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Testing for non-linear relationship in structural equation modeling

Abstract

Since the seminal paper of Kenny and Judd (1984) several methods have

been proposed for dealing with non-linear latent variable models. In all these

methods more information from the data than just means and covariances is

required. In this paper we also use more than just first- and second-order mo-

ments; however, we restrict ourselves to a selection of third-order moments.

The key issue in this paper is a procedure for selection of the third-order

moments for estimating the parameters and testing the goodness-of-fit of a

model. The procedure we propose is based on the power of the test asso-

ciated to the different choices of third-order moments, where the power is

defined as the probability that a model without nonlinear factors is rejected

by the goodness-of-fit model test when there are in fact nonlinear factors.

The main conclusion of this paper is that evaluation of power for selection

of third-order moments can easily be done by multivariate analysis of third-

order moments, a moment test, without reference to a structural equation

model. A consequence of this result is that in practice the selection of third-

order moments is conceptually and computationally simple. Examples will

illustrate our method.

Keywords: structural equation modeling, testing model fit, nonlin-

ear relations, interaction terms, equivalent models, asymptotic robustness,
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saturated model
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Introduction

In Mooijaart and Satorra (2009) it has been shown that, under some gen-

eral restrictions, the normal theory test statistics, which are based on means

and covariances only, are not able to distinguish between models with and

without nonlinear factors. One conclusion is that for analyzing nonlinear la-

tent models more information than means and covariances has to be used for

applying nonlinear models. Several methods have been proposed for analyz-

ing models with latent nonlinear relationships. Originally, the main method

was to utilize product indicators for the independent predictors. See e.g.

Kenny and Judd (1984) and Jöreskog and Yang (1996), among many oth-

ers. One of the key issues in these methods was the choice of the product

indicators, see e.g. Marsh, Wen, and Hau (2004). In most of these methods

it was assumed that the latent predictor variables are normally distributed.

More recently, new methods are now been proposed, in which also the pre-

dictors are assumed to be normally distributed. The advantage of such an

assumption is that well-known statistical methods can be used, like e.g., the

maximum likelihood method. The reason for this is that under this normal-

ity assumption it is quite simple to derive the density function, even if there

are products of factors in the model. So in principle it is not too difficult to

formulate the likelihood function. However, this likelihood function contains

a multivariate integral, which is not easy to deal with in practice. There

are several ways to tackle this problem. To mention a few methods: Normal
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mixtures were used by Klein and Moosbrugger (2000) in their LMS method;

the method of Muthén and Muthén (1998-2007) in their computer package

MPLUS also approximates this multivariate integral, but now by numerical

integration. Klein (2007) in his QML methods uses a quasi-maximum like-

lihood method. A different approach is, although in fact it is dealing also

with finding maximum likelihood estimates, is the Bayesian approach com-

bined with the MCMC method as discussed by Lee and Zhu (2002) and Lee

(2007). In all these methods it is assumed that the predictors are normally

distributed, although some method may be more robust against violation

of the normality assumption. For instance, the Bayesian approach behaves

better in small samples than the more traditional ML method as used in

LMS/MPLUS. On the other hand, with large samples the MCMC method

may become extremely slow and can hardly be recommended compared to

the other methods. Moreover, for large samples the function to be optimized

in the Bayesian approach becomes almost equal to the likelihood function

because the influence of the prior distribution almost vanishes.

In this paper we do not use some variation of the maximum likelihood

method, but concentrate on fitting the first, second, and some selection of the

third order moments, using the approach of Mooijaart and Bentler (2010).

It could be argued that in the analysis of models with interaction terms sup-

plementing first- and second-order moments with a selection of higher-order

moments can yield better results (in terms of stability and robustness against

small samples) than methods that imply to involve the full set of higher-order
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moments. Just like in the more traditional approach with product indicators,

here also the key issue is: what is the selection of the third order moments?

An advantage of our approach is that, under rather weak assumptions and

for not too small sample sizes, it is possible to define a statistical test which

may be used for testing the goodness-of-fit of the model. Interesting to note

is that the methods mentioned above do not have such a goodness-of-fit test.

This can be explained by the fact that it is unclear under what conditions

the likelihood ratio test is chi-square distributed. See also for a discussion of

this point Klein and Moosbrugger. The idea of our approach is that by using

such a proper goodness-of-fit test and its corresponding power for testing if

a model with only linear factors have to be rejected when in fact the model

is a nonlinear model, we can select third order moments which result in an

optimal power.

An important result of our paper is that a test based on the sample third

order moments, has the same non-centrality parameter as the test based on

the least squares estimates. The importance of this result is that the non-

centrality parameter can be estimated easily and so, in addition with the

corresponding degrees of freedom of the test, the power can also be estimated

easily.

The presentation of this paper is as follows. Section 1 discusses model

formulation and estimation of the parameters and testing the model. In

Section 2 a simulation study will be presented to illustrate the practical

importance of the choice of the third order moments and how the alternative
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choices affect the power of the model test. In Section 3 selection of third order

moments and the power will be discussed. Section 4 discusses the types of

third-order moments on the bases of the power function. A forward selection

procedure for higher order moments is discussed in Section 5. Section 6

concludes with a discussion. Lemma 1, that shows the equivalence of mean

and covariance structure implied by models with and without interaction is

proved in the appendix.

1 Formulation of the model and estimation

and testing

In LISREL formulation we can write for a model with latent product vari-

ables:

η = α +B0η + Γ1ξ + Γ2(ξ ⊗ ξ) + ζ (1)

y = νy + Λyη + ε (2)

x = νx + Λxξ + δ (3)

where y and x are of dimensions p and q respectively, (ξ⊗ ξ) defines product

factors. For further use, we define B = I − B0. Defining z = (y′, x′)′, the

means, covariances and third order moments can be formulated as a function
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of the model. In a general formulation, these can be written as

σ1 ≡ E[z] = Aϕ1

σ2 ≡ D+E [(z − σ1)⊗ (z − σ1)] = D+(A⊗ A)Dϕ2

σ3 ≡ T+E [(z − σ1)⊗ (z − σ1)⊗ (z − σ1)] = T+(A⊗ A⊗ A)Tϕ3

where the matrix A is given explicitly in (14) below and where σ1 = E(z),

and σ2 and σ3 are the vectors of second- and third-order moments in devia-

tion from the means. Furthermore, these latter vectors are in reduced form

which means that all duplicated and triplicated elements have been removed.

