complex, pathway 

to acquisition of more aggressive tumor phenotypes – with tumor evolution and selection 

guiding the trajectory (75). Future models of the most aggressive cases of cancer will need to 

incorporate aspects of spontaneous genomic instability (mediated by distinct instability 

mechanisms) and resulting copy number alterations. Translationally, understanding how CNA 

patterns alter cancer genomes and impact cancer phenotypes will aid in the identification of 

metabolic or other ‘hard-wired’ vulnerabilities that can be therapeutically targeted. Furthermore, 

the relative stability of DNA samples, combined with the growing linkage between highly 

recurrent copy number changes and phenotypes, support the potential for molecular 

classification and diagnostic tests based on DNA copy number patterns (76). 

 

7.5 Future directions 

7.5.1 Impact of oxidative stress on the genomic CNA patterns recurrently observed in 

human cancers. To further test our model that genomic CNA patterns of a tumor are a 

reflection of its past tumorigenesis path (Chapter 1.5) we can genetically perturb genes 

involved in the cellular oxidative stress response regulators. This will determine whether the 

altered ROS selective forces can lead to altered resulting CNA patterns.  
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Among our prioritized targets would be Nrf2, a master antioxidant transcription factor 

that upregulates the expression of several antioxidant and detoxifying molecules (77) or 

inhibition of signaling through mTOR, the hypoxia target and a major regulator of multiple 

mechanisms contributing to the altered metabolic phenotype (77). After the selection period, 

cells with the perturbed ROS regulation will be microarray profiled and analyzed using our in-

house downstream analysis pipeline.  

7.5.2 CNA of energy metabolism genes provide a selective advantage during 

tumorigenesis by promoting glycolytic metabolism. Our CNA analysis implicates glycolysis genes 

as drivers for the recurrent chromosome region amplifications and deletions observed in human 

tumors (Fig 7.1-1). Guided by our bioinformatic analysis, we will continue to genetically 

manipulate our top candidate glycolysis genes and test their contribution to the observed CNA 

patterns. We will repeat the results with overexpression of metabolic enzymes enolase 2 and 

hexokinase 2. Hexokinase 2 is an enzyme that is considered to be responsible for trapping 

glucose in cells. Certain cancers are known to be specifically dependent on the hexokinase 2 

(HK2) isoform of the hexokinase enzyme (78). Our other targets include phosphoglycerate 

mutate (PGM-M, also known as PGAM2) which has been shown to be capable of immortalizing 

mouse embryonic fibroblasts and enhancing their glycolytic flux (79). Similarly 

bisphosphoglycerate mutase (BPGM) also has a mutase and a phosphatase function like its 

glycolitic cousin, PGM. Additionally BPGM is located physically close to HK2 enzyme on 

chromosome 6 in the mouse genome. Overexpression of HK2 leads to the corresponding locus 

deletion in MEFs (Fig 5.1-2 and 5.1-3). Hence BPGM would be an interesting target both 

because of its impact on glycolysis and as a control for the “hot-spot” for chromosomal 

aberration on chromosome 6. Another gene of interest is pyruvate dehydrogenase kinase (PDK) 

which acts to inactivate the enzyme pyruvate dehydrogenase. Therefore, overexpressing PDK 

http://en.wikipedia.org/wiki/Mutase
http://en.wikipedia.org/wiki/Phosphatase
http://en.wikipedia.org/wiki/Pyruvate_dehydrogenase
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can prove effective in pushing cellular metabolism through the lactate arm promoting the 

Warburg effect in cells. We will also test whether combination of top 2-3 driver candidate genes 

can promote stronger CNA patterns.  

7.5.3 Incorporation of genomic instability into a mouse model to further define the role 

of redox stress and energy metabolism genes in tumorigenesis using an in vivo system. In vivo 

mouse tumorigenesis models provide better understanding of the disease process and can 

serve as a pre-clinical system for testing therapeutic options against cancer. The lab of Sanaz 

Memarzadeh at UCLA has successfully generated tumors with pathology phenotypes matching 

type I endometrial adenocarcinomas (80) using the use tissue recombination and subrenal 

capsule grafting technique. This in vivo regeneration and transformation system can allow us to 

incorporate genomic instability at various stages before (e.g. implanting modified cells) or after 

(e.g. using tet-inducible gene regulation after implantation) introduction into mouse. This 

system results in tumors within 6-8 weeks providing us with much faster results compared to 

transgenic models. Cross-species conservation and enrichment of amplifications in glycolysis 

and glycolysis associated genes, has demonstrated high concordance between CNA results with 

the MEF immortalization system and CNA patterns observed in uterine carcinoma patients 

(Chapter 4.1). Therefore, genetical manipulation of metabolism and redox regulator genes 

prioritized in Chapters 7.5.1 and 7.5.2 is expected to provide rich and useful in vivo mouse 

model for evaluation of resulting phenotypes. 

7.5.4 Co-targeting DNA repair together with glycolysis and redox metabolism in 

genomically unstable tumors. Co-targeting DNA repair together with glycolysis and redox 

metabolism in genomically unstable tumors may be more effective than either inhibitor alone. 

