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Abstract

Background: Oncotype Dx is a validated genetic analysis that provides a recurrence score (RS) 

to quantitatively predict outcomes in patients who meet the criteria of estrogen receptor positive / 

human epidermal growth factor receptor-2 negative (ER+/HER2−)/node negative invasive breast 

carcinoma. Although effective, the test is invasive and expensive, which has motivated this 

investigation to determine the potential role of radiomics.

Hypothesis: We hypothesized that convolutional neural network (CNN) can be used to predict 

Oncotype Dx RS using an MRI dataset.

Study Type: Institutional Review Board (IRB)-approved retrospective study from January 2010 

to June 2016.

Population: In all, 134 patients with ER+/HER2− invasive ductal carcinoma who underwent 

both breast MRI and Oncotype Dx RS evaluation. Patients were classified into three groups: low 

risk (group 1, RS <18), intermediate risk (group 2, RS 18–30), and high risk (group 3, RS >30).

Field Strength/Sequence: 1.5T and 3.0T. Breast MRI, T1 postcontrast.

Assessment: Each breast tumor underwent 3D segmentation. In all, 1649 volumetric slices in 

134 tumors (mean 12.3 slices/tumor) were evaluated. A CNN consisted of four convolutional 

layers and max-pooling layers. Dropout at 50% was applied to the second to last fully connected 

layer to prevent overfitting. Three-class prediction (group 1 vs. group 2 vs. group 3) and two-class 

prediction (group 1 vs. group 2/3) models were performed.
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Statistical Tests: A 5-fold crossvalidation test was performed using 80% training and 20% 

testing. Diagnostic accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) 

area under the curve (AUC) were evaluated.

Results: The CNN achieved an overall accuracy of 81% (95% confidence interval [CI] ± 4%) in 

three-class prediction with specificity 90% (95% CI ± 5%), sensitivity 60% (95% CI ± 6%), and 

the area under the ROC curve was 0.92 (SD, 0.01). The CNN achieved an overall accuracy of 84% 

(95% CI ± 5%) in two-class prediction with specificity 81% (95% CI ± 4%), sensitivity 87% (95% 

CI ± 5%), and the area under the ROC curve was 0.92 (SD, 0.01).

Data Conclusion: It is feasible for current deep CNN architecture to be trained to predict 

Oncotype DX RS.

Breast cancer is the most ubiquitous malignancy afflicting women worldwide and is the 

second most common cause of cancer deaths among women in the United States.1 Not all 

breast cancers are the same, with a wide spectrum of intrinsic biologic diversity seen across 

multiple subtypes indicating variable biologic behavior and treatment options.2

If a patient meets the criteria of estrogen receptor positive (ER+), human epidermal growth 

factor receptor-2 negative (HER2−), and node-negative, adjuvant chemotherapy may not be 

indicated, as the risk of recurrence is comparable to the harm from toxicity.3,4 These patients 

may receive surgery, endocrine therapy, or radiation.4

Oncotype Dx (Genomic Health, Redwood City, CA) is a validated 21-gene reverse 

transcriptase polymerase chain reaction (RT-PCR) assay involved in tumor cell proliferation 

and hormonal response, which provides a recurrence score (RS) to quantitatively predict 

outcomes in patients who meet the criteria of ER+/HER2−/node negative invasive breast 

carcinoma.5–7 In 2016 the updated guidelines of the American Society of Clinical Oncology 

(ASCO) recommended use of this RS in ER+/HER2−/node negative breast cancer to help 

determine the utility of adjuvant systemic chemotherapy.3

Although effective, genetic analysis such as Oncotype Dx is invasive and expensive, which 

has motivated the investigation of imaging analysis to determine tumor heterogeneity. 

Magnetic resonance imaging (MRI) is a common modality used in the diagnosis of breast 

cancer given its high soft-tissue contrast and sensitivity.8 In recent years there have been 

investigations into quantitative analysis of specific extracted imaging features termed 

“radiomics.” Further correlation of these quantitative imaging features to molecular gene 

expression defines “radiogenomics.”9

The field of radiomics and radiogenomics has developed largely due to the contribution of 

machine-learning techniques utilizing the extraction of pertinent imaging features and 

correlating with clinical data. More recently, due to advances in computer hardware 

technology, a subset of machine learning utilizing a type of artificial neural network called 

convolutional neural networks (CNNs) has begun to proliferate for medical imaging 

analysis. In contrast to traditional algorithms that utilize hand-crafted features based on 

human extracted patterns, neural networks allow the computer to automatically construct 

predictive statistical models, tailored to solve a specific problem subset.10 The laborious task 

of human engineers inputting specific patterns to be recognized could be replaced by 
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inputting curated data and allowing the technology to self-optimize and discriminate through 

increasingly complex layers.