For a definition of the triplication matrix T , see Meijer (2005). The vectors

ϕ1, ϕ2 and ϕ3 are analogously defined however, not for the observed variables

in z, but for the independent observed or latent variables in the model, i.e.

the variables ξ, δ, ε and ζ. Matrix A is a function of the model parameters.

The model expressed by equations (1) to (3) will be denoted by H1. Denote

Ψ = cov (ζ) and Φ = cov (ξ).

Now suppose s is a vector of sample estimates of vector σ, then the

parameters will be estimated by minimizing the weighted least squares (WLS)

fitting function:

fWLS(s, σ) = (s− σ(θ))′W (s− σ(θ))
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where s is a vector of all first-, second- and third-order sample moments

and σ a vector of all first, second- and third-order moments as a function

of the model parameters collected in vector θ. Here W is a weight matrix

that possibly varies with the data but converges in probability (when sample

size tends to ∞) to a positive definite matrix W0. An often used weighted

least squares function is one in which the weight matrix is an estimate of the

covariance matrix of vector s. However, it has been shown in many simulation

studies that estimates by using this method leads to biased estimates. This

in particular holds for fitting means and covariances. In our case where we

fit in addition a selection of third order moments it can be expected that the

bias of the estimates will even be larger. So often the most typical fitting

function is the LS one, i.e. the one where W is just the identity matrix.

The result to be derived in this paper holds in general for WLS with W

being block diagonal with respect to the vector s12 of first and second-order

moments and the vector s3 of third order moments.

A test statistic which can be used for testing a model is defined as follows:

let cov(
√
ns) = Γ, and define

TWLS = (s− σ(θ))′(Γ̂−1 − Γ̂−1 ˆ̇σ(ˆ̇σ
′
Γ̂−1 ˆ̇σ)−1 ˆ̇σ

′
Γ̂−1)(s− σ(θ)) (4)

where ˆ̇σ is the Jacobian of σ(θ) evaluated at the WLS estimator θ̂, and Γ̂

is a consistent estimator of Γ. Under the set-up, TWLS is asymptotically

chi-square distributed when the analyzed model holds, and non-central chi-
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square distributed when there are specification errors. See for a detailed

discussion of these statistics and its distribution, Browne (1984) and Satorra

(1989). The noncentrality parameter plays an important role in determin-

ing the power of a test. In this paper the power will be used as a selection

criterion for choosing the third-order moment to include in the vector of mo-

ments s. Therefore in a next section we will be dealing with this noncentrality

parameter extensively.

An alternative test will be used also. In this test we simple test whether

some set of sample third-order moments are zero or not, without involving a

moment structure. We consider the following moment test (MT) statistic

TMT = ns′3Γ̂−1
33 s3 (5)

where Γ̂33 is a consistent estimate of the asymptotic variance matrix of the

vector of higher-order moments s3 included in s. Note that this test does

not depend on a specific model for the data and can be used easily in the

sample. In a next section we will investigate the relationship between TWLS

and TMT .

2 A motivating illustration

In this section we discuss an example and show what the influence is of

selection of the third order moments on the power of the test. Note that in
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this section the power will be defined as the probability of rejecting the model

without nonlinear factors, where in fact the true model contains nonlinear

factors.

Small simulation study: In this study we reanalyse data according to

the so-called Kenny and Judd (1984) model. This model was also analyzed

by many others, for instance by Jöreskog and Yang (1996) and Klein and

Moosbrugger (2000). In our simulation study we use the same set up as they

did for their study of the LMS method. The sample size we use is n = 600

with number of replications 500.

The model contains two latent variables which predict an observed vari-

able. Besides the “main” effects of the predictors there is also an “interac-

tion” effect. The two latent predictors have each two observed indicators.

The observed indicators of the predictors are V 1 to V 4. Variable V 5 is the

dependent variable. The parameter which plays a key role is the interaction

parameter. In our study this parameter will vary from 0.0 to 0.7. See for

a discussion of a Monte Carlo study in which all the model parameters are

estimated by the WLS method Mooijaart and Bentler (2010).

In this paper the main idea is that the power will be used for selection of

the third order moments. Therefore, we will give some information related

to the size of the interaction effect. The results for the power analysis are

given in tables 1 and 2. The two ncps for the moment and the least squares

test are given (column 2 and 3) for different interaction sizes. The moment

test and the least squares test have degrees of freedom 1 and 8, respectively.
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Column 4 gives the theoretical power based on the ncp and the degree of

freedom of the LS test. The theoretical test is based on a “known” matrix Γ.

This matrix is not really known, however it has been computed by using a

simulation with a sample of size 100, 000. The empirical power is computed

as the proportion of rejections of the model without interaction factors; see

column 5 of tables 1 and 2.

Table 1: Power when using V 1V 3V 5 and the model with β12 = 0

β12 λM(1) λLS(8) powTh in % powEmp in %
.0 0 0 5.0 4.4
.1 1.472 1.472 10.7 9.2
.2 5.264 5.268 31.3 31.2
.4 14.607 14.618 78.7 75.6
.7 24.711 24.746 96.7 97.0

Table 2: Power when using V 5V 5V 5 and the model with β12 = 0

β12 λM(1) λLS(8) powTh in % powEmp in %
.1 2.215 2.217 14.2 14.0
.2 5.752 5.777 34.3 32.4
.4 8.204 8.359 49.7 42.6∗

.7 7.360 7.571 45.1 38.4∗

∗ Estimate is outside the 95% confidence interval

From tables 1 and 2 it follows that indeed the noncentrality parameters

are (about) equal for the two tests. The consequence is that the theoretical

power can be computed easily from the moment test and no model param-

eters have to be estimated first. Further, it is remarkable that for the third
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order moment V5V5V5 the noncentrality parameter does not increase mono-

tonically with the interaction parameter as it should be. An explanation for

this deviation from monotonicity is given in a section below.

3 Selection of third-order moments and the

power

Consider the expression (4) of the WLS model test with σ = (σ′12, σ
′
3)′

where σ12 contains the first-and second-order moments and σ3 the third-

order moments only. By considering the vector of parameters partitioned as

θ′ = (θ′1, θ
′
3), where θ3 is the vector of parameters representing interaction

terms, we have

σ̇ =

 σ̇12,1 σ̇12,3

σ̇3,1 σ̇3,3


where σ̇12,1 and σ̇3,1 represent the Jacobian of σ12 and σ3 respectively with re-

spect to θ1 and σ̇12,3 and σ̇3,3 represent the Jacobian of σ12 and σ3 respectively

with respect to the interaction term parameters θ3.

