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SUMMARY

Context shapes our perception of facial expressions during everyday social interactions. We 

interpret a person’s face in a hostile situation negatively and judge the same face under 

pleasant circumstances positively. Critical to our adaptive fitness, context provides situation-

specific framing to resolve ambiguity and guide our interpersonal behavior. This context-

specific modulation of facial expression is thought to engage the amygdala, hippocampus, and 

orbitofrontal cortex; however, the underlying neural computations remain unknown. Here we use 

human intracranial electroencephalograms (EEGs) directly recorded from these regions and report 

bidirectional theta-gamma interactions within the amygdala-hippocampal network, facilitating 

contextual processing. Contextual information is subsequently represented in the orbitofrontal 

cortex, where a theta phase shift binds context and face associations within theta cycles, endowing 

faces with contextual meanings at behavioral timescales. Our results identify theta phase shifts as 

mediating associations between context and face processing, supporting flexible social behavior.

In brief

Context influences our perception of facial expressions. Zheng et al. show that contextual 

modulation of faces relies on medial temporal lobe-orbitofrontal cortex communications in 

humans. High gamma bursts occur in rhythm with theta oscillations, with cross-regional theta-

gamma phase shifts binding context-face associations.
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Graphical Abstract

INTRODUCTION

Memories of our daily experiences are closely linked to the context of the event. Context 

provides situation-specific framing to resolve ambiguity and generate predictions that guide 

our interpersonal behavior. A critical function of contextual framing is to shape our 

perception of faces as we interpret ongoing social interactions and determine appropriate 

actions. For example, we interpret the face of a person with a gun as “threatening” but 

perceive the face of the same person with a birthday cake as “happy.” These inferences 

allow us to resolve uncertainties by integrating background information (e.g., the gun 

versus the cake) with sensory perceptions of the face to construct a coherent representation. 

Interpreting situation-specific facial signals is critical for human communication because we 

use contextual information to predict our environment, take actions based on anticipated 

outcomes, and adaptively modify our behavior.

Despite the importance of contextual processing in human social communication, how the 

brain encodes context to modulate the perception of facial emotion is a long-standing 

question (Hammerschmidt et al., 2018; Weiss et al., 2020). Convergent evidence in animals 

and humans implicates the hippocampus (HPC) for processing contextual (Davachi and 

DuBrow, 2015; Maren et al., 2013) and mnemonic information (Lisman et al., 2017), 

whereas the amygdala (AMY) codes for events’ emotional significance (Morrison and 
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Salzman, 2010; Phelps and LeDoux, 2005; Zheng et al., 2017). Human AMY neurons have 

a privileged role in social cognition, with cells selectively responding to faces (Mormann 

et al., 2015), and AMY lesions impair recognition of facial emotions (Adolphs et al., 

1994). Thus, the AMY and HPC are hypothesized to bind contextual information with faces 

to produce social meanings (Cao et al., 2021; Vuilleumier et al., 2004), but the circuit 

interactions underlying this cognitive ability have yet to be elucidated in humans (Hortensius 

et al., 2016; Wieser and Brosch, 2012; Yang and Wang, 2017). Context also provides 

contingencies to predict upcoming stimuli, but how humans accomplish this cognitive 

function is also debated. Recent theoretical and experimental evidence suggests that the 

orbitofrontal cortex (OFC) plays an essential role in tracking inferred states and transmitting 

information about expectations, rewards, and outcomes (O’Doherty et al., 2001; Saez et 

al., 2018; Stalnaker et al., 2014; Wikenheiser and Schoenbaum, 2016; Zangemeister et al., 

2016). These findings imply that the OFC is well suited to abstract contextual information 

from medial temporal lobe regions such as the AMY and HPC (Sep et al., 2020; Zhang 

et al., 2018). The OFC and HPC construct cognitive maps with different but overlapping 

encoding properties (Wikenheiser and Schoenbaum, 2016), and the OFC and AMY encode 

decision-making variables, such as choice value and feedback (Morrison and Salzman, 2010; 

O’Doherty et al., 2001; Zangemeister et al., 2016). Such a functional overlap suggests the 

existence of an AMY-HPC-OFC tripartite network supporting contextual integration during 

emotional processing. Simultaneous recordings from these pathways are needed to define 

how context-face association signals interact across these frontal and temporal brain regions.

To address these questions, we employed human intracranial stereo-electroencephalography 

(SEEG) recordings obtained simultaneously from the AMY, HPC, and OFC, coupled with 

an experimental task that sequenced the encoding, maintenance, and integration of context-

to-face associations. We show behaviorally that subjects implicitly link the preceding 

image’s valence with the subsequent sensory information of the face. Indeed, the context’s 

valence robustly modulates subjects’ perception of facial expression because a face paired 

with an aversive image is interpreted as negative, and the same face following a pleasant 

image is considered positive.

At the circuit level, we show that theta oscillations flexibly mediate frontotemporal 

communications, tracking encoding and maintenance of context within the AMY-HPC 

and OFC-HPC network, respectively, followed by context-face associations within the 

OFC-AMY network. Cross-regional theta-gamma phase-amplitude coupling (PAC) provides 

a means of directional interactions within this tripartite network that facilitates temporal 

contextual modulation. We show that the high gamma activity (HGA)-theta phase shift 

promotes integration of the emotional temporal context into facial expression. The dynamics 

and behavioral relevance of this phenomena are reminiscent of theta phase precession, a 

temporal coding mechanism for associative learning (O’Keefe and Recce, 1993; Salman 

et al., 2020; Terada et al., 2017). Our data support a model where theta-gamma 

interactions flexibly shape functional connections within the AMY-HPC-OFC network and 

the sequential binding of temporal context and face within theta cycles. By conferring faces 

with contextual valence, our report reveals a putative neural mechanism in humans that 

infers facial expressions at behavioral timescales.
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RESULTS

Emotional context biases subsequent facial perception

We recorded intracranial SEEGs from the AMY (20 electrodes), HPC (18 electrodes), 

and OFC (19 electrodes) in 8 pre-surgical individuals with epilepsy (5 males, 3 females; 

see Table S1 for subject information and Figure 1D for electrode locations) while they 

performed a decision-making task that required integration of contextual information and 

facial expression. Each trial consisted of five task stages (Figure 1A): a fixation baseline 

(fixation; 0.5 s), display of a context image (context; 1 s), a maintenance period with a blank 

screen (maintenance; 0.5 s), presentation of a neutral face (face; 1 s), and the valence rating 

of the face (decision; self-paced). At the decision stage, subjects rated the emotional valence 

of each face by selecting the corresponding color (warm color = positive valence, cold color 

= negative valence). Each neutral face (N = 35 faces; 17 males and 18 females) was paired 

with three context images (one positive, one neutral, and one negative). This three-to-one 

mapping between context and face provided the ability to test the flexible accommodation of 

different contextual valences within the same face. We then investigated whether the context 

image’s valence parametrically modulated the valence rating of the face. We found that, 

consistent across all subjects (Figures S1A and S1B), subjects’ valence ratings of faces were 

positively correlated with the valence scores of the preceding context images, which had 

been independently derived from the International Affective Picture System (IAPS; Coan 

and Allen, 2007; Figure 1B; r = 0.511, p = 2.236 × 10−11, Spearman correlation), suggesting 

that subjects implicitly integrated the contextual valence with neutral faces. Neutral faces 

could also contain valence information because subjects tended to rate specific neutral faces 

more positively or negatively (Lin et al., 2021; Oosterhof and Todorov, 2008; Sutherland et 

al., 2013; Figure S1E), which also confirmed that subjects did not ignore the faces or rate 

only based on context valences. To confirm that such contextual modulation is not solely 

driven by the valence information embedded in the neutral faces, we subtracted the valence 

rating of each neutral context-face pair from other positive or negative context-face pairs. 

