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The effective quantum field theory de-
scription of gravity, despite its non-
renormalizability, allows for predictions
beyond classical general relativity. As we
enter the age of gravitational wave astron-
omy, an important and timely question is
whether measurable quantum predictions
that depart from classical gravity, analo-
gous to quantum optics effects which can-
not be explained by classical electrody-
namics, can be found. In this work, we
investigate quantum signatures in gravi-
tational waves using tools from quantum
optics. Squeezed-coherent gravitational
waves, which can exhibit sub-Poissonian
graviton statistics, can enhance or sup-
press the signal measured by an interfer-
ometer, a characteristic effect of quantum
squeezing. Moreover, we show that Gaus-
sian gravitational wave quantum states can
be reconstructed from measurements over
an ensemble of optical fields interacting
with a single copy of the gravitational
wave, thus opening the possibility of de-
tecting quantum features of gravity be-
yond classical general relativity.
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1 Introduction

Gravitational wave (GW) detectors have opened
a new window into the astrophysical universe,
enabling the first direct observations of gravita-
tional radiation from collisions of compact objects
[1]. From a quantum mechanical point-of-view,
interferometers such as LIGO and VIRGO act as
field quadrature detectors for GWs [2, 3], much
like homodyne detectors in quantum optics [4].
It is therefore natural to ask whether GW in-
terferometers could be used to probe the quan-
tum mechanical nature of gravity [5] in analogy
to quantum optics [6].

It is worth taking a moment to specify the
meaning of quantum mechanical nature of grav-
ity in this context. While a complete theory
of quantum gravity is at this time unrealized,
there are no conceptual problems in quantizing
the Einstein-Hilbert action with the understand-
ing that it is an effective theory, valid well below
a cut-off scale assumed to be roughly of the or-
der of the Planck scale by power counting argu-
ments. This approach is well-suited to studying
potential quantum effects of gravitational waves
in the range of energies and frequencies current
experiments are sensitive to. For a recent review
see for instance [7].

Recently, the effect of quantum mechanical
noise associated to graviton fluctuations of GWs
on a model detector has been calculated [8] us-
ing the effective quantum field theory description
of gravitational waves, and the associated modi-
fication of Newton’s law discussed in [9]. It was
pointed out that the gravity-induced fluctuations
– noise – in the motion of test masses associated
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to squeezed GW states are enhanced by an expo-
nential factor in the squeezing parameter [3, 10],
giving rise to renewed hopes of detecting quan-
tum signatures of the gravitational field in fu-
ture detectors. These findings lead to the central
questions of this work: (i) are there any quan-
tum GW states, in the specific context of quan-
tum Einstein-Hilbert effective field theory, that
would produce exponential enhancement factors
in a signal (apart from the gravity-induced fluctu-
ations) detectable by GW detectors and (ii) could
we use the characteristics of such signals to dis-
criminate different quantum GW states? As we
will show, both questions can be positively an-
swered.

It is crucial to stress that our focus, at this
stage, is not on the actual production of such
quantum GW states in astrophysical processes,
but rather on their in principle detectability us-
ing present-day or near-future experimental se-
tups. As it turns out, our main candidate quan-
tum GW states, squeezed-coherent states, do have
potential production mechanisms in astrophysics.
Squeezed GWs are expected to be generated in
highly nonlinear situations and at present pro-
posed sources are inflationary cosmology [11–13]
and the final stages of black hole evaporation [14],
with GW squeezing recently bounded using LIGO
observations [15]. It has also been suggested that
highly nonlinear perturbed black holes might lead
to the production of noncoherent quantum states
of GWs; see [8] and [10].

Squeezed-coherent states, in contrast to the
simpler coherent states, can be thought of as in-
herently quantum mechanical, exhibiting inter-
ference in phase space [16] and the possibility of
sub-Poissonian statistics [4]. Measuring charac-
teristic features produced by such states would
offer an empirical path to probe quantum me-
chanical effects related to gravity. As we will
show, squeezed-coherent GWs with modest – i.e.
order one – squeezing parameters can produce en-
hanced or suppressed signals in an optical inter-
ferometer with sensitivity on the order of present-
day GW detectors, in addition to the induced
fluctuations associated to quantum uncertainty.
This provides a signature of the quantum nature
of the waves; the precise value of the enhance-
ment or suppression depends on the peculiari-
ties of the source that produces the waves and
are controlled by a phase parameter associated

to the state. Furthermore, measurements over
an ensemble of optical fields populating the in-
terferometer can be used to completely recon-
struct Gaussian quantum states of GWs, open-
ing the possibility of witnessing non-classical fea-
tures of gravity, such as sub-Poissonian graviton
number statistics. Note that contrary to their
optical counterparts, squeezed-coherent states of
gravitons are expected to propagate through the
universe nearly unperturbed [17], carrying infor-
mation about their sources with preserved coher-
ence.

Overall, our findings integrate part of an
emerging subfield of fundamental physics in
which ideas from quantum optics offer new paths
to uncover unexplored natural phenomena, with
other key examples including the search for be-
yond the standard model physics using atomic
and molecular physics [18], fifth forces with quan-
tum optomechanics [19–21], quantum-enhanced
searches for light dark matter [22–25], and nonlin-
ear optics and optomechanics [26, 27]. Quantum
gravity itself is not exempt. Of particular interest
to us are experimental proposals seeking to mea-
sure quantum effects associated to gravity, as well
as to measure the gravitational field of quantum
matter in table-top experiments [28–35]. While
very important, these proposals rely on challeng-
ing quantum engineering [36], whereas we con-
sider an alternative observational approach, of
seeking for natural phenomena in which quantum
effects of gravity are manifest.

This paper is organized as follows: in Sec. 2 we
briefly describe a model interferometric GW de-
tector and its interaction with canonically quan-
tized weak gravitational field perturbations. In
Sec. 3 we describe the interaction between GW
states and a simplified toy model detector con-
sisting of an ensemble of optical qubits. Sec. 4
is devoted to squeezed-coherent GWs and in Sec.
5 we describe how Gaussian GW quantum states
can be reconstructed from optical measurements.
Sec. 6 describes the interaction between opti-
cal coherent states (such as the laser field of a
GW interferometer) and squeezed-coherent GWs.
Finally, in Sec. 7 we discuss future perspectives
on the generation and detection of nonlinear
quantum GWs. For details on the calculations
throughout the text, we refer to the Appendices.
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2 Mode-detector interaction
We consider the interaction of a weak GW with
a single mode cavity electromagnetic field as a
model for our interferometric GW detector. The
model captures the essential features of the ef-
fects we aim to discuss. Detectors like LIGO, a
variant of the Michelson interferometer, can be
formally mapped to a Fabry-Pèrot cavity [37].
The treatment in this work is the same as in
[2, 29, 31, 38, 39] and [3] for the canonical quan-
tization of weak metric perturbations around a
flat background and we refer to those works for
further details on the formalism while we briefly
summarize the main results necessary for our dis-
cussion.

The interaction between a cavity electromag-
netic field and quantized metric perturbations in
the tranverse traceless gauge can be formally de-
rived from the Einstein-Hilbert action coupled to
the Maxwell stress-energy tensor (see [2] for more
details). For a single mode electromagnetic cav-
ity with photon annihilation (creation) operator
a (a†) in the presence of + polarized GWs prop-
agating along the n = ẑ direction, perpendicular
to the cavity axis (chosen to be along the x̂ di-
rection), the interaction reads

HI = −ω4 a
†a

∫
dk√
(2π)3

√8πG
k

bk + h.c.