Note that model H0 does not specify an interaction parameters and so

θ = θ1 thus θ3 is vacuous. In spite of that, H0 uses higher-order moments in

the analysis, and so σ3 is present in the moment vector to be modeled. Thus,
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the Jacobian matrix associated to the model H0 is

σ̇|H0 =

 σ̇12,1

σ̇3,1



Furthermore, since under H0 it holds σ3(θ) = 0, whatever the combination

of the values of the parameter vector θ1, we get σ̇3,1 = 0, and thus

σ̇|H0 =

 σ̇12,1

0

 (6)

Note that we require this matrix to be of full column rank for the model

to be identified.

Let the alternative model H1 be the true model with interaction param-

eter θ3 6= 0. Still consider the analysis using the specification by H0. Then

the non-centrality parameter will be

λWLS(σa | H0) = n(σa − σ̂0)′(Γ̂−1 − Γ̂−1 ˆ̇σ(ˆ̇σ
′
Γ̂−1 ˆ̇σ)−1 ˆ̇σ

′
Γ̂−1)(σa − σ̂0) (7)

where σ̂0 denote the model fitted by H0 when analyzing the moment vector

σa. Now it holds in general, provided σ̇|H0 is of full column rank,

λWLS(σa | H0) = n(σa − σ̂0)′F (F ′ΓF )−1F ′(σa − σ̂0) (8)

where F is an orthogonal complement of the matrix σ̇|H0 , that is F ′σ̇|H0 = 0.
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We will set up conditions under which the models H0 and H1 are equiva-

lent for first- and second-order moments. More specifically, when considering

a moment vector σa generated according to H1, when H0 is fitted to σa pro-

ducing a fitted moment σ̂, we will show that (σ̂)12 = (σa)12, the subscript

“12” denoting first- and second-order moments. The next lemma shows that

this is the case for the class of models defined by (1) to (3) satisfying the

following Condition 1.

Condition 1: The analyzed moment vector σa corresponds to a popula-

tion satisfying (1) to (3) and the analyzed model H0 sets unconstrained the

intercept vector α, the matrix Γ1, the product B−1ΨB−T and Φ (aside from

its symmetry).

The following Lemma 1 gives a fundamental result for this paper (the

lemma is proved in the Appendix).

Lemma 1: Under Condition 1 assume that there is un-correlation among

ξ, δ, ζ and ε, and ξ is normally distributed. Consider the WLS-fit of H0 and

H1 to all the first- and second-order moments plus some or all third-order

moments. Assume the weight matrix W is block diagonal with respect the

vectors s12 of first and second order moments and the vector s3 of third-order

moments. Let σa = (σ′12a, σ
′
3a)
′ be the analyzed moment vector (here σ3a is

the vector of third order moments only) and let σ̂ be the fitted vector when

fitting H0 to σa. Then

(σ̂)12 = (σa)12,
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where “ ()12” denotes first and second-order moments only.

Note that the conclusion of the Lemma can be written as

(σa − σ̂0) =

 0

σa3



Note that Lemma 1 implies that when Condition 1 is verified there will be

an exact WLS fit for the first- and second-order moments in any WLS analysis

with W = block-diagonal(W12,12,W3,3) where W12,12 a partition conformably

with σ = (σ′12, σ
′
3)′). 1 Lemma 1 in fact establishes that for the class of

models and assumptions considered, when σa satisfies exactly H1 and the

fitted model iis H0, then σ̂12 fits exactly the first- and second-order moments

of σa.

Given the form (6), we have that

F ′ =

 G′ 0

0 I



with G′σ̇12,1 = 0. Consequently it is easy to prove by some matrix manipu-

lation and by using the inverse of partitioned matrices that

λWLS(σa | H0) = nσ′3(Γ̂−1
3,3 − Γ̂3,12G(G′Γ̂12,12G)−1G′Γ̂12,3)−1σ3 (9)

1In that case, since the third-order fitted moments under H0 are zero,

(s− σ(θ))′W (s− σ(θ)) = (s12 − σ12(θ))′W12,12(s12 − σ12(θ)) + s′3W33s3,
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where we assumed that Γ̂3,3 is nonsingular. Here we considered the parti-

tioning of Γ = avar (s) as

Γ =

 Γ12,12 Γ12,3

Γ3,12 Γ3,3



where Γ3,12 is the asymptotic covariance matrix between the first-, second-

and third-order moments, that is Γ12,3 = cov (s12, s3) and Γ12,12 and Γ3,3 are

the asymptotic variance matrices of s12 and s3, respectively.

Clearly, the corresponding noncentrality parameter for the moment test

defined in (5) is

λMT (σa) = nσ′a3Γ−1
3,3σa3 (10)

and, comparing (9) and (10) , we see that

λMT (σa) = λWLS(σa | H0) iff G′Γ12,3 = 0 (11)

We will now show that under standard regularity conditions on the model

and on the distribution of the latent constituents, and the block diagonal

structure of W , the condition of G′Γ12,3 = 0 do holds. For that we require to

write the models H1 and H0 as a linear latent variable model (e.g., Satorra,

1992). Clearly H1 can be written as

y = νy + ΛyB
−1α + ΛyB

−1Γ1ξ + ΛyB
−1Γ2(ξ ⊗ ξ) + ΛyB

−1ζ + εy (12)

17



x = νx + Λxξ + εx (13)

By setting z = (y′, x′)′ and ε = (ε′y, ε
′
x)
′,

z = µ+ [Λ2ζ + ε] + [Λ1ξ + Λ3(ξ ⊗ ξ)]

where

µ =

 νy + ΛyB
−1α

νx

 ,Λ1 =

 ΛyB
−1Γ1

Λx

 ,Λ2 =

 ΛyB
−1

0



and

Λ3 =

 ΛyB
−1Γ2

0


Thus, in compact expression, H1 is

z = µ+ Aδ = µ+ A1δ1 + A2δ2 (14)

where A = (A1, A2), δ = (δ′1, δ
′
2)′, δ1 = (ζ ′, ε′)′, δ2 = (ξ′, (ξ⊗ξ)′)′, A1 = (Λ2, I)

and A2 = (Λ1,Λ3). where B = I−B0 and B is assumed to be invertible. The

null hypothesis H0 of no interaction terms can now be expressed as Λ3 = 0.