The correlation remained significant after adjusting for the intrinsic face valence, and the 

adjusted correlation was stronger for negative contexts than positive contexts (Figures S1C 

and S1D; positive contexts: r = 0.31, p = 7 × 10−3; negative contexts: r = 0.46, p = 4 × 10−8).

To quantify the magnitude of contextual modulation (Figure 1C), we computed a contextual 

modulation strength for each trial based on the subject’s valence rating of the face relative 

to the IAPS valence score of the corresponding contextual image (STAR Methods). We 

found that 87% of trials (822 trials across subjects) demonstrated a congruent contextual 

modulation direction. Specifically, subjects rated neutral faces paired with pleasant images 

more positively. In contrast, faces that followed aversive images were perceived as more 

negative. We focused our analyses on trials demonstrating congruent modulation, and the 

small numbers of incongruent and non-modulated trials were collapsed into a vector of 

non-interest and excluded from further analyses (Figure 1C; Nincongruent modulation = ~8 

trials per subject; Nno-modulation = ~2 trials per subject). Trials with negative context valence 

showed a stronger modulation strength compared with trials with positive valence (F (1, 

820) = 8.642, p = 0.003), but the range still allowed us to examine emotional valence 

across the positive and negative valence continuum. These behavioral findings demonstrate a 
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robust carryover effect where the valence information from context images was sequentially 

integrated to faces and, thus, influenced subjects’ subsequent facial perception.

Theta oscillations promote frontotemporal interactions during contextual modulation

Building on the behavioral effects, we examined the functional connectivity across the 

AMY-HPC-OFC network during contextual modulation. Connections among brain regions 

are thought to be dynamically modulated by synchronization of low-frequency neural 

oscillations, reflecting rhythmic fluctuations of neuronal excitability (Wang, 2010). Theta 

oscillations, prominent in the AMY and HPC, play a critical role in promoting cross-

regional communication during aversive memory retrieval and contextual fear processing 

(Seidenbecher et al., 2003; Zheng et al., 2017, 2019). We also found task-evoked theta 

power modulation across different task stages (Figure S2A).

We then measured theta phase synchrony among all possible electrode pairs between the 

AMY, HPC, and OFC using the weighted phase lag index (WPLI). The WPLI quantifies 

the cross-regional phase synchrony using the imaginary components of the cross-spectrum 

between signals from each electrode pair. This method is insensitive to spurious increases 

in synchrony induced by volume conduction and random noise (Vinck et al., 2011). 

For each subject, low-frequency (4–12 Hz) phase synchrony was computed, normalized 

to the baseline, and projected to a time-frequency plot (Figure 2A). We then measured 

the averaged phase synchrony across all subjects within the theta band (4–12 Hz) as a 

function of time (Figure 2B). Significant theta phase synchrony (p < 0.01, permutation 

test; STAR Methods) emerged within the AMY-HPC-OFC circuit at different task stages. 

During context presentation, the network was dominated by increased theta synchrony in 

the AMY-HPC network and then transitioned to an enhanced temporal-frontal (AMY-OFC 

and HPC-OFC) interaction during context maintenance and face display stages. Finally, 

during the decision stage, we observed a sustained rise in AMY-OFC theta synchrony. These 

findings highlight theta oscillations as prominent mediators of cross-regional interactions, 

selectively scaling up and down specific cross-regional functional connectivity during 

emotional sequence processing. During periods of significantly increased phase synchrony 

(4–6 Hz for AMY-HPC and 8–11 Hz for HPC-OFC; Figure 2B), the phase synchrony 

simultaneously decreased at the nearby frequencies (7–8 Hz for AMY-HPC and 4–5 Hz for 

HPC-OFC). To identify directional influences within this tripartite network, we computed 

Granger causality indices (Ding et al., 2000; Schelter et al., 2006) for each cross-regional 

electrode pair. Significant directional influence (p < 0.01, permutation test; STAR Methods; 

Figure 2C) across subjects was plotted individually at different task stages (fixation, 

context, maintenance, face, and decision), with arrows indicating the directional influence 

between connected regions and the line thickness representing the ratio of electrode pairs 

showing significant Granger causality. We observed that the tripartite network started with 

bidirectional interactions between the AMY and the HPC during context presentation and 

shifted to a unidirectional influence from the HPC to the OFC at the maintenance stage. 

When the face was presented, bidirectional communications were established between the 

AMY and OFC and were later dominated by a unidirectional influence from the OFC to the 

AMY and HPC at the decision stage. Consistent directional results were also observed when 

using the cross-frequency directionality analysis (Figures S2C–S2F).
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Cross-regional phase amplitude coupling predicts perceptual bias of faces

Having shown dynamic modulations of effective connectivity in the AMY-HPC-OFC 

network during contextual processing, we wanted to determine whether enhanced 

synchronous neural activities would predict behavior outcomes. Guided by the functional 

role of theta-gamma phase amplitude coupling (PAC) in supporting context-item 

associations (Tort et al., 2009) and linking items in sequences (Axmacher et al., 2010; 

Heusser et al., 2016; Lisman and Jensen, 2013), we reasoned that this neural mechanism 

may serve to bind context and face associations. To test this, we first measured cross-

regional PAC in the tripartite network (as shown in Figures S3A and S3B, theta-gamma 

PAC is most prominent across the full frequency band) and then examined the trial-by-trial 

relationship between PAC and subjects’ contextual modulation strength. For each electrode 

pair, we first calculated the cross-regional PAC for both directions (Atheta -> BHGA: theta 

phase from A modulating HGA [70–250 Hz] from B; Btheta -> AHGA: vice versa) and 

identified electrode pairs with significant PAC (permutation test; STAR Methods; AMY-

HPC, n = 31 pairs; HPC-OFC, n = 28 pairs; AMY-OFC, n = 27 pairs). We then plotted 

the PAC coupling strength across all of these PAC significant electrode pairs as a function 

of time. The strength of PAC was quantified as the Euclidean norm of the complex signal 

(Samiee and Baillet, 2017) (i.e., the low-frequency phase from A/B and the high gamma 

amplitude from B/A; STAR Methods) and Z scored relative to the fixation baseline. We 

observed enhanced PAC strength emerging across different task stages within the AMY-

HPC-OFC network (Figure 3A). We then quantified the correlation between theta-gamma 

PAC and contextual modulation strengths at the single-trial level and plotted correlation 

values as a function of time (Figure 3B). Two sequential task stages, maintenance and face 

presentation, were characterized by significant positive correlations between theta-gamma 

PAC and contextual modulation strength (Figures 3C and 3D). Contextual modulation 

strength was related to the cross-regional PAC strength between HPC theta and OFC HGA 

during the maintenance stage (Figure 3C; rHPC -> OFC = 0.494, pHPC -> OFC = 2.19 × 10−11, 

Spearman correlation) and to PAC strength between the OFC theta and AMY HGA during 

the face presentation stage (Figure 3D; rOFC -> AMY = 0.393, pOFC -> AMY = 5.11 × 10−7, 

Spearman correlation), which is also valid at the single-subject level (Figures S3F and 

S3G). Intra-regional PAC (e.g., theta phase from the HPC modulating HGA from the HPC) 

was not significantly correlated with contextual modulation strength (Figures 3E and 3F; 

Figures S3C–S3E). These results suggest that the HPC -> OFC network is modulated during 

maintenance of contextual information for subsequent association with facial information 

via the OFC -> AMY pathway.