(1)

where k = |k| = Ωk is the GW frequency for the
mode k, the operator bλk (bλ†k ) is the canonical
graviton annihilation (creation) operator and ω
is the cavity frequency.
For our purposes, it is convenient to introduce
a discrete form of (1). Following the stan-
dard procedure in quantum optics [40] we in-
troduce a quantization volume V and note that[√

8πG/k
]

= L3/2, where L denotes the dimen-
sion of length. Further, [dk] = L−3, which im-
plies the graviton annihilation and creation op-
erators have dimension [bk] = L3/2. Define
bk =

√
V bk, where bk is a dimensionless quantity.

The discrete limit dk → 1/V , (2π)−3/2 ∫ → ∑
then leads to

HI = −ω4 a
†a
∑
k

√8πG
kV

bk + h.c.

 . (2)

Defining the single graviton strain for the mode
k as fk =

√
8πG/(kV ), then the coupling con-

stant of a GW mode k with the cavity electro-
magnetic field is gk = ωfk/4, which has dimen-
sion of frequency. It is also convenient to in-
troduce the dimensionless coupling qk = gk/Ωk.
Therefore, taking into account the previous in-
teraction term, the total discretized Hamiltonian
reads H = H0 +HI , with H0 the free-field Hamil-
tonian for the cavity and GW modes:

H0 = ωa†a+
∑
k

Ωkb
†
kbk . (3)

The time evolution generated by the total
Hamiltonian can be calculated exactly and is
given by

U(t) = e−iHt =
∏
k

Uk(t) , (4)

where the unitary operator in the interaction pic-
ture reads:

Uk(t) = eiBk(t)(a†a)2
eqka

†a(γkb†k−γ
∗
kbk) , (5)

with γk = (1 − e−iΩkt) and Bk(t) =
q2
k (Ωkt− sin Ωkt) and the accompanying GW
states evolve according to the free evolution
[3, 41]

|Ψ(t)〉 =
∏
k

e−ib
†
k
bkΩt|Ψ〉 . (6)

See Appendix A for further details. Note that
the Bk(t) term is quadratic in qk, which leads to
effects of order G in the exponent. As shown in
[3], this term results in sub-leading effects for var-
ious states of interest, such as the vacuum, coher-
ent, squeezed vacuum and thermal states of GWs.
From now on, we will therefore approximate (5)
as

Uk(t) ≈ eqka†a(γkb†k−γ
∗
kbk) , (7)

where γk incorporates the time dependence.
Physically, the meaning of (7) is clear: it cor-
responds to a GW-induced phase operator act-
ing on the electromagnetic mode, with the ac-
quired phase proportional to the GW quadrature.
Conversely, (7) acts on the GW mode as a dis-
placement operator, proportional to the number
of photons contained in the electromagnetic field.

We are interested in the dynamics of an optical
field interacting with a single GW mode, but no-
tice the unitary operator (4) couples the detector
to all GW modes. As it turns out [3], the effect
of additional modes populated by the vacuum or
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thermal states at the expected temperature for a
cosmic GW background yields negligible correc-
tions to the dynamics of a single-mode GW popu-
lated by a macroscopic mean number of gravitons,
such as the ones detectable by LIGO. Therefore,
from now on we will make a single-mode approx-
imation, but for estimates on the corrections due
to the additional ‘empty’ modes see Appendix B.

3 Interaction between a quantum GW
and a qubit
With the operator (7) we can calculate the time
evolution of arbitrary states of the optical field
interacting with the relevant modes of quantum
GWs. To illustrate that, consider the simplified
example of an optical qubit spanned by the vac-
uum and single photon states {|0〉, |1〉}. For sim-
plicity, we drop the index k and unless specified
consider only a single GW mode. Time evolution
of the optical qubit in the presence of a GW in
the state |Ψ(t)〉 is then

(α|0〉+ β|1〉) |Ψ(t)〉 →
α|0〉|Ψ(t)〉+ β|1〉D(qγ)|Ψ(t)〉 , (8)

where D(qγ) is the displacement operator act-
ing on the GW mode and q, γ are the dimen-
sionless coupling and time-evolution function as
defined in the previous section, specialized for
the mode of interest. Notice the states |Ψ(t)〉
and D(qγ)|Ψ(t)〉 are in general not orthogonal.
Tracing out the GW mode, we find the time-
dependent qubit density matrix,

ρ (t) =
(

|α|2 I1(t)αβ∗
I1(t)∗α∗β |β|2

)
(9)

where,

I1(t) = 〈Ψ(t)|D(qγ)|Ψ(t)〉 . (10)

Dynamics of the qubit in the Bloch sphere is gov-
erned by the inner product I1(t), which is a com-
plex number with |I1(t)| ≤ 1.

The modulus of I1(t) is associated to GW in-
duced decoherence processes: it multiplies the off-
diagonal terms of the density matrix, and as such
it increases the von Neumann entropy of the op-
tical mode whenever |I1(t)| < 1. An increase in
entropy can be understood as a consequence of
noise in the system. For certain situations, such
as the case of a multi-mode GW thermal state

qu
bi
ts

GW

Figure 1: Conceptual experiment of a quantum GW in-
teracting with a simplified toy model detector consisting
of an ensemble of optical qubits. The GW state induces
an open quantum system dynamics on the qubits, and
noise spectroscopy can in principle be used to discrimi-
nate between different quantum GW states and measure
quantum properties of the gravitational field.

at temperature T , Markovian approximations can
be made and it is possible to show that interac-
tion of the qubit with the GW field leads to a de-
coherence rate Γ proportional to kBT (∆E/Epl)2,
where ∆E is the energy difference between qubit
states and Epl is the Planck energy [42]; see Ap-
pendix C for a derivation.

In general the time evolution comprises a com-
bination of shrinkage of the Bloch vector, recoher-
ence, and a unitary evolution given by the phase
of I1(t) resulting in precession of the Bloch vec-
tor. Casting the qubit density matrix as a linear
combination of Pauli matrices σi in the standard
form

ρ(t) = 1 + ~r(t) · ~σ
2 , (11)

we can explicitly calculate the Bloch vector ~r(t)
for GWs in different quantum states. Consid-
ering as the qubit initial state ρ(0) = |+〉〈+|,
the Bloch vectors of qubits interacting with GWs
in the vacuum (|0〉), coherent (|h〉) and squeezed
(|r〉) states are respectively given by,

~r|0〉(t) = e−q
2(1−cos Ωt) (cosωt, sinωt, 0) , (12)

~r|h〉(t) = e−q
2(1−cos Ωt)×

(cos (ωt+ ∆ϕ0(t)) , sin (ωt+ ∆ϕ0(t)) , 0) , (13)

~r|r〉(t) = e−8e2rq2 sin4(Ωt
2 ) (cosωt, sinωt, 0) ,

(14)

where the phase ∆ϕ0(t) in the coherent case is
(see the discussion in the next sections),

∆ϕ0(t) = 2q|h| sin Ωt . (15)

In deriving (12), (13) and (14) we have considered
a squeezed state with vanishing squeezing angle
and have taken the limit r � 1, for simplicity,
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but generalization to arbitrary values of r and
squeezing phase is straightforward. The coupling
strength q governing the interaction between the
optical and GW fields is small [3], which guaran-
tees that the backreaction of the detector upon
the gravitational field can be neglected [2]. The
prefactors in the Bloch vectors account for pe-
riodic shrinking and as discussed are associated
to gravitational induced noise, while the phase
∆ϕ0(t) in the coherent case causes a periodic pre-
cession of the qubit state analogous to the phase
signal imprinted upon a coherent optical mode by
a GW. As we will soon show, the phase ∆ϕ0(t)
is also present in the case of a GW interacting
with a coherent electromagnetic state and corre-
sponds to the signal measured by interferometric
GW detectors. Notice also the appearance of the
exponential enhancement factor e2r in the shrink-
ing factor associated to squeezed GW states, as
predicted in [3, 8, 10].