We will test the susceptibility of genomically unstable and highly glycolytic breast cancer cell 

lines, mouse embryonic fibroblasts as well as mouse in vivo model to i) DNA-repair targeted 
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therapies, ii) anti-metabolism drugs, iii) reactive oxygen species protection or augmentation 

(altering homeostasis), and iv) combinations of the above therapeutic modalities. Metabolism in 

tumors can be targeted by different inhibitors. For example, both dichloroacetate (DCA) and 

metformin are targeting mitochondrial physiology, yet DCA decreases lactate production and is 

used to treat lactic acidosis, whereas metformin increases lactate production and lactic acidosis 

is an important side effect of metformin treatment (78,81). Inhibition of hexokinase 2 (HK2), 

which is generally expressed in skeletal muscle and adipose tissue, may provide a therapeutic 

window for treating cancers that are specifically dependent on the HK2. Other metabolic 

inhibitors to be tested include GLUT1 inhibitors (82) and PKM2 inhibitors (83). Targeting DNA-

repair can be attained via inhibition of PARP in tumors with BRCA1/2 or PALB2 mutations (84). 

Different ways of neutralizing reactive oxygen species exist including the genetic manipulations 

of Chapter 7.5.1, such as targeting genes in the Nrf2 axis. We will test both a panel of breast 

cancer cell lines with published CNA data (86), cells from our mouse immortalization system, 

including the newly emerging sublines from Chapter 7.5.1 and 7.5.2, as well as the mouse 

model described in Chapter 7.5.3 for the evidence of additive or synergistic effects of the 

suggested therapeutics. 
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CHAPTER 8 

Methods 

8.1 Cell culture and mouse strains 

8.1.1 Cell culture: CD1 mouse embryonic fibroblasts, E14.5, were purchased from Stem 

Cell Technologies. p53fl/fl MEFs were obtained at day E14.5 from p53fl/fl (FVB.129P2-

Trp53tm1Brn/Nci) crossed with C57BL/6-129/SV mice. MEF cells were maintained in Dulbecco’s 

Modified Eagle’s Medium without pyruvate and supplemented with 10% FBS and 1% SPF. Cells 

were lifted and re-plated at a density of 9 x 105 viable cells / 60 mm dish every 3-4 days (ie, 

3T9 protocol (43)) or in few cases at sub-confluent density (Table 8.1-1).  

 

 

 

 

 

 

 

 

 

 

Growth curves are presented by looking at the passage, i, versus the normalized cell number, 

NCellNoi (Fig. 3.1-1 and Eq. 8.1.1-8.1.2).   

 

TC plate  Equivalent Cell No. 
Plate size Surface Area 

(cm2) 
3T9    

Density 
Sub-confluent 

Density 
Media per plate 

(ml) 
150 mm 152 6.5E+06 1.4E+06 25 
100 mm 55 2.4E+06 5.0E+05 10 
60 mm 21 9.0E+05 1.9E+05 3.0 

6-well plate 9 3.9E+05 8.2E+04 2.0 
12-well plate 3.8 1.6E+05 3.5E+04 1.5 
24-well plate 2 8.6E+04 1.8E+04 1.0 
96-well plate 0.34 1.5E+04 3.1E+03 0.2 

Table 8.1-1. Density of seeding cells chart. Density of seeded cells and media volume for 

mouse embryonic fibroblast culture according to TC, tissue culture, plate size.  
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Eq. 8 .1.1:                    𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝐹𝐹𝐹𝐹𝑖𝑖  ×  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖−1,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

Eq. 8 .1.2:              𝐹𝐹𝐹𝐹𝑖𝑖 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖−1

   𝑎𝑎𝑎𝑎𝑎𝑎    𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 = 1  

 

8.1.2 Genetic manipulation: Overexpression of HK1, HK2, kinase-dead HK2 

(D209A/D657A) or ENO2 glycolysis enzymes and the MYC oncogene or the control protein RFP 

in CD1 MEFs was accomplished by transduction of non-immortalized cells with pDS-FB-neo 

retrovirus, followed by selection in 600 μg/ml G418. Deletion of p53 in p53fl/fl MEFs was induced 

by infection of non-immortalized cells with either retroviral Cre-GFP or Cre-ERT2 plus treatment 

with 1 μM 4-OHT.  

8.1.3 ROS protection: To protect cells from reactive oxygen species (ROS), cells were 

cultured either at physiological oxygen concentrations (3% O2), with 250 U/ml catalase from 

bovine liver (Sigma-Aldrich), or with both 3% O2 and catalase. 3% oxygen conditions were 

achieved using a generic incubator and BioSpherix Proox Model 110 oxygen controller. Catalase 

was used as an enzymatic scavenger of reactive oxygen species that catalyzes the 

decomposition of hydrogen peroxide generated in the culture medium to water and oxygen. 