We need now the following distributional assumption of symmetry (SI)

on stochastic components of the linear structure (14) implied by the model

assumption H1.

Assumption SI: The model H1 holds and the distribution of δ1 of (14)
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is symmetric and independent of δ2.

Consider now the specification of a LISREL model H0 like (1) to (3)

with Γ2 set to 0, i.e. H0 does not contemplate interaction terms. Consider

the vector of first- and second-order moments for z, σ12 = (σ′1, σ
′
2)′, where

σ1 = E[z] and σ2 = vechE[(z−µ)⊗ (z−µ)]. Clearly, under the specification

H0, the vector σ12 is structured as a function σ12 = σ12(θ) of the vector of

parameters θ. Let the parameter vector θ be partitioned as θ = (θ′1, θ
′
2)′,

where θ1 = (θ′α, θ
′
Γ1
, θ′Φ, θ

′
B0
, θ′Ψ)′, θα, θΓ1 , θΦ, θB0 and θΨ denoting the vectors

of free parameters associated to the free components in α, Γ1, Φ, B0 and Ψ

respectively. Assume that H0 satisfies the following assumption

Functional parameter independence (FPI) assumption: The

parameter vectors θα θΓ1, θΦ, θB0 and θΨ are functionally independent (no

cross constraints among them are allowed).

Consider the partitioned Jacobian

σ̇12 =

 σ̇1

σ̇2



where σ̇1 = ∂σ1/∂θ
′
1 and σ̇2 = ∂σ2/∂θ

′
1. Clearly,

σ̇j =
∂σj

∂α′ ∂(vec Γ1)′ ∂(vech Φ)′ ∂(vecB0)′ ∂(vech Ψ)′
R , j = 1, 2
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where, in virtue of FPI,

R = block-diagonal [Rα, RΓ1 , RΦ, RB0 , RΨ] ,

Rα = ∂α/∂θ′α, RΓ1 = ∂vec (Γ1)/∂θ′Γ1
, RΦ = ∂vech (Φ)/∂θ′Φ, RB0 = ∂vec (B0)/∂θ′B0

and RΨ = ∂vech (Ψ)/∂θ′Ψ. Further, by differentiation it can easily be seen

that

σ̇12 =

 A11 0 0 A14 0

0 A22 A23 A24 A25


where

A11 =
∂σ1

∂α′
=

 ΛyB
−1

0

Rα

A14 =
∂σ1

∂(vecB0)′
=

 (α′ ⊗ Λy)(B
−1 ⊗B−1)

0

RB0

A22 =
∂σ2

∂(vec Γ1)′
= D+

p+q(Λ1Φ⊗ Λ2)RΓ1

A23 =
∂σ2

∂(vech Φ)′
= 2D+

p+q(Λ1 ⊗ Λ1)DnRΦ

A24 =
∂σ2

∂l(vecB0)′
= D+

p+q

[
(Λ1 ⊗ Λ2)(ΦΓ′B−1 ⊗ Im) + (Λ2 ⊗ Λ2)(ΨB−1 ⊗ Im)

]
RB0

A25 =
∂σ2

∂(vech Ψ)′
= 2D+

p+q(Λ2 ⊗ Λ2)DmRΨ

Below we will assume that the vector and matrices α, Γ1 and Φ are unre-

stricted so then Rα, RΓ1 and RΦ are identity matrices.
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Let G be a matrix orthogonal to σ̇12, that is, G′σ̇12 = 0, and partition

it as G′ = (G′1, G
′
2), so that we have G′1σ̇1 + G′2σ̇2 = 0. Because only the

means of the y variables are functions of some model parameters it makes

sense to define the following partitioning G1 = (G1y, G1x). Then we have the

following equations in which the means are involved:

G′1yΛyB
−1Rα = 0 (15)

G′1y(α
′ ⊗ Λy)(B

−1 ⊗B−1)RB0 +G′2A24 = 0 (16)

Under the assumption that α is unconstrained, Rα is the identity and thus

G′1yΛyB
−1 = 0; so, it follows

G′1y(α
′ ⊗ Λy)(B

−1 ⊗B−1) = G′1y(α
′B−T ⊗ ΛyB

−1) = 0

This equality to zero follows from noting that α′B−T is a row vector, so

α′B−T ⊗ ΛyB
−1 consists of scalars times ΛyB

−1. Thus equation (16) results

in G′2A24 = 0, which is (19) below.

Clearly, the equations in which the covariances are involved are the fol-

lowing ones:

G′2D
+
p+q(Λ1Φ⊗ Λ2)RΓ1 = 0 (17)

G′2D
+
p+q(Λ1 ⊗ Λ1)DnRΦ = 0 (18)

G′2D
+
p+q

[
(Λ1 ⊗ Λ2)(ΦΓ′B−1 ⊗ Im) + (Λ2 ⊗ Λ2)(ΨB−1 ⊗ Im)

]
RB0 = 0 (19)
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G′2D
+
p+q(Λ2 ⊗ Λ2)DmRΨ = 0 (20)

Lemma 2 Consider the specification H0 under the separability assump-

tion FPI. Assume Condition 1 with Φ and Ψ of full rank. Then

G′2D
+
p+q[(Λ1,Λ2)⊗ (Λ1,Λ2)] = 0

where

Λ1 =

 ΛyB
−1Γ1

Λx

 and Λ2 =

 ΛyB
−1

0

 .
G′ = (G′1, G

′
2), conformably with the matrix product above, and G any matrix

that G′σ̇12 = 0.

Proof: Using Lemma 6 of the Appendix, it holds

G′2D
+
p+q[(Λ1,Λ2)⊗(Λ1,Λ2)] = G′2D

+
p+q[[(Λ1⊗Λ1), (Λ2⊗Λ1), (Λ1⊗Λ2), (Λ2⊗Λ2)]E

where E is a permutation matrix (square and of full rank). So for proving

the Lemma it suffices to show that G′2D
+
p+q(Λi,Λj) = 0 for i, j = 1, 2.