Trajectories of the Bloch vector are hence de-
pendent on the quantum GW state. Different
GW quantum states can in principle be discrimi-
nated by qubit noise spectroscopy [43]. One could
then conceive a conceptual experiment as shown
in Figure 1, in which an ensemble of qubits is left
to interact with a GW state for some time, after
which measurements on the qubits are performed.
Properties of the statistical distribution of mea-
sured states will then contain information on the
GW quantum state. This scheme offers a path
to search for quantum gravitational effects using
interferometric detectors and to discriminate be-
tween different quantum states of the GW field.
The conceptual experiment shown in Figure 1 can
be understood as a quantum mechanical version
of the proposals in [8, 10] where, in the context of
a classical detector consisting of two test masses
separated by a certain distance, it was shown that
fluctuations associated to GWs in different quan-
tum states lead to modifications of the geodesic
deviation equation by addition of a stochastic
Langevin term whose noise correlators are spe-
cific to the quantum GW state. Observation
of the stochastic trajectories of the test masses
could then reveal quantum features of the GW
field. Analogously, observation of the stochas-
tic quantum trajectories of an ensemble of optical
states as dictated by (12) - (14) would allow for
the discrimination of different quantum states of
GWs. Notably, the authors of [8, 10] have also

shown that when the GW is in a squeezed state
with squeezing parameter r, statistical proper-
ties of the trajectories of test masses such as the
two-point position correlation function and con-
sequently the position power spectral density de-
pend on an enhancement factor approximatelly
given by e2r, as we also found in the Bloch vector
(14).

4 Squeezed-coherent GW states
We have considered thus far coherent and
squeezed states of the GW field. We turn our at-
tention to single-mode squeezed-coherent states,
defined as

|ξ, h〉 = D(h)S(ξ)|0〉 , (16)

where S(ξ) is the squeezing operator, h = |h|eiθ
and ξ = reiφ. Note that the displacement
and squeezing operators do not commute but we
can convert squeezed-displaced waves (SD) into
displaced-squeezed states (DS) via the operator
identity,

D(h)S(ξ) = S(ξ)D(h cosh r + h∗e2iφ sinh r) .
(17)

In other words, one form can always be brought
into the other through a suitable redefinition
of constants. We denote gravitational coherent
states by |h〉 = D(h)|0〉, see Appendix A for def-
initions and useful formulae.

Squeezed-coherent states can be non-classical
in the sense that their graviton number statistics
can become sub-Poissonian. To see that, define
the Fano factor,

F = ∆N2/〈N〉 ,

where ∆N2, 〈N〉 are the variance and mean num-
ber of gravitons, respectively. Classical states are
obtained by mixing coherent states and always
have F ≥ 1 [40] – i.e. classical states are super-
Poissonian – while a Fano factor smaller than
one – sub-Poissonian statistics – can only be ex-
plained by quantum theory. The Fano factor is
related to the field second-order autocorrelation
function g2

GW = 〈b†b†bb〉/〈b†b〉2 as

g2
GW = 1 + (F − 1) /〈N〉 , (18)

so F < 1 implies g2
GW < 1. For a squeezed-

coherent state as defined in (16) with φ = 2θ, the
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variance and mean graviton numbers are given by
[4],

∆N2 = |h|2e−2r + 2 sinh2 r cosh2 r , (19)
〈N〉 = |h|2 + sinh2 r . (20)

In the limit that |h|2 � 2e2r sinh2 r cosh2 r we
have

F = ∆N2

〈N〉
≈ e−2r < 1 . (21)

Note that for a squeezing of order r ≈ 1, the
above approximation is valid whenever |h|2 � 50.
In this sense squeezed-coherent states can dis-
play non-classical behavior even in the macro-
scopic limit of large numbers of quanta. While
this is also the case in electromagnetic quantum
optics [44], photons strongly interact with mat-
ter, so these states tend to be short-lived [45].
In contrast, GWs interact very weakly with their
environment. If squeezed-coherent GW states are
produced in nature, they could travel the universe
nearly unperturbed [46].

5 GW state reconstruction and non-
classical observables

We would now like to show how quantum infor-
mation contained in a GW can be obtained from
an experiment as depicted in Figure 1, where a
single copy of the GW interacts with multiple
copies of an optical state and subsequent mea-
surements are performed on the optical ensemble.
As it turns out, if the GW state is Gaussian – as
is the case for squeezed-coherent GWs – we could
in principle completely reconstruct the gravita-
tional quantum state and consequently perform
non-classicality witness measurements and also
obtain the gravitational second-order coherence
g2
GW .
Consider a single mode GW initially in the

state |Ψ〉 interacting with the optical wavefunc-
tion,

|Φ〉 = a0|0〉+ a1|1〉+ a2|2〉+ ... (22)

The total initial state is |Φ〉|Ψ〉. Time evolution
according to (7) reads,

U |Φ〉|Ψ〉 = a0|0〉|Ψ〉+ a1|1〉D(−qγ)|Ψ〉
+a2|2〉D(−2qγ)|Ψ〉+ ... (23)

where we have absorbed the free dynam-
ics of the GW in the displacement operator,
〈Ψ(t)|D(qγ)|Ψ(t)〉 = 〈Ψ|D(−qγ∗)|Ψ〉.

The reduced density matrix of the optical mode
carries information on the initial GW state. De-
note the reduced optical density matrix compo-
nents in the Fock basis as ρnm(t) = 〈n|ρ(t)|m〉.
The density matrix is an observable and we can
have access to all of its components – say by state
tomography – provided we let several copies of the
initial optical state interact with the GW. Here,
we will be interested in the ρ0n = 〈0|ρ|n〉 compo-
nents, given by

ρ0n = a0a
∗
n 〈Ψ|D(−nqγ∗)|Ψ〉 , (24)

where the {am} coefficients are known, deter-
mined by the initial optical state |Φ〉. Therefore,
we have access to the quantities 〈Ψ|D(−nqγ∗)|Ψ〉
for different values of n. Define,

In(t) = 〈Ψ|D(−qnγ∗)|Ψ〉 =

Tr (σD(−nqγ∗)) = Tr
(
σe−qn(γ∗b†−γb)

)
, (25)

where σ = |Ψ〉〈Ψ| is the initial GW density ma-
trix and γ∗ = 1−eit′ , with t′ denoting the rescaled
dimensionless time parameter t′ = Ωt.

Recall that the quantum characteristic function
χ(η, η∗) is defined as

χ(η, η∗) = Tr
(
σeηb

†−η∗b
)

= C(η, η∗)e−|η|2/2 ,
(26)

where η, η∗ are complex variables and C(η, η∗)
is the normally ordered quantum characteristic
function,

C(η, η∗) = Tr
(
σeηb

†
e−η

∗b
)
. (27)

This function contains all the information of a
quantum state σ [47], and thus can be seen as
an alternative representation to the density ma-
trix. It is related to the graviton-number generat-
ing function [48], from which all normally ordered
moments of the graviton number operator can be
obtained, in particular the graviton second-order
correlation function g2

GW . If we can partially re-
construct C(η, η∗) from data, we could obtain
information on the graviton-number statistics of
the corresponding GW state, or use measured
moments of the GW field quadratures to witness
nonclassicality of the gravitational field.

