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LEARNING SEMANTIC FEATURES
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Carnegic-Mcllon University
&

Terrence J. Sejnowski
Biophysics Department
The Johns Hopkins University

An important idea within cognitive scicnce is that much general
knowledge can be represented as constraints between the slot-fillers of
a schema. ‘The central idca of “connectionism™ is that knowledge is
represented by the strengths of the connections in a large nctwork of
simple processing elements. The relation between these two ideas is
complex.

Several ways of using connectionist networks to implement schemas
have been proposed. The obvious, "localist” approach is to identify
processing units in the physical network with concepts, and to treat the
physical links as if they were direct implementations of the pointers
that are conventionally used to represent the filling of a schema-slot by
an object (I‘eldman and Ballard, 1982; Fahlman, 1979). An alter-
native, "distributed" approach is to allocate a large number of units to
each slot of a schema, and to represent the filler of that slot by the
pattern of activity of that set of units (Hinton, 1981). The main dif-
ference is in how the physical parallelism is used. In the distributed
approach, only one instantiation of a particular schema is possible at a
time because the units dedicated to each slot can only have one pattern
of activity at a time. The physical links are used to implement con-
straints between slot-fillers. By setting the strengths of the links ap-
propriately, it is possible to make a pattern of activity in one set of
units cause (or prohibit) a pattern in another set of units. If each
component of a pattern of activity is viewed as a semantic feature of
the object represented by that pattern, the physical links between units
allow many semantic constraints to be enforced in parallel,

A major difficulty for the distributed approach is this: Somconc has to
choose what pattern of activity to use to represent a particular slot-
filler. If a random pattern is used, it may be hard to represent the
constraints between slot-fillers because the underlying semantic fea-
turcs arc not explicit. What is nceded is an intclligent choice that
makes it easy to implement the constraints. If, for example, all male
fillers of slot 1 are represented by patterns that have unit 253 turned
on, and all male fillers of slot 2 have unit 491 turned on. then the
constraint that not both fillers can be male can be implemented by
making these two units inhibit cach other.

Unfortunately, it is hard to discover uscful semantic features automati-
cally. The dcefinition of a uscful feature is that it puts relatively strong
constraints on the features of objects in cther slots, but these other
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features also have to be lcarned and so there is a chicken-and-cgg
problem. ‘This paper describes a way of learning scts of features that
work well together, The learning algorithm uses some rather compli-
cated ideas from statistical mechanics, and it runs very slowly on con-
ventional computers, so the example given is very simple.

A very simple example

Imagine a world in which objects always occur in pairs, and only one
pair occurs at a time. Each object can be paired with many but not all
of the other objects. One way to characterize the structure of this
world would be to simply list all the pairs and their probability of
occurence. If the possible pairs were determined randomly, this
mecthod might be sensible, but if there are underlying properties of
objects that influence the pairings, it will gencrally be much more
cfficient to express the probability distribution over the possible pairs
by extracting these underlying feawres and using them (o express laws
of combination. Morcover, this seccond mcthod will allow predictions:
among the pairs that have never been observed, the onces which satisfy
the laws of combination are more likely to occur than the ones which
don’t. ‘The difficulty in using the second method is that the number of
potential features is enormous, cven if we restrict ourclves to clearcut
binary features. Given n objects there are 2" ways of picking a subset
and hence 2" potential binary features. Finding just those features
which lead to good laws of combination is a formidable problem.

We use this simple example to illustrate a lcarning algorithm which
can discover uscful features. The two objects that occur together in a
pair are like two slot-fillers. For cach slot we have 9 units and 8
possible fillers. The different fillers are represented by turning on
exactly onc of the first 8 units in a slot, but we do not decide in
advance whether or not the 9™ unit should be on. It is left to the
learning algorithm to decide how to use the 9" unit The learning
algorithm is thercfore capable of modifying the representations that
are used for the various slot fillers,

Simulations

Figure 1 shows some examples of pairs of objects drawn from a prob-
ability distribution over all possible pairs composed of one object from
the set {A, B, ... H} and one from the set {S, T, ... Z}. Implicit within
this probability distribution is a strong underlying regularity: If the
first set is divided into the subsets {A B C D} and {E F G H} and the
sccond set is divided into the subsets {S T U V} and {W X Y Z}, then
there is a simple way of expressing the probability distribution: If the
first object is in the set {A B C D} the other will be in the set {S T U
V} with probability 0.9, and if the first object is in the set {E F G H}
the second will be in the set {W X Y 7} with probability 0.9.