Theta-gamma phase shift supports temporal binding of emotional sequences

Given that the two consecutive stages of the task, context maintenance and face presentation, 

selectively showed behaviorally relevant theta-gamma coupling, we next investigated how 

theta-gamma coupling supports the temporal coding of context and face associations. Classic 

work has identified theta phase precession, a phenomenon where neurons systematically 

shift their phase of firing relative to theta rhythm while an animal traverses the place 

field, as a critical mechanism for compression of temporal sequences (O’Keefe and Recce, 

1993; Skaggs et al., 1996; van der Meer and Redish, 2011). At the neural population level, 

transient gamma bursts have been proposed to represent multiple items in a sequence that 
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are temporally organized by ascending and descending phases of theta cycles (Lisman and 

Jensen, 2013). Therefore, we hypothesize that the timing of gamma bursts relative to theta 

phase shift across event transitions, which we here refer to as “theta-gamma phase shift,” 

is a potential mechanism for integrating contextual sequences. Motivated by methods used 

to detect gamma bursts (Lundqvist et al., 2018) in nonhuman primates (NHPs), we first 

extracted high-gamma events at each frequency bin (70–250 Hz) that exceeded 2 standard 

deviations of the mean high-frequency power within each trial, lasting for a minimum of 

3 cycles (Figures S4A and S4B). Using these criteria, we detected bursting dynamics in 

the high-gamma band (70–250 Hz) with a narrow frequency bandwidth (22.486 ± 4.232 

Hz, mean ± SEM) and short duration (0.123 ± 0.037 s, mean ± SEM) (Figures S4C and 

S4D), in line with characteristics found in NHPs (Lundqvist et al., 2018). We then assessed 

for the presence of theta-gamma phase shifts by examining whether gamma bursts at later 

time points during the task occur at earlier theta phases (see the single trial examples 

in Figures S4E–S4H and group-level assessments in Figures S5A–S5C), resulting in a 

negative correlation between gamma bursts and theta phases and time (O’Keefe and Recce, 

1993; Salman et al., 2020; Skaggs et al., 1996; van der Meer and Redish, 2011). First, 

we separately calculated the occurring phase of HGA bursts in OFC relative to HPC theta 

oscillations (Figures 4A and 4B) and the HGA burst in the AMY relative to the OFC theta 

oscillations (Figures 4E and 4F; STAR Methods). Second, we quantified the circular-linear 

correlation between the occurring phase of HGA bursts relative to theta oscillations and time 

(solid gray lines in Figures 4A, 4B, 4E, and 4F) and tested the significance of the pattern 

(p < 0.05, permutation test; STAR Methods). We observed a robust theta-gamma phase shift 

during the context maintenance and face presentation stages. The observed phase shifts were 

not driven by transient frequency changes in HGA or theta oscillations (Figures S5D–S5I), 

changes in theta/gamma power (Table S2), or bimodal phase locking across the maintenance 

and face stages (Figures S5J–S5L; Table S3). The OFC HGA bursts were nested around 

late HPC theta phases (180°–360°) during context maintenance and shifted to early phases 

(0°–180°) while the face was presented (pmaintenance = 0.006, pface = 0.003, Rayleigh test; 

Figures 4C and 4D). The AMY HGA bursts also showed phase clustering that shifted from 

late phases during context maintenance to coalesce at early OFC theta phases (0°–180°) after 

face presentation (pmaintenace = 0.032, pface = 0.008, Rayleigh test; Figures 4G and 4H). 

The theta-gamma phase shift across the event boundary between the maintenance and the 

face presentation stages was consistent across subjects, as evidenced by the strongest and 

weakest representative single subject examples (Figures 4C, 4D, 4G, and 4H) and the group 

phase distribution plots (Figures 4I–4L). In total, we found significant theta phase shifts in 

57.1% (24 of 42) of HPC theta and OFC gamma electrode pairs and 57.9% (22 of 38) OFC 

theta and AMY gamma electrode pairs. Similar results were observed when using different 

phase estimation approaches (Figures S4E–S4H and Table S3). The characteristic features 

of observed phase shifts (Figures S4I–S4K) are comparable with rodent studies of phase 

precession (Feng et al., 2015; Schmidt et al., 2009; Terada et al., 2017).

Although theta-gamma phase shift was evident at event transitions, whether early and late 

theta phases encode distinct information from the event sequence remained unknown. To 

address this question, we performed Bayesian decoding analysis (Terada et al., 2017) to 

reveal different task information and its associated neural representations. First, we decoded 
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the time information based on HGA bursts from the OFC and AMY (i.e., whether HGA 

bursts at time A encoded similar HGA bursts features at different time points). Figure 

5A demonstrates the reconstructed time information at each 5-ms time step in a single 

example trial. Consistent with the theta-gamma phase shift results, context maintenance and 

face presentation were the only task stages that encoded future neural states. Specifically, 

OFC HGA bursts during context maintenance reflected neural representations in the context 

maintenance and face display stages, whereas AMY HGA bursts at face display mirrored 

neural representations in the face display and decision stages. The encoded current and 

future states cycled at approximately 8 Hz (~125 ms, 8 cycles/s), suggesting a theta 

oscillation-mediated temporal coding mechanism. We then decoded the dual-state cycling 

based on the timing of HGA bursts relative to theta oscillations during the context 

maintenance (Figure 5B) and face presentation stages (Figure 5C). In both task stages, the 

dual states were compressed in a theta sequence, with early theta phases (0°–180°) reflecting 

current neural states in which the HGA was sampled (dashed rectangles in Figures 5B and 

5E) and late theta phases (180°–360°) representing the future neural states (solid rectangles 

in Figures 5B and 5E).

We next estimated the type of information (context valence versus face rating) represented 

in the current and future states. During context maintenance, we found that late HPC theta 

phases (180° – 360°) encoded context valence information for the future face presentation 

stage (Figure 5C; p = 0.007, permutation test; STAR Methods). During the subsequent face 

presentation stage, context valence information was encoded at early OFC theta phases (0°–

180°) (Figure 5G; p = 0.0023, permutation test; STAR Methods), whereas late OFC theta 

phases (180° – 360°) reflected face rating (p = 0.008) and context valence information (p 

= 0.031) for the future decision stage. This phase-specific encoding mechanism appeared 

only in the strong contextual modulated trials (split by contextual modulation strength, the 

top half of the trials; left panels in Figures 5C, 5D, 5F, and 5G) and was absent for the 

weak contextually modulated condition (the bottom half of the trials; right panels in Figures 

5C, 5D, 5F, and 5G). These findings suggest that contextual modulation of facial expression 

is mediated by frontotemporal theta oscillations, with context valence information carried 

across event transitions via theta phase advancement encoded from HPC late theta phase to 

OFC early theta phase and compressed with face rating information in theta cycles.

