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Gold-Catalyzed Allylation of Aryl Boronic Acids: Accessing
Cross-Coupling Reactivity with Gold

Mark D. Levin and F. Dean Toste
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 (USA)

F. Dean Toste: fdtoste@berkeley.edu

Abstract

A sp3 – sp2 C-C cross-coupling reaction catalyzed by gold in the absence of a sacrificial oxidant is

described. Vital to the success of this method is the implementation of a bimetallic catalyst

bearing a bis(phosphino)amine ligand. A mechanistic hypothesis is presented, and observable

transmetallation, C-Br oxidative addition, and C-C reductive elimination in a model gold complex

are shown. We expect that this method will serve as a platform for the development of novel

transformations involving redox-active gold catalysts.
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The air- and water-stability of gold catalysts, coupled with their ability to promote complex

transformations under mild conditions has attracted considerable interest from the academic

community.1 Despite the rapid pace of recent developments, the majority of gold-catalyzed

processes rely on a select few reaction manifolds: (i) Lewis acid catalysis, (ii) π-activation,

and (iii) the generation of carbenoid intermediates (Scheme 1A).2 While these modes of

reactivity have yielded important catalytic methodologies of broad scope and synthetic

utility,3 they are typified by catalytic cycles wherein gold maintains a +1 oxidation state, in

stark contrast to the 2-electron redox cycles characteristic of late transition metal catalysis.4

Indeed, access to AuIII intermediates under catalytic conditions typically requires strong F+

or I3+ oxidants.5,6

Despite this limitation, seminal work by Kochi and Schmidbaur has shown that AuI

complexes oxidatively add alkyl halides, and are further competent to undergo C-C

reductive elimination, furnishing formally cross-coupled products.7 However, this mode of

reactivity has not previously been realized in a catalytic fashion.
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A possible barrier to the implementation of such a redox cycle is the slow rate at which

alkyl-alkyl reductive elimination occurs.8 Nevertheless, we were encouraged by our own

recent observations that in contrast, aryl-aryl reductive elimination from AuIII is remarkably

fast.9 As such, we hypothesized that a process involving oxidative addition to a gold aryl

species followed by sp2–sp3 reductive elimination might prove achievable under the

influence of a gold catalyst (Scheme 1B).

After examining several classes of aryl nucleophiles and alkyl electrophiles, we found that

allyl bromide and phenylboronic acid produced allylbenzene and biphenyl as products when

Ph3PAuCl was used as a catalyst (Table 1, entry 1). However, we were unable to

substantially improve the yield by implementing other traditional gold catalysts or by

increasing catalyst loading (entries 2 – 6, 11).

In seeking to improve the reaction, we were drawn to the observation that closely linked

bimetallic gold complexes undergo accelerated oxidative addition, due to the formation of

AuII-AuII species (rather than discrete AuIII) upon oxidation (Scheme 2).10 While

dppm(AuCl)2 showed considerable instability under the reaction conditions, the bimetallic

complex 1 produced the desired product in an improved 66% yield.11

Intriguingly, the analogous monometallic aminophosphine complex 2 afforded substantially

lower yield (even at 10% loading), suggesting that the bimetallic catalyst architecture is

responsible for the activity of 1, rather than the electronic character of the aminophosphine

ligand.12 However, because monometallic complexes are capable of catalyzing this

transformation (albeit with lower efficiency), the influence of the bimetallic catalyst remains

to be fully elucidated.

In the absence of allyl bromide (entry 14), neither product was observed, signifying that

allyl bromide serves as the oxidant in the homo-coupling process. Notably, the reaction

proceeded with identical efficiency in the presence of air and water.

Scheme 3 illustrates the scope of the boronic acid component. While highly basic or

nucleophilic functionality was not tolerated, heteroaromatic boronic acids (3j, 3k) were

coupled smoothly. Of note, substrates bearing aryl halide moieties reacted with complete

chemoselectivity for the external allylic halide (3m), showcasing the discrimination inherent

in the SN2-type oxidative addition typically observed with AuI.7 Interestingly, sterically

encumbering substituents were found to facilitate the reaction (compare 3f, 3g, 3h). This

effect ostensibly arises because the ortho substituents block the formation of homo-coupling

side-products.