Figure 2 shows a network which has been cxposed to the probability
distribution by clamping the states of some of its units. States that
represent a particular pair of objects are clamped with the appropriate
probability. The network started with all its conncection strengths
equal to zero, and after being shown 3000 pairs of cbjects it has cap-
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DTHXHZDVCSCI 17 BT EY CU BV
EYASCIFIBIFWGY FXGY GW BX
CVDSAUCI HY BSATGZASFY EZ
HXHXCIDZAUCVCSFX DUAY EZ .

Figure 1: A collection of pairs of objects. These pairs were drawn from
a probability distribution that can be described relatively simply (sce
text). The problem is to discover ways of dividing the objects into sets
that allow the simple description to be expressed.

Figure 2: Fach unit is represented by a gray "H™ shaped region.
Within this region, connections to other units are represented by white
(positive weight) or black (ncgative weight) rectangles in the position
that corresponds to the location of the other unit in thc overall
diagram. 'The size of the white or black box indicates the absolute
magnitude of the weight. For cxample, the white rectangle in the top
left hand unit represents an excitatory connection between that unit
and the leftmost of the two central units. All connections between units
appcar twice in the diagram, once in the box for each of the two units
being connected. So the white rectangle in the top left-hand corner of
the lefunost central unit is the same conncction as described above.
Units never connect to themscelves, so in the position where that con-
nection would be displayed (e. g. the top left-hand corner of the top
left-hand unit) we display the threshold using black to mean a positive
threshold. The empty gray arcas on the right-hand sides of the left-
hand group of 8 units show that these units are not directly connected
to the right-hand group of 8. Notice that the units in cach group of 8
have learned to inhibit cach other. This implements the within-slot
constraint that only onc of them should be on at a ume. This con-
straint follows from our decision to represent cach slot filler by a pat-
tern of activity with only one of the 8 units turned on.
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tured the regularity by sctting its weights so that one of its two central
units deteets whether the first object is in the sct {A B C D}, the other
central unit detects whether the sccond object is in the set {W X Y Z},
and the two units inhibit cach other,

It is hard to learn such features because there is no information to
suggest them in the fillers of either slot considered separately, All 8
fillers occur cqually often and have no intrinsic similarity to cach
other. The only reason for sclecting these particular features is that
they allow the implicit constraint between slot-fillers to be expressed.

Finding combinations of slot fillers that
satisfy existing constraints

Before describing the learning algorithin it is necessary to describe how
a network with a fixed set of weights can arrive at combinations of
slot-fillers that satisfy the constraints which are implemented by the
weights. An arbitrary combination of slot-fillers will gencrally violate
some constraints, and the process of finding a good combination in-
volves an iterative search in which individual units change their states
so as to minimize the violation. The stochastic iterative search proce-
dure we use was first described by Hinton & Sejnowski (1983) and is
described more briefly here.

We start by showing that networks of asynchronous, symmetrically
connected, binary threshold clements obey an energy function, and
that repcated iterations are guaranteed to find an encrgy minimum
(Hopfield, 1982). This minimum corresponds to a combination of slot
fillers that minimizes the constraint violation. The global potential
energy of the system is defined as

E== 3" wiss + 305 (1)
1< i

where wj; is the strength of connection (synaptic weight) from the j‘h to
the #* unit, s;1s a boolean truth value (0 or 1), and @;is a threshold.