DISCUSSION

It is widely acknowledged that contextual information modulates how we perceive 

facial expressions. Although prior work has demonstrated behavioral effects (Barrett and 

Kensinger, 2010; Mobbs et al., 2006; Wieser and Brosch, 2012) and their associated 

brain regions (Lee and Siegle, 2014; Wieser and Brosch, 2012), less is known about 

how these regions coordinate to induce affective biases. Here, to examine the neural 

signatures underlying contextual modulation of facial perception, we recorded direct neural 

signals from the AMY-HPC-OFC circuit, a well-established contextual processing network 

(Maren et al., 2013), while subjects performed valence ratings of neutral faces preceded by 

emotional contexts. Contextual modulation in the present task refers to temporal context 

based on the emotional stimulus (contextual modulator) preceding face presentation and 

affecting the face valence rating. Our results reveal a dynamic functional connectivity map 
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within the AMY-HPC-OPC network, with theta oscillations (4–12 Hz) selectively tuning up 

and down specific cross-regional interactions (i.e., phase synchrony) at different task stages 

(Figure 2). Such cross-regional influence via theta oscillations modulates local neuronal 

activity (i.e., high-frequency activity), with the strength of cross-frequency modulation at 

maintenance and during face presentation reflecting subjects’ perceptual bias of the face 

valence (Figure 3). The degree of this perceptual bias relies on successful encoding of the 

context and face information by the timing of HGA (Figures 4 and 5), which is precisely 

coordinated by cross-regional theta-gamma phase shifts. These findings provide evidence 

of a network-level mechanism in the human brain to encode contextual information for 

interpreting facial expressions, a function that is critical for our daily social interactions.

In this study, we find that theta synchrony dynamically shapes interactions in the AMY-

HPC-OFC network to support contextual processing (Figure 2), modulating anatomical 

connections to adapt to different task demands (Akam and Kullmann, 2014). We observed 

that the OFC and medial temporal lobe (MTL) networks dynamically engage (i.e., enhanced 

theta synchrony) and disengage (i.e., lack of increased theta synchrony) throughout the task 

to optimize context-dependent decision-making. The periods of significantly increased phase 

synchrony between the HPC and AMY (4–6 Hz) or OFC (8–11 Hz) were accompanied 

by nearly simultaneous decreases in phase synchrony for the same region pairs (7–8 

Hz for AMY-HPC and 4–5 Hz for HPC-OFC). This dynamic is consistent with the 

oscillatory multiplexing framework, where the same structure can use different frequencies 

for communicating with different other structures, and the phase synchrony decrease can 

contribute to segregating these distinct communication channels (Akam and Kullmann, 

2014; Watrous et al., 2013; Zheng et al., 2019).

During processing of context images, AMY-HPC theta synchrony dominates, whereas 

OFC interactions with the AMY-HPC network is downmodulated. Selective enhancement 

of theta coherence could be crucial for the AMY-HPC network to compute behaviorally 

relevant information, such as the context’s valence (Redondo et al., 2014; Zheng et 

al., 2019). When keeping the information online is essential for face-context integration 

and decision-making, the theta-mediated network switches to an OFC- and MTL-centric 

pathway between the OFC-HPC and OFC-AMY network (Hoover and Vertes, 2007; Jay et 

al., 1989; Yizhar and Klavir, 2018). Previous studies of rodents have linked theta-associated 

segregation and integration of frontal-MTL connectivity with contextual and fear processing. 

In context-dependent working memory tasks, HPC-to-prefrontal theta-mediated connectivity 

is prominent during memory maintenance or when cued by a context (Place et al., 2016; 

Siapas et al., 2005), whereas retrieving the maintained memory or planning the choice 

response engages prefrontal-to-HPC influence (Hallock et al., 2016; Place et al., 2016). 

Bidirectional OFC-AMY interactions support valence assessment (Likhtik and Paz, 2015) 

during fear learning, whereas the processed valence information is thought to transmit from 

the OFC to the AMY for modifying behavioral responses (Yizhar and Klavir, 2018). Our 

results specify theta synchrony as a selective mechanism that adjusts online and offline 

connectivity between the OFC and MTL, depending on task demands, boosting MTL-OFC 

interactions during context processing and maintenance and augmenting the OFC-MTL 

network during context-face integration.
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How do bidirectional interactions between the OFC and MTL promote sequential binding 

of context and face? An influential theory posits that theta oscillations facilitate temporal 

coding and integration of sequential information via spike-timing-dependent plasticity 

(Lisman and Jensen, 2013). The dynamics of theta-gamma phase shifts in the present study 

is reminiscent of theta phase precession, a phenomenon where hippocampal place cells 

systematically shift to earlier phases of firing relative to the theta rhythm as the animal 

traverses the place field. Theta phase precession is thought to be a critical mechanism for 

compression of temporal sequences (O’Keefe and Recce, 1993; Skaggs et al., 1996; van 

der Meer and Redish, 2011). In rodents, theta phase precession is also observed between 

the HPC and medial prefrontal cortex (Jones and Wilson, 2005; van der Meer and Redish, 

2011) and, more recently, has been extended to non-spatial domains such as binding of odor 

and sound (Terada et al., 2017). We examined whether a similar neural mechanism can be 

distilled at a population level with local field potentials rather than single neurons. Guided 

by theoretical models (Lundqvist et al., 2011) that predict that gamma bursts represent 

cell ensembles in discrete attractor states and by empirical works (Lopes-Dos-Santos et 

al., 2018; Lundqvist et al., 2016) that show that gamma bursts correspond to neuronal 

spiking conveying informative sensory information, we tested the hypothesis that the gamma 

burst timing will shift to earlier phases of theta oscillation between the OFC and MTL 

during context-face integration. Our findings of theta-gamma phase shift between the HPC 

and OFC as well as the OFC and AMY are consistent with the rodent literature and 

extend this putative mechanism for integrating affective representations into humans. Theta 

oscillations in bats (Ulanovsky and Moss, 2007), monkeys (Stewart and Fox, 1991), and 

humans (Bohbot et al., 2017; Jacobs et al., 2007; Zheng et al., 2017) are transient and 

non-sinusoidal (Figures S4E–S4H) compared with the continuous theta oscillations reported 

in rodents. Therefore, consistent with the asymmetric depolarization model proposed by 

Mehta et al. (2002) and experimental observations in bats (Eliav et al., 2018) and humans 

(Qasim et al., 2021), phase precession might serve as a universal neural code across different 

species and different cognitive dimensions (spatial and non-spatial tasks) regardless of the 

presence of sinusoidal oscillations.

A critical phase precession prediction is that the current state is anchored at early phases 

of the theta oscillation, whereas the future state is encoded at late phases (Dragoi and 

Buzsaki, 2006; Foster and Wilson, 2007; Skaggs et al., 1996). The transition from current 

to future hypothetical states should occur rapidly at behavioral timescales. Using Bayesian 

decoding, we demonstrate that HGA bursts in the OFC and AMY encoding current and 

future states are swiftly alternating at ~125-ms cycles. This repetitive sampling of current 

and future states at ~8 Hz is reminiscent of sub-second cycling of possible future states 

in rodents during navigation (Kay et al., 2020) and suggests that a similar dynamic 

neural representation occurs in humans for coding of prospective information. During 

the maintenance and face presentation stages of the sequential task, temporal coding of 

contextual information shifts from late theta phases in the HPC (180°–360°) to early theta 

phases in the OFC (0°–180°). These results suggest that theta dynamics provide a temporal 

organization to “hand off” contextual information from the HPC to the OFC in sub-second 

cycles, possibly facilitating “offloading” of encoding spaces for upcoming events while 

maintaining the context information for further decision (Eichenbaum, 2017). Theta phase 
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shift between the HPC and in its anatomically connected OFC in humans implies a neural 

representation capable of facilitating the precise timing of long-range information transfer 

(Harris and Gordon, 2015). Theta precession, classically implicated in organizing spatial 

information, is also capable of sequencing the current and future representations of non-

spatial events, such as context and face.