 

8.2 CNA profiling 

8.2.1 Background: To determine genome-wide copy number alteration we used Array 

Comparative Genomic Hybridization (aCGH). Copy number changes at a level of 5-10 kilobases 

can be detected by comparing the genomic DNA (gDNA) from a test sample to the gDNA from a 

reference sample. Fluorophores Cyanine 5 (Cy5) and Cyanine 3 (Cy3) are used to label test and 

reference samples respectively.  
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The Agilent SurePrint CGH Microarray, used in this study, is a glass slide with printed 

triplicates of 60-mer oligonucleotides that act as probes for the labeled gDNA. Fluoresently 

labled equal amounts of gDNA targets from test and reference samples are competitively 

cohybridized onto the oligonucleotide probes and scanned for the relative fluorescence 

intensities. The ratio Cy5 and Cy3 is proportional to the ratio of copy numbers of DNA 

sequences. This ratio of quantified intensities is subjected to background correction, 

normalization and segmentation algorithm to determine the copy number ratio for the whole 

genome. 

8.2.2 Extract protocol: Genomic DNA was harvested using the DNeasy kit (Qiagen) 

following manufacturer's instructions. DNA from MEF lines and reference genomic DNA from 

C57BL/6J mouse tissue were hybridized to Agilent SurePrint G3 Mouse CGH 4x180k CGH 

microarray chips at the UCLA Pathology Clinical Microarray Core. 

8.2.2 Label protocol: The Agilent SureTag DNA Labeling Kit was used to fragment, 

amplify, label, purify, and prepare the gDNA for hybridization.  Only samples with greater than 

1.6 260/280 ratio and with validated DNA integrity (by running a 1% agarose gel for 30 mins at 

85V) were used. Restriction digestion using Alu I (10 μg/μl) and RSA I (10 μg/μl) and stabilizing 

acetylated BSA (10 μg/μl) was run on samples for 2 hrs at 37°C, 20 mins at 65°C to fragment 

isolated gDNA. 5 μl Random Primers were added to the 24 μl of the restriction digest and 

sample mix for 3 mins at 95°C, 10 mins on ice to anneal to the ssDNA fragments. To amplify 

the gDNA while generating labeled targets for array hybridization 1 μl of Exo-Klenow fragment 

of DNA polymerase, 5 μl 10XdNTPs, and 3 μl Cy5-dUTP (Cy3-dUTP) were added to the 

restriction digest and test (reference) sample mix and ran for 2 hrs at 37°C, 10 mins at 65°C. 

Unreacted dye and unincorporated nucleotides were removed from the labeled gDNA using 
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Amicon 30 kDa column purification.  The degree of labeling and concentration was then 

determined, and the test and reference gDNA mixed at a 1:1 ratio. 

8.2.3 Hybridization protocol: 55 μl 2X Hi-RPM hybridization buffer, 11 μl 10X aCGH 

blocking agent, 5 μl Cot-1 DNA (1.0 mg/ml) were added to the test and reference gDNA mix 

and ran 3 mins at 95°C, 30 mins at 37°C to promote binding of the gDNA targets to the probes 

and to prevent nonspecific binding. The mix was then allowed to hybridize to the microarray 

slide at 65°C for 24 hrs. After hybridization, slides were washed sequentially using Agilent Oligo 

aCGH/ChIP-on-Chip Washer Buffers.   

8.2.4 Scan protocol: Microarrays were scanned using an Agilent Technologies Scanner 

G2505C. The raw data was extracted using Agilent Feature Extraction 11.5.1.1. 

8.2.5 Data processing: Bioconductor analysis tools were used for data processing and 

quality control. Moving minimum background correction and print-tip loess normalization were 

performed in snapCGH package (87). More details on pre-processing aCGH data are specified in 

Chapter 8.3. 

Moving minimum background correction was used to remove the effects of non-specific 

binding or spatial heterogeneity across the microarray. In this method, the background 

estimates are replaced with the minimums of the backgrounds of the spot and its eight 

neighbors, i.e., the background is replaced by a moving minimum of 3x3 grids of spots (Fig. 

8.2-1). 
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Print-tip loess normalization was used to remove any systematic trends in copy number 

data which arise from the microarray technology rather than from differences between the 

probes or between the test DNA samples hybridized to the arrays. The copy number log-ratios 

were normalized separately to remove dye-bias within each array, so that the log-ratios 

averaged to zero within each array (within-array normalization). The distribution of the log 

red/green intensity ratios, M (Eq. 8.2.1), plotted by the average intensity, A (Eq. 8.2.2), is 

called MA-plot (Fig. 8.2-2) and is used to visualize raw microarray data to determine the need 

of normalization. A typical bias determined is when |M| is higher with higher A, that is the  

 

Figure 8.2-1. aCGH background correction. Moving minimum background subtraction in a 

representative MEF sample, CD1 wild-type  A3 at passage 40. Reference or green channel, Cy3, is the 

reference genomic DNA from C57BL/6J mouse tissue. Test or red channel, Cy5, is the test MEF sample. 

(A) Foreground intensities from the reference and test channels along with the background intensities. 