A simple algorithm for finding a combination of truth values that is a
local minimum is to switch each hypothesis into whichever of its two
states yiclds the lower total energy given the current states of the other
hypotheses. 1f hardware units make their decisions asynchronously,
and if transmission times are negligible, then the system always settles
into a local energy minimum. Because the connections are symmetri-
cal, the difference between the energy of the whole system with the &
hypothesis false and its cnergy with the k7' hypothesis true can be
determined locally by the ™ unit, and is just

&Ekz Z Wi Si ""Gk (2)
i

Therefore, the rule for minimizing the cnergy contributed by a unit is
to adopt the true state if its total input from the other units and from
outside the system exceeds its threshold. T'his is the familiar rule for
binary threshold units.
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Using probabilistic decisions to escape
from local minima

The deterministic algorithm suffers from the standard weakness of
gradient descent methods: It gets stuck at Jocal minima that are not
globally optimal. This is an incvitable consequence of only allowing
jumps to states of lower cnergy. If, however, jumps to higher cnergy
states occasionally occur, it is possible to break out of local minima,
An algorithm with this property has recently been applied to difficult
constraint satisfaction problems by Kirkpatrick, Gelatt & Vecchi
(1983). We adopt a form that is suitable for parallel computation: If
the energy gap between the true and false states of the ™ unit is A Ej
then regardless of the previous state sct sz =1 with probability

1

where T is a paramcter which acts like the temperature of a physical
system, This parallel algorithm ensures that in thermal equilibrium
the relative probability of two global states is determined solely by
their encrgy difference, and follows a Boltzmann distribution.

Py _ o~ (Ea-EgT @
Pp
where P_ is the probability of being in the ot global state, and Eﬂ is
the energy of that state.

At low temperatures there is a strong bias in favor of states with low
energy, but the time required to reach cquilibrium may be long. At
higher temperatures the bias is not so favorable but equilibrium is
reached faster. The fastest way to reach cquilibrium at a given tem-
perature is to start with a higher temperature and gradually reduce it.

The learning algorithm

When a network is allowed to reach thermal cquilibrium using the
probabilistic decision rule in Eq. 3, the probability of finding it in any
particular global state depends on the encrgy of that state (Eq 4.).
These equations allow us to derive the way in which the probability of
a state changes as a weight is changed:

k. :—},—[s?sf - ; PBS’?S?] 5)

where a is a global state of the network and si“ is the binary state of
the i® unit in the o™ global state. Eq. S shows that the effect of a
weight on the log probability of a global state can be computed from
purcly local information, because it only involves the behavior of the
two units that the weight connects (the second term is just the prob-
ability of finding the i™ and j™ units on together). This makes it casy to
manipulate the probabilities of global states provided the desired
probabilities arc known (sce Hinton & Scjnowski, 1983 for details).

Unfortunately, it is normally unreasonable to expect the environment
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or a teacher to specify the required probabilities of entire global states
of the network . A network wypically contains some "visible" units that
receive the input or produce the output and it also contains some other
units that we call "hidden" because they are not dircctly involved in
representing the input or output. For example, the two central units in
figure 2 are hidden units and the rest are visible. The task that the
network must perform is defined in terms of the states of the visible
units, and so the environment or tcacher only has direct access to the
states of these units (hence the name visible). 'The difficult learning
problem is to decide how to use the hidden units to help achicve the
required behavior of the visible units. A learning rule which assumes
that the network is told from outside how to use all of its units is of
limited interest because it evades the main problem which is to dis-
cover appropriatc represcntations for a given task among the hidden
units.

In statistical terms, the hidden units can be used to represent the
higher-order statistical regularities that arc implicit in the ensemble of
vectors that the environment causes in the visible units. The learning
problem is to decide how best to use the capacity of the weights to
capture this higher-order statistical structure. In common-sense terms,
the weights should be chosen so that the hidden units represent sig-
nificant semantic features and the interactions among hidden units
capture the important constraints. [f we make certain assumptions it is
possible to derive a measure of how cffectively the weights are being
used, and it is also possible to show how the weights should be
changed to progressively improve this measure,