The purpose of this study was to develop a novel CNN algorithm to predict Oncotype DX 

RS using a breast MRI tumor dataset.

Materials and Methods

Patient Population

A Health Insurance Portability and Accountability Act (HIPAA)-compliant, Institutional 

Review Board-approved retrospective review from January 1, 2010 to June 30, 2016 

identified 134 patients with ER+/HER2− invasive ductal carcinoma who underwent 

Oncotype Dx RS evaluation and had preoperative bilateral breast MRI performed prior to 

definitive breast surgery. The need for informed consent was waived. These patients also had 

no known hormonal therapy at the time of diagnosis. The mean age of patients was 55.9 

years (standard deviation [SD], 11 years). Menopausal status was 53% premenopausal 

(71/134) and 47% postmenopausal (63/134). The average tumor diameter was 1.44 cm (SD, 

0.63 cm).

MRI Acquisition and Analysis

MRI was performed on a 1.5T or 3.0T commercially available system (Signa Excite, GE 

Healthcare, Milwaukee, WI) using an eight-channel breast array coil. The imaging 

sequences included a triplane localizing sequence followed by a sagittal fat-suppressed T2-

weighted sequence (repetition time / echo time [TR/TE], 4000–7000/85; section thickness, 3 

mm; matrix, 256 × 192; field of view [FOV], 18–22 cm; no gap). A bilateral sagittal T1-

weighted fat-suppressed fast spoiled gradient-echo sequence (17/2.4; flip angle, 35°; 

bandwidth, 31–25 Hz) was then performed before and three times after a rapid bolus 

injection (gadobenate dimeglumine/Multihance; Bracco Imaging, Princeton, NJ; 0.1 

mmol/kg) delivered through an IV catheter. Image acquisition started after contrast material 

injection and was obtained consecutively with each acquisition time of 120 seconds. Section 

thickness was 2–3 mm using a matrix of 256 × 192 and an FOV of 18–22 cm. Frequency 

was in the anteroposterior direction. After the examination, postprocessing was performed 

including subtraction of the unenhanced images from the first contrast-enhanced images on a 

pixel-by-pixel basis and reformation of sagittal images to axial images.

Oncotype Dx RS

Each tumor specimen was sent to Genomic Health as standard of care and the Oncotype Dx 

RS was determined ranging from 0–100. Patients were classified into three groups based on 

the risk of recurrence 10 years after treatment: low risk (group 1, RS <18), intermediate risk 

(group 2, RS 18–30), and high risk (group 3, RS >30).

Computer-Based Image Analysis

IMAGE PREPROCESSING.—For all patients, breast tumor regions were manually 

annotated by a board-certified radiologist using a region-of-interest (ROI) drawn in 

3DSlicer11 based on first postcontrast dynamic contrast-enhanced (DCE)-MRI images. For 
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134 tumors, 1649 volumetric slices (mean 12.3 slices per tumor) in 32 × 32 voxel resolution 

were evaluated from the segmented tumor data. The intensity values at each pixel of the 

image were normalized by subtracting the mean intensity value of the image and dividing by 

the SD for each image. Representative preprocessed single slice image of DCE-MRI breast 

tumors are shown in Fig. 1. Images in each row correspond to low (A), moderate (B), and 

high (C) Oncotype Dx groups.

NEURAL NETWORK ARCHITECTURE.—CNN is structured as a sequential set of 

convolution filters applied to the original image followed by activations functions. The filters 

apply learnable function that is trained with each new batch of input images. The filter 

weights are updated by minimizing the cost function, which compares the predicted output 

with ground truth training labels (here, Oncotype Dx group). The L2 regularization, which 

adds “squared magnitude” of coefficient as a penalty term to the loss function, was used to 

discourage parameters of this learnable filter from becoming too large and to prevent 

overfitting of the model to the training data. In our network, we used L2-norm on the fully 

connected layer. L2-norm loss function is also known as least squares error (LSE). It 

minimizes the sum of the square of the differences (S) between the target value (Yi) and the 

estimated values (f(xi):

S = ∑
i = 1

n
yi − f xi

2

The activation function following convolutional filtering introduces nonlinearities that create 

a hierarchy of layers. This layered hierarchy is fundamentally what allows depth in a 

network. Hierarchical depth in the network is what allows filters to represent more complex 

features. The optimization of the network mostly involves proper scaling of the input data 

and the learning rate step size. A proper preprocessing normalization of the data is essential 

to a network’s convergence.