(B) Intensities of test and reference samples after background correction. 
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Eq. 8 .2.1:               𝑀𝑀 =  𝑙𝑙𝑙𝑙𝑙𝑙2 �
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

� 

Eq. 8 .2.2:       𝐴𝐴= 1
2 𝑙𝑙𝑙𝑙𝑙𝑙2 �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅× 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� 

 

Figure 8.2-2. aCGH normalization. Print-tip loess normalization of a representative MEF sample, 

CD1 wild-type  A3 at passage 40. Plots of log-intensity ratios (M-values) versus log-intensity averages 

(A-values). (A-B) A coplot of MA-plot with loess regression curve before (A) and after (B) 

normalization.  The underlying assumption is that majority of genes are unchanged or there is 

symmetry between deletion and amplification. Therefore the majority of the points on the y-axis would 

be located at 0, since M = Log2(Intensity Red/Intensity Green) = Log2(1) = 0. If this is not the case, 

then intensity-dependent trends are modeled using regression loess curve, shown in red in panels A-B. 

(C-D) MA-plots before (C) and after (D) normalization. 
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dimmer the spot the less likely is an observed difference between the test and the reference 

samples. 

Circular binary segmentation (with a minimum of 3 markers per segment and using 

permutation method) was performed on smoothed and log2-transformed copy-number profiles 

using DNAcopy package (88). Segmented data was converted into a matrix by genes for 

downstream analyses using mus musculus 9 RefSeq reference genome from 2011.08.11 in 

CNTools (89). Copy-number profiles are presented using the Integrative Genomics Viewer (IGV) 

(90).  

 

8.2.6 TCGA data: The Cancer Genome Atlas (TCGA) samples were downloaded from the 

TCGA portal in September 2012 (https://tcga-data.nci.nih.gov/tcga/). Copy-number profiles 

obtained were pre-processed level 3 data based on human genome 19, with copy number 

variations (CNVs) removed. TCGA tumor type abbreviations: bladder urothelial carcinoma 

Figure 8.2-3. aCGH segmentation. Whole genome plot of raw probe log-ratios (y-axis). Data 

ordered by chromosome and map positions. Green – odd numbered chromosomes and chromosome Y; 

black – even numbered chromosomes and chromosome X. The red lines correspond to mean values in 

segment. 
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(BLCA), brain lower grade glioma (LGG), breast invasive carcinoma (BRCA), colon 

adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck squamous cell 

carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung 

squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), prostate 

adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), 

stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), uterine corpus endometrial 

carcinoma (UCEC).  

 

8.3 Pre-processing and quality assessment of two-color array CGH  

8.3.1 Background: One of the most popular high-throughput tools used in the modern 

research is the array-based comparative genomic hybridization (aCGH) technology. This high-

resolution assay is used to detect and compare the copy numbers of DNA sequences along the 

genome. It has been observed that copy number alterations are not only involved in phenotypic 

or gene expressional variation but also play important role during disease development, e.g. 

during tumorigenesis (32,91,92). Therefore with the constantly growing demand for the copy 

number state information and the constantly developing microarray technologies and their 

supporting software, it becomes extremely important to know how to utilize these 

developments correctly. In this chapter, our goal was to learn how to pre-process the two-color 

aCGH data and assess quality and validity of result using a freely available R package snapSGH: 

Segmentation, Normalization and Processing of aCGH Data (93).   

The analysis of the two-color aCGH data generally involves three steps: 1) pre-

processing and normalization of the raw intensity values; 2) aligning the data to the genomic 

locations and applying segmentation algorithm; 3) downstream analysis to explore biological 
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meaning of the differential copy number state.  There exist many commercial and freely 

available software that provide tools for one or all of the analysis steps (94). However, the 

implementation of the existing algorithms is complicated because many of them are expanded 

from analysis performed on expression data. The main differences between expression data and 

copy number data analysis is that analysis of the later should account for the fact that aCGH 

hybridization signals are typically smaller and with higher background due to the excess of non-

target labeling products. Also, it is important to remember that small changes in copy number 

may mark biologically significant events, such as single-copy gains or losses that may 

accompany unbalanced translocations or chromosomal rearrangements. Lastly, log2 ratios are 

expected to be highly correlated between probes targeting adjacent regions in the genome. 

Acknowledging described above complications we tested the snapCGH algorithm on two 

publicly available human lung squamous cell carcinoma (LUSC) samples and compared 

processed results to the published results obtained from three different platforms. Upon 

confirming general comparability to the published results we established a pipeline for the in-

house mouse cell lines. 

8.3.2 Methods: Data Sets. The raw Level 1 data and processed Level 3 data for two 

patient samples were downloaded from The Cancer Genome Atlas (TCGA) (95). The samples 

were analyzed using Agilent SurePrint G3 Human CGH Microarray Kit 1x1M and processed using 

standard Agilent feature extraction algorithm followed by the in-house algorithm (96). The data 

then was segmented using circular binary segmentation algorithm (CBS) (97). The processed 

Level 3 data from Affymetrix platform was analyzed using Genome-Wide SNP6 platform and 

processed using genepattern pipeline (98). Finally the third processed Level 3 data was 

analyzed using Agilent HG-CGH-415K_G4124A platform and processed using Loess 
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Normalization and CBS segmentation. The reason for the chosen small sample size for the 

control test set was memory limitation while using snapCGH R package.  