Since G′2D
+
p+q(Λ1Φ ⊗ Λ2) = G′2D

+
p+q(Λ1 ⊗ Λ2)(Φ ⊗ I), using (17), the

non-singularity of Φ, and Γ1 unrestricted (so that RΓ1 = I), yields

G′2D
+
p+q(Λ1 ⊗ Λ2) = 0 (21)

Since G′2D
+
p+q(Λ1⊗Λ2) = G′2D

+
p+qKp+q,p+q(Λ2⊗Λ1)Kn,m = 0 (the Ks are

commutation matrices). Because the commutation matrix is square nonsin-
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gular and D+
p+qKp+q,p+q = D+

p+q it follows G′2D
+
p+q(Λ1⊗Λ2) = G′2D

+
p+q(Λ2⊗

Λ1)Kn,m, so we prove

G′2D
+
p+q(Λ2 ⊗ Λ1) = 0 (22)

Since Φ is symmetric and unrestricted, (18) impliesG′2D
+
p+q(Λ1⊗Λ1)Dn =

0, and so G′2D
+
p+q(Λ1⊗Λ1)DnD

+
n = 0. Further, since D+

p+q(Λ1⊗Λ1)DnD
+
n =

D+
p+q(Λ1 ⊗ Λ1)Nn , where Nn = 1

2
(I +Kn) and Kn is a commutation matrix

(see Magnus and Neudecker, 2000). Because it holds D+
p+q(Λ1 ⊗ Λ1)Kn =

D+
p+qKp+q(Λ1 ⊗ Λ1) = D+

p+q(Λ1 ⊗ Λ1), since (Λ1 ⊗ Λ1)Kn = Kn(Λ1 ⊗ Λ1)

and D+
p+qKp+q = D+

p+q (see, e.g., Theorem 7.37 of Schott, 1997), it follows

D+
p+q(Λ1 ⊗ Λ1)Nn = D+

p+q(Λ1 ⊗ Λ1) and thus

G′2D
+
p+q(Λ1 ⊗ Λ1) = 0 (23)

From (21) it follows that the first term in (19) is 0. Combining this result

and (20) it holds

G′2D
+
p+q(Λ2 ⊗ Λ2)[(ΨB−1 ⊗ Im)RB0 , DmRΨ] = 0

Define Z = [(ΨB−1 ⊗ Im)RB0 , DmRΨ] = [Z1RB0 , Z2RΨ], then this can be

written as Z = (ΨB−1 ⊗ Im, Dm)RB0,Ψ where RB0,Ψ =

 RB0 0

0 RΨ

. Let

H = B−1ΨB−T , then H has m(m + 1)/2 different non-duplicated elements.

Now it holds that H is completely unrestricted if the Jacobian of H w.r.t.
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the parameters has m(m + 1)/2 columns and is of full column rank. This

Jacobian can be written as:

∂vec (H)

∂[(vec (B0))′, (vech (Ψ))′]
= (Z1RB0 , Z2RΨ) = (Z1, Z2)

 RB0 0

0 RΨ

 = ZRB0,Ψ

where Z is of full column rank. So the condition for un-restrictedness of H

is that RB0,Ψ is of full column rank equal to m(m + 1)/2. That is, H =

B−1ΨB−T free is equivalent to Z being of full column rank, this rank being

equal to m(m+1)/2. Two typical conditions under which this holds, is when

Ψ is a diagonal matrix with unconstrained elements (B0)ij, or when Ψ is an

unconstrained free matrix and (B0)ij constrained.

Now from G′2D
+
p+q(Λ2⊗Λ2)Z = 0 it follows G′2D

+
p+q(Λ2⊗Λ2)DmD

+
mZ =

G′2D
+
p+q(Λ2 ⊗ Λ2)Dm = 0 and so

G′2D
+
p+q(Λ2 ⊗ Λ2) = 0, (24)

completing the proof of the lemma.

3.1 The covariance matrix Γ12,3

We now elaborate on the expression for the covariance matrix Γ12,3 among

the vector of first and second-order moments and the vector of third-order

moments. Under H1, we have z = µ + Aδ, where δ is partitioned as δ =

(δ′1, δ
′
2)′, δ2 containing the main factors and the interaction/quadratic factors,
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and δ1 the rest of the factors (errors and disturbances).

As argued above, under H1,

z = µ+ Aδ = µ+ A1δ1 + A2δ2 = µ+ (Λ2ζ + ε) + (Λ1ξ + Λ3(ξ ⊗ ξ))

where matrix Λ3 consists of regression weights of interaction and/or quadratic

terms of the ξ - variables. Obviously, H0 is defined by Λ3 = 0. where the

δ1 and δ2 are independent of each other, and matrix A is partitioned as

A = (A1, A2).

The following lemma is needed:

Lemma 3: Under the notation of model H1 of (14), assume the

hypothesis SI holds, then

Γz,1,23 = D+
p+q(A2 ⊗ A2)DΓδ2,1,23T

′(A2 ⊗ A2 ⊗ A2)′T+
p
′

where A2 = (Λ1,Λ2Γ2).

Proof: Given the form z = µ + A1δ1 + A2δ2 for z implied by H1, it

holds

Γz,1,23 = D+
p+q(A1 ⊗ A1)DΓδ1,1,23T

′(A1 ⊗ A1 ⊗ A1)′T+
p
′

+D+
p+q(A2 ⊗ A2)DΓδ2,1,23T

′(A2 ⊗ A2 ⊗ A2)′T+
p
′ (25)

where Γδi,1,23 for i = 1, 2 is the covariance matrix of the first-, second-order

and third-order moments of δ1 and δ2 respectively. Because δ1 has a sym-

metric distribution, Γδ1,1,23 = 0, and so the first term on the right hand side
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of (25) is equal to 0.

Another crucial lemma, to reach the basic theorem for the paper, is the

following.

Lemma 4: Under the notation above, assume

1. Condition 1

2. G′σ̇12 = 0

then G′Γz,1,23 = 0

Proof:

D+
p+q(A2 ⊗ A2) = D+

p+q [(Λ1,Λ3)⊗ (Λ1,Λ3)]

= D+
p+q [(Λ1,Λ2Γ2)⊗ (Λ1,Λ2Γ2)]

= D+
p+q

(Λ1,Λ2)

 I 0

0 Γ2

⊗ (Λ1,Λ2)

 I 0

0 Γ2




= D+
p+q

((Λ1,Λ2)⊗ (Λ1,Λ2))


 I 0

0 Γ2


 I 0

0 Γ2





Now if Φ, B−1ΨB−T are unrestricted matrices, then because Lemma 2, we

have G′D+
p (A2 ⊗ A2) = 0.