At the population level, an essential requirement for the theta precession-like dynamics 

would be a sufficient contribution of precessing individual neurons to a net population 

activity. Such dynamics might not be observable in the spatial context because of sparse 

spatial encoding of place cells (Barnes et al., 1990; Jung et al., 1994), but in non-spatial 

tasks, the proportion of simultaneously precessing neurons is larger (Terada et al., 2017). 

Also, a population-level phase shift is compatible with the theta-gamma PAC when the 

phase-shift is accompanied by phase-dependent activity modulation. Theta-gamma phase 

shift in the present study shows multiple similarities with theta phase precession (Maurer 

and McNaughton, 2007; O’Keefe and Recce, 1993), especially in the non-spatial context 

(Pastalkova et al., 2008; Qasim et al., 2021; Robinson et al., 2017; Takahashi et al., 2014; 

Terada et al., 2017). This includes the negative circular-linear correlation between the 

gamma activity and theta phase across the task stages (Figure 4) as well as the decodability 

of current and future states based on the HGA during different theta phases (Figure 5). 

Simultaneous single-neuron recordings from the AMY, HPC, and OFC during contextual 

modulation behavioral paradigms could inform the extent of similarity between these 

phenomena. As pointed out by Jensen (2001), the computational advantage of the systematic 

change in theta-gamma phase is an increased information transfer capacity. Specifically, 

if the temporal context of the information encoded by spiking activity or HGA (a proxy 

measure of spiking) (Ray and Maunsell, 2011) is determined by the underlying theta phase, 

then the temporal context could be decoded by the downstream reader.

We reveal neural computations within the AMY-HPC-OFC network that support context-

dependent modulation of facial perception. Specifically, contextual information is processed 

within the MTL, projects to the OFC via an HPC-to-OFC route, and integrates with facial 

sensory information through AMY-OFC bidirectional interactions. We identify a critical 

role of theta phase shifts in mediating long-range communications between the MTL and 

OFC to incorporate past and future information. By unveiling the functional anatomy and 

temporal dynamics of these neural representations, we show how discrete emotional events 

are sequentially coded to shape our perception and guide our social behavior.

Limitations of the study

First, we demonstrate context-specific modulation of facial perception, with emotional 

valence from context biasing participants’ interpretation of the subsequent facial expression. 

Because time constraints in the clinical setting, we did not collect participants’ valence 

ratings of the context images. Instead, when computing the contextual modulation strength, 

we used valence ratings from the IAPS rated by an independent group of subjects. Although 

previous literature has reported high reliability of the IAPS in different age groups (Grühn 

and Scheibe, 2008) and diverse cultural backgrounds (Lohani et al., 2013; Soares et al., 

2015), individual participants’ intrinsic (unmeasured) valence ratings for a context image 
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might differ from crowd-sourced ratings. Second, the contextual processing we studied here 

is a temporal contextual modulation, with context and face presented sequentially because 

this task structure disentangles neural dynamics at each stage. It will be interesting to extend 

the study under a real-life setup, with context and face presented simultaneously. Third, we 

also demonstrate the existence of phase shifts with high gamma bursts at later time points 

during the trial occurring at earlier theta phases. The phenomenon of phase shifts observed 

in this study is similar to the phase precession reported in previous studies using single-cell 

recordings (Qasim et al., 2021). However, without simultaneous single-cell recordings, we 

can hardly study the relationship between the phase shifts and phase precession. With HGA 

as a proxy measure of spiking, future work studying both mechanisms could reveal insights 

into phase precession at different neural scale levels. All behaviors and neural signals in this 

study were recorded in individuals with drug-resistant epilepsy. Although we constrained 

our analyses to brain regions contralateral to the seizure onset zones and removed epileptic 

discharges under the guidance of an experienced epileptologist, it is possible, but unlikely, 

that the epileptic brain might alter the observed neural patterns.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead contact, Jie Zheng (zhengjie.may@me.com).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Preprocessed data have been deposited at GitHub (https://

doi.org/10.5281/zenodo.6970426) and are publicly available as of the date of publication. 

Analyses codes for key results of the paper were custom-written in MATLAB and are 

publicly available on GitHub (https://doi.org/10.5281/zenodo.6970426). Any additional 

information required to reanalyze the data reported in this paper is available from the lead 

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eight patients with drug resistant epilepsy (3 Male, 5 Female, Table S1) performed the 

task, while they were hospitalized at the University of California, Irvine Medical Center 

for surgical evaluation and were implanted with intracranial depth electrodes (Integra or 

Ad-Tech, 5-mm inter-electrode spacing). The electrode placements were exclusively guided 

by the clinical needs of localizing the seizure onset zone for possible surgical resections. 

Informed consent was obtained from each subject before the task and the research protocol 

was approved by the Institutional Review Board (IRB) of the University of California, 

Irvine. Subject selection was based on the following inclusion criteria: 1) normal IQ; 2) 

electrodes implanted in either the amygdala, the hippocampus, or the orbitofrontal cortex 

contralateral to or outside of the epileptogenic region were included for the analysis of 

neurophysiology signals.
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METHOD DETAILS

We developed a decision-making task to study the processing of emotional sequences in 

humans (Figure 1A). Each trial started with a fixation period (Fixation; black screen with 

a white cross in the middle for 0.5s), followed by a context image display (Context; 1s) 

and a maintenance period with a blank screen (Maintenance; 0.5s). After the maintenance 

period, a neutral face image appeared (Face; 1s) and subjects were instructed to rate the 

valence of the face by mouse clicking to move the blue triangle on top of the color bar 

(Decision; self-paced). Warmer colors on the color bar denote more positive valence while 

colder colors represent more negative valence. The starting position of the blue triangle is 

always at the center of the color bar, that was informed to the subjects as a neutral rating 

position. Subjects were allowed to adjust their choices before clicking the “accept” button 

to lock in their decisions. Context images were selected from the International Affective 

Picture System (Lang et al., 2008) based on their valence scores (ranging from 1 to 9, 

unpleasant to pleasant), with 35 images each for different valence groups (valence scores, 

mean ± s.t.d.: negative = 3.87 ± 0.81; neutral = 5.23 ± 0.45; positive = 7.62 ± 0.63). The 

face images were all neutral faces, with 35 identities (female: 18; male: 17) selected from 

the NimStim Face Stimulus Set (Tottenham et al., 2009). Each neutral face was paired with 

3 context images (1 negative, 1 neutral and 1 positive valence). The task was programmed 

in python using PsychoPy2 (version 1.8.02) software (Peirce et al., 2019). For each trial, 

subjects’ ratings and reaction times were recorded for further analysis.