We assume that the environment “clamps™ a particular vector over the
visible units and it keeps it there for long enough for the nctwork to
reach thermal equilibrium with this vector as a boundary condition
(i.e. to "interpret” it). We also assume (unrealistically) that the there is
no structure in the sequential order of the environmentally clamped
vectors. This means that the complete structure of the ensemble of
environmental vectors can be specified by giving the probability,
P(V,), of each of the 2" vectors over the v visible units. Notice that the
P(V4) do not depend on the wcights in the network because the en-
vironment clamps the visible units,

A particular set of weights can be said to constitute a perfect model of
the structure of the environment if it leads to exactly the same prob-
ability distribution of visible vectors when the network is running
freely with no environmental input. Because of the stochastic behavior
of the units, the network will wander through a varicty of states even
with no input and it will thercfore generate a probability distribution,
P'(V,), over all 2" visible vectors. This distribution can be compared
with the environmental distribution, 7(},). In gencral, it will not be
possible to exactly match the 2" environmental probabilities using the
weights among the v visible and h hidden units because there are at
most 0.5 (v+h-1) (v+h) symmetrical weights and (v+h) thresholds.
However, it may be possible to do very well if the environment con-
tains regularitics that can be expressed in the weights. An information
theoretic measure (Kullback. 1959) of the distance between the en-
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vironmental and free-running probability distributions is given by:

G=Y PV, In 7%‘//“!5* (6)

where /(V,) is the probability of the '™ state of the visible units when
their states arc determined by the cnvironment, and P/(V,) is the
corresponding probability when the network is running frecly with no
cnvironmental input.

G is never negative and is only zero if the distributions are identical. [t
is possible to improve the network's model of the structure of its en-
vironment by changing the weights so as to reduce G, It can be shown
that:

G _ 1.,

where b, is the probability, averaged over all environmental inputs and
measured at equilibrium, that the i™ and ™ units are both on when the
network is being driven by the environment, and p"'., is the correspond-

ing probability when the network is free running.

One surprising featurc of Eq. 7 is that it does not matter whether the
weight is between two visible units, two hidden units, or one of each.
The same rule applies for the gradient of G. An even more surprising
fact is that the gradicnt involves only locally available information,
even though G is a global property of the whole set of weights and the
effect of one weight on G therefore depends on the current values of
all the other weights. Fortunately, the other weights affect P, and p’y
in just the right way to make the dependence locally available,

Parameters for the learning algorithm

The ability to discover the partial derivative of G by observing Py and
p"._ docs not completely determine the learning algorithm. It is still
necessary to decide how much to change each weight, how long to
collect co-occurence statistics before changing the weight, how many
weights to change at a time, and what temperature schedule to use
during the anncaling scarches. Reasonable values for these parameters
were found by trial and error. Further discussion of the effects of
these parameters can be found in Hinton, Sejnowski & Acklcy (1984).
A "sweep” consisted of annealing 16 times with environmentally deter-
mined vectors clamped on the visible units, and 16 times with no
clamping. After each sweep, cach of the weights was updated with a
probability of 0.5. This partially asynchronous updating helps avoid
oscillations in the weights. When a weight was updated, it was always
increascd or decreased by the same fixed amount. The sign of the
increment was determined by the sign of Py~ p”_}, The magnitude of
the weight-step was 0.2.

The anncaling schedule started by randomizing the state and then ran
for the following times at the following ter..peraturcs: 2@2.0, 2@1.5,
2@1.2, 2@1.0, where onc unit of time means running the network for
long enough so that the expected number of times each unit is picked
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is 1. After this anncaling, the network was assumed to be at equi-
librium at a temperature of 1.0, and was run for a further time of 10
while co-occurence statistics were collected.,

Conclusion

One of the major problems wich using distributed patterns of activity
as representations is to choose the patterns. Some choices work much
better than others because they make important underlying features
explicit and thus they allow the physical links in the network to capture
the constraints that characterize the domam. We have presented a
learning algorithm for choosing representations, and shown that it can
create semantic features that are useful for expressing the constraints
between the (illers of two slots.
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