The beneficial effect of sterics led us to examine the scope of the allylic electrophile with

mesityl boronic acid, an otherwise challenging cross-coupling substrate (Scheme 4). This

effect is further exhibited in products 5f–5i. In all cases, linear products were observed.13

The orthogonality of this method to traditional cross-coupling reactions allows the

chemoselective preparation of polyfunctionalized products (Scheme 5). While gold and

palladium catalysts are both capable of producing 5j, our gold-catalyzed protocol provided
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higher efficiency and chemoselectivity, allowing access to bifunctionalized products such as

6.14 Furthermore, 3n can be prepared without competitive cyclization or oligomerization.15

Having developed this method, we sought to better understand the mechanism of the overall

transformation. In initial stoichiometric experiments (Scheme 6) we found that while 1
underwent halide metathesis upon reaction with allyl bromide, no oxidized species were

detected.10f However, the gold aryl complex 9 was formed cleanly via transmetallation from

the boronic acid under the reaction conditions.16 Futhermore, 9 underwent facile conversion

in reaction with allyl bromide to give the dibromide 8, affording allylbenzene and biphenyl.

These experiments suggest a mechanism for the catalytic process in which transmetallation

to gold precedes oxidative addition.17,18

While a number of mechanisms can be proposed for the formation of the desired

allylbenzene product from the gold aryl 9, fewer mechanisms can account for the formation

of biaryl. Because alternatives to the oxidative addition/reductive elimination process almost

invariably necessitate distinct pathways to cross- and homo-coupled products, examination

of potential homo-coupling processes can be used to discern between possible mechanistic

scenarios (Scheme 7A).19

Of the likely mechanisms, radical clock experiments (Scheme 7B) argue against the

implication of radicals, while the stability of 9 to high temperatures argues against reductive

homocoupling processes (cf. Table 1, entry 12).14 Finally, halide scavenger experiments

argue against trace bromine (or bromine atom) oxidants as agents for the production of

biaryl.14,20,21

Combined, these experiments ultimately lead us to implicate the AuII-AuII intermediate 10
as the most likely source of biaryl. Reductive elimination from 10 can presumably also lead

to alkyl-aryl bond formation, immediately suggesting a parsimonious mechanism for the

overall transformation. Despite this evidence, attempts to isolate or detect the AuII-AuII

intermediate directly have so far proven fruitless, likely due to the rapid rate of reductive

elimination.9

In light of these difficulties, we turned to the tethered substrate 11 as a mechanistic probe,

expecting that the resulting aurocyclic product (e.g. 13) would exhibit hampered reductive

elimination, allowing direct observation of reaction intermediates.22 Although

transmetallation of 11 to phosphine supported gold complexes such as 1 was accompanied

by hydrolysis of the allylic bromide moiety, it was found that clean transmetallation could

be accomplished by employing IPrAuOH.23 Although 12 does not react further in benzene,

oxidative addition could be initiated upon gentle heating in acetonitrile to yield the isolable

AuIII species 13 (Scheme 8).24 Finally, halide abstraction results in reductive elimination to

give the exomethylene cyclobutene 14.

With the viability of allylic halide oxidative addition to gold aryl complexes demonstrated,

we propose the following overall mechanism for this process, following the general outline

of Scheme 1B: (i) base-assisted transmetallation of the arylboronic acid to a gold bromide
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complex, (ii) bimetallic oxidative addition of an allylic halide to the gold aryl species, and

(iii) fast C-C reductive elimination to give either allylbenzene or biaryl as product.25,26

In conclusion, we have developed the first example of a net redox-neutral cross-coupling

catalyzed by gold.27 The method provides access to sp2 – sp3 coupled products under mild

conditions with complete tolerance for air and water. The reaction exhibits unique scope and

chemoselectivity, allowing entry to a variety of allylbenzene products. Furthermore, initial

experiments suggest an unprecedented mechanism involving oxidative addition to a gold

aryl species as a key step. This reaction manifold promises to serve as a powerful strategy

for the development of novel gold-catalyzed reactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Reactivity in Gold Catalysis
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Scheme 2.
Oxidative addition to AuI.6a,9g
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Scheme 3.
Arylboronic acid scope. Conditions: 4 equiv. halide, 3 equiv base, 0.2 M, 18 hrs. Isolated

yields. [a] 10 mol% catalyst
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Scheme 4.
Allylic Bromide Scope. Conditions: 4 equiv. halide, 3 equiv. base, 0.2M, 18 hrs, isolated

yields. Mes = 2,4,6-trimethylphenyl. No biaryl detected. [a] Starting from 5:1 E:Z crotyl

bromide
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Scheme 5.
Orthogonal reactivity of [Au] and [Pd]

Levin and Toste Page 10

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2015 June 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Scheme 6.
Stoichiometric reactivity of 1
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Scheme 7.
Mechanisms for Biaryl Formation
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Scheme 8.
Model Catalytic Cycle and Isolable Product of Oxidative Addition. Ar = 2,6-

diisopropylphenyl; asymmetric unit contains two molecules of 13, only one shown;

hydrogens omitted for clarity
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