Observe that (25) corresponds to the quantum
characteristic function evaluated at the contours
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in the complex plane given by qn
(
eit
′ − 1

)
, so

we expect that some information on the initial
GW quantum state can be retrieved from mea-
surements of the reduced optical density matrix.
Since we only have partial access to C(η, η∗) in
the complex domain, it is not clear how much of
the information can be retrieved. It turns out
that if the GW state is Gaussian, the initial GW
state and consequently all of its expectation val-
ues can be completely recovered from measure-
ments of In(t).

The essential idea is to consider time deriva-
tives of In(t) evaluated at t′ = 0. For differ-
ent values of n, the time derivatives provide rela-
tions between normally ordered expectation val-

ues, from which we can reconstruct the desired
first and second-order field correlation functions
necessary for specifying the Gaussian state. De-
fine the time derivatives as

αν(n) ≡ ∂νIn(t′)
∂t′ν

|t′=0 (28)

and the field quadratures,

X = b+ b† , (29)
Y = i

(
b− b†

)
. (30)

Direct computation shows that the moments are
given by,

〈qX〉 = −iα1(1) , (31)

i〈qY 〉 = 1
2α2(2)− 2α2(1) , (32)

〈q2X2〉 = α2(1)− 1
2α2(2) , (33)

〈qXqY 〉 − 1
2〈[qX, qY ]〉 = 2

3α3(1)− 1
12α3(2) + 1

2α1(1) , (34)

〈Y 2〉 = 2 + 4〈N〉 − 〈X2〉 , (35)

where 〈N〉 is the mean graviton number, which
can be obtained by measuring the amplitude of
the GW. Alternatively, 〈Y 2〉 can be obtained
from the other moments by normalization of
the corresponding Wigner function associated to
the covariance matrix. We recall that the time
derivatives are with respect to rescaled time, and
the commutator [qX, qY ] = −2q2i is known. We
refer to Appendix D for more details on this cal-
culation.

From the moments 〈X〉, 〈Y 〉, 〈X2〉, 〈XY 〉, 〈Y 2〉
we can reconstruct the GW covariance matrix,
which for Gaussian states is equivalent to knowl-
edge of the full quantum state [49]. Furthermore,
photon-number statistics, in particular the g2

GW

function, can be determined from knowledge of
the covariance matrix [50]. The intracavity opti-
cal states can be determined by the leaking cavity
fields via the input-output formalism [51].

All correlation functions above are multiplied
by powers of the dimensionless coupling q. We
can express the moments (31)-(35) in the contin-
uum limit by defining free field quadratures for a

fixed GW polarization as

h =
∫

dk√
(2π)3

√8πG
k

bk + h.c.

 , (36)

h̄ = i

∫
dk√
(2π)3

√8πG
k

bk − h.c.

 . (37)

Note that in retrieving the continuum limit, we
write h, h̄ as integrals over all modes, including
the empty modes discussed in Appendix B. We
have the limits,

qX → (ω/4Ω)h , (38)
qY → (ω/4Ω)h̄ , (39)

and

〈[qX, qY ]〉 → (ω/4Ω)2〈
[
h, h̄

]
〉 = −2i(ω/4Ω)2 .

(40)

Altogether, for a single-mode GW state inter-
acting with an optical density matrix initially in
state ρ(0) = |Φ〉〈Φ| we find the relations:
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〈h〉 = −
(4i
ω

)
∂I1
∂t

, (41)

〈h̄〉 =
( 4i
ωΩ

)(1
2
∂2I2
∂t2

− 2∂
2I1
∂t2

)
, (42)

〈h2〉 =
( 16
ω2

)(
∂2I1
∂t2

− 1
2
∂2I2
∂t2

)
, (43)

〈hh̄〉 =
( 16
ω2Ω

)(2
3
∂3I1
∂t3

− 1
12
∂3I2
∂t3

)
+
(8Ω
ω2

)
∂I1
∂t
− i , (44)

〈h̄2〉 = 2 + 4〈N〉 − 〈h2〉 , (45)

where In(t) = ρ0n/a0a
∗
n and the proportional-

ity constants a0, a
∗
n are determined by the initial

optical state |Φ〉. Using these relations, we can
obtain the quantum correlation functions of the
spacetime metric perturbations associated to a
single GW in the transverse traceless gauge, di-
rectly from experimentally accessible data.

6 Optical coherent states
Consider now the interaction between an optical
coherent state and a squeezed-coherent GW. Let
the transverse cavity electric field be defined as
~E = E ẑ, where E ≡

√
ω
Vc

(
a+ a†

)
/
√

2, with Vc

the cavity mode volume. The mean electric field
associated to the optical coherent state |α〉 in-
teracting with an initially independent pure GW
state |Ψ(t)〉 reads

〈E(t)〉 =
√
ω

Vc

(I1(t)α+ I1(t)∗α∗√
2

)
, (46)

where I1(t) is given in (10).
For calculation of the expectation value (46), it

is more convenient to write the squeezed-coherent
state as a displacement followed by the squeez-
ing operator. By use of (17) we then write the
squeezed-coherent state as,

|Ψ(t)〉 = S(r, φ(t))D(h(t))|0〉 , (47)
where S(r, φ(t)) is the single-mode squeezing op-
erator in the interaction picture with squeezing
parameter r and angle φ(t) = φ0 − Ωt, and
D(h(t)) is a displacement operator with ampli-
tude h(t) = |h|e−iΩt.

The I1(t) factor can be rewritten,

〈Ψ(t)|D(qγ)|Ψ(t)〉 =
= 〈h|S†(r, φ)D(qγ)S(r, φ)|h〉
= 〈h|D(κ)|h〉 , (48)

0 2 4 6
t

2

0

2

(t
)

coherent

0 = 0

0 = /4

0 = /2

0.0 0.2 0.4 0.6 0.8 1.0
r

0

2

4

6

0

1

2

3

a)

b)

Figure 2: a) Normalized relative phase of the optical
field as a function of time, in units of GW strain ωf/Ω.
Time is displayed in units of the GW period 2π/Ω. Dif-
ferent values of the squeezing angle φ0 are considered,
exhibiting enhancement (φ0 = π/2, green curve), sup-
pression (φ0 = 0, blue curve) and an intermediate case
(φ0 = π/4, orange curve). Note that in the interme-
diate case the phase profile is asymmetric and exhibits
a characteristic form which can be used to single out
squeezed-coherent states from plain coherent states (red
dashed curve). For this plot the squeezing parameter is
taken to be r = 1. b) Maximum phase value (in units of
ωf/4Ω) as a function of squeezing parameter r and an-
gle φ0 showing enhancement or suppression of the GW
signal, depending on characteristics of the source.

where κ denotes

κ = q
(
γ cosh r + γ∗e2iφ0e−2iΩt sinh r

)
. (49)
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The above expression can be decomposed in
terms of linear and quadratic contributions in
q. As in the qubit case, quadratic contributions
yield real-valued factors and are associated with
gravity-induced decoherence, which we neglect in
view of the discussions in Appendix B. Consider-
ing only terms linear in q the relevant contribu-
tion coming from (48) is

exp
(
κ|h|eiΩt − κ∗|h|e−iΩt

)
. (50)

This term yields a time-varying phase ei∆ϕ in the
mean coherent electric field, dependent on the
squeezing parameter r and angle φ0,

∆ϕ = 2|h|q
(

sin Ωt cosh r +
+ sin (2φ0 − Ωt) sinh r − sin 2φ0 sinh r

)
.

(51)

This phase factor can be thought of as a
continuous-variable version of the precession of
the Bloch vector discussed previously, and corre-
sponds to the phase signal measured by interfer-
ometric GW detectors.