The 12 in-house mouse embryonic fibroblasts (MEFs) were analyzed using Agilent 

SurePrint G3 Mouse CGH Microarray Kit. 

Background Correction Method. The method for background correction was chosen empirically 

from the data sets. Even though it has been shown that convolution-based models perform the 

best for expression data (99), these methods tend to weaken the aCGH signal at low intencities. 

Since the traditional background subtraction method is also not recommended due to the 

produced negative intensities, which in log-space become “missing values”, a moving minimum 

background correction method was chosen.  In this method the background estimates are 

replaced with the minimums of the backgrounds of the spot and its eight neighbors, i.e., the 

background is replaced by a moving minimum of 3x3 grids of spots. 

Normalization Method. Normalization is intended to remove systematic trends that arise from 

the microarray technology rather than from the actual copy number variations in samples. Since 

different normalization methods performed equally well for the tested data sets, the final 

normalization method was selected based on the literature review (100) – print-tip loess 

normalization. In the absence of print-tip groups on Agilent arrays, this method performed 

similar to the global loess normalization method.  

Processing Data. The last step in pre-processing the microarray data is probe summarization in 

which duplicates are removed following the averaging leaving only one occurrence of each 

clone set. 

Segmentation. After the pre-processing step a segmentation algorithm is applied to aCGH data, 

which is used to translate noisy intensity measurements into regions of equal copy number. The 
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circular binary segmentation (CBS) algorithm was chosen to perform analysis as it has been 

shown that this algorithm has smallest FDR (94). In addition, the two publicly available 

processed data sets, that we used as control sets, also applied CBS segmentation algorithm. 

8.3.3 Results: Background Correction. Different background correction to the raw 

intensities methods were applied to two human LUSC samples (Fig. 8.3-1A – 8.3-1D) that 

were used as a control in this study. The intensity density plots reveal that background 

subtraction methods which were designed to produce positive corrected intensities performed 

better than convolution-based methods for aCGH data (Fig. 8.3-1C – 8.3-1D). Fig. 8.3-1E,F 

assess whether the chosen moving minimum background correction method fits the mouse 

embryonic fibroblasts test set.  

Figure 8.3-1. Comparison of background correction methods. Selected density plots comparing 

individual-channel intensities for two-color microarray data before and after background correction.  

Human LUSC samples, (A-D). Mouse embryonic fibroblasts, (E-F). x-axis, intensity; y-axis, density. (A) 

No background correction applied. (B) Moving minimum background correction method. (C) 

Convolution-based NormExp RMA method. (D) Convolution-based NormExp saddle method. (E) No 

background correction applied. (F) Moving minimum background correction method.  
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Normalization. Three normalization methods were tested on the human patient samples 

that are used as a control in this study. Median normalization method involves subtraction of 

the weighted median from the M-values (log ratios) for each array. The idea behind print-tip 

loess normalization is that from each M-value the corresponding value of each tip group curve is 

subtracted. A simpler form of loess normalization is global loess normalization in which the 

global loess curve is subtracted. The density plot of normalized intensities (Fig. 8.3-2A – 8.3-

2D) reveals that loess normalizations has slightly better performance for the human patient 

samples. The same trend is observed in print tip loess normalized mouse aCGH samples (Fig. 

8.3-2E – 8.3-2F). Normalization is intended to remove systematic errors, therefore looking at 

the log ratio, M (Eq. 8.2.1), versus log sum, A (Eq. 8.2.2), plots of the normalized intensities,  

Figure 8.3-2. Comparison of normalization methods. Density plots comparing individual-channel 

intensities for two-color microarray data before and after normalization. Human LUSC samples, (A-D). 

Mouse embryonic fibroblasts, (E-F). x-axis, intensity; y-axis, density. (A) No normalization applied. (B) 

Median normalization method applied. (C) Print tip loess normalization method. (D) Global loess 

normalization method. (E) No normalization applied. (F) Print tip loess normalization method. 
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MA-plots, can aid in determining which normalization method to apply. MA-plots in Fig. 8.3-3 

one more time show that loess methods are performing slightly better for the given data set. 

Fig. 8.3-4 is the confirmation that loess normalization works well on the mouse embryonic 

fibroblasts set.   

 

 

  

Figure 8.3-3. Log ratio vs log sum of normalized intensities in control samples. y-axis, log 

ratio M; x-axis, log sum A. Human LUSC samples: top row sample “1070”, bottom row sample “1071”. 

(A) Median method normalization applied. (B) Print tip loess normalization method. (C) Global loess 

normalization method.  
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Segmentation. Plotting the segmented data into genomic viewer (Fig. 8.3-5) reveals 

that pre-processing and segmentation of the two-color data using snapCGH methods gives 

slightly noisier result then were obtained in the published processed data (Affy SNP6, Agilent 

CGH415, Agilent Sureprint). Nevertheless, all the copy number amplification and deletion trends  

Figure 8.3-4. Log ratio vs log sum of normalized intensities in MEFs. y-axis, log ratio M; x-axis, 

log sum A. Twelve mouse embryonic fibroblasts samples. 