The overall network architecture is shown in Fig. 2. The CNN is implemented completely by 

series of 3 × 3 convolutional kernels to prevent overfitting, as described by Simonyan et al.12 

Max-pooling with kernel of 2 × 2 is used as shown. All nonlinear functions are modeled by 

the rectified linear unit (ReLU).13 In deeper layers the number of feature channels was 

increased from 32 to 64, reflecting increasing representational complexity. Dropout at 50% 

was applied to the second to last fully connected layer to prevent overfitting by limiting 

coadaptation of parameters.14 Training was done over 200 epochs using the Adam optimizer 

with a base and a learning rate of 0.001. For better generalization and to prevent overfitting 

of the model, a L2-regularization penalty of 0.01 was used.

For each breast tumor, a final softmax score threshold of 0.5 was used for classification. The 

softmax score, also known as softmax function, is a normalized exponential function. It is a 

generalization of the logistic function that “squashes” a K-dimensional vector of arbitrary 

real values to a K-dimensional vector of real values, where each entry is in the range (0, 1), 

and all the entries add up to 1. The softmax score provides the probability for each class 

label. The probability of each class will sum to 1 as dictated by the normalization constraint.
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Two sets of experiments were run, one three-class model to train the CNN model to predict 

low, moderate, or high Oncotype Dx RS and the second to predict two-class low vs. 

(moderate+high) Oncotype Dx RS. Five-fold crossvalidation was performed with 80% of the 

data used as training and 20% used for testing purposes. In the three-class model, three 

different sensitivity and specificity metrics are given, one for each class. The performance 

metrics are calculated from the test dataset reserved for performance characterization upon 

which the training model was never exposed to. Training was implemented using the Adam 

optimizer, an algorithm for first-order gradient-based optimization of stochastic objective 

functions, based on adaptive estimates of lower-order moments.15,16 Parameters are 

initialized using the heuristic described by He et al.17 To account for training dynamics, the 

learning rate is annealed whenever training loss plateaus.

Software code for this study was written in Python using Keras software (https://github.com/

fchollet/keras) with TensorFlow18 backend. Experiments and CNN training were done on a 

Linux workstation. On a single consumer NVIDIA Geforce GTX 1080 ti card with 11 GB 

video RAM with 3584 CUDA cores running at the stock boost clock of 1582 MHz, training 

the dataset with 5-fold crossvalidation takes 90 minutes over 1000 epochs. Two sets of 

experiments were run, one to train the CNN model to predict three-class low, moderate, or 

high Oncotype-Dx RS and the second to predict two-class low vs. (moderate+high) 

Oncotype-Dx RS.

Statistical Analysis

Statistical analysis was performed using the IBM SPSS software (Armonk, NY, v. 24). Age 

was calculated at the time of diagnosis. Descriptive statistics were used to summarize 

clinical, imaging, and pathologic parameters. Classification performance was evaluated 

using a multiclass receiver operating characteristics (ROC) analysis. This involved 

generating ROC plots for each group versus the other two combined. For each of these two-

class classifications the sensitivity and specificity is reported.

Results

The tumor grade was 17.9% low grade (24/134), 65.7% intermediate grade (88/134), and 

16.4% high grade (22–134). Axillary lymph node status was 92.5% negative (124/134) and 

7.5% positive (10/134). Based on the American Joint Committee on Cancer, TNM 

classifications were as follows: T1 (73.8%, 99/134), T2 (25.4%, 34/134), T3 (0.7%, 1/134), 

T4 (0%); N0 (92.5%, 124/134), N1 (7.5%, 10/134), N2 (0%), N3 (0%); M0 (100%, 

134/134), M1 (0%). Most (97%, 130/134) of the patients had unifocal disease. Four patients 

had multifocal disease. Three our of four patients had one additional tumor. One out of four 

patients had two additional tumors. No contralateral tumors were present. Only the primary 

tumor that underwent Oncotype Dx evaluation was matched for MRI image analysis. The 

additional tumors did not undergo Oncotype Dx evaluation. Breast MRI was performed on 

1.5T in 61.2% (82/134) of the patients and on 3.0T in 38.8% (52/134) of the patients. 11.2% 

(15/134) of the tumors demonstrated nonmass enhancement. 88.8% (119/134) of the tumors 

demonstrated mass enhancement.
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The median Oncotype Dx score was 16 (range, 1–75). Patients were classified into three 

groups based on the risk of recurrence 10 years after treatment: low risk (group 1, RS <18), 

intermediate risk (group 2, RS of 18–30), and high risk (group 3, RS >30). The low-risk 

group consisted of 77 patients. The intermediate-risk group consisted of 40 patients. The 

high-risk group consisted of 17 patients.