The squeezing phase φ0 is a property of the
squeezed state. In electromagnetic quantum op-
tics, for example, it is controlled by the phase
of the pump beam driving the optical paramet-
ric oscillator [52]. The phase (51) tells us that
depending on the characteristics of a source of
squeezed-coherent GWs, the signal in a GW de-
tector can be enhanced or suppressed depending
on φ0. In particular, if φ0 = π/2, we have

∆ϕ = 4|h|q er sin Ωt , (52)

and the signal is enhanced by a squeezing factor
er. The enhancement can be traced back to the
quantum nature of squeezed states, and we re-
mind its connection to the enhancement of quan-
tum noise due to squeezed GWs as predicted in
[3, 8, 10] while predicting further that squeezing
– in particular squeezed-coherent states of GWs
– can lead to an enhancement in the signal mea-
surable by interferometric detectors.

If φ0 = 0 the signal becomes

∆ϕ = 4|h|q e−r sin Ωt , (53)

and we find a suppression of the signal by a
squeezing factor e−r. We note that the case
of φ0 = 0 displays g2

GW ≈ e−2r < 1 provided
|h|2 � 8e4r sinh2 r cosh2 r. For r = 1, g2

GW ≈

1/e2 ≈ 0.13, and ∆ϕ/∆ϕ0 = 1/e ≈ 0.37, indicat-
ing that a squeezed-coherent GW with suitable
phase could display sub-Poissonian statistics –
and hence quantum behavior – while only mildly
attenuating the signal measured by LIGO.

It is instructive to compare the enhanced
and suppressed phases due to squeezed-coherent
waves with the corresponding phase due to a co-
herent state GW. Setting r = 0 in (51) the in-
duced phase becomes [3],

∆ϕ0 = 2q|h| sin Ωt , (54)

and note the same phase was found in the preces-
sion of the Bloch vector in (13). We can write the
prefactor q|h| in terms of experimentally accessi-
ble quantities. A GW has energy-density given
by E = (1/32πG)Ω2f2 [53] where f denotes the
GW strain for mode k. A single graviton has
energy-density Eg = Ω/V , so a wave with energy
density E has on average 〈N〉 = E/Eg gravitons.
For coherent states the mean particle number is
given by |h| =

√
〈N〉, so the acquired phase be-

comes

∆ϕ0 =
(
ω

4Ω

)
f sin Ωt , (55)

in accordance to the classical prediction that a
GW induces an optical phase proportional to its
strain and oscillating at the GW frequency [54].

The phase (55) allows us to connect our re-
sults with current gravitational wave detectors.
Note the phase is proportional to the GW strain
f , which originates from writing the prefactor
2q|h| in (54) in terms of experimentally accessi-
ble numbers. The same prefactor appears in the
enhanced and suppressed phases (52), (53) due
to squeezed-coherent states, and in the limit that
|h|2 � sinh2 r we have 〈N〉 ≈ |h|2. Therefore,
if the squeezed-coherent GWs have mean num-
bers of gravitons comparable to the coherent GWs
currently detected by LIGO – corresponding to
strains of f ≈ 10−21 – and only a modest squeez-
ing parameter, say r ≈ 1, the signals due to these
squeezed-coherent waves will be only slightly en-
hanced or suppressed with respect to signals cur-
rently detected.

Figure 2a) shows the relative phase imprinted
by a squeezed-coherent GW state for different
values of the squeezing angle, in comparison to
the signal produced by a coherent state GW.
As shown above, for the particular values φ0 =
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0, π/2, the signal undergoes suppression and en-
hancement, respectively. For intermediate values
of the squeezing angle (e.g. φ0 = π/4) the sig-
nal acquires a characteristic form with asymmet-
ric amplitude, which can also be used to single
out the squeezed-coherent state from other pos-
sible quantum states of the GW. Next, in Fig-
ure 2b) we show the maximum value of ∆ϕ nor-
malized by the corresponding maximum phase at-
tained through interaction with a coherent GW,
max (∆ϕ0) = ωf/4Ω. As the squeezing param-
eter increases, the signal amplitude measured by
the GW detector oscillates between enhancement
and suppression according to the squeezing angle
φ0.

Detection of a signal as depicted in Figure 2
requires the coherent interaction between a GW
and the optical modes on the order of a GW pe-
riod. For GWs currently detected by LIGO, this
corresponds to a photon lifetime of at least ∼
300µs, amounting to a cavity decay rate smaller
than ∼ 3 kHz but note that optical state recon-
struction as described in the previous section only
requires time derivatives of the optical density
matrix elements near the initial time of the ex-
periment, relaxing the need for high-Q cavities.

We revisit the qubit example discussed in the
previous section, now for the case of a squeezed-
coherent GW. With (48) and (49) we can cal-
culate the Bloch vector of the optical field asso-
ciated to a squeezed-coherent GW finding – per-
haps unsurprisingly at this point – a combination
of the coherent and squeezed results,

~r|r,h〉(t) = e−2e2rq2 sin2(Ωt)×
(cos (ωt+ ∆ϕ(t)) , sin (ωt+ ∆ϕ(t)) , 0) ,

(56)

where we have assumed φ0 = π/2 and large r, for
simplicity. We see the qubit inherits the shrinking
factor associated to squeezing, plus an enhanced
phase signal given in (52).

Similarly to the qubit model, an optical co-
herent state will acquire the phase signal man-
ifest in the mean electric field 〈E(t)〉, and also
noise characteristics manifest in electromagnetic
(EM) field correlation functions such as g1

EM (t) =
〈a†(0)a†(t)〉, g2

EM = 〈a†a†aa〉/〈a†a〉2 and so on.
Both signal and noise will provide information on
the GW state. Calculation of the noise properties
can be achieved through field theory methods, no-
tably the Feynman-Vernon influence functional

formalism [8] or via the canonical quantization
formalism. In certain situations Markovian ap-
proximations can be made; see for example [55]
where the broadening of the power spectrum of
a cavity due to inflationary squeezed states has
been recently calculated.

As a final remark, we note similar effects are
obtained if instead of a squeezed-coherent state
we consider two-mode squeezed coherent states
defined as

|Ψ〉12 = S12(r, φ(t))D1(h1(t))D2(h2(t))|0〉 ,
(57)

where S12(r, φ(t)) is the two-mode squeezing op-
erator [56] acting on modes ‘1’ and ‘2’ defined
by wave-vectors k1 and k2, respectively, and
Di(hi(t)) is a displacement operator acting on
mode ‘i’ responsible for generating a seed co-
herent state; see Appendix E. Interestingly, two-
mode squeezed(-coherent) states have been pre-
viously studied in cosmology [57] and could have
been generated in the early universe [58].

7 Conclusion
In this work we have studied the optomechanical
interaction of a GW in different quantum states
– vacuum, coherent, squeezed and squeezed-
coherent – with the quantized electromagnetic
field in an optical cavity using the framework of
effective field theory. We make no detailed as-
sumption on the UV behavior of gravity, only re-
quiring the existence of an energy range, well be-
low the characteristic quantum gravity scale (as-
sumed to be within a few order of magnitudes
of the Planck scale) in which the use of effective
theory is justified.

For the simplified situation in which the cav-
ity state is given by a superposition of the vac-
uum and a single photon, referred to as an opti-
cal qubit, we have shown that trajectories of the
associated Bloch vector are uniquely determined
by the GW quantum state and are given by the
combination of a shrinking factor associated to
gravity-induced noise and precession motion re-
sulting in a signal analogous to the one measured
by conventional interferometric GW detectors.

Moreover, performing state tomography on
an ensemble of electromagnetic quantum states
which interacted with a single copy of a passing-
by GW allows for the reconstruction of the GW
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quantum state, provided the state is Gaussian.
This offers a unique experimental perspective on
the interplay between quantum mechanics and
gravity.