Let Λ̃1 and Λ̃2 be matrices computed with the WLS estimates obtained

when fitting the null model H0, keeping the notation Λ1 and Λ2 for the

parameters corresponding to true values.
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Lemma 5: Under the same conditions as in Lemma 2; if

G′2D
+
p+q[(Λ̃1, Λ̃2)⊗ (Λ̃1, Λ̃2)] = 0

then

G′2D
+
p+q[(Λ1,Λ2)⊗ (Λ1,Λ2)] = 0

Proof: From the equivalence of H0 and H1, it holds B−1Γ1 = B̃−1Γ̃1

and B̃−1Ψ̃B̃−T = B−1(Ψ + Q)B−T where Q = Γ2cov (ξ ⊗ ξ)Γ′2. So because

B−1Γ1 = B̃−1Γ̃1 it follows immediately Λ1 = Λ̃1. Furthermore, it is easy to

prove that Λ̃2 = Λ2V , where V = (Ψ +Q)B−1B̃′Ψ̃−1 , which is non-singular

in general. So

(Λ̃1, Λ̃2)⊗ (Λ̃1, Λ̃2) = (Λ1,Λ2V )⊗ Λ1,Λ2V )

= [(Λ1,Λ2)⊗ (Λ1,Λ2)]


 I 0

0 V

⊗
 I 0

0 V




= [(Λ1,Λ2)⊗ (Λ1,Λ2)]W

where W =

 I 0

0 V

 ⊗
 I 0

0 V

, which implies the conclusion of the

theorem since W is non-singular.

From here we can move to prove the main Theorem.
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Theorem 1: Under the conditions of Lemma 4,

λWLS(σ0 | H0) = λMT (σ0)

Proof: This follows from (11) and Lemma 4 .

4 Types of third-order moments on the bases

of power function

We have seen that the form of the power function changes with the type of

third-order moment added to the analysis. In fact, we have seen that for some

cases, the power function can be constant, when the third order moment does

not involve the misspecified parameter, monotonic increasing as in the case

of V1V3V5, or non-monotonic, as in the case of V5V5V5. On the base of this

behaviour of the power function we will classify the third-order moments in

C, MI, NMI. Given a model, it will be interesting to disentangle the power

status for the different higher order moment in relation to a given interaction

term.

Here we discuss examples of each. We will express the noncentrality pa-

rameter (ncp) in terms of model parameters to see the nature of the different

type of third order moments.

We concentrate here on the interaction model and fitting, besides means
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and covariances of the variables, third order moments. We further assume

that the null hypothesis is that the interaction term, β12 = 0. In this section

we concentrate on the moment test, and more particularly on the univariate

moment test.

To better illustrate the issue we consider a simplified version of the model.

The model: there are two observed independent variables, called x1 and

x2, and and one dependent variable, called y. There are three different

types of third order for the latent variables: µyx1x2 , µy2x1 , µy2x2 and µy3 .

Corresponding to these third order moments there are three different types

of ncp’s. These can be written as:

ncp(1) =
(µyx1x2)

2

var(myx1x2)
, ncp(2) =

(µy2x1)
2

var(my2x1)
, ncp(3) =

(µy3)
2

var(my3)
(26)

The regression model is written as :

y∗ = β0 + β1x1 + β2x2 + β12x1x2 + e

where it is assumed that x and e are centered variables. Because in the third

order moments we discuss in this paper, the means of the observed dependent

variables are zero, we write the regression equation as

y = y∗ − E[y∗] = β1x1 + β2x2 + β12(x1x2 − φ12) + e (27)

It can be shown that the different types of third order moments can be written
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as:

type(1) : µyx1x2 = β12(φ11φ22 + φ12)

type(2) : µy2xk = 2β12

(
2β1φkkφ12 + β2(φ11φ22 + φ2

12)
)
, k = 1, 2

type(3) : µy3 = 6
(
β2

1φ11φ12 + β2
2φ22φ12 + β1β2(φ11φ22 + φ2

12)
)
β12 + (6φ11φ12φ22 + 2φ3

12)β3
12

where the φs are the covariances among the x’s. These expressions have been

deduced assuming bivariate normality for the variables x1 and x2.

Obviously it holds for all moments that the third-order moment are 0 if

the interaction parameter β12 is zero. An important remark to make here

is that the third-order moments of type 1 and 2 are linear functions of the

interaction parameter β12, whereas for type 3 this function is a nonlinear

function.

Example: In this example we take as model parameters the same model

parameters as in the structural part of the Kenny and Judd model. This

means that the measurement errors are not involved in our model. So the

parameters are β0 = 1, β1 = .2, β2 = .4 and var(e) = .2.

The interest of this example is the influence of the interaction parameter

( β12) on the size of the noncentrality parameter. Unfortunately, there is no

analytical expression for the ncp’s in terms of the model parameters, because

the denumerator is hard to express in terms of the model parameters. For

instance, it is easy to verify that for type 3 third-order moments the variance

of the third-order moments depends on moments of order 12.
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A small MC study is carried out. In this study 100, 000 samples with

sample size 600 are drawn from a population which is specified by the model

parameters as given above. Table 3 gives the results of this study for two

different third-order moments (x1x2y and y3) for different values of the in-

teraction parameters.

Table 3: Monte Carlo values for the mean and variance of two types of
third-order moments 1

moment x1x2y moment y3

β12 µ m γ ncp µ m γ ncp
.0 .000 .000 .400 .000 .000 .000 .700 .000
.1 .037 .037 .417 1.939 .035 .035 .794 .939
.2 . 074 .074 .469 6.942 .074 .073 1.144 2.823
.3 .111 .110 .554 13.250 .117 .117 1.878 4.385
.4 .148 .147 .680 19.222 .170 .169 3.339 5.160
.5 .184 .184 .839 24.321 .233 .233 5.962 5.457
.6 .221 .221 1.032 28.518 .311 .311 10.507 5.524
.7 .258 .258 1.261 31.715 .405 .405 17.965 5.486
.8 .295 .295 1.504 34.729 .519 .519 29.570 5.457
.9 .332 .332 1.812 36.467 .656 .655 47.731 5.391
1.0 .369 .369 2.156 37.904 .818 .818 75.047 5.353

1 Note that γ is defined as the sample size (600) times the variance of the
third-order moment.

We now summarize the main findings in Table 3. i) The Monte Carlo

mean of the third-order moments given in column m over all MC trials are

about equal to the expectations given in column µ matching what should

be expected from theory; ii) The ncp’s for the type-1 third-order moments

are always (substantially) larger than for the type-3 third-order moment;
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iii) The variance of the moments increases (and so γ too) if the interaction

parameter increases, although this variance increases sharper for the third-

order moment y3; and iv) When the interaction effect increases, the ncp

associated to x1x2y increases also. This is not the case for y3; we see that

the ncp do in fact decreases when β12 is larger than .6 This non-linear relation

between the size of the interaction term and the ncp was noted above for the

type (3) third-order moment.