A total of 134 breast cancer cases with Oncotype Dx recurrence scores were included in this 

study. For each breast tumor, a final softmax score threshold of 0.5 was used for 

classification. The CNN was trained for a total of 200 epochs (batch size of 32) before 

convergence. Based on this, mean 5-fold validation accuracy was calculated. Initially, a 

three-class prediction model was utilized, classifying results into a low-risk group, 

intermediate-risk group, and high-risk group. The CNN achieved an overall accuracy of 81% 

(95% confidence interval [CI] ± 4%). Subsequently, a two-class Oncotype Dx prediction 

model was evaluated in two groups consisting of 77 and 57 patients (group 1 vs. groups 2 

and 3). The CNN achieved an overall accuracy of 84% (95% CI ± 5%) in two-class 

prediction.

The ROC plot is shown in Figs. 3 and 4. For the two-class prediction model, the area under 

the ROC curve was 0.92 (SD, 0.01) with specificity 81% (95% CI ± 4%) and sensitivity 87% 

(95% CI ± 5%). For the three-class prediction model, the area under the ROC curve was 

0.92 (SD, 0.01) with specificity 90% (95% CI ± 5%) and sensitivity 60% (95% CI ± 6%).

Discussion

The CNN algorithm used in our study achieved an overall accuracy of 84% in predicting 

patents with low Oncotype Dx RS compared to patients with intermediate/high Oncotype Dx 

RS. Our results indicate the feasibility of utilizing the CNN algorithm to predict Oncotype 

Dx RS. Potential improvement of our model with a larger dataset may result in a useful 

predictive tool for determining patients’ likelihood of breast cancer distant recurrence.

It has been well established that the 21-gene Oncotype Dx RS is an accurate prognostic and 

predictive determinant of breast cancer recurrence and treatment response in ER+/HER2−/

node negative breast cancer.5,6 The most updated guidelines of the ASCO strongly 

recommend the use of the Oncotype Dx RS to decide on adjuvant systemic chemotherapy in 

ER+/HER−/node negative breast cancer, based on high-quality evidence.3

While Oncotype Dx RS has been validated for clinical use, there is a need for the 

development of additional methods. First, the Oncotype Dx test is expensive and invasive, 

requiring utilization of valuable tumor tissue. Second, it is limited in availability. According 

to the National Cancer Database (NCDB), ~20% of ER + breast cancer patients acquire an 

RS in the United States, with skewed prevalence among Caucasians, higher levels of 

education, higher incomes, and Middle Atlantic residents.19

The prevalence of preoperative breast MRI continues to rise as its role in the diagnosis and 

treatment of breast cancer evolves.20 Additionally, utilizing these already acquired MR 

images to determine an Oncotype Dx RS has the potential to more efficiently utilize 

resources to personalize treatment decisions. In an effort to improve the clinical application 
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of these MRI images, various quantitative computer algorithms have been developed and 

used to further delineate gross tumor features into additional computer-generated 

characteristics. Over the past decade there has been a surge of investigation into quantitative 

analysis of specific extracted imaging features, known as radiomics. Recently, 

radiogenomics, defined as correlation of these quantitative imaging features to genetic 

information, has shown further potential to utilize images in guiding clinical management.

Machine-learning technology continues to evolve, as it plays a powerful role in modern-day 

society. Traditional algorithms are based on human designed pattern-recognition utilizing 

computer-generated imaging features such as morphologic histogram and Gray-Level Co-

Occurrence Matrix characteristics. In 2014, Ashraf et al21 were one of the first groups to 

apply a traditional machine-learning algorithm to investigate intrinsic imaging phenotypes in 

breast tumors and their association with prognostic gene expression profiles. In that study, 

which included 56 patients, a multiparametric imaging phenotype vector was extracted for 

each tumor by using quantitative morphologic, kinetic, and spatial heterogeneity features 

yielding a moderate correlation (r = 0.71, R (2) = 0.50, P < 0.001) between DCE MRI 

features and the recurrence score. MRI features were predictive of recurrence risk as 

determined by the surrogate assay, with area under the receiver operating characteristic 

curve of 0.82.

Subsequently, in 2015, Sutton et al22 investigated the association between Oncotype Dx RS 

and morphological and texture-based image features extracted from MRI. The study 

included 95 patients. Two MRI-derived image features, kurtosis in the first and third 

postcontrast images and histologic nuclear grade, were found to be significantly correlated 

with the Oncotype Dx RS. The overall model resulted in a statistically significant correlation 

with Oncotype Dx RS with an R-squared value of 0.23 (adjusted R-squared = 0.20; P = 

0.0002) and a Spearman’s rank correlation coefficient of 0.49 (P < 0.0001). Overall, this 

study demonstrated that MRI image-based features could be used to predict the likelihood of 

recurrence and magnitude of chemotherapy benefit.