For the case in which the GW is in a squeezed-
coherent state, the gravitational induced fluctu-
ations can exhibit an exponential enhancement,
as originally pointed out in [3, 8, 10], and we
show that the signal can also be exponentially en-
hanced or suppressed, depending on the squeez-
ing phase. Squeezed-coherent GW states can
also exhibit non-classical, sub-Poissonian gravi-
ton statistics. This opens the possibility of de-
tecting quantum features associated to GWs in
current or near-future detectors, provided possi-
ble sources of squeezed-coherent GWs emit with
intensities comparable to the signals so far de-
tected (strain f ∼ 10−21) and squeezing parame-
ters of order one (r ∼ 1).

In quantum optics, squeezed-coherent states
are produced when nonlinear mode-mode cou-
plings or parametric modulations are present,
which occur in dielectric crystals when the po-
larizability of the material is probed beyond lin-
ear order [52]. In gravity, coupling between GW
modes and between GWs and dynamical space-
time backgrounds naturally occurs due to the
nonlinearity of General Relativity. Einstein’s
equations imply that the Riemann curvature ten-
sor satisfies a nonlinear wave equation1. Using
the so-called Brill-Hartle average [59], one can
split the curvature into a background and a GW
part. We can anticipate then at least two mech-
anisms for the parametric amplification of GWs:

I. The covariant derivative in the wave opera-
tor contains connection coefficients which are
dependent on the propagating GW perturba-
tions, thus producing higher-order terms in
the GW field. This can be related to the
graviton-graviton scattering processes in the
effective field theory approach to gravity.

II. Even if quadratic couplings between the
GWs are small, Einstein’s equations contain
terms coupling the curvature associated to
GWs to the dynamical background curva-
ture. If the radius of curvature of the back-
ground (given by the order of magnitude

1The equation in components is R µ
αβγδ;µ =

2RαβξµR ξ µ
δ γ + 2RαξδµR ξ µ

β γ − 2RαξγµR ξ µ
β δ .

of the components of the Riemann curva-
ture tensor) is comparable to the wavelength
of the waves, such curvature-coupling may
lead to parametric amplification of the GWs,
which in a quantum mechanical description
amounts to squeezing of the seed coherent
state. One example of this is the generation
of squeezed GWs in cosmological perturba-
tion theory.

Examples of mechanism I. include high inten-
sity GW astrophysical events [60] and graviton-
graviton scattering in field theory [61], while
parametric processes of the type II. have been
suggested in inflation [11–13, 58] and the end
stages of black hole evaporation [14].

Noncoherent states of GWs are also expected
to be produced via mechanism II. during the
end stages of compact mergers [8, 10]. Numer-
ical simulations indicate that perturbed black
holes can generate outgoing gravitational radi-
ation with characteristic nonlinear features, no-
tably mode-mode coupling, second harmonic gen-
eration, stronger-than-linear output and para-
metric instabilities [62, 63], all phenomena associ-
ated to squeezing of quantum noise [43]. In Kerr
black holes, mode coupling can occur even at lin-
ear order [64] and more recently, a novel mecha-
nism for the nonlinear generation of GWs during
the ringdown phase of a binary black hole merger
has been proposed [65].

Finally, quantum enhanced GW detectors, in
the sense of [66], might enable tests of the non-
linear features of gravity from the perspective of
quantum mechanics.
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A Time evolution
We review the time evolution operator here. The discrete-mode Hamiltonian (eqns. (2) and (3)) in the
main text can be exponentiated exactly. The result of exponentiating mode by mode is summarized
in the unitary operator [See Eq. (2) in [41]]

Uk(t) = e−ib
†
k
bkΩte−iωa

†aeiBk(t)(a†a)2
eqka

†a(γkbk−γ∗kb
†
k
) (58)

where γk = (1− e−iΩkt) and Bk(t) = q2
k (Ωkt− sin Ωkt). From now on we will work on a single-mode

and omit the mode subscript k.
A useful formula is

e−λa
†aaeλa

†a = aeλ (59)

We can ignore the free electromagnetic evolution in (58) as it only generates a linear time-dependent
phase on the electromagnetic annihilation operator. As in the main text, we also ignore the nonlinear
Bk(t) term, as it has a negligible effect scaling quadratically and higher in qk. The evolution of a GW
state under (58) then reads

Uk(t)|Ψ〉 = e−ib
†bΩteqa

†a(γb−γ∗b†)eib
†bΩte−ib

†bΩt|Ψ〉

= eqa
†a(γeiΩtb−γ∗e−iΩtb†)e−ib

†bΩt|Ψ〉

= eqa
†a(γb†−γ∗b)|Ψ(t)〉 (60)

where we have defined the time-evolving state |Ψ(t)〉 = e−ib
†bΩt|Ψ〉. We can regard (60) as an operator

acting on the photon annihilation operator by conjugation, which results in

a(t) = 〈Ψ|Uk(t)†aUk(t)|Ψ〉 = a〈Ψ(t)|D(qγ)|Ψ(t)〉 (61)

For the case of a squeezed-coherent state, for example,

|Ψ〉 = S(r, φ0)D(|h|)|0〉 (62)

from which we can calculate

|Ψ(t)〉 = e−ib
†bΩt|Ψ〉

= e−ib
†bΩtS(r, φ0)D(|h|)eib†bΩte−ib†bΩt|0〉

= e−ib
†bΩtS(r, φ0)D(|h|)eib†bΩt|0〉

= S(r, φ)D(h)|0〉 (63)

where φ = φ0 − Ωt and h = |h|e−iΩt, as considered in the main text.

B Multi-mode corrections
In the main text, we consider the effects of a single-mode GW in a state with non-vanishing mean
number of gravitons interacting with the detector and neglect the effects of the additional modes in
the vacuum state. For completeness, we briefly review the results from [3] which justify this single-mode
approximation.
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The time evolution of the coupled optical-GW system is given by a product of the operators Uk(t),
defined in (5) in the main text. We now wish to estimate the effect of vacuum modes upon electro-
magnetic operators. As an example, consider the optical annihilation operator a. Its time evolution is
then given by

a(t) =
(∏

k

Uk(t)
)†
a

(∏
k

Uk(t)
)

=
∏
k

eiBk(t)a†aeiBk(t)/2eqka
†a(γkb†−γ∗kbk)a

=
∏
k

eiBk(t)a†aeiBk(t)/2D(qkγk)a (64)

where D(qkγk) is the GW displacement operator. Consider now the GW field to be in the vacuum
state

|0〉 =
∏
k

|0k〉 (65)

where |0k〉 denotes the vacuum state in mode k. The annihilation operator of an optical mode inter-
acting with such gravitational vacuum can then be written as

a(t) = eiF(t)a†aeiF(t)/2G(t)a (66)

where

F(t) =
∑
k

Bk(t) (67)

and

G(t) =
∏
k

〈0k|D(qkγk)|0k〉 = exp
[
−1

2
∑
k

q2
k|γk|2

]
(68)

Physically, the expressions above must be cut-off at a maximum and minimum frequencies Ωk = |k|
to which the detector can be sensitive in principle [8]; for illustration purposes, we will exaggerate
these infrared and ultraviolet cut-offs to the Hubble and Planck energies, EIR and Epl, respectively.
Recovering the continuous limit yields, up to numerical factors of order one,

F(t) =
∫

d3k√
(2π)3 2ω2

(8πG
k3

)
(Ωkt− sin Ωkt)

≈
(
ω

Epl

)2(∫ Epl

EIR
dk

)
t ≈

(
ω

Epl

)
ωt (69)

where we have used Epl � EIR, considered large times t � E−1
IR and neglected the bounded term

sin Ωkt. Corrections to the optical annihilation operator due to the phase F(t) are then on the order
of (ω/Epl) and only become relevant for optical energies close to the Planck energy. Similarly,

G(t) = exp
(
−1

2

∫
d3k√
(2π)3ω

2
(8πG
k3

)
|γk|2

)

≈ exp

−2
(
ω

Epl

)2 ∫ Epl

EIR

dk

k


= exp

−2
(
ω

Epl

)2

ln
(
Epl
EIR

) (70)
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where we have considered the worst-case approximation |γk|2 = 2 (1− cos Ωkt) ∼ 4. Notice that the
ratio of ultraviolet to infrared cut-offs is Epl/EIR ≈ 1062, giving a correction to a(t) approximately
proportional to (ω/Epl)2, a tremendously small number!