Figure 8.3-5. IGV view of CNA in control samples. Integretive Genomic view of the chromosomal 

aberrations in two control human patient samples: “1070” and “1071”. Red stands for genomic regions 

that are amplified; blue stands for genomic regions that are deleted. Columns represent chromosomes 

while each row is different preprocessing and segmentation method for the two samples. TCGA Level1 

(raw) and Level 3 (processed) data are shown. In this figure, Level 1 data were subject to ‘moving 

minimum’ and ‘minimum’ background correction methods from snapCGH R package and ‘Print-tip loess’, 

‘Global loess’, and ‘Median’ normalization (Norm.) methods. 
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are very consistent between snapCGH and published processed samples. Moreover, different 

background correction and normalization methods used for pre-processing the data in snapCGH 

gave very consistent results between each other. Finally, Fig. 8.3-6 shows the segmentation 

patterns of the mouse embryonic fibroblasts data which was pre-processed by moving minimum 

background subtraction and print tip loess normalization. 

 

8.3.4 Discussion: 

As was discussed in chapter 8.3.1, the array comparative hybridization experiments 

are among most popular in modern research. There exist a number of specialized algorithms, 

which accomplish the pre-processing and segmentation steps for detecting truly DNA amplified 

or deleted regions. One of such algorithms is the bioconductor R package snapCGH that can be 

used to pre-process the aCGH data and obtain good quality signals.  

Figure 8.3-6. IGV view of CNA in MEF samples. Integretive Genomic view of the chromosomal 

aberrations in twelve mouse embryonic fibroblast samples. Red stands for genomic regions that are 

amplified; blue stands for genomic regions that are deleted. Columns represent chromosomes while 

each row represents a different sample. 
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Overall, based on the analysis in Chapter 8.3, snapCGH perform well on pre-processing 

the data. The observed slight variations between samples processed in snapCGH and TCGA 

Level 3 samples (Fig. 8.3-5) appear to be due to differential segmentation parameters (data 

not shown) used by different processing centers rather than by pre-processing the data. A fairly 

consistent segmentation results (Fig. 8.3-5) is observed when different normalization and 

background correction techniques are applied to the two control human LUSC samples.  

 

8.4 Bioinformatic and statistical analysis 

8.4.1 PCA: Principal component analysis (PCA) was performed using the mean-centered 

matrix of CNA values per gene locus. Genes with identical profiles across samples were 

collapsed to a single representative gene.  

8.4.2 Enrichment of mutations: To test for enrichment of mutations within CNA-defined 

PC scores, tumors were queried for mutations in the most frequently mutated genes using the 

cBioPortal for Cancer Genomics (101). Tumors with known mutational status were then sorted 

by their PC1 score, and we calculated a Kolmogorov-Smirnov statistic against the expected 

distribution of mutations. The statistical significance of enrichment was determined by 

permutation analysis.  

8.4.3 GSEA and WGV: Metabolic pathway enrichment analysis (gene set enrichment 

analysis, GSEA (102)) and weighted gene voting (WGV) prediction analysis (38) were performed 

using 74 metabolic pathways defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database (40), using pathways with 7 or more measured genes. For KEGG-based metabolic 

pathway enrichment analysis, we collapsed metabolic isoenzyme loci (genes with the same 

enzyme activity (Enzyme Commission [EC] numbers)) that were within 100 kilobases from each 

other into a single representative locus.  
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8.4.4 Consistency analysis: Consistency signatures of conserved amplification and 

deletions (consistent regions) were defined as non-zero when all CNA summary signatures have 

the same sign across all tumor types, and is derived from the absolute value-based minimum 

summary metric, then re-signed positive for amplification or negative for deletion. In GSEA 

using genome consistency signatures, enrichment scores were calculated through the ranked 

set of consistently amplified genes since after this point the many genes that are not consistent 

across signatures have a consistency value of zero and accordingly have tied ranks. For WGV 

predictions of metabolic phenotypes, t-scores were used as gene weights. To calculate p-

values, we calculated the fraction of 1,000 randomly-chosen gene sets of equal size that gave 

better average rankings than the true gene set.  False discovery rate (FDR) q-values were 

calculated using the Benjamini-Hochberg procedure. CNA and metabolite changes were 

visualized in the context of metabolic pathway structure using Cytoscape (42).  

8.4.5 Senescence score: A summary senescence score for each MEF subline was 

calculated by subtracting the area under the MEF’s growth curve, Z(x), from the area under an 

ideal growth curve, Y(x), i.e. consistent growth at the fastest observed rate. The area 

difference was then averaged by dividing by the passage number, x, and log2-transformed, 

resulting in a normally distributed score (Fig. 8.4-1 and Eq. 8.4.1). 

 

Eq. 8 .4.1:         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑜𝑜𝑟𝑟𝑟𝑟 =  𝑙𝑙𝑙𝑙𝑙𝑙2
∑ �𝑌𝑌(𝑥𝑥)+ 𝑌𝑌(𝑥𝑥−1)� − ∑ (𝑍𝑍(𝑥𝑥)+ 𝑍𝑍(𝑥𝑥−1))𝑥𝑥=2𝑥𝑥=2

2𝑥𝑥
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 8.4.6 Genomic instability scores: A genomic instability score ‘breakpoints per chromosome’ was 

calculated by counting the number of segments in each sample, # segments, and dividing by 

the number of chromosomes, # chr (Eq. 8.4.2). The segments were inferred by the Circular 

Binary Segmentation algorithm (Chapter 8.2.5) and chromosomes X and Y were excluded 

from the analysis.  