Recently, in 2016, Li et al23 investigated relationships between computer-extracted breast 

MRI phenotypes and multigene assays of MammaPrint, Oncotype DX, and PAM50 to assess 

the role of radiomics in evaluating the risk of breast cancer recurrence in 84 patients. For 

each case, computer-extracted tumor phenotypes of size, shape, margin morphology, 

enhancement texture, and kinetic assessment were evaluated, yielding significant 

associations between radiomics signatures and multigene assay recurrence scores (R2 = 

0.25–0.32, r = 0.5–0.56, P < 0.0001). Important radiomics features included tumor size and 

enhancement texture, which reflected tumor heterogeneity. Use of radiomics in the task of 

distinguishing between good and poor prognosis yielded area under the receiver operating 

characteristic curve values ranging from 0.55–0.88, depending on the multigene assay. The 

authors concluded that quantitative breast MRI radiomics shows promise for image-based 

phenotyping in assessing the risk of breast cancer recurrence.

While the studies discussed above show promising results, they are dependent on feature 

engineering methods. Feature engineering involves the process of putting domain knowledge 

into the creation of feature extractors to simplify the complexity of the data in order to make 
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patterns more visible and enable algorithms to work. These methods have limitations, 

including the dependence on accurate extraction of important features.

In contrast, neural network algorithms are trained to automatically extract the features of an 

input important to the defined problem domain. This process involves creation of an 

algorithm that iteratively improves its ability to evaluate features of an input in an end-to-

end manner, utilizing stacked and increasingly complex layers, in order to improve its ability 

to predict a desired output. In addition, CNNs consist of structured layers of learnable filters. 

The architecture itself is a feature extractor; applications in future unrelated fields may 

borrow from previous architecture. Training data and subsequent hyperparameter 

optimization will need to be specific to the application, but network architecture does not 

usually have to be changed significantly. Filters and weights from superficial layers are 

generalizable, as they represent nonspecific features such as edges, corners, blobs, etc. 

Filters and weights from deeper layers will necessarily be retrained on application-specific 

data.

We applied a convolutional neural network to this problem domain, and the largest study (n 
= 136) applying radiogenomics to predict Oncotype Dx RS using 3D volumetric MRI data. 

Using a CNN, our algorithm predicted Oncotype Dx RS with high accuracy using an MRI 

tumor dataset. Our study demonstrates significant potential for further advancement in the 

field of radiogenomics with the utilization of CNNs.

Our study has a few limitations. It was a small, retrospective study in a single institution. 

The performance of CNN has been shown to increase logarithmically with larger datasets.25 

Larger MRI datasets are likely to significantly improve an Oncotype Dx RS prediction 

model. In addition, patients in this study underwent MRI imaging at different magnetic field 

strengths (1.5 or 3.0T), potentially affecting the image quality. However, selection bias is 

likely negligible, given that the choice of patients undergoing MRI on a 1.5 or 3.0T magnet 

were randomly determined purely based on availability of the scanner. Other limitations 

include potentially long training times when utilizing convolutional neural networks. This is 

related to many factors, including the size of the dataset and number of network parameters. 

Traditional algorithms comparatively takes much less time to train. This effect, however, is 

reversed during testing time, where CNNs take much less time to run. Lastly, because 

training a CNN is an end-to-end process, it does not clearly reveal the reasoning behind the 

final result in a deterministic manner. Many methods have been developed to improve 

human understanding and intuition behind the predictions of a neural network; however, this 

is an ongoing area of research.

In conclusion, in a relatively small sample size we were able to predict Oncotype Dx RS 

based on an MRI tumor dataset with an accuracy of up to 84%. Future research with a 

prospective randomized study is needed to validate the potential of predicting Oncotype Dx 

RS, as well as directly correlating MRI with clinical outcome.
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FIGURE 1: 
Preprocessed DCE-MRI breast tumors. Example cases of DCE tumor images corresponding 

to low (top row, a), intermediate middle row, (b) and high (bottom row, c) Oncotype Dx RS.
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FIGURE 2: 
CNN Architecture for two- and three-class classification models.

Ha et al. Page 12

J Magn Reson Imaging. Author manuscript; available in PMC 2021 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3: 
ROC analysis for three-class CNN Oncotype DX RS prediction model.
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FIGURE 4: 
ROC analysis for two-class CNN Oncotype DX RS prediction model.
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