Data collection—The task was presented on an Apple Macbook pro, which was placed 

on an overbed table at a comfortable distance in front of subjects. An external Apple 

keyboard was connected to the recording laptop to capture subjects’ responses. Trial 

onsets and offsets were detected by a photodiode attached at the bottom corner of the 

recording laptop’s screen (without blocking experimental stimuli). The photodiode signals 

(i.e., synchronization channel) and intracranial EEG signals were acquired simultaneously 

using a Nihon Kohden recording system (256 channel amplifier, model JE120A) with an 

analog-filter above 0.01Hz and a 5000Hz sampling rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data processing—All the subjects completed the task (i.e., 105 trials). Due 

to the difference in subjects’ rating preferences (i.e., some subjects’ rating scale were more 

intensive while others’ rating range were more extensive), for each subject, we normalized 

the originally recorded ratings Rorig relative to the common neutral point (0.5), which 

subjects were informed as the middle of the color bar during the Rate stage:

Rnorm =
0.5 + Rorig − 0.5

Rmax − 0.5 × 0.5, if Rorig > 0.5

0.5 − Rorig − 0.5
0.5 − Rmin

× 0.5, if Rorig < 0.5
(Equation 1)

Rmax / Rmin was the biggest/smallest rating score within each subject. The normalized 

ratings Rnorm were within the range of [0, 1] and maintained subjects’ rating polarity 
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(negative vs. positive). For example, for a subject with face ratings ranging from 0.4 to 0.9, 

normalized against the common neutral point (0.5) will assign all the faces with ratings 

above 0.5 as positive. However, directly rescaling from [0.4, 0.9] to [0, 1] will falsely assign 

faces with original ratings between [0.5 0.65] as negative. We also rescaled the valence 

of context images from [1, 9] into [0, 1]. We then calculated the correlation between the 

normalized face valence and the normalized context valence using Pearson correlations 

(function corr.m from MATLAB Statistics and Machine learning Toolbox, Figure 1B).

Due to recording time constraints in the hospital setting, we didn’t independently capture 

subjects’ valence ratings of each face (i.e., without context image presented ahead). To 

ensure that the correlation was not driven by the potential bias toward the neutral face 

itself (i.e., subjects might perceive the neutral faces as positive or negative), we calibrated 

subjects’ face ratings paired with positive or negative context by subtracting their ratings of 

the same face paired with the neutral context:

Rcalib = Rnorm, positive or negative − Rnorm, neutral (Equation 2)

The Pearson correlation between the calibrated face ratings Rcalib and context valence was 

also computed (Figure S1).

To quantify the strength of emotional bias attributed from the context valence (Figure 1C), 

we computed the contextual modulation strength for each trial based on the fraction of 

the face valence deviation (i.e., normalized face valence ratings subtract the neutral score, 

0.5) over the context valence deviation (i.e., normalized context valence ratings subtract the 

neutral score, 0.5):

Contextual Modulation Stregnth = Rface, norm − 0.5
Rcontext, norm − 0.5 (Equation 3)

The absolute value of Equation (3) represents the strength of modulation, with bigger 

numbers indicating stronger valence influence carried from context images. The positive 

sign denotes consistent modulation (i.e., a face is rated as negative/positive when a negative/

positive context image is presented ahead) while the negative sign represents opposite 

modulation (i.e., a face is rated as negative despite a positive context image presented 

ahead). Zero means no modulation.

Electrode localization—The electrode localization was performed using pre- and post-

implantation structural T1-weighted 1mm isotropic MRI scans as well as post-implantation 

CT scans. For each subject, the post-implantation MRI and CT scans were registered to 

the pre-implantation scans using a 6-parameter rigid body transformation implemented with 

Advanced Normalization Tools (Avants et al., 2011). A high-resolution anatomical template 

(0.55mm) with labels of the amygdala, hippocampus and orbitofrontal cortex were aligned 

to the pre-implantation MRI scans using ANTs Symmetric Normalization. The electrode 

localization was guided by this co-registered anatomical template and was determined by 

examining the anatomical labels of the electrode artifacts from the co-registered pre- and 
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post-implantation MRI scans. For visualizing electrodes across all the subjects (Figure 4D), 

we obtained MNI coordinates for all the electrodes by aligning each subject’s preoperative 

scan to the Colin27 brain template (Holmes et al., 1998) using a concatenation of an 

affine transformation followed by a symmetric image normalization (SyN) diffeomorphic 

transform (Avants et al., 2008).

Neurophysiological data preprocessing—The preprocessing of raw neurophysiology 

data was conducted using customized MATLAB scripts based on the open-source Toolbox 

Fieldtrip (Oostenveld et al., 2011). The neural recordings were first downsampled to 2000Hz 

and band-pass filtered between 1 and 250Hz using a zero-phase delay finite impulse 

response (FIR) filter with Hanning window. After demeaning the signal, we used Welch’s 

method to estimate its power spectral density (PSD). The line noises (usually 60Hz and its 

harmonics) inspected from PSD plots were removed using a discrete Fourier transform. The 

filtered signals were re-referenced to the nearest white matter electrodes on the same depth 

electrode probe based on the electrode localization results. The epileptiform discharges were 

manually inspected under the supervision of a neurologist (J.J.L.), who was blinded to 

electrode locations and trial information (e.g., stimuli onsets and subject’s performance). 

There were no seizures recorded in any subject while performing the task, and only the 

electrodes contralateral to or outside of the seizure onset zone were included in the analyses.

Task-induced power—The pre-processed data was FIR band-pass filtered between 1 

and 250Hz through 35 logarithmically spaced frequencies. Then the Hilbert transform was 

applied to extract the analytic amplitude and instantaneous phase from each filtered time 

series. Next, we epoched the continuous data of analytic amplitude and instantaneous phase 

into trials. The trials overlapped with epochs that had been marked during the epileptiform 

inspection were removed from further analysis. For each trial, the task-induced power was 

calculated by squaring the analytic amplitudes and normalizing to the averaged pre-trial 

baseline power using the relative change in decibel conversion (dB). As shown in Figures 

S2A and S2B, the time-frequency representations were averaged across all the trials and all 

the electrodes within the same region of interest (amygdala, hippocampus, or orbitofrontal 

cortex).

Cross-regional phase synchrony—We computed phase synchrony between signals 

across each electrode pair within the same hemisphere (i.e., AMY-HPC, HPC-OFC, AMY-

OFC). The phase synchrony was quantified using weighted phase lag index (WPLI) (Vinck 

et al., 2011) (window size = 500 ms, step size = 100 ms) sliding through the whole trial. 

Since WPLI is solely based on the imaginary component of the cross-spectrum between 

two signals, which is less sensitive to volume conduction or correlated noise source induced 

phase synchrony. Phase synchrony (i.e., WPLI) ranges from 0 to 1, with bigger numbers 

indicate stronger phase synchrony. For each frequency bin (10 bins between 2 and 16 Hz), 

we computed weighted phase lag index using the function implemented in the Fieldtrip 

(function ft_connectivityanalysisi.m). To statistically determine the significance of the 

observed phase synchrony, we used a non-parametric statistical approach (i.e., permutation 

test; Function ft_timelockstatistics.m from Fieldtrip Toolbox) that randomly permuted trial 

labels 1000 times (i.e., disrupt the correspondence between theta oscillations from two 
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regions) to correct for multiple comparisons on a cluster level (i.e., across electrodes, across 

timepoints and across frequency bins). The phase synchrony was considered significant 

when it exceeded the 95% percentile of values in the null distribution.

Granger causality—To assess the directional influence between each cross-regional 

electrode pair (e.g., A and B), we computed spectral Granger causality (Geweke, 1982), 

which quantifies the prediction error of the signal in the frequency domain by introducing 

another time series. Before fitting to the multivariate autoregressive model to compute 

the spectral Granger causality, the time series data were low-pass filtered at 85 Hz, down-

sampled to 250 Hz and normalized within each trial (e.g., subtracting the temporal mean 

and cross-trial mean). Then, we defined the model order using the Multivariate Granger 

Causality (MVGC) Toolbox based on the Akaike information criterion (Barnett and Seth, 

2014). The model order for each subject varied from 11 to 14. The Granger Causality 

index was computed separately for each task stage (fixation, context, maintenance, face, 

and decision) for both directions (A to B, B to A). To access the significance of Granger 

Causality, we implemented the same method as described in the section ‘Cross-regional 

phase synchrony’ by randomly shuffling the trial labels 1000 times and the significance 

threshold was the 99th percentile of the surrogated data. As shown in Figure 2C, electrodes 

demonstrating significant Granger causality influence are connected, with the color denoting 

the origin of the directional influence and the thickness indicating the significant level of the 

directional influence.