Point iv) above is the most important issue because it is counter-intuitive.

The reason is the variance of the third-order moment (which is the de-

numerator of the ncp) increases sharply if the interaction parameter increases.

The consequence of this is that the ncp may be decreasing while the inter-

action term is increasing. This explains why in Table 2 where a type (3)

third-order moment was fitted, the power was decreasing for large interac-

tions.

5 A forward selection procedure

In Table 4 the results for our forward-selection procedure of the third-order

moments are given. The model as in Section 2 is used. The results are

given for the true parameter β12 = .4. In the procedure first the third-order

moment is looked for which has the highest estimate of the noncentrality

parameter, or to put it differently, which has the highest power. Then sub-

sequently, a second- and third-order moment is looked for which, together
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with the first one, results in the highest power. Table 4 gives in column 1

the third-order moment, then in column 2 and 3 the univariate noncentrality

parameter (univ-ncp) and the multivariate noncentrality parameter (mult-

ncp). This latter ncp is based on the third order moment in the same row

and the third-order moments in all previous rows. In addition, in column

4 to 6, the bias, standard deviation and standard errors of the interaction

parameters are given. The number of replications is 250.

Conclusion of Table 4 : The estimates based on the first three third-order

moments compare well (in terms of bias and standard errors) to the estimates

based on all third-order moments. An importation observation to make is

that the gains in terms of efficiency of estimates are large when adding the

three third-order moments; however, adding additional third-order moments

do not yield improvement on the estimates of the interaction effect. It can

be conjecture that each higher-order moment that is added to the analysis

deteriorates the robustness against small sample sizes. The last column of the

table shows the power values against deviations from zero of the interaction

term associated to model test with as many interaction terms as accumulated

in the respective row. We see that after adding three interactions terms,

adding additional ones do in fact yield a decrease of power. This is in line

with the above conclusion that in the model set-up considered, to take more

than three third-order moments is not to be recommended.
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Table 4: Monte Carlo results for the selection procedure

Moment univ-ncp mult-ncp bias se(β̂) sd(β̂) χ2 df Power
V1V3V5 14.675 14.675 0.007 .132 .129 6.81 7 .81
V2V5V5 7.844 16.369 0.000 .109 .102 7.77 8 .84
V4V5V5 8.201 17.068 -0.006 .098 .094 8.59 9 .84
V1V4V5 10.414 17.283 0.005 .100 .099 9.93 10 .83
V2V3V5 7.891 17.445 -0.005 .098 .095 10.80 11 .82
V1V5V5 12.875 17.632 0.003 .098 .102 12.00 12 .81
V1V1V5 3.893 17.870 0.005 .099 .095 12.54 13 .80
V5V5V5 8.190 18.095 -0.008 .091 .086 13.54 14 .79
V3V5V5 10.468 18.440 -0.008 .091 .089 14.93 15 .79
V3V3V5 5.282 18.616 -0.006 .091 .094 15.57 16 .78
V1V2V5 3.259 18.684 -0.005 .092 .092 16.10 17 .77
V3V4V5 5.146 18.731 0.003 .095 .092 17.11 18 .76
V2V4V5 5.479 18.760 -0.005 .092 .088 18.75 19 .75
V2V2V5 0.946 18.766 0.002 .095 .091 19.96 20 .74
V4V4V5 2.359 18.770 -0.002 .095 .095 20.69 21 .73

6 Discussion

A central issue in the analysis of models with interaction is the selection of

the higher-order moments to be involved in the analysis. Basically, the most

relevant moments would be the ones that lead to higher power in detect-

ing the failure of a null model H0 with no interaction terms when in fact

the interaction term is present in the data at hand. In this paper we have

addressed the choice of the interactions terms to be used in the analysis.

This paper spells out conditions (Condition 1) under which the power of the

model test is exactly equal to the power of a moment test that can be eas-
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ily implemented just from multivariate data analysis without reference to a

SEM model. This fact is of importance since it simplifies considerably the

practice of choosing higher order moments for the analysis of a model with

interaction terms. The ncp λMT (σa) can now be easily estimated by direct

computation of the moment test TM = nσ′a3Γ−1
33 σa3 without involving any

optimization process or model fit; so, parameter estimates are not needed to

be computed as should when estimating the ncp in the form of λWLS(σa).

For the results of this paper to hold distributional assumptions on the

random constituents of the model are required. We use the assumptions

that the distribution of the factors involved in the interaction term are in

fact normally distributed (in which case the interaction factor itself will not

be normally distributed). Other stochastic constituents of the model such

as error of measurement and disturbances may however deviate from the

normality assumption, though they are also restricted in distribution. In

fact, assumption SI requires the disturbance terms and errors (the vector δ1)

to be symmetric and independent (not only uncorrelated) of δ2 the vector

that contains the factors and their interaction.

Note that both moment test and model test coincide on their non-centrality

parameter but they will generally have different degrees of freedom, with gen-

erally the moment test having the smaller degrees of freedom. This implies

that the moment test will have more power than the corresponding model

test. This issue is of lower importance in our paper since we are mainly con-

cerned in the variation of the power of the test when we change the choice
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of third-order moments.

The models encompassed by Theorem 1 are not so restricted as initially

one can fair. The basic condition on the model (apart from the distributional

assumptions of assumption SI) is that the structural part of the model is

saturated, i.e. in the language of Mooijaart and Satorra (2009) the degrees

of freedom of the structural part of the model is zero. The measurement part

of the model can, however, contain restrictions that make the whole model

with a high number regarding the degrees of freedom.

In this paper we have classified the third-order moments in three types

depending on the number of times a dependent variable y appears in the

third-order moment. In types (1) and (2) (when a variable y appears only

once or two times in the third-order moment) the ncp is a monotonic in-

creasing function of the interaction term for any of its value β12 (see the

expressions (26)), while in the type (3) when the moment is just the product

of three y variables, the ncp is just a non-linear function, increasing of course

when β12 is close to zero. This non-linearity (more specifically, deviation from

monotonicity) of the power function associated to type (3) moments, lead us

to the recommendation of avoiding those moments when fitting models with

interaction terms.