Instead of the vacuum, we could consider all modes to be populated by a thermal state at about 1 K,
the expected temperature for the cosmic GW background [67]. This would not alter F(t), which is
state-independent, so the estimates in (69) remain. The G(t) term, however, would acquire a correction
factor at most e−q

2
pl(2n̄+1), with n̄ = 1/(e~Ωk/kBT − 1) and qpl the GW coupling strength at the Planck

frequency. [3]. For a GW mode of 10 Hz, peak of the expected cosmic GW background spectrum, this
correction factor amounts to ≈ e−10−47 .

All in all, these estimates show that the effect of modes which are not populated by states with a
very large mean number of gravitons upon optical observables is completely negligible. In other words,
decoherence due to the gravitational vacuum, or even due to the thermal background of GWs is very
weak, which is consistent with previous results [5, 42].

C Gravitational decoherence of cavity modes
Here we explore the idea that terms quadratic in the dimensionless coupling q appearing in the exponent
of (10) are associated to GW-induced decoherence. Let us consider the electromagnetic-gravitational
wave (EM-GW) system prepared at time t = 0 in the state

|Ψ (0)〉 = |0〉EM + |N〉EM√
2

⊗ |0〉GW (71)

This provides a simplified model of a qubit (defined by the span of the {|0〉, |N〉} subspace) exhibiting
features similar to the electromagnetic coherent states considered in the main, but with easily calculable
coherence terms.

The initial state |Ψ (0)〉 can be evolved directly using operator (7) resulting in the state at arbitrary
times,

|Ψ (t)〉 = |0〉 |0〉+ |N〉 |qNγ〉√
2

(72)

where we omit the subscripts by intending that the left (right) kets refer to EM (GW), respectively;
the order reverses when considering bras instead of kets. Notice that the time dependence is contained
in the function γ (t), and moreover |qNγ〉 is a coherent state. The total density matrix associated to
|Ψ (t)〉 reads,

ρ (t) = 1
2 (|0〉 |0〉 〈0| 〈0|+ |0〉 |0〉 〈qNγ| 〈N |+ |N〉 |qNγ〉 〈0| 〈0|+ |N〉 |qNγ〉 〈qNγ| 〈N |) , (73)

from which we can trace out the GW subsystem to obtain the density matrix associated to the elec-
tromagnetic field,

ρEM (t) =
(

1
2 ρ01
ρ∗01

1
2

)
(74)

where the coherence term ρ01 = 〈0|qNγ〉 = exp
{
−1

2q
2N2 |γ|2

}
oscillates with an amplitude propor-

tional to q2. This supports the idea that exponents proportional to the dimensionless coupling squared
are associated to GW-induced decoherence.

To further explore this idea, let us now consider the GW field in a coherent state,

|Ψ (0)〉 = |0〉+ |N〉√
2

⊗ |α〉 (75)

Time evolution yields,

|Ψ (t)〉 = |0〉 |α〉+ |N〉D (qNγ) |α〉√
2

(76)
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Furthermore,

D (qNγ) |α〉 = D (qNγ)D (α) |0〉 (77)
= e

1
2Nq(γα

∗−γ∗α) |qNγ + α〉 (78)

and the density matrix now becomes,

ρ (t) = 1
2 |0〉 |α〉 〈α| 〈0|

+ 1
2e
− 1

2Nq(γα
∗−γ∗α) |0〉 |α〉 〈qNγ + α| 〈N |

+ 1
2e

1
2Nq(γα

∗−γ∗α) |N〉 |qNγ + α〉 〈α| 〈0|

+ 1
2 |N〉 |qNγ + α〉 〈qNγ + α| 〈N |

(79)

Tracing out the GW states as before yields the same form as (74) with ρ01 given by

ρ01 = e−
1
2 [q2N2|γ|2+qN(γ∗α−γα∗)] (80)

We see the interaction between the EM field and a a quantized single-mode GW is given by the q2 term
present when the GW-field is in the vacuum state plus an oscillating factor linear in q and proportional
to the GW amplitude.

Equation (80) naturally allows us to evaluate the expression of ρ01 for a single-mode GW in a thermal
state with mean number of gravitons n,

ρ01 = e−
1
2 q

2N2|γ|2
∫
d2α

πn
e
− 1

2

[
|α|2
n

+qN(γ∗α−γα∗)
]

= e−
1
2 q

2N2|γ|2(1+n) (81)

This expression is valid for a single-mode thermal state. We could generalize it to a continuum of GW
modes in thermal states, with the initial state

ρ(0) = |ψ0〉〈ψ0| ⊗
∏
k

ρTh
k (82)

where |ψ0〉 = |0〉+|N〉√
2 and ρTh

k is the thermal density matrix for mode k. For such state, (81) generalizes
to ∏

k

e−
1
2 q

2
kN

2|γk|2(1+nk) = exp
(
−1

2N
2∑

k

q2
k |γk|

2 (1 + nk)
)

(83)

If the GW thermal states are assumed to be highly populated nk � 1 (T → ∞), we can write
(1 + nk) ≈ KBT/Ωk. Substituting qk = (ω/Ωk)

√
8πG/ΩkV /4, |γk|2 = 4 sin2

(
Ωkt

2

)
and employing

the density of modes for a bosonic field in a volume V [40] given by D(Ω) ∝ V Ω2dΩ we find, in the
continuum limit and after summing over all modes,

ρ01 ≈ exp

kBT
(
Nω

EP

)2
ζ

∫
dΩ

sin2
(

Ωt
2

)
Ω2

 (84)

where Epl = 1/
√
G is Planck’s energy, ζ is a factor of order one and we note that the integral in the

exponent is the same as Eq. (22) in [68] and Eq. (23) in [69]. From the scaling of the integral in (84)
we see that

ρ01 ≈ e−Γt (85)
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where

Γ ∝ kBT
(

∆E
Epl

)2

(86)

up to a factor of order one, where we have defined the energy difference ∆E = Nω. With this we
recover the scaling of the decoherence of a superposition with energy difference ∆E in the presence of
a thermal GW background with temperature T as obtained in [42].

D Reconstruction of Gaussian GW states from optical modes

As explained in the main text, the reduced density matrix elements of an optical state which interacted
with a single mode quantum GW state are proportional to

In(t) = 〈Ψ|D(−qnγ∗)|Ψ〉 = Tr (σD(−nqγ∗)) = Tr
(
σe−qn(γ∗b†−γb)

)
(87)

These correspond to the quantum characteristic function associated to the GW evaluated at certain
contours in the complex plane, and as such contain information on the GW quantum state. By mea-
suring different components of the optical reduced density matrix, we can then obtain such information
and partially reconstruct the GW quantum state. As we now show, if the state is Gaussian reconstruc-
tion is perfect.