Phase amplitude coupling (PAC)—We first computed the theta-gamma PAC (averaged 

within each trial across all task stages) across all the cross-regional electrode pairs. To 

avoid registering spurious manifestation of PAC, for both electrodes in each electrode pair, 

we computed the PSD of its original signal and the PSD of the envelope of filtered high 

gamma activity AfHGA at the electrode-level within the low frequency range (1– 32 Hz). 

We then utilized an iterative algorithm to subtract the aperiodic background and looked 

for maximum (peak) of the residual signals. A peak is defined as point above the noise 

threshold (calculated from the standard deviation of the residual signal) and the putative 

peak frequency is determined by fitting the residual signal to a Gaussian (Donoghue et al., 

2020). Electrode pairs with peaks detected within the theta range (4–12Hz) in all four PSD 

plots were included in the PAC analyses. For electrode pairs that met our “peak” criteria, 

we then computed theta-gamma PAC (averaged within each trial across all task stages) and 

a surrogate distribution of theta-gamma PAC by shuffling trial labels for 100 times. For 

electrodes with significant theta-gamma PAC (i.e., real theta-gamma PAC exceeds 95% of 

the null distribution), we calculated the PAC between each cross-regional electrode pair 

(window size = 500ms, step size = 100ms) sliding through the entire trial (Samiee and 

Baillet, 2017). PAC was calculated as the Euclidean norm of the summed polar vectors 

(AfHGA as the real component, ØTheta as the imaginary component) and was normalized 

to AfHGA power to minimize the influence of signal magnitude in the measurement of 

coupling strength. The PAC strength was then Z score normalized to the baseline period 

and was averaged across all the frequency bins within the high gamma frequency range 

(70–250Hz). To statistically determine the significance of the observed PAC, we used 
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similar non-parametric permutation test that randomly permuted trial labels 1000 times (i.e., 

disrupting the correspondence between high gamma activity and theta oscillations) to correct 

for multiple comparisons on a cluster level (i.e., across electrodes and across timepoints). 

PAC was considered significant when it exceeded the 95% percentile of values in the null 

distribution. We further averaged PAC across each task stage (fixation, context, maintenance, 

face, and decision) and over all pairs within the same region. In other words, if one subject 

has multiple HPC-OFC electrode pairs, we average PAC across all the HPC-OFC electrode 

pairs within each trial. We then correlate these averaged PAC with the contextual modulation 

strength (Figures 3C–3F, S3A, and S3B). To evaluate the significance of correlation, 

correlation coefficients were recomputed 1000 times after randomly assigning the contextual 

modulation strength to trials (i.e., disrupting the correspondence between PACs and the 

contextual modulation strength) to create null distributions. Correlation coefficient was 

considered significant if it exceeded 95% percentile of values in the null distribution.

High gamma activity burst—We used similar methods described in the previous study 

(Lundqvist et al., 2018) to detect bursting behavior within the high gamma range (70 

–250 Hz). First, the preprocessed data within each trial period was frequency decomposed 

with the 1 Hz frequency resolution (using multi-taper approach adopted with frequency-

dependent window lengths, with 4–8 oscillatory cycles and frequency smoothing as 0.2 

of the central frequency f0, i.e., f0 ± 0.2 f0) and 1 ms temporal resolution to obtain 

smooth temporal profiles of power within the high gamma range (70–250 Hz). For each 

frequency bin within the high gamma range, high gamma activity bursts were defined as 

the time windows when the instantaneous power exceeded the two standard deviations 

above the mean power over the past 10 trials and lasted for at least three oscillatory 

cycles of the central frequency. Consistent with (Lundqvist et al., 2018), we created a 

local time-frequency map around the neighborhood of each high gamma activity burst with 

a two-dimensional Gaussian function to estimate its temporal duration (i.e., time interval 

where power was higher than half of the maximum power) and frequency bandwidth (i.e., 

frequency range where power was higher than half of the maximum power). The occurring 

phase of high gamma activity was defined as the time when the maximum power present in 

the detected high gamma activity bursts relative to theta oscillations.

Phase shift—We assessed phase shift in all HPC-OFC and OFC-AMY electrode pairs 

(see pair numbers in Table S1) when transitioning from the maintenance period to face 

presentation (i.e., [1, 2.5] seconds relative to the trial onset). For each HPC-OFC electrode 

pair, we quantify the relationship between the timing of OFC high gamma burst relative to 

HPC theta phase (i.e., burst phase) and the time by computing circular-linear correlation 

coefficients (Function circ_corrcl.m from MATLAB Circular Statistics Toolbox (Berens, 

2009)). Notably, theta oscillations in humans are transient and often non-sinusoidal, which 

could lead to phase shifts when using Hilbert-transform on a narrow-band pass signal 

to extract phase information. Therefore, as a complementary approach, we also used 

waveform-based approach (Belluscio et al., 2012; Cole and Voytek, 2019; Dvorak and 

Fenton, 2014; Eliav et al., 2018) for phase estimation, which ensures the real peaks and 

troughs and can capture the non-sinusoidal characteristics of the signal. Similar results 

were observed regardless of the phase estimation methods (Figures S4E–H and Table S3). 
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To access the significance of phase shift, for each electrode pair, we randomly assigned 

phases from the distribution of all burst phases to each high gamma burst and recompute 

the circular-linear correlation coefficients between the scrambled burst phase and the time. 

The same procedure was repeated 1000 times to form a null distribution of circular-linear 

correlation coefficients, which controlled for any effect of spurious phase estimates by 

disrupting the correspondence between burst phases and time. An electrode was considered 

exhibiting significant phase shift only if its circular-linear correlation value (i.e., negative 

correlation) is less than 95% of the null distribution. Similar analyses were performed on 

OFC-AMY electrode pairs as well except computing circular-linear correlation coefficients 

between the timing of AMY high gamma burst relative to OFC theta and the real time.

Bayesian decoding—For each electrode, we formed a three-dimensional binary 

temporospectral event matrix (n_frequency × n_timebin × n_trials), with 1 indicating a 

high gamma activity burst and 0 assigned to the rest of the matrix values, as the inputs 

for Bayesian decoding analyses. A memoryless Bayesian decoding algorithm was used 

to estimate the information of time and trial information (i.e., context valence and face 

valence). To decode the time information, the posterior probability of time relative to the 

trial onset was estimated given high gamma activity burst information (HGA, occurring time 

of high gamma activity for Figure 5A and occurring theta phase of high gamma activity 

bursts for Figures 5B and 5E) as:

P (time |HGA) = P (HGA | time) * P (time)
P (HGA) (Equation 5)

The prior probability P(time) is uniform distribution by design. P(HGA | time) is the 

distribution of HGA, which is a normal distribution (Scherberger et al., 2005). Then the 

posterior probability of the time can be estimated as:

P (time |HGA) = C(HGA)P (time)∏f = 1
M Pf HGAf | time (Equation 6)

where C(HGA) is a normalization factor that ensures the sum of all probabilities to be one. 