 

Eq. 8 .4.2:               𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  # 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −# 𝑐𝑐ℎ𝑟𝑟
# 𝑐𝑐ℎ𝑟𝑟

 

 

A genomic instability score termed ‘integrated CNA’ was calculated by integration of the Circular 

Binary Segmentation algorithm-inferred absolute mean copy-number of segments, |segment 

Figure 8.4-1. Senescence score calculation. Blue curve, Z(x), representative growth of MEF 

sample with initial expansion followed by decrease due to senescence stage and culminated by 

expansion due to immortalization of sub-population of cells. Black curve, Y(x), ‘ideal growth curve’ of 

cells that grow at a constant rate without entering the senescence. The shaded shapes used for 

calculating area between curves using Riemann sum are shown. 
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mean|, multiplied by the length of each segment, |segment end – segment start|, and 

normalized by the total number of base pairs in a sample, # base pairs in sample (Eq. 

8.4.3). The integrated value was normalized to the average integrated CNA of diploid samples 

(Eq. 8.4.4) and log2-transformed resulting in a normally distributed score. 

 

Eq. 8 .4.3: 

:   𝐼𝐼𝐼𝐼𝐼𝐼.𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  log2
∑ |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| × |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

# 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

 

Eq. 8 .4.4: 

:  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼𝐼𝐼.𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  1
𝑁𝑁

 ∑  𝐼𝐼𝐼𝐼𝐼𝐼.𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,  

where N = number of diploid samples. 

 

8.4.7 Box and whisker plots: In box and whisker plots, the box represents the median, 

as well as the first and third quartiles, and the whisker indicates the extreme values within 1.5 

times the inter-quartile range. In cases where the number of samples permitted, individual 

values are superimposed as jitter plots. 

 

8.5 Glucose consumption and lactate secretion measurements 

8.5.1 BRCA cellines: Lactate secretion rates of breast cancer cell lines were measured 

from the culture media using a colorimetric assay kit (BioVision).  

8.5.2 MEFs: Glucose consumption and lactate secretion rates of MEFs were measured 

using a BioProfile Basic bioanalyzer (NOVA Biomedical). Data were normalized to the integrated 
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cell number, which was calculated based on cell counts at the start and end of the time course 

and an exponential growth equation (Eq. 8.5.1 - 8.5.3).  

 

Eq. 8 .5.1:                                      ∫ 𝑁𝑁𝑡𝑡0 = ∫ 𝑁𝑁𝑜𝑜𝑒𝑒𝜅𝜅𝜅𝜅𝑡𝑡
0 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒   

𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡,  

𝑁𝑁𝑜𝑜 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑡𝑡 = 0, 

 𝑎𝑎𝑎𝑎𝑎𝑎 𝜅𝜅 =
1
𝑡𝑡 𝑙𝑙𝑙𝑙

𝑁𝑁
𝑁𝑁𝑜𝑜

      𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Eq. 8 .5.2:                 𝑁𝑁𝑁𝑁= 𝑁𝑁𝑜𝑜 �
1
𝜅𝜅𝑒𝑒

𝜅𝜅𝜅𝜅� 𝑡𝑡0 = 𝑁𝑁𝑜𝑜 �
1
𝜅𝜅 𝑒𝑒

𝜅𝜅𝜅𝜅 −  1
𝜅𝜅 𝑒𝑒

0� = 𝑁𝑁𝑜𝑜
𝜅𝜅 �𝑒𝑒𝜅𝜅𝜅𝜅 − 1�  

Eq. 8 .5.3:                                             𝑁𝑁= 𝑁𝑁𝑜𝑜
𝜅𝜅𝜅𝜅 �𝑒𝑒

𝜅𝜅𝜅𝜅 − 1�  

 

Because the proliferation rates of MEF sublines vary, each cell line was seeded at the 

appropriate density so as to give an integrated cell number of approximately 6.5 x 105 cells in a 

6 well plate. All samples were run as biological triplicates, and consistent results were seen in 

multiple independent experiments. 

 

8.6 Mass spectrometry-based metabolomic analyses 

8.6.1 Cell culture: MEF sublines were seeded onto 6-well plates, and after 24 hours 

media was replaced with media containing 4.5 g/L [1,2-13C]-labeled glucose. Sample collection 

occurred after 24 hours of culture in the labeled glucose media. For cell culture media 

metabolite analysis (footprint profiling), 20 μl of cell-free media samples were collected.  