The idea behind the GW state reconstruction is to obtain relations between GW field correlators
and time derivatives of In(t) evaluated at t = 0. Inverting these relations, we can obtain the first and
second moments of the gravitational field quadratures. To see that, we Taylor expand In(t) in time
using,

enA(eit−1) = 1 + inAt− 1
2 (nA (nA+ 1)) t2+

− i6nA
(
n2A2 + 3nA+ 1

)
t3 +O(t4) (88)

e−nB(e−it−1) = 1 + inBt− 1
2 (nB (nB − 1)) t2+

− i6nB
(
n2B2 − 3nB + 1

)
t3 +O(t4) (89)

Observe also that

In(t) = e−q
2n2|γ|2/2C(−qnγ∗,−qnγ)

=
(

1− 1
2q

2n2t2 +O(q4)
)
C(−qnγ∗,−qnγ) (90)

We now proceed order-by-order in t.

t-terms: The first order derivative of (90) gives us

α1(n) = inq 〈X〉 (91)

From which we obtain

〈qX〉 = −iα1(1) (92)

t2-terms: The second order derivative of (90) yields,

α2(n) = −n2u1 − nu2 − n2q2 (93)
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where

u1 = q2〈b†2 + b2 + 2b†b〉 (94)
u2 = −q〈b− b†〉 (95)

We can consider different values of n, say n = 1, 2 to obtain two independent relations which can be
used to solve for u1, u2. We find,

u1 = α2(1)− 1
2α2(2)− q2 (96)

u2 = −2α2(1) + 1
2α2(2) (97)

Now, observe that

u1 = q2〈b†2 + b2 + 2b†b〉 = 〈q2X2〉 − i

2〈[qX, qY ]〉 (98)

We note
[
b, b†

]
= i

2 [X,Y ] = 1, but as we will see, it is sometimes convenient to keep expressions in
terms of the commutator when taking the continuous limit.

We find,

〈q2X2〉 = α2(1)− 1
2α2(2) (99)

Similarly,

u2 = −q〈b− b†〉 = i〈qY 〉 = 1
2α2(2)− 2α2(1) (100)

t3-terms: At third order we obtain

−α3(n) = 6n3v1 + 6n2v2 − nα1(1) (101)

where

v1 = iq3

6 〈b
3 + 3b†b2 + 3b†2b+ b†3 + 3

(
b+ b†

)
〉 (102)

v2 = iq2

2 〈b
†2 − b2〉 (103)

and once again, using different values of n we can recover v1, v2. For Gaussian states, it suffices to
determine v2. We have,

v2 = −α3(1)
3 + α3(2)

24 − α1(1)
4 (104)

Using the relation

〈b†2 − b2〉 = i〈XY 〉 − i

2〈[X,Y ]〉 (105)

we find,

〈qXqY 〉 − 1
2〈[qX, qY ]〉 = 2

3α3(1)− 1
12α3(2) + 1

2α1(1) (106)

We can go on to higher orders, and determine more normal-ordered expectation values of gravi-
ton creation and annihilation operators, but for Gaussian quantum states, determining the moments
〈X〉, 〈Y 〉, 〈X2〉 and 〈XY 〉 are sufficient; we still need the expecation value 〈Y 2〉, which can be obtained
either by normalization of the Wigner function or by additional measurements of the mean number of
gravitons 〈N〉 = 〈b†b〉, since 〈Y 2〉 = 2 + 4〈b†b〉 − 〈X2〉. This leads to the first and second moments
discussed in the main text.
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E Quantum enhancement and suppression of GW signals
We provide further details on the calculations presented in the main text. We follow the conventions
used in [56]. Useful formulae are:

〈γ|D(α)|β〉 = e−|α|
2/2e−|β|

2/2e−|γ|
2/2eαγ

∗−α∗β+βγ∗ (107)

where D(α) is a displacement operator. Products of displacement operators satisfy:

D†(β)D(α) = D(−β)D(α) = e
(αβ∗−βα∗)

2 D(α− β) (108)

Moreover,

S(r, φ) = exp
(1

2r
(
a2e−2iφ − a†2e2iφ

))
(109)

is the single mode squeezing operator with squeezing parameter r and angle φ, and

eiθa
†aS(r, φ)e−iθa†a = S(r, φ+ θ) (110)

gives us the time evolution of the squeezing parameter in the Heisenberg picture. Another useful
formula is

S†(r, φ)D(α)S(r, φ) = D(α cosh r + α∗e2iφ sinh r) (111)

Define two modes ‘1’ and ‘2’. The above formulas generalize to the case of a two-mode squeezing
operator,

S12(r, φ) = exp
(1

2r
(
b1b2e

−2iφ − b†1b
†
2e

2iφ
))

(112)

For instance, we have

S†12 b1 S12 = b1 cosh r + b†2e
2iφ sinh r (113)

S†12 b2 S12 = b2 cosh r + b†1e
2iφ sinh r (114)

which leads to the generalization of (111),

S†12D1(α)D2(β)S12 = D1(α cosh r)D1(−β∗e2iφ sinh r)D2(α∗e2iφ sinh r)D2(β cosh r) (115)

We are interested in calculating the time-development of a single mode cavity electric field under the
influence of a quantum GW. Here we focus on the case of a two-mode squeezed-coherent GW, since
it generalizes the one mode calculation. Considering terms which generate only linear signals in the
gravitational coupling qk, the time evolution operator for two GW modes ‘1’ and ‘2’ reads

U(t) ≈ eq1a†a(γ1b
†
1−γ

∗
1 b1)eq2a

†a(γ1b
†
2−γ

∗
1 b2) (116)

which for an uncorrelated electromagnetic-gravitational state leads to the electric field

E(t) =
√
ω

Vc

(
12〈Ψ(t)|D1(q1γ1)D2(q2γ2)|Ψ(t)〉12a+ h.c.√

2

)
(117)

The two-mode GW induced phase originates from the term

12〈Ψ(t)|D1(q1γ1)D2(q2γ2)|Ψ(t)〉12 (118)

and thus we focus on calculating it explicitly.
We shall consider the two-mode squeezed-coherent state defined as in the main text,

|Ψ(t)〉12 = S12(r, φ(t))D1(h(t))|0〉 (119)
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where φ(t) = φ0 − Ωt and h(t) = |h|e−iΩt. In cosmology applications [70], we are interested in modes
‘1’ and ‘2’ defined by the wave-vectors −k and k, respectively. Hence we have q1 = q2 = q and
γ1 = γ2 = γ. Therefore,

12〈Ψ(t)|D1(qγ)D2(qγ)|Ψ(t)〉12 = (120)

= 2〈0|1〈h(t)|S†12D1(qγ)D2(qγ)S12|h(t)〉1|0〉2

= 〈h(t)|D1(qγ cosh r)D1(−qγ∗e2iφ sinh r)|h(t)〉︸ ︷︷ ︸
(I)

× 〈0|D2(qγ∗e2iφ sinh r)D2(qγ cosh r)|0〉︸ ︷︷ ︸
(II)

Defining the coherent state |qγ cosh r〉 = D(qγ cosh r)|0〉 we can rewrite (II) as,

〈0|D(qγ∗e2iφ sinh r)|qγ cosh r〉 (121)

and using (107) we see that it only yields terms of order O(e−q2). To leading order in q, then, (II) can
be approximated as unity. As for the term (I) in (121) we write

〈h|D(qγ cosh r)D(−qγ∗e2iφ sinh r)|h〉 =

= 〈h|D†(−qγ cosh r)D(−qγ∗e2iφ sinh r)|h〉

= O(e−q2)× 〈h|D
(
q(γ cosh r − γ∗e2iφ sinh r)

)
|h〉

≈ 〈h|D
(
q(γ cosh r − γ∗e2iφ sinh r)

)
|h〉 (122)

This is equivalent, up to a phase, to Eq. (48) in the main text.
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