A final issue we want to discuss is how many third-order moments should

be supplemented to first- and second-order moments to improve the analysis

of a model with interaction terms. By looking at the last column of Table

4 we see that there is an slight improvement in the power of the model test
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when adding one additional moment to the first one, but the power do in

fact decreases with the number of third-order moments added. In that ex-

ample, if we want to optimize power, adding the two third-order moments

V 1V 3V 5 and V 2V 5V 5 seems the optimal choice. From the computational

perspective and robustness against small samples of our analysis it is clearly

an advantage fitting a model with limited number of third-order moments.

In practice where sample sizes tend to be not too large, each third-order mo-

ment that is added to the analysis is likely to induce more bias on parameter

estimates and more inaccuracy of the asymptotic results. So even thought

theoretically the asymptotic efficiency of estimates increase when the number

of degrees of freedom increase, adding more moments may induce a deteri-

oration on measures of accuracy as mean square error of estimates (square

of bias plus variance). We therefore recommend researchers to refraining of

adding higher-order moments much beyond the strictly necessary for identifi-

cation purposes. The moment test can be easily integrated into an automatic

procedure for assessing the number of third-order moments to be retained in

the analysis, since the moment test can help to produce results as the ones

in Table 4 without the need of fitting a model. All this aspects, however,

even though we believe are of importance they go beyond the scope of the

present paper.
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7 Appendix : Lemma 6 and proof of Lemma

1

Lemma 6: Given matrices A, B and C, it holds that

(A,B)⊗ (C,D) = (A⊗ C,A⊗D,B ⊗ C,B ⊗D)E

where E is a permutation matrix .

Proof: We use basic properties of the right-kronecker product, namely

(A,B) ⊗ C = (A ⊗ C,B ⊗ C) for conformable matrices A,B,C, so that

(A,B) ⊗ (C,D) = (A ⊗ (C,D), B ⊗ (C,D)). By definition of kronecker

products it holds that the columns of A⊗ (C,D) are either ai⊗ cj or ai⊗ dk

where ai,cj and dk are columns of the matrices A,C and D respectively. So

A ⊗ (C,D) = (A ⊗ C,A ⊗ D)E , where E is an elementary matrix which

permutes the columns of (A ⊗ C,A ⊗ D). Analogously, it can be written

B ⊗ (C,D) = (B ⊗ C,B ⊗D)E2 for a different permutation matrix E2. So

it holds (A,B) ⊗ (C,D) = (A ⊗ (C,D), B ⊗ (C,D)) = (A ⊗ C,A ⊗D,B ⊗

C,B ⊗D)E, where E is a super 2 × 2 matrix with block diagonal matrices

E1 and E2.

We will now prove Lemma 1 that basically shows that the mean and

covariance structure implied by models H1 and H0 are equivalent; that is, if

σ12 is a mean and covariance vector generated by one of the models will be

fitted perfectly by the other model.
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Consider the class of models defined by (1) to (3) and further elaborated

in (12) and (13). For the population means and covariances of the observable

variables we can write (here we assume the usual uncorrelation assumption

among the basic random constituents of the model)

E(y) = νy + ΛyB
−1(α + Γ2E(ξ ⊗ ξ))

(28)

E(x) = νx

and

cov(y) = ΛyB
−1Γ1ΦΓ′1B

−TΛ′y + ΛyB
−1[Γ2cov(ξ ⊗ ξ)Γ′2B−TΛ′y

+Ψ]B−TΛ′y + cov(ε)

= ΛyB
−1[Γ1ΦΓ′1 +Q+ Ψ]B−TΛ′y + cov (ε) (29)

cov(x) = ΛxΦΛ′y + cov(δ)

cov(x, y) = ΛxΦΓ′1B
−TΛ′y

where Q = Γ2cov(ξ ⊗ ξ)Γ′2.

Under the specification H0, the means and variances are expressed as (we

use the conditions of Lemma 1 of the normality assumption on ξ. In fact, we
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only need the assumption that Eξ ⊗ ξ ⊗ ξ = 0)

E(y) = νy + ΛyB̃
−1α̃

(30)

E(x) = νx

and

cov(y) = ΛyB̃
−1Γ̃1Φ̃Γ̃′1B̃

−TΛ′y

+ΛyB̃
−1Ψ̃B̃−TΛ′y + cov(ε)

(31)

cov(x) = Λ̃xΦ̃Λ′y + cov(δ)

cov(x, y) = Λ̃xΦ̃Γ̃′1B̃
−TΛ′y

We have introduced the tildes to indicate different values for the parameters

when fitted under model H0 than when fitted under model H1.

In the notation above, the tilde makes explicit that models H1 and H0 can

differ on the matrices B, α, Φ and Ψ = cov(ζ), in addition to the difference

with respect to matrix Γ1. Clearly, equivalence of equations (28) and (30)

implies

α̃ = B̃B−1(α + Γ2D
+E(ξ ⊗ ξ))) (32)
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It follows that if α is unconstrained this equation will not yield necessarily

the same constraints for α̃, so a general condition is that α̃ is unconstrained

.

As expressed in the notation used, the vectors νx and νy and the matrices

Λy, cov(ε), cov(δ) are the same in both pair of equations, (28) and (29), and

(30) and (31).

The equivalence of (29) and (31) implies

B̃−1(Γ̃1Φ̃Γ̃′1 + Ψ̃)B̃−T = B−1(Γ1ΦΓ′1 +Q+ Ψ)B−T (33)

The equivalence thus can be ensured by

Γ̃1 = B̃B−1Γ1

Λ̃xΦ̃ = ΛxΦ

and

B̃−1Ψ̃B̃−T = B−1(Q+ Ψ)B−T

to be unconstrained under model H0. So, the first- and second-order mo-

ments equations for models H1 and H0 are equivalent, when the model H0

unconstraints the vector α and the matrices Γ1, Φ and B−1ΨB−T , precisely

conditions that are ensured by Condition 1 of Lemma 1.

Note that the equality claimed in Lemma 1 is confined to alternative
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moment vectors σa that satisfy exactly the specification H1 of the moment

equations (28) and (29).
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