8.6.2 Metabolite extraction: Metabolites were extracted by adding 300 μl ice-cold 80% 

methanol, followed by vortexing three times over 15 min, and centrifugation for 10 min at 13k 
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rpm at 4 °C. The supernatant was transferred to a fresh tube, and the solvent was reduced 

using a vacuum evaporator. For intracellular metabolite analysis, cells were washed with ice-

cold 150 mM ammonium acetate (NH4AcO) pH 7.3, and metabolites extracted in 1 ml ice-cold 

80% MeOH.  The cells were quickly transferred into a microfuge tube, and 10 nmol norvaline 

was added to the cell suspension for use as an internal standard. The suspension was 

subsequently vortexed three times over 15 min and then spun down at 4 ˚C for 5 min. The 

supernatant was transferred into a glass vial, the cell pellet re-extracted with 200 μl ice-cold 

80% MeOH, spun down and the supernatants combined. Metabolites were dried at 30°C under 

vacuum and resuspended in 50 μl of 70% acetonitrile (ACN). 5 μl were used for mass 

spectrometer-based analysis.  

8.6.3 Running protocol: Samples were run on a Q-Exactive mass spectrometer coupled 

to an UltiMate 3000RSLC UHPLC system (Thermo Scientific). The mass spectrometer was run in 

polarity switching mode (+3.00 kV / -2.25 kV) with an m/z window ranging from 65 to 975. 

Mobile phase A was 5 mM NH4AcO, pH 9.9 and mobile phase B was ACN. Metabolites were 

separated on a Luna 3 μm NH2 100 Å (150 x 2.0 mm) (Phenomenex) column. The flow was 

kept at 200 μl / min, and the gradient was from 15% A to 95% A in 18 min, followed by an 

isocratic step for 9 min and re-equilibration for 7 min.  

8.6.4 Data processing: Metabolites were detected and quantified as area under the 

curve (AUC) based on retention time and accurate mass (≤ 3ppm) using the TraceFinder 3.1 

(Thermo Scientific) software. Relative amounts of metabolites between various conditions, 

percentage of metabolite isotopomers (relative to all isotopomers of that metabolite), and 

percentage of labeled metabolite molecules (isotopomer M1 and greater, relative to all 

isotopomers) were calculated and corrected for naturally occurring 13C abundance (103). 

Footprinting data were normalized to the integrated cell number as described above, and 
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intracellular metabolite concentrations were normalized to the number of cells present at the 

time of extraction. All samples were run as biological triplicates, and consistent results were 

seen in multiple independent experiments. Our analysis focused on metabolite level, percent 

isotopomer, and percent labeled-metabolite measurements with ANOVA p-values across the 

sample panel of less than 0.05 in individual experiments, and Pearson correlation coefficients 

across all samples and between independent experiments of greater than 0.5. 

 

8.7 Patient tumor samples and quantitative FDG-PET imaging 

Ten patient breast cancer samples with imaged FDG-uptake within 4 weeks prior to 

surgery, excluding patients with secondary breast cancers and recurrent disease, were collected 

surgically and processed as previously described (37). None of the patients received systemic 

therapy or radiation prior to imaging. 18FDG-tumor uptake was quantified as standardized 

uptake values (SUV) and showed the expected wide dynamic range (3.8-18.5). There was no 

significant difference in patient age, tumor volume, and lymph node involvement between the 

groups of FDG-high and FDG-low breast cancers. Breast cancers with high 18FDG-PET SUVs 

frequently lacked expression of the estrogen receptor (ER) and the progesterone receptor (PR), 

but hormone receptor-negative tumors were also represented amongst the tumors with the 

lowest FDG uptake(37). We excluded lobular breast carcinomas, because they have been shown 

to take up less FDG than ductal carcinomas (104) We excluded large breast carcinomas (>5-

cm) and breast carcinomas with multifocal FDG uptake because our protocol did not include 

tissue autoradiography to direct the molecular tissue analysis to areas of distinct radiotracer 

retention. This study was approved by the Institutional Review Board (IRB) of Memorial Sloan-

Kettering Cancer Center, and all participating patients signed the informed consent.  
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8.8 Immunoblot Analysis 

Cells were lysed in modified RIPA buffer (50 mM Tris-HCl (pH 7.5), 150 NaCl, 10 mM β-

glycerophosphate, 1% NP-40, 0.25% sodium deoxycholate, 10 mM sodium pyrophosphate, 30 

mM sodium fluoride, 1 mM EDTA, 1 mM vanadate, 20 μg/ml aprotinin, 20 μg/ml leupeptin, and 

1 mM phenylmethylsulfonyl fluoride).  Whole cell lysates were resolved by SDS-PAGE on 4-15% 

gradient gels and blotted onto nitrocellulose membranes (Bio-Rad).  Membranes were blocked 

overnight and then incubated sequentially with primary and either HRP-conjugated (Pierce) or 

IRDye-conjugated secondary antibodies (Li-Cor).  Blots were imaged using the Odyssey 

Infrared Imaging System (Li-Cor). Protein levels were quantitated using ImageJ 

(http://imagej.nih.gov/ij/). Primary antibodies used for western blot analysis included 

Hexokinase 1 (2024, Cell Signaling Technology), Hexokinase 2 (2867, Cell Signaling 

Technology), p53 (NB200-103, Novus Biologicals), and Enolase 2 (8171, Cell Signaling 

Technology). 
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