The same method was applied for the decoding of the trial information (i.e., context valence 

and face valence) with the occurring phase of HGA in the ROI highlighted in Figures 

5B and 5E as inputs. To evaluate the decoding significance of trial information, the same 

decoding procedure was performed 1000 times using the surrogated data by shuffling the 

trial labels (context valence or face valence). The significant threshold (dashed horizontal 

line in Figures 5C, 5D, 5F, and 5G) was the 99th percentile value of the null distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Emotional context shapes facial perception

• Medial temporal lobe-orbitofrontal interactions promote facial perception 

biases

• Theta-gamma phase shifts integrate emotional valence from the context to 

face
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Figure 1. Contextual modulation task design, behavioral performance, and electrode locations
(A) Five-stage contextual modulation task: baseline (fixation, 0.5 s), context image (context, 

1 s), context maintenance (maintenance, 0.5 s), face image (face, 1 s) and valence rating 

of the face (decision, self-paced). Each face was paired with a positive, neutral, or negative 

valence context. After the face display, subjects rated the valence of each face by moving 

the blue triangle to the appropriate position on the color bar (warmer colors, more positive 

valence; cooler colors, more negative valence).

(B) Subjects’ valence ratings of the faces were positively correlated with the valence of the 

context images. The valence of the context images and faces were normalized within each 

subject (STAR Methods), with larger/smaller numbers indicating more positive/negative 

valence.
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(C) Distributions of contextual modulation strengths expressed as a ratio of face valence 

rating over context valence (STAR Methods). The red area denotes negatively modulated 

trials (e.g., a face rated as negative when preceded by a negative context image), and the blue 

area contains positively modulated trials (e.g., a face rated as positive when preceded by a 

positive context image). A gray area indicates the opposite modulation condition (e.g., a face 

rated as negative despite a prior positive context image). The pink line at zero represents no 

modulated trials (e.g., a face rated as neutral regardless of context image valence).

(D) The locations of electrodes from all 8 subjects were rendered onto a Colin27 template 

brain (Holmes et al., 1998) based on a high-resolution atlas template (red, AMY; blue, HPC; 

green, OFC). A, anterior; P, posterior; D, dorsal (D); V, ventral; L, left; R, right.
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Figure 2. Theta oscillations promote fronto-temporal interactions during contextual modulation
(A) Low-frequency (4–12 Hz) phase synchrony quantified as WPLI and averaged across 

trials for cross-regional electrode pairs (top, AMY-HPC; center, HPC-OFC; bottom, AMY-

OFC) of a representative subject. Warm/cold colors denote increased/decreased phase 

synchrony relative to the baseline, respectively. Significant power increases/decreases are 

highlighted with white contours. Vertical dashed lines mark task stages.

(B) Theta phase synchrony averaged across all subjects, plotted as a function of time for 

each cross-regional pair (purple, AMY-HPC; blue, HPC-OFC; green, AMY-OFC; shaded 

color, SEM). Color bars at the top indicate time windows with significant theta phase 

synchrony.
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(C) Directional maps (i.e., Granger causality) between cross-regional electrode pairs for 

all subjects during five task stages. Colored dots represent different brain regions (red, 

AMY; blue, HPC; green, OFC). Regions with at least one electrode pair showing significant 

Granger Causality (p < 0.05, permutation test) are connected by lines, with arrows indicating 

the directional influence between connected regions. The line thickness increases with the 

ratio of electrode pairs with significant Granger causality.

Zheng et al. Page 29

Cell Rep. Author manuscript; available in PMC 2022 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Cross-regional phase amplitude coupling (PAC) correlates with contextual modulation 
strength
(A) Cross-regional PAC averaged across subjects, and Z score normalized to baseline and 

plotted as a function of time. Theta-gamma PAC for cross-regional pairs (purple, AMY-

HPC; blue, HPC-OFC; green, OFC-AMY) are plotted as solid and dashed lines (shaded 

area, SEM) for opposing modulation directions (e.g., theta oscillations from the AMY 

modulating HGA from the HPC and vice versa). Colored bars at the top indicate time 

periods with significant cross-regional PAC.

(B) Correlations between cross-regional theta-gamma PAC and contextual modulation 

strength averaged across subjects and plotted as a function of time. The plotting format 

is similar to (A).

(C) Averaged HPC-> OFC PAC (Z-scored over baseline) at context maintenance (y axis) and 

the contextual modulation strength (x axis). Each dot refers to one trial, with PAC strength 

averaged across all pairs within the same region from the same subject. Correlation plots for 

individual subjects are shown in Figure S3F.
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(D) Averaged OFC-> AMY PAC (Z-scored over baseline) during face display (y axis) 

and contextual modulation strength (x axis) (similar format as in C). Correlation plots for 

individual subjects are shown in Figure S3G.

(E and F) Correlation coefficients between theta-gamma PAC and contextual modulation 

strength for intra-regional (diagonal values) and cross-regional (the remaining values) 

interactions during the maintenance (E) and face stages (F), with significant correlations 

marked by asterisks. Significance level for (A), (B), (E), and (F): p < 0.05, non-parametric 

permutation test.
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Figure 4. Theta-gamma phase shift
(A and B) Theta phase plots of OFC HGA bursts across all trials in two representative 

electrode pairs with significant theta-gamma phase shift (A, strongest; B, weakest) in the 

maintenance and face stages. Each dot represents an OFC HGA burst relative to HPC 

theta phases. Gray lines mark the circular-linear correlation between the occurring phases 

of HGA bursts relative to theta oscillations and the time across the maintenance and face 

stages (results computed for each task stage are shown in Figures S5J–S5L). Numbers in 
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the parentheses indicate the circular-linear correlation coefficient, and the asterisks indicate 

significance level (*p < 0.05, **p < 0.01, ***p < 0.001, permutation test).

(C and D) Distributions of OFC HGA bursts relative to HPC theta phases as plotted in (A) 

and (B) for the maintenance (dark blue) and face stages (light blue). Vertical lines mark the 

mean occurring phase.

(E and F) Theta phase plots of AMY HGA bursts across all trials in two representative 

electrode pairs with significant theta-gamma phase shift (E, strongest; F, weakest). Each dot 

represents an AMY HGA burst relative to the OFC theta phase (format similar to A and B).

(G and H) Distributions of AMY HGA bursts relative to OFC theta phases as plotted in (E) 

and (F) for the maintenance (dark green) and face stages (light green). Vertical lines marked 

the mean occurring phase.

(I and J) Distributions of OFC HGA burst occurrences across subjects relative to HPC theta 

phases for the maintenance (I) and face stages (J).

(K and L) Distributions of AMY HGA burst occurrences across subjects relative to OFC 

theta phases for the maintenance (K) and face stages (L).
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Figure 5. Early and late theta phases encoded distinct events
(A) Probability density of time information computed using OFC (top) or AMY (bottom) 

HGA from a representative subject.

(B) Probability density of time information as a function of HPC theta phase, estimated at 

the context maintenance stage.

(C and D) Decoded probabilities of context valence (brown) and face rating (gray) based 

on late HPC theta phase (C, solid rectangle in B) and early HPC theta phases (D, dashed 

rectangle in B) for trials with strong and weak contextual modulation. Horizontal dashed 

lines denote the decoding chance level.

(E) Probability density of time information as a function of OFC theta phase, estimated at 

the face stage from the same trials as plotted in (B).

(F and G) Decoded probabilities of context valence (brown) and face rating (gray) based 

on late OFC theta phase (F, solid rectangle in E) and early OFC theta phases (G, dashed 

rectangle in E) for trials with strong and weak contextual modulation (similar format as C 

and D).

Error bars in (C), (D), (F), and (G) indicate SEM. *p < 0.05; **p < 